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ABSTRACT: We develop an equilibrium search model of the housing market where sellers may be-
come distressed as they are unable to sell. A unique steady state equilibrium exists where distressed
sellers attempt liquidation sales by accepting prices that are substantially below fundamental values.
During periods where a large number of sellers are forced to liquidate customers exhibit ‘predation’:
they hold off purchasing and strategically slow down the speed of trade, which in turn causes more
sellers to become distressed. The model naturally suggests several proxies of liquidity. Interestingly,
the average time on the market (TOM), one of the most frequently used statistics in the literature,
does a poor job within the context of liquidation sales and predation. Specifically we show that
TOM falls during periods of predatory buying, which, if interpreted on face value, indicates that
the market becomes more liquid with predation. We propose an alternative proxy—the profit loss
in fire sales—which appears to be a more robust measure of liquidity than TOM.
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1 Introduction

Selling a house involves a long and non-trivial search process where the home seller faces a trade-off
between the price and the time to sale. With sufficient time and no pressure to sell immediately, a seller
can afford to wait to receive a price commensurate with the market value. However, due to factors
such as bankruptcy, job loss, foreclosure, relocation, divorce etc. some sellers become ‘distressed’ and
attempt to quickly sell and exit the market.

The presence of distressed sellers seems to affect buyers’ purchasing behavior as well. During the
recent housing crisis, for instance, where presumably a large number of sellers became distressed,
buyers exhibited what can be termed as ‘predation’. Despite falling prices customers were reluctant to
purchase—appearing to be strategically delaying purchasing in an effort to obtain even better deals.

Based on these observations we develop an equilibrium search model of the housing market with
two distinctive features. First, buyers’ willingness to pay is private information and more importantly,
second, sellers may become distressed, or ‘motivated’ in real estate parlance, as they wait to sell. We
show that in equilibrium, financially distressed sellers accept prices substantially below fundamental
values and consequently sell faster than regular sellers (liquidation sales). The more painful the shock,
the lower the sale price and the quicker the sale.

Moreover, during periods where many sellers encounter financial distress (e.g. a crisis or recession)
the following occur. First, the number of liquidation sales rises. Second, all sellers, regular and
distressed, drop their prices. And most importantly, third, buyers exhibit predation: they become
more selective and hold off purchasing despite the abundance of distressed sales and lower prices.
By doing so, customers strategically slow down the speed of trade causing more sellers to become
distressed, which in turn, exerts more pressure on sellers forcing them for further price cuts, and so
on. From buyers’ point of view such behavior is optimal as it allows them to acquire better houses
at lower prices, but from sellers’ point of view it is the worst possible outcome. Indeed, for distressed
sellers liquidity disappears when it is most needed.

The model naturally suggests several proxies measuring liquidity from different angles. Curiously,
though, the expected time on the market (TOM)—one of the most frequently used and referenced
statistics in the literature—does a poor job in this context. We show that TOM falls during periods of
predatory buying, which, if interpreted on face value, indicates that the market becomes more liquid
with predation. We propose an alternative proxy, the profit loss in liquidation sales, which appears to
be a more robust measure than TOM.

Finally, the model provides simple and intuitive answers to two puzzles raised by Merlo and Ortalo-
Magné [15]. Based on a unique data set of individual residential property transactions in England,
the authors document that about 2/3 of sellers do not change the listing price at all, while remaining
sellers revise the listing price at least once (typically once). The fact that some sellers revise the listing
price while others do not and that price revisions are infrequent and sizable are in stark contrast to the
predictions of most existing theories in the housing market. In addition, based on the same data set
the authors document a negative correlation between the sale price and the duration of the sale—the
longer the time on the market, the lower the sale price. This fact, again, is inconsistent with most of
the existing theoretical models.

According to our model some sellers revise the listing price while others do not, simply because
some sellers become distressed while others do not. The revision occurs only once (when the shock
hits) and it can be sizable if the shock is severe. The negative correlation is also easy to explain.

Properties sold soon after the listing date are most likely ‘regular sales’. Sellers of such properties are



unlikely to become distressed within a short period of time. Sales taking place long after the listing
date are most likely ‘distressed’, because the longer a seller waits, the more likely he is to become
distressed. Since distressed sales occur at lower prices, the aforementioned negative correlation follows.

When constructing the model what we had in mind was the housing market, however the model is
applicable in other settings characterized by (i) search frictions, (ii) informational asymmetry between
buyers and sellers and (iii) the prospect of becoming distressed. As an example, consider the over
the counter (OTC) markets; in particular markets for mortgage-backed securities, bank loans and
derivatives among others. These markets share all three of the aforementioned characteristics. Indeed,
search is a fundamental feature in many OTC markets, just as it is in the housing market, as it is
difficult to identify a counterparty with whom there are likely gains from trade. Similarly informational
asymmetry between buyers and sellers is a prevalent feature of the OTC markets as buyers’ valuations
are private information and it is not uncommon at all for parties to simply walk away without trading.
Finally, traders may become financially distressed due to, for instance, pressing debt obligations,
nearing margin calls, hedging motives or being caught in a "short squeeze". The model, therefore, is
potentially applicable in this setting as well and anecdotal evidence suggests that the main results of
the paper (fire sales and predation) indeed hold true in the OTC markets.

This paper belongs to a literature that studies the housing market using search theory, e.g. see
Yavas and Yang [21], Krainer [14], Wheaton [19] and Albrecht et al. [1], among others. The paper
by Albrecht et al. is perhaps the closest to our model in terms of motivation and setup; however, it
is based on complete information while ours is based on incomplete information. This difference is
crucial because incomplete information is key in obtaining the predation result.

The paper proceeds as follows. In the next section we lay out the model. Section 3 presents the

predation result, section 4 discusses prices, section 5 discusses liquidity and section 6 concludes.

2 Model

Time is continuous and infinite. The economy consists of a continuum of risk neutral buyers and
sellers. Each seller is endowed with a house and each buyer seeks to purchase one. Buyers and sellers
differ in terms of their intrinsic preferences towards ownership of a house, which creates the incentive
to trade. For simplicity, we assume that the utility to the seller from keeping the house is zero.
Buyers on the other hand receive periodic dividends (housing services) starting at the period after the
purchase of the house and continuing forever. Following the asset pricing interpretation, we assume
that the value of a house is captured by the discounted sum of the future dividends.

Sellers’ personal circumstances may change for the worse if they are unable to sell for too long a
period. All sellers enter the market in regular circumstances, though, eventually as they are unable
to sell they might be hit by an idiosyncratic shock and become motivated or distressed. The adverse
shock arrives at an exogenous Poisson rate p > 0 and may be associated with difficulties, financial
or otherwise, forcing sellers into early liquidation. Regular and distressed sellers differ in terms of
their time preferences. Buyers and regular sellers discount future utility by (1 + §)~! > 0, whereas
distressed sellers are more impatient and discount the future by (1 + 3)_1 <1+ 5)_1 , which means
that 6 > §. Sellers do not exit the market until they sell and a distressed seller remains distressed.

The parameters of interest are the frequency of the shock, p, and the severity of the shock, 9.

'For an application of search theory in OTC markets see [10], for predation in financial markets see Attari et al. [3],
Brunnermeier and Pedersen [5] or Carlin et al. [7], Ozcan et al. [17] among others.



Transactions are bilateral and involve a non-trivial search process. At any point in time buyers
and sellers meet each other at a constant Poisson rate a > 0.2 Upon inspecting the house, a buyer
realizes his own valuation of the house v € [0, 1], which is a random draw from the unit interval via
c.d.f. F'(v). Buyers are identical in the sense that their valuations are generated by the same random
process, however they may differ in their valuations for any particular house. This specification
captures the notion that different buyers have different tastes and preferences and, therefore, will have
different reservation prices. The realization of v € [0, 1] is match specific, so when buyers search they
in fact search for a high v. We assume that v is time invariant; so, once a buyer finds and purchases a
house with a sufficiently high v then he continues to enjoy the same v forever. We impose log-concavity
on the survival function, which is a crucial technical assumption to obtain several key results in the

paper.?

Assumption 1. The density function f (v) is strictly positive, whereas the survival function S =1—F
1s log-concave, that is
)+ f () S (v) >0, V.

The realization of v is unobservable to the seller. The seller only knows the c.d.f. F' generating v,
so, he advertises a list price [, trading off the probability of sale with revenue. The sale price p (1),
depends on the list price but may involve a non-trivial renegotiation process (more on this later). If
agents agree to trade at price p then the seller receives payoff p; the buyer receives dividends v starting
at the beginning of the next period and continuing forever; both agents leave the search market and
are replaced by a buyer and a regular seller. The replacement assumption is standard in the literature;
it is needed to maintain stationarity. Agents who do not trade receive a period payoff of zero and

continue to the next round to play the same game.

2.1 Sale Price

In the housing market, transactions rarely occur at the list price; the sale price typically involves a
hard bargain between the buyer and the seller. We are not particularly interested how agents interact
with each other as they negotiate, so we treat the renegotiation mechanism (be it Nash bargaining,
strategic bargaining or even some esoteric price formation procedure) as a black box; however, we
specify some mild properties that the resulting sale price ought to satisfy. As long as the renegotiation
mechanism satisfies these properties our results go through. More formally, let G (I, «) denote an
extensive form game that induces some expected sale price p (1) : [0,1] — [0, 1] for any given list price

[ and contact frequency a.

Assumption 2. The sale price p(l) : [0,1] — [0, 1] is an increasing and differentiable function of

If G (I, &) has multiple equilibria and, therefore, generates multiple sale prices (which, typically, is

the case with bargaining models with private information, e.g. see the survey by Kennan and Wilson

2What we have in mind is a Mortensen-Pissarides style random matching function where arrival rates are functions of
the market tightness (buyer-seller ratio). Typically, one assumes different measures of buyers and sellers so that arrival
rates for buyers and sellers may vary. However, to avoid excessive parameterization, we simply assume equal measures,
which means that agents meet each other with the same rate a.

3Log-concavity of the survival function is equivalent to the ratio of the density to the survival being monotone
increasing and many well known distributions including Uniform, Normal, Exponential, x? satisfy this property. See [4]
for more details.



[12] and the references therein), then we assume that there is an equilibrium selection device that
uniquely pins down p (1) . The game, the selection device and the resulting sale price function p (1) are

all common knowledge.
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Figure 1 — Sale Prices

Figure 1 illustrates some possible sale price functions. Panel a depicts an environment where the
transaction takes place at 10% below list price. In 1b, sale price almost always exceeds list price—
much as the real estate market in Santa Monica, CA. In 1c, sale price is above or below list price
depending on how much sellers ask for; the house is sold above list price if list price is low and it is
sold below list price, otherwise.

We admit that the shape of the sale price function should be endogenous and depend on the
fundamentals of the market. This paper’s purpose, however, is not to explain why a certain pricing
practice emerges in this market and not in another. Instead, we want to investigate what happens
to prices, volume of trade, and above all, buyers’ purchasing behavior when some sellers become
distressed. For this purpose, the shape of the sale price function can take any form; all we need is
that it satisfies Assumption 2.

We move on to discuss buyers’ and sellers’ problems. We denote a seller’s type by j = r,d (where
r refers to regular sellers and d refers to distressed sellers). We focus on a symmetric steady state
equilibrium where identical agents follow identical strategies. In particular, a type j seller advertises a
list price [, corresponding to the sale price p; = p (I;) . Buyers, upon meeting a type j seller, purchase

if their private valuation v (willingness to pay) of the house exceeds an endogenous threshold v;.

2.2 Buyer’s Problem

The problem of a representative buyer has a recursive formulation. We use a dynamic programming
approach, letting ) denote the value of search to a buyer. In a symmetric pure strategy equilibrium
the distribution of prices p* = (p},p}) is degenerate. Clearly ) is a function of p*, however, we omit

the argument when this is understood. We have
1 1
N =ab / max {v/0 —ps — Q,0} dF (v) + a (1 —0) / max {v/d —p, —Q,0} dF (v).
Jo Jo

A buyer’s lifetime utility from owning a house that yields v per period equals v/d. The parameter
# is the endogenous fraction of distressed sellers; so, with probability af a buyer meets a distressed

seller who sells for py. If the consumer surplus v/§ — py exceeds the value of search (2 then the buyer



purchases, otherwise he walks away. Similarly, with probability « (1 —#) the buyer encounters a
regular seller who sells for p,. Again, if the consumer surplus exceeds the value of search then the
buyer purchases, otherwise, he keeps searching.

For any given sale price p; we conjecture an associated reservation value
v = 1) (pj +Q) (1)

such that the customer purchases only if v > v;. The implication is that a buyers’ search process
amounts to finding a house with a sufficiently high v. Obviously, not all meetings result in trade;
for trade to occur the house must turn out to be a good match for the buyer, which happens with
probability

Pr(v>wvj) =1—F(vj) =5 (vj).

A high v; means that buyers are unlikely to purchase (they are selective). Observe that there are two
types of trading frictions in the model. The first is locating a vacant house, which is captured by the
meeting probability «, and the second is whether the house, once found, is a good match, which is
captured by the probability S (v;) 4 Inserting the reservation values into €2 and using integration by

parts we obtain

of [ (] — 1
Q:d—fldsw)dw%ﬁsw)dv. @)

2.3 Fraction of Distressed Sellers

The steady state fraction of distressed sellers, 6, is endogenous and can be obtained by equating the
inflow into the pool of distressed sellers to the outflow from the pool. The inflow equals to (1 — ) p,

whereas the outflow is S (vg) . Therefore,

I

= s (0,1). (3)

Observe that 6 depends on arrival rate of the adverse shock, p, and meeting probability, a. It is
easy to see that 6 rises in p and falls in o. More importantly, 8 depends on the probability of trade
S (vg) which is endogenous and controlled by buyers. Observe that buyers can squeeze the outflow
and raise # by becoming more selective (i.e. by raising the threshold v;). Put differently, buyers can
strategically slow down the speed of trade and, thereby, cause more sellers to become distressed. This

is the basic mechanism behind the predation result in Section 3.
Lemma 1 We have 9Q/0vy < 0 and 02/0v, < 0.

The Lemma has two implications. First, buyers’ value of search falls as the market becomes less
liquid, i.e. 2 falls as v, and vg go up. Second, sellers face a trade-off between revenue and liquidity.

Indeed, the indifference condition (1) implies that

d’Uj )

dp; 1= o00jou; ~

1The fact that some meetings do not result in trade is in line with the empirical observation by Merlo and Ortalo-
Magné [15]. Analyzing transaction histories of residential properties sold in England between 1995 and 1998, they find
that about a third of all meetings resolve with no agreement. Most of the existing theoretical models of the housing
market are in clear contradiction with this empirical observation, e.g. Arnold [2], Chen and Rosenthal [8], Yavas [20],
Yavas and Yang [21]. Assuming complete information, these models imply that a match necessarily results in trade.



which says that the higher the price, the higher the threshold v;. From seller’s perspective, raising
sale price p; (by advertising a higher [;) brings in a larger revenue, but lowers the chance of a sale.

The seller’s task is to find a balance between these two effects, which we discuss next.

2.4 Seller’s Problem

A type j =, d seller advertises a list price I; taking as given the sale price function p () and buyers’

search decisions. The value functions are given by

0lly = aS (vg) max {pg — 14,0} (4)
0Il, = aS (vy) max {p, — I, 0} + p (11 — II,.) . (5)

A distressed seller who lists [; (and consequently sells for p;) meets a buyer with probability «, who
purchases with probability S (vg). The seller agrees to trade only if the price exceeds his continued
value of search i.e. if p; — II; > 0. The second line can be interpreted similarly.

Conjecturing that p; > II;, a type j seller solves
max II; subject to vj; =6 (pj + )
i

taking 2 as given.
The value functions are linked to each other and, therefore, it requires some algebra to solve the
maximization problems. A complete analysis is provided in Appendix I; here, we simply record some

key steps. The FOC of seller j = r,d is given by

pi— Tl = <5Sf(())

Using the FOC and manipulating the value functions with straightforward algebra one can obtain

profit maximizing sale prices for regular and distressed sellers

~ S(vr) as (v,)? oS (vg)?
= of (vr) O (p+0)f(vr) 66 (n+06)f (va) )
2
P, S (vg) @S (vg) )

" 0f (va) | 80f (va)

Notice that the upper case P, and P; denote the profit maximizing prices and the lower case p, and

pq denote generic prices.
Lemma 2 We have OP;/0vy < OP,/0vg < 0 and P, /v, < OPy/0v, = 0.

The Lemma has two implications. First, the negative relationship between prices and reservation
values reflect the aforementioned trade-off between revenue and liquidity. For low values of v; the
probability of a sale is high, so sellers can afford to charge high prices; however, as v; rises, liquidity
concerns are initiated and prices fall. Second, a type j seller is more sensitive to his probability of sale
than the other type is, which is why dP;/0vy < OF,/0vg and OP,/0v, < OP;/0v,. Now, we are ready

to close down the model.



Definition 3 A steady-state symmetric equilibrium is characterized by the pair v* = (v}, v}) satisfying
Ar:=P+Q—v,/0 =0 and Ay := Py + Q —vy/d. (8)

Once the thresholds vy and v} are pinned down it is easy to obtain the equilibrium sale prices, list
prices and the steady state fraction of distressed sellers. Specifically sale prices p; and p}; are obtained
by substituting v;f and v} into (6) and (7). List prices [} and [}; can be recovered from the sale price
function p (1) . Finally the steady state fraction 6 is obtained using (3).

Existence (and uniqueness) of the equilibrium amounts to showing that there exists a unique
v* € [0,1)? satisfying (8). To do so one needs to demonstrate that the locuses of A, and A, intersect
once in the v, — vy space. Lemma 8 in Appendix II establishes that the locuses look as they do in
Figure 2. The fact that &, is steeper than kg4, and the specific locations of the boundaries (v, T, etc.),

together guarantee a unique intersection.

2a 2b

Figure 2 — Locuses

3 Distressed Sales and Predation

Proposition 4 A steady state symmetric equilibrium exists and it is unique. In equilibrium distressed
sellers accept lower prices and sell faster than reqular sellers; more specifically p; < py and S (v}) >
S (v}) . If the shock becomes more severe then prices fall even further and trade speeds up (i.e. dp;f/d(_S <
0 and dS(U;-‘)/dS > 0).

A distressed home owner is impatient to sell, which is why he undercuts his competitors. The price
cut produces the desired outcome. Indeed S (v}) > S (v}) implies that distressed home owners are
more likely to sell than regular home owners. The signs of the derivatives suggest that the more painful
the shock, the lower the price and the quicker the trade. The simulation in Figure 6¢ provides further
insight on this, where we plot a distressed seller’s percentage wise profit loss against the severity of

the shock d. The profit loss is measured by




Had the seller not become desperate, he would have been able to sell at p, but in a distressed sale
he can only get pj, so the difference p;: — p}; equals his forgone profits. A high value of z means that
distressed sellers need to offer substantial price cuts in order to sell quickly. Fig 6¢ shows that if the
shock is mild (§ ~ &) then there is not much difference between what regular and distressed sellers
charge, however, as the shock starts to bite (0 > §), then distressed sellers face considerable losses.
We will come back to this point later in Section 5 when we discuss liquidity.

There is a particular study by Glower et al. [11] that we would like to mention here. The paper’s
goal is to determine the effects of seller motivation on prices, the time on the market, the speed of
trade, etc. To do so, the authors survey sellers in Columbus, OH area to obtain information on sellers’
motivations by asking whether or not they have a planned date to move out or they accepted a job
offer elsewhere or they bought another house. The conclusion is that motivated sellers accept lower

prices and sell more quickly. This seems to be consistent with the preceding discussion.

Proposition 5 We have dpj/du < 0 and dS(v})/dp < 0 for j = d,r. If the adverse shock starts to
arrive more often then prices fall, yet buyers hold off purchasing and strategically slow down the speed
of trade, which in turn rises the percentage of desperate sellers in the market and reduces prices even

further—an outcome which we term as ‘predation’.

When p rises regular sellers face a higher likelihood of becoming distressed in the future. They
accept lower prices to sell quickly before being hit by the shock, which is why dp}/du < 0 (one can
call this the ‘spill-over effect’ of distressed sales on regular sales). Desperate sellers, on the other hand,
face stiffer competition. Indeed the percentage of desperate sellers 6 rises with the arrival rate of the
adverse shock p, so, realizing that there are many other sellers in the same dire situation, desperate
sellers are forced to cut their already low prices. This is why dp}/du < 0.

Customers, on the other hand, exhibit what we call predatory buying; they delay purchasing
despite falling prices. The reason is that, unlike sellers, buyers benefit from the growing #.> Realizing
that there are plenty of good deals in the market (higher #) buyers find it optimal to search longer,
which means that they become more selective and increase thresholds v and v}. This response has
a spiral effect. By raising the thresholds, buyers strategically slow down the speed of trade, causing
more sellers to become distressed. The growing 6 puts additional downward pressure on prices and
the speed of trade, and so on.

The argument can be better understood by decomposing the effect of  as follows.

Xk * * * k *
dp_j _ ap_j apj dvy: 8]9]- dvy,
du ou ovf dp — Ov} dp
~—
direct effect  indirect effect due to buyers’ behavior

The first expression-the "direct effect"—captures the partial change in price pj, ignoring the change in

buyer’s purchasing behavior. In the proof we show that %‘TE < 0, so prices fall when the p rises. The
second expression —the "indirect effect"—captures the change in pj as a result of a change in v and vy,
which are controlled by buyers. In the proof we establish that this indirect effect is always negative
which means that buyers’ becoming more selective triggers further price cuts.

Predation is well documented in financial markets, see for instance Attari et al. [3], Brunnermeier

and Pedersen [5] or Carlin et al. [7], Ozcan et al. [17] among others. Casual observations suggest that

>Buyers’ value of search Q increases in 6. In the proof of Proposition 5 we establish that €, > 0. Since 8, > 0 it
follows that Qp > 0.



in the real estate market, too, various forms of predation take place. Newspaper stories abound about
potential buyers delaying their purchase and waiting for the ‘right time’ to enter the market. The
number of such stories seems to have escalated during the recent housing crisis where, presumably,
the arrival rate of the adverse shock p went up. These observations seem to be consistent with the
implications of the model. To the best of our knowledge, predation is not empirically documented in

the real estate market.

4 Prices

4.1 Price Trajectories

According to the model, for any given property the trajectory of the list price is either flat or looks like
a step function with a sizeable jump-down. Some sellers manage to sell without becoming distressed;
so, for those properties the trajectory remains flat, throughout. Others, however, are hit by the adverse
shock, so they have trajectories that look like a step function.

Interestingly, this is exactly what Merlo and Ortalo-Magné [15] observe empirically. Based on
home sale transaction data from England, they find that 2/3 of sellers do not change their list price,
1/4 reduce only once, and the rest reduce twice or more. The individual list price trajectories are
either flat or piecewise flat with, typically, one discontinuous jump-down (see Figure 2.1 in Merlo et
al. [16]). Sellers wait, on average, 11 weeks to modify prices and reductions can be as high as 10%.
These sizable and infrequent price revisions are inconsistent with most of the theoretical literature.
Indeed existing models imply that, in equilibrium, either sellers never revise the price (e.g., Arnold
[2], Chen and Rosenthal [8], Yavas and Yang [21]), or they gradually lower it in a continuous fashion
(Coles [9]).

4.2 The Negative Relationship between Duration and Expected Sale Price

Merlo and Ortalo-Magné [15] document a negative correlation between sale price and duration of the
sale (the longer the time on the market, the lower the sale price). This fact, again, is inconsistent
with most of the existing theoretical models. Our setup provides a simple explanation: If a property
is sold shortly after the listing date then it is most likely a regular sale. Indeed, given the Poisson
arrival process, the owner is unlikely to become distressed within a short period of time. On the other
hand, if the sale occurs long after the listing date then most likely it is a distressed sale. The longer
the wait, the more likely is a seller to be hit by the shock. Since distressed sales occur at lower prices
the aforementioned negative correlation follows. Below, we make these arguments more precise.
Consider a seller who enters the market at time 0 (wlog). The probability that he remains non-

distressed without a sale until time ¢ is given by
r(t) = e~ (Wran)t, (9)

The probability that he becomes distressed at some time y < ¢ while he is still unable to sell at ¢

equals to

ot
Q(t):/o Me—uye—av-ye—ad(t—y)d% (10)

where pue " is the density of transition time y (exponential pdf). Now, consider all sales completed

10



with duration ¢. The fraction of distressed sales equals

One can easily verify that g rises in ¢ (see the proof of Proposition 6), i.e., the longer the duration,
the more likely sellers are to be distressed.
An immediate corollary is that the expected sale price falls with the duration. To see this more

precisely, define the expected sale price

p(t)=gpy+(1—g)p;

and the variance
o (t) =gy —P®)*+(1—9) (b} —D(1)*.

Proposition 6 The expected sale price p (t) is monotone decreasing and the variance o2 (t) is hump-

shaped in t.

Figures 3a and 3b simulate p and 0. But before we proceed, let us outline which parameter values
are used in these and subsequent simulations. The justification for these values comes from Merlo and
Ortalo-Magné [15].

e p(l) = 0.96] : The sale price p(l) equals to the 96% of the list price [. This follows from the

observation that properties in [15]’s sample sell at about 96% of their listing price.

e a = 0.11 : In the sample in [15] the time it takes to meet a buyer is about 9 weeks, so we set
a = 1/9, which is about 0.11.

e 1= 0.09 : Before a price change sellers wait 11 weeks on average. We interpret the price change
as a result of becoming distressed, so the the frequency of the shock g = 1/11, which roughly
equals to 0.09.

The continuously downward slope in p may be somewhat misleading and may create an illusion
that the transaction price continuously falls with respect to duration. We emphasize that an individual
transaction price trajectory is piecewise flat with a discontinuous drop from p; to p} at the time the
seller is hit by the shock. It is the expected price that falls monotonically; the transaction price is

either p; or pj.

11
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Figure 3 — Exp. Sale Price and the St. Dev.

The shape of the standard deviation is also intuitive. For very short or very long durations the
sale is either non-distressed or distressed. Only for intermediate values of ¢ there is ambiguity; hence,

the hump shape.

5 Liquidity

The working definition of liguidity in this paper is the capacity of how fast one can sell a property
without any ‘loss in value’. There are two aspects of liquidity that we are interested in: speed of trade

and profit loss in liquidation sales. The former can be measured either by probability of sale
aj = aS(v])

or expected time on the market, TOM. The probability of sale measures the speed of trade from an
individual seller’s point of view, whereas TOM is a market-wide weighted average taking into account
all sellers, regular and distressed.

The second aspect of liquidity is the loss of value in liquidation sales. To measure it, we use the

index

=" Pd ¢ (g1), (11)
p;

which is distressed seller’s percentage-wise profit loss compared to regular seller. A high value of z
means that distressed sales occur far below regular sales, which indicates illiquidity. Below, we discuss

the performance of these proxies within the context of liquidation sales and predation.

5.1 Time on the Market: TOM

We know that during periods when p goes up customers exhibit predation and the probability of trade
falls. So, one naturally expects TOM to go up in such times because sellers are less likely to trade
but things are more subtle than that. Because of the rising p more sellers become distressed and
distressed sellers trade faster than regular sellers. This transition effect puts a downward pressure on

TOM and blurs the picture. Below, we make these arguments more precise.

12



Proposition 7 Density of time on the market is given by

_ ”O‘de_adt — (ag — o) (B + ) e (utant
N p— g+ a, )

(12)

*\2
The pdf is hump-shaped if & > Uf(v—r)) and monotone decreasing, otherwise. The time on the

market is given by
p+ aS(vy)
TOM = .
aS(vy) x {p+aS(y)}

Now, we can analyze how TOM responds to a change in u. We have

dI'OM  OTOM dv; =~ OTOM dvy OTOM
dp — Ovr du ovs  dp op

The first two terms are positive because of the earlier predation result. The last term, however, is

negative because

ATOM . .
8# OCF(Ud)_F(UT’

which simply reflects the fact that distressed sellers trade faster than regular sellers—confirming our

) <0,

intuition about the aforementioned transition effect. Analytically, it is difficult to sign dTTOM /du but
numerical simulations suggest that the transition effect is, in fact, more dominant; see Figure 4a.
Why is this important? TOM is one of the most frequently used and referred statistics in the
housing literature. Low values of TOM are interpreted as an indication of high liquidity e.g. Krainer
[14], Knight [13], Taylor [18]. Going with this interpretation the fact that dTTOM/dp < 0 indicates
that the market becomes more liquid during times where many sellers become distressed and attempt
fire sales. It appears that in this particular setting the probability of trade for individual sellers «;
is a better proxy of liquidity than TOM. In data «; is the percentage of meetings resulting in a sale

and it clearly falls with x.6 This, in turn, means that the market becomes less liquid if y rises.

Time on the Market Density ofthe time to sale
27 0.04 T T

0035
003
0.025
002 -
0015
001

0.005

mu t

4a 4b

Figure 4 — TOM and the density function

Finally, note that the density function «y is endogenous and it is derived from maximization behavior

of buyers and sellers. Note that v is skewed to the right because of the Poisson arrivals and it may

*

. dv’
SObserve that % = —al’ (U;) dv;f <0.
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be hump-shaped if the ratio p/« is sufficiently large, i.e. if buyers are scarce and the adverse shock
is frequent (Figure 4b). The shape of « is indeed realistic. Merlo et al. [16], based on transaction
data from England, obtain the empirical distribution of times to sale, which is right skewed and

hump-shaped; see Figure 2.3, therein.

5.2 Profit Loss: z

Figures 5a and 5b below illustrate z against the frequency and the severity of the adverse shock.”

ProfitLoss in Fire Sales ProfitLoss in Fire Sales
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007
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002 -

mu delta - bar

oa 5b

Figure 5 — Profit Loss in Fire Sales

The simulation in 5a suggests that attempting a liquidation sale is, in fact, less costly when
i is high. The reason is simple. During such times regular sellers, afraid of becoming distressed,
substantially lower their prices to sell quickly and exit the market. This is the aforementioned ‘spillover
effect’ of liquidation sales onto the regular sales. Regular sellers are more sensitive to a rise in p than
distressed sellers. Distressed sellers do not worry about being hit by the shock because they are already
distressed. So, although both prices fall, the drop in p; is sharper than the one in p}, which is why 2
declines in .

Again, one has to be careful when interpreting this rather positive-looking result. In absolute
terms, all sellers are worse off (all prices fall in ). Only in relative terms, distressed sellers appear to
be better off.

The relationship between z and ¢ is more straightforward. The simulation in Figure 5b suggests
that if the shock is mild (3 ~ 0) then a liquidation sale is not too costly; however, as the shock starts
to bite (6 > 4), then distressed sellers face considerable losses. The reason is that desperate sellers are
directly affected by a rise in 0, whereas, regular sellers worry about  only because they may become

desperate in the future. The fall in p} is sharper than the one in pj, which is why z goes up.

"In panel a we fix § = 0.05 and § = 0.2 which means that regular sellers’ discount factor is about 95% and distressed
sellers’ discount factor is about 83%. In panel b the parameter 4, which by definition must exceed 4, ranges from 0.05 to
1. Recall that the higher the value of § the more severe the shock.
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6 Conclusion

We have presented an equilibrium search model with three distinctive characteristics: (i) trade is
decentralized; agents search for a counterparty to trade, (ii) a buyer’s willingness to pay is private
information and (iii) sellers may become financially distressed as they are unable to sell. We have
found that, once distressed, sellers attempt liquidation sales by accepting prices that are substantially
below fundamental values. In addition, during periods where a large number of sellers are forced to
liquidate customers strategically hold off purchasing and slow down the speed of trade in an effort to
obtain better deals—an outcome which we call predatory buying. The model suggests several proxies
measuring liquidity, which we discuss in detail. Interestingly, the expected time on the market (TOM)
appears to be doing a poor job in measuring liquidity. Indeed, we show that TOM falls during periods
of predatory buying, which simply says that the market becomes more liquid with predation. We argue
that, in this context, the percentage of profit loss in liquidation sales is a better proxy of liquidity
than TOM.
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Appendix: Omitted Proofs

Proof of Lemma 1. Observe that # does not depend on v,.. Hence

00 a(l-0)

g, -5 o)
which clearly is negative. Now consider
a@’ af
_ _ = 1
8vd / 5 () dv— 275 (va) (13)
where

dua ptas (va)
To show that 0Q2/0v,; < 0 it suffices to demonstrate that

uSw) S ()
(va) /S V= T T <

Omitting the argument and differentiating with respect to v; we have

n’—fQ;t,Qf/ [ +S]

which is positive under Assumption 1. Since 7 increases in vy and 7 (1) = 0, it follows that 1 (vg) < 0,
Yvg € [0, 1). |

Maximization Problems of Distressed and Regular Sellers

Distressed Sellers. We start with the distressed sellers’ problem. Note the followings:

e The sale price p is a function of I; p; simply stands for p ({;) . Because of Assumption 2 we have

P > 0.
e The indifference constraint vy = ¢ (pg + 2) implies that v/, = dp/, > 0.

e Sellers take € as given, thus Q' = 0.

Conjecturing that pg > Iy rewrite (4) as 611g = S (vq) (pqg — I14) . Keeping the preceding points

in mind differentiate II; with respect to [; to obtain
Oy = —ad f (va) ply (pa — Ta) + @S (va) (pl — 1) -

The FOC is given by

S (va)
[ — =
Hd =0=pg—1I, 5f (Ud) . (14)
Substitute the FOC into the expression for II; to obtain
g 2
= 25 (15)
66 f (va)
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Expressions (14) and (15) together imply that the profit maximizing price Py equals to the expression
on display at (7). To verify the second order condition, differentiate the expression II, above and use
the FOC (14) along with the fact that II; = 0 to obtain (we omit the argument vy where understood):

"_ _ 51732 x[fls+f2+f]
¢ Sja+ S f
The first multiplicative term is negative, whereas the second term is positive because of log-concavity.

It follows that IT” < 0; thus the solution to the first order condition yields a maximum.

Regular Sellers. The problem of a regular seller is similar. We have
Oll, = aS (vp) (vp — Q@ —1I,) + p (IIg — 11,) . (16)

Differentiate II, with respect to /. to obtain the first-order condition (imposing €' = II/, = 0 since

they are taken as given):

_ S(v)
of (vr)
The second order condition can be verified similarly. Use (15), (16) and (17) to get

I =0 < p, —1II, . (17)

_ aSw)? apS (va)”
T 0+ 0) Fo) 86 (n+0) f (va)

Substitute II, into (17) to obtain the profit maximizing price of a regular seller, given by (6). W

Proof of Lemma 2.

Differentiate P, and Py, given by (6) and (7), with respect to v, and vy to obtain:

aPr o fg_‘_f;sr OéS,« 2f3+f7isr
o = oP ‘5w+®{ I (18)
2 /

OP, _ __apS [2fd +2de¢] <o %a_, (19)
g 0 (n+9) f7 vy
0Py fc% + fC/lSd aSy |:2f3 + fC/lSd:|

= . <0, 20
dvg o f3 56 f3 (20)

where S; := S (vj). The expression g—ff, % and %Ddi are negative because of log-concavity. The fact

that ‘g% < gf " is immediate after comparing them term by term. B

Proof of Proposition 4. The proof of existence and uniqueness is in Appendix II. In what
follows we show that S (v}) > S (v}) and p; > p} (the "fire sales result"). By contradiction, suppose
that vy = v} = v and notice that

a(6—6) S

AT(U’U)_Ad(U’U):Sg(M+5) X F ) > 0,

which contradicts the equilibrium condition A, (vF,v%) — Ag (v}, v}) = 0. Observe that

o(A,—Ag) 0P 1 P

do oo 5 au, 0
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because gf: < 0 and g—fi = 0 (Lemma 2). It follows that A, (vy,v)) = Ag (v}, v}) is satisfied only
when v > v}, which in turn means that S (v}) > S (v}). The inequality p; > p} is immediate since
Py —pj; = (vy —vj) /6 > 0. For future reference we note that

S, S a [sz 53] o

P Pi= s st — =
PP TSt (o) Lof T 55
The rest of the proposition, namely the claims dpj /dé < 0 and dS (U;‘) /dd > 0, are proved below. W

Proof of Proposition 5. The equilibrium values of v} and v} simultaneously satisfy
A, (vr,v)) =0and Ag(vy,v)) = 0.

Omit the superscript * and note that (General Implicit Function Theorem)

dv;  det B; -
ﬁ—e—](u), for any u = 4§, and j = r,d,

du  detA
where
Br(u)=| o8, oAy |»Baw) =10k _on, |+ A=| 08, oy
ou Jvg Ovy ou Ovy vy
Note that BA. BA BA BA
det A ==—r=—d _Z2dZ0r o
¢ v, Ovyg ov, Ovuy
since oA, OA 08 _0A,
r d d
and —— 22 d (23)).
ov, < 8117« avd vy (see (22) and (23))

It follows that 5
. Vj .
sign <6—7j> = sign (det Bj (u)) .

Below we investigate the signs of the determinants. To do so we need the following partial derivatives.

Partial Derivatives. Here we obtain the partial derivatives of 2, P; and P, with respect to 6 and .

To start, differentiate €2, given by (2), to obtain

2
@:0 and __Qan/ S (v)dv > 0.
00 ou

Notice that % is positive since vy > v. Now differentiate P. and Py, given by (6) and (7), to obtain

2
OF _ —_C;Sd <0, o, _ _p 9h
00 56 fy 96  (u+9) 9
2 2
%:0, of, __ « Q[ST—_S—d]<0.
Ip Iy (p+0)" Lofr  dfa

Note that f; and Fj stand for f(v}) and F(vj). The signs of the first three expressions are obvious.

%];’" < 0 focus on the inequality above in (21) and notice that %]; ~ is negative if in (21) the

To see why

expression in square brackets is positive. The term

Sy Sa

fr fd
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in (21) is negative because S/f decreases in v (log-concavity) and vy > vj. Therefore the expression

in square brackets in (21) must be positive.

Reserve Values vy and vj. Now we can investigate the signs of dv7/ dé and dvj/dp. To do so we

need to determine the signs of det B; (5) and det B;j (u) .

e Since 99/95 = 0 we have

_ ODgOP, DA, 0P

det By (0) = —
B (0) = 5
Furthermore, since

a—% < 8% < 0 and

a9 a9 ov,.

0A,

< -
Ov,

ovy 96 .

A
924 _

it follows that det By (§) < 0 = dv/dé < 0. Hence dS(v};)/dé > 0.

e Because 0P;/0u = 0 we have

COAOP, 00 [0A, OA,
det Ba (1) = ov, O + ou | v, av,] '
Since oP 20 oA, OA
r r d
an <0, 8_u>0and a0 < o <0

it follows that det By (1) > 0 = dv};/dp > 0. Hence dS(v})/dp < 0.

e Since op op 20
S 2 < 0and — =0
96 p+9d 95 00
it is easy to verify that
- 0Py |OP. w 0Py o 00 M
det B, (0) = —= — eI iy
et 5, (9) = 755 [avd L1000  nt00u nto

o0 0P

The expressions for 7=, 5= and g—i‘; are given by (13), (18) and (20).

Using these, one can

show that the expression inside the square brackets equals to

o  [Ur
_|_
pt0 Sy,

pwo fi4 fiSa
pto o f3

ue
+9

S (v)dv+ - > 0.
7

The first term is positive because of log-concavity and the second term is positive since 6’ > 0
and v} > vj. It follows that det B, (§) < 0 => dv}/dé < 0. Thus dS(v})/dd > 0.

e Recalling 0P;/0un = 0 we obtain

00

o) | 0A,
det B, = — —
¢ () o [&Jd vy
The first term is positive since
0A; O0A,

vy vy

A4 Opy
Ovg Op

<0anda—Q>0.
op

The second term is also positive since 9A;/0vy < 0 and 0P, /dp < 0. It follows that det B, (p) >

0 = dv;/dp > 0. Hence dS(v))/dp < 0.
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Finally, we investigate the signs of dp}/ dé and dpj /dp.
Prices. Totally differentiating p;‘f with respect to p one obtains

dvj _ Opj | Opjdvy  Opj dv
dp  Op o Ovrdp o Ovidu’

Recall that

% %— 8p§<0 %<Oand%>0.

op ~ Op 7 Ov. — ) Oy dp

Hence dpj /dp < 0. To show dp; /dd < 0, recall that p; =0 /9 — Q in equilibrium. Differentiation with

respect to & yields
dpj _ dvj O dvr 00 dvj
s 6d5  Ove ds  Oul dd

which is negative since dv;/ dé < 0 and 09/ ov; <0. W

Proof of Proposition 6. Notice that

dp(t) _ dg(t)

T - _7 (pr - pd)
One can verify that

dg (t

—ili ) x ,ue_(o‘”arﬂ‘) > 0.

It follows that p’ < 0 since pj > p}. Finally note that

do?

—r = (= pd) 19’ (2P — p) — p) +297'] -

Clearly do?/dt shares the sign of the expression in the square brackets, since p¥ > py- One can verify
that lim; 0 g (t) = 0 and limy— g (t) = 1 so that lim¢op (t) = p} and lim;_.o D () = pj. It follows
that do?/dt is positive for ¢ small and negative for ¢ large because ¢’ > 0 and ' < 0. In other words

o? first rises and subsequently falls with ¢t. W

Proof of Proposition 7. Using (9) and (10) one can obtain density of time to sale v and expected
time to sale TOM. We have

TOM = /:O [r(t)+o()]dt and ~=—[dr(t)+do(t)]/dt.

Basic algebra reveals that TOM and v are given by the expressions on display in Proposition 7. It is

easy to verify that v is positive and that

| ==+ el =1
To analyze the shape of v note that

N = _No%e_adt + (ag — ) (n+ O‘T)Q e~ (ntorn)t
B =g+ ar ’

where
ag—ap = a[F (vy) — F (v))] > 0 since v > v].
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Notice that the denominator could be either positive or negative. It follows that:

2
(ad - ar) (éu + a?“) > e(u—s—ar—ad)t.
oy
2
(aqg — o) (5 + o) < elptar—aa)t
Mg

If o > ag—a, then o/ (t) > 0 &

If p < ag—a, then v (t) >0 <

First note that lim;_ ...+ < 0, i.e., v is monotone decreasing for ¢ large. Now evaluate lim;_.o~. Note
that in the first line the exponential term is minimum when ¢ = 0 whereas in the second line it is

maximum when ¢ = 0. Hence

S (v)?
F(vf)—F (v3)

T

~ ) >0if £ >
(07

Clearly if 7/ (0) > 0 then ~ first rises and then falls (hump-shape). Otherwise if 4/ (0) < 0 it falls

monotonically. W
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Appendix II: Existence and Uniqueness of Equilibrium

Let
K5 (vr) = {vg € [0,1] | A;j (vr,vq) = 0}

be the locus of A; (v.,vg). The following Lemma guarantees that the x4 and &, intersect once in the

v — vg space. Then using standard arguments we complete the proof of existence.

Lemma 8 The simultaneous equations

(Y Vd
Ar(vyva) =pr =5 +Q and Ag(vp,v0) =pa— 5 +Q
define k, and kq as implicit and strictly decreasing functions of v, with % < % < 0. Furthermore
there exists some 0 < v; < Ug < 1 and v, € (0,1) such that k4 (0) = Vg, kg (1) = v, and Kk, (v,) = 1.
Last either there exists some T, € (v,,1) such that k, (U,) = 0 as in Figure 2a or there exists some

v, € (0,v4) such that k. (1) = v, as in Figure 2b.

d

Proof. We will first demonstrate that d’i; < % and then we will focus on the existence of

boundaries v;, U;. Notice that

OA, Op, 100 _OA,  Ops 00
do. "o o au e, ou, ou, ¥ (22)
OA; _Ops 1 09 _OA. p. 09
Boy vy 5 a0, S auy " oug ooy ¥ (23)

C op
t ngj < 0 (Lemma 1) and g%j < ij < 0 (Lemma 2).

Therefore A (v, v4) = 0 defines vy = K; (v;) as an implicit function of v, (Implicit Function Theorem)
with

These inequalities follow from the facts tha

dKJJ' . O0A; /Bvr
Qo ~ oA, joug =V

7‘ d 6Ad
Since 2 9o < (% < 0 and

< avr < 0 it is obvious that d"‘r < d“d < 0.

Boundaries. Start by evaluating Ay (v, vg) at end points. Observe that
AV (0, 0) > Ay (1, 0) = Pd (1,0) + Q (1,0) > 0.

In addition
Ag (0’ 1) = Ay (17 1) = —1/5 <0,

because 6 (1) = 1. Since Ay (1,0) > 0 and A4 (1,1) < 0 and A, decreases in vy the Intermediate Value
Theorem guarantees existence of some v,; € (0,1) such that Ay (1,v,) =0, i.e., kg (1) = v, Similarly
Ag(0,0) > 0 and A, (0,1) < 0 implies existence of some vy € (0,1) such that Ay (0,74) = 0, i.e.,
k4 (0) = T4. Note that k4 (1) < kg (0) and since k4 decreases in v, we have v; < Ug.

Now evaluate A, (v,,v4) at end points. Similar to above, one can show that A, (0,0) > A, (0,1) >
0 and A, (1,1) = —1/6 < 0. However A, (1,0) can be positive or negative.

The existence of v, € (0,1) follows from the facts that A, (0,1) > 0, A, (1,1) < 0 and that A,
decreases in v,. The Intermediate Value Theorem guarantees that there is some v, € (0,1) such that
Ay (v, 1) = 0 which is equivalent to s, (v,) = 1. Existence of v, or v, hinges on the sign of A, (1,0),

as we show below.
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e Suppose A, (1,0) < 0: Since A, (0,0) > 0 there exists some v, € (0,1) such that A, (v,,0) =0

or equivalently k, (7,) = 0, and since k, is a decreasing function of v, we have v, < T.

e Suppose A, (1,0) > 0 : First we will show that A, (1,v,) < 0. Notice that

2 —v
Bl = S lha) = 5% i 3(ua+ ) ?(Z)) g

Since Ay (1,v4) = 0 it is must be that A, (1,v,) < 0. Now, since A, (1,0) > 0 there exists some
v, € (0,v,4) such that A, <1,gd> = 0 or equivalently , (1) =v,. W

Existence and Uniqueness. Below we argue that there exists a unique interior v} satisfying

Kr (V) = kg (v)) . Define 5 (v,) := Kk, (v,) — kg (v,) and notice that it decreases in v, since

dx dr, dkg
dv,  dv, dv, <0

Now we will verify that s (v,) > 0 and s (1) < 0. Indeed s (v,) = Ky (v,) — kg (v,) =1 — kg (v,) >0
since kg (v,) < kq(0) = Tg < 1. Similarly s (1) = K, (1) — kg (1) = K&y (1) — vy < 0 since K, (1) is
either negative or equals to v, both of which are smaller than v,;. Consequently the Intermediate Value

Theorem guarantees existence of a unique v} € (v,., 1) such that s, (v;) = kq (v)) = v}.
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