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Abstract

Stimulus-induced gamma oscillations in the 30–80 Hz range have been implicated in a wide number of functions including
visual processing, memory and attention. While occipital gamma-band oscillations can be pharmacologically modified in
animal preparations, pharmacological modulation of stimulus-induced visual gamma oscillations has yet to be
demonstrated in non-invasive human recordings. Here, in fifteen healthy humans volunteers, we probed the effects of
the GABAA agonist and sedative propofol on stimulus-related gamma activity recorded with magnetoencephalography,
using a simple visual grating stimulus designed to elicit gamma oscillations in the primary visual cortex. During propofol
sedation as compared to the normal awake state, a significant 60% increase in stimulus-induced gamma amplitude was
seen together with a 94% enhancement of stimulus-induced alpha suppression and a simultaneous reduction in the
amplitude of the pattern-onset evoked response. These data demonstrate, that propofol-induced sedation is accompanied
by increased stimulus-induced gamma activity providing a potential window into mechanisms of gamma-oscillation
generation in humans.
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Introduction

Gamma oscillations in the 30–80 Hz range have been

implicated in a wide number of functions including, memory

[1], attention [2] and consciousness [3], and are thought to be

disturbed in schizophrenia [4]. Both neurophysiological data

and modelling studies provide convergent evidence that the

most plausible mechanism for the generation of temporally-

organised gamma activity is in reciprocally connected neuronal

networks containing an interconnected mixture of pyramidal

cells, stellate cells and GABAergic inhibitory interneurons [5,6].

Consistent with this, gamma oscillations recorded from primary

visual cortex slices in vitro have been shown to be modulated by

drugs that target GABAA receptors as well as drugs that target

glutamatergic AMPA and NMDA receptors [7], and acetylcho-

line receptors [8]. However, the neurochemical basis and

pharmacological modifiability of the spatially-summated, popu-

lation-level, gamma-band responses that can be recorded from

primary visual cortex non-invasively in humans with magne-

toencephalography (MEG) and electroencephalography (EEG)

are largely unknown.

In this experiment we attempted to modulate stimulus-

induced gamma oscillations using the GABAA agonist propofol.

Most of the information about propofol’s in vivo modulation of

neurophysiologic gamma oscillatory activity is based on in-

vestigating spontaneous EEG activity after loss of consciousness.

Loss of spatiotemporal organisation of gamma oscillations and

information integration capacity has been shown at anaesthetic

doses of propofol [9]. However, Murphy et al [10] showed

a persistently increased gamma activity with increased connec-

tivity between the regions of the default-mode network (DMN)

during propofol anaesthesia challenging the role of gamma

oscillations in predicting consciousness. The relationship be-

tween spontaneous gamma activity, stimulus-induced activity

and potential muscle artefacts in the spontaneous EEG is

unclear [11,12].

We investigated the modifiability of stimulus-induced gamma

activity, in fifteen healthy humans during an intermediate state of

consciousness, that is, sedation without loss of consciousness. MEG

was used to measure oscillatory responses to a simple grating

stimulus during propofol sedation and during normal wakefulness.

Importantly, the stimulation paradigm and data processing

techniques that we used have previously been shown to be highly

reproducible, stable to repetition effects, and hence suitable for

crossover neuropharmacology studies [13]. Further, MEG is

robust to the muscle artefact contamination that has affected

EEG studies of gamma oscillations [11,14]. Our results demon-

strate that, compared to the normal awake state, propofol-induced

sedation is accompanied by an increase in visual stimulus-induced

gamma-band activity as well as increased alpha desynchronisation

and decreased visual evoked responses.
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Materials and Methods

Volunteers
Fifteen right-handed, healthy, male volunteers (mean age 26

years; range 20–41 years) were recruited following a detailed

screening procedure. The study was approved by Cardiff

University’s Research Ethics Committee and all volunteers gave

informed written consent. Medical screening was performed to

ensure that all participants were in good physical and mental

health and not on any regular medication (American Society of

Anesthesiologists physical status 1). Any volunteer with complaints

of regular heartburn or hiatus hernia, known or suspected allergies

to propofol (or its constituents), regular smokers, those who snored

frequently or excessively, or who had a potentially difficult-to-

manage airway were excluded.

Monitoring, Drug Administration and Sedation
Assessment
Throughout the experiments, all participants were monitored in

accordance with guidelines from the Association of Anaesthetists

of Great Britain by two anaesthetists. Heart rate (HR), non-

invasive blood pressure (BP), oxygen saturation (SpO2) and

concentrations of expired carbon-dioxide (EtCO2) were continu-

ously monitored using Veris H MR Vital Signs monitoring system

(Medrad) and recorded every 5 minutes. The monitoring system

was located outside the magnetically shielded room. The

connecting cables passed through waveguides into the magneti-

cally shield room. This monitoring setup was tested and found to

add no noise to the MEG signals. The monitoring anaesthetists

observed the participants through a video monitor and maintained

verbal contact, as required, through an intercom system.

Volunteers were instructed to follow standard pre-anaesthetic

fasting guidelines. They avoided food for six hours and any

fluids for two hours before the experiments. Of the two

anaesthetists supervising the sessions, one was solely responsible

for participant monitoring and was not actively involved in the

experiment. Intravenous access (20 gauge) was obtained on the

dorsum of the right hand and physiological monitoring (HR,

BP, SpO2 and EtCO2) was instituted. Nasal cannulae were used

for sampling of expired and inspired gases and the administra-

tion of oxygen, as required. Propofol (Propofol-Lipuro 1%,

Braun Ltd., Germany) was administered using an Asena H- PK
infusion pump (Alaris Medical, UK) using a target controlled

infusion based on the Marsh-pharmacokinetic model [15].

While participants lay supine in the magnetically shielded

room, infusion was started targeting an effect-site concentration

of 0.6 mcg/ml. Once the target was reached, two minutes were

allowed to ensure reliable equilibration. Drug infusion was then

increased in 0.2 mcg/ml increments until the desired level of

sedation was achieved. Sedation level was assessed by an

anaesthetist, blinded to the level of propofol being administered,

using the modified Observer’s assessment of alertness/sedation

scale (OAA/S) [16]. Sedation endpoint was an OAA/S level of

4 (slurred speech with lethargic response to verbal commands).

The same anaesthetist (NS) assessed this endpoint on every

occasion to ensure consistency of the depth of sedation

achieved. Reaction times in response to auditory and visual

stimuli were also recorded during the awake and sedated states

both before and after completion of the stimulation paradigm.

As expected, reaction times were significantly lower during

sedation compared to waking but not significantly different

before and after the stimulation session, further indicating that

a steady state had been achieved.

Stimulation Paradigm
Once steady state sedation was achieved, participants were

presented with a visual stimulus consisting of a vertical, stationary,

maximum contrast, three cycles per degree, square-wave grating

presented on a mean luminance background. The stimulus was

presented in the lower left visual field and subtended 4u both

horizontally and vertically. A small red fixation square was located

at the top right hand edge of the stimulus, which remained on for

the entire stimulation protocol [17,18]. The stimulus was

presented on a projection screen controlled by PresentationH.
The duration of each stimulus was 1.5–2 s followed by 2 s of

fixation only. Participants were instructed to fixate for the entire

experiment and in order to maintain attention were instructed to

press a response key at the termination of each stimulation period.

Responses slower than 750 ms triggered a brief visual warning for

participants. 100 stimuli were presented in a recording session and

participants responded with their right hand. Each recording

session took approximately 10 min and was carried out before

sedation and then repeated during sedation. The awake recording

was always carried out before the sedation session on the same

day. We have previously demonstrated the robustness of this

paradigm to temporal order effects [13].

MEG Acquisition and Analysis
Whole head MEG recordings were made using a CTF 275-

channel radial gradiometer system sampled at 1200 Hz (0–300 Hz

bandpass). An additional 29 reference channels were recorded for

noise cancellation purposes and the primary sensors were analysed

as synthetic third-order gradiometers [19]. Three of the 275

channels were turned off due to excessive sensor noise. At the

onset of each stimulus presentation a TTL pulse was sent to the

MEG system. Participants were fitted with three electromagnetic

head coils (nasion and pre-auriculars), which were localised

relative to the MEG system immediately before and after the

recording session. Each participant had a 1 mm isotropic T1

weighted MRI scan available for source localisation analysis. To

achieve MRI/MEG co-registration, the fiduciary markers were

placed at fixed distances from anatomical landmarks identifiable in

participants’ anatomical MRIs (tragus, eye centre). Fiduciary

locations were verified afterwards using digital photographs.

Offline, data were first epoched from 21.5 to 1.5 s around

stimulus onset and each trial visually inspected for data quality.

Data with gross artifacts, such as head movements and muscle

contractions were excluded from further analysis. Two source

localisations were performed on each dataset using synthetic

aperture magnetometry, one for induced responses (SAM), and

one for evoked responses (SAMerf). Correspondingly, two global

covariance matrices were calculated for each dataset, one for SAM

(40–80 Hz) and one for SAMerf (0–100 Hz). Based on these

covariance matrices, using the beamformer algorithm [20], two

sets of beamformer weights were computed for the entire brain at

4 mm isotropic voxel resolution. A multiple local-spheres [21]

volume conductor model was derived by fitting spheres to the

brain surface extracted by FSL’s Brain Extraction Tool [22].

For gamma-band SAM imaging, virtual sensors were con-

structed for each beamformer voxel and student t images of source

power changes computed using a baseline period of 21.5 to 0 s

and an active period of 0 to 1.5 s. Within these images, the voxel

with the strongest power increase (in the contralateral occipital

lobe) was located. To reveal the time–frequency response at this

peak location, the virtual sensor was repeatedly band-pass filtered

between 1 and 150 Hz at 0.5 Hz frequency step intervals using an

8 Hz bandpass, 3rd order Butterworth filter [13,23]. The Hilbert

transform was used to obtain the amplitude envelope and spectra

Propofol and Visual Gamma
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were computed as a percentage change from the mean pre-

stimulus amplitude (21.5 to 0 s) for each frequency band. This

relative-change baseline provides a control for between-recording

and between-participant effects (for example, different head

positions in the MEG), as well as correcting for the 1/f nature

of non-baseline corrected MEG source estimates [24]. From these

spectra, the time courses of alpha (8–15 Hz) and gamma (40–

80 Hz) were extracted and submitted to non-parametric permu-

tation tests using 5000 permutations [25,26]. Permuted t statistics

were corrected for multiple comparisons using cluster-based

techniques with an initial cluster forming threshold of t=2.3.

This approach allowed us to examine the temporal profile of

oscillatory spectral modulations as well as controlling for potential

contamination of early-evoked response components into the

alpha band. To examine pre-stimulus amplitudes the time-

frequency spectra were recomputed with no baseline correction

and the average amplitudes of alpha (8–15 Hz), beta (15–40 Hz)

and gamma (40–80 Hz) in the pre-stimulus period (21.5 to 0 s)

were calculated.

For SAMerf, the computed evoked response was passed through

the 0–100 Hz beamformer weights and SAMerf images [27] were

generated at 0.01 s intervals from 0.05 to 0.015 s. The image

(usually 0.08 to 0.09 s or 0.09 to 0.1 s) with the maximal response

in visual cortex was identified and the maximal voxel selected as

Figure 1. Summary of total (evoked plus induced) amplitude differences in the experiment. a) Grand-averaged source localisation of
gamma oscillations (40–80 Hz) for awake and sedated states respectively. Units are t statistics. The peak source location for the gamma band was at
MNI co-ordinate [15–95 7] for awake and [17 97 1] for sedated (adjacent SAM voxels). b) Grand-averaged time-frequency spectrograms showing
source-level oscillatory amplitude (evoked+induced) changes following visual stimulation with a grating patch (stimulus onset at time= 0) during
awaked and sedated states. Spectrograms are displayed as percentage change from the pre-stimulus baseline and were computed for frequencies
from 5 up to 150 Hz but truncated here to 100 Hz for visualisation purposes. c) Envelopes of oscillatory amplitude for the gamma (40–80 Hz) and
alpha (8–15 Hz) bands respectively. Time-periods with significant differences between the awake and sedated states are indicated with a black bar
(*p,.05, **p,.01, ***p,.001, shaded areas represent SEM).
doi:10.1371/journal.pone.0057685.g001
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the peak location for virtual sensor analysis. For time-domain

analysis, the evoked field was computed for this virtual sensor

(20.2 to 0 s baseline, 40 Hz low-pass filter) and the peak

amplitude and latency of the M100 and M150 responses were

quantified. We also performed a spectral analysis of the evoked

field using the same time-frequency techniques as above. The

evoked frequency response in the 0 to 0.2 s period was obtained

for each condition and analysed using the same statistical

methodology.

Results

Participants showed significantly (t=6.15, p= .001) slower key

presses to stimulus offset during propofol sedation (mean 355 (s.d.

42) ms) compared to the awake state (mean 277 (33) ms). They also

missed significantly more (t=3.86, p= .002) key presses during

sedation (6.1 (4.7)) compared to the awake state (1.3 (1.0)).

Figure 1A shows grand-averaged source reconstructions for

gamma band (40–80 Hz) responses to presentation of the grating

stimulus during awake and sedated states respectively. As

expected, both reconstructions locate the sources in the medial

visual cortex in the quadrant opposite to the side of visual

stimulation. The grand-averaged peak locations of the responses

were located in adjacent source reconstruction voxels (4 mm voxel

size). From the peak locations identified in individual source

localisation images, source level activity was reconstructed and

time-frequency spectra computed. The grand-average of these

time-frequency spectra are displayed in Figure 1B. These show the

typical morphology following this type of visual stimulus: there is

an initial transient broadband (50 to 100 ms) amplitude increase in

the gamma frequency (.40 Hz) range, followed by a longer-

lasting elevation of gamma frequency amplitude in a narrower

frequency range [13,28]. In the lower frequencies, there exists

a sustained alpha amplitude decrease that commences around

200 ms, and a low frequency onset response, which is indicative of

the evoked response [29]. Co-localisation of alpha and gamma

responses has been previously demonstrated [30]. In Figure 1C the

extracted gamma (40–80 Hz) and alpha (8–15 Hz) amplitude

time-courses are plotted. During propofol sedation there was

significantly elevated (p= .01, corrected) gamma band activity

between 0.15 to 0.61 s corresponding to a 59.8% increase in

amplitude. Similarly, during propofol sedation there was signifi-

cantly (p,.01, corrected) more alpha amplitude decrease between

0.230 to 1.25 s corresponding to a 94.0% increase in stimulus-

induced alpha suppression.

In Figure 2A, the time-frequency response of the source-level

evoked response is presented for both awake and sedated states

and in Figure 2B the frequency spectra of these are presented for

Figure 2. Summary of evoked amplitude differences in the experiment. a) Grand-averaged time-frequency spectrograms showing source-
level oscillatory amplitude changes for the evoked response. b) Evoked amplitude spectra for the 0–0.2 s time period. c) Source-level time-averaged
evoked responses for awake and sedated states. Significant differences were seen in the amplitude of the M100 and M150 responses (*p,.05,
**p,.01, ***p,.001, shaded areas represent SEM).
doi:10.1371/journal.pone.0057685.g002
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0 to 0.2 s time window (i.e. where Figure 2A indicates that bulk of

evoked activity occurred). Figure 2B indicates significantly less

evoked power in the sedated state. Figure 2C presents the time-

averaged evoked responses and demonstrates significant reduc-

tions in both the amplitude of the M100 (46%) and M150 (94%)

components during propofol sedation. We also noted significant

(t=3.16, p= .007) slowing of the M100 component (Figure 3B).

The M150 component was reduced to such a level during propofol

sedation that we were unable to adequately quantify latency for

a number of participants. Figure 3A demonstrates that there was

no shift in peak gamma frequency, while peak alpha frequencies

could not be reliably estimated across participants. We then tested

whether the changes in alpha and gamma activity could be driven

by changes in the baseline power spectrum. To do this, we

computed the absolute amplitudes of the virtual sensor amplitude

spectra in the baseline period. No changes were seen in baseline

gamma or alpha amplitude but an increase in resting beta

amplitude (p= .05) (Figure 3C–E) was seen.

We conducted exploratory correlational analyses between each

of the parameters we had found to be significantly modulated by

propofol (differences in, reaction time, gamma amplitude, alpha

amplitude, M100 latency, M150 latency, and beta baseline

amplitude). The only correlation that emerged was between

M100 latency differences and alpha amplitude differences (r= .57,

p,.003) and will require subsequent confirmation.

Discussion

In this experiment, we demonstrate that during mild propofol

sedation there is an increase in visually-induced gamma band

responses, increased alpha amplitude suppression, and a concur-

rent reduction in the visually evoked response compared to the

awake state. Thus, there is an overall amplification of the

oscillatory response seen with visual stimulation under propofol

sedation but a decrease in evoked activity. This provides an in vivo

demonstration in humans, that stimulus-induced gamma oscilla-

tions in visual cortex can be modified pharmacologically. The

increase in induced gamma and alpha stimulus reactivity occurred

concurrently with a reduction in the evoked response, that is, the

evoked and induced responses showed a pharmacologically-in-

duced dissociation. One particularly striking feature of this

dissociation is that this occurred in the same MEG data. This

suggests that these two MEG responses may reflect the activity of

different generator populations in primary visual cortex or that

these generators are differentially pharmacologically sensitive.

Indeed, in primary visual cortex gamma band responses are

primarily generated in layers II, III and IV [31], whereas early

evoked responses are mostly generated in layer IV [32]. The

present dissociation appears comparable to the dissociation

between ERP and the gamma responses recorded during an

adaptation (double pulse paradigm) task, using subdural record-

ings. While there was a reduction in the ERP the gamma-band

response remained constant [33]. An important aspect of this

dissociation is that it argues against other, more prosaic,

interpretations of the data. For example, one might argue that

the reduction in the M100 amplitude evoked response is due to

reduced task vigilance, attention [34] as participants’ state of

consciousness changed. However, these effects would also decrease

the amplitude of oscillatory responses [18,34]. The concurrent

increase in oscillatory signals is therefore inconsistent with such

arguments. Another possibility is that the decreased evoked

responses we observed might be due to altered fixation control

during propofol sedation. However, loss of fixation control would

be expected to decrease the amplitude of both the evoked response

[35] and the gamma-band response [36,18] whereas these

components change in opposite directions in our data. Neverthe-

Figure 3. Bar charts showing peak gamma frequency (a), M100 Latency (b), and baseline gamma (c), beta (d) and alpha amplitudes
(e). (*p,.05, **p,.01, ***p,.001, bars represent SEM).
doi:10.1371/journal.pone.0057685.g003
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less, measurement of fixation position via either eye-tracking or

electrooculography would be a useful addition to future experi-

ments.

EEG studies of the resting spectra during mild propofol sedation

demonstrate decreased posterior alpha and increased central beta

power [37]. Increased sedation levels are marked by increased

delta and theta power and frontal alpha with increased peak

frequency [38]. Neural modelling of the changes in the resting

EEG spectra during propofol anaesthesia suggests that these are

caused by increased inhibition within local interneuron circuits

[39,40]. While the scalp EEG is a mixture of many generators, the

advantage of the MEG beamformer approach used here is that it

allows activity from a spatially confined region of interest to be

analysed [19]. The baseline spectra in our primary visual cortex

virtual sensors demonstrated only a relatively minor increase in

beta power and no changes in resting gamma or alpha activity. As

such, the event-related amplitude changes we demonstrate here do

not appear to be related to baseline spectral changes with the drug.

The other advantage of the well-validated MEG beamfomer

[13,28,30] approach used here is that we can be very confident

that the gamma-band activity here does not reflect the influence of

muscle activity, be it from microsaccades [14,41], or neck/head

muscles [11].

In a recent observational study in humans we found that, across

individuals, the frequency of stimulus-induced network gamma

oscillations in primary visual cortex is positively correlated with the

concentration of GABA measured with edited magnetic resonance

spectroscopy [42]. A similar correlation between GABA concen-

tration and gamma frequency has been observed in the motor

cortex [43]. Based on these results, it might be expected that

gamma frequency would increase with propofol but instead we

found that gamma amplitude increased. Because, magnetic

resonance spectroscopy is an indirect measure of synaptic GABA

function our previous correlational results could be influenced by

a number of anatomical, biochemical or even genetic variables. In

particular, recently Schwarzkopf et al. [44] found across individ-

uals, that gamma frequency correlates with the surface area of V1

defined by retinotopic mapping with fMRI, suggesting anatomical

factors may have driven our previous results. While we observed

here a change in gamma amplitude and not frequency, and

gamma amplitude and frequency are not correlated across

individuals [13], across experimental manipulations they often

change together and perhaps they should not be viewed as isolated

parameters. For example, in both animals [45] and humans [18],

it has been shown that moving stimuli lead to gamma oscillations

of both higher frequency and amplitude. Similarly, when the

contrast of stimuli changes, induced gamma oscillations (dynam-

ically) change in both amplitude [46] and frequency [47]. In

addition, stimuli of different spatial frequency elicit not only

different gamma amplitudes [48] but also alter the spectral shape

of the gamma response [49]. Finally, recent computational

modelling studies suggest that individual variability in both spatial

integration across V1 columns [50] and synaptic excitation/

inhibition [50,51] can drive variability in induced visual gamma

frequency, suggesting a possible dependence on multiple param-

eters.

While propofol exerts a small amount of activity on nAch,

AMPA and NMDA receptors as well as sodium chanels its

principal mechanism of action is thought to be via potentiation of

GABAA receptors [52]. In vitro, the primary action of propofol at

low concentrations is to potentiate GABA evoked hyperpolarising

Cl- currents [53,54] and at higher concentrations directly activate

Cl- currents via the b-subunit in human recombinant GABA-A

receptors [55]. At clinically relevant concentrations propofol

causes a concentration dependent increase in the duration of

synaptic miniature IPSCs [56], an increase in extrasynaptic tonic

inhibitory currents [57] and, in hippocampal neurons, increases

both the amplitude and decay time length of IPSCs [58].

Computational modelling [59] suggests that gamma activity can

be generated by networks of gap junction connected interneurons

[60] providing large synchronised IPSPs to excitatory cells [61].

Indeed, in barrel cortex, driving fast-spiking interneuron activity,

but not pyramidal cell activity, selectively amplifies gamma activity

[62]. Given all of these previous results, the amplified gamma

response we observe here seems most likely to be caused by the

potentiation of GABAA activity by propofol. Gamma amplitude

changes could result from the enhancement of either phasic or

tonic GABA currents, as propofol amplifies both [63,64,65] and

both can modify gamma activity [62,66]. The fact that both

gamma amplitude and alpha suppression were enhanced suggests

an overall increase in excitatory oscillatory effects with propofol.

The significant effects seen here with propofol certainly warrant

future investigations using more targeted GABAergic agents.

Finally, we note another very recent study using the cholinergic

agonist phystostigmine which found a selective modulation of

alpha oscillation amplitude in response to visual stimuli in humans

with MEG [67]. This study, which included a more attentionally

demanding task than ours, also found pharmacologically altered

gamma-band activity in the right frontal cortex (but not in visual

cortex). Taken together, these studies demonstrate the potential of

MEG to non-invasively characterise the selective effects of

pharmacological agents on quantitative neuronal biomarkers.
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