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The behaviour of a viscous thread as it falls onto a moving belt is analysed in
the asymptotic limit of a slender thread. While the bending resistance of a slender
thread is small, its effects are dynamically important near the contact point with the
belt, where it changes the curvature and orientation of the thread. Steady flows are
shown to fall into one of three distinct regimes, depending on whether the belt is
moving faster than, slower than or close to the same speed as the free-fall velocity of
the thread. The key dynamical balances in each regime are explained and the role of
bending stresses is found to be qualitatively different. The asymptotic solutions exhibit
the ‘backward-facing heel’ observed experimentally for low belt speeds, and provide
the leading-order corrections to the stretching catenary in theory previously developed
for high belt speeds. The asymptotic stability of the thread to the onset of meandering
is also analysed. It is shown that the entire thread, rather than the bending boundary
layer alone, governs the stability. A balance between the destabilising reaction forces
near the belt and the restoring force of gravity on the remainder of the thread
determines the onset of meandering, and an analytic estimate for the meandering
frequency is thereby obtained. At leading order, neutral stability occurs with the belt
moving a little more slowly than the free-fall velocity of the thread, not when the
lower part of the thread begins to be under compression, but when the horizontal
reaction force at the belt begins to be slightly against the direction of belt motion.
The onset of meandering is the heel ‘losing its balance’.

Key words: low-Reynolds-number flows

1. Introduction
The buckling of a viscous thread may be seen in several everyday situations,

for example when pouring honey on toast or when squeezing toothpaste onto a
toothbrush. The intriguing observation of steady coiling of a viscous thread as it
falls onto a stationary surface has prompted many investigations. Early laboratory
experiments (e.g. Barnes & Woodcock 1958; Barnes & MacKenzie 1959) made
quantitative measurements of the dependence of coiling frequency on fall height
and qualitative observations of the motion, but the physical processes governing the
coiling were not explained.

An early theoretical advance was made by Taylor (1968), who drew an analogy
between coiling viscous threads and buckling elastic beams, and concluded that coiling
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Figure 1. Experiments performed by Chiu-Webster & Lister (2006), in which a viscous thread
falls under gravity onto a belt moving from left to right. For slow belt speeds, the thread
buckles and leaves behind a variety of patterns on the belt. (a, b) Side views showing steady
shapes at large and moderate belt speeds (UB =10.5 cm s−1 and 7.5 cm s−1, with H =10 cm,
Q =0.025 cm3 s−1, UN = 0.0314 cm s−1 and ν = 375 cm2 s−1). (c–e) Top views showing some
of the patterns (Q = 0.021 cm3 s−1, UN =0.0415 cm s−1 and ν � 390 cm2 s−1). (c) Meandering
with UB = 3.8 cm s−1 and H = 8 cm. (d ) Translated coiling with UB = 1.8 cm s−1 and H = 9 cm.
(e) Figures-of-eight with UB = 4.4 cm s−1 and H =11 cm.

was an instability caused by axial compression of the thread. A quantitative model
was developed by Entov & Yarin (1984), who used a slender-thread approximation
to determine the stability of fluid threads to transverse, long-wave disturbances.
Mahadevan, Ryu & Samuel (1998, 2000) analysed inertia-dominated coiling, in
which regime bending stresses and centripetal forces balance within the coil. Their
predictions of the scaling of the coiling frequency and radius gave good agreement
with experiment.

Ribe (2004) presented a similar model to that of Entov & Yarin (1984), but for
the problem of steady coiling of a fluid thread. Ribe’s model results in a 19th-order
two-point boundary-value problem, and the coiling frequency predicted by his model
agrees very well with experiment over a wide range of fall heights. The numerical
solution also reveals the existence of three distinct regimes, which were confirmed
experimentally by Maleki et al. (2006) and Habibi et al. (2006). Within these regimes,
the bending stresses in the coil are either dominant, balanced by gravity, or balanced
by inertia. The stability of the steady coiling solutions was investigated numerically
by Ribe, Habibi & Bonn (2006a). The conditions under which steady coiling is stable
also agree with experimental observations. The coiling of a thread as it falls onto a
stationary surface is therefore a problem that is fairly well understood.

The related problem of a viscous fluid thread falling onto a moving belt has only
received similar attention more recently. A series of experiments were carried out
by Chiu-Webster & Lister (2006, hereafter CWL) using golden syrup with kinematic
viscosity > 102 cm2 s−1 falling through typical heights of 3–13 cm onto a belt moving
at typical speeds of 1–15 cm s−1. CWL discovered that, while at higher belt speeds
such a viscous thread forms a steady shape similar to a catenary (figure 1a), at
lower belt speeds the buckling of the thread and the motion of the belt combine to
create a fascinating variety of patterns as the thread falls on the belt (figure 1c–e).
These patterns include ‘meanders’ (figure 1c) across the belt and ‘translated coils’
(figure 1d ) in addition to other more exotic patterns such as ‘figures-of-eight’
(figure 1e), ‘braiding’ and ‘slanted loops’. The critical belt speed between the
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steady and the unsteady behaviour increased roughly quadratically with the fall
height.

CWL described a simple theory for the steady catenary shapes, in which the
bending resistance of the thread is neglected, and the thread is governed by a
dominant balance between axial stretching and gravity. The effects of inertia and
surface tension are included, but are much smaller than the extensional viscous
stresses for the experimental parameters considered. Similar equations for viscous
jets in the absence of bending stresses have been described in the context of fibre
pulling and rotary spinning (e.g Dewynne, Ockendon & Wilmott 1992; Dewynne,
Howell & Wilmott 1994; Cummings & Howell 1999; Decent et al. 2009; Marheineke
& Wegener 2009). The predicted shape of the steady catenaries agreed well with the
experimental observations for large belt speeds, but the neglect of bending stresses
causes the theory to break down at lower belt speeds when the bottom of the thread
ceases to be under tension. However, steady thread shapes are observed at some of
these lower belt speeds when no steady stretching catenary exists. The threads still
meet the belt tangentially, and so these steady shapes cannot simply be described as
vertical stagnation-flow-like solutions. Moreover, the ‘backward-facing heel’ of shapes
observed at these lower speeds near the onset of unsteady motion (figure 1b) cannot
be explained without bending stresses.

The fall of a fluid thread onto a moving belt has also been considered theoretically
and experimentally by Hlod et al. (2007) and Hlod (2009), with an emphasis on
larger velocities than CWL so that the inertial momentum flux in the thread is
important. By neglecting surface tension, Hlod et al. (2007) were able to make further
analytic progress and prove a number of results about solutions to fluid-jet equations
with inertia, extensional stress and gravity. In particular, they showed, as did Dyson
(2007), that when the momentum flux dominates the viscous stress the direction of
the characteristics makes it appropriate to impose tangency at the nozzle rather than
at the belt. (Ballistic trajectories can thus be obtained with angled nozzles.) Bending
stresses are neglected and these boundary conditions for high-speed jets should not
be confused with those applicable to the low-speed viscous threads in this paper for
which bending stresses are dominant at the boundaries. Dyson (2007) also analysed
the fall of a fluid sheet onto a moving belt in the context of curtain coating in the
paper industry. The focus is on inertia-dominated fall, but there is some analysis of
the effects of bending stresses in sheets, which parallels some of the analysis of viscous
threads here. Clearly, a sheet cannot meander or form patterns in the same way as a
thread.

The stability of a steadily dragged thread to transverse disturbances was analysed by
Ribe, Lister & Chiu-Webster (2006b). Their analysis includes bending stresses in both
the unperturbed and perturbation equations, and the predicted steady shapes agree
very well with those observed experimentally. The onset and frequency of meandering
predicted by the model also correspond closely to experiment. The mathematical
model includes many dynamical effects and results in a complicated 17th-order two-
point boundary-value problem, which makes it a little difficult to extract a more
physically based understanding of the solution structure and instability.

Morris et al. (2008) significantly improved the experimental method of CWL and
gave an extensive cartography of the unsteady behaviours observed in experiments
with silicon oil (kinematic viscosity 277 cm2 s−1) over a range of fall heights and belt
speeds that are a little smaller than those of CWL. They also used a phenomenological
theory to estimate the amplitude of meanders near the onset of instability. An attempt
to set the experimental observations in the framework of weakly nonlinear amplitude
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equations and bifurcation theory was only partly successful, perhaps because a simple
modal description does not capture the dynamical structure that we explore in this
paper.

Our aim is to provide analytical and physical understanding of some observations
of CWL and Morris et al. (2008), in the regime where inertial effects are negligible.
Our work describes the effects of bending stress on a very viscous thread, that is
falling and being strongly stretched by gravity, in the asymptotic limit of a very slender
thread where the thread radius is much smaller than the nozzle height. Particular
attention is paid to the influence of bending stresses near the belt. These bending
stresses give rise to singular perturbations to the theory of CWL in which they are
omitted and, in consequence, there are boundary layers near the belt and the nozzle
within which the bending stresses are dynamically important. A significant part of
this paper focuses on elucidating the boundary-layer structure and its effects.

The dynamics of the thread falls into one of three regimes depending on the
relative sizes of UB and a ‘free-fall’ speed UF which we will determine. The first
regime, in which UB <UF , predicts the observed backward-facing heels that could
not be explained by previous work that omitted bending stress. The regime UB >UF

gives small corrections to such theories. The third regime, UB ≈ UF , is distinct and
bridges the other two regimes. In each of the above cases, we determine the influence
of bending stresses, derive scalings and physical balances within the boundary layer,
and find asymptotic approximations that agree well with the full numerical model of
Ribe et al. (2006b).

In the second part of the paper, we use our new understanding of the
steady solutions to derive an asymptotic estimate of the onset of instability to
meandering oscillations. This estimate is significantly better than that of CWL,
which approximated the onset of instability by the loss of catenary solutions, which
corresponds to the assumption that the thread is unable to support any compression.
In contrast, our analysis demonstrates that bending stresses near the belt can support
a limited amount of compression and thus the onset is at lower belt speeds, as
observed. We also find that the pinning of the thread at the nozzle plays an important
role since the frequency of meandering oscillations is governed by a balance between
bending stresses near the belt and the restoring force exerted by the nozzle. We use
our understanding of this mechanism to give a simple estimate of the frequency of
meandering near onset, and to determine the structure of the eigenmode.

2. Problem description
We consider a viscous thread falling a distance H from a nozzle onto a belt moving

horizontally with constant speed UB , as depicted in figure 2. The thread has dynamic
viscosity µ and density ρ. The volume flux Q from the nozzle is constant, and the
extrusion speed is UN . We assume for the moment that the thread is steady. We
also assume that the radius a of the thread is much smaller than H throughout its
length. This allows the thread to be modelled by its curved centreline, parametrised
by the arclength s measured backward from the contact point, and whose dynamical
properties are derived by taking averages over the cross-section of the thread.

We denote the position of the thread’s centreline by x(s), where x = (x, y, z) with
respect to fixed Cartesian axes chosen so that the thread lies in the plane y =0, the
belt is at z = 0 and the nozzle is at (0, 0, H ). The belt moves with velocity UB ex and
the gravitational acceleration is −gez. The orientation of the thread is given by θ(s),
defined as the angle between the centreline and the downward vertical. It is convenient
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Figure 2. Definition of the problem (see text).

to define a Lagrangian triad of basis vectors d i(s) which rotate with the thread as it
flows. We choose d3 to be tangential to the thread, and to have the same sense as the
fluid velocity so that d3 · ez = − cos θ . The vectors d1 and d2 may rotate within the
cross-section of the thread. However, when the thread is steady, it remains in the y =0
plane and does not twist. Hence, we can choose d2 = − ey throughout the thread.
The right-handed triad is then completed by d1 = d2 × d3, which is normal to and in
the plane of the centreline. The variation of the basis vectors along the centreline is
governed by the curvature κ of the thread according to d ′

i = κ × d i , where a prime
denotes d/ds. Since y = 0 throughout the thread, the only non-zero component of
curvature is κ2 = κ · d2. The geometry of the centreline is thus described by

x ′ = sin θ, (2.1)

z′ = − cos θ, (2.2)

θ ′ = κ2, (2.3)

where primes again denote d/ds. Since the thread is slender, we may assume that
the axial velocity U d3 is uniform across a cross-section at leading order and that the
cross-sections are approximately circular. Hence, Q = πa2U .

We now consider the dynamics of the thread. For simplicity of exposition, and in
order to focus on understanding the effects of viscous bending stresses, we neglect the
effects of surface tension and inertia, which CWL showed – see the terms representing
inertia and surface tension in their dimensionless equation (4.9) – is appropriate when
the dimensionless parameters

Re =

(
U 3

B

3νg

)1/2

and Γ =
γ

ρ

(
π

3νgQ

)1/2

(2.4)

are both small. The range of Re and Γ was 10−3 to 10−1 and 0.4–0.7 in the
experiments of CWL and 10−3 to 4 × 10−2 and 0.26 in the experiments of Morris
et al. (2008). The neglect of surface tension is thus a slightly crude approximation for
quantitative predictions, but it does not change the structure of the asymptotic analysis
and solutions. In Appendix A, we explain how our analysis may straightforwardly
be modified to re-include the effects of surface tension, the main effect being a
modification of the rate of stretching between the nozzle and the belt. In the Appendix,
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we also describe the circumstances under which the effects of inertia may similarly
be included.

The dynamics of the thread involves the stress vector N(s) and stress-moment
vector M(s) acting on a cross-section, which are given by

N(s) = Ni d i =

∫
σ (x + y) · d3 dA y, (2.5)

M(s) = Mi d i =

∫
y × σ (x + y) · d3 dA y, (2.6)

where σ is the stress tensor, y denotes the displacement from the centreline within
the cross-section and the integral is taken over the cross-section.

The axial stress N3 is due to extensional flow, and given by the Trouton relation

N3 = 3πa2µU ′. (2.7)

The bending stress moment M2 may be obtained through expansion of the velocity
profile in the thread to second order in y, finding the stress tensor and then substituting
it into the above expression for M . This yields (Entov & Yarin 1984; Yarin 1993)

M2 =
3πa4µ

8
(2Uκ ′

2 − U ′κ2). (2.8)

We note that the derivation of the stress moment in Ribe et al. (2006a) does not
consider the coupling between bending and stretching and thus omits the second term
of (2.8). However, as we show in § 3.2, U ′κ2 � Uκ ′

2 in the bending boundary layers and
so the absence of this term is of little consequence. We also note that the analogous
expression for the stress moment in a bending fluid sheet (e.g. Buckmaster, Nachman
& Ting 1978; Griffiths & Howell 2007) is slightly different, in part because there are
circulatory flows within the cross-section of a bending thread which cannot occur by
mass conservation in a two-dimensional sheet.

Force balances in the directions normal and tangential to the thread imply that

N ′
1 = −κ2N3 + πa2ρg sin θ, (2.9)

N ′
3 = κ2N1 − πa2ρg cos θ. (2.10)

The balance of moments implies that

M ′
2 = −N1 − πa4

4
ρgκ2 cos θ. (2.11)

The appropriate boundary conditions on the viscous thread at the nozzle are
analogous to the ‘clamped’ conditions that are often applied in the context of static
deformations of elastic threads and sheets. The thread at the nozzle is assumed to
be aligned with the nozzle (so that it is vertical) and to have zero curvature. From
(2.3) and (2.8), such conditions are necessary to avoid introducing a point couple at
the nozzle. Similarly, the average velocity must be continuous to avoid introducing a
point force at the nozzle. Hence, we impose

θ = κ2 = x = 0, z = H and U = UN, (2.12a–e)

at the nozzle. The adjustment of the velocity profile from Poiseuille flow inside the
nozzle to an extensional flow in the thread takes place over a length scale comparable
with the thread’s radius (Goren & Wronski 1966) and has an asymptotically negligible
effect in the limit of a slender thread.
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If the fall height or the belt speed were large enough that inertial effects were
dominant near the bottom of the thread, then the impact of the thread on the belt
might result in a stagnation-point flow. However, in this paper we focus on the regime
where viscous effects are dominant. The appropriate boundary conditions for such
a viscous thread are rolling conditions at the contact point (Ribe 2004; Ribe et al.
2006b), which require both the angle and curvature of the thread to be continuous
with the fluid at the belt in order to ensure that there is no point couple at the contact.
Similarly, we avoid introducing a point force at the contact point by imposing the
condition that the velocity is continuous. We make the approximation that the height
of the centreline at the contact point is at z =0; the actual height is equal to the
thread’s radius, but the difference is negligible in the asymptotic limit of a very slender
thread. In summary, we impose the conditions

θ =
π

2
, κ2 = 0, z = 0 and U = UB, (2.12f –i )

at the belt.
The thread is described by the eight independent variables x, z, θ , κ2, U , N1, N3 and

M2. The radius of the thread is determined by the velocity through flux conservation,
which implies that πa2U = Q. In addition to the eight independent variables, the
length L of the thread is unknown. Hence, the nine boundary conditions (2.12) fully
determine the solution. We note that these boundary conditions are directly analogous
to those used in the analysis of coiling and they give solutions that are in excellent
agreement with experimental observations both of coiling (Habibi et al. 2006) and of
a dragged thread (Ribe et al. 2006b).

The solution to the system of equations (2.1)–(2.12) may be computed using the
continuation software package AUTO (see Ribe et al. 2006a; Doedel & Oldeman
2009), which is freely available at http://indy.cs.concordia.ca/auto/. A continuation
method has the advantage that solutions are easily computed when experimental
variables, such as UB or H , are varied.

It is known (CWL; Ribe et al. 2006b) that the bending resistance of the thread
becomes dynamically important near the belt, but the significance of this has not
been quantitatively explored. We aim to analyse the behaviour of the thread in this
region, and hence we scale our equations with respect to the corresponding dynamical
balances.

We non-dimensionalise the velocity with UE = ρgH 2/µ, which is an extensional
velocity scale associated with a thread as it falls and stretches under a viscous–
gravity balance. (We find the vertical variation of velocity for such a thread in
§ 3.1.) The thread radius is non-dimensionalised with the corresponding radial scale
aE =

√
Q/πUE , and axial lengths with H . The constitutive relation (2.7) and the

stress-moment balance (2.11) suggest that the stress components Ni should be non-
dimensionalised with µa2

EUE/H and the stress moments Mi with µa2
EUE . In the new

dimensionless variables, (2.1)–(2.11) become

x ′ = sin θ, (2.13)

z′ = − cos θ, (2.14)

κ2 = θ ′, (2.15)

N3 = 3πa2U ′, (2.16)

M2 =
3πa4

8
ε2(2Uκ ′

2 − U ′κ2), (2.17)
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N ′
1 = −κ2N3 + πa2 sin θ, (2.18)

N ′
3 = κ2N1 − πa2 cos θ, (2.19)

M ′
2 = −N1 − πa4

4
ε2κ2 cos θ, (2.20)

where a2U = 1. The parameter

ε =
aE

H
=

(
Qµ

πρgH 4

)1/2

(2.21)

is the slenderness of the thread, and the analysis of this paper concerns the asymptotic
behaviour as ε → 0. The non-dimensionalisation of the variables modifies the
boundary conditions (2.12d,e,i ) to

U = Un, z = 1 at s = −� and U = Ub at s = 0, (2.22)

where � =L/H is the dimensionless length of the thread, and Un =UN/UE and
Ub = UB/UE are the dimensionless nozzle velocity and belt speed, respectively. The
analysis that follows also involves the dimensionless thread radius ab = U

−1/2
b at the

belt and the ‘free-fall’ speed Uf = UF /UE .
Throughout this paper we make the further assumption that before reaching the

belt the thread undergoes strong stretching by gravity, so that Un � 1. This stretching
is necessary for there to be a separation between the length scale across which bending
stresses are dynamically important and the unit dimensionless height. Values of Un

in the experiments of CWL and Morris et al. (2008) range from 10−3 to 10−6. If flow
through the nozzle is gravity-driven, then Un ∝ ε and strong stretching is implied by
slenderness.

3. Asymptotic behaviour of a very slender thread
3.1. The outer solution or ‘tail’

CWL analysed the behaviour of a slender dragged thread by assuming that the thread
has a negligible bending resistance; this corresponds to setting ε =0 in (2.17) and
(2.20). Then, M2 =N1 = 0 and the thread is governed by

x ′ = sin θ, (3.1)

z′ = − cos θ, (3.2)

N3 = 3πa2U ′, (3.3)

N3θ
′ = πa2 sin θ, (3.4)

N ′
3 = −πa2 cos θ. (3.5)

CWL found that catenary-like solutions, for which the thread is tangential to the belt
at contact, only exist if the belt speed Ub is larger than some critical value, which we
denote Uf . For Ub >Uf , the belt exerts a horizontal force on the thread placing the
bottom of it under axial tension, so that N3 > 0 throughout the thread and the global
behaviour of the thread is to hang in a catenary shape.

If Ub <Uf , there are no steady catenary solutions to (3.1)–(3.5). However, there are
solutions in which the thread falls vertically, with θ = 0 everywhere. Substitution of
θ = 0 into (3.1)–(3.5) gives x = 0, z = −s and(

3πa2U ′)′
+ πa2 = 0. (3.6)
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Using a2 = 1/U , it is easy to show that the general solution to (3.6) is

U (s) =
1 − cos[T∞(s + 1 + d)]

3T 2
∞

, (3.7)

where T∞ and d are constants of integration. An equivalent solution is given in Ribe
(2004). As explained in § 2, we consider only the case of strongly stretched threads
for which Un � 1. The nozzle condition U = Un at s = −1 gives

d =
√

6Un + O(UnT
2

∞). (3.8)

(CWL noted that d corresponds to the small offset above the nozzle where the thread
speed would vanish if the solution were continued upwards in s < −1.) The remaining
constant T∞ can be chosen to satisfy U = Ub at s =0, though the resulting solution
clearly does not satisfy the rolling conditions (2.12f, g).

If Ub <Uf , the bottom of this vertical fall solution satisfies U ′(0) < 0 and the fall
of the thread is slowed by means of a reaction force −N3(0) exerted upwards by the
belt. Conversely, if Ub >Uf then U ′(0) > 0 and N3(0) > 0, and the fall speed must be
increased by applying a downward force at the bottom of the thread. While the latter
case may be relevant to pulling of polymer or glass fibres (e.g. Matovich & Pearson
1969; Dewynne, Ockendon & Wilmott 1989), it cannot be relevant to a thread simply
falling on a belt where the reaction force must clearly be upwards. Hence, vertical-fall
solutions are only relevant here when N3(0) < 0.

The transition between vertical-fall solutions for N3(0) < 0 and the catenary-like
solutions for N3(0) > 0 occurs when N3(0) = 0; for this solution the bottom of the
thread is stress-free and has a speed Uf that we thus refer to from now on as the
‘free-fall’ speed. (This use of free-fall speed should not be confused with the idea
of free-fall in mechanics for a pure inertia–gravity balance.) The free-fall speed is
determined by applying the stress-free condition U ′ = 0 at s = 0 to the general solution
(3.7). We obtain T∞ = π/(1 + d) and thus

Uf =
2

3π2
+ O(d). (3.9)

Because of its transitional nature, Uf is a key parameter for the solution structure.
The system (3.1)–(3.5) no longer involves the derivatives of κ2, M2 and N1 and so its

order is three fewer than (2.13)–(2.20). The vertical-fall equations no longer involve
the derivative of θ and their order is one fewer still. Consequently, both ‘vertical fall’
and ‘catenary’ solutions do not satisfy all of the orientation and curvature conditions
at the belt and at the nozzle. It follows that the finite bending resistance of the thread
for 0 <ε � 1 gives rise to a singular perturbation to the system (3.1)–(3.5) where
bending stress is neglected. This singular perturbation causes there to be boundary
layers at the belt and at the nozzle, across which the curvature and orientation of
the thread are corrected to satisfy the relevant boundary conditions. Outside these
boundary layers, in a region we will, following Ribe, from now on refer to as the
‘tail’, bending stresses are unimportant and the solution can be approximated by a
vertical-fall or catenary solution.

3.2. Boundary-layer structure

In the following subsections, we determine the boundary-layer structure produced
by the singular perturbation of (3.1)–(3.5) by the small bending resistance of a
slender thread. A preliminary simplification to note is that the O(ε2) gravitational
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contribution to the moment balance (2.20) is only a small regular perturbation as
ε → 0, and can be omitted.

The bending stresses in the thread decrease as ε → 0, but not uniformly, and
they remain dynamically important in boundary-layer regions of decreasing length
near the belt and the nozzle. We focus our attention on the boundary layer near
the belt, whose length scale we denote by δ∗. The tail is governed by (3.1)–(3.5),
and is therefore independent of ε at leading order. Hence, the axial stress, velocity
and non-dimensionalised radius at the base of the thread are independent of ε, and
remain O(1) as ε → 0. The constitutive relation (2.16) then implies that U ′ =O(1) in
the boundary layer, and hence that U cannot vary significantly over the O(δ∗) length
scale of the boundary layer. The necessary adjustment of the thread velocity from
its free-fall speed Uf to the belt speed Ub must therefore take place within the tail.
Hence, we can make the leading-order approximation that U = Ub throughout the
boundary layer at the belt.

The constitutive relation (2.17) for the stress moment M2 may also be simplified in
the bending boundary layer. If the curvature in the boundary layer scales like κ∗ then,
to satisfy (2.12g), κ ′

2 must be O(κ∗/δ∗). Hence, the term Uκ ′
2 in (2.17) is O(Ubκ∗/δ∗). In

contrast, since U ′ = O(1), the term U ′κ2 is only O(Ubκ∗), and is therefore negligible.
This justifies omission of the second term, and henceforth we substitute a2

bUb = 1 to
obtain

M2 =
3πa2

b

4
ε2κ ′

2. (3.10)

We combine (3.10) with (2.18)–(2.20) to obtain the simplified fifth-order system of
dynamic equations

N1 = −3πa2
b

4
ε2θ ′′′, (3.11)

N ′
1 = −κ2N3 + πa2

b sin θ, (3.12)

N ′
3 = κ2N1 − πa2

b cos θ. (3.13)

We note that the force balances (3.12) and (3.13) have first integrals Fx and Fz, which
are the horizontal and vertical forces exerted by the belt, given by

Fx = N3 sin θ + N1 cos θ and Fz = N1 sin θ − N3 cos θ − πa2
bs, (3.14a, b)

respectively. Hence, (3.11)–(3.14) may be recast as the third-order system,

ε2θ ′′′ = − 4

3πa2
b

N1, (3.15)

N1 = Fx cos θ + Fz sin θ + πa2
bs sin θ, (3.16)

where Fz and Fx are as yet unknown but are determined by matching to the tail
solution. The axial stress N3 is

N3 = Fx sin θ − Fz cos θ − πa2
bs cos θ. (3.17)

The qualitative nature of the boundary-layer corrections depends on the relative
sizes of the free-fall speed Uf and the belt speed Ub. The variation of the velocity
in the tail requires a force to be exerted through the boundary layer. If Ub < Uf , the
boundary layer exerts a vertical force Fz on the thread, which reduces the stretching
and slows the fall of the tail above it. The tail is nearly vertical with velocity variation
given approximately by the solution (3.7). If Ub > Uf , the boundary layer exerts a
horizontal force Fx on the tail, which increases the stretching and accelerates the
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thread. The thread is deflected sideways and the axial velocity variation within the
tail is given approximately by that of the catenary-like solution to (3.1)–(3.5). There
is also an intermediate regime, where Ub ≈ Uf , in which Fx and Fz are of similar size
in the boundary layer.

Within each regime, there are distinct dynamical balances in the boundary layer.
We will introduce scaled variables

η =
s

δ∗
and ni =

Ni

F∗
, (3.18a, b)

where δ∗ and F∗ are respectively the length and force scales that are relevant to each
regime under consideration.

3.3. Compressional heel: Ub <Uf

We first deal with the case in which the belt speed Ub is slower than the free-fall
velocity Uf . The necessary decrease in fall speed within the tail places the lower part
of it under compression. The role of bending stresses within the boundary layer at
the belt is to support this compression, and to divert the thread from θ ≈ 0 in the
tail to θ = π/2 at the belt.

The compressive force Fz required to slow the fall of the tail is O(1) as ε → 0.
The force balance (3.14b) implies that the contribution of the gravitational stress to
Fz within the boundary layer is O(δz), where δz is the length scale of the boundary
layer, and thus negligible as ε → 0. Furthermore, we anticipate that both N1 → 0
and θ → 0 in the tail and so (3.14a) motivates the further assumption that Fz 
 Fx .
Hence, N1 ∼ N3 ∼ Fz within the boundary layer. The change in θ from 0 to π/2
across the boundary layer implies that the curvature κ2 = θ ′ ∼ δ−1

z . We substitute these
scalings into the stress-moment equation (3.15) to obtain

δz =

(
3πa2

bε
2

4Fz

)1/3

. (3.19)

We note that δz is O(ε2/3), and hence our earlier neglect of the O(ε) corrections (such
as from the radius of the thread at the contact point) is justified.

Using Fz and δz to define the rescaling (3.18), we find that the bending stress (3.16)
is given at leading order by

n1 = sin θ. (3.20)

The rescaled shape θ(η) of the thread is obtained by substitution into (3.15) to obtain

θ ′′′ + sin θ = 0. (3.21)

The boundary conditions at the belt are

θ =
π

2
and θ ′ = 0 at η = 0. (3.22)

A third condition is required to match to a vertical tail and enforce the decay of
bending stress. We anticipate that θ ≈ 0, and linearisation about this value implies
that

θ ∼
∑

i=1,2,3

Ai exp (λiη) as η → −∞, (3.23)

where λ3
i = −1 and Ai are complex amplitudes of the three modes. Two of these modes

decay exponentially as η → −∞ as desired, but the mode with λi = − 1 diverges.
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Figure 3. (a) The universal shape of the compressional-heel solution to (3.21), (3.22) and
(3.24). (b) The distributions of the stress moment M2 (solid) and the bending stress N1

(dashed) in the compressional heel.

Thus, suppression of this divergent mode by imposing

θ → 0 as η → −∞ (3.24)

gives the third condition. The exponential decay of θ as η → −∞ means that the tail
has both a negligible deflection from the vertical and negligible bending stress.

Equation (3.17) implies that n3 = − cos θ at leading order, and so (3.24) implies
n3 → −1 as η → −∞, which is consistent with matching onto a vertical tail with a
vertical compression Fz.

There is a unique solution to (3.21), (3.22) and (3.24). The scaled shape at the base
of a slender dragged thread is therefore universal as ε → 0 when Ub <Uf . A variation
of experimental parameters results in a simple rescaling of the size of the boundary
layer according to the definition of δz in (3.19).

We note that the compressional-heel solution presented here also arises in the
context of a dragged viscous sheet, which was analysed by Dyson (2007) in the
regime where inertia is important; further discussion is given in Appendix A.

Figure 3(a) shows the shape of the universal solution, which we call the
‘compressional’ heel. We note that it has a backward-facing heel, which matches the
observed behaviour of steadily dragged threads for slower belt speeds (cf. figure 1b).
Above the backward-facing heel, there are exponentially damped oscillations about
the vertical in agreement with (3.23), though these oscillations would be too small to
be seen experimentally. The decay of the bending stresses away from the boundary
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Compressional-heel solution
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Figure 4. Convergence as ε decreases of numerical solution to the full system (2.13)–(2.20)
of bending equations towards the asymptotic compressional-heel solution for the case
Un = 7.1×10−3 and Ub = 0.25Uf . The values of Un and ε are representative of the experiments
of CWL.

layer can be seen in figure 3(b). Figure 4 shows that the solutions to the full set of
bending equations (2.13)–(2.20) converge towards the asymptotic solution given by
(3.21), (3.22) and (3.24) as ε → 0. Values of ε corresponding to the experiments of
CWL and Morris et al. (2008) range between 5 × 10−4 and 4 × 10−2, and there is
very close agreement between the full and asymptotic solutions in this range. The full
solutions are known to agree well with experiment (Ribe et al. 2006b), and hence the
asymptotic solutions give good quantitative predictions for the observed heel shapes.

The gravitational term that was omitted from the force balance (3.16) to obtain
(3.20) is O(πa2

bδz/Fz) relative to the bending terms. Equation (3.19) implies that this
omission is consistent provided (

3πa2
bε

2

4Fz

)1/3

� Fz

πa2
b

. (3.25)

If Ub < Uf is fixed then ab and Fz are O(1) as ε → 0 and (3.25) holds when ε is
sufficiently small.

3.4. Gravitational heels: Ub ≈ Uf

If Ub ≈ Uf , then the thread undergoes only a small amount of compression relative
to free-fall and Fz is small. Hence, (3.25) breaks down when Ub → Uf with ε fixed,
however small. This limit leads to a new regime in which gravity is also important
near the belt.

We consider a distinguished double limit ε → 0 and Ub → Uf in which gravitational
stresses are in balance with compressional and bending stresses throughout the
boundary layer. The force balance (3.16) implies that the relevant force scale is
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Fg ∼ πa2
bδg , where δg is the corresponding length scale. The small stresses within the

boundary layer cause only a small deflection of the tail from vertical. Hence, the
boundary layer must again deflect the thread from θ ≈ 0 in the tail to θ = π/2 at
the belt, and the curvature κ2 within the boundary layer again scales like θ ′ ∼ δ−1

g .
We substitute these scalings into the stress-moment balance (3.15) to obtain

δg =

(
3ε2

4

)1/4

, Fg = πa2
b

(
3ε2

4

)1/4

. (3.26)

(We note that these scalings coincide with those found by Ribe 2004 in the
‘gravitational regime’ of the related problem of steady fluid coiling on a stationary
surface.)

Using Fg and δg to define the rescaling (3.18), we rewrite (3.15) and (3.16) as

θ ′′′ = −φz sin θ − φx cos θ − η sin θ, (3.27)

where φx and φz are constants given by

φx =
Fx

Fg

and φz =
Fz

Fg

. (3.28a, b)

Equation (3.27) links the values of φx and φz to the shape θ(η) of the thread near
the belt. Hence, in contrast to the compressional heel, the values of φx and φz depend
on the behaviour of the heel, and cannot be directly determined from consideration
of the tail alone. As before, the two rolling boundary conditions

θ = π/2 and θ ′ = 0 (3.29)

are imposed at the belt. Additional matching conditions are required to enforce the
decay of θ and of bending stress into the tail. We again anticipate that θ → 0 as
η → −∞, and linearise (3.27) about this value to obtain

θ ′′′ ∼ −φzθ − φx − ηθ. (3.30)

The solution approaches

θ ∼ −φx

η
+

∑
i=1,2,3

Ai exp

(
−3

4
λiη

4/3

)
as η → −∞, (3.31)

where λ3
i = −1, the first term on the right-hand side is a leading-order particular

integral and the exponential modes are WKB approximations to the complementary
function. Equation (3.31) implies that the growing exponential modes can be
suppressed by imposing

θ ∼ −φx

η
and κ2 ∼ φx

η2
as η → −∞. (3.32)

We remark that (3.32) is also satisfied by a tail that is governed by rescaled versions of
(3.1)–(3.5) and deflected by a horizontal force φx . Hence, (3.32) matches the horizontal
force and deflection between the heel and the tail. The third-order equation (3.27)
contains two free constants and is subject to the two boundary conditions (3.29)
at the belt and the two matching conditions (3.32) that suppress the two divergent
exponential modes in (3.31). Hence, there is a one-parameter family of solutions,
which we call ‘gravitational heels’.
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The value of the remaining parameter is determined by matching the vertical force
between the heel and the tail. After rescaling, the vertical force balance (3.14b) is

n1 sin θ − n3 cos θ = φz + η. (3.33)

Since the deflection of the tail from vertical is small, the rescaled vertical coordinate
Z = z/δg approaches −η − �η as η → −∞, where the offset �η is the extra arclength
due to the curvature of the heel. Hence, as η → −∞ and θ → 0, the force balance
(3.33) approaches

n3 = Z − Φz, (3.34)

where the parameter

Φz = φz − �η (3.35)

is the effective vertical force exerted by the heel on the tail, given by the upward force
from the belt less the extra weight in the heel. By matching to a vertical tail and
substituting (3.3) and Fg = πa2

bδg into (3.28b), we can determine Φz from the condition

Φz =
3

δg

dU

dz
at z = 0, (3.36)

where U (z) is the velocity profile in the nearly vertical tail.
This velocity profile must satisfy the vertical-fall equation (3.6), U = Un at the nozzle

and U = Ub at the belt. Since Ub ≈ Uf , we estimate Φz by perturbing the free-fall
velocity profile derived in § 3.1. We anticipate that the belt exerts a small force on the
tail and therefore substitute T∞ = π + t , where t � 1, into (3.7) to obtain (omitting the
O(d) terms for simplicity)

dU

dz

∣∣∣∣
z=0

=
1

3T∞
sin T∞ = − t

3π
+ O(t2). (3.37)

A similar expansion for Ub using (3.7) and (3.9) implies that

Ub − Uf = − 4t

3π3
+ O(t2). (3.38)

Combination of (3.36)–(3.38) together with a2
b ≈ 1/Uf yields

Φz =
3π2

4δg

(Uf − Ub) + O

(
(Uf − Ub)

2

δg

)
, (3.39)

thus relating the force Φz to the velocity difference Uf − Ub that it must produce. We
note that since δg = O(ε1/2), the estimate (3.39) is appropriate when Ub −Uf =O(ε1/2).

Since Φz is determined by the tail, we use it to parametrise the family of heels,
with the value of φx then being a consequence of the solution. Figure 5 shows some
of the heel shapes for various values of Φz, obtained by solving (3.27) numerically
subject to (3.29), (3.32) and (3.34). Figure 6 shows the dependence of φx on Φz.
As Φz increases, the horizontal force φx tends to zero and the deflection of the tail
from vertical thus also becomes small. For large values of Φz, the thread shapes are
similar to the shape of the compressional heel. This is because large values of Φz

correspond to strong compression of the boundary layer, so that gravitational forces
are negligible in comparison, �η � φz and Φz ≈ φz. A comparison of the length scales
(3.19) and (3.26), together with (3.28b), shows that when Φz 
 1 the length scale of
the gravitational heel is given by

δg = Φ1/3
z δz. (3.40)
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Figure 5. A plot of heels within the gravitational regime, for various values of the effective
vertical force Φz on the tail. These shapes are obtained by solving (3.27) subject to the boundary
conditions (3.29) and matching conditions (3.32) and (3.34) imposed at η = −500. The contact
points are offset at multiples of 2 on the x-axis for clarity.
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Figure 7. Convergence of rescaled solutions in the gravitational regime to the
compressional-heel solution of § 3.3 as Φz → ∞.

Figure 7 shows the convergence of the rescaled gravitational-heel solutions towards
the compressional-heel solution in the limit Φz → ∞.

In the opposite limit, Φz → −∞, figure 6 shows that bending stresses within the
gravitational heel exert a large horizontal force φx on the tail. The deflection of the
tail is therefore large and the shape of the thread (figure 5) increasingly resembles the
catenary-like solutions found by CWL. This suggests that there is a third boundary-
layer regime, which applies when Ub >Uf .

3.5. Ub >Uf : curvature-adjustment layer

Previous approximate solutions that omit the effects of bending stress have been
derived to describe threads for which Ub > Uf (CWL; Hlod et al. 2007). While these
solutions allow the thread to be horizontal at the bottom of the thread (unless inertia
dominates), they also have a non-zero curvature κb there. The role of bending stresses
when Ub >Uf is to adjust the curvature from κb at the bottom of the tail to zero across
the boundary layer, thus allowing all the dynamic rolling conditions to be satisfied at
the belt. Outside this boundary layer, the bending stresses are unimportant and the
solutions of CWL and Hlod et al. (2007) may be applied, after a small modification
to the velocity condition which we will describe.

At the bottom of the tail where θ ≈ π/2, the horizontal force balance (3.14a)
implies that N3 ≈ Fx . Hence, (3.4) implies that the curvature κb at the bottom of the
tail, above the boundary layer, is

κb =
πa2

b

Fx

. (3.41)

In contrast to the previous two regimes, the tail is nearly horizontal near the bottom,
and θ does not vary significantly across the boundary layer. Hence, the curvature
scaling is not given by an O(1) variation in θ over an O(δ∗) length scale, but by κb.
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We aim to find the curvature κ2 within the boundary layer. We combine (3.12) and
(3.15) with N3 =Fx and θ ′ = κ2 to obtain

κ2 − 3πa2
bε

2

4Fx

κ ′′′
2 = κb. (3.42)

Thus, the length scale of the boundary layer is given by

δx ∼
(

3πa2
bε

2

4Fx

)1/3

(3.43)

and, using this to define the rescaling (3.18a), we can rewrite (3.42) as

κ2 − κ ′′′
2 = κb. (3.44)

The general solution of (3.44) is

κ2 ∼ κb +
∑

i=1,2,3

Ai exp(−λiη), (3.45)

where λ3
i = − 1. The matching condition κ2 → κb as η → −∞ suppresses the two

divergent modes in (3.45) and, together with the boundary condition κ2 = 0 at η =0,
defines a unique solution

κ2 = κb(1 − eη), (3.46)

which we call a ‘curvature-adjustment layer’. This solution, like the compressional heel,
is universal and qualitatively unchanged by variation of experimental parameters.

The variation of θ across the boundary layer is O(κbδx). From (3.41) and (3.43),
the assumption that θ ≈ π/2 throughout the boundary layer is consistent with this
variation provided that (

3πa2
bε

2

4Fx

)1/3

� Fx

πa2
b

. (3.47)

Hence, if Ub >Uf is fixed, then Fx and ab are fixed and (3.47) holds when ε is
sufficiently small.

If Ub is close to Uf , then there is only a small amount of stretching in the tail and
Fx is small. Hence, (3.47) breaks down when Ub → Uf with ε fixed, however small.
The gravitational heels, which do not make the approximation θ ≈ π/2 throughout
the boundary layer near the belt, are applicable in this limit.

The gravitational-heel shapes for Φz < 0 in figure 5 suggest that the gravitational
heels converge towards a curvature-adjustment layer as Φz → −∞, and hence as
φx → ∞. This convergence may be seen quantitatively by rescaling (3.46) with respect
to the gravitational scales Fg and δg , to obtain

δgκ2 = φ−1
x (1 − eKηg ), (3.48)

where

δg = φ1/3
x δx and K = φ1/3

x . (3.49)

The convergence of gravitational heels towards this solution is shown in figure 8.
We conclude that the gravitational heels match smoothly between the compressional

heel, valid for fixed Ub <Uf as ε → 0, and the curvature-adjustment solution, valid
for fixed Ub >Uf as ε → 0, with the width of the matching region given by Ub −
Uf = O(ε1/2).
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Figure 8. Convergence of rescaled solutions in the gravitational regime to the
curvature-adjustment solution (3.46) as Φz → −∞.

3.5.1. Boundary layer at the nozzle

If bending effects are omitted, then the thread approaches the nozzle at some
non-zero angle θn and the axial stress has a horizontal component Fx . The ‘clamped’
boundary conditions (2.12a, b) at the nozzle require there to be a bending boundary
layer near the nozzle. Within this boundary layer, the force Fx is supported by bending
stress, and the orientation of the thread varies from θ =0 at the nozzle towards θ = θn

in the tail. The analysis in §§ 3.3–3.5 implies that θn remains O(1) as ε → 0 only if
Ub >Uf . Hence, the following analysis is relevant to the case Ub > Uf .

The horizontal force Fx is determined, at leading order, by the stretching-dominated
tail and is therefore O(1) as ε → 0. In contrast, the gravitational stresses in the
boundary layer at the nozzle are O(δ∗) and thus negligible as ε → 0. Hence, the
analysis proceeds similarly to that of the compressional heel in § 3.3, except with δ∗
given by

δn =

(
3πa2

nε
2

4Fn

)1/3

, (3.50)

where Fn is the axial stress at the nozzle. The shape of the thread near the nozzle is
governed (without rescaling) by

δ3
nθ

′′′ − sin(θ − θn) = 0, (3.51)

with boundary conditions

θ = θ ′ = 0 at s = −� and θ → θn as
s + �

δn

→ ∞. (3.52)

Linearisation of (3.51) about θ = θn shows that the matching condition θ → θn as
(s + �)/δn → ∞ suppresses one exponential mode and, together with (3.52), gives rise
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to a unique solution for each θn. We note that there is one more boundary condition
and one less matching condition than for the curvature-adjustment layer. This is due
to the difference in direction between (s + �)/δn → ∞ and s/δx → −∞ which requires
different modes to be suppressed in order to match to the tail.

The length scale (3.50) implies that the bending-stress corrections at the nozzle are
formally of the same order in ε as those at the belt. However, their numerical values
are much smaller provided the belt speed is not so large that the horizontal stress Fx

exerted by the belt is comparable with the weight of the thread. It can be shown that
in these circumstances the top of the tail hangs nearly vertically anyway and requires
little change in curvature to match the boundary condition. Since the bending-stress
corrections necessary to satisfy (3.52) at the nozzle are small, we neglect them in the
calculations below.

3.5.2. Perturbation to the tail

Since θ = π/2 at the belt, κb = θ ′ = O(1) and δx � 1, the angle of the thread is given
by θ ≈ π/2 throughout the curvature-adjustment layer. Linearisation of (2.14) about
this value yields θ ≈ z′, and substitution of this result into (2.15) implies that the
curvature is given by κ2 = z′′ throughout the curvature-adjustment layer. The shape
of the thread near the belt can therefore be found by integrating z′′ = κ2 using (3.46)
subject to z = z′ = 0 at the contact point. We obtain

z = κb

(
1

2
(η + 1)2 +

1

2
− eη

)
, (3.53)

which approaches

z ∼ κb

2
(η + 1)2 as η → −∞. (3.54)

If the existence of the boundary layer is neglected, then extrapolation of (3.54)
to z =0 gives contact at η = − 1 rather than η = 0; hence, the boundary layer
provides an additional arclength of δx . Since the thread continues stretching at a
rate U ′ = Fx/(3πa2

b) between η = − 1 and η = 0, it follows that the effective boundary
condition on the catenary solution in the tail is not U = Ub at z = 0, but instead
U = Ub − �U , where

�U =
Fxδx

3πa2
b

. (3.55)

Together with (3.43), this implies that bending-stress corrections at the belt cause
an O(ε2/3) global perturbation to the tail, which dominates the O(ε2) perturbations
caused by the local bending stresses. This global perturbation makes a significant
contribution to the dragout distance as described below.

3.6. Dragout distance of asymptotic solutions and full numerical solutions

We now use the asymptotic solutions found in the preceding sections to estimate the
dimensionless dragout distance xb, defined as the horizontal displacement from the
nozzle to the contact point with the belt. We consider separately the contributions to
xb that arise from the deflection of the tail from vertical and from the shape of the
boundary layer at the belt. The boundary layer exerts a horizontal force Fx on the
tail that deflects it from vertical. Because of this force, the tail forms a catenary that
hangs from the nozzle under gravity. We define xt to be the horizontal displacement
between the nozzle and the minimum of this catenary extrapolated as if the boundary
layer were not there. The curvature of the boundary layer modifies the shape of the
thread near the belt from that of the tail. We define x� to be the distance between
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Figure 9. (a) The contributions to dragout distance from the heel and the stretching-
dominated tail. The contribution xt from the tail is measured horizontally from the base
of the extrapolated catenary (dashed) to the height of the nozzle, and x� is the offset from the
catenary arising from the curvature of the heel (solid). (b) Asymptotic estimates of the dragout
distance for various belt speeds compared with the values calculated using the full system of
bending equations (2.13)–(2.20), for parameter values ε = 4 × 10−2 and Un = 7 × 10−3.

the minimum of the extrapolated catenary and the contact point with the belt. The
contributions xt and x� to xb are illustrated in figure 9(a). Clearly, xb = xt + x�.

The compressional heel matches to a tail that has negligible deflection from vertical
and hence has xt ≈ 0. The contribution x� to the dragout distance of the compressional
heel is found by numerical integration of (3.21) together with (2.1) to be 1.26 δz.

The gravitational heel matches to a tail with a deflection that is governed by
the horizontal force Fx = O(ε1/2) exerted by the boundary layer near the belt. We
approximate the tail as a uniform catenary of weight πa2

b per unit length. This gives
the leading-order estimate

xt =
Fx

πa2
b

ln

(
�

Fx

)
+ O(Fx), (3.56)

where the arclength of the thread is � =1 + O(ε1/2). We show in Appendix B that the
variation of thread radius towards the nozzle gives only an O(Fx) contribution to xt

and so has no effect at leading order. The additional offset x� is found by numerical
integration of (3.27) and depends only on Φz and δg .

The curvature-adjustment layer matches towards a tail for which the velocity
condition at the bottom is modified to Ub − �U as described by (3.55), giving some
displacement xt . Since θ ≈ π/2 throughout the curvature-adjustment layer, its leading-
order contribution x� is the additional arclength within the bending boundary layer,
which was shown in § 3.5.2 to be δx .

Figure 9(b) plots the various asymptotic estimates of xb and compares them to the
full numerical solution. The parameter values used are ε = 4×10−2 and Un = 7×10−3,
which are typical of the experiments performed by CWL and Morris et al. (2008).
Surface tension and inertia have been suppressed here, but in Appendix A we describe
how our results may be adapted to account for their effects.
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The estimates derived from the compressional heel and the curvature-adjustment
layer give good agreement for small and large belt speeds, respectively. As anticipated,
both estimates break down when Ub is close to Uf . The estimates derived from the
gravitational heels give good agreement for Ub ≈ Uf .

Our estimates of xb improve those of CWL for Ub >Uf , by including the leading-
order O(ε2/3) corrections arising both from the local modifications to the shape in
the boundary layer at the belt and from the global modification to the shape of the
tail caused by the increased length for stretching near the belt. Moreover, our theory
provides solutions for Ub <Uf , where the theory of CWL could not, as the bending
stresses within the gravitational and compressional heels are necessary in order to
support the compression required to match towards the tail.

4. Stability analysis of a dragged thread
We now consider the onset of unsteady motion of the dragged thread. When the

thread is steady, it lies completely in the x–z plane. Hence, small perturbations to
the steady motion decouple into two systems, which correspond respectively to ‘out-
of-plane’ perturbations in the y-direction and to ‘in-plane’ perturbations in the x–z

plane. The experiments of CWL showed that near onset, the thread meanders across
the belt (figure 1d ), which suggests that the primary instability corresponds to the
out-of-plane system. Ribe et al. (2006b) used a slender-thread model to perform a
linear stability analysis of the steady state, and obtained very good agreement with
experiment for both the onset and the frequency of meandering at onset. Morris et al.
(2008) demonstrated experimentally that the onset of meandering is well described as
an out-of-plane Hopf bifurcation from the steady state.

In order to determine the key physical processes that govern the onset of
meandering, we re-examine the model of Ribe et al. (2006b) in the asymptotic
limit of a very slender thread. We find that during meandering, bending forces in the
heel cause it to move sideways and away from beneath the nozzle. As the heel moves
further away from the nozzle, the consequent deflection of the tail from vertical causes
the nozzle to exert an increasing restoring force on the thread. When this force is
sufficiently large, the heel starts to be pulled back towards y = 0. As the heel returns,
its deformation introduces bending and twisting, which provide the disturbance that
causes the heel to buckle again during the next half-oscillation. The interaction
between the bending and twisting forces in the heel and the restoring tension in the
tail determines the frequency of meandering oscillations. By matching both force and
displacement between the heel and the tail, we will obtain an asymptotic estimate
for the meandering frequency and the linearised growth rate near onset, and hence
deduce an asymptotic estimate for the boundary between stable steady states and
meandering threads. The analysis builds on many of the ideas developed in § 3. In
particular, we find that the onset of meandering occurs within the gravitational-heel
regime. This might be anticipated on the grounds that the onset of instability is likely
to occur when some, but not much, of the thread is under compression. It follows
that the compressional-heel solutions in § 3.3 are unstable to meandering and that the
dragged-catenary solutions in § 3.5 are stable to meandering.

4.1. Perturbation system

In order to analyse the stability of a gravitational heel, we rescale the variables in
the same way as in § 3.4. The effect is that velocities are non-dimensionalised with the
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belt speed UB , radii with the radius aB of the thread at the belt, axial lengths with

δG = δgH =

(
3a2

EH 2

4

)1/4

, (4.1)

angular velocities and growth rate with UB/δG, stresses with µπa2
BUEδG/H 2 and stress

moments with µπa2
BUEδ2

G/H 2. The rescaled arclength of the heel is now O(1), while
the rescaled length of the tail is now

Lδ =
L

δG

=

(
4

3ε2

)1/4
L

H
, (4.2)

which is O(ε−1/2) as ε → 0.
We analyse the unsteady motion of the thread by seeking eigenmodes of the

linearised equations for unsteady perturbations to a steadily dragged thread. The
relevant perturbation variables, which concern only out-of-plane motion, are y, d1y ,
d3y , κ1, κ3, M1, M3 and N2, where d1y = d1 · ey and κ1 = κ · d1 etc. We denote the
structure of the eigenmodes by, for example, y = ŷ(s)eσ t , where a hat denotes the
complex amplitude and σ is the complex growth rate of the perturbation. We also
now denote the steady variables by overbars.

The onset of unsteady motion of a slender dragged thread has previously been
analysed by Ribe et al. (2006b). We adapt their equations slightly to suit the asymptotic
analysis here. We continue to omit the effects of surface tension, inertia and the O(ε2)
terms that represent unimportant regular perturbations caused by bending stress. We
again use a Lagrangian basis for which d3 is tangential to the thread, and d1 and d2

lie within the cross-section of the thread. The shape of the thread and the orientation
of the basis vectors are governed by

ŷ ′ = d̂3y, (4.3)

d̂ ′
1y = −κ̄2d̂3y + κ̂3d̄2y, (4.4)

d̂ ′
3y = κ̄2d̂1y − κ̂1d̄2y, (4.5)

where dij = d i · ej and the equations correspond to the linearisation of x ′ = d3 and
d ′

i = κ×d i .
The dynamic behaviour of the thread is governed by

ω̂′
1 =

M̂1

ā4
+ σ κ̄2d̂1y, (4.6)

ω̂′
3 =

3M̂3

2ā4
+ σ κ̄2d̂3y, (4.7)

N̂ ′
2 = N̄3κ̂1 − N̄1κ̂3 + ā2d̂2z, (4.8)

M̂ ′
1 = M̄2κ̂3 − κ̄2M̂3 + N̂ 2, (4.9)

M̂ ′
3 = κ̄2M̂1 − M̄2κ̂1, (4.10)

where ω̂1 = Ū κ̂1+σ d̂3y and ω̂3 = Ū κ̂3−σ d̂1y are angular velocities that may be obtained
by linearisation of Dd i/Dt =ω×d i . Equations (4.6) and (4.7) are constitutive relations,
and we have again omitted small contributions to the stress moment from coupling
between stretching and bending (Entov & Yarin 1984; Yarin 1993) on the grounds
that curvature variations occur on the boundary-layer scale and velocity variations
over the much longer fall height. Equation (4.8) is a stress balance, and (4.9) and
(4.10) are stress-moment balances.
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As in the steady problem, the angular velocity and velocity of the thread are
continuous at the contact point with the belt, and hence

ω̂1 = ω̂3 = 0 and
Ū

ŪB

d3 + ∂y/∂t ey = ex at s = 0. (4.11a–c)

We now fix the orientation of d1 and d2 within the cross-section by imposing d1 = ez

at the contact point. By eliminating ω̂i in favour of κ̂i , substituting Ū = ŪB and
projecting (4.11c) onto ey , we obtain the boundary conditions

κ̂1 = −σ d̂3y, κ̂3 = 0, σ ŷ = −d̂3y and d̂1y = 0 at s = 0. (4.12a–d )

Similarly, the boundary conditions at the nozzle are that the position, orientation
and angular velocity of the thread are continuous. Hence,

ŷ = 0, d̂3y = ω̂1 = 0 and ω̂3 = 0 at s = −Lδ. (4.13a–d )

Equations (4.3)–(4.10) subject to the eight boundary conditions (4.12) and (4.13)
are an eigenvalue problem, which is linear in the perturbation variables and has
non-trivial solutions only for discrete values of the growth rate σ . This full problem
is solved numerically using the procedure described by Ribe et al. (2006b). The
eigenmode is determined up to a multiplicative constant.

4.2. Asymptotic solution for the perturbation eigenmode as ε → 0

By analogy with a steadily dragged thread, we anticipate that the bending and
twisting stresses in a meandering thread are negligible as ε → 0, except within a small
boundary layer near the belt. Thus, the eigenmode also divides asymptotically into
heel and tail regions, which are related by matching. The matching conditions (3.32)
imply that the steady-state variables κ̄2, M̄2 and N̄1 all decay away from the heel.
It follows that (4.6), (4.8) and (4.9) reduce to equations for the out-of-plane bending
variables ω̂1, M̂1 and N̂2 that are equivalent to the in-plane bending equations that
gave (3.27). There are therefore two out-of-plane bending modes, analogous to those
in (3.31), that do not decay away from the heel and must be suppressed by imposing

d̂3y = − φ̂y

η
+ o

(
1

η

)
and d̂ ′

3y =
φ̂y

η2
+ o

(
1

η2

)
, 1 � −η � Lδ. (4.14a, b)

These matching conditions are analogous to the steady in-plane conditions (3.32). We
also need a condition on the twisting mode. We will see that meanders with amplitude
Â produce an O(Âσ 2) twisting rate ω̂3. In order to satisfy ω̂3 = 0 at the nozzle, this
twisting rate must be modified across the O(Lδ) length of the tail, and hence it follows
that

M̂3 = O(Âσ 2/Lδ), 1 � −η � Lδ. (4.14c)

An additional condition is obtained by matching the out-of-plane components of
stress and displacement. As the heel meanders, the bending stresses in the heel exert
a force φ̂y = N̄1d̂1y + N̂2d̄2y + N̄3d̂3y on the base of the tail and the motion of the
heel requires a deflection ŷt of the base of the tail. The relationship between this
out-of-plane force and deflection is analogous to the relationship (3.56) between the
in-plane variables φ̄x and x̄t in the steady state. Hence,

ŷt = φ̂y lnLδ + O(φ̂y ln φ̂y). (4.15)
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The correction term is asymptotically negligible. Since ŷ =0 where the thread is
pinned at the nozzle, (4.15) implies the constraint

ŷb = φ̂y ln Lδ + ŷ�, (4.16)

where ŷb represents the out-of-plane displacement of the contact point with the belt,
and ŷ� represents the contribution from the out-of-plane curvature in the heel.

The matching conditions (4.14) and (4.16) are applied towards the tail and replace
the boundary conditions (4.13) that were imposed at the nozzle. The eigenmode is
again determined up to a multiplicative constant, which we now set by imposing a
fixed amplitude of oscillations, given by ŷb = Â. This amplitude is independent of σ ,
and hence the only contribution to the out-of-plane displacement at the belt appears
at leading order, with no contributions at O(Âσ ) or higher.

We consider the out-of-plane motion of the heel near onset, so that Re(σ ) � 1.
Then (4.16) implies that φ̂y =O(Â/ lnLδ). Hence, as ε → 0 so that Lδ → ∞, a
fixed meandering amplitude requires an asymptotically small restoring force. We
therefore expect Im(σ ) � 1 for a very slender thread. This motivates expansion of
the eigenmode in powers of σ for |σ | � 1. Since formally setting σ = 0 represents a

steady solution, the leading-order behaviour of the eigenmode at O(Âσ 0) is steady.
The steady solution that satisfies (4.3)–(4.10) and the conditions (4.16), (4.12) and
(4.14) is simply a uniform displacement of the entire heel with ŷ = Â and with all
other perturbation variables vanishing. This displacement is due to deflection of the
tail, and thus there is no contribution to ŷ� at this order. Hence, ŷ� =O(Âσ ).

The O(Âσ ) contribution to the eigenmode is forced only through the condition
(4.12c) that σ ŷ = −Ū d̂3y at the belt, which corresponds to a quasi-steady translation

of the contact point with velocity Âσ . This forced problem is equivalent to a small
change to the direction of belt motion, for which the solution is simply a rotation of
the steady heel about the vertical axis through an angle Âσ . We therefore pose the
solution

ŷ = Â − Âσ (x̄ − x̄b) + O(Âσ 2), (4.17)

d̂3y = −Âσ d̄3x + O(Âσ 2), (4.18)

d̂1y = −Âσ d̄1x + O(Âσ 2), (4.19)

κ̂1, M̂1, N̂2, κ̂3, M̂3 ∼ O(Âσ 2). (4.20)

It is easy to verify that this solution satisfies the perturbation equations (4.3)–(4.10) and
all boundary and matching conditions to O(Âσ ). The uniform translation Âσ x̄b is
included in (4.17) so that ŷb remains equal to Â.

Since Â is defined by ŷb = Â, the only contribution to ŷb is at O(Âσ 0) and there is no
contribution at O(Âσ ) or higher. The O(Âσ 2) terms in the eigenmode are forced only
through the condition (4.12a) that Ū κ̂1 = −σ d̂3y at the belt. The O(Âσ 2) contribution
is not a simple geometrical operation and must be determined numerically. The
O(Âσ 3) terms in the eigenmode are forced both at the belt through (4.12a) and
internally through (4.6) and (4.7). Neither the O(Â) displacement nor the O(Âσ )
rotation involve twisting, justifying the estimate (4.14c) of the twisting stress in the
tail.

4.3. Estimation of onset and frequency of instability

Equation (4.17) and the definitions of ŷt and x̄t give

ŷt = Â − Âσ x̄t + O(Âσ 2). (4.21)
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Equations (4.18)–(4.20) and the definition of φ̂y imply that

φ̂y = −Âσ φ̄x − Âσ 2G0 + O(Âσ 3), (4.22)

where the O(1) constant G0 depends only on the shape of the steady heel and can be
determined numerically from the O(Âσ 2) contribution to the eigenmode. If we select
the phase of the oscillation so that Â is real, then the expansion of the eigenmode
in powers of σ yields systems of equations that have real coefficients. Hence, the
solution at each power of σ is real, and G0 is also real.

Substitution of (4.21) and (4.22) into (4.16) yields

Â = −Âσ φ̄x lnLδ − Âσ 2G0 lnLδ + O(Âσ, Âσ 3 lnLδ). (4.23)

If φ̄x �= 0, then a leading-order balance would imply that σ = −1/(φ̄x lnLδ). If φ̄x

is held constant as Lδ → ∞, then solution at successive powers of σ would further
imply that the meandering frequency Im(σ ) is O(1/ ln L3

δ). Hence, the eigenmode
would grow or decay far faster than it would oscillate as Lδ → ∞, which is not what
is observed experimentally near onset.

Since we wish to determine the behaviour near onset, we require Re(σ ) � Im(σ ) � 1.
To this end, we consider a distinguished limit with φ̄x = F0/

√
lnLδ + O(1/ln Lδ) as

Lδ → ∞. Substitution into (4.23) yields

1 = −σF0

√
lnLδ − σ 2G0 ln Lδ + O(σ, σ 3 lnLδ), (4.24)

and hence

σ =
−F0 ± i

√
4G0 − F 2

0

2G0

√
lnLδ

+ O

(
1

lnLδ

)
. (4.25)

We see from (4.25) that the onset of meandering (Re(σ ) = 0) corresponds to F0 = 0,
and hence the marginally stable steady shape has φ̄x = φ̄∗

x , where φ̄∗
x = O(1/ lnLδ) as

Lδ → ∞. The meandering frequency at onset is given by

σ ∗ = ± i√
G0 lnLδ

+ O

(
1

lnLδ

)
. (4.26)

4.4. Quantitative estimates

The value of G0 depends on the steady shape of the heel, and therefore on φ̄x . For
the moment, we make the approximation that φ̄∗

x =0 rather than O(1/ ln Lδ). Under
this approximation, (4.23) remains accurate to O(1/

√
lnLδ).

Figure 6 shows that there are many heel solutions for which φ̄x =0. However, we
expect that the initial onset of meandering, as Ūb is reduced, corresponds to the first
of these heels which is under the smallest amount of vertical compression. This heel
has Φ̄z = 0.82, and is shown in figure 5. If the belt speed is reduced slightly further,
so that Φ̄z has a slightly larger value, then figure 6 shows that φ̄x < 0. Hence, F0 < 0,
and (4.25) implies that the heel is unstable to meandering at the reduced speed, which
is in agreement with the experimentally observed direction of instability.

Substitution of the leading-order estimate Φ̄∗
z = 0.82 into (3.39) implies that the

onset of meandering occurs at a critical belt speed (in dimensional form)

Ū ∗
B = ŪF

(
1 − 0.82

4δg

3π2
+ O

(
ε1/2

ln ε

))
, (4.27)
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Figure 10. Asymptotic estimate (4.27) of the neutrally stable belt speed Ū ∗
B compared with the

full numerical solution of (4.3)–(4.10), (4.12) and (4.13), for parameter values Q = 0.044 cm3 s−1,
aN = 0.5 cm and ν = 347 cm2 s−1 which correspond to experiment 5 of CWL. (Surface tension
and inertia are omitted in both the estimate and the numerical solution.) There is reasonable
agreement, despite the omission of higher-order corrections that are only O(1/

√
ln δg) smaller.

where

δg =

(
3ε2

4

)1/4

=

(
3Qµ

4πρgH 4

)1/4

. (4.28)

The value of G0 = 0.198 may be obtained through numerical calculation for the heel
with Φ̄z = 0.82. Substitution into (4.26) gives the dimensional meandering frequency
at onset as

Im(σ ∗) = ± ŪF

Hδg

(
2.25√
ln δg

+ O

(
1

ln δg

))
. (4.29)

Figures 10 and 11 compare the values of Ū ∗
B and Im(σ ∗) calculated from the full

numerical solution to the asymptotic estimates (4.27) and (4.29), for the parameter
values corresponding to experiment 5 of CWL. The estimate of Ū ∗

B improves on the
corresponding estimate of CWL. The agreement is particularly good for large values
of H since ε = aE/H ∝ H −2. The estimate (4.29) predicts the qualitative dependence
of σ ∗ on H . The accuracy of the asymptotic estimates is reasonable given that the
corrections to (4.27) and (4.29) are logarithmic in δg and hence decay slowly as ε → 0.

Equation (4.25) implies that the onset of meandering occurs when φ̄∗
x = O(1/ lnLδ).

In order to derive a quantitative estimate for φ̄∗
x when Lδ 
 1, we pose the expansion

φ̄∗
x =

F1

ln Lδ

+ O

(
1

(lnLδ)3/2

)
, (4.30a)
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Figure 11. Leading-order asymptotic estimate (4.29) of the meandering frequency σ ∗ at onset,
compared with the full numerical solution of (4.3)–(4.10), (4.12) and (4.13), for parameter values
Q =0.044 cm3 s−1, aN = 0.5 cm and ν = 347 cm2 s−1 corresponding to experiment 5 of CWL.
There is reasonable agreement, despite the omission of higher-order corrections that are only
O(1/

√
ln δg) smaller.

for the steady state at onset, and extend the expansions

ŷ� = −Âσ x̄� + O(Âσ 2), (4.30b)

φ̂y = −Âσ φ̄x + ÂG0σ
2 + ÂG1σ

3 + O(Âσ 4), (4.30c)

σ =
i

G0

√
lnLδ

+
σ1

lnLδ

+ O

(
1

(lnLδ)3/2

)
, (4.30d )

for the relevant parts of the eigenmode and σ . Substitution of (4.30) into (4.16) yields

F1 + x̄� + 2σ1G0 − G1

G0

= 0. (4.31)

The parameters G0 and G1 again depend on φ̄x , and hence on F1. However, calculation
of G0, G1 and x̄� with F1 = 0 introduces only an O(Âσ 3) error in (4.30b) and an O(Âσ 4)
error in (4.30c), which does not affect the calculation of σ1. We therefore make this
approximation and calculate x̄� = 2.08 and G1 = 0.220 for the heel with Φ̄z =0.82.
The leading-order estimate for φ̄∗

x at onset of meandering is then obtained by setting
σ1 = 0 to give

φ̄∗
x = −0.969

ln Lδ

+ O
(
lnL

−3/2
δ

)
. (4.32)

Since φ̄∗
x is negative, it corresponds to a steady shape with a backward-facing heel, in

agreement with experimental observations near the onset of meandering.
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5. Discussion
In this paper, we have demonstrated the importance of the bending resistance of

a steadily dragged viscous thread to its motion. Our asymptotic analysis for a very
slender thread has determined the leading-order dynamic effects of bending stress.
We have shown that there are three distinct regimes for the shape of the thread,
corresponding to the belt speed UB being less than, greater than or close to the
‘free-fall’ speed UF , which we define as the fall speed under viscous–gravity balance
of a thread that is stress-free at the fall height H below the nozzle. If UB is larger
than UF , the analysis provides simple O(ε2/3) corrections to calculations of catenary
shapes that omit bending stress. If UB is smaller than UF then the analysis predicts
the existence of the backward-facing heels observed at low belt speeds, which give an
O(ε2/3) correction to a vertically falling thread solution. We have also demonstrated
the existence of a transitional regime, which applies when UB −UF = O(ε1/2), in which
the bending stresses give an O(ε1/2) correction to the vertical thread solution. The
smooth transition between this transitional regime and the other two regimes shows
that the solutions cover the full range of steady shapes for a viscous thread. In all
regimes, our analysis has isolated the key physical processes that govern bending at
the bottom of the thread.

Our analysis of unsteady motion has provided a better understanding of
the meandering instability observed experimentally, and yields simple asymptotic
estimates (4.27) of the onset and (4.29) of the frequency of meandering. The onset of
meandering occurs in the gravitational-heel regime of § 3.4 so that the compressional-
heel solutions in § 3.3 are unstable and that the dragged-catenary solutions in § 3.5 are
stable. The pinning of the thread at the nozzle, the physical effects of which had not
previously been considered, plays a crucial role, since the scaling of the meandering
frequency is determined from the restoring force generated through deflection of the
tail and thus contains a logarithmic factor from this catenary-like deflection.

At leading order, our asymptotic model predicts that neutral stability occurs when
the horizontal force φ̄x ≈ 0 and the vertical force Φ̄z ≈ 0.82. This analytic result differs
from the heuristic estimates of CWL and Hlod et al. (2007), which are both equivalent
to Φ̄z = 0 in our analysis. Our result φ̄x ≈ 0 has the simple physical interpretation
that the thread is stable to meandering if bending forces in the heel pull the tail in the
same direction as the belt motion, and unstable if the tail is instead pushed against
the belt motion. This suggests a loose analogy with the difference between stable
deflection of a pendulum being pulled sideways with a string and rather unstable
deflection of a pendulum balanced on a pencil point pushing it sideways. The onset
of meandering can thus be thought of as the heel ‘losing its balance’ as it pushes
backwards against the belt in an attempt to slow down. Calculation of the next term
(4.32) in the asymptotic expansion shows that instability occurs only if the push
exceeds a small positive value.

While our aim was to determine the behaviour of the thread at neutral stability, we
note that the asymptotic expansion also holds for oscillations with an O(1/

√
ln δg)

growth rate and may thus be used to determine the growth rate of meandering
oscillations close to onset.

Throughout our analysis, the effects of surface tension and inertia have been
neglected for simplicity. As discussed in Appendix A, these effects can be readily
accounted for provided the fall height and extrusion velocity are not too large.

We have analysed the behaviour of the thread in steady state and close to the onset
of instability, but we have not considered the development of the instability into the
nonlinear regime. Morris et al. (2008) presented a phenomenological fit that gives an
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estimate of the amplitude of the meanders near onset of meandering. Their analysis
suggests that unsteady in-plane motion is a quadratic perturbation to the steady state
and forced by the meandering state. Hence, the simple model of meandering in this
paper opens up a potential avenue for analysis of in-plane perturbations and more
complicated patterns.

We thank S. Morris and N. Ribe for helpful discussions, and Ribe also for providing
the code used to generate the numerical results in Ribe et al. (2006b). This work was
carried out with the support of an EPSRC studentship (M.J.B.).

Appendix A. The effects of surface tension and inertia
For simplicity, and partly motivated by experimental parameter values, we have

thus far omitted the effects of surface tension and inertia. In the steady problem,
these effects may be included by replacing (2.16) and (2.20) by

Ñ3 = 3πa2U ′ + πΓ̃ a − πR̃e U (A 1)

and

M ′
2 = −N1 − ε2

(
πa4

4
κ2 cos θ − R̃e UM2

3
+ πΓ̃ a2κ2a

′

)
, (A 2)

where

Γ̃ =
γ

ρ

√
π

νgQ
and R̃e =

gH 3

ν2
, (A 3)

and using Ñ3 instead of N3 in (2.18) and (2.19). The system of equations (2.13)–(2.20)
and the boundary conditions are otherwise unchanged. The effects of surface tension
and inertia on the stress-moment balance (A 2) are only O(ε2), and therefore negligible
compared with their effects on the axial stress (A 1).

We note that the dimensionless parameters Γ̃ and R̃e are the measures of surface
tension and inertia relative to viscous extensional stress that arise from the choice
of the velocity scale UE for non-dimensionalisation. In fact, the free-fall speed UF ≈
0.068UE or the belt-speed UB are better representative scales for assessing the relative
importance of inertia. Thus, a more appropriate condition for neglecting inertia is

Re � 1 from § 2 rather than R̃e � 1.
The modification to the axial stress in (A 1) has a number of effects (which are

small for Re � 1 and Γ � 1). First, the solution for the tail, whether a catenary or a
vertical-fall solution, is changed because the rate of stretching U ′ is now governed by
a combination of gravity, inertia and surface tension. The new tail solutions can be
found numerically by solving (3.1)–(3.5), with (3.3) replaced by (A 1). In particular,

the free-fall speed Uf is obtained by solving Ñ ′
3 = −πa2 subject to Ñ3 = 0 at s = 0

(and U = Un at s = −1).
Second, the changes to the tail solution mean that the horizontal force Fx for

Ub >Uf , the force Fz for Ub <Uf , and the relationship (3.39) between Φz and Ub −Uf

for Ub ≈ Uf are all affected. However, if the new forces are used in the boundary-
layer scalings (3.19) and (3.43), and the new relationship and free-fall speed are used
for the transitional case of a gravitational heel, then the boundary-layer analyses
in §§ 3.3–3.5 are otherwise unaffected (unless Re 
 1). The reason is that the only
significant change to the system (2.13)–(2.20) is in the value of U ′ from (A 1) and this
has negligible effect across the short length scale of the boundary layer.
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The small caveat about large Re applies when the fall height is sufficiently large
that most of the fall of a vertical tail occurs under an inertia–gravity balance (see
Clarke 1968 for a solution). In this case, any reduction in velocity from Uf to Ub

occurs over a compressional viscous boundary layer of height O(Re−1/2) near the
belt (Dyson 2007). If Re is sufficiently large, then it is no longer possible to nest the
O(ε2/3) bending boundary layer within this compressional boundary layer.

The third effect of inertia is on unsteady meandering oscillations. (The leading-
order effects of surface tension are again given by a simple modification to the axial

stress Ñ3.) As well as modifying the axial stress Ñ3, inertia changes the out-of-plane
stress balance (4.8) to

N̂2 = Ñ3κ̂1 − N̄1κ̂3 + d̂2z + R̃e(ω̂1 − σÛy) (A 4)

(Ribe et al. 2006b), where Ûy is the out-of-plane velocity. The transverse inertial
acceleration in (A 4) allows pendulum modes in the tail, which are analogous to the
‘whirling string’ modes seen in the inertio-gravitational regime of the steady coiling
problem (Ribe et al. 2006b). These give rise to rather subtle effects at fall heights
smaller than those at which axial inertia is significant. An analysis of these effects is
currently underway and will be presented in future work.

Appendix B. The effects of stretching in the tail on its horizontal deflection
The horizontal deflection of a tail due to a horizontal force at its base was

estimated in §§ 3.4 and 4.3 using the approximation that the variation of the thread
radius towards the nozzle can be neglected. We now justify this approximation.

Consider a tail of unit length and possibly non-uniform radius a. If it hangs under
its own weight and has a small horizontal force Fx exerted on it, then the equilibrium
shape is similar to the shape of a catenary. The stress equations (3.4) and (3.5) have
a first integral

N3 sin θ = Fx, (B 1)

which can be substituted back into (3.4) to obtain

θ ′ =
πa2 sin2 θ

Fx

. (B 2)

From (3.1) and (B 2), the horizontal deflection xt of the tail is

xt =

∫ θn

π/2

Fx

πa2 sin θ
dθ, (B 3)

where θn is the deflection of the tail from vertical at s = − 1.
The deflection of a catenary with uniform radius a = 1 is

xt =
Fx

π
ln

(
tan

(
θn

2

))
, (B 4)

where θn is found by integration of (B 2) with a = 1 to be

θn = cot−1

(
π

Fx

)
. (B 5)

Hence, xt = O(Fx lnFx) as Fx → 0. Equation (B 2) implies that θ = O(1) only in a
region of O(Fx) arclength, and hence this region gives an O(Fx) contribution to xt .
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Since θn = O(Fx), (B 3) implies that the contribution of the region θ = O(θn) is also
O(Fx). Hence, the deflection is dominated by the region θn � θ � 1. Linearisation of θ

in (B 3) and substitution of (B 5) implies that this region indeed gives the leading-order
O(Fx ln Fx) contribution.

The variation of a within a stretching catenary is found by considering (2.16)
together with (B 1) to obtain

a′ = O

(
Fx

sin θ

)
. (B 6)

Since θn = O(Fx) for Fx � 1, it follows that a′ � 1 for θ 
 θn. Hence, a ≈ 1 for θ 
 θn

since a =1 at the contact point. The leading-order behaviour of the deflection is
therefore not affected by the variation of thread radius in the tail.
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