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The limit Gaussian distribution of multivariate weighted functionals of
nonlinear transformations of Gaussian stationary processes, having multiple
singular spectra, is derived, under very general conditions on the weight func-
tion. This paper is motivated by its potential applications in nonlinear regres-
sion, and asymptotic inference on nonlinear functionals of Gaussian station-
ary processes with singular spectra.

1. Introduction. During the last thirty years, a number of papers have been
devoted to limit theorems for nonlinear transformations of Gaussian processes and
random fields. The pioneering results are those of Taqqu [25, 26] and Dobrushin
and Major [6], for convergence to Gaussian and non-Gaussian distributions, under
long-range dependence, in terms of Hermite expansions, as well as Breuer and Ma-
jor [4], Ivanov and Leonenko [12], Chambers and Slud [5], on convergence to the
Gaussian distribution by using diagram formulas or graphical methods. This line
of research continues to be of interest today; see Berman [3] for m-dependent ap-
proximation approach, Ho and Hsing [9] for martingale approach, Nualart and Pec-
cati [18] (see also Peccati and Tudor [23]) for the application of Malliavin calcu-
lus, Nourdin and Peccati [15] in relation to Stein’s method and exact Berry–Esseen
asymptotics for functionals of Gaussian fields, Avram, Leonenko and Sakhno [2]
for an extension of graphical method for random fields, to name only a few papers.
The volume of Doukhan, Oppenheim and Taqqu [7] contains outstanding surveys
of the field. Limit theorems for weighted functionals of stochastic processes, and
for processes with seasonalities were considered by a number of authors, includ-
ing Rosenblatt [24], Oppenheim, Ould Haye and Viano [19], Haye [20], and their
references. Limit theorems for nonlinear transformations of vector Gaussian pro-
cesses have been obtained by Arcones [1]; see also his references.
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In this paper, our main result (Theorem 5.1) states the convergence to the Gaus-
sian distribution of the multivariate weighted functionals of nonlinear transforma-
tions ψ(ξ(t)) of Gaussian stationary processes ξ(t), with multiple singularities in
their spectra, having covariance function (c.f.) belonging to a parametric family de-
fined in Assumption (A2) below. Here, ψ ∈ L2(R, ϕ(x) dx) [see Assumption (A3)
in Section 2], where ϕ(x) = e−x2/2/

√
2π, x ∈ R, denotes the standard Gaussian

probability density. Specifically, under suitable conditions, the convergence to the
Gaussian distribution of

ζ T = W−1
T

∫ T

0
w(t)ψ

(
ξ(t)

)
ν(dt)(1.1)

as T → ∞, is obtained for certain ranges of the parameters defining the spectral
singularities of ξ ; see Assumption (A4) in the next section. For each T > 0,

w(t) = (
w1(t), . . . ,wq(t)

)′
, W 2

T = diag
(
W 2

iT

)q
i=1,

(1.2)

W 2
iT =

∫ T

0
w2

i (t)ν(dt), i = 1, . . . , q,

where, to ensure a finite limit variance, the weak convergence of the family of ma-
trix measures associated with w over the intervals {[0, T ], T > 0} is also assumed,
jointly with some restrictions on the boundedness of their components in some
neighborhoods of the spectral singularities of ξ ; see Assumptions (B1) and (B2) in
Section 4. The convergence to the Gaussian distribution also requires some condi-
tions to be assumed on the norms of components of function w; see condition (B3)
in Section 5.

As commented, the spectral density (s.d.) f of ξ(t) is assumed to display several
singularities denoted as �noise = {±κ0, . . . ,±κr}, with 0 ≤ κ0 < κ1 < · · · < κr .

In the case where the weak-sense limit of the measures associated with the multi-
variate weight function w is an atomic measure, it is also assumed that its atoms
�regr = {δ1, . . . , δn} do not intersect with the singularities of f (i.e., δi �= ±κj , i =
1, . . . , n, j = 0,1, . . . , r). The convergence to the Gaussian distribution then holds
with standard normalization.

The nature of the limit results obtained depends on the intersection of the two
spectral point sets �noise and �regr. In the discrete case, this phenomenon was
discussed by Yajima [27, 28] in some other regression scheme. Otherwise, dif-
ferent normalizing factors must be derived, and new limiting distributions are ob-
tained, for Hermite rank m ≥ 2. Note that the classical noncentral limit theorems
(Taqqu [26], and Dobrushin and Major [6]) can be viewed as particular cases of
the general setting considered here, when there is an unique singular point in the
spectrum of ξ, with κ0 = 0, and w(t) = 1. In this case, the measure sequence, con-
structed from the weight function w, is given in terms of the Fejer kernel, which
tends to the delta-measure with atom at zero. Some limiting distributions for the
case when the two spectral point sets �noise and �regr are in fact overlapped, in
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discrete time, can be derived from the papers by Rosenblatt [24], Arcones [1],
Oppenheim, Ould Haye and Viano [19] and Haye [20]. In continuous time, the
limiting distributions for nonempty set, �noise ∩ �regr, can be obtained from the
paper of Ivanov and Leonenko [13], and the book by Ivanov and Leonenko [12].
This subject will be considered in subsequent papers.

In the derivation of the main result of this paper, Peccati and Tudor’s central
limit theorem [23] (see also Nualart and Peccati [18]), for a family of vectors of
random variables (r.v.’s) belonging to fixed Wiener chaoses, is applied. The outline
of the paper is the following. Motivating examples, as well as preliminary identi-
ties, and conditions needed in the derivation of the subsequent results are provided
in Section 2. The zero-mean Gaussian random field family considered is embed-
ded into an isonormal process family in Section 3. The conditions needed for the
weak-convergence (in particular, to an atomic measure) of the matrix-valued mea-
sures associated with the class of vectorial weight functions studied are established
in Section 4. The asymptotic normality of the corresponding weighted functionals
of nonlinear transformations of zero-mean Gaussian stationary random processes
is obtained in Section 5. Section 6 provides the final comments, and our main
conjecture on the work is developed.

2. Stationary processes with singular spectra. Let us consider simultane-
ously discrete and continuous time cases in the following development. Specifi-
cally, for a stationary process ξ defined on a complete probability space (	,F,P ),

the following notation will be followed:

ξ(t) = ξ(ω, t) :	 × S → R,

where S = Z, for discrete time t ∈ Z, and S = R, for continuous time t ∈ R. Such
a process is assumed to be measurable and mean-square continuous in the case of
continuous time [see also Assumption (A1) below].

In the definition of integrals, ν(dt) will represent a counting measure in the
case of discrete time [i.e., ν({t}) = 1, t ∈ Z], and the Lebesgue measure dt, in
the case of continuous time [i.e., ν(dt) = dt if t ∈ R]. According to this notation,
the integral ∫ T

0
g(t)ξ(t)ν(dt)

represents the sum
∑T

t=1 ξ(t)g(t), for discrete time, and the Lebesgue integral∫ T
0 g(t)ξ(t) dt, for continuous time, where g(t) is a nonrandom (measurable for

continuous time) function.
Consider now the following motivating example.

EXAMPLE. Let x be defined in terms of the nonlinear regression model

x(t) = g(t, θ) + ψ
(
ξ(t)

)
, t ∈ S+,(2.1)
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where S+ = R+, for continuous time and S+ = N, for discrete time, and with
g(t, θ) : S+ × � → R being a continuously differentiable function of an unknown
parameter θ ∈ � ⊂ R

q, consider gi(t, θ) = (∂/∂θi)g(t, θ), i = 1, . . . , q, such that

d2
iT =

∫ T

0

[
gi(t, θ)

]2
ν(dt) < ∞, T > 0, i = 1, . . . , q,(2.2)

and ψ(ξ(t)) represents the noise, with Eψ(ξ(t)) = 0. The least squares estimate
(LSE) θ̂T of an unknown parameter θ ∈ �, obtained from the observations x(t),

t ∈ [0, T ], or t = 1, . . . , T , is any r.v. θ̂T ∈ �c, having the property

QT (θ̂T ) = inf
τ∈�c

QT (τ), QT (τ) =
∫ T

0

[
x(t) − g(t, τ )

]2
ν(dt),

where �c is the closure of �. Let ∇g(t, θ) = (g1(t, θ), . . . , gq(t, θ))′ be the col-
umn vector-gradient of the function g(t, θ). We denote d2

T (θ) = diag(d2
iT )

q
i=1,

where d2
iT , i = 1, . . . , q, are defined by (2.2). In the theory of statistical estimation

of unknown parameter θ ∈ � ⊂ R
q for the scheme (2.1), the asymptotic behavior,

as T → ∞, of the functional

ζT = d−1
T (θ)

∫ T

0
∇g(t, θ)ψ

(
ξ(t)

)
ν(dt),(2.3)

plays a crucial role, since, under certain number of conditions, the asymptotic dis-
tributions of the normalized LSE dT (θ)(θ̂T − θ), and properly normalized func-
tional (2.3) coincide, as T → ∞; see Ivanov and Leonenko [12, 13].

In this setting, an interesting case corresponds to ξ(t) to be a Gaussian stationary
process with s.d. f (λ) displaying singularities at the points �noise = {±κj , j =
0,1,2, . . . , r}; see (2.5) below. The nonlinear functions

g(t, θ) = tβ cos(tϑ + φ), β ≥ 0, ϑ ∈ R, φ ∈ (−π,π ], θ = (β,ϑ,φ)

are of particular interest in applications because they themselves also involve var-
ious seasonalities.

Let us consider {ξ(t), t ∈ S} to be a stochastic process satisfying the following
assumptions:

(A1) Process ξ is a real stationary mean-square continuous Gaussian process
with Eξ(t) = 0, Eξ2(t) = 1.

(A2) The c.f. of ξ is of the form

B(t) = E
[
ξ(0)ξ(t)

]= r∑
j=0

AjBαj ,κj
(t), t ∈ S, r ≥ 0,(2.4)
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where, for j = 0, . . . , r ,

Bαj ,κj
(t) = cos(κj t)

(1 + t2)αj /2 , 0 ≤ κ0 < κ1 < · · · < κr ,0 < αj < 1, t ∈ S,

r∑
j=0

Aj = 1, Aj ≥ 0, j = 0, . . . , r.

The c.f. B(t), t ∈ S admits the following spectral decomposition:

B(t) =
∫
�

eiλtf (λ) dλ, t ∈ R,

where the set � = (−π,π], in the discrete case (t ∈ Z), and � = R, in the con-
tinuous case (t ∈ R), and the s.d. f in the continuous time is of the form

f (λ) =
r∑

j=0

Ajfαj ,κj
(λ), λ ∈ R,(2.5)

where, for j = 0, . . . , r, and λ ∈ R,

fαj ,κj
(λ) = c1(αj )

2

[
K(αj−1)/2

(|λ + κj |)|λ + κj |(αj−1)/2

+ K(αj−1)/2
(|λ − κj |)|λ − κj |(αj−1)/2],

with

c1(α) = 2(1−α)/2
√

π�(α/2)

and

Kν(z) = 1

2

∫ ∞
0

sν−1 exp
{
−1

2

(
s + 1

s

)
z

}
ds, z ≥ 0, ν ∈ R,

being the modified Bessel function of the third kind of order ν or McDonald’s
function. We also note that K−ν(z) = Kν(z), and for z ↓ 0 Kν(z) ∼ �(ν)2ν−1z−ν,

ν > 0.

Thus, as λ → ±κj , for j = 0, . . . , r,

fαj ,κj
(λ) = c2(αj )

2

[|λ + κj |αj−1(1 − hj

(|λ + κj |))
(2.6)

+ |λ − κj |αj−1(1 − hj

(|λ − κj |))],
where

c2(α) = 1

2�(α) cos(απ/2)
,

hj

(|λ|)= �((αj + 1)/2)

�((3 − αj )/2)

∣∣∣∣λ2
∣∣∣∣1−αj

+ �((αj + 1)/2)

4�((3 + αj )/2)

∣∣∣∣λ2
∣∣∣∣2 − o

(|λ|2),
λ −→ 0, j = 0, . . . , r.
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Therefore, the s.d. f has 2r + 2 different singular points [see condition (A2)],
when κ0 �= 0.

A model with discrete time which satisfies condition (A2) can be obtained by
using discretization procedure and the formula for s.d. of stationary processes with
discrete time of the form

∞∑
k=−∞

f (λ + 2kπ).

We will use the same notation for the s.d. in both cases corresponding to discrete
and continuous time.

Similar results can be obtained for c.f.’s of the form

Rαj ,κj
(t) = cos(κj t)

(1 + |t |ρj )αj
, κj ∈ R,0 < αjρj < 1,κj �= 0, j = 0, . . . , r

(see again Ivanov and Leonenko [13] for details).
It is well known that the Hermite polynomials Hk(x) = (−1)kex2/2 dk

dxk e
−x2/2,

k = 0,1, . . . constitute a complete orthogonal system in the Hilbert space
L2(R, ϕ(x) dx) of square integrable functions with respect to the standard Gaus-
sian density ϕ.

(A3) Assume that the function ψ ∈ L2(R, ϕ(x) dx), that is, Eψ2(ξ(0)) < ∞,

and C0(ψ) = Eψ(ξ(0)) = 0.

DEFINITION 2.1. A function ψ ∈ L2(R, ϕ(x) dx) has Hermite rank
H rank(ψ) = m if either C1(ψ) �= 0 and m = 1, or for some m ≥ 2, C1(ψ) =
· · · = Cm−1(ψ) = 0,Cm(ψ) �= 0.

(A4) Either (i) H rank(ψ) = 1, α > 1/2; or (ii) H rank(ψ) = m, αm > 1,

where α = minj=0,...,r αj , with αj , j = 0, . . . , r, introduced in (A2).
Under condition (A3), function ψ(x) of H rank(ψ) = m can be expanded into

a Hermite series in the Hilbert space L2(R, ϕ(x) dx)

ψ(x) =
∞∑

k=m

Ck(ψ)

k! Hk(x),(2.7)

or the process ψ(ξ(t)) admits a Hermite series expansion in the Hilbert space
L2(	,F,P )

ψ
(
ξ(t)

)= ∞∑
k=m

Ck(ψ)

k! Hk

(
ξ(t)

)
,(2.8)

where

Ck(ψ) =
∫

R

ψ(x)Hk(x)ϕ(x) dx, k ≥ 0.
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3. Some elements of the theory of isonormal processes. In this section,
we introduce basic notation, elements and results in relation to Gaussian Hilbert
spaces, isonormal processes and chaos expansions needed for our purposes; see
Nualart [17]; Janson [14]; Nualart and Peccati [18]; Peccati and Tudor [23]; Pec-
cati [21]; Nourdin, Peccati and Réveillac [16], among others.

DEFINITION 3.1. Let H be a real separable Hilbert space. The set of r.v.’s
X = {X(h) :h ∈ H } is said to be an isonormal process on H if X is a centered H -
indexed Gaussian family defined on a probability space (	,F,P), and it satisfies

E
[
X(h)X(g)

]= 〈h,g〉H , h,g ∈ H.

Let us now consider a real-valued centered Gaussian process ξ indexed over
S = R. By E denote the collection of all finite linear combinations of indicator
functions of the type l(−∞,t], with t ∈ R. To embed a real-valued centered Gaus-
sian process ξ indexed by R into some isonormal process X, we introduce a sepa-
rable Hilbert space H defined as the closure of E with respect to the scalar product

〈f,h〉H :=∑
i,j

aicj Eξ(si)ξ(tj )(3.1)

for given functions f =∑
i ai l(−∞,si ] and h =∑

j cj l(−∞,tj ] in H. Thus, for any
function h =∑

i ci l(−∞,ti ] ∈ E , define

X(h) =∑
i

ciξ(ti).(3.2)

Additionally, for any function h ∈ H, X(h) can be defined as the limit in
L2(	,F,P) of X(hn) for any sequence {hn} ⊂ E convergent to h in H. This
sequence may be not unique, but the definition of X(h) does not depend on the
choice of the sequence {hn}. From this construction, process X is an isonormal
process over H defined as X(l(−∞,t]) = ξ(t).

When S = Z, a similar development in terms of sequences leads to the definition
of an isonormal process from a Gaussian process ξ on Z. Now, E denotes the set of
all real-valued sequences h = {hl : l ∈ Z} such that hl �= 0 only for a finite number
of integers l. The real separable Hilbert space H is then introduced as the closure
of the set E with respect to the scalar product

〈f,h〉H :=∑
k,l

fkhlEξ(k)ξ(l)

for given sequences f = {fk :k ∈ Z} and h = {hl : l ∈ Z}. If h ∈ H, then the se-
ries

∑
l∈Z hlξ(l) converges in L2(	,F,P). Thus the centered Gaussian family

{X(h) :h ∈ H }, with

X(h) =∑
l∈Z

hlξ(l)(3.3)
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is an isonormal process over H.

Let X be an isonormal process defined on H as before, that is, from a centered
Gaussian random process ξ. Let us write H0(X) = R

1, and H1(X) the closed
linear subspace of the set of r.v.’s {X(h) :h ∈ H } in the Hilbert space L2(	,F,P).

Thus

X :H −→ H1(X),

h −→ X(h).

For any n ≥ 2, by Hn(X), the nth Wiener chaos of process X is denoted, that
is, the closed subspace of L2(	,F,P) generated by the r.v.’s Hn(Y ), where Y ∈

H1(X), and E[Y 2] = 1, with Hn denoting, as before, the nth Hermite polynomial.
Let us now consider the isometry

IX
n :H�n −→ Hn(X),(3.4)

between the symmetric tensor product H�n, equipped with the norm
√

n!‖ · ‖H⊗n,

and the nth Wiener chaos Hn(X) of X. For any h ∈ H⊗n, IX
n (h) is then defined as

IX
n (h) := IX

n (h̃), with h̃ denoting the symmetrization of h. For any g ∈ H⊗m and
h ∈ H⊗n,

E
[
IX
m (g)IX

n (h)
]= δmnm!〈g̃, h̃〉H⊗m.

The pth contraction of g = g1 ⊗ · · ·⊗ gk ∈ H⊗k and h = h1 ⊗ · · ·⊗hk ∈ H⊗k,

designated as g ⊗p h, is the element of H⊗2(k−p) given by

g ⊗p h = 〈h1, g1〉H · · · 〈hp,gp〉Hgp+1 ⊗ · · · ⊗ gk ⊗ hp+1 ⊗ · · · ⊗ hk.(3.5)

The definition can be extended by linearity to any element of H⊗k. Finally,
any r.v. F ∈ L2(	,G,P), with σ - field G generated by the r.v.’s {X(h),h ∈ H },
admits an unique chaos decomposition F =∑∞

k=0 IX
k (hk), where hk ∈ H�k.

From the constructions (3.2) and (3.3) of an isonormal process X from a
Gaussian process ξ , respectively, defined over continuous and discrete time,
Hn(X),n ≥ 1, coincides with the nth Wiener chaos associated with ξ, Hn(ξ), n ≥
1. Since, by definitions (3.2) and (3.3), H1(X) = H1(ξ), and, as stated before,
the nth Wiener chaos of process X is the closed subspace of L2(	,F,P) gener-
ated from the evaluation of nth Hermite polynomial Hn over the r.v.’s of the space
H1(X) = H1(ξ).

The next statement is a convenient, for our purposes, modification of Theorem 1
of Peccati and Tudor [23]; see also Nualart and Peccati [18] (in the above papers
all statements are formulated for positive integers T ∈ {1,2, . . .}, but it is easy to
see that one can formulate similar results for continuous T > 0 as well).

PROPOSITION 3.1. Let {ξ(t), t ∈ S} be a centered Gaussian process, and X

is the isonormal process constructed from it as given in (3.2) and (3.3). Consider
the natural numbers: 1 ≤ n1 < n2 < · · · < nd < ∞, d ≥ 2, and the set of r.v.’s
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πT,nj
(ξ) ∈ Hnj

(ξ), where, for T > 0, πT,nj
(ξ) = IX

nj
(fj,T ), for certain fj,T ∈

H�nj , j = 1, . . . , d, such that

lim
T →∞ Eπ2

T ,nj
(ξ) = lim

T →∞nj !‖fj,T ‖2
H

⊗nj
= 1, j = 1, . . . , d.(3.6)

Then the following conditions are equivalent:

(i) For each j = 1, . . . , d,

lim
T →∞‖fj,T ⊗p fj,T ‖

H
⊗2(nj −p) = 0

for every p = 1, . . . , nj − 1.

(ii) For every j = 1, . . . , d,

lim
T →∞E

[(
IX
nj

(fj,T )
)4]= 3.

(iii) As T → ∞, the vector (IX
n1

(f1,T ), . . . , IX
nd

(fd,T )) converges in distribution
to a d-dimensional standard Gaussian vector Nd(0, Id).

The proof follows from Peccati and Tudor [23], and Nualart and Peccati [18],
considering the fact that Hn(ξ) = Hn(X), for any n ≥ 1, with X being the isonor-
mal process constructed from identity (3.2), in the continuous time case, and, sim-
ilarly, in the discrete time case, from equation (3.3).

COROLLARY 3.1. Assume that conditions (3.6) and (i) or (ii) of Proposi-
tion 3.1 are satisfied for r.v.’s

πT,nj
(ξ) =

∫ T

0
rT ,j (t)Hnj

(
ξ(t)

)
ν(dt),(3.7)

where, in the case of continuous time, it is also assumed that rT ,j (t) ∈ C([0,∞)),

for T > 0, and j = 1, . . . , d. Then, the vector

πT,d(ξ) =
(∫ T

0
rT ,1(t)Hn1

(
ξ(t)

)
ν(dt), . . . ,

∫ T

0
rT ,d(t)Hnd

(
ξ(t)

)
ν(dt)

)
(3.8)

converges in distributions, as T → ∞, to a standard Gaussian vector πd ∼
N(0, Id).

PROOF. In the case of continuous time, since ξ(t) = X(l(−∞,t]),

Hnj

(
ξ(t)

)= Hnj

(
X(l(−∞,t])

)= IX
nj

(
l
⊗nj

(−∞,t]
)
,

where IX
nj

denotes the isometry introduced in (3.4). Therefore, for rT ,j (t) ∈
C([0,∞)), T > 0 and for j = 1, . . . , d,

πT,nj
(ξ) =

∫ T

0
rT ,j (t)Hnj

(
ξ(t)

)
dt = IX

nj

(∫ T

0
rT ,j (t)l

⊗nj

(−∞,t] dt

)
.
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Thus, considering in (iii) of Proposition 3.1

fj,T (s1, . . . , snj
) =

∫ T

0
rT ,j (t)l

⊗nj

(−∞,t](s1, . . . , snj
) dt

for j = 1, . . . , d, we obtain the desired result.
Similarly, for the case of discrete time, we have, from (3.3),

X(δ·,l) = ξ(l), l ∈ Z,(3.9)

where, for each l ∈ Z, δ·,l denotes the Kronecker delta function, that is,

δi,l =
{

1, if i = l,

0, if i �= l, i ∈ Z.

Therefore,

Hnj

(
ξ(l)

)= Hnj

(
X(δ·,l)

)= IX
nj

(
δ
⊗nj

·,l
)
.

Proposition 3.1(iii) is then applied, considering

fj,T (m1, . . . ,mnj
) =

T∑
l=1

rT ,j (l)

j∏
i=1

δmi,l, m1, . . . ,mj ∈ Z

for j = 1, . . . , d. �

4. Spectral measures of weight functions and admissible spectral densities.
Let us first establish some results on weak-convergence of matrix-valued measures,
given by

μ
jl
T (dλ) = w

j
T (λ)wl

T (λ) dλ√∫
� |wj

T (λ)|2 dλ
∫
� |wl

T (λ)|2 dλ

, j, l = 1, . . . , q,(4.1)

where

w
j
T (λ) =

∫ T

0
eitλwj (t)ν(dt), j = 1, . . . , q,

and the functions wj(t), j = 1, . . . , q, are, as before, the functions (1.2) involved
in the definition of the random vector (1.1).

(B1) Assume that the weak-convergence μT ⇒ μ, when T → ∞ holds, where
μT is defined by (4.1) and μ is a positive definite matrix measure.

The above condition means that an element μjl of the matrix-valued measure μ
is a signed measure of bounded variation, and the matrix μ(A) is positive definite
for any set A ∈ A, with A denoting the σ -algebra of measurable subsets of R; see,
for example, Ibragimov and Rozanov [10].

The following definition can be found in Grenander and Rosenblatt [8], Ibragi-
mov and Rozanov [10] and Ivanov and Leonenko [12].
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DEFINITION 4.1. The nondegenerate matrix-valued measure μ(dλ) =
{μjl(dλ)}qj,l=1 is said to be the spectral measure of function w(t).

DEFINITION 4.2 (Ibragimov and Rozanov [10]). The s.d. f is said to be μ-
admissible if it is integrable, that is, all elements of the matrix∫

�
f (λ)μ(dλ)

are finite, and

lim
T →∞

∫
�

f (λ)μT (dλ) =
∫
�

f (λ)μ(dλ).(4.2)

Let us introduce two conditions on the s.d. f that guarantee its μ-admissibility.
These assumptions are related to basic conditions on the c.f. and s.d. (A2). In the
following, J denotes one of the three sets:

{−r, . . . ,−1,0,1, . . . , r}; {−r, . . . ,−1,1, . . . , r}; {0}.
We formulate the following condition for a set J = {−r, . . . ,−1,0,1, . . . , r}.

(I) The s.d. f ∈ C(� \ {κj , j ∈ J }), with

κ−j = −κj , j = 0,1, . . . , r,0 ≤ κ0 < κ1 < · · · < κr

and, for j = 0,1, . . . , r,

lim
λ→κj

f (λ)|λ − κj |1−αj = aj > 0,

(4.3)
αj ∈ (0,1), j ∈ J ;α−j = αj , a−j = aj .

We obtain from (4.3) that, for any ε > 0, and j ∈ J, there exists δj = δj (ε),

such that for |λ − κj | < δj

f (λ) <
aj + ε

|λ − κj |1−αj
.

Then, for |λ − κj | < δj , we have the following:

{
λ :f (λ) > c

}⊂ Vj (c) =
{
λ : |λ − κj | <

(
aj + ε

c

)1/(1−αj )}
.

Moreover c must satisfy the inequality(
aj + ε

c

)1/(1−αj )

≤ δj ,

and equivalently,

c ≥ aj + ε

δ
1−αj

j (ε)
= cj (ε).(4.4)
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(II) Let ε0 > 0 be fixed. There exists c0 = maxj∈J cj (ε0), such that for c ≥ c0,{
λ :f (λ) > c

}⊂ ⋃
j∈J

Vj (c),(4.5)

where cj (ε) are defined by (4.4).
It is easy to see that for sufficiently large c (say, c ≥ c0), the neighborhoods

Vj (c), j ∈ J, in (4.5), are nonoverlapping, and∣∣Vj (c)
∣∣ ↓ 0

as c → ∞.

Note that the function (2.5) satisfies conditions (I) and (II).
(B2) For T sufficiently large (say, T ≥ T0),

W−1
iT max

λ∈Vj (c0)

∣∣wi
T (λ)

∣∣≤ kij < ∞, j ∈ J, i = 1, . . . , q.(4.6)

In condition (B2), one can assume that (4.6) holds only for j = 0,1, . . . , r, since
V−j (c0) = −Vj (c0), j = 0,1, . . . , r.

THEOREM 4.1. Assume that conditions (B1), (B2), as well as (I), (II) are
satisfied, and the s.d. f is integrable with respect to the spectral measure μ, then
the s.d. f is μ-admissible.

PROOF. For c ≥ c0, we consider

f c(λ) = f (λ)1〈f (λ)<c〉(λ) + c1〈f (λ)≥c〉(λ).

Then, for k, l = 1, . . . , q,∣∣∣∣∫
�

f (λ)μ
k,l
T (dλ) −

∫
�

f (λ)μk,l(dλ)

∣∣∣∣
≤
∣∣∣∣∫

�
f (λ)μ

k,l
T (dλ) −

∫
�

f c(λ)μ
k,l
T (dλ)

∣∣∣∣
+
∣∣∣∣∫

�
f c(λ)μ

k,l
T (dλ) −

∫
�

f c(λ)μk,l(dλ)

∣∣∣∣(4.7)

+
∣∣∣∣∫

�
f c(λ)μk,l(dλ) −

∫
�

f (λ)μk,l(dλ)

∣∣∣∣
= I

k,l
1 (T , c) + I

k,l
2 (T , c) + I

k,l
3 (c).

By Assumption (B1), for any complex numbers z = (z1, . . . , zq), the function

Mz(A) =
q∑

k,l=1

μk,l(A)zkz̄l ≥ 0, A ∈ A,
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is a measure. Thus, by Lebesgue’s monotone convergence theorem,∫
�

f c(λ)Mz(dλ) −→
c→∞

∫
�

f (λ)Mz(dλ).(4.8)

Note that the diagonal elements μk,k and μl,l are measures; thus if only zk and zl

are nonzero among z = (z1, . . . , zq), we obtain from (4.8) that∫
�

(
f (λ) − f c(λ)

)(
μk,l(dλ)zkz̄l + μl,k(dλ)zl z̄k

)−→ 0, c → ∞.(4.9)

Note that μl,k = μk,l, and choosing, for instance, zk = zl = 1, we have from (4.9),∫
�

(
f (λ) − f c(λ)

)
Re
(
μk,l)(dλ) −→ 0, c → ∞.

If we choose zk = 1, zl = −i, then∫
�

(
f (λ) − f c(λ)

)
Im
(
μk,l)(dλ) −→ 0, c → ∞.

Thus

lim
c→∞ I

k,l
3 (c) = 0.

For a fixed c, we obtain, from condition (B1), that

lim
T →∞ I

k,l
2 (T , c) = 0.

On the other hand, under the conditions assumed in this theorem, for T ≥ T0,

I
k,l
1 (T , c) ≤ 1

2π

∫
{λ : f (λ)>c}

(
f (λ) − c

) |wk
T (λ)||wl

T (λ)|
Wk,T Wl,T

dλ

(4.10)

≤ 1

2π

∑
j∈J

kj,kkj,l

∫
Vj (c)

f (λ) dλ → 0,

when c → ∞. Thus, for any ε > 0 and T ≥ T0, one can choose c1 = c1(ε) ≥ c0,

such that for c > c1, we have I
k,l
1 (T , c) < ε/3. Then, once can take c2 = c2(ε) ≥

c0, such that for c > c2, we have I
k,l
3 (c) < ε/3.

Let us now fix c = max(c1, c2); then, there exists T1 = T1(ε) > T0, such that
for T > T0, I

k,l
2 (T , c) < ε/3, and the left-hand side of (4.7) is less than ε. �

5. Central limit theorem for weighted functionals. This section provides
the asymptotic normality as T → ∞ of the vector (1.1), that is, we will prove
that the vector ζ T converges in distribution (�⇒) to some Gaussian vector ζ .

Thus, for any z ∈ R
q, we prove that 〈ζ T , z〉 �⇒ 〈ζ , z〉, as T → ∞. Denoting, for

z = (z1, . . . , zq),

q∑
i=1

ziW
−1
iT wi(t) = RT (t, z) = RT (t),
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from (2.8), we have

〈ζ T , z〉 =
∫ T

0
ψ
(
ξ(t)

)
RT (t)ν(dt) =

∞∑
j=m

Cj (ψ)

j !
∫ T

0
RT (t)Hj

(
ξ(t)

)
ν(dt).

In the derivation of the proof of our main result, the following additional condi-
tions are required:

(B3) For T > T0,

W−1
i,T sup

∣∣wi(t)
∣∣≤ kiT

−1/2, i = 1, . . . , q,(5.1)

where the supremum is taken over t in the interval [0, T ], in the case of continuous
time, and over t in the set {1, . . . , T }, in the case of discrete time.

Let f (∗1)(λ) = f (λ), and for j ≥ 2,

f ∗(j)(λ) =
∫
�j−1

f (λ − λ2 − · · · − λj )

j∏
i=2

f (λi) dλ2 · · ·dλj ,

the j th convolution of the s.d. f (λ).

(C) The matrix integrals∫
�

f ∗(j)(λ)μ(dλ), j ≥ 1,

are positive definite.
We now proceed the formulation of our main result.

THEOREM 5.1. Suppose that conditions (A1)–(A4), (B1)–(B3) and (C) are
fulfilled. Then, the r.v. ζ T in (1.1) converges in distribution, as T −→ ∞, to the
Gaussian r.v. ζ with zero mean and covariance matrix

� = 2π

∞∑
j=m

C2
j (ψ)

j !
∫
�

f ∗(j)(λ)μ(dλ),(5.2)

where μ is the weak-sense limit of the family of matrix-valued measures intro-
duced in (4.1) and associated with the weight function w(t) in (1.2), given from
functional (1.1).

In the proof of the above theorem, the following identities will be applied jointly
with Lemma 5.1 formulated below. Specifically, from the orthogonality of Hermite
polynomials, we obtain

E〈ζ T , z〉2 =
∞∑

j=m

[
Cj(ψ)

j !
]2

σ 2
T (j, z)

(5.3)

=
∞∑

j=m

C2
j (ψ)

j !
∫ T

0

∫ T

0
RT (t)RT (s)Bj (t − s)ν(dt)ν(ds).



1102 IVANOV, LEONENKO, RUIZ-MEDINA AND SAVICH

We will prove the asymptotic normality of (1.1) under condition (A4)(i). The proof
under condition (A4)(ii) is even simpler.

By conditions (A2) and (A4)(i), for j ≥ 2, all the convolutions f ∗(j) are
bounded and continuous functions, and by (B1),

σ 2
T (j, z) = j !

∫ T

0

∫ T

0
Bj(t − s)RT (t)RT (s)ν(dt)ν(ds)

=
q∑

k,l=1

(
j !
∫ T

0

∫ T

0
Bj(t − s)

wk(t)

Wk,T

wl(s)

Wl,T

ν(dt)ν(ds)

)
zkzl

(5.4)

= 2πj !
∫
�

f ∗(j)(λ)

( q∑
k,l=1

μ
k,l
T (λ)zkzl

)
dλ

−→
T →∞ 2πj !

∫
�

f ∗(j)(λ)mz(dλ) = σ 2(j, z), j ≥ 2,

where mz(dλ) =∑q
k,l=1 μk,l(dλ)zkzl.

Under condition (A2), from Theorem 4.1, we obtain for j = 1,

lim
T →∞σ 2

T (1, z) = 2π

∫
�

f (λ)mz(dλ) = σ 2(1, z).(5.5)

Thus

lim
T →∞ E〈ζT , z〉2 =

∞∑
j=1

[
Cj(ψ)

j !
]2

σ 2(j, z) = σ 2(z).(5.6)

In Lemma 5.1 below, we will consider the following decomposition:

τT = 〈ζT , z〉 = τT (d) + τ ′
T (d)

(5.7)

=
(

d∑
j=1

+
∞∑

j=d+1

)
Cj(ψ)

j !
∫ T

0
RT (t)Hj

(
ξ(t)

)
ν(dt).

LEMMA 5.1. Suppose that conditions (A1)–(A4) and (B1)–(B3) hold. If for
any d ≥ 1, as T → ∞, τT (d) ⇒ τd ∼ N(0, σ 2

d (z)), where

σ 2
d (z) =

d∑
j=1

[
Cj(ψ)

j !
]2

σ 2(j, z),(5.8)

then τT ⇒ τ ∼ N(0, σ 2(z)).

PROOF. Note that E[(τ ′
T (d))2] → 0, d → ∞, uniformly in T . Really, by con-

dition (B3),∣∣RT (t)
∣∣= ∣∣∣∣∣

q∑
i=1

ziwi(t)W
−1
i,T

∣∣∣∣∣≤ T −1/2‖z‖‖k̃‖, k̃ = (k1, . . . , kq).(5.9)
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Then, under (A4)(i), as d → ∞,

E
[(

τ ′
T (d)

)2]= ∞∑
j=d+1

C2
j (ψ)

j !
∫ T

0

∫ T

0
Bj(t − s)RT (t)RT (s)ν(dt)ν(ds)

≤ T −1‖z‖2‖k̃‖2
∫ T

0

∫ T

0
B2(t − s)ν(dt)ν(ds)

∞∑
j=d+1

C2
j (ψ)

j !

≤ ‖z‖2‖k̃‖2
∫

R

B2(t)ν(dt)

∞∑
j=d+1

C2
j (ψ)

j ! = β(d) −→ 0,

since by Parseval’s identity,

∞∑
j=1

C2
j (ψ)

j ! = Eψ2(ξ(0)
)
< ∞.

Thus, for any ε > 0, uniformly in T ,

P
{∣∣τ ′

T (d)
∣∣> ε

}≤ β(d)

ε2 −→ 0, d → ∞.

For any ε > 0, and d ≥ 1, we then obtain

lim
T →∞P {τT ≤ x} ≤ �d(x + ε) + β(d)

ε2 ,(5.10)

where �d is the distribution function of a Gaussian r.v. with zero mean and vari-
ance σ 2

d (z).

Also, for any ε > 0, and d ≥ 1, as T → ∞, the following inequality holds:

limP {τT ≤ x} ≥ �d(x − ε) − β(d)

ε2 .(5.11)

If d → ∞, we obtain, from equations (5.10) and (5.11) that, as T → ∞,

�∞(x − ε) ≤ limP {τT ≤ x} ≤ limP {τT ≤ x} ≤ �∞(x + ε),

where �∞ is the distribution function of a Gaussian r.v. with zero mean and the
variance σ 2(z) given by (5.6). Thus, if ε → 0, limT →∞ P {τT ≤ x} = �∞(x),

x ∈ R. �

Now we are in position to derive the proof of Theorem 5.1. In such a proof, we
will check condition (i) of Proposition 3.1, but the proof can also be developed
from the verification of condition (ii) in Proposition 3.1, using diagram formula.
We place this proof into Appendix, due to its methodological interest in relation
to the approach it presents for the analysis of nonregular diagrams, providing the
classification of their levels into recipients and donors.
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Proof of Theorem 5.1. From Lemma 5.1, it is sufficient to show the asymptotic
normality of the r.v.’s τT (d). Consider then the r.v.’s

πT,d(ξ) =
(∫ T

0
rT ,1(t)H1

(
ξ(t)

)
ν(dt), . . . ,

∫ T

0
rT ,d(t)Hd

(
ξ(t)

)
ν(dt)

)′
,(5.12)

where

rT ,j (t) = RT (t)

σ (j, z)
, j = 1, . . . , d.(5.13)

The proof will follow from the application of Corollary 3.1, after checking con-
dition (i) of Proposition 3.1 for the random vector πT,d(ξ) defined by (5.12)
and (5.13). From Theorem 1 and equation (5.4),

E
[∫ T

0
rT ,j (t)Hj

(
ξ(t)

)
ν(dt)

]2

= σ 2
T (j, z)

σ 2(j, z)
−→ 1,

(5.14)
T → ∞, j = 1, . . . , d.

Now, πT,d(ξ) �⇒ πd ∼ N (0, Id), T → ∞, if and only if

lim
T →∞‖fj,T ⊗p fj,T ‖H⊗2(j−p) = 0

for p = 1, . . . , j − 1, 2 ≤ j ≤ d, where

fj,T (s1, . . . sj ) =
∫ T

0
RT (t)

j∏
i=1

l(−∞,t](si) dt.

We first check the convergence to zero of contractions in the continuous time
case. The pth contraction is computed by applying formula (3.5) with k = j as
follows:

fj,T ⊗p fj,T (x1, . . . , x2j−2p)

=
∫ T

0

∫ T

0
RT (t)RT (s)B(t − s) × · · ·

p
×B(t − s)

×
j∏

i=p+1

l(−∞,t](xi)

j∏
l=p+1

l(−∞,s](xl) ds dt(5.15)

=
∫ T

0

∫ T

0
RT (t)RT (s)Bp(t − s)

×
j−p∏
i=1

l(−∞,t](xi)

2j−2p∏
l=j−p+1

l(−∞,s](xl) ds dt.
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The norm of the pth contraction (5.15) in the space H⊗2(j−p) is then given by

‖fj,T ⊗p fj,T ‖2
H⊗2(j−p)

=
∫ T

0

∫ T

0

∫ T

0

∫ T

0
RT (t1)RT (s1)RT (t2)RT (s2)

× Bj−p(t1 − t2)B
j−p(s1 − s2)B

p(t1 − s1)

× Bp(t2 − s2) ds1 ds2 dt1 dt2.

By condition (B3), for 2 ≤ j ≤ d and p = 1, . . . , j − 1,

‖fj,T ⊗p fj,T ‖2
H⊗2(j−p)

≤ ‖z‖4‖k̃‖4

T 2

∫ T

0

∫ T

0

∫ T

0

∫ T

0

∣∣Bp(t1 − s1)B
p(t2 − s2)

∣∣
× ∣∣Bj−p(t1 − t2)B

j−p(s1 − s2)
∣∣ds1 ds2 dt1 dt2

≤ ‖z‖4‖k̃‖4

T 2

∫ T

0

∫ T

0

∫ T

0

∫ T

0

∣∣B(t1 − s1)B(t2 − s2)
∣∣

× ∣∣B(t1 − t2)B(s1 − s2)
∣∣dt1 dt2 ds1 ds2(5.16)

≤ ‖z‖4‖k̃‖4

T 2

∫ T

0

∫ T

0

∫ T

0

1

2

∫ T

0

[
B2(t1 − s1) + B2(t1 − t2)

]
dt1

× ∣∣B(t2 − s2)B(s1 − s2)
∣∣ds1 ds2 dt2

≤ 4‖z‖4‖k̃‖4
[∫ ∞

0
B2(t1) dt1

][∫ T

0

∣∣B(t2)
∣∣dt2

]

× T −2
∫ T

0

∫ T

0

∣∣B(s1 − s2)
∣∣ds1 ds2.

In (5.16), as T → ∞, ∫ T

0

∣∣B(t2)
∣∣dt2 = O

(
T 1−α)

(5.17)

T −2
∫ T

0

∫ T

0

∣∣B(s1 − s2)
∣∣ds1 ds2 = O

(
T −α).

From condition (A4), in the case considered of Hermite rank m = 1, we have α >

1/2, and therefore, from (5.16) and (5.17), we obtain for j ≥ 2, p = 1, . . . , j − 1,

lim
T →∞‖fj,T ⊗p fj,T ‖H⊗2(j−p) = 0.(5.18)

The proof in the discrete time case can be similarly derived in terms of defini-
tion (3.3) of isonormal process X, considering the counting measure ν(·). Specifi-



1106 IVANOV, LEONENKO, RUIZ-MEDINA AND SAVICH

cally, from (3.9), for T > 0 and 2 ≤ j ≤ d we consider the sequence of kernels

fj,T (m1, . . . ,mj ) =
T∑

l=1

RT (l)

j∏
i=1

δmi,l, m1, . . . ,mj ∈ Z.

For p = 1, . . . , j − 1, the pth self-contraction of this kernel is given by

fj,T ⊗p fj,T (m1, . . . ,m2j−2p)

=
T∑

q=1

T∑
l=1

RT (q)RT (l)Bp(q − l)

j−p∏
i=1

δmi,q

2j−2p∏
i=j−p+1

δmi,l .

Therefore, since

‖fj,T ⊗p fj,T ‖2
H⊗2(j−p)

=
T∑

q=1

T∑
k=1

T∑
l=1

T∑
i=1

RT (q)RT (l)RT (k)RT (i)

× Bj−p(q − k)Bj−p(l − i)Bp(q − l)Bp(k − i),

in a similar way to the continuous time case, we obtain

‖fj,T ⊗p fj,T ‖2
H⊗2(j−p)

≤ ‖z‖4‖k̃‖4

T 2

T∑
q=1

T∑
k=1

T∑
l=1

T∑
i=1

∣∣Bp(q − l)Bp(k − i)
∣∣

× ∣∣Bj−p(q − k)Bj−p(l − i)
∣∣

(5.19)

≤ ‖z‖4‖k̃‖4

T 2

T∑
q=1

T∑
k=1

T∑
l=1

T∑
i=1

∣∣B(q − l)B(k − i)
∣∣∣∣B(q − k)B(l − i)

∣∣
≤ 4‖z‖4‖k̃‖4

[ ∞∑
q=1

B2(q)

][
T∑

k=1

∣∣B(k)
∣∣]

× T −2
T∑

l=1

T∑
i=1

∣∣B(l − i)
∣∣.

Thus, as T → ∞,

T∑
k=1

∣∣B(k)
∣∣= O

(
T 1−α),

(5.20)

T −2
T∑

l=1

T∑
i=1

∣∣B(l − i)
∣∣= O

(
T −α).
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Again, from condition (A4), and equations (5.19) and (5.20), Proposition 3.1(i)
holds, and the convergence to the Gaussian distribution follows.

EXAMPLE (Continuation). Consider now model (2.1) with nonlinear regres-
sion function

g(t, θ) =
N∑

k=1

(Ak cosϕkt + Bk sinϕkt),(5.21)

where θ = (A1,B1, ϕ1, . . . ,AN,BN,ϕN),C2
k = A2

k + B2
k > 0, k = 1, . . . ,N,0 <

ϕ1 < · · · < ϕN < ∞. In this case, q = 3N, function g(t, θ) then has a block-
diagonal measure μ(dλ) (see, e.g., Ivanov [11]) with blocks⎛⎝ κk iρk β̄k

−iρk, κk γ̄k,

βk γk, κk,

⎞⎠ , k = 1, . . . ,N,

where

βk =
√

3

2Ck

(Bkκk + iAkρk), γk =
√

3

2Ck

(−Akκk + iBkρk).

Here, the measure κk = κk(dλ) and the signed measure ρk = ρk(dλ) are located at
the points ±ϕk, and κk({±ϕk}) = 1

2 , ρk({±ϕk}) = ±1
2 . We then have

g3k−2(t, θ) = ∂

∂Ak

g(t, θ) = cosϕkt, g3k−1(t, θ) = ∂

∂Bk

g(t, θ) = sinϕkt,

g3k(t, θ) = ∂

∂ϕk

g(t, θ) = −Akt sinϕkt + Bkt cosϕkt, k = 1, . . . ,N.

It is easy to see that if the s.d. f satisfies (I), and κj �= ϕk, j = 0,1, . . . , r, k =
1, . . . ,N, one can find a neighborhood Vj (c0) of the point κj , for j = 0,1, . . . , r,

which does not contain the points ϕk, k = 1, . . . ,N. Thus, for T > T0, the follow-
ing condition holds:

W−1
iT max

λ∈Vj (c0)

∣∣wi
T (λ)

∣∣≤ kijT
−1/2, j ∈ J ; i = 3k−2,3k−1,3k;k = 1, . . . ,N.

In relation to the considered function w(t) = ∇g(t, θ), the measure μ
jl
T (dλ) =

μ
jl
T (dλ, θ) approximates, in the weak sense, the spectral measure μ(dλ) =

{μjl(dλ)}qj,l=1 of the nonlinear regression function g(t, θ) [see (2.1)], where

μ
jl
T (dλ, θ) = g

j
T (λ, θ)gl

T (λ, θ) dλ√∫
� |gj

T (λ, θ)|2 dλ
∫
� |gl

T (λ, θ)|2 dλ

, j, l = 1, . . . , q,

g
j
T (λ, θ) =

∫ T

0
eitλgj (t, θ)ν(dt), j = 1, . . . , q
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and gj (t, θ) defines the j th component of w(t) = ∇g(t, θ), for j = 1, . . . , q.

If the s.d. f (λ) satisfies condition (II), then f is μ-admissible, and the block-
diagonal matrix

∫
� f (λ)μ(dλ) consists of the blocks

f (ϕk)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0

√
3

2

Bk

Ck

0 1 −
√

3

2

Ak

Ck√
3

2

Bk

Ck

−
√

3

2

Ak

Ck

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, k = 1, . . . ,N.

It is easy to see that, for the function g(t, θ) given by (5.21), the matrix � is a
block-diagonal with blocks of the form

�k = 2π

∞∑
j=m

C2
j (ψ)

j ! f ∗(j)(ϕk)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 Bk

√
3

2Ck

0 1 −Ak

√
3

2Ck

Bk

√
3

2Ck

−Ak

√
3

2Ck

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

k = 1, . . . ,N.

6. Final comments. This paper addresses the problem of Gaussian limit the-
ory of weighted functionals of nonlinear transformations of Gaussian stationary
random processes ξ having multiple singularities in their spectra. The general case
where the Fourier transform of the weight function also displays multiple singular-
ities in the limit, which do not coincide with the singularities of the spectral density
of ξ, is also covered here. This subject has several applications in asymptotic sta-
tistical inference. We are especially motivated by its application in the limit theory
of nonlinear regression problems with regression function and errors having mul-
tiple singularities in their spectra. This actually constitutes an active research area,
due to the existence of several open problems and applications. Note that, although
here we have considered the parameter range

α = min
j=0,1,...,r

αj > 1/2,

which, in particular, allows us to consider long-range dependence models. Our
conjecture is that the Gaussian limit results hold for αj ∈ (0,1), j = 0,1, . . . , r.

The proof of this conjecture will lead to a general scenario where most of the
limit results derived for random fields with singular spectra (see Taqqu [25, 26];
Dobrushin and Major [6]; Nualart and Peccati [18]; and the references therein) can
be obtained as particular cases.
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APPENDIX: PROOF OF THEOREM 5.1 BASED ON DIAGRAM FORMULA

As before, we will prove this result for Hermite rank m = 1. To show the
asymptotic normality of the r.v.’s τT (d), consider the r.v.’s πT,d(ξ) and rT ,j (t),

j = 1, . . . , d, defined by (5.12) and (5.13).
We will check condition (ii) of Proposition 3.1. Then, from Corollary 3.1,

πT,d(ξ) ⇒ πd ∼ N(0, Id), that is, τT (d) ⇒ τd ∼ N(0, σ 2
d (z)), as T → ∞.

We apply diagram technique for proving condition (ii) of Proposition 3.1. Let
us first introduce some definitions.

A graph � = �(l1, . . . , lp) with l1 +· · ·+ lp vertices is called a diagram of order
(l1, . . . , lp) if:

(a) the set of vertices V of the graph � is of the form V = ⋃p
j=1 Wj , where

Wj = {(j, l) : 1 ≤ l ≤ lj } is the j th level of the graph �, 1 ≤ j ≤ p (if lj = 0,

assume Wj = ∅);
(b) each vertex is of degree 1;
(c) if ((j1, l1), (j2, l2)) ∈ �, then j1 �= j2, that is, the edges of the graph � may

connect only different levels.

Let L = L(l1, . . . , lp) be a set of diagrams � of order (l1, . . . , lp). Denote by
Z� the set of edges of a graph � ∈ L. For the edge � = ((j1, l1), (j2, l2)) ∈ Z� ,
j1 < j2, we set d1(�) = j1,d2(�) = j2. We call a diagram � regular if its levels
can be split into pairs in such a manner that no edge connects the levels belonging
to different pairs. We denote by L∗ the set of regular diagrams L∗ ⊆ L(l1, . . . , lp).
If p is odd, then L∗ = ∅.

The following lemma provides the diagram formula; see Taqqu [26], Lemma 3.2
or Doukhan, Oppenheim and Taqqu [7], page 74, or Peccati and Taqqu [22].

LEMMA A.1. Let (ξ1, . . . , ξp),p ≥ 2, be a Gaussian vector with Eξj =
0,Eξ2

j = 1,Eξiξj = B(i, j), i, j = 1, . . . , p, and let Hl1(u), . . . ,Hlp(u) be the
Hermite polynomials. Then

E

{ p∏
j=1

Hlj (ξj )

}
= ∑

�∈L

∏
�∈Z�

B
(
d1(�), d2(�)

)
.(A.1)

From (A.1), we obtain, for p = 4, l1 = l2 = l3 = l4 = j, � = �(j, j, j, j) and
(ξ1, ξ2, ξ3, ξ4) = (ξ(t1), ξ(t2), ξ(t3), ξ(t4)),

Eπ4
T ,j (ξ)

=
∫ T

0

∫ T

0

∫ T

0

∫ T

0

4∏
i=1

rT ,j (ti)(A.2)

× E

[ 4∏
i=1

Hj

(
ξ(ti)

)]
ν(dt1)ν(dt2)ν(dt3)ν(dt4).
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We then have

Eπ4
T ,1(ξ) = 3

σ 4(1, z)

[∫ T

0

∫ T

0
B(t1 − t2)RT (t1)RT (t2)ν(dt1)ν(dt2)

]2

(A.3)

= 3
σ 4

T (1, z)

σ 4(1, z)
−→ 3, T → ∞.

For j ≥ 2, the sum in (A.1) is split into two sums corresponding to regular and
nonregular diagrams, ∑

�∈L

· · · = ∑
�∈L∗

· · · + ∑
�∈L\L∗

· · · ,

and the right-hand side of (A.2) is split into two these parts, as well.
Analysis of the regular diagrams:
We have

∗∑
(T ) = ∑

�∈L∗
F�(T ),(A.4)

where

F�(T )

=
∫ T

0

∫ T

0

∫ T

0

∫ T

0

4∏
i=1

rT ,j (ti)(A.5)

× ∏
�∈Z�

B(td1(�) − td2(�))ν(dt1)ν(dt2)ν(dt3)ν(dt4).

Each regular diagram � ∈ L∗ consists of 4 levels of cardinality j. There are
only 3 subdivisions of the 4 levels into pairs, and in each pair the vertices can be
connected by j ! ways. Thus, there is only∣∣L∗∣∣= 3(j !)2

regular diagrams, and, in this case, sum (A.4) is subdivided into product of pairs
of integrals

∗∑
(T ) = 3(j !)2

σ 4(j, z)

(∫ T

0

∫ T

0
Bj(t1 − t2)RT (t1)RT (t2)ν(dt1)ν(dt2)

)2

(A.6)

= 3
σ 4

T (j, z)

σ 4(j, z)
−→ 3, T → ∞.

Analysis of the nonregular diagrams:
First, we consider ∑

(T ) = ∑
�∈L\L∗

F�(T ),(A.7)



LIMIT THEOREMS FOR NONLINEAR TRANSFORMATIONS 1111

where F� is defined as in (A.5). We now prove that limT →∞
∑

(T ) = 0. Then, the
assertion of the theorem will follow from (A.3) and (A.6).

From (5.9),

∣∣F�(T )
∣∣≤ ‖z‖4‖k̃‖4

σ 4(j, z)
T −2

×
∫ T

0

∫ T

0

∫ T

0

∫ T

0

4∏
i=1

∏
�∈Z�,d1(�)=i

∣∣B(ti − td2(�))
∣∣(A.8)

× ν(dt1)ν(dt2)ν(dt3)ν(dt4).

Let q�(i) be the number of edges � ∈ Z�, such that d1(�) = i. Then, for
q�(i) ≥ 1, ∫ T

0

∏
�∈Z�,d1(�)=i

∣∣B(ti − td2(�))
∣∣ν(dti)

≤ 1

q�(i)

∑
�∈Z�,d1(�)=i

∫ T

0

∣∣B(ti − td2(�))
∣∣q�(i)

ν(dti)(A.9)

≤ 2
∫ T

0

∣∣B(ti)
∣∣q�(i)

ν(dti).

If q�(i) = 0, the integrals regarded to these variables (t4, and possibly t3), in
the left-hand side of (A.9), give a contribution in the form of a multiplier of T in
the estimate (A.8).

DEFINITION A.1. The level i of a nonregular diagram � ∈ L\L∗ is said to be
a donor, if q�(i) ≥ 1, and a strong donor, if q�(i) = j. The level i of a nonregular
diagram � ∈ L \ L∗ is said to be a recipient, if it is not donor, that is q�(i) = 0.

Let ρsd be a number of strongly donor levels, and ρr be a number of recipient
levels. Obviously, level 1 is a strong donor, while level 4 is a recipient. If ρsd = 1,

then ρr = 1, while if ρsd = 2, then ρr = 2.

Formulas (A.8) and (A.9) then imply

∣∣F�(T )
∣∣≤ 24−ρr

‖z‖4‖k̃‖4

σ 4(j, z)
T −2

4∏
i=1

∫ T

0

∣∣B(t)
∣∣q�(i)

ν(dt).(A.10)

Since j ≥ 2, and α > 1/2, for a strong donor level i with q�(i) = j ,∫ T

0

∣∣B(t)
∣∣j ν(dt) ≤

∫ ∞
0

[
B(t)

]2
ν(dt) < ∞.(A.11)
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Thus, for the recipient levels (q�(i) = 0) and the strong donor levels (q�(i) =
j ), we obtain ∫ T

0

∣∣B(t)
∣∣q�(i)

ν(dt) ≤ C0T
1−z(i),(A.12)

where

z(i) = q�(i)

j
, C0 = max

(
1,

∫ ∞
0

B2(t)ν(dt)

)
.

Let now 0 < q�(i) < j ; that is, level i is a donor, but not strong donor, and then∫ T

0

∣∣B(t)
∣∣q�(i)

ν(dt) =
[∫ 1

0
+
∫ T

1

]∣∣B(t)
∣∣q�(i)

ν(dt)

≤ 1 + T 1−αq�(i) − 1

1 − αq�(i)
(A.13)

= αq�(i)

αq�(i) − 1
+ T 1−αq�(i)

1 − αq�(i)
= o

(
T 1−z(i)),

since αq�(i) = αjz(i), and αj > 1. We will show that

μ = 2 −
4∑

i=1

z(i) = 0.

Indeed,

4∑
i=1

z(i) = 1 + q�(2) + q�(3)

j
,

and q�(2) + q�(3) = j, since |Z�| = 2j.

Formulas (A.12), (A.13) and (A.9) together with (A.10) then imply that∣∣F�(T )
∣∣= O(1), T → ∞,(A.14)

when ρsd = ρr = 2, and ∣∣F�(T )
∣∣= o(1), T → ∞,(A.15)

when 0 < q�(i) < j, for i = 2,3 (ρsd = ρr = 1).
The estimate (A.14) is not exact. Thus, let us consider again the case of nonreg-

ular diagram �, which has 2 strong donor levels, and the remaining 2 levels are
recipients. The recipient level 3 takes edges from the strong donor levels 1 and 2,

while level 2 does not supply level 3 in full. Let us permutate levels 2 and 3, and
denote this permutation by π, that is, π(2) = 3, π(3) = 2, and, from the level π(3)

to the level π(2), there are less than j edges. Moreover, from the level π(3) there
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is no edges down, except the edges which connect π(3) with π(2), since level
π(3) took all edges from the top, that is,

qπ�

(
π(3)

)= qπ�(2) < j,

where π� is a nonregular diagram, taken from � by permutating the levels 2
and 3. Note that this permutation does not change the value of integral defining
F�(T ) in (A.7), since it is equivalent to the renaming of the variables t2 and t3.

From (A.15), we then obtain∣∣F�(T )
∣∣= ∣∣Fπ�(T )

∣∣→ 0, T → ∞.(A.16)

The assertion of this theorem then follows from equations (A.14)–(A.16).
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