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Abstract. We propose a three dimensional generalization of the geometric McKay
correspondence described by Gonzales-Sprinberg and Verdier in dimension two. We work
it out in detail in abelian case. More precisely, we show that the Bridgeland-King-Reid
derived category equivalence induces a natural geometric correspondence between irreduc-
ible representations of G and subschemes of the exceptional set of G-HilbðC3Þ. This corre-
spondence appears to be related to Reid’s recipe.

1. Introduction

The study of the McKay correspondence began with an observation by John McKay
in [11] that there exists a bijective correspondence between irreducible representations of a
finite subgroup G L SL2ðCÞ and exceptional divisors of the minimal resolution Y of C2=G.
Gonzales-Sprinberg and Verdier in [6] gave a geometric construction of this correspon-
dence. The aim of this paper is to give a generalization of this construction for dimension
three. Our approach is via the derived McKay equivalence of [1] and for G abelian it
appears to give a categorification of ‘Reid’s recipe’ from [13].

The original construction of [6] is as follows. Denote by K GðC2Þ the Grothendieck
ring of G-equivariant coherent sheaves on C2 and by KðY Þ the Grothendieck ring of Y .
Let M A CohðY � C2Þ be the structure sheaf of the reduced fiber product Y �C2=G C2.
Define the transform Y : K GðC2Þ ! KðY Þ by

Yð�Þ ¼
�
pY�
�
Mn p�

C2ð�Þ
��Gð1:1Þ

where pY and pC2 are the projections from Y � C2 to Y and C2.

Denote by ExcðY Þ the set of irreducible exceptional divisors on Y . Let r be an irre-
ducible representation of G. Since M is flat over Y its pushforward to Y is a vector bundle
and Lr :¼ YðOC2 n r4Þ is its r-eigensheaf. In general Lr is a vector bundle of dimension
dimðrÞ and is called a tautological or GSp-V sheaf. It is proven in [6] that:



(1) K GðC2Þ !Y KðYÞ is an isomorphism of abelian groups.

(2) fc1ðLrÞ j r A IrrðGÞ non-trivialg is the basis of H 2ðY ;ZÞ dual to the basis
fE jExcðY Þg of H2ðY ;ZÞ. This gives a 1-to-1 correspondence between non-trivial r and
elements of ExcðY Þ. Denote by Er the irreducible exceptional divisor dual to c1ðLr4Þ.

(3) For each non-trivial r A IrrðGÞ we have

YðO0 n rÞ ¼ ½OEr
�

where O0 is the skyscraper sheaf at the origin ð0; 0Þ A C2.

Recall that a resolution X 0 !f X is called crepant if f �oX ¼ oX 0 (see [12] for more
details). In dimension two the minimal resolution Y ! C2=G is the unique crepant resolu-
tion. In dimension three and above crepant resolutions may not exist and are not necessar-
ily unique. In particular C3=G has a number of crepant resolutions connected by a chain
of flops.

To figure out which crepant resolution to consider it helps to go back to the minimal
resolution Y ! C2=G and observe that Y GG-HilbðC2Þ, the fine module space of G-
clusters in C2. A G-cluster in Cn is a G-invariant subscheme ZLCn such that H 0ðOZÞ
is isomorphic to the regular representation Vreg of G. The structure sheaf M of the
reduced fiber product Y �C2=G C2 turns out to be the universal family of G-clusters over
Y � C2.

This suggests that for G L SL3ðCÞ we should take Y to be G-HilbðC3Þ and M to be
the universal family of G-clusters over Y � C3. Given a variety X denote by DðXÞ (resp.
DGðXÞ) the derived category of coherent sheaves on X (resp. G-equivariant coherent
sheaves on X if X is equipped with an action of G). Define F : DðYÞ ! DGðC3Þ to be the
integral transform

Fð�Þ ¼ pC3�
�
M n

L

p�Y ð�n r0Þ
�

ð1:2Þ

with kernel M, where ð�n r0Þ is the functor of equipping the sheaf with the trivial G-
action. It was proven in [1] that F is an equivalence of derived categories and consequently
that Y is a crepant resolution of C3=G. As derived equivalence implies K-group isomor-
phism this gives a very satisfying proof of (1) in dimension three.

There has been some e¤ort to generalise (2). One can define the vector bundles Lr for
r A IrrðGÞ as before. Since fOC3 n rg forms a basis for K GðC3Þ the collection fLrg is a
basis for KðY Þ. Hence the Chern classes c1ðLrÞ span H 2ðX ;ZÞ. But they do not form a
basis since there are relations.

When G is abelian the bundles Lr are line bundles and Y is a toric variety. Following
a conjecture by Reid, Craw showed in [4] that certain Lr whose classes are redundant can
be replaced by abstract elements of KðYÞ in such a way that second Chern classes of these
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‘virtual’ bundles give a basis of H 4ðY ;ZÞ. This gives a 1-to-1 correspondence between
IrrðGÞ and a basis of H �ðY ;ZÞ.

What dictates the way ‘virtual’ bundles are produced is the so-called ‘Reid’s recipe’
(see [13], Section 6, and [4], Section 3). It is a somewhat ad-hoc way, based on calculation
of monomial bases of each of the toric a‰ne charts of Y , to assign a character of G to each
exceptional curve of the form E XF for E;F A ExcðYÞ and a character or a pair of charac-
ters to each exceptional divisor E A ExcðYÞ.

We propose generalizing (3). Take the inverse C : DGðC3Þ ! DðYÞ of the [1] derived
equivalence F and look at the images CðO0 n rÞ A DðYÞ which are supported on the
exceptional locus of Y . The correspondence r$ SuppCðO0 n rÞ is what we think of as
the geometric McKay correspondence in dimension three since in dimension two this gives
the classical McKay correspondence of [6].

A priori CðO0 n rÞ will be a complex of sheaves but if G is abelian we show that it is
a sheaf:

Theorem 1.1. Let G H SL3ðCÞ be a finite, abelian group. Then, for any irreducible

representation w A IrrðGÞ, the Fourier-Mukai transform CðO0 n wÞ is a pure sheaf (i.e. some

shift of a coherent sheaf ).

In Section 2 we explain how to compute CðO0 n rÞ for any G L SL3ðCÞ. In Sec-
tion 6 we show how to explicitly calculate the supports of CðO0 n rÞ when G is abelian
by using an explicit description of G-HilbðC3Þ ([4]) and of the universal family over it
([10]).

Based on such computational evidence, we present the following conjecture as to
the exact form of the sheaves CðO0 n wÞ. A part of it gets proven in the course of proving
Theorem 1.1.

Conjecture 1.1. Let G H SL3ðCÞ be a finite, abelian group. Then, for any irreducible

representation w A IrrðGÞ, the Fourier-Mukai transform CðO0 n wÞ is one of the following:

(1) L�1
w nOEi

,

(2) L�1
w nOEiXEj

,

(3) F½1� where SuppY ðFÞ ¼ Ei1 W � � �WEik ,

(4) OY

�
ExcðYÞ

�
nOExcðY Þ½2�,

where Ei are irreducible exceptional divisors, F a coherent sheaf and Lw is the tautological

line bundle of [6].

We expect a similar picture to hold for non-abelian G H SL3ðC3Þ. In particular:

Conjecture 1.2. For any finite G H SL3ðCÞ the images CðO0 n wÞ are pure sheaves.
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1.1. An example. Let G ¼ 1

13
ð1; 5; 7ÞH SL3ðCÞ. For the definition see Section 6

which works out this example in detail. Then G-HilbðC3Þ is defined by the toric fan in
Figure 1.

Computing the images CðO0 n wÞ for each w A IrrðGÞ we summarise the results in the
following table.

ð1:3Þ

w Supp H�2
�
CðO0 n wÞ

�
Supp H�1

�
CðO0 n wÞ

�
Supp H�0

�
CðO0 n wÞ

�
w0 E4 WE5 WE6 WE7 WE8 WE9 0 0
w1 0 0 E4

w2 0 0 E7

w3 0 E7 0
w4 0 0 E6

w5 0 0 E9

w6 0 E4 WE6 WE9 0
w7 0 0 E5

w8 0 E4 WE5 0
w9 0 0 E6 XE7

w10 0 0 E8

w11 0 E6 WE8 0
w12 0 E5 WE7 WE8 WE9 0

1.2. Relation to Reid’s recipe. From [2], Proposition 9.3, we know that if w marks an
irreducible exceptional divisor E by Reid’s recipe then CðO0 n wÞGL�1

w nOE .

However it is worth noting that in all the examples we computed the supports of
CðO0 n wÞ appear to be more strongly related to Reid’s recipe. As an example, we give

in Figure 2 the markings according to Reid’s recipe for G ¼ 1

13
ð1; 5; 7Þ and invite the

Figure 1. Toric fan of G-HilbðC3Þ.
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reader to compare it to the data in Table 1.3. For instance, CðO0 n w12Þ is supported on
E5 WE7 WE8 WE9—precisely those divisors which contain two of the curves marked by
w12 by Reid’s recipe.

We hope to prove the following:

Conjecture 1.3. Let G H SL3ðCÞ be a finite, abelian group. In Reid’s recipe,

(1) if w marks a divisor then CðO0 n wÞ is supported in degree 0 on that divisor,

(2) if w marks several irreducible curves then CðO0 n wÞ is supported in degree �1 on

the union of all divisors containing two or more of these curves,

(3) if w marks a single irreducible curve then CðO0 n wÞ is supported in degree 0 on that

curve.

1.3. Further remarks. (1) Theorem 1.1 does not necessarily hold if you
replace Y ¼ G-HilbðC3Þ by another crepant resolution of C3=G. For example, let

G ¼ 1

11
ð1; 3; 7Þ and let Y be the fine module space My of y-stable G-constellations for

y ¼ ð13;�4; 5;�4;�4; 1;�4; 9;�4;�4;�4Þ (see [2] for more detail). Set M to be the
universal family on Y � C3. Compute the toric fan of My as described in [3], Section 6,
and compute M as described in [9], Section 4.5. We can then compute CðO0 n w0Þ just
like in Section 6 and it turns out to have non-zero cohomologies both in degree �2 and
in degree �1.

If one examines the proof of Theorem 1.1 then one would find that Propositions 4.5
and 4.12 are the basic results which depend on the fact we are using (the universal family
over) G-HilbðC3Þ instead of some other crepant resolution.

(2) We prove Theorem 1.1 by doing some very explicit computations with the repre-
sentation QðGÞM of the McKay quiver QðGÞ associated to the universal family M. It
would be nice to obtain a more conceptual proof of this result.

Figure 2. Reid’s recipe marking for G ¼ 1

13
ð1; 5; 7Þ.
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For example, Alexei Bondal suggested the following argument why Theorem 1.1
might hold. The idea is to use his result which states that any exceptional object on a
Del-Pezzo surface is a sheaf. On the other hand, there is the following result of Seidel and
Thomas. If i : X ! Y is an inclusion of a divisor satisfying i�oY ¼ OX then i�F is spheri-
cal if and only if F is exceptional.

In our case we take Y ¼ G-HilbðC3Þ and pretend that the union X HY of its excep-
tional divisors is a Del-Pezzo surface. Now O0 n w is a spherical object in DGðC3Þ so
CðO0 n wÞ is a spherical object in Y . If one could prove directly that CðO0 n wÞ is the
pushforward of an object in DðX Þ then this object should be a sheaf by Bondal’s result.
At present, such a direct proof is beyond us. Note that in light of the remark 1 it would
need to use the fact that M is the family of G-clusters and not of arbitrary G-constellations.

(3) Finally, we see in Section 2 that C : DGðC3Þ ! DðYÞ, the inverse of [1] transform
F, is the transform defined by the dual of the universal family M. We could have instead
taken the transform defined by M itself, as was done in [6]. This choice is only for conve-
nience. In both cases the transforms of O0 n w are (shifted) sheaves. However, using our
choice the structure sheaves of irreducible divisors appear in degree 0, while CðO0 n r0Þ
appears in degree �2 and not vice versa. Moreover, this choice matches up better with the
marking given by Reid’s recipe.

The paper is organized as follows. In Section 2 we describe the transform CðO0 n rÞ
as a cube complex. In Section 3 we compute the cohomology of a general cube complex. In
Section 4 we introduce the associated McKay quiver representation and relate it to the cube
complex from Section 2. We also prove some properties which it satisfies. In Section 5 we
use these properties to prove Theorem 1.1. Finally, in Section 6 we explicitly work out

CðO0 n rÞ when G ¼ 1

13
ð1; 5; 7Þ.
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everyone else at the institute for their hospitality. The first author would also like to thank
the mathematics department at Rice University. The second author did most of his work
on this paper during his stay at KTH (Sweden) and would like to thank them for their
support.

2. The inverse transform and the dual family

2.1. Notation. In this section, let G be an arbitrary finite subgroup of SLnðCÞ and Y

a smooth n-dimensional separable scheme of finite type over C. We equip Y with the trivial
G-action. Then G acts naturally on Y � Cn and we can consider the bounded derived cat-
egory of G-equivariant coherent sheaves DGðY � CnÞ.

We denote by Vgiv the representation of G induced by its inclusion into SLnðCÞ and
by R the symmetric algebra SðV4

givÞ. We identify Cn with the a‰ne G-scheme Spec R. We
also call a G-equivariant sheaf a G-sheaf for short (cf. [1], Section 4).
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There is an equivalence between the category of quasi-coherent G-sheaves on Cn and
of RzG-modules which is induced by the functor G of taking global sections. The relative
version of this is an equivalence between the category of quasi-coherent G-sheaves on
Y � Cn and of quasi-coherent sheaves of ðRzGÞnC OY -modules induced by the push-
down functor pY� to Y .

For an object F A DGðY � CnÞ we denote by FF the integral transform
DðY Þ ! DGðCnÞ defined by

FFð�Þ ¼ pC3�
�
F n

L

p�Y ð�n r0Þ
�

ð2:1Þ

where ð�n r0Þ is the functor of equipping the sheaf with the trivial G-action. And we
denote by CF the integral transform in the opposite direction DGðCnÞ ! DðY Þ defined by

CFð�Þ ¼ pY�
�
F n

L

p�Cnð�Þ
�G
:ð2:2Þ

In brief, a gnat-family is a family on Y � Cn, flat over Y , of certain finite-length
sheaves on Cn called G-constellations, each of which is supported on a single G-orbit.
Sometimes we will abuse notation by identifying a gnat-family with its pushforward to Y

via pY� as an ðRzGÞnC OY -module. The basic example to keep in mind is the pushfor-
ward to Y ¼ G-HilbðCnÞ of the universal family of G-clusters. For the precise definition see
[9], Section 3.2, and [10].

Suppose F is a gnat-family on Y � C. It was shown in [9], Lemma 4, that the left
adjoint to FF is the integral transform CF4½n�. In this section, we show that F4½n� is the
gnat-family ~FF dual to F. Notice that ~FF is a sheaf (i.e. a complex concentrated in degree
zero). We then use this to compute CF4½n�ðO0 n rÞ. The application we have in mind is the
case n ¼ 3 with Y ¼ G-HilbðC3Þ and F the universal family of G-clusters on Y � C3.

2.2. The dual family. If W is an RzG-module, then its dual W4¼ HomCðW ;CÞ
is naturally an RzG-module via

g � að�Þ ¼ aðg�1 � �Þ and m � að�Þ ¼ aðm � �Þð2:3Þ

where a A HomCðW ;CÞ, g A G and m A R.

Given a finite-length G-sheaf V on Cn we can define its dual V4 to be the G-sheaf
corresponding to the dual of the RzG-module GðVÞ. Similarly, if F A CohGðY � CnÞ is
a gnat-family then the corresponding family of RzG-modules is pY�F. We define the dual

gnat-family ~FF to be the gnat-family corresponding to ðp�FÞ4¼ HomY ðpY�F;OY Þ.

Proposition 2.1. If F is a gnat-family on Y � Cn then F4½n�G ~FF.

Proof. We would like to use Grothendieck-Serre duality for the morphism
pY : Y � Cn ! Y . But pY is manifestly non-proper. However, using Deligne’s approach
via compactification and pro-categories described in [5] we can still obtain the duality for
the full subcategory of DGðY � CnÞ consisting of objects whose support is proper over Y .
Specifically, we get a natural isomorphism

pY�R HomY�CnðA; p�Y B� oY�Cn=Y ½n�Þ !
@

R HomY ðpY�A;BÞð2:4Þ
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for any A A DGðY � CnÞ whose support is proper over Y and any B A DGðYÞ. Observe
that as pY is both flat and a‰ne, p�Y and pY� are both exact.

Setting A ¼F and B ¼ OY yields

pY�F
4½n� !@ R HomY ðpY�F;OY Þð2:5Þ

since oY�Cn=Y is trivial. Because the right-hand side is by definition pY� ~FF the claim
follows. r

For the skeptical reader unconvinced of the validity of (2.4) we give an alternative
proof of Proposition 2.1 in the Appendix. It computes F4 by resolving F by locally free
sheaves. To do this we give a natural locally free resolution for finite-length sheaves on Cn

that may be of independent interest.

2.3. The image C(O0 n r) A D(Y). Let O0 be the structure sheaf of the origin
0 A Cn. For any irreducible representation r A Irr G denote by O0 n r the G-sheaf where
OCn acts on the first factor and G on the second.

The proposition below shows how to compute CFðO0 n rÞ for any gnat-family F on
Y . In view of Proposition 2.1 we can compute CF4½n�ðO0 n wÞ by setting F in the proposi-
tion below to be the dual family ~FF.

Proposition 2.2. Let F be any gnat-family over Y. The image of O0 n r under the

integral transform CF : DGðCnÞ ! DðY Þ is the G-invariant part of the complex

5nV4
giv n pY�Fn r �!dn � � � �!dkþ1

5kV4
giv n pY�Fn r �!dk � � � �!d1

pY�Fn rð2:6Þ

where the rightmost term lies in degree zero. The di¤erentials dk are defined for mi A V4
giv,

s A pY�F and v A r by

ðm15� � �5mkÞn sn v 7!
Pk
i¼1

ð�1Þ ið. . .mi�15miþ1 . . .Þn ðmi � sÞn v:ð2:7Þ

Proof. To compute CFðO0 n rÞ ¼ pY�
�
Fn

L

Y�Cn p�CnðO0 n rÞ
�G

we first resolve
O0 n r via a Koszul resolution. Observe that elements of V4

giv are the non-constant linear
functions on Cn and so any basis of V4

giv generates the ideal of 0 A Cn. We therefore obtain
the complex

5nV4
giv nOCn n r! � � � !5kV4

giv nOCn n r! � � � ! OCn n rð2:8Þ

with the di¤erential maps

ðm15� � �5mkÞn sn v 7!
Pk
i¼1

ð�1Þ iþ1ð. . .mi�15miþ1 . . .Þnmi � sn vð2:9Þ

where mi A V4
giv, s A OCn and v A r.
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Pulling back to Y � Cn and tensoring with F we get

5nV4
giv nFn r! � � � !5kV4

giv nFn r! � � � !Fn r:ð2:10Þ

The result now follows by applying pY�. r

2.3.1. The abelian case. If the group G is abelian then we can describe the results
above more explicitly. This is because we can decompose any gnat-family pY�F on Y

into eigensheaves as follows.

Any gnat-family F defines a Hilbert-Chow morphism pF : Y ! Cn=G which sends
any y A Y to the G-orbit in Cn that the fiber Fjy is supported on. We can then define the
notion of G-Weil divisors on Y as in [10], Section 2. Any gnat-family on Y can be decom-
posed as pY�F ¼

L
w AG4

Lð�DwÞ for a unique set of G-Weil divisors fDwg with Dw0
¼ 0 (see

[10], Section 3.1). A good thing to remember is that G acts on LðDwÞ by the character w
and hence on Lð�DwÞ by w�1.

Fix a basis of G-eigenvectors for V4
giv and denote it by x1; . . . ; xn. This choice

determines a G-eigenvector basis Ik ¼ fxi15� � �5xik : i1 < � � � < ikg for each of the spaces
5kV4

giv. Denote by kðxiÞ the character with which G acts on xi. More generally, given any
element e ¼ xi15� � �5xik of Ik denote by kðeÞ the character kðxi1Þ . . . kðxikÞ, and similarly
for Laurent monomials in xi.

We can now give a refinement of Proposition 2.2.

Proposition 2.3. Suppose G is abelian, let w be a character of G and let

F ¼
L

w AG4

Lð�DwÞ be a gnat-family. Then CFðO0 n wÞ A DðYÞ is equivalent to the complex

L
e A In

Lð�DkðeÞwÞ ! � � � !
L

e A Ik

Lð�DkðeÞwÞð2:11Þ

! � � � !
L

e A I0

Lð�DkðeÞwÞFLð�DwÞ

where, for each j A f1; . . . ; kg, the di¤erential

Lð�Dkðxi1
5���5xik

ÞwÞ !Lð�Dkð...xij�1
5xijþ1

...ÞwÞð2:12Þ

is given by s 7! ð�1Þ j
xij � s.

Proof. From decomposition F ¼
L

w 0 AG4

Lð�Dw 0 Þ and5kV4
giv ¼

L
e A Ik

Ce we get

5kV4
giv n pY�Fn w ¼

L
w 0 AG4; e A Ik

CenLð�Dw 0 Þn w:

The group G acts on CenLðDw 0 Þn w by the character kðeÞðw 0Þ�1w, so the G-invariant
part consists of terms where w 0 ¼ kðeÞw. This gives (2.11). The claim about the di¤erentials
follows immediately from (2.7). r
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To compute C ~FFðO0 n wÞ we need the result below which allows us to express the G-
Weil divisors defining the dual family ~FF in terms of those defining F:

Proposition 2.4. If F ¼
L

w AG4

Lð�DwÞ then ~FF ¼
L

w AG4

Lð�D 0wÞ where D 0w ¼ �Dw�1 .

Proof. For any two G-Weil divisors A and B there is a standard OY -module isomor-
phism LðB� AÞ !@ HomOY

�
LðAÞ;LðBÞ

�
. The sheaves LðAÞ, LðBÞ and LðB� AÞ all

come with a natural embedding into the constant sheaf KðCnÞ on Y and the isomorphism
sends a section of LðB� AÞ to the map of the multiplication by that section inside of
KðCnÞ.

In particular, this gives an OY -module isomorphism

f :
L

w AG4

LðDwÞ !@ HomOY

� L
w AG4

Lð�DwÞ;OY

�
¼ ~FF:

We claim that f is RzG-equivariant, thus making it an isomorphism of OY n ðRzGÞ
modules. Let s be a section of

L
w AG4

LðDw�1Þ and t a section of
L

w AG4

Lð�DwÞ. Then for
any g A G and m A R

fðr � sÞðtÞ ¼ rst ¼ r �
�
fðsÞðtÞ

�
¼
�
r � fðsÞ

�
ðtÞ;

fðg � sÞðtÞ ¼ ðg � sÞt ¼ g �
�
sðg�1 � tÞ

�
¼ð1Þ sðg�1 � tÞ ¼ fðsÞðg�1 � tÞ ¼

�
g � fðsÞ

�
ðtÞ

where the equality ð1Þ is due to the fact that sðg�1 � tÞ is an element of OY LKðCnÞ and
thus G-invariant. Finally, since G acts by w on LðDwÞ it must be the summand Lð�D 0

w�1Þ
of ~FF. This yields D 0w ¼ �Dw�1 . r

Corollary 2.5. Suppose G is abelian, w is a character of G and let F ¼
L

w AG4

Lð�DwÞ
be a gnat-family. Then C ~FFðO0 n wÞ A DðY Þ is equivalent to the complexL

e A In

LðDkðeÞ�1w�1Þ ! � � � !
L

e A Ik

LðDkðeÞ�1w�1Þð2:13Þ

! � � � !
L
e A I0

LðDkðeÞ�1w�1ÞFLðDw�1Þ

where, for each j A f1; . . . ; kg, the di¤erential

LðDkðxi1
5���5xik

Þ�1w�1Þ !LðDkð...xij�1
5xijþ1

...Þ�1w�1Þð2:14Þ

is given by s 7! ð�1Þ j
xij � s.

2.4. Examples. We end this section with a couple of examples.

Example 2.6. Let G be the group
1

7
ð1; 6Þ. That is, G GZ=7Z embedded in

SL2ðCÞ via 1 7! x

x6

� �
. Denote by wi the character of G given by i 7! x i. In these
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terms, kðx1Þ ¼ w6 and kðx2Þ ¼ w1. Let Y be the minimal resolution of C2=G and let
F ¼

L
Lð�DwÞ be any gnat-family on Y . Then C ~FFðO0 n w3Þ A DðY Þ is given by the

(total complex of the) square

LðDw5
Þ

LðDw4
Þ LðDw4

Þ:
����!  ����

 ���� ����!
LðDw3

Þ

x2� �x1�

�x1� x2�

By convention the rightmost term is sitting in degree 0.

Example 2.7. Let G be the subgroup
1

13
ð1; 5; 7Þ, Y a crepant resolution of C3=G and

F ¼
L

Lð�DwÞ a gnat-family on Y . Then the C ~FFðO0 n w5Þ A DðY Þ is given by the (total
complex of the) cube

LðDw7
Þ LðDw9

Þ

LðDw8
Þ ���!x2�

LðDw3
Þ LðDw0

Þ ���!�x2�
LðDw8

Þ

LðDw1
Þ LðDw2

Þ

ð2:15Þ
�����!

 �����
 ��������

���

 �����
������

�������������
�!

 ��������
���

������
������

��!

����������
�!

 �����

�����!
�x1�

x3�

�x2�

x3�

�x1�

�x3�
x2�

�x1� �x1�
x3�

where, again, the rightmost term is sitting in degree 0.

3. Cohomology of skew-commutative cubes

In this section we study the cohomology of abstract complexes of the form (2.15) with
the aim to use this later to calculate the cohomology sheaves of CðO0 n wÞ.

Let X be a smooth separated scheme over C. Let S :¼ f1; . . . ; ng and denote by V the
set of subsets of S. We identify V with the vertices of an (n-dimensional) unit cube.

By a cube of line bundles we mean the data of a line bundle Lv on X for every vertex
v A V and a morphism a i

v : LvWi !Lv for each edge vW fig ! v of the cube. One can think
of it as a representation of a cube-shaped quiver with vertices V and arrows vW fig ! v

into a graded sheaf
L

v AV

Lv over X .

We say that a cube is skew-commutative (resp. commutative), if each of its two-
dimensional faces forms an anti-commutative (resp. commutative) square, i.e.

a i
v � a

j
vWi þ a j

v � a i
vWj ¼ 0 or a i

v � a
j
vWi � a j

v � a i
vWj ¼ 0;

respectively, for all v A V with i; j B v. Given a skew-commutative cube, we can form its
total chain complex T � where T�i ¼

L
jI j¼i

LI . The di¤erential d is given by summing the
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maps in the cube. A commutative cube can be turned into a skew-commutative cube by
sprinkling some minus signs as follows:

a
ij
fi1e���eikgc ð�1Þ ja

ij
fi1e���eikg:ð3:1Þ

We now turn to the case n ¼ 3 and further assume that the maps a i
v are non-

zero. The vanishing locus of a i
v is then an e¤ective Weil divisor on X which we denote

by Di
v. Note that OX ðDi

vÞGLv nL4
vWi. The corresponding skew-commutative cube looks

like

L23 L1

L123 ���!a2
13

L13 L2 ���!a2

L:

L12 L3

�����!

 �����
 ��������

���

 �����
������

�������������
�!

 ��������
���

������
������

��!

����������
�!

 �����

�����!
a1

23

a3
2

a2
3

a3
1

a1

a3
12

a2
1

a1
2

a1
3

a3

Lemma 3.1. Let T � be the total complex of the skew-commutative cube fL; ag
depicted above. Then:

(1) H 0ðT �ÞGLnOZ where Z is the scheme theoretic intersection D1 XD2 XD3.

(2) H�1ðT �Þ has a three step filtration with successive quotients:

� OZ nL12

�
gcdðD2

1 ;D
1
2Þ
�

where Z is the scheme theoretic intersection of

gcdðD2
1 ;D1

2Þ and the e¤ective part of D3 þ lcmð ~DD1
3 ;

~DD2
3Þ � ~DD2

1 �D1,

� OZ nL13

�
gcdðD3

1 ;D
1
3Þ
�

where Z is the scheme theoretic intersection of

gcdðD3
1 ;D1

3Þ and the e¤ective part of D2 þ lcmðD1
2 ;

~DD3
2Þ � ~DD1

3 �D3,

� OZ nL23

�
gcdðD3

2 ;D
2
3Þ
�

where Z is the scheme theoretic intersection of

gcdðD3
2 ;D2

3Þ and the e¤ective part of D1 þ lcmðD2
1 ;D

3
1Þ � ~DD3

2 �D2,

where ~DDi
j ¼ Di

j � gcdðDi
j ;D

j
i Þ.

(3) H�2ðT �ÞGL123ðDÞnOD where D ¼ gcdðD1
23;D2

13;D3
12Þ.

(4) H�3ðT �ÞG 0.

Proof. We shall need to work locally. Let p be an arbitrary point of X . We fix a
local generator for each Le, identifying it with OX ;p. Each map a i

e becomes then an endo-
morphism of OX ;p, i.e. the multiplication by some f i

e A OX ;p. Then f i
e is a local generator of

Di
e, and we use it to identify OX ð�Di

eÞ and OX ðDi
eÞ with OX ;p.

(1) We can view H 0ðT �Þ as the cokernel of
L

i

OX ð�DiÞnL ,! OX nL, which is
by definition OZ nL where Z ¼

T
i

Di.
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(2) Assume without loss of generality that D1, D2, D3 have no prime divisor in

common. We claim that the kernel of d : T�1 ! T 0 is generated by b1 ¼
1

h12
ð f 2; f 1; 0Þ,

b2 ¼
1

h13
ð f 3; 0; f 1Þ and b3 ¼

1

h23
ð0; f 3; f 2Þ where hij ¼ gcdð f i; f jÞ. Suppose

af 1 þ bf 2 þ cf 3 ¼ 0:

We must have gcd
f 2

h12
;

f 3

h13

� �
divides a, for it divides f1a and no prime divisor of it can

divide f1 by definitions of h12 and h13. Thus we can obtain a as a linear combination of
f 2

h12

and
f 3

h13
, i.e. we can combine b1 and b2 to get an element of the form ða; b 0; c 0Þ. Then

ð0; b 0 � b; c 0 � cÞ is a multiple of b3—for it must also lie in the kernel of d : T�1 ! T 0,
which means f 2ðb 0 � bÞ þ f 3ðc 0 � cÞ ¼ 0. This shows the claim.

For any i3 j denote by gij the greatest common divisor of f i
j and f

j
i and let

~ff i
j ¼ f i

j =gij. By skew-commutativity of the cube f
j

i f i þ f i
j f j ¼ 0. Therefore ~ff i

j ¼ f i=hij.

We now rewrite b1 ¼ ð ~ff 2
1 ;

~ff 1
2 ; 0Þ, b2 ¼ ð ~ff 3

1 ; 0;
~ff 1
3 Þ and b3 ¼ ð0; ~ff 3

2 ;
~ff 2
3 Þ. On the other hand,

the image of d in T 1 is generated by ð f 2
1 ; f 1

2 ; 0Þ, ð f 3
1 ; 0; f 1

3 Þ and ð0; f 3
2 ; f 2

3 Þ. In particular,
this means that if D

j
i and Di

j have no common divisors for any i3 j then H�1ðT �Þ ¼ 0.

Consider the filtration ImðdÞ ¼ F 0 HF 1 HF 2 HF 3 ¼ kerðdÞ inside T�1 where

� F 0 is generated by g12 � ð ~ff 2
1 ;

~ff 1
2 ; 0Þ, g13 � ð ~ff 3

1 ; 0;
~ff 1
3 Þ and g23 � ð0; ~ff 3

2 ;
~ff 2
3 Þ,

� F 1 is generated by g12 � ð ~ff 2
1 ;

~ff 1
2 ; 0Þ, g13 � ð ~ff 3

1 ; 0;
~ff 1
3 Þ and ð0; ~ff 3

2 ;
~ff 2
3 Þ,

� F 2 is generated by g12 � ð ~ff 2
1 ;

~ff 1
2 ; 0Þ, ð ~ff 3

1 ; 0;
~ff 1
3 Þ and ð0; ~ff 3

2 ;
~ff 2
3 Þ,

� F 3 is generated by ð ~ff 2
1 ;

~ff 1
2 ; 0Þ, ð ~ff 3

1 ; 0;
~ff 1
3 Þ and ð0; ~ff 3

2 ;
~ff 2
3 Þ.

We show that globally the quotient F 2=F 1 is isomorphic to OZ nL13

�
gcdðD3

1 ;D
1
3Þ
�
, where

Z is the intersection of gcdðD3
1 ;D1

3Þ and the e¤ective part of D2 þ lcmðD1
2 ;

~DD3
2Þ � ~DD1

3 �D3

(the other two quotients are computed similarly).

We can combine g12 � ð ~ff 2
1 ;

~ff 1
2 ; 0Þ ¼ ð f 2

1 ; f 1
2 ; 0Þ and ð0; ~ff 3

2 ;
~ff 2
3 Þ to give a multiple of

ð ~ff 3
1 ; 0;

~ff 1
3 Þ. The smallest such multiple is

~ff 3
2

gcdð f 1
2 ;

~ff 3
2 Þ
ð f 2

1 ; f 1
2 ; 0Þ � f 1

2

gcdð f 1
2 ;

~ff 3
2 Þ
ð0; ~ff 3

2 ;
~ff 2
3 Þ ¼

~ff 2
3 � f 1

2

~ff 1
3 � gcdð f 1

2 ;
~ff 3
2 Þ
ð ~ff 3

1 ; 0;�~ff 1
3 Þ:

Let h be the regular part of
~ff 2
3 � f 1

2

~ff 1
3 � gcdð f 1

2 ;
~ff 3
2 Þ

, it is well defined since OX ;p is UFD. Then,

locally, F 2=F 1 is OX ;p=ðg13; hÞ � ð ~ff 3
1 ; 0;

~ff 1
3 Þ. Consider now the global injection

L13

�
gcdðD3

1 ;D
1
3Þ
� �����!a3

1
l0la1

3
L1 lL2 lL3:
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Locally, its image in L1 lL2 lL3 is just OX ;p � ð ~ff 3
1 ; 0; ~ff 1

3 Þ. It therefore only remains to
show that the ideal ðg13; hÞ defines Z in OX ;p. This follows since ðg13Þ defines gcdðD1

3 ;D3
1Þ

and ðhÞ—the e¤ective part of

~DD2
3 þD1

2 � ~DD1
3 � gcdðD1

2 ;
~DD3

2Þ ¼ ~DD3
2 �D3 þD2 þD1

2 � gcdðD1
2 ;

~DD3
2Þ � ~DD1

3

¼ D2 þ lcmðD1
2 ;

~DD3
2Þ �D3 � ~DD1

3 ;

where the first equality follows since ~DD2
3 þD3 ¼ ~DD3

2 þD2 by the skew-commutativity.

(3) Suppose, at first, that D1
23, D2

13 and D3
12 have no divisor in common. We claim

that, locally, if ða; b; cÞ A T�2 lies in the kernel of d then it lies in dðT�3Þ. Let g be a prime
factor of f 1

23 and suppose (without loss of generality) that g does not divide f 3
12. Let p, q

be the largest non-negative integers such that gp j f 1
23 and gq j f 3

2 . Commutativity of
faces implies f 1

23 � f 3
2 ¼ f 3

12 � f 1
2 so gpþq divides f 1

2 . But since ða; b; cÞ lies in the kernel
af 3

2 � cf 1
2 ¼ 0. This means gpþq divides af 3

2 . Since the local ring is a UFD we get gp j a.
Since this is true for any g we get f 1

23 j a. A similar argument shows f 2
13 j b and f 3

12 j c so
ða; b; cÞ lies in the image of d.

More generally, if D is the largest common divisor, then we can factor d : T�3 ! T�2

as L123 !L123ðDÞ followed by a map which has no common divisors. By the above, the
image of L123ðDÞ under this map equals the kernel of d : T�2 ! T�1. Thus H�2ðT �Þ is
precisely the cokernel of L123 ,!L123ðDÞ which is OD nL123ðDÞ.

(4) Since any non-zero map between line bundles is injective L123 injects into (say)
L12 so H�3ðT �ÞG 0. r

Lemma 3.1 makes it clear that given a gnat-family F ¼
L

Lð�DwÞ in order to
calculate the cohomology sheaves of CFðO0 n wÞ we need to calculate the vanishing loci
Di

v of all maps a i
v in all the corresponding skew-commutative cubes. By Proposition 2.3

this amounts to calculating the vanishing loci of maps

Lð�DwÞ !Lð�DwkðxiÞ�1Þ;

s 7! xi � s;

for all w and xi. We learn to do this in our next section.

4. The associated representation of the McKay quiver

In this section, we take G to be a finite abelian subgroup of SL3ðCÞ, Y ! C3=G to be
any crepant resolution and F ¼

L
Lð�DwÞ to be any gnat-family on Y . We fix an excep-

tional divisor E A ExcðYÞ and generically along E study the behavior of the McKay quiver
representation QðGÞF.

4.1. The McKay quiver of GHSL3(C) and its planar embedding. By a quiver we
mean a vertex set Q0, an arrow set Q1 and a pair of maps h : Q1 ! Q0 and t : Q1 ! Q0

giving the head hq A Q0 and the tail tq A Q0 of each arrow q A Q1.
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Definition 4.1. The McKay quiver QðGÞ of (a not necessarily abelian) G H SL3ðCÞ is
the quiver whose vertex set Q0 are the irreducible representations r of G and whose arrow
set Q1 has dim HomGðri nV4

giv; rjÞ arrows going from the vertex ri to the vertex rj.

As we assumed G to be abelian V4
giv G

L
Cxi as G-representations. Let wi and wj be

any pair of characters of G. We then see that HomGðwi nV4
giv; wjÞ contains a copy of C for

each k A f1; 2; 3g satisfying wj ¼ kðxkÞwi. Thus each vertex w A G4 of QðGÞ has 3 arrows
emerging from it and going to vertices kðxkÞw for k ¼ 1; 2; 3. We denote the arrow from w

to kðxkÞw by ðw; kÞ and say further that it is an xk-arrow. For an example see Section 6.1.

The fact that G L SL3ðCÞ allows us to embed its McKay quiver in a two dimensional
real torus. We briefly recall this embedding as constructed by Craw and Ishii in [2].

Consider the maximal torus ðC�Þ3 H SL3ðCÞ containing G. We have an exact se-
quence of abelian groups:

0! G ! ðC�Þ3 ! T ! 0ð4:1Þ

where T is the quotient torus which acts on the quotient space C3=G. By applying
Homð�;C�Þ to (4.1) we obtain an exact sequence

0!M ! Z3 !r G4! 0ð4:2Þ

where Z3 is thought of as the lattice of exponents of Laurent monomials. Given
m ¼ ðk1; k2; k3Þ A Z3 we write xm for xk1

1 xk2

2 xk3

3 . Note that r is the weight map, that is
xmðg � vÞ ¼ rðmÞðgÞxmðvÞ for any v A C3. By definition g � xmðvÞ ¼ xmðg�1 � vÞ, so r ¼ k�1,
where k is the map introduced in Section 2.3.1, which maps every Laurent monomial to the
character G acts on it with. M is then the sublattice in Z3 of (exponents of ) G-invariant
Laurent monomials. As G L SL3ðCÞ we have ð1; 1; 1Þ A M, i.e. x1x2x3 is an invariant
monomial. Take H ¼ Z3=Zð1; 1; 1Þ and M 0 ¼M=Zð1; 1; 1Þ. Then (4.2) induces

0!M 0 ! H ! G4! 0:ð4:3Þ

For every Laurent monomial xm for some m A Z3 we shall write ½xm� for the class of m in
H, e.g. ½x1x2

2 � for the class of ð1; 2; 0Þ.

Definition 4.2. The universal cover U of QðGÞ is the quiver whose vertex set are the
elements of H and whose arrow set is

fðh; hþ ½xi�Þ j h A H; i A 1; 2; 3g:

We have a natural ‘embedding’ of U into H nRGR2, where the arrow ðh; hþ ½xi�Þ
is identified with the line segment fhþ l½xi� j l A ð0; 1Þg. For illustrative purposes, we fix a
specific isomorphism:

fH : H nR! R2 :
½x1� 7!

ffiffiffi
3
p

2
;� 1

2

 !
;

½x3� 7! ð0; 1Þ:

8>><
>>:
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As shown in Figure 3 the image of U under fH is a tessellation of R2 into regular
triangles. The quotient TG ¼ H nR=M 0 is a two dimensional real torus. QðGÞ is the
quotient of U by the action of M 0 and thus is a tessellation of TG into regular triangles.
The boundary of a triangle is the cycle

w �!xsð1Þ
kðxsð1ÞÞw �!xsð2Þ

kðxsð1Þxsð2ÞÞw �!xsð3Þ
kðxsð1Þxsð2Þxsð3ÞÞw ¼ w

where s A S3 is a permutation. There are altogether 2jGj triangles in QðGÞ. When depicting
TG in diagrams we draw its fundamental domain in R2. The depiction of the McKay quiver
of G ¼ 1=13ð1; 5; 7Þ, as embedded into TG, is illustrated in Figure 27 (Section 6.1).

4.2. The associated representation Q(G )F of the McKay quiver. A representation of

a quiver over C is a graded vector space
L

i AQ0

Vi together with a collection of linear maps

faq : Vtq ! Vhqgq AQ1
. Over an arbitrary scheme S this translates into a graded locally free

sheaf
L

i AQ0

Ni and a collection of morphisms faq : Ntq !Nhqgq AQ1
.

Definition 4.3. Given a gnat-family F ¼
L

w AG4

Lð�DwÞ on Y the associated repre-

sentation QðGÞF of the McKay quiver over Y is the sheaf F where the summand
Lð�Dw�1Þ is graded by w (since G acts by w on Lð�Dw�1Þ). The maps aw;xk

are defined by

aw;xk
: Lð�Dw�1Þ !Lð�DkðxkÞ�1w�1Þ; s 7! xk � s;ð4:4Þ

where xk acts via RzG-module structure of F.

Denote by Bw;xk
the e¤ective Weil divisor on Y where aw;xk

vanishes. As shown in [9],
Section 4.6, Bw;xk

is given by the formula

Bw;xk
¼ Dw�1 þ ðxiÞ �DkðxkÞ�1w�1 :ð4:5Þ

Proposition 4.4. Each Bw;xk
is supported on the union of the exceptional locus ExcðY Þ

of Y ! C3=G and the strict transform of the surface x
jGj
k ¼ 0 in C3=G.

Figure 3. Tessellation of R2 by U .
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Proof. Observe that it follows from the formula (4.5) thatP
w AG4

Bw;xk
¼
P

w AG4

Dw�1 þ jGjðxkÞ �
P

w AG4

Dw�1 ¼ jGjðxkÞ ¼ ðxjGjk Þ:ð4:6Þ

As each Bw;xk
is e¤ective, its support is contained in that of the principal Weil divisor ðxjGjk Þ

on Y . This is precisely the strict transform of the surface ðxjGjk Þ in C3=G union the excep-
tional locus. r

The following simple result, which generalizes [2], Corollary 10.2, shows that G being
a subgroup of SL3ðCÞ together with Y ! C3=G being crepant impose a strong restriction
on the multiplicities of the exceptional divisors in Bw; i.

Proposition 4.5. Let E be an irreducible exceptional divisor of Y and QðGÞF a gnat-

family. In any triangle of QðGÞ, one of the three maps corresponding to QðGÞF vanishes

along E with multiplicity one while the other two do not vanish along E. Consequently, E

occurs in any Bw; i with multiplicity zero or one.

Proof. Suppose the vertices of the triangle are w, kðx1Þw and kðx1x2Þw. Then by
formula (4.6)

Bw;x1
þ Bkðx1Þw;x2

þ Bkðx1x2Þw;x3
¼ ðx1x2x3Þ:ð4:7Þ

This is a G-invariant monomial since G L SL3ðCÞ.

Since any Bw;xi
is e¤ective it su‰ces to show that vEðx1x2x3Þ ¼ 1 where vE is the

valuation at E. This is in fact true for any crepant (and thus monomial) valuation of
KðY Þ—see [7], in particular Step 5 of the proof of Theorem 1.4. r

The relevance of the associated representation to the context of this paper is as fol-
lows. Let w be a character of G. Recall the definition of the 3-dimensional cube quiver in
Section 3. Define HexðwÞ to be the subquiver of the McKay quiver which contains the six
triangles which share the vertex w. This is depicted in Figure 4. The restriction of the repre-
sentation QðGÞF to HexðwÞ gives a representation HexðwÞF. In the language of Section 3
this is a commutative cube of line bundles (which has been projected onto the plane). We
can turn it into a skew-commutative cube as per (3.1). The following is then an immediate
consequence of Proposition 2.3.

kðx3Þw

kðx1Þ�1w kðx2Þ�1w

w

kðx2Þw kðx1Þw

kðx3Þ�1w

Figure 4. The subquiver HexðwÞ.
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Proposition 4.6. Let w be a character of G, Y ! C3=G a crepant resolution and F a

gnat-family on Y. Then CFðO0 n wÞ A DðY Þ is the total complex of the skew-commutative

cube of line bundles induced by Hexðw�1ÞF.

4.3. Behavior of Q(G )F along E. Given a gnat-family F we would like to under-
stand better the divisors Bw;xk

where the maps aw;xk
of QðGÞF vanish. In this section we

fix one irreducible exceptional divisor E and study the behavior of QðGÞF and its subrepre-
sentations HexðwÞF generically along E.

Proposition 4.7. Fix a character w A G4. On the quiver HexðwÞ we color an arrow

black if the zero divisor of the corresponding map a in HexðwÞF contains E, otherwise we

color it grey. Then all the possible colorings of HexðwÞ are depicted in Figures 5–9.

Figure 5. The ð3; 0Þ-sink and the ð0; 3Þ-sink.

Figure 6. The x1-, x2- and x3-ð1; 0Þ-charges, the x1-, x2- and x3-ð0; 1Þ-charges.

Figure 7. The x1-tile, the x2-tile and the x3-tile.

Figure 8. The x1-, x2- and x3-ð1; 2Þ-sources, the x1-, x2- and x3-ð2; 1Þ-sources.

Figure 9. The ð3; 3Þ-source.
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Proof. It follows from Proposition 4.5 that in each of the six triangles making up
HexðwÞ exactly one out of three arrows is colored black. It is a simple combinatorial exer-
cise to check that all the possible configurations satisfying this condition are depicted in the
Figures 5–9. r

The terminology used in Figures 5–9 will be justified shortly as a consequence of the
following combinatorial observations.

Corollary 4.8. Let w be a character of G.

� If w is an xi-ð1; 0Þ-charge, then kðxiÞw is either another xi-ð1; 0Þ-charge or a ð3; 0Þ-
sink. While kðxiÞ�1w is either another xi-ð1; 0Þ-charge, an ð3; 3Þ-source, an xi-ð1; 2Þ-source

or an xj-ð2; 1Þ-source, where j 3 i.

� If w is an xi-ð0; 1Þ-charge, then kðxiÞ�1w is either another xi-ð0; 1Þ-charge or a ð0; 3Þ-
sink, while kðxiÞw is either another xi-ð0; 1Þ-charge, an ð3; 3Þ-source, an xi-ð2; 1Þ-source or an

xj-ð1; 2Þ-source, where j 3 i.

As kðxiÞw is the next vertex after w in the direction of xi-arrows and kðxiÞ�1w is the
previous one, Corollary 4.8 may be interpreted as saying that charges propagate from a
source to a sink in a straight line. The xi-ð1; 0Þ-charges propagate in the direction of xi-
arrows, while xi-ð0; 1Þ-charges propagate against the direction of xi-arrows. We say that
xi is the orientation of xi-ð1; 0Þ-charge and that ð1; 0Þ is its type (and the same for the other
types of vertices).

Corollary 4.9. Let w be a character of G.

� If w is a ð3; 3Þ-source, then for i A f1; 2; 3g the vertex kðxiÞw is either an xi-ð1; 0Þ-
charge or a ð3; 0Þ-sink, while the vertex kðxiÞ�1w is either an xi-ð0; 1Þ-charge or a ð0; 1Þ-
sink.

� If w is an xi-ð1; 2Þ-source, then the vertex kðxiÞxi is either an xi-ð1; 0Þ-charge or a

ð3; 0Þ-sink, while each of the two vertices kðxjÞw, for j 3 i, is either an xj-ð0; 3Þ-charge or a

ð0; 3Þ-sink.

� If w is an xi-ð2; 1Þ-source, then the vertex kðxiÞ�1
xi is either an xi-ð0; 1Þ-charge or a

ð0; 3Þ-sink, while each of the two vertices kðxjÞw, for i3 j, is either an xj-ð3; 0Þ-charge or a

ð3; 0Þ-sink.

Corollary 4.10. Let w be a character of G.

� If w is a ð3; 0Þ-sink, then each of the vertices kðxiÞ�1w for i ¼ 1; 2; 3 is either an

xi-ð1; 0Þ-charge, ð3; 3Þ-source, xi-ð1; 2Þ-source or an xj-ð2; 1Þ-source, where j 3 i.

� If w is an ð0; 3Þ-sink, then each of the vertices kðxiÞw for i ¼ 1; 2; 3 is either an

xi-ð0; 1Þ-charge, ð3; 3Þ-source, xi-ð2; 1Þ-source or an xj-ð1; 2Þ-source, where j 3 i.

In other words, sources emit charges which propagate in a straight line to a sink. An
ða; bÞ-source emits a charges of type ð1; 0Þ (which propagate in the direction of the arrows
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of the quiver) and b charges of type ð0; 1Þ (which propagate against the direction of the
arrows). Similarly, an ða; bÞ-sink receives a charges of type ð1; 0Þ and b charges of type
ð0; 1Þ.

Corollaries 4.8–4.10 imply that given a gnat-family F and an exceptional divisor E

we can draw a graph on top of the McKay quiver QðGÞ as follows. The vertices are the
sources and sinks (with respect to the coloring of QðGÞ keeping track of the vanishing of
E) while the edges are the straight lines along which charges propagate from a source to a
sink. We call it the sink-source graph and denote it SSF;E .

The sink-source graph subdivides the torus TH into regions. The vertices interior to
these regions are all tile vertices. Since two tiles can be adjacent only if they have the
same orientation, we conclude that inside any one given region all the tiles have the same
orientation xi for some i A 1; 2; 3.

Example 4.11. Let G be the group
1

13
ð1; 5; 7Þ, Y be G-HilbðC3Þ and let ~MM be the

dual of the universal family of G-clusters (cf. Section 6).

In Figure 10 the thick lines depict the sink-source graph SS ~MM;E7
of the exceptional

divisor E7 (see Section 6.2) drawn on the torus TH (left). The lift of the graph to the univer-
sal cover H nR2 is drawn on the right.

Looking at the left diagram, there are two sources (the x2-ð1; 2Þ-source w10 and the
x2-ð2; 1Þ-source w1) and two sinks (the ð3; 0Þ-sink w0 and the ð0; 3Þ-sink w11).

4.4. Further properties of Q(G )F. We now restrict our attention more to the case
where Y ¼ G-HilbðC3Þ and F ¼ ~MM is the dual of the universal family of G-clusters.

Figure 10. The sink-source graph of E7 on TH (left) and on H nR2 (right).
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Given a single G-cluster V its associated representation QðGÞV is the vector space
underlying the corresponding RzG-module V ¼ GðVÞ. The grading

L
w

Vw is given by

the natural decomposition of V into irreducible G-representations. The map corresponding
to an arrow ðw; xkÞ is given by the multiplication map Vw !

�xk
VwkðxkÞ.

We begin with a simple observation about G-clusters.

Proposition 4.12. If V is a single G-cluster then in the associated representation of V
one of the arrows leading into the vertex w3 w0 must be non-zero. If V is the dual of a single

G-cluster then one of the arrows leading out of w must be non-zero.

Proof. Since a G-cluster is of the form OZ for a subscheme Z HC3, the RzG-
module V corresponding to V is of the form R=I for some G-invariant ideal I . Therefore
it is generated by 1 as an R-module. In particular, for any w3 w0 there exists a monomial
13m A R such that m � 1 is a non-zero element of Vw. Writing m ¼ xim

0 for some xi we
find that the arrow labeled xi leading into w must be a non-zero map.

The dual claim follows since taking duals corresponds to reversing all the arrows (and
relabeling w by w�1). r

Corollary 4.13. Let Y ¼ G-HilbðC3Þ and ~MM the dual of the universal family of G-

clusters. If w A G4 is non-trivial then the intersection of the three divisors Bw;1, Bw;2 and Bw;3

associated to QðGÞ ~MM is empty.

Proof. Over any point belonging to the intersection of Bw;1, Bw;2 and Bw;3 we get the
dual of a G-cluster for which all the maps leading out of w are zero (remember that Bw; i

records the locus where the map aw; i is zero). This cannot happen by Proposition 4.12 so
the intersection must be empty. r

Proposition 4.14. Let Y be G-HilbðC3Þ, E A ExcðY Þ an irreducible exceptional divi-

sor and M the universal family of G-clusters. Then the sink-source graph SSM;E contains

exactly one ð0; 3Þ-sink (given by the vertex w0). Similarly, the sink-source graph SS ~MM;E con-

tains exactly one ð3; 0Þ-sink (given by the vertex w0).

Proof. It su‰ces to prove the first claim as the dual claim follows similarly. If w is a
ð0; 3Þ-sink in SSM;E then in the associated representation of a fiber of M over any point in
E all three arrows leading into w are zero-maps. This, by Proposition 4.12, can only happen
if w ¼ w0.

It remains to show that w0 is a ð0; 3Þ-sink in SSM;E . If not then there exists a point
y A E such that in the associated representation of Mjy one of the three arrows leading
into w0 is not a zero map. Since the same is also true for every w3 w0 (by Proposition
4.12), we can find a path of non-zero maps in the McKay quiver which starts and ends
at the same vertex. Since each of these maps is multiplication by non-zero number their
composition is also non-zero. So this path gives a monomial 13m A R which is in-
variant under G (since the path starts and ends at the same vertex) such that m � 13 0
in Mjy.
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This is impossible since the resolution Y !p C3=G is the Hilbert-Chow map of M and
so for any monomial 13m A RG and s A Mjy we have m � s ¼ m

�
pðyÞ

�
s ¼ mð0Þs ¼ 0.

Here pðyÞ ¼ 0 since y lies in the exceptional locus of Y . r

The next result is a consequence of 4.14. It will be heavily used to derive properties of
the associated representation QðGÞ ~MM.

Proposition 4.15. For any Y , F and E, if the sink-source graph SSF;E contains

exactly one ð3; 0Þ-sink then there are exactly three possibilities for its remaining vertices:

(1) One ð0; 3Þ-sink and one ð3; 3Þ-source.

(2) One ð0; 3Þ-sink, one ð1; 2Þ- and one ð2; 1Þ-source.

(3) Two ð0; 3Þ-sinks and three ð1; 2Þ-sources.

Proof. If there exists only one ð3; 0Þ-sink, all the sources together must emit exactly
three charges of type ð1; 0Þ. This leaves us with three possibilities for the sources: either one
ð3; 3Þ-source, or one ð1; 2Þ- and one ð2; 1Þ-source, or three ð1; 2Þ-sources. The statement
about sinks follows by counting in each case the number of ð0; 1Þ-charges emitted. r

Corollary 4.16. If the sink-source graph SSF;E contains exactly one ð3; 0Þ-sink then

on the torus TH it looks like either Figure 11(a), Figure 11(b) or Figure 11(c) (up to the

lengths of the sides and in the case of Figure 11(a) up to a rotation by G2p=3).

Proof. On the universal cover H nR2 take any vertex projecting to the ð3; 0Þ-sink
O1 in TH and denote it by A. Follow the three ð1; 0Þ-charge lines which enter A back to
their respective sources. Denote the source emitting the xi-ð1; 0Þ-charge line by Bi. We
obtain, up to the actual lengths of ABi, the picture in Figure 12.

By Proposition 4.15, B1, B2 and B3 project in TH either to the same ð3; 3Þ-source or to
a ð1; 2Þ-source and a ð2; 1Þ-source or to three distinct ð1; 2Þ-sources. We treat here the case
of a ð1; 2Þ-source and a ð2; 1Þ-source, which leads to Figure 11(a) and its rotations. The
other two cases are analogous and lead to configurations in Figures 11(b) and 11(c).

By our assumption exactly two of Bi must project to same vertex in TH . Assume they
are B1 and B3—two other possibilities lead to rotations of the resulting configuration. Then
the image of B1 and B3 in TH emits an x1-ð1; 0Þ-charge and an x2-ð1; 0Þ-charge. This means
it must be an x3-ð2; 1Þ-source (check with the list of source vertices in Figure 8). Since we
have one ð3; 0Þ-sink and one ð0; 3Þ-sink, the two sources must emit together one xi-ð1; 0Þ-
and one xi-ð0; 1Þ-charge for i A 1; 2; 3. The source B2 projects to has therefore to be an
x3-ð1; 2Þ-source.

Consider now the x1-ð0; 1Þ-charge line emitted by B2 and the x3-ð0; 1Þ-charge line
emitted by B1. We claim that the vertex B12 at the intersection of these lines projects to
the ð0; 3Þ-sink in TH . If not then one of the two charge lines would have to terminate in
the ð0; 3Þ-sink before intersecting the other. Then, from Figure 12, one of the other charge
lines ending in this sink would have to come from within the parallelogram AB1B2B12. As
this charge line can’t cross AB1 or AB2, its source must also lie within this parallelogram.
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This is impossible—every vertex in edges AB1 and AB2 projects to a distinct vertex in TH ,
and therefore every vertex in the parallelogram AB1B2B12 must also project to a distinct
vertex. But by assumption there are only two source vertices in TH and B1 and B2 al-
ready project to those. Therefore no other vertex within AB1B2B12 can project to a source
vertex.

Thus B12 projects to the ð0; 3Þ-sink and drawing in all the remaining charge lines
yields the configuration on Figure 11(a). r

We now present a few more properties of the associated representation of ~MM—the
dual of the universal family of G-clusters.

(a) One ð1; 2Þ-source and one ð2; 1Þ-source. (b) A single ð3; 3Þ-source.

(c) Three ð1; 2Þ-sources.

Figure 11. Sink-source graphs in the case of a single ð3; 0Þ-sink.

23Cautis and Logvinenko, Geometric McKay correspondence



Proposition 4.17. Let Y be G-HilbðC3Þ and ~MM be the dual of the universal family of

G-clusters. Let E and F be two irreducible exceptional divisors on Y. Suppose w A G4 such

that in QðGÞ ~MM we have E LBw; i;Bw; j, while F LBwkðxiÞ; j;BwkðxjÞ; i for some i 3 j, cf. Figure

13. Then E and F do not intersect.

Proof. We give the proof under the assumption that the sink-source graph SS ~MM;F is
the one depicted in Figure 11(a). The cases of SS ~MM;F being as in Figures 11(b) and 11(c) are
similar and simpler, each requiring only a part of the argument presented below.

We use the notation in Figure 11(a) to label the vertices of SS ~MM;F : O1 is the ð3; 0Þ-
sink, O2 the ð0; 3Þ-sink, I1 the x3-ð2; 1Þ-source and I2 the x3-ð1; 2Þ-source. By Proposition
4.14, O1 ¼ w0 is also the unique ð3; 0Þ-sink in SS ~MM;E .

We first deal with the configuration in Figure 13(c). The proof will require working
with both sink-source graphs SS ~MM;E and SS ~MM;F which we superimpose on the torus TH .

First note that the vertex w must be an x3-ð1; 0Þ-charge for E. All such charges lie on
the x3-ð1; 0Þ-charge line in SS ~MM;E which terminates at O1. We claim that the source in
SS ~MM;F for this charge line must lie below the vertex kðx3Þ�1

I2—see Figure 11(a). If this
were not the case then every vertex which is an x3-ð1; 0Þ-charge for E would be either an

Figure 12. The lift of ð3; 0Þ-sink and its three charge lines to H nR2.

Figure 13. The configurations from Proposition 4.17.
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x3-ð1; 0Þ charge or the source I2 for F . This would render Figure 13(c) impossible. Hence
kðx3Þ�1

I2 is an x3-ð1; 0Þ-charge for E and we have the configuration depicted in Figure 14.
Since all three arrows leading out of kðx3Þ�1

I2 are marked by either E or F we must have
E XF ¼ j by Corollary 4.13.

Next we assume the configuration in Figure 13(b). This also deals with the configura-
tion in Figure 13(a) as the argument there is identical.

As we assumed that SS ~MM;F looks like in Figure 11(a), for F vertex w can only be an
x2-ð0; 1Þ-charge or the x3-ð1; 2Þ-source O2. So w must lie on the x2-ð0; 1Þ-charge line I2O2 in
SS ~MM;F . On the other hand w must lie on the x2-ð1; 0Þ-charge in SS ~MM;E which terminates at O1

(remember that O1 is also the ð3; 0Þ-sink for E). Looking at Figure 11(a) one sees that on
the torus TH the path along this charge line from w to O1 must pass through both I2 and I1.
Since charge lines for E can’t cross each other, the source in SS ~MM;E for the x1-ð1; 0Þ-charge
(resp. the x3-ð1; 0Þ-charge) line must lie strictly between O1 and I1 (resp. between O1 and
I2). Denoting this source by P1 (resp. P2) we obtain the configuration in Figure 15.

F E

E F

I2
F F

E E

F

kðx3Þ�1 I2

E E

Figure 14. Partial divisor configuration for E and F near kðx3Þ�1
I2.

Figure 15. The sink-source graph SS ~MM;F with the sources P1 and P2 for E.
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Suppose SS ~MM;E is shaped as in Figures 11(a) or 11(b). Then it has at most two sources.

Therefore the x2-ð1; 0Þ-charge line in SS ~MM;E must originate at either P1 or P2. Suppose it
originates at P1, the other case is analogous. Then P1 is an x3-ð2; 1Þ-source for E since
this is the unique source which emits both x2-ð1; 0Þ- and x1-ð1; 0Þ-charges. We claim that
kðx2ÞP1 lies within the left parallelogram O1I2O2I1 in Figure 15. Then kðx2ÞP1 has to be an
x2 tile for F which gives the configuration in Figure 16, whence EXF ¼ j by Corollary 4.13.
Observe, as I1 is an x2-ð1; 0Þ-charge for E, P1 can not be the vertice kðx1ÞI1, by direct inspec-
tion. Also, the side O1P2I2 is at least two edges long as it has to accommodate three vertices.
These two observations show that, as claimed, kðx2ÞP1 must lie in the interior of O1I2O2I1.

Finally, suppose SS ~MM;E is shaped as in Figure 11(c). Then x2-ð1; 0Þ-charge line in
SS ~MM;E originates at an x2-ð1; 2Þ-source distinct from P1 and P2. Denote it by P3. But
then looking at Figure 11(c) (and keeping in mind that there P1 is O1, P2 is O3 and P3 is
O2) we see that the vertex kðx2ÞP3 must lie within the parallelogram formed by O1P1 and
O1P2. Therefore, from Figure 15 it certainly lies within the left parallelogram O1I2O2I1. We
conclude that kðx2ÞP3 is an x2-tile in SS ~MM;F . This gives a configuration similar to that in
Figure 16, showing again that E XF ¼ j by Corollary 4.13. r

Corollary 4.18. Let Y be G-HilbðC3Þ and ~MM be the dual of the universal family

of G-clusters. Let E and F be two irreducible exceptional divisors on Y. Suppose w A G4

such that in the associated representation of ~MM we have E LBwkðxiÞ�1; i;BwkðxjÞ�1; j
and

F LBwkðxkÞ; i;BwkðxkÞ; j for some i3 j 3 k, cf. Figure 17. Then E and F do not intersect.

Figure 16. Divisor configuration for E and F near kðx2ÞP1.

Figure 17. The configurations from Corollary 4.18.

26 Cautis and Logvinenko, Geometric McKay correspondence



Proof. If in the configuration in Figure 17(a) we re-center on the vertex kðx3Þw, we
obtain in Hex

�
kðx3Þw

�
the configuration in Figure 13(a). By Proposition 4.17 we obtain

E XF ¼ j. The other two cases follow similarly. r

Proposition 4.19. Let Y be G-HilbðC3Þ and ~MM be the dual of the universal family of

G-clusters. Let D, E and F be irreducible exceptional divisors on Y. Suppose w A G4 such

that in QðGÞ ~MM we have D A BwkðxiÞ�1; i, E A BwkðxjÞ�1; j
and F A BwkðxkÞ; i;BwkðxkÞ; j;BwkðxkÞ�1;k for

some i3 j 3 k, cf. Figure 18. Then DXE XF ¼ j.

Proof. We give the proof for the configuration in Figure 18(a), the other two cases
are proven similarly.

Comparing Figure 18(a) to Figures 5–9 we find that in SS ~MM;F the vertex w can only be

the x3-ð1; 2Þ-source. Therefore SS ~MM;F is as depicted in Figure 11(a) (no rotation necessary)
or in Figure 11(c). Assume the former. Using the same notation as in Figure 11(a), note
that w ¼ I2.

Denote by P1 the source of x3-ð1; 0Þ-charge line for E. Since this charge line also ter-
minates at O1 the source P1 must lie below O1. If it lies below I2 then the configuration in
Figure 14 would occur, implying E XF ¼ j (by Corollary 4.13). P1 cannot equal I2 since
then HexðI2Þ would not look as in Figure 18(a). So we can assume P1 lies strictly between
O1 and I2.

Suppose now that P1 3 kðx3ÞI2. Then kðx3Þ�1
P1 is an x3-ð1; 0Þ-charge in SS ~MM;F . Also,

P1 must be either an x3-ð1; 2Þ-source, an x1-ð2; 1Þ-source or an x2-ð2; 1Þ-source in SS ~MM;E . If
it is an x3-ð1; 2Þ-source we get the configuration depicted in Figure 19, which by Corollary
4.13 means E XF ¼ j. If P1 is an x2-ð2; 1Þ-source, then we claim that kðx1ÞP1 is an interior
vertex of the right parallelogram in Figure 11(a) and so we have the configuration in
Figure 20, implying E XF ¼ j. The argument for P1 being an x1-ð2; 1Þ source is the same
but with the vertex kðx2ÞP1.

It su‰ces to show that the side O1I1 is more than one edge long, as then kðx1ÞP1 can’t
lie on the side I1O2 and has to be an interior vertex. Observe that the x1-ð1; 0Þ-charge line
for E begins at P1 and terminates at O1, and so it must pass through I1 (see Figure 11(a)).
So I1 is an x2-ð1; 0Þ-charge for E. Therefore the side O1I1 is more than one edge long—a
ð3; 0Þ-source O1 and an x2-ð1; 0Þ-charge I1 could not be adjacent in such a way.

Figure 18. The configurations from Proposition 4.19.

27Cautis and Logvinenko, Geometric McKay correspondence



Finally, suppose P1 ¼ kðx3ÞI2. Recall that in SS ~MM;E the vertex P1 is either an
x3-ð1; 2Þ-source, an x1-ð2; 1Þ-source or an x2-ð2; 1Þ-source. The first and the third options
are incompatible with the data of Figure 18(a) since w ¼ I2. So P1 is an x1-ð2; 1Þ-source
for E. Now the x2-ð1; 0Þ-charge line for E begins at P1 and terminates at O1 so, looking
at Figure 11(a), it must pass through I1. We conclude that I1 is an x2-ð1; 0Þ-charge for E.

Repeating the entire argument from the start with D instead of E yields that either
DXF ¼ j or I1 is an x1-ð1; 0Þ-charge for D. So I1 is an x1-ð1; 0Þ-charge for D, an
x2-ð1; 0Þ-charge for E and the x3-ð1; 2Þ-source for F (its original definition). This gives the
configuration in Figure 21, implying DXE ¼ j by Corollary 4.13.

The argument for SS ~MM;F being as in Figure 11(c) is very similar, so we only give a
brief outline. We again denote by P1 the source of x3-ð1; 0Þ-charge line for E. But now the

F E
E F

P1E E

F F

E

kðx3Þ�1 P1

F F

Figure 19. Partial divisor configuration for E and F near P1.

Figure 20. Divisor configuration for E and F near kðx1ÞP1.
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case P1 ¼ kðx3ÞI3 leads immediately to a contradicting configuration at kðx2Þ�1
I2. The dif-

ficulty is when P1 is an x1-ð2; 1Þ-source lying somewhere higher between O1 and I3 while
kðx2ÞP1 is I2. It turns out in such case the x1-ð1; 2Þ-source for E has to be kðx1ÞI1 (otherwise
w ¼ I3 would be an x3-tile for E contradicting Figure 18(a)). Denoting by P2 the source of
x3-ð1; 0Þ-charge line for D and repeating the same argument as for E, we now have deal
with the case where P2 is an x2-ð2; 1Þ-source lying somewhere on O1I3 and kðx1ÞP2 ¼ I1.
But then P2 ¼ kðx1Þ�1

I1 is an x2-ð2; 1Þ-source for D and kðx1ÞI1 is a x1-ð1; 2Þ-source for
E, which creates a contradicting configuration at the vertex I1 lying between them. r

Proposition 4.20. Let Y be G-HilbðC3Þ and ~MM be the dual of the universal family of

G-clusters. Let E and F be irreducible exceptional divisors on Y. Suppose there exists w A G4

such that for ~MM we have E A BwkðxiÞ�1; i;BwkðxjÞ�1; j
and F A BwkðxiÞ; j;BwkðxiÞ;k;BwkðxjÞ; i;BwkðxjÞ;k

for some i3 j 3 k, cf. Figure 22. Then E XF ¼ j.

Proof. We give the proof for the configuration in Figure 22(a). The other two are
identical.

Comparing Figure 22(a) with Figures 5–9 we conclude that in SS ~MM;F the vertex w

must be a ð3; 3Þ-source or an x3-ð2; 1Þ-source.

Suppose the latter. Then SS ~MM;F is as depicted in Figure 11(a) (no rotation necessary).
Observe that w ¼ I1. Let P1 and P2 denote the sources of the x1- and x2-ð1; 0Þ-charge lines
for E, respectively. From Figure 22(a) we see that I1 can neither be an x1-ð1; 0Þ-charge

Figure 21. Divisor configuration for D, E, and F near I1.

Figure 22. The configurations from Proposition 4.20.
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nor x2-ð1; 0Þ-charge for E. Therefore P1 (resp. P2) lies on the x1-ð1; 0Þ-charge line (resp. the
x2-ð1; 0Þ-charge line) as depicted in Figure 23.

Since P1 3P2 the graph SS ~MM;E is as in 11(a) (up to rotation) or as in 11(c). In former
case we find that either P1 is an x1-ð1; 2Þ-source or P2 is an x2-ð1; 2Þ-source and in latter
case we find that both of these are true. Suppose P1 is an x1-ð1; 2Þ-source, the other case
is similar. Since I1 ¼ w the vertex I1kðx1Þ can’t be an x1-ð1; 2Þ-source for E by inspection
of Figure 18(a). So P1 3 I1kðx1Þ and hence kðx1Þ�1

P1 is an x1-ð1; 0Þ-charge for F and get
the configuration depicted in Figure 24. As usual, it implies E XF ¼ j by Corollary 4.13.

It remains to consider the case when w is a ð3; 3Þ-source for F . This time the sink-
source graph SS ~MM;F is as in Figure 11(b). Reasoning as above, the vertices P1, P2 and P3

are configured as in Figure 25. However, observe that in both Figures 11(b) and 11(c) the
three connected regions together form a fundamental domain of the McKay quiver. So if
SS ~MM;E has three sources P1, P2, P3 as in Figure 25 the corresponding fundamental domain
will be strictly contained in the fundamental domain defined by SS ~MM;F (contradiction). r

Figure 23. The sink-source graph SS ~MM;F with sources P1 and P2 for E.

F

kðx1Þ�1 P1

F

E

F

E
E

P1

F
F

E
E

F

Figure 24. Divisor configuration for E and F near P1.

30 Cautis and Logvinenko, Geometric McKay correspondence



5. Proof of the main results

Proof of Theorem 1.1. Recall that Y is G-HilbðC3Þ, ~MM is the dual of the universal
family of G-clusters on Y and C : DGðC3Þ ! DðYÞ is the integral transform defined by ~MM.
We fix w A G4 and look at the associated representation QðGÞ ~MM and its subrepresentation
Hexðw�1Þ ~MM. Then the total complex T � of the skew-commutative cube corresponding to
Hexðw�1Þ ~MM gives CðO0 n wÞ A DðYÞ (Proposition 4.6).

If ~MM ¼
L

w AG4

Lð�M 0
wÞ then in the notation of Section 3, the skew-commutative cube

T � corresponding to Hexðw�1Þ ~MM is described as follows. For any subset v of f1; 2; 3g we
have Lv ¼Lð�M 0

kðvÞwÞ where kðvÞ ¼
Q
i A v

kðxiÞ. The divisors Di
v record where the maps a i

v

in the cube vanish (see Figure 26).

Figure 25. The sink-source graph SS ~MM;F with sources P1, P2 and P3 for E.

L12

D2
1 D1

2

L1
D3

12 L2

D1 D2

D3
1 L ¼ L123 D3

2

D2
13 D1

23

L13 D3 L23

D1
3 D2

3

L3

Figure 26. The skew-commutative cube corresponding to Hexðw�1Þ.
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By Lemma 3.1 the only way H�2ðT �Þ3 0 is if gcdðD1
23;D2

13;D3
12Þ3 0. This is only

the case if w ¼ w0 (Corollary 4.13). On the other hand, if w ¼ w0, then w is a ð0; 3Þ-source
in SS ~MM;E for every irreducible exceptional divisor E on Y . So every Di

jk is equal to the
whole exceptional set ExcðYÞ while every Di

j and Di is zero. By Lemma 3.1 this means

H�2ðT �Þ ¼L123

�
ExcðY Þ

�
nOExcðYÞ and H�1ðT �Þ ¼ H 0ðT �Þ ¼ 0. Since M 0

w0
¼ 0 we have

L123 ¼Lð�M 0
w0
Þ ¼ OY and CðO0 n wÞ ¼ O

�
ExcðYÞ

�
nOExcðY Þ.

For the rest of the argument we assume w3 w0 in which case T � is supported in
degrees 0 and �1. We will need two facts. One is that

Ext0ðT �;T �ÞGExt0
GðO0 n w;O0 n wÞGC

since C is an equivalence. The other fact is the standard exact triangle

W½1� ! T � ! OD1XD2XD3ðLÞð5:1Þ

where W ¼ H�1ðT �Þ.

Suppose H 0ðT �Þ3 0. By Lemma 3.1 this means D1 XD2 XD3 3 0 where each
Di A ExcðY Þ. Let L be an irreducible component of D1 XD2 XD3 3 0. There are three
possibilities:

(1) L is an isolated point.

(2) L is an intersection E1 XE2 of two irreducible exceptional divisors.

(3) L is an exceptional divisor.

Below we show that case (1) cannot occur while in the other cases Ext1ðOL nL 0;W½1�Þ ¼ 0
for any line bundle L 0. This implies Ext1ðOD1XD2XD3 nL;W½1�Þ ¼ 0 because we can
repeatedly apply an exact sequence of the form

OL2
nIL1

! OL1WL2
! OL1

where L1 and L2 are components of D1 XD2 XD3. Notice that if we break up
D1 XD2 XD3 into components in the right order then we can ensure that OL2

nIL1
is

a line bundle on L2 so that by induction Ext1ðOL2
nIL1

;W½1�Þ ¼ Ext1ðOL1
;W½1�Þ ¼ 0

which implies Ext1ðOL1WL2
;W½1�Þ ¼ 0.

The fact that Ext1
�
OD1XD2XD3ðLÞ;W½1�

�
¼ 0 implies T �GW½1�lOD1XD2XD3ðLÞ.

This means W ¼ 0 for otherwise dim Ext0ðT �;T �Þf 2. We conclude that if H 0ðT �Þ3 0
then H 1ðT �Þ ¼ 0. As by assumption H iðT �Þ3 0 only for i ¼ 0;�1, this completes the
proof of Theorem 1.1.
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Case (1). The only way D1 XD2 XD3 can contain an isolated point is if each Di

contains an (irreducible) exceptional divisor Ei such that E1 XE2 XE3 is a point p. Then
H 0ðT �Þ is the direct sum of Op and some sheaf. If p B SuppðWÞ then T � breaks up as the
direct sum of Op and some complex which contradicts the fact that Ext0ðT �;T �ÞGC. Thus
p belongs to the support of W.

By Lemma 3.1 the support of W is contained in the union of gcdðD2
1 ;D1

2Þ,
gcdðD3

1 ;D1
3Þ and gcdðD3

2 ;D
2
3Þ. Without loss of generality suppose p A gcdðD2

1 ;D
1
2Þ. Since p

belongs to precisely three exceptional divisors (E1, E2 and E3), one of them must belong to
gcdðD2

1 ;D1
2Þ. It cannot be E1 or E2 since D1 þD2

1 ¼ D2 þD1
2 contains E1 þ E2. Therefore

E3 belongs to gcdðD2
1 ;D

1
2Þ. This is impossible by Proposition 4.19.

Case (2). Since L ¼ E1 XE2 is a component of D1 XD2 XD3 we can assume
(without loss of generality) that D1 and D2 contain E1 while D3 contains E2. To show
Ext1ðOL nL 0;W½1�Þ ¼ 0 it su‰ces to show that Ext2ðOL nL 0;OCÞ ¼ 0 for any irreduc-
ible component C of SuppðWÞ. Denote by i : C ! Y ¼ G-HilbðC3Þ the inclusion. Then by
adjunction

Ext2ðOL nL 0;OCÞGExt2ði�OL nL 0;OCÞ

so if LXC ¼ j then i�OL ¼ 0 and we are done. So we can assume LXC is non-
empty.

Suppose C HY has codimension one (i.e. is an irreducible exceptional divisor). If
LHC then by Lemma 3.1 some gcdðD j

i ;D
i
j Þ must contain either E1 or E2. None of them

can contain E1 since D1 and D2 contain E1 and so some gcdðD j
i ;D

i
j Þ must contain E2. Since

D3 contains E2 this means it must be gcdðD2
1 ;D

1
2Þ that contains E2. By Corollary 4.18 this

implies E1 XE2 ¼ j (contradiction).

Suppose LXC ¼ E1 XE2 XC is zero dimensional (i.e. a point). By 3.1, some
gcdðD j

i ;D
i
j Þ must contain C. By Corollary 4.18, gcdðD2

1 ;D
1
2Þ cannot contain C since this

would mean C XE1 ¼ j. So, without loss of generality, we can assume gcdðD3
2 ;D

2
3Þ con-

tains C. Since C A supp H�1ðT �Þ, using Lemma 3.1, either D1 contains C or lcmðD2
1 ;D3

1Þ
contains C.

If D1 contains C then by Proposition 4.19, E1 XE2 XC ¼ j (contradiction). So
we assume lcmðD2

1 ;D
3
1Þ contains C. Since neither D1 nor D2 contains C this means

either both D2
1 and D1

2 cannot C or neither contain C. They cannot both contain C

because if they did then C XE1 would be empty by Corollary 4.18. Thus D2
1 does

not contain C and since lcmðD2
1 ;D

3
1Þ contains C this means D3

1 must contain C. Fi-
nally, D3 does not contain C so this means D1

3 must contain C. We conclude that
D3

2, D2
3, D3

1 and D1
3 all contain C. By Proposition 4.20 this means C XE1 ¼ j (con-

tradiction).

Finally, suppose C HY has codimension two so that C ¼ C1 XC2 where
C1;C2 A ExcðY Þ. The fact LXC is non-empty means that (without loss of generality)
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C1 equals E1 or E2. Notice that gcdðD j
i ;D

i
j Þ cannot contain C1 (to deal with

gcdðD2
1 ;D1

2Þ we use 4.18). It follows by Lemma 3.1 that C2 must be contained in some
gcdðD j

i ;D
i
j Þ. By 4.18, C2 cannot be contained in gcdðD2

1 ;D
1
2Þ so, without loss of gener-

ality, let’s suppose it is contained in gcdðD3
2 ;D2

3Þ. By Lemma 3.1, C1 must be contained
in

D1 þ lcmðD2
1 ;D

3
1Þ � ~DD3

2 �D2

since C1 XC2 A supp H�1ðT �Þ. Since E1 belongs to D2 this means E1 cannot belong
to D1 þ lcmðD2

1 ;D
3
1Þ � ~DD3

2 �D2. So C1 ¼ E2. But then E2 belongs to ~DD3
2 þD2 so again

C1 ¼ E2 cannot belong to D1 þ lcmðD2
1 ;D

3
1Þ � ~DD3

2 �D2 (contradiction).

Case (3). The only way Ext1
�
OLðLÞ;W½1�

�
is non-zero is if L intersects (without

loss of generality) gcdðD2
1 ;D1

2Þ. Then D1 and D2 would contain L while gcdðD2
1 ;D

1
2Þ would

contain an exceptional divisor F such that LXF 3j. This is impossible by Corollary
4.18. r

6. A worked example

In this section we give a worked example of how to compute images CðO0 n wÞ for a
given abelian subgroup of SL3ðCÞ.

6.1. The group G and its McKay quiver. We set G to be the group
1

13
ð1; 5; 7Þ.

That is, the image in SL3ðCÞ of group m13 of 13th roots of unity under the embedding

x 7!
x1

x5

x7

0
B@

1
CA. We denote by wi the character of G induced by x 7! x i. Then

rðx1Þ ¼ w1, rðx2Þ ¼ w5, rðx3Þ ¼ w7, therefore kðx1Þ ¼ w12, kðx2Þ ¼ w8 and kðx3Þ ¼ w6.

As explained in Section 4.1, for each wi A G4 the McKay quiver QðGÞ has 3 arrows
emerging from the vertex wi and going to vertices kðxjÞwi for j ¼ 1; 2; 3. E.g. from the
vertex w3 there are arrows going to vertices kðx1Þw3 ¼ w2, kðx2Þw3 ¼ w11 and kðx3Þw3 ¼ w9.
Choosing a particular fundamental domain in the planar embedding fH of the universal
cover U of QðGÞ into R2, we can depict QðGÞ as shown in Figure 27. Gluing together the
edges of the diagram appropriately one obtains the real 2-dimensional torus TG as tessel-
lated by the McKay quiver.

6.2. The resolution G-Hilb(C3) and the universal family M of G-clusters. Let
Y ¼ G-HilbðC3Þ. For any abelian subgroup G H SL3ðCÞ, Y is a toric variety whose
toric fan can be computed as described in [4], Section 2. In our case we obtain the 3-
dimensional fan in R3 as depicted in Figure 1. As usual, we drew the junior simplex
D—the two-dimensional section of the fan cut out by the plane l1 þ l2 þ l3 ¼ 1. The gen-
erators ei of the one-dimensional cones of the fan all lie in D and have the following
coordinates:
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e1 ¼ ð1; 0; 0Þ; e2 ¼ ð0; 1; 0Þ; e3 ¼ ð0; 0; 1Þ;

e4 ¼
1

13
ð1; 5; 7Þ; e5 ¼

1

13
ð2; 10; 1Þ; e6 ¼

1

13
ð3; 2; 8Þ;

e7 ¼
1

13
ð4; 7; 2Þ; e8 ¼

1

13
ð6; 4; 3Þ; e9 ¼

1

13
ð8; 1; 4Þ:

ð6:1Þ

To each k-dimensional cone ei1 ; . . . ; eikh i in the toric fan of Y there corre-
sponds a ð3� kÞ-dimensional torus orbit in Y . We denote this orbit by Si1;...; ik and
its closure by Ei1;...; ik . The set of all irreducible exceptional divisors on Y is then
fE4;E5;E6;E7;E8;E9g.

On Y ¼ G-HilbðC3Þ the universal family M ¼
L

Lð�MwÞ of G-clusters Y is the
maximal shift gnat-family (cf. [10], Prop. 3.17). Each G-Weil divisor Mw is of the formP
Ei AExcðY Þ

mw; iEi ([10], Prop. 3.15). As shown in [8], Example 4.21, the coe‰cients mw; i A Q

can be computed via the formula

mw; i ¼ inffeiðmÞ jm A Z3
f0 and rðxmÞ ¼ wg:ð6:2Þ

To compute mw; i it su‰ces to test eiðm1;m2;m3Þ for minimality only on
ðm1;m2;m3Þ A Z3 for which 0em1;m2;m3 e 13. This is because x13

1 , x13
2 and x13

3 are G-
invariant, while eiðm1 þ 13;m2;m3Þf eiðm1;m2;m3Þ and similarly for the other two. It
then becomes a simple computer computation.

Figure 27. A fundamental domain of the McKay quiver of G ¼ 1

13
ð1; 5; 7Þ.

35Cautis and Logvinenko, Geometric McKay correspondence



For example, the minimal value of e7ð�Þ on ðm1;m2;m3Þ with rðxm1

1 xm2

2 xm3

3 Þ ¼ w10

and 0em1;m2;m3 e 13 can be verified to be 1
1

13
. E.g. rðx3

1x3Þ ¼ w3
1w7 ¼ w10 and

e7ðx3
1x3Þ ¼ e7ð3; 0; 1Þ ¼

4

13
� 3þ 7

13
� 0þ 2

13
� 1 ¼ 1

1

13
:

Hence mw10;7 ¼ 1
1

13
.

Repeating this for other w and ei, we compute mw; i to be:

ð6:3Þ

wni 4 5 6 7 8 9 wni 4 5 6 7 8 9

w0 0 0 0 0 0 0 w7

7

13

1

13

8

13

2

13

3

13

4

13

w1

1

13

2

13

3

13

4

13

6

13

8

13
w8

8

13

3

13

11

13

6

13

9

13

12

13

w2

2

13

4

13

6

13

8

13

12

13

3

13
w9

9

13

5

13
1

1

13

10

13
1

2

13

7

13

w3

3

13

6

13

9

13

12

13
1

5

13

11

13
w10

10

13

7

13

4

13
1

1

13

8

13

2

13

w4

4

13

8

13

12

13
1

3

13

11

13

6

13
w11

11

13

9

13

7

13
1

5

13
1

1

13

10

13

w5

5

13

10

13

2

13

7

13

4

13

1

13
w12

12

13

11

13

10

13

9

13

7

13

5

13

w6

6

13

12

13

5

13

11

13

10

13

9

13

6.3. Divisors of the associated representation of the dual family ~MM . By Proposition
2.4, the dual ~MM of M ¼

L
ð�MwÞ is the family

L
Lð�M 0

wÞ where M 0
w ¼ �Mw�1 . So to

compute the divisors of zeroes Bw; i of the maps aw; i in the associated representation of
the McKay quiver QðGÞ ~MM we must set Dw ¼ �Mw�1 in formula (4.5). Thus we obtain the
formula

Bw; i ¼MwrðxiÞ�1 þ ðxiÞ �Mw:ð6:4Þ

The principal G-Weil divisors ðxiÞ of the basic monomials can be computed via

the formula ðxiÞ ¼
P

eiðxiÞEi (cf. [8], Prop. 3.2). For an example, e4 ¼
1

13
ð1; 5; 7Þ so

e4ðx1Þ ¼
1

13
, e4ðx2Þ ¼

5

13
and e4ðx3Þ ¼

7

13
and obtain:

ðx1Þ ¼ E1 þ
1

13
E4 þ

2

13
E5 þ

3

13
E6 þ

4

13
E7 þ

6

13
E8 þ

8

13
E9;

ðx2Þ ¼ E2 þ
5

13
E4 þ

10

13
E5 þ

2

13
E6 þ

7

13
E7 þ

4

13
E8 þ

1

13
E9;

ðx3Þ ¼ E3 þ
7

13
E4 þ

1

13
E5 þ

8

13
E6 þ

2

13
E7 þ

3

13
E8 þ

4

13
E9:
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Let us now compute, for example, zero divisor Bw5;1. Using formula (6.4) we have

Bw5;1 ¼Mw5w
�1
1
þ ðx1Þ þMw5

¼Mw4
þ ðx1Þ �Mw5

¼ 4

13
E4 þ

8

13
E5 þ

12

13
E6 þ 1

3

13
E7 þ

11

13
E8 þ

6

13
E9

þ E1 þ
1

13
E4 þ

2

13
E5 þ

3

13
E6 þ

4

13
E7 þ

6

13
E8 þ

8

13
E9

� 5

13
E4 �

10

13
E5 �

2

13
E6 �

7

13
E7 �

4

13
E8 �

1

13
E9

¼ E1 þ E6 þ E7 þ E8 þ E9:

Computing similarly the remaining zero divisors Bw;k of QðGÞ ~MM we obtain:

Bw0;1 ¼ E1 þ E4 þ E5 þ E6 þ E7 þ E8 þ E9; Bw7;1 ¼ E1 þ E5 þ E7 þ E8 þ E9;

Bw0;2 ¼ E2 þ E4 þ E5 þ E6 þ E7 þ E8 þ E9; Bw7;2 ¼ E2 þ E5 þ E7 þ E8;

Bw0;3 ¼ E3 þ E4 þ E5 þ E6 þ E7 þ E8 þ E9; Bw7;3 ¼ E3;

Bw1;1 ¼ E1; Bw8;1 ¼ E1;

Bw1;2 ¼ E2 þ E4 þ E5 þ E6 þ E7 þ E8; Bw8;2 ¼ E2 þ E5 þ E7 þ E8;

Bw1;3 ¼ E3 þ E4 þ E6; Bw8;3 ¼ E3;

Bw2;1 ¼ E1 þ E9; Bw9;1 ¼ E1 þ E9;

Bw2;2 ¼ E2 þ E4 þ E5 þ E7; Bw9;2 ¼ E2 þ E5 þ E7;

Bw2;3 ¼ E3 þ E4 þ E6 þ E9; Bw9;3 ¼ E3;

Bw3;1 ¼ E1; Bw10;1 ¼ E1 þ E6 þ E8 þ E9;

Bw3;2 ¼ E2 þ E4 þ E5 þ E7; Bw10;2 ¼ E2 þ E5;ð6:5Þ

Bw3;3 ¼ E3 þ E4 þ E6; Bw10;3 ¼ E3 þ E6 þ E8 þ E9;

Bw4;1 ¼ E1 þ E8 þ E9; Bw11;1 ¼ E1;

Bw4;2 ¼ E2 þ E4 þ E5; Bw11;2 ¼ E2 þ E5;

Bw4;3 ¼ E3 þ E4; Bw11;3 ¼ E3 þ E6;

Bw5;1 ¼ E1 þ E6 þ E7 þ E8 þ E9; Bw12;1 ¼ E1 þ E7 þ E8 þ E9;

Bw5;2 ¼ E2; Bw12;2 ¼ E2;

Bw5;3 ¼ E3 þ E4 þ E6 þ E7 þ E8 þ E9; Bw12;3 ¼ E3:

Bw6;1 ¼ E1;

Bw6;2 ¼ E2;

Bw6;3 ¼ E3 þ E4 þ E6;
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6.4. Skew-commutative cubes corresponding to C(O0 n w). Now, for each w A G4,
we compute the skew-commutative cube of line bundles Hexðw�1Þ ~MM (see Section 4.2). The
total complex of the cube gives then CðO0 n wÞ in DðYÞ.

Recall that the subquiver Hexðw�1Þ was defined by sending vertex vH f1; 2; 3g of
the cube quiver to vertex kðvÞ�1w�1 in QðGÞ. Therefore at vertex v of the cube of line bun-
dles corresponding to Hexðw�1Þ ~MM we get the summand of ~MM ¼

L
Lð�M 0

wÞ which G acts
on by kðvÞ�1w�1. So Lv ¼Lð�M 0

kðvÞwÞ ¼LðMðkðvÞwÞ�1Þ. On each arrow in the cube we

mark its divisor of the zeroes, using the data of (6.5): Di
jk ¼ Bw�1; i, Di

j ¼ BkðxkÞw�1; j and
Di ¼ BkðxiÞ�1w�1; i for any i3 j 3 k. We use a following shorthand: E456 ¼ E4 þ E5 þ E6 et
cetera.

CðO0 n w0Þ: LðMw12
Þ LðMw1

Þ

LðMw0
Þ ���!E2456789

LðMw8
Þ LðMw5

Þ ���!E2
LðMw0

Þ;

LðMw6
Þ LðMw7

Þ

�����!

 �����
 ��������

���

 �����
������

�������������
�!

 ��������
���

������
������

��!

����������
�!

 �����

�����!
E1456789

E3

E2

E3

E1

E3456789

E2

E1
E1

E3

CðO0 n w1Þ: LðMw11
Þ LðMw0

Þ

LðMw12
Þ ���!E2

LðMw7
Þ LðMw4

Þ ���!E245
LðMw12

Þ;

LðMw5
Þ LðMw6

Þ

�����!
 �����

 ��������
���

 �����
������

�������������
�!

 ��������
���
������

������
��!

����������
�!

 �����
�����!

E1789

E36

E25

E3

E1456789

E3

E2

E16789
E15789

E346

CðO0 n w2Þ: LðMw10
Þ LðMw12

Þ

LðMw11
Þ ���!E25

LðMw6
Þ LðMw3

Þ ���!E2457
LðMw11

Þ;

LðMw4
Þ LðMw5

Þ

�����!

 �����
 ��������

���

 �����
������

�������������
�!

 ��������
���

������
������

��!

����������
�!

 �����

�����!
E1

E3689

E25

E346

E1789

E36

E245

E189
E1

E346789

CðO0 n w3Þ: LðMw9
Þ LðMw11

Þ

LðMw10
Þ ���!E25

LðMw5
Þ LðMw2

Þ ���!E2457
LðMw10

Þ;

LðMw3
Þ LðMw4

Þ

�����!

 �����
 ��������

���

 �����
������

�������������
�!

 ��������
���

������
������

��!

����������
�!

 �����

�����!
E1689

E3

E257

E346789

E1

E3689

E2457

E1
E16789

E34

CðO0 n w4Þ: LðMw8
Þ LðMw10

Þ

LðMw9
Þ ���!E257

LðMw4
Þ LðMw1

Þ ���!E245678
LðMw9

Þ;

LðMw2
Þ LðMw3

Þ

�����!

 �����
 ��������

���

 �����
������

�������������
�!

 ��������
���

������
������

��!

����������
�!

 �����

�����!
E19

E3

E2578

E34

E1689

E3

E2457

E19
E189

E346
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CðO0 n w5Þ: LðMw7
Þ LðMw9

Þ

LðMw8
Þ ���!E2578

LðMw3
Þ LðMw0

Þ ���!E2456789
LðMw8

Þ;

LðMw1
Þ LðMw2

Þ

�����!

 �����
 ��������

���

 �����
������

�������������
�!

 ��������
���

������
������

��!

����������
�!

 �����

�����!
E1

E3

E2578

E346

E19

E3

E245678

E1
E1

E3469

CðO0 n w6Þ: LðMw6
Þ LðMw8

Þ

LðMw7
Þ ���!E2578

LðMw2
Þ LðMw12

Þ ���!E2
LðMw7

Þ;

LðMw0
Þ LðMw1

Þ

�����!

 �����
 ��������

���

 �����
������

�������������
�!

 ��������
���

������
������

��!

����������
�!

 �����

�����!
E15789

E346

E2

E3469

E1

E3

E2456789

E1456789
E19

E346

CðO0 n w7Þ: LðMw5
Þ LðMw7

Þ

LðMw6
Þ ���!E2

LðMw1
Þ LðMw11

Þ ���!E25
LðMw6

Þ;

LðMw12
Þ LðMw0

Þ

�����!

 �����
 ��������

���

 �����
������

�������������
�!

 ��������
���

������
������

��!

����������
�!

 �����

�����!
E1

E346789

E2

E346

E15789

E346

E2

E1789
E1

E3456789

CðO0 n w8Þ: LðMw4
Þ LðMw6

Þ

LðMw5
Þ ���!E2

LðMw0
Þ LðMw10

Þ ���!E25
LðMw5

Þ;

LðMw11
Þ LðMw12

Þ

�����!
 �����

 ��������
���

 �����
������

�������������
�!

 ��������
���

������
������

��!

����������
�!

 �����
�����!

E16789

E34

E245

E3456789

E1

E346789

E25

E1
E1456789

E3

CðO0 n w9Þ: LðMw3
Þ LðMw5

Þ

LðMw4
Þ ���!E245

LðMw12
Þ LðMw9

Þ ���!E257
LðMw4

Þ;

LðMw10
Þ LðMw11

Þ

�����!

 �����
 ��������

���

 �����
������

�������������
�!

 ��������
���

������
������

��!

����������
�!

 �����

�����!
E189

E346

E2457

E3

E16789

E34

E25

E1689
E1789

E36

CðO0 n w10Þ: LðMw2
Þ LðMw4

Þ

LðMw3
Þ ���!E2457

LðMw11
Þ LðMw8

Þ ���!E2578
LðMw3

Þ;

LðMw9
Þ LðMw10

Þ

�����!

 �����
 ��������

���

 �����
������

�������������
�!

 ��������
���

������
������

��!

����������
�!

 �����

�����!
E1

E3469

E2457

E36

E189

E346

E257

E19
E1

E3689

CðO0 n w11Þ: LðMw1
Þ LðMw3

Þ

LðMw2
Þ ���!E2457

LðMw10
Þ LðMw7

Þ ���!E2578
LðMw2

Þ;

LðMw8
Þ LðMw9

Þ

�����!

 �����
 ��������

���

 �����
������

�������������
�!

 ��������
���

������
������

��!

����������
�!

 �����

�����!
E19

E346

E245678

E3689

E1

E3469

E2578

E1
E1689

E3
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CðO0 n w12Þ: LðMw0
Þ LðMw2

Þ

LðMw1
Þ ���!E24578

LðMw9
Þ LðMw6

Þ ���!E2
LðMw1

Þ:

LðMw7
Þ LðMw8

Þ

�����!

 �����
 ��������

���

 �����
������

�������������
�!

 ��������
���

������
������

��!

����������
�!

 �����

�����!
E1

E3456789

E2456789

E3

E19

E346

E2578

E15789
E19

E3

6.5. Conclusion. We now analyze each of the skew-commutative cubes computed in
the previous section and use Lemma 3.1 to write down supports of the cohomology sheaves
of their total complexes, i.e. of CðO0 n wÞ.

For example, consider the skew-commutative cube for CðO0 n w1Þ:

CðO0 n w1Þ: LðMw11
Þ LðMw0

Þ

LðMw12
Þ ���!E2

LðMw7
Þ LðMw4

Þ ���!E245
LðMw12

Þ:

LðMw5
Þ LðMw6

Þ

�����!

 �����
 ��������

���

 �����
������

�������������
�!

 ��������
���

������
������

��!

����������
�!

 �����

�����!
E1789

E36

E25

E3

E1456789

E3

E2

E16789
E15789

E346

We see that D1 XD2 XD3 ¼ E4, that gcdðD1
2 ;D

2
1Þ ¼ gcdðD2

3 ;D
3
2Þ ¼ gcdðD1

3 ;D3
1Þ ¼ 0

and that gcdðD1
23;D

2
13;D

3
12Þ ¼ 0. Therefore by Lemma 3.1 we have

Supp H 0
�
CðO0 n w1Þ

�
¼ E4

while Supp H�1
�
CðO0 n w1Þ

�
¼ Supp H�2

�
CðO0 n w1Þ

�
¼ 0.

On the other hand, looking at the skew-commutative cube for CðO0 n w11Þ:

CðO0 n w11Þ: LðMw1
Þ LðMw3

Þ

LðMw2
Þ ���!E2457

LðMw10
Þ LðMw7

Þ ���!E2578
LðMw2

Þ:

LðMw8
Þ LðMw9

Þ

�����!

 �����
 ��������

���

 �����
������

�������������
�!

 ��������
���

������
������

��!

����������
�!

 �����

�����!
E19

E346

E245678

E3689

E1

E3469

E2578

E1
E1689

E3

We see that D1 XD2 XD3 ¼ 0 and gcdðD1
23;D2

13;D
3
12Þ ¼ 0, while gcdðD1

2 ;D
2
1Þ ¼ 0,

gcdðD2
3 ;D3

2Þ ¼ E46, gcdðD1
3 ;D

3
1Þ ¼ E689. Computing further

D1 þ lcmðD2
1 ;D

3
1Þ � ~DD3

2 �D2 ¼ E1 þ E2356789 � E3 � E2578 ¼ E169

and similarly

D2 þ lcmðD1
2 ;

~DD3
2Þ � ~DD1

3 �D3 ¼ E2578 þ E13 � E1 � E3 ¼ E2578:

Consulting Figure 1 to compute intersections we see that

gcdðD2
3 ;D

3
2ÞX

�
D1 þ lcmðD2

1 ;D
3
1Þ � ~DD3

2 �D2
�
¼ E46 XE169 ¼ E6
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and

gcdðD1
3 ;D

3
1ÞX

�
D2 þ lcmðD1

2 ;
~DD3

2Þ � ~DD1
3 �D3

�
¼ E689 XE2578 ¼ E8:

Therefore by Lemma 3.1 we have Supp H�1
�
CðO0 n w11Þ

�
¼ E6 WE8 while

Supp H 0
�
CðO0 n w11Þ

�
¼ Supp H�2

�
CðO0 n w11Þ

�
¼ 0:

Computing thus for each CðO0 n wÞ, we obtain finally the data presented in Table 1.3
in the Introduction.

Appendix A. Locally free resolutions of finite-length sheaves on Cn

In this section we present a general method to resolve any finite-length sheaf on Cn by
locally free sheaves. It is su‰ciently intrinsic to lift to a relative setup of a flat family of
finite-length sheaves over a scheme of finite type over C. This result may be of independent
interest.

We then use this result to give an alternate proof of Proposition 2.1 where we use this
resolution to explicitly compute the dual F4 in DðY Þ.

A.1. Resolving finite-length sheaves on Cn by locally frees. The first step is the fol-
lowing technical lemma:

Let A be a Hopf C-algebra with a bijective antipode map. Denote by D its comulti-
plication map, by e the counit and by S the antipode map. Let W be a left A-module, which
is finitely generated as a C-module. Denote by MW the left A-module structure on the C-
module AnW given by, in Sweedler’s sigma notation ([14], Section 1.2):

a � ðbnwÞ ¼
P

bSða1Þn a2 � w:

Denote by M 0
W the structure of a free left A-module on AnW where A acts on the first

factor of the tensor product by left multiplication.

Denote by a the surjective C-module map AnW !!W given by anw 7! a � w.
Denote by b the surjective map AnW !! CnA MW , where the A-module structure on
C being given by the counit. We claim that a filters through b. Indeed, the kernel of b is
generated by the elements of form

P�
bSða1Þn a2 � w

�
� eðaÞbnw

for all a; b A A and w A W . Rewriting as

P�
bSða1Þn a2 � w

�
� bn

�P
Sða1Þa2

�
� w

¼
P�

bSða1Þn a2 � w� bn
�
Sða1Þa2

�
� w
�
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we see that each such element lies also in the kernel of a. We thus have a commutative
diagram:

AnC W ���!b���! CnA MW ���!g���!W :

a

ðA:1Þ

Lemma A.1. (1) MW UM 0
W as left A-modules.

(2) The map g in (A.1) is a C-module isomorphism.

Proof. (1) The isomorphism is given by the map M 0
W !MW which sends

anw to
P

Sða1Þn a2 � w. Its inverse is the map MW !M 0
W which sends anw toP

S�1ða2Þn a1 � w. This can be verified using [14], Prop. 4.0.1, identities (3) and (4), and
the identity (4) (iv) of the Exercises which immediately follow.

(2) From (1) we have that MW is free. Hence CnA MW is isomorphic to W as a
C-module. As CnA MW !

g
W is surjective it must also be an isomorphism. r

Let W be a finite length G-sheaf on Cn. Then GðWÞ is a finite dimensional vector
space with a G-action. Denote by L the locally free G-sheaf OCn nGðWÞ. Its OCn -module
structure is the natural action on the first factor of the tensor product, while the action of G

is on both the factors.

Proposition A.2. W has a G-equivariant locally free resolution given by

0 �!5nVgiv nL �!dn � � � �!dkþ1
5kVgiv nL �!dk � � � �!d1

L �!a W �! 0ðA:2Þ

where the maps dk are defined for mi A V4
giv, f A OCn and w A GðWÞ by

ðm15� � �5mkÞ f nwðA:3Þ

7!
Pk
i¼1

ð�1Þ iþ1ð. . .mi�15miþ1 . . .Þð f nmi � w�mi f nwÞ

and the map a is defined by f nw 7! f � w.

Proof. Let L 0 be a G-sheaf on Cn, which has the same underlying sheaf of C-
modules as L, but whose OCn-module structure is induced by the action

m � f nw ¼ f nm � w�mf nw:

of V4
giv. The action of G remains the same.

It is easy to check that the di¤erential maps dk of the complex (A.2) respect this new
G-sheaf structure. The resulting complex

0 �!5nVgiv nL 0 �!dn � � � �!dkþ1
5kVgiv nL 0 �!dk � � � �!d1

L 0 �! 0

is precisely the Koszul complex of L 0 with respect to any basis of V4
giv. Let m be the ideal

sheaf of OCn generated by the elements of V4
giv. For grossly general reasons, as can be seen
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from Lemma A.1 (1), L 0 is locally free. In particular, then, it is a Cohen-Macaulay
OCn -module. Furthermore, the support of L 0=mL 0 has codimension n, being the point
0 A Cn. Any basis of V4

giv, as it consists of n elements and generates m, must therefore be
a regular sequence for L 0. Hence the G-sheaf complex

0 �!5nVgiv nL 0 �!dn � � � �!dkþ1
5kVgiv nL 0 �!dk � � � �!d1

L 0 �!b L 0=mL 0 �! 0

is exact. It then follows from Lemma A.1 (2), that the following is also exact as a complex
of sheaves of C-modules:

0 �!5nVgiv nL 0 �!dn � � � �!dkþ1
5kVgiv nL 0 �!dk � � � �!d1

L 0 �!a W �! 0:

As it is precisely the complex of sheaves of C-modules underlying the G-sheaf complex
(A.2), the complex (A.2) must also be exact. r

Proposition A.2 naturally generalises to flat families of finite sheaves. Let S be a
scheme of finite type over C endowed with a trivial G-action. Let F be a coherent G-sheaf
on S � Cn, flat over S, whose fiber Fjp over any closed point p A Y is a finite-length G-
sheaf on Cn. Imitating the construction above, let L be the locally-free sheaf p�SpS�F and
let L!!a F be the surjection map defined by adjunction.

There are two natural actions of R on L. The first action is via the inclusion
R ,! GðOS�CnÞ induced by the pullback from Cn. The second action is via the inclusion
R ,! pS�OS�Cn which acts on p�F and subsequently on L ¼ p�SpS�F. For any r A R and
s A L we denote the first action by r � s and the second action by r �2 s.

Corollary A.3. F has a G-equivariant locally-free resolution given by

0 �!5nVgiv nL �!dn � � � �!dkþ1
5kVgiv nL �!dk � � � �!d1

L �!a F �! 0ðA:4Þ

where the maps dk are defined for mi A V4
giv and s A L by

ðm15� � �5mkÞn s 7!
Pk
i¼1

ð�1Þ iþ1ð. . .mi�15miþ1 . . .Þn ðmi �2 s�mi � sÞ:ðA:5Þ

A.2. Proof of Proposition 2.1. As an application of the results in previous section,
we use them to give an alternative proof of Proposition 2.1.

Proof of Proposition 2.1. By Corollary A.3 we have a locally free resolution of F.
Taking its dual we find that F4½n� is isomorphic in DGðY � CnÞ to

0 �!L4 �!d41 � � � �!d4k 5kV4
giv nL4 �!d4kþ1 � � � �!d4n 5nV4

giv nL4 �! 0

where the rightmost term,5nV4
giv nL4, lies in degree zero.

On the other hand, by definition pY� ~FF ¼ ðpY�FÞ4, which is locally free. Hence
p�YpY� ~FF ¼L4. Applying Corollary A.3 again we find that ~FF has a locally free resolution

0 �!5nVgiv nL4 �!gn � � � �!gkþ1
5kVgiv nL4 �!gk � � � �!g1

L4 �! 0
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where di¤erential maps gi are defined by (A.5), with the action �2 of R on L4 being induced
by the action (2.3) of R on HomOY

ðp�F;OY Þ.

We now prove that these two complexes are isomorphic, thus showing
F4½n�F ~FF. Let f be the interior product isomorphism 5kV4

giv n5nVgiv !5n�kVgiv.
It is G-equivariant. Since G L SLnðCÞ, 5nVgiv is trivial as a representation of G. Thus
we obtain G-equivariant isomorphisms 5kV4

giv !
@
5n�kVgiv which induce isomorphisms

ai :5nþiV4
giv nL4!@ 5�iVgiv nL4.

It remains only to verify that ai defines a chain map between the two complexes, i.e.
that the following diagram commutes:

5kV4
giv nL4 ���!d4k 5kþ1V4

giv nL4

ak�n

???y
???yakþ1�n

5n�kVgiv nL4 ���!gn�k 5n�kþ1Vgiv nL4:

It is a straightforward calculation which we leave to the reader. r
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