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Co-infection by multiple parasites is common within individuals. Inter-

actions between co-infecting parasites include resource competition, direct

competition and immune-mediated interactions and each are likely to

alter the dynamics of single parasites. We posit that co-infection is a

driver of variation in parasite establishment and growth, ultimately altering

the production of parasite transmission stages. To test this hypothesis, three

different treatment groups of laboratory mice were infected with the gastro-

intestinal helminth Heligmosomoides polygyrus, the respiratory bacterial

pathogen Bordetella bronchiseptica luxþ or co-infected with both parasites.

To follow co-infection simultaneously, self-bioluminescent bacteria were

used to quantify infection in vivo and in real-time, while helminth egg

production was monitored in real-time using faecal samples. Co-infection

resulted in high bacterial loads early in the infection (within the first 5

days) that could cause host mortality. Co-infection also produced helminth

‘super-shedders’; individuals that chronically shed the helminth eggs in

larger than average numbers. Our study shows that co-infection may be one

of the underlying mechanisms for the often-observed high variance in parasite

load and shedding rates, and should thus be taken into consideration for disease

management and control. Further, using self-bioluminescent bacterial reporters

allowed quantification of the progression of infection within the whole animal

of the same individuals at a fine temporal scale (daily) and significantly reduced

the number of animals used (by 85%) compared with experiments that do not

use in vivo techniques. Thus, we present bioluminescent imaging as a novel,

non-invasive tool offering great potential to be taken forward into other

applications of infectious disease ecology.
1. Introduction
A dominant feature of host–parasite interactions is the large variation in infection

and infectiousness. Individuals infected with HIV, for example, may either rapidly

develop acquired immune deficiency syndrome, or take many years before show-

ing overt symptoms [1]. In a similar manner, individuals exhibit large variation in

parasite infection with some remaining chronic while others are rapidly cleared

[2]. The significant variation in the establishment and growth of parasites

among individuals is such that few individuals are responsible for a large pro-

portion of the transmission events [3,4]. One striking example was illustrated by

the severe acute respiratory syndrome epidemic where 103 of the first 201 cases

were infected by just five source cases—individuals termed super-spreaders, i.e.

those that infect an unusually large number of secondary cases [5–8]. Typically,
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super-spreaders are those with higher than average contact

rates although increased host infectiousness is also implicated

in super-spreading events [5,8]. Individuals with the potential

to be highly infectious can be referred to as a ‘super-shedders’;

individuals that for a period of time yield many more infective

stages than most other infected individuals of the same host

species [5]. A major challenge in disease biology is to identify

some of the mechanisms that may generate super-shedders.

One of the drivers of variation in parasite load and host infec-

tiousness is proposed to be underlying secondary infection,

or co-infection, the simultaneous infection of an individual

with two or more parasitic species [9–11]. We investigate the

hypothesis that co-infection alters the likelihood of parasite

establishment, growth and shedding of both parasites and

may generate super-shedders. Here, we use the term parasite

to include both macroparasites (helminths, protozoa) and

microparasites (viruses and bacteria).

Co-infection is common across species [12] and so

understanding the mechanics of co-infection, i.e. the effect on

growth and establishment of one parasite on another is impor-

tant for host health and effective disease control. When a

co-infection consists of helminth and bacteria that infect differ-

ent organs within an individual the variation in parasite

establishment and growth may be expected to be resource or

immune-mediated [13–19]. In the case of the latter, a broad

antagonism in immune mechanisms in response to the two

different types of parasite may be expected to generate differen-

tial infection dynamics [20]. Helminths typically induce

cytokines associated with a T-helper cell type 2 (Th2) immune

response, which simultaneously downregulates T-helper cell

type 1 (Th1) cytokines, which are involved in fighting intracellu-

lar microparasites [20]. As such, this antagonism may alter co-

infection dynamics, and this has been shown to be the case

using mathematical models [15], whereas meta-analyses of

empirical data have identified key cytokines that may be

broadly accountable for shaping co-infection dynamics [13]. It

is therefore likely that variation in individual parasite species’

establishment, growth and ultimately host infectiousness may

be a function of co-infection.

We undertook a detailed longitudinal study of parasite load

in vivo and in real-time to quantify simultaneously the mech-

anics of co-infection, i.e. the parasite establishment and

growth of the bacterial parasite and establishment and trans-

mission potential of the helminth (as measured by egg

production stages) during co-infection, in comparison with

single infection scenarios. We examined the establishment

and growth of the respiratory bacterium Bordetella bronchiseptica
luxþ (a self-bioluminescent strain), using bioluminescence

imaging (BLI). Simultaneously, we monitored the shedding

of eggs of the directly transmitted gastrointestinal helminth

Heligmosomoides polygyrus in laboratory mice. Both parasites

are well studied immunologically [21–24] and inhabit different

physical locations in the host and so are unlikely to directly

compete for resources or otherwise, therefore we hypothesize

that interactions will likely be immune-mediated.
2. Methods
2.1. How does co-infection alter parasite establishment,

growth and load?
Quantitative counts of self-bioluminescent bacteria were made

in vivo (the bacterial load), whereas the number of eggs shed
by helminths and their development to infective stages (L3

larvae) were used as a proxy measure of helminth infectiousness.

Daily measurement of the bacterial load was carried out in vivo
until equilibrium densities were reached, whereby a persistent

nasal infection was observed for more than 5 days in a row (a

total of 22 days for bacteria) or no eggs were shed (365 days

for helminths). A controlled laboratory setting was used to elim-

inate confounding factors known to cause variation in parasite

dynamics, including environment, nutrition, prior parasite

exposure, host genetics, sex and age [25–28]. All mice used

were females, aged six to eight weeks caged individually in

randomized locations within a single room in an animal facility

for the duration of the experiment and provided with food

ad libitum.

A total of 40 female BALB/c mice (The Jackson Laboratory,

Bar Harbor, ME, USA) were randomly allocated to one of

four treatment groups (10 in each group): (i) inoculation with

the respiratory pathogen B. bronchiseptica luxþ; (ii) inoculation

with the helminth H. polygyrus; (iii) simultaneous inocula-

tion with B. bronchiseptica luxþ and H. polygyrus; (iv) a control

group that received sham inocula of culture medium. We

used B. bronchiseptica strain RB50, which had been rendered

self-bioluminescent by the chromosomal insertion of a

plasmid—pSS4266 to produce B. bronchiseptica luxþ [29]. The

lux operon is driven by the fha promoter and is constitutively

expressed such that bacteria are self-bioluminescent (i.e. do not

require addition of a substrate), and the light emitted was quan-

tified in vivo over time using BLI. Bacterial doses were confirmed

by plating dilutions and carrying out colony counts prior to

inoculation. Mice were intra-nasally inoculated under light

anaesthesia (continuous flow 5% isoflurane in oxygen) with a

50 ml droplet of B. bronchiseptica luxþ in PBSþ 1 per cent Stai-

ner–Scholte medium (ca 104 bacterial cells). The helminth-only

treatment group received an intranasal sham-inoculation of

50 ml PBSþ 1 per cent Stainer–Scholte medium. Mice assigned

to a co-infection or helminth-only treatment were simultaneously

inoculated with 180 + 30 H. polygyrus infective L3 larvae in 20 ml

distilled water, administered via oral gavage. The mean number

of larvae in each inoculum was estimated from 10 direct counts

of larvae in 20 ml of water prior to gavaging. The bacteria only

and control treatment groups received a sham-inoculation of

20 ml distilled water, administered via oral gavage. Inoculation

of animals was carried out in a random order on day zero of

the experiment.

2.2. Bioluminescence imaging
Mice were placed in groups of up to three, within their treatment

group inside an IVIS 50 (Caliper Life Sciences, Hopkinton, MA,

USA). Mice were anaesthetized using a continuous flow of

5 per cent isoflurane mixed with oxygen for 5 min to allow acqui-

sition of an image quantifying the light emission in vivo from

B. bronchiseptica luxþ. Bacterial load measurements were

obtained from three regions of the mouse: (i) whole body,

within a square of standard size 3.0 cm width and 5.0 cm

height, (ii) head, including nose and trachea using an elliptical

region of size 2.3 cm width and 2.0 cm height, and (iii) lungs

using a standardized square region of 3.0 cm width and 3.0 cm

height. Mice were imaged at approximately the same time of

day, from day zero ( just prior to inoculation) until day 22. An

image was acquired over a 5 minute period and the software

LIVING IMAGE (v. 2.6.1, Xenogen Corporation, Almeda, TX, USA)

was used to convert the photons emitted from B. bronchiseptica
luxþ within the host into relative light units (RLUs). The spatial

location of infection in the mouse was overlaid on a photographic

image using a pseudo-colour to quantify the RLUs. Previous

studies have shown the light output (RLUs) from self-biolumi-

nescent bacteria to correlate positively with viable counts of

bacteria in vivo [30–33], thereby giving a real-time quantification

http://rsif.royalsocietypublishing.org/
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of bacterial load. Tovalidate the relationship between B. bronchiseptica
in vivo and in vitro, comparisons were made between viable counts of

bacteria from a parallel experiment where animals were sacrificed at

set time points (see §2.1.3.) and related to the RLUs in vivo.

To determine whether the time course of bacterial load dif-

fered between single and co-infected treatment groups we used

the model described by Fenton et al. [34], where a generalized

linear mixed model (GLMM) using ASReml v. 2.0 was used to

determine differences in the number of faecal egg counts of mul-

tiple individuals over time. Mixed models allow the user to

control for multiple variables at the same time, including both

random and fixed effects. One advantage to ASReml is that

spline terms are included in the random model where only

1 d.f. is used. Here, we fit this spline to the time course of infec-

tion in our data, allowing nonlinear relationships between

variables to be modelled. We also included host identification

as a random term to control for pseudo-replication (i.e. autocor-

relation errors). For the fixed model, we fitted a spline to the

bacterial load, over time, of the single and co-infected groups

and used this as the response variable with treatment group

(single or co-infected) as the explanatory variable. We first log-

transformed the data and then carried out a GLMM analysis

using ASReml in software R [35]. To assess whether co-infection

altered host mortality, Cox proportional hazards were used to

determine how survivorship differed between the treatment

groups [35].
2.3. How does co-infection alter helminth
egg shedding?

Helminth eggs were counted from host faecal samples, collected

at approximately the same time of the day, from day 5 post-

inoculation, i.e. just before the time point when helminth

larvae moult into adults [36]. We monitored helminth egg

shedding every 3 days until day 44, thereafter weekly sampling

occurred until no eggs were found in an individual for three con-

secutive time points (last time point collected was day 365). Prior

to collecting faeces for egg counts, mouse cages were cleaned at

16.00 + 2 h, a subsample of faeces was collected approxima-

tely 18 h later, and helminth eggs quantified using standard

McMaster techniques. To determine whether co-infected mice

shed significantly more helminth eggs than single-infected

mice, over time, we carried out a GLMM with random terms

using ASReml in R (after [34] and [35]). A unique identification

number for each animal was included in the model as a

random term to remove the variation caused by individuals in

order to gain insights into any underlying relationships in

the fixed model. For the fixed model, we fitted a spline to the

parasitic load, over time, of the single and co-infected groups

and used this as the response variable with treatment group as

the explanatory variable. To quantify whether co-infection

generated super-shedders, we used the distribution of eggs

shed from the helminth-only infected animals as a baseline

distribution. We defined super-shedders as individuals (from

the co-infected treatment group) that were 2 s.d.s above the

mean of single-infected individuals.

To determine that the number of helminth, eggs shed were a

good proxy for transmission potential of the helminth we cultured

helminth eggs from faecal samples to their infectious L3 larval

stage. After 10 days of culture at 208C to ensure the inclusion of

early and late hatching larvae, we quantified the L3 stages pro-

duced using a ‘whites trap’ [37,38] using faeces from the single

(n ¼ 9) and co-infected animals (n ¼ 7) on day 21 post-inoculation.

To assess whether differences existed between co-infected and

single-infected groups in the viability of eggs maturing to the L3

infectious stage, we carried out a GLM with normally distributed

errors with treatment as the explanatory variable (i.e. single or
co-infected) and the number of L3 larvae per gram of faeces as a

response variable [35].

To validate the in vivo techniques; that helminth infections

had established and that the RLUs of the bacteria were positively

associated with the viable counts of bacteria in an individual, we

carried out destructive sampling in parallel with the in vivo
experiment. An additional 72 female mice (four treatments �
six time points � three replicates) were infected and kept under

the same conditions as the in vivo treatment groups (H. polygyrus
only, B. Bordetella luxþ only, co-infection and control). Three ani-

mals per treatment group were euthanized at days 0, 3, 6, 12, 24

and 48 post-inoculation. Animals were sacrificed via CO2 inhala-

tion and the lungs, trachea, nasal cavity and gastrointestinal tract

were removed. The gastrointestinal tract was immediately dis-

sected at 10� magnification in Hank’s balanced salt solution

and adult H. polygyrus counted to determine whether the

number of adult helminths that had established in mice differed

between single and co-infected individuals. We analysed these

data using a GLM with negative binomial errors with treatment

and time points as fixed effects and the number of adult hel-

minths as response variable. To assess how the number of

helminth eggs shed correspond to helminth infection intensity,

we also collected faecal samples from these animals prior to

euthanasia. We calculated the number of eggs per gram (EPG)

faeces per helminth and determined whether the number of

eggs per helminth differed between treatments using a GLM

with negative binomial errors with treatment and time of

sampling as fixed effects [35].

To relate viable counts of bacteria to the RLUs measured

in vivo and to determine the viability of the B. bronchiseptica
luxþ the lungs, nose and trachea were homogenized in PBS

and serial dilutions used to count colonies. Bordetella bronchisep-
tica luxþ was plated onto growth medium using standard

techniques [21], and the colony-forming units (CFUs) were

counted after incubation at 378C for 2 days [21].The relationship

between the CFUs and the lux measurements in vivo was

assessed using correlation analysis.
3. Results
3.1. How does co-infection alter bacterial

establishment, growth and load?
The efficiency of the reporter bacteria was assessed first,

and it was determined that light output (RLUs) from self-

bioluminescent bacteria measured in vivo was positively

correlated (r ¼ 0.82; p , 0.05) with the CFUs of bacteria

from animals that were sacrificed at days 3, 6, 12 and 24

(figure 1).

Bacteria were observed in the lungs in some co-infected

animals as early as day 2, progressing to the trachea of

both single and co-infected animals from day 5 after which

a persistent nasal infection occurred in both treatment

groups (figures 2 and 3). If bacterial infection reached

higher than the average bacterial load by 2 s.d.s (as measured

by RLUs), these individuals were assessed to have reached

one of the ethical endpoints of the experiment (systemic

infection) and according to the guidelines of the IACUC

were euthanized (e.g. co-infected individual in position 3

on day 5; figure 3). Taking account of the variance associated

with individuals, significantly higher bacterial loads were

found in the lungs of co-infected animals compared with

single-infected animals (GLMM: F2,28 ¼ 4.22; p ¼ 0.03).

There was no significant difference between the mean

whole body bacterial load of single and co-infected animals

http://rsif.royalsocietypublishing.org/


5.4

5.3

5.2

(l
og

) 
re

la
tiv

e 
lig

ht
 u

ni
ts

5.1

5.0

5.0 5.24.8 5.4

(log) colony forming units

5.6 5.8 6.0

Figure 1. Correlation between light output (measured in relative light units)
and colony-forming units in hosts infected with self-bioluminescent
Bordetella bronchiseptica luxþ.

rsif.royalsocietypublishing.org
JR

SocInterface
10:20120588

4

 on March 27, 2013rsif.royalsocietypublishing.orgDownloaded from 
(GLMM: F2,28 ¼ 2.50; p ¼ 0.11) and in the mean bacterial load

in the nose and trachea between co-infected and single-

infected animals (GLMM: F2,28 ¼ 1.14; p ¼ 0.35).

Using Cox proportional hazards to relate the survivorship

to the continuous variable of bacterial loads, we find a signifi-

cantly higher mortality of co-infected animals over the course

of the experiment (x2 ¼ 34.2, d.f. ¼ 19, p ¼ 0.017; figure 4).
3.2. Does co-infection alter helminth egg shedding?
A cubic smoothing spline was fitted to the course of infection

in the random models, which allowed potential nonlinear

relationships between single and co-infection growth and estab-

lishment to be assessed. Likelihood ratio tests were used to

compare the random model (shedding over time) in each analy-

sis. A likelihood ratio test showed the spline was significant

( p , 0.05). As such, helminth egg shedding was significantly

increased in co-infected compared with single-infected mice

over the duration of the in vivo experiment ( p , 0.05). The

period of egg shedding was not significantly different between

single and co-infected hosts (negative binomial GLM: d.f.¼ 1,

p ¼ 0.056; figure 5a), although this was marginal at the 5 per

cent level. One single-infected individual shed helminth eggs

for 320 days while all other single-infected individuals shed

eggs on average for 79 + 9 days (mean + s.e.; figure 5b).

This individual could be considered a ‘super-shedder’,

although it is worth noting that super-shedding was not due

to the presence of a secondary infection as these individuals

were infected with a helminth-only.

The mean total number of eggs shed over the duration of

the experiment (365 days) for the helminth-only infected

animals was 1072 + 498 s.d. To quantify how many super-

shedders co-infection generated, we quantified how many

individuals from the co-infection treatment group were shed-

ding helminth eggs at a rate 2 s.d.s above single-infected. We

determined that five of seven (seven because three had

reached such high bacterial loads that they were removed

from the experiment) animals in the co-infected groups

were super-shedders according to our definition (mean egg
shedding of super-shedders ¼ 4120 eggs, over the duration

of the experiment).

To assess potential differences in clearing of helminths

between single and co-infected hosts, the numbers of adult

helminths established in the gastrointestinal tract of sacrificed

hosts were quantified. Adult H. polygyrus were found on days

12, 24 and 48 in both single and co-infected treatment groups.

Prior to day 12, adult helminths had not established in either

group. Significantly more adult helminths were found in co-

infected mice (negative binomial GLM, d.f. ¼ 1, p ¼ 0.013;

figure 6a). The number of helminths in single infections

decreased significantly between days 12 and 48, but not in

co-infected mice (negative binomial GLM, time: d.f. ¼ 1,

p , 0.001, figure 6a). There was a marginally significant inter-

action between time and infection status with a stronger

decrease of helminths in single compared to co-infected

hosts (negative binomial GLM, time: treatment: d.f. ¼ 1,

p ¼ 0.053). As we were interested in the consequences of

co-infection on transmission potential, we calculated the

number of eggs shed by each helminth, using eggs collected

from host faeces prior to destructive sampling (figure 6b).

Single and co-infected individuals, however, did not differ

in the per capita (per helminth) number of eggs (negative

binomial GLM, treatment: d.f. ¼ 1, p ¼ 0.873).

To determine whether helminth eggs shed from single

and co-infected mice differed in their viability (i.e. their

development to larvae) and to assess the relationship

between the number of eggs shed and development to infec-

tious L3 larvae, i.e. whether egg shedding is a good proxy for

infectiousness, we compared their development with the

infectious larval stage. On day 21 post-inoculation, the

numbers of eggs shed were 12.7 + 2.6 s.e. EPG faeces in

single infected and 14.2 + 3.5 s.e. EPG of faeces

in co-infected hosts. No significant difference was found in

the viability of the L3 larvae between single and co-infected

animals (log mean number of hatchlings + standard

error: single ¼ 4.57 + 0.05; co-infected ¼ 4.74 + 0.12; GLM

F1,14 ¼ 1.765, p ¼ 0.205).
4. Discussion
Co-infected individuals shed significantly more helminth

eggs for an extended period of time, and bacterial load was

significantly higher in the lungs of co-infected rather than

single-infected individuals. Co-infection created helminth

super-shedders, those individuals that shed significantly

higher number of eggs than average, over the duration of

the experiment. While helminth egg shedding can be related

to infectiousness, relating the bacterial load in vivo to host

infectiousness is, however, more complicated. Shedding of

B. bronchiseptica has been shown to be positively affected

by the number of bacteria in rabbit hosts [39]. Bordetella
bronchiseptica is a natural parasite in mice [40,41], and trans-

mission between female mice and their offspring has been

observed in transmission experiments under controlled lab-

oratory conditions (S. Lass 2008, unpublished data), as

such, a high bacterial load may translate into higher infec-

tiousness, although further empirical work is required for

validation. Thus, we show that co-infection could be a

factor contributing to the commonly observed variation in

both individual infection load and host infectiousness and

may therefore alter the dynamics of epidemics [2–7].
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Co-infection is not without a cost to the host. In our exper-

iment, co-infected individuals suffered from higher mortality

than individuals infected with the bacteria or helminth only

(figures 3 and 4). We observed the proliferation of one para-

site (bacteria) to be elevated due to the presence of a
secondary infection (helminth), which led to increased parasite-

induced host mortality. This has been shown to occur at a

population level, whereby co-infecting parasites caused eco-

logical interference thereby strongly affecting parasite

dynamics [42]. Given that helminth egg shedding is a good

proxy of infectiousness, if co-infections increase the hetero-

geneity in infection intensities then co-infected individuals

may act to increase the basic reproduction number (R0) of a

parasite. Alternatively, the cost associated with co-infection

could be such that those individuals have little overall contri-

bution to R0 because they are rapidly removed from the

epidemic owing to co-infection-induced host mortality. In

addition, of the individuals that were co-infected five of

seven developed into helminth super-shedders and so the

co-infection-induced mortality may act to reduce population-

level transmission potential of the helminths. To determine

the role of individual hosts in the dynamics of infectious

disease, however, we need to know simultaneously the

number of contacts and the infectiousness of that individual;

data not collected here. To the best of our knowledge,

host infectiousness and contact frequency have not been

examined simultaneously. However, it has been found that

cattle co-penned with super-shedders had significantly

greater mean pen E. coli levels than animals that were not

co-penned animals [43].

Interestingly, the variance in bacterial loads and egg shed-

ding within treatment groups was high. One helminth-only

http://rsif.royalsocietypublishing.org/


rsif.royalsocietypublishing.org
JR

SocInterface
10:20120588

7

 on March 27, 2013rsif.royalsocietypublishing.orgDownloaded from 
infected host shed parasite eggs for 320 days while all other

single-infected individuals had cleared helminth infection on

average by day 79+ 9 days post-infection (figure 5). This

single-infected individual meets our criteria for definition as a

super-shedder although mechanisms other than co-infection

have generated this extended shedding. In addition, bacterial

load in some, but not all co-infected hosts reached higher than

average loads by 2 s.d.s (figure 3). Given the homogeneous

environmental conditions in the laboratory and the low genetic

diversity of the BALB/c mouse strain and the parasites used,

this variation within the co-infected and helminth-only treat-

ment group was surprising, but similar patterns have been

observed in host–parasite interactions with clonal hosts

[44,45]. Exposing different host clones to different doses of para-

site isolates in a well-controlled laboratory experiment resulted

in considerable variation in infection probability [45]. Non-

inherited phenotypic differences such as differences in the

immune response or in life-history traits may be the underlying

cause for the observed variation among individual hosts [45].

This could also be true for our experiment. The observed vari-

ation in shedding helminth eggs and bacterial load may be

caused by external factors (e.g. micro-environmental variation

between our mouse cages) or by internal factors such as molecu-

lar mechanisms of the immune system (e.g. alternative splicing

[46]) or within-mouse strain variation, e.g. in life-history traits.

Indeed, our observations show that while co-infection certainly

seems to generate super-shedders it is not the case that all

super-shedders are co-infected.

Our experiment showed that helminth establishment was

initially the same in single and co-infected groups (figure 6a),

but clearance was faster in single-infected individuals. Thus,

the difference in helminth infection intensity in co-infection

versus single infection was likely to be mediated by the host’s

immune system. While parasites in the same location within a

host may interact due to competition for resources, including

space and nutrients, interactions between parasites in different

physical locations are likely to be mediated by the immune

system [13,19], and these interactions may be antagonistic

towards parasite defence [13,47–49]. Previous work has

shown that clearance of B. bronchiseptica from the lungs requires

IFN-g, part of a Th1-mediated response [21], whereas an

immune response to H. polygyrus is initiated by Th2 cytokines,

such as IL-4 and IL-10 in the murine host [50]. The anticipated

antagonism between these immune responses to the bacterial–

helminth co-infection may therefore have produced the

impaired clearance of B. bronchiseptica and H. polygyrus
[13,20]. Alternatively, the immunomodulatory pathways

known to be activated by H. polygyrus [51–53] could lead to

suppression of immune responses to both parasites, thereby

producing the helminth super-shedders and the high bacterial

loads observed.

Bioluminescent imaging (BLI) has previously been used

to study non-infectious disease progression and infectious
disease colonization processes [53], but the application in dis-

ease ecology and the investigation of co-infection used here

was novel. Using real-time, whole animal, in vivo monitoring

of B. bronchiseptica infection allowed us to determine spatial

location, real-time infection load, observe high bacterial

loads early in the infection (day 2) and to significantly

reduce the number of animals used in the experiment,

thereby contributing to the 3Rs for animal use in research

(reduction, refinement and replacement). It is worth noting

that if we were to have applied a ‘traditional regime’ of sacri-

ficing animals to determine bacterial infection load this same

experiment would have required 264 animals, as opposed to

the 40 used (an 85% reduction in animal use).

Imaging bacterial infection models with the use of a bac-

terial lux operon allows for real-time monitoring and

quantification of infection, without requiring administration

of a substrate; an obviously useful tool for infectious disease

ecology. BLI is in its infancy in infectious disease research,

but where it has been used novel observations have occurred,

mostly due to the increased temporal and spatial resolution

available on the infections due to real-time and in vivo obser-

vations, including novel sites of pathogen replication [54,55].

Here, we have observed high infection loads that may have

been missed if the traditional techniques of observing

infection every 2–7 days had been used [21,56].

Furthermore, traditional infection models have required

host sacrifice to quantify bacterial load from individual host

organs during infection. This typically involves sacrificing

at least three mice at set time points during an experiment.

As such, daily measurements of infection load are often not

ethically possible owing to the large number of mice that

would be required to run such an experiment. BLI, however,

provides a unique opportunity to longitudinally monitor

infection in a single host over a fine temporal scale (in our

case daily). In addition, because imaging occurs in vivo and

light is emitted when the bacteria are metabolically active

the counts observed may be a better reflection of actual bac-

terial numbers than other in vivo techniques such as gfp-

reporters and traditional techniques such as counting CFUs

on growth media.
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Care and Use Committee (IACUC).
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