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Co-infection is ubiquitous in people in the developing world but little is

known regarding the potential for one parasite to act as a risk factor for

another. Using generalized linear mixed modelling approaches applied to

data from school-aged children from Zanzibar, Tanzania, we determined the

strength of association between four focal infections (i.e. Ascaris lumbricoides,

Trichuris trichiura, hookworm and self-reported fever, the latter used as

a proxy for viral, bacterial or protozoal infections) and the prevalence or

intensity of each of the helminth infections. We compared these potential

co-infections with additional risk factors, specifically, host sex and age, socio-

economic status and physical environment, and determined what the relative

contribution of each risk factor was. We found that the risk of infection with all

four focal infections was strongly associated with at least one other infection,

and that this was frequently dependent on the intensity of that other infec-

tion. In comparison, no other incorporated risk factor was associated with

all focal infections. Successful control of infectious diseases requires identifi-

cation of infection risk factors. This study demonstrates that co-infection is

likely to be one of these principal risk factors and should therefore be given

greater consideration when designing disease-control strategies. Future work

should also incorporate other potential risk factors, including host genetics

which were not available in this study and, ideally, assess the risks via

experimental manipulation.
1. Introduction
Co-infection (where two or more virus, bacteria, protozoa or helminth species

concomitantly infect an individual) is the norm in most natural systems, includ-

ing people living in developing countries [1–5]. Infectious diseases are among

the most important causes of childhood mortality and morbidity in the devel-

oping world [6–13]. In sub-Saharan Africa alone, approximately 1.5 million

children die before their fifth birthday, owing to infectious diseases [14,15].

However, there is clearly heterogeneity between individuals, in the mix of infec-

tions an individual has and in the intensity of those infections [4,16,17]. Thus,

some children have many infections and/or have high intensities of infection,

whereas others have few infections and/or the intensity of those infections

is low. Understanding what drives an individual’s infections is essential if

effective disease-control strategies are to be developed [18,19].

There are many possible risk factors associated with an individual’s infec-

tions, including their physical environment [17,20–22], genetics [23,24],

behaviour [25,26] and demographic factors [27,28]. A comparatively understu-

died risk factor for infection with one organism is co-infection with a second

species. Any infection will change the within-host environment in some

way, for example by inducing changes in host physiology (e.g. Leishmania
spp. creating an ulcerous wound that bacterial opportunists can exploit [29])

and/or the host immune response [1,30,31] (e.g. hookworm-induced
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suppression of the pro-inflammatory cytokine IFN-g causing

increased parasitaemia with Plasmodium parasites [32]). There-

fore, a second parasite species encountering an already infected

host experiences a different environment than if that host was

uninfected. Such changes to the host environment could poten-

tially predispose, or protect, that host from a second infection,

and/or modulate the intensity of that infection. There is

increasing evidence from both laboratory investigations

[33–35], and in particular from field studies of animals

[36–38], that interspecific parasite interactions can be a power-

ful influence on parasite dynamics. However, in humans,

co-infection is often considered as the co-incident result of

other infection risk factors and it is rarely considered that one

infection could alter the risk of infection by a second species.

There have been a few recent studies that consider the

role of co-infection alongside other potential infection risk

factors, focusing largely on helminth and Plasmodium infec-

tions [4,39–42]. However, these studies generally consider

co-infection in terms of co-exposure, describing the geographi-

cal co-incident overlap of the parasite species’ infective stages,

vectors or intermediate hosts, resulting from their shared

requirements for particular climatic and geographical condi-

tions. Despite this ‘co-incident overlap’ focus, these studies do

provide evidence that associations between co-infecting species

can remain, even after controlling for geographical and environ-

mental attributes [39,40], suggesting that simple co-exposure is

not a full explanation for observed parasite co-infections.

Further, even where these studies incorporated behavioural

and socioeconomic data, there was evidence that some positive

associations between parasites persisted [39,40].

Traditional analytical approaches for detecting potential

associations between infections (e.g. seeking simple correlations

between infection intensities within hosts) do not allow for the

effect of other potential infection risk factors to be considered

[43,44]. In natural systems, many different factors can poten-

tially act (either alone or together) to change a person’s

probability of becoming infected with a particular parasite.

Therefore, in order to determine the relative importance of the

different potential risk factors, advanced statistical methods,

such as generalized linear mixed modelling (GLMM), must

be used, which enable the simultaneous assessment of multi-

ple factors and have a greater chance of detecting negative

relationships between infections [43].

Here, we have used GLMMs applied to a dataset of infec-

tions with three common soil-transmitted helminths (STHs,

i.e. Ascaris lumbricoides, Trichuris trichiura and hookworm)

and self-reported fever in school-aged children from Zanzi-

bar, Tanzania [20]; these data also included other potential

infection risk factors (i.e. physical environment, demography,

behaviour and socioeconomic status). GLMMs have pre-

viously been used to determine (or infer) the presence of

both positive and negative interactions between parasites,

in both simulated and wild animal parasite datasets

[36,37,43]. We used this integrated approach to investigate

the role of co-infection in infection risk after accounting for

other infection risk factors.
2. Methods
(a) Participants and study design
The study design, description of the population studied,

and field and laboratory procedures used have been reported
elsewhere [20]. Briefly, in 2008, a community-based, cross-

sectional epidemiological survey was carried out in two

shehias (administrative areas) of Unguja, the main island of the

Zanzibar archipelago. The Bandamaji shehia is located in the

rural north of the island, whereas the peri-urban shehia Dole is

located in the west of Zanzibar Town in the centre of Unguja.

In this study, only infection data of school-aged children were

examined. Helminth-control interventions (e.g. preventive che-

motherapy) are primarily targeted at this age group [13],

yet co-infection’s influence on these children has been understu-

died. Approximately 330 individuals (adults and children) were

enrolled in the main village of each shehia; 180 children, aged

5–16 years, provided complete information with 17 children

providing one faecal sample, 51 providing two samples and

the remaining 112 providing three samples, collected over a

3-day period.

Faecal egg counts (FECs) of A. lumbricoides, T. trichiura and

hookworm were recorded for each child in the study; stool

samples were examined using the Kato–Katz technique [45].

Strongyloides stercoralis and Schistosoma haematobium infections

were also recorded using appropriate diagnostic techniques

[20], but these infections were rare and therefore excluded from

the present analysis. Malaria is close to elimination in Zanzibar

[46–48], and hence was not assessed in this study.

For all children, a pre-tested, standardized questionnaire was

used to record a wide range of commonly acknowledged

infection risk factors, i.e. an individual’s age, sex, soil-eating and

shoe-wearing behaviour; their family’s socioeconomic status

and physical environment. In addition, self-reported status of

(i) coughs, (ii) colds and (iii) fevers were recorded using a two-

week recall period [20]. Fever was of non-specific aetiology but

is a symptom usually associated with viral, bacterial or protozoal

infection rather than helminth infection. Malaria is unlikely to

make a notable contribution to these self-reports of fever, owing

to its rarity in Zanzibar.
(b) Statistical analyses
We investigated the association of the potential infection risk

factors, detailed earlier, together with co-infection, on the

presence or absence of four focal infections (i.e. A. lumbricoides,

T. trichiura, hookworm and self-reported fever). These focal

infections were examined in four separate GLMMs using a

binomial error structure and a logit link function in the statisti-

cal package ASReml v3 (VSN International Ltd., Hemel

Hempstead, UK). In all models, repeated measures of FEC

(i.e. from patients providing two or more faecal samples)

were controlled for by incorporating each child’s individual

identification code in the random model. A cubic smoothing

spline was fitted to age in all initial random models, which

allowed potential nonlinear relationships between age and

each of the four focal infections to be assessed. Fitting the

spline controlled for any age-associated correlations in infection

intensity, because apparent associations between infections can

arise simply as a result of correlated host age-specific patterns

of infection [43].

The initial detailed structure of each model is described

in the electronic supplementary material, table S1, and the

database used in the analyses is given in the comma separa-

ted value file ‘S2.csv’. In brief, all models contained the

fixed effects of host age, sex, behaviour, physical environment

and socioeconomic status; the infection data were in the form

of ln(FECþ 1) for A. lumbricoides and T. trichiura, and presence/

absence for hookworm and self-reported fever. Presence/absence

data rather than FEC were used for hookworm because of

low prevalence (i.e. many uninfected individuals) which

meant that normalization of these data was not possible by any

attempted transformation. Where a STH was used as the

http://rspb.royalsocietypublishing.org/
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Figure 1. Risk factors associated with the four focal infections in school-aged children in Zanzibar. Generalized linear mixed modelling (GLMM) predicted prevalence
(equating to risk of infection) of (a) Trichuris trichiura, (b) Ascaris lumbricoides, (c) hookworm and (d ) self-reported fever, with the significant risk factors from each
model. Section (i) of each graph presents the significant non-infection terms, with predictions made at a value of faecal egg counts (FECs) ¼ 0 and no self-reported
fever for model (a). Section (ii) of each graph presents the significant infection terms. Predictions for the infection terms were made with village set to Bandamaji
for models (a) and (b), sex set to male for model (c) and no soil consumption for model (d ). Error bars show the 95% confidence limits of the predictions.
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dependent variable, presence/absence data on self-reported colds

and coughs were also included as explanatory variables; where

self-reported fever was the dependent variable, coughs and

colds were excluded from the analysis as they are also symp-

toms of several of the causes of fever and, as such, would be

confounding factors.

Likelihood ratio tests were used to compare the random

model in each analysis. Following simplification of the ran-

dom model, the fixed model was refined by stepwise deletion

of insignificant terms (i.e. p . 0.05) using the Wald test and

evaluation of the conditional F-statistics. Predictions from the

final models are presented as prevalence of infection with

a STH or self-reported fever (i.e. predictions range between

0 and 1), which can also be viewed as the risk of infection.

Effect sizes for each significant term in the minimal model

of each focal infection were calculated as odds ratios (ORs).

Where helminth FEC was a significant risk factor, ORs were cal-

culated by comparing uninfected children (i.e. a FEC of zero)

with children at the bootstrapped mean (zm) and bootstrapped

maximum values (zx).
3. Results
Overall risk of infection (i.e. predicted prevalence) with

T. trichiura was 0.40, A. lumbricoides 0.49, hookworm 0.26

and self-reported fever 0.43. Co-infection state was associa-

ted with a significant change in infection risk for all four

focal infections. Conversely, none of the other factors (i.e.

host age, sex, behaviour, socioeconomic status or physical
environment) were significant risk factors for all infections,

although at least one of these factors was significant in each

of the four infection models.
(a) Focal infection with Trichuris trichiura
Both a child’s village of residency (F1,451 ¼ 10.6, p ¼ 0.001) and

shoe-wearing behaviour (F1,451 ¼ 4.95, p ¼ 0.028) were associ-

ated with a significant change in the risk of T. trichiura
infection. Children resident in rural Bandamaji had substan-

tially higher risk (OR ¼ 4.06) of infection than those from the

village in the peri-urban shehia of Dole (figure 1a(i)). Similarly,

children who did not wear shoes had a higher risk of infection

(OR¼ 2.25) than those who did (figure 1a(i)). By combining

these two risks, the difference between a child living in Dole

and wearing shoes compared with one living in Bandamaji

and not wearing shoes gave an OR of 9.13.

Co-infection with A. lumbricoides was associated with a

significantly higher risk of T. trichiura infection (F1,451 ¼ 30.7,

p , 0.001). Further, this risk was positively dependent on

A. lumbricoides FEC (figure 1a(ii); comparing zero FEC with

the mean FEC (zm) of A. lumbricoides, and OR ¼ 6.22 comparing

zero with maximum A. lumbricoides FEC (zx) OR ¼ 24.57).
(b) Focal infection with Ascaris lumbricoides
A child’s village of residency was also a significant risk factor

for A. lumbricoides infection (F1,451 ¼ 29.58, p , 0.001). Children

http://rspb.royalsocietypublishing.org/
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of Bandamaji had a substantially higher (OR ¼ 30.24) risk of

A. lumbricoides infection than those living in Dole (figure 1b(i)).

Infection with T. trichiura (F1,451 ¼ 14.94 p , 0.001) and

self-reported fever (F1,451 ¼ 5.31, p ¼ 0.023) were associated

with significant changes in the risk of A. lumbricoides infec-

tion. The T. trichiura FECs were positively associated with

an increased risk of A. lumbricoides infection (figure 1b(ii);

zm OR ¼ 3.12 and zx OR ¼ 54.07). Conversely, self-reported

fever was associated with a lower risk of A. lumbricoides
infection (figure 1b(ii), OR ¼ 0.32). By combining these two

risk factors, the difference between a child with fever and

without T. trichiura infection and one without fever but

with the mean for A. lumbricoides infection or maximum

T. trichiura FEC gave ORs of 9.74 and 168.95, respectively.

(c) Focal infection with hookworm
A child’s sex was a significant risk factor (F1,452 ¼ 4.19,

p ¼ 0.044) for hookworm infection, with boys at higher risk

(OR ¼ 2.14) of hookworm infection compared with girls

(figure 1c(i)). Trichuris trichiura infection was a significant

risk factor for hookworm infection (F1,452 ¼ 5.14, p ¼ 0.025).

Increasing T. trichiura FEC was positively associated with

an increased risk of hookworm infection (figure 1c(ii)

zm OR ¼ 1.6, zx OR ¼ 5.16).

(d) Focal infection of self-reported fever
A child’s soil consumption behaviour was significantly associ-

ated with the risk of self-reported fever (F1,452 ¼ 5.89,

p¼ 0.016). Those who consumed soil had a substantially lower

risk (OR ¼ 0.04) of self-reported fever compared with those

who did not consume soil (figure 1d(i)). Ascaris lumbricoides
infection was significantly associated with self-reported fever

(F1,452 ¼ 8.89, p¼ 0.003) with increasing A. lumbricoides FEC

associated with a decreasing risk of fever (figure 1d(ii)

zm OR ¼ 0.29, zx OR ¼ 0.11).
4. Discussion
In recent years, studies in wild animals have shown the impor-

tance of co-infection in driving disease dynamics [36–38],

highlighting the need for parasite-community-based appro-

aches in the creation of parasite control strategies. However,

this perspective is not apparent in the human disease literature,

despite the growing understanding of the, often negative, con-

sequences of co-infection for disease severity and treatment

efficacy [49–52]. A limited number of recent human disease

studies do consider co-infection [39–42] but the focus is clearly

weighted towards explaining the causes of co-infection in

terms of factors such as spatial overlap of infective stages,

rather than considering the potential of infection with one

species as a risk factor for other infections. We believe our

study to be unique in assessing the potential importance

of co-infection as an infection risk factor in humans while

simultaneously looking at a wide range of other potential

risk factors. It is also novel in attempting to answer this ques-

tion by applying statistical techniques previously used to

successfully answer similar questions in wild animal systems.

Here, we have considered how risk factors such as host

age, sex, behaviour, socioeconomic status and physical

environment, together with co-infection, act to govern the

prevalence of focal infections in school-aged children. This
integrated approach has enabled us to determine both the

significance and effect size of these risk factors, thus

determining their relative importance. These analyses have

shown, for each of four focal infections, that co-infection

remains a significant risk factor, even when other established

risk factors are accounted for. Moreover, on average, co-infection

was associated with a greater change in the risk of focal infec-

tion than the non-co-infection risk factors. For three of the

focal infections (the exception being self-reported fever),

ORs calculated by comparing zero FEC with the maximum

(zx) of A. lumbricoides or T. trichiura FEC were higher than

those of any non-co-infection risk factors. Further, even the

mean A. lumbricoides FEC, is associated with a greater risk

of T. trichiura infection than either the risk factors shehia- or

shoe-wearing alone.

An important point to highlight is that the co-infection can

also be associated with a decreased risk of infection, as seen

in the relationship between fever and A. lumbricoides FEC.

Although soil consumption is associated with the greatest

change in risk for self-reported fever, the role of co-infection

is still substantial, with a 55 per cent lower risk of self-

reported fever associated with the mean value of

A. lumbricoides FEC (zm) and an 80 per cent lower risk associ-

ated with maximum A. lumbricoides FEC (zx). The unknown

aetiology of self-reported fever means that we must be

particularly cautious in attempting to suggest a mechanism

in this case. However, fever is often an immune-mediated

consequence of viral or bacterial infections caused by

T-helper 1 (Th1) type immune responses. Therefore, one poss-

ible explanation for the relationship between A. lumbricoides
and fever could be antagonism between the Th1 and T-

helper 2 (Th2) arms of the immune response [53]. The Th2

response acts against macroparasites, and the two branches

of the immune response are mutually downregulatory. Nota-

bly, the role of co-infection is likely to be underestimated in

our analysis, because our data consider only three STHs and

self-reported fever, when in fact, many other infections are

likely to occur in this study population. Overall, our results

show that co-infection is a very important risk factor for

childhood infection, particularly for STHs.

In comparison with the role of co-infection, host age,

sex and behaviour were comparatively low risk factors for

infection. However, soil-eating behaviour was associated

with a substantially reduced infection risk for self-reported

fever (figure 1d(ii)). This may at first seem counterintui-

tive because soil consumption is generally associated with

ill-health [20,25,54–56] and geophagy behaviour will, pre-

sumably, expose individuals to a range of infections.

However, clay-rich soils have also been associated with the

binding of microbial toxins and with the colonization of

normal gut flora [54], which may provide protection against

some pathogenic infections [57].

Socioeconomic status and physical environment had no

significant effect on either the prevalence of STHs or fever.

Other studies did find such associations, for example, between

housing type and either hookworm [58], or A. lumbricoides and

T. trichiura [22] infections. However, unlike our work, the ana-

lyses in these studies did not account for such a wide range of

potential infection risk factors, including co-infection, which

might otherwise have altered the findings.

A child’s home shehia was associated with a significant

change in infection risk for both A. lumbricoides and T. trichiura.

The two shehias differ in the mix of religions, professions,

http://rspb.royalsocietypublishing.org/
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educational level and socioeconomic status of the inhabitants,

as well as in their physical environment (Bandamaji being

rural with much vegetation and many streams, Dole peri-

urban with limited vegetation and few streams) [20]. Dole is

a little larger (approx. 9 km2) than Bandamaji (approx.

7 km2), while the estimated population of Dole was 2968 and

that of Bandamaji was 1124 at the time of the study in 2008.

The significance of the risk and size of the ORs associated

with shehia suggests that some environmental, behavioural,

socioeconomic or other factor (or a combination of factors),

which differ between these shehias, is still unaccounted for in

our analyses. The availability and use of a more developed

sanitary infrastructure in Dole may be a contributing factor,

because this is likely to reduce environmental contamination

with STH eggs and larvae in Dole [20,59]. However, because

co-infection effects are equally evident in both shehias, despite

their differences, it is unlikely that any within-shehia variation

would explain the role of co-infection in infection risk.

While our study provides strong preliminary evidence

that co-infection can significantly change the risk of infection,

rather than being a simple correlate of other risk factors, it

cannot prove causation, because the data are both cross-

sectional and observational. Therefore, intervention studies,

to test for causation, should be the next step. The range of

infections we have explored is limited and focuses mainly

on helminths. Importantly though, adding further species

to the analysis is likely to extend rather than diminish the

co-infection associations. Further, the use of self-reported

fever expands the applicability of our findings, because

fever is likely to be caused by viral, bacterial or protozoal

infections rather than helminths.

Perhaps the greatest limitation of this study is that we

lack information on host genetics, which can have substantial

effects on infection status [23,24]. In future research, such

genetic effects should be considered alongside co-infection

and the other potential drivers of infection heterogeneity,

as it is possible that susceptibility to one parasite species

may result in susceptibility to other pathogenic organisms,

or alternatively to increased resistance. Finally, it will be

important to confirm these findings in other communities

and to ascertain whether the findings are robust to different

socioeconomic and environmental settings.

Similar to previous human disease studies [39,40], we

have demonstrated the use of advanced statistical techniques,

such as GLMM for the simultaneous assessment of a wide

range of potential risk factors. However, the statistical

approaches used in these studies and in our current work

differ, which may account for the differences in perception

regarding the importance of co-infection. An important step

in this field of research will therefore be to determine the

most appropriate methods to enable a clear determination

of the relative importance of co-infection in driving disease
dynamics. Further, these studies were conducted across

very different environmental scales and their findings may

suggest that, while co-infection may not be a major influence

on risk of infection at very broad spatial scales, it could be an

essential consideration at smaller spatial scales.

Ultimately, this study has shown that among school-aged

children in Zanzibar, co-infection is likely to be a major risk

factor for four focal infections. However, future studies

should incorporate host genetics along with other risk factors,

because of the potential for differential susceptibility to para-

sites, which could give rise to some of the co-infection

risk patterns observed. Ideally, future work should test the

importance of these risks by undertaking experimental

manipulation, e.g. through chemotherapeutic interventions.

Both model experimental systems, and human field study

observations have demonstrated, for specific cases, that co-

infection can alter disease outcome, parasite transmission

potential and susceptibility of hosts to other infections

[60,61]. Given this knowledge and the evidence from our

study, associations between parasite species should not be dis-

missed as mere correlation without further investigation.

Simple correlated exposure is not a sufficient explanation for

the observed associations between infections in our study, as

many other potential explanations for simple co-incident infec-

tion were accounted for. We suggest that, given the ubiquity of

co-infection in human populations, the consequence of one

infection for other infections in a host population is likely to

be widespread. Theoretical studies have already demonstrated

that interactions between co-infecting pathogens can have pro-

found effects (both positive and negative) on pathogen control

(e.g. leading to vaccine failure) [37]. Therefore, considering and

accounting for co-infection must become a central tenet in

studies of infection and disease. Ironically, it may be the multi-

plicity of infections that people face, which ultimately helps to

improve public health.

The study was approved by the institutional research commission of
the Swiss Tropical and Public Health Institute (Basel, Switzerland).
Ethical clearance was obtained from the Ethics Committee of the
Ministry of Health and Social Welfare, Zanzibar (reference no. 16)
[20]. All participants in this study gave written informed consent,
which was provided by the parent or guardian for the children
involved. Additionally, children provided oral assent.

The original research that gave rise to the dataset used in this study was
funded jointly by the Swiss National Science Foundation (project nos
PPOOB-102883 and PPOOB-119129), European Union (FP6 STREP
CONTRAST project, contract no. 032203), and the ‘Kommission
für Reisestipendien’ of the Swiss Academy for Natural Sciences
(SCNAT). A UK, Medical Research Council, Environmental and
Social Ecology of Human Infectious Disease, Catalyst Grant awarded
to M.E.V. and in which J.L. was also involved was the initial impetus
for this work. Personal stipends from the ‘Emanuel Burckhardt Stiftung
Basel’ and the ‘Forschungsfonds’ of the University of Basel allowed
S.K. to be involved in the project.
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PLoS Negl. Trop. Dis. 6, e1889. (doi:10.1371/journal.
pntd.0001889)

42. Woodburn PW, Muhangi L, Hillier S, Ndibazza J,
Namujju PB, Kizza M, Ameke C, Omoding NE, Booth
M, Elliott AM. 2009 Risk factors for helminth,
malaria, and HIV infection in pregnancy in Entebbe,
Uganda. PLoS Negl. Trop. Dis. 3, e473. (doi:10.1371/
journal.pntd.0000473)

43. Fenton A, Viney ME, Lello J. 2010 Detecting
interspecific macroparasite interactions from
ecological data: patterns and process. Ecol. Lett. 13,
606 – 615. (doi:10.1111/j.1461-0248.2010.01458.x)

44. Paterson S, Lello J. 2003 Mixed models: getting the
best use of parasitological data. Trends Parasitol. 19,
370 – 375. (doi:10.1016/S1471-4922(03)00149-1)

http://dx.doi.org/10.1371/journal.pone.0020119
http://dx.doi.org/10.1371/journal.pone.0020119
http://dx.doi.org/10.1053/j.semperi.2010.09.004
http://dx.doi.org/10.1053/j.semperi.2010.09.004
http://dx.doi.org/10.1097/INF.0b013e3181958755
http://dx.doi.org/10.1097/INF.0b013e3181958755
http://dx.doi.org/10.1093/ije/dy1043
http://dx.doi.org/10.1086/514765
http://dx.doi.org/10.1186/1471-2458-9-67
http://dx.doi.org/10.1016/S0140-6736(07)61690-0
http://dx.doi.org/10.1016/S0140-6736(07)61690-0
http://dx.doi.org/10.1371/journal.pmed.1000294
http://dx.doi.org/10.1371/journal.pmed.1000295
http://dx.doi.org/10.1371/journal.pmed.1000295
http://dx.doi.org/10.1016/S0035-9203(03)90114-3
http://dx.doi.org/10.1016/S0035-9203(03)90114-3
http://dx.doi.org/10.1016/j.ijpara.2006.05.009
http://dx.doi.org/10.1016/j.ijpara.2006.05.009
http://dx.doi.org/10.1073/pnas.94.1.338
http://dx.doi.org/10.1073/pnas.94.1.338
http://dx.doi.org/10.1371/journal.pone.0000747
http://dx.doi.org/10.1371/journal.pntd.0000681
http://dx.doi.org/10.1371/journal.pntd.0000681
http://dx.doi.org/10.1111/j.1365-3156.2005.01406.x
http://dx.doi.org/10.1111/j.1365-3156.2005.01406.x
http://dx.doi.org/10.1016/0277-9536(88)90241-9
http://dx.doi.org/10.1016/0277-9536(88)90241-9
http://dx.doi.org/10.1016/S0952-7915(97)80103-3
http://dx.doi.org/10.1016/S0035-9203(02)90413-X
http://dx.doi.org/10.1016/S0035-9203(02)90413-X
http://dx.doi.org/10.1016/S0065-308X(08)60561-8
http://dx.doi.org/10.1016/S0065-308X(08)60561-8
http://dx.doi.org/10.1016/S0140-6736(06)68653-4
http://dx.doi.org/10.3347/kjp.2008.46.3.191
http://dx.doi.org/10.1038/nri2992
http://dx.doi.org/10.1111/j.0105-2896.2004.00191.x
http://dx.doi.org/10.1073/pnas.0707221105
http://dx.doi.org/10.1073/pnas.0707221105
http://dx.doi.org/10.1128/IAI.73.12.8369-8380.2005
http://dx.doi.org/10.1017/S0031182008000383
http://dx.doi.org/10.1016/j.ijpara.2011.05.009
http://dx.doi.org/10.1016/j.ijpara.2011.05.009
http://dx.doi.org/10.1126/science.1190333
http://dx.doi.org/10.1038/nature02490
http://dx.doi.org/10.1017/S0031182008005404
http://dx.doi.org/10.1093/infdis/jiq063
http://dx.doi.org/10.1093/infdis/jir844
http://dx.doi.org/10.1371/journal.pntd.0001889
http://dx.doi.org/10.1371/journal.pntd.0001889
http://dx.doi.org/10.1371/journal.pntd.0000473
http://dx.doi.org/10.1371/journal.pntd.0000473
http://dx.doi.org/10.1111/j.1461-0248.2010.01458.x
http://dx.doi.org/10.1016/S1471-4922(03)00149-1
http://rspb.royalsocietypublishing.org/


rspb.royalsocietypublishing.org
ProcR

SocB
280:20122813

7

 on April 2, 2013rspb.royalsocietypublishing.orgDownloaded from 
45. Katz N, Chaves A, Pellegrino J. 1972 A simple device
for quantitative stool thick-smear technique in
Schistosomiasis mansoni. Rev. Inst. Med. Trop. São
Paulo 14, 397 – 400.

46. Smith DL, Cohen JM, Moonen B, Tatem AJ, Sabot
OJ, Ali A, Mugheiry SM. 2011 Solving the sisyphean
problem of malaria in Zanzibar. Science 332,
1384 – 1385. (doi:10.1126/science.1201398)

47. Moonen B, Cohen JM, Tatem AJ, Cohen J, Hay SI,
Sabot O, Smith DL. 2010 A framework for assessing
the feasibility of malaria elimination. Malar. J. 9,
322. (doi:10.1186/1475-2875-9-322)

48. Zanzibar Malaria Control Programme. 2009 Malaria
elimination on Zanzibar: a feasibility assessment.
Zanzibar Malaria Control Programme, Ministry of
Health and Social Welfare.

49. Van Geertruyden JP, Menten J, Colebunders R,
Korenromp E, D’Alessandro U. 2008 The impact of
HIV-1 on the malaria parasite biomass in adults in
sub-Saharan Africa contributes to the emergence of
antimalarial drug resistance. Malar. J. 7, 134.
(doi:10.1186/1475-2875-7-134)

50. Geertruyden J, Mwananyanda L, Chalwe V, Moerman F,
Chilengi R, Kestens L, D’alessandro U. 2005 Higher risk
of antimalarial treatment failure in HIV positive than in
HIV negative individuals with clinical malaria [MIM-
LM-234960]. Acta Trop. 95, S253.
51. Diallo TO et al. 2010 Schistosomiasis coinfection in
children influences acquired immune response
against Plasmodium falciparum malaria antigens.
PLoS ONE 5, e12764. (doi:10.1371/journal.pone.
0012764)

52. Remoue F et al. 2003 Malaria co-infection in
children influences antibody response to
schistosome antigens and inflammatory markers
associated with morbidity. Trans. R. Soc. Trop.
Med. Hyg. 97, 361 – 364. (doi:10.1016/S0035-9203
(03)90170-2)

53. Lello J. 2012 Co-infection: immunological
considerations. In Immunity to parasitic infection
(ed. TJ Lamb), pp. 325 – 334. Chichester, UK: John
Wiley and Sons Ltd.

54. Bisi-Johnson MA, Obi CL, Ekosse GE. 2010
Microbiological and health related perspectives of
geophagia: an overview. Afr. J. Biotechnol. 9,
5784 – 5791.

55. Geissler PW, Mwaniki DL, Thiong’o F, Michaelsen KF,
Friis H. 1998 Geophagy, iron status and anaemia
among primary school children in Western Kenya.
Trop. Med. Int. Health 3, 529 – 534. (doi:10.1046/j.
1365-3156.1998.00272.x)

56. Kawai K, Saathoff E, Antelman G, Msamanga G,
Fawzi WW. 2009 Geophagy (soil-eating) in relation
to anemia and helminth infection among HIV-
infected pregnant women in Tanzania. Am. J. Trop.
Med. Hyg. 80, 36 – 43.

57. Zimmermann MB et al. 2010 The effects of iron
fortification on the gut microbiota in African
children: a randomized controlled trial in Côte
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