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Figure 1: Given single-view scans by the Kinect system, containing highly noisy and incomplete 3D scans (upper left) and corresponding
RGB images (lower left), our approach is able to faithfully recover their underlying structures (yellow) by assembling suitable parts (red) in

the repository models (blue).

Abstract

This paper presents a technique that allows quick conversion of
acquired low-quality data from consumer-level scanning devices to
high-quality 3D models with labeled semantic parts and meanwhile
their assembly reasonably close to the underlying geometry. This is
achieved by a novel structure recovery approach that is essentially
local to global and bottom up, enabling the creation of new
structures by assembling existing labeled parts with respect to the
acquired data. We demonstrate that using only a small-scale shape
repository, our part assembly approach is able to faithfully recover
a variety of high-level structures from only a single-view scan of
man-made objects acquired by the Kinect system, containing a
highly noisy, incomplete 3D point cloud and a corresponding RGB
image.
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1 Introduction

3D scanning devices provide a quick way to acquire 3D models
of real-world objects or environment, which benefit a variety of
applications. However, the acquired models, typically represented
as unorganized point clouds, are often corrupted with noise and
outlier. Worse, large regions or even entire parts might remain
missing (see an example in Figure 1), possibly due to occlusions,
grazing angle views, or scanner-unfriendly lighting/materials (e.g.,
highly reflective materials). These problems further deteriorate
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for consumer-level scanning devices like the Kinect system of Mi-
crosoft, which provide an economical solution to 3D capturing but
at the cost of low-quality acquisition of geometry and appearance.

It is challenging to faithfully recover the underlying geometry
or structure from such highly incomplete and noisy scan data.
Most of the existing works (e.g., [Sharf et al. 2004; Shalom
et al. 2010]) focus on geometry completion or reconstruction, and
tackle inputs with small deficiencies or simple missing geometry
only. Still, it is unclear how to effectively recover the underlying
structure even if the geometry gets completed. The template-based
approaches [Pauly et al. 2005; Kraevoy and Sheffer 2005] have
great potential in completing larger, more complex holes. It is
possible to transfer the structural information from the templates to
the scan data. However, the existing approaches largely operate in a
global-to-local manner, and thus heavily rely on the availability of
template models that are globally similar to the underlying object.
Although there exist a few online shape repositories like Google
3D Warehouse, the available models are still far from capturing
real-world objects exhibiting complex structures, causing the main
bottleneck for the existing template-based approaches.

The recent advance in mesh segmentation greatly simplifies the seg-
mentation and labeling of parts in a set of 3D models [Kalogerakis
et al. 2010; Huang et al. 2011; Sidi et al. 2011]. The recent works
demonstrate how to significantly enlarge the existing database of
3D models via shape synthesis by part composition [Kalogerakis
et al. 2012; Jain et al. 2012; Xu et al. 2012]. However, in practice
this would result in a 3D model database that grows exponentially,
making both the storage and the retrieval challenging to manage.
We show that it is unnecessary to explicitly prepare such larger
database by part composition and it is possible to retrieve and
assemble suitable parts on the fly for structure recovery.

We propose a part assembly approach for structure recovery from
a highly incomplete, noisy 3D scan of a man-made object together
with the corresponding RGB image acquired by the Kinect system
(Figure 1). Our approach is based on the key fact that many classes
of man-made objects (e.g., chairs, bicycles etc.) lie in a low-
dimensional shape space defined with respect to the relative sizes
and positions of shape parts [Ovsjanikov et al. 2011]. This allows us
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to quickly filter out most of parts in the database that are irrelevant
to the underlying structure, resulting in a small set of top ranked
candidates for each part category (Section 4.1). We then compose
the structure using a subset of candidate parts for each category,
considering both partial matching with respect to the acquired data
and the interaction between parts (Section 4.2). Finally, a novel part
conjoining approach is proposed to bring the selected parts into a
whole (Section 4.3).

We demonstrate that with little user interaction and with a small-
scale shape repository, our technique is able to robustly recover
the underlying 3D structure, i.e., semantic parts with labels, from
a single-view scan of many man-made objects with complex ge-
ometry and topology. Although we focus on structure recovery,
the geometry of the assembled models is already reasonably close
to the underlying geometry. Finally, our bottom-up framework is
inherently applicable to multi-view scans, which will be our future
work towards robust indoor scene reconstruction.

2 Related Work

There exist many surface completion and reconstruction methods.
A full review of them is beyond the scope of our paper. Most of
such methods rely on shape continuity inferred from input scans
only, and reconstruct or complete the underlying surface largely
based on smooth interpolation or extrapolation (see [Shalom et al.
2010; Attene 2010; Lin et al. 2010; Shen et al. 2010] and references
therein). Such methods work well for inputs with small deficiencies
but have difficulties with large holes where complex geometry is
missing. Several approaches [Sharf et al. 2004; Zheng et al. 2010]
employ self-similarity priors to tackle input data with rich texture
or repetitive elements but still assume that all the necessary content
to fill in missing regions could be located somewhere else in the
input data. Since the existing methods mostly focus on geometry
completion and reconstruction, how to recover underlying high-
level structures is still unclear.

Our work is closely related to the existing approaches for example-
based completion of arbitrary shapes, whose performance, how-
ever, depends on the availability of a single tailor-made template
model [Kraevoy and Sheffer 2005] or multiple context models
retrieved from a database of 3D models that are globally similar to
the input model [Pauly et al. 2005]. By assuming shape continuity
across the boundaries of missing regions, these approaches first
match one or more template models with known regions of the input
data and then use the unmatched patches of the template models to
fill in missing regions i.e., by performing shape extrapolation via
the template models. Unlike these approaches, which operate in a
global-to-local manner, our approach is essentially local to global
and bottom up, thus enabling part assembly on the fly.

Recently Xu et al. [2011] present a photo-inspired 3D modeling
approach that deforms individual 3D candidate models to a target
image object in a structure preserving manner. Our work takes the
same type of models as input, i.e., a database of 3D man-made
models that belong to the same class as the target object. However,
our approach is largely orthogonal to theirs: their deformation-
based approach creates new geometric variations but is intrinsically
limited by the available structures in the candidate set, while our
part assembly approach automatically produces new structures with
respect to the underlying object. Besides, our approach has an extra
3D scan as input, though its quality is rather low.

Our work got inspirations from assembly-based 3D modeling,
pioneered by Funkhouser et al. [2004]. For this task, a variety
of user interfaces have been proposed for interactive part retrieval,
including shape-based search [Funkhouser et al. 2004; Chaudhuri
and Koltun 2010] and sketch-based retrieval [Shin and Igarashi

2007; Lee and Funkhouser 2008]. Recent research focuses on
data-driven suggestions and aims to support open-ended 3D mod-
eling [Chaudhuri and Koltun 2010; Chaudhuri et al. 2011]. In
particular, Chaudhuri et al. use a repository of segmented and
labeled shapes, the same as ours. Contemporaneous with our work,
several techniques have been proposed to synthesize new shapes by
part composition [Kalogerakis et al. 2012; Jain et al. 2012; Xu et al.
2012]. However, all these assembly-based modeling techniques
concentrate on creative modeling and interaction while we focus on
structure recovery of highly incomplete, noisy 3D scans with the
help of acquired images from the same view. Therefore, instead of
actively retrieving suitable parts to match user intent, our solution
attempts to match individual parts with the scan data.

Our solution bears some resemblance to primitive fitting used in
the context of structure recovery [Wu and Kobbelt 2005; Li et al.
2011a], surface reconstruction [Gal et al. 2007a; Schnabel et al.
2009] or 3D collage assembly [Gal et al. 2007b; Theobalt et al.
2007]. However, the input to these techniques is either complete
polygonal meshes [Wu and Kobbelt 2005; Gal et al. 2007b] or
dense but noisy point clouds with few holes of big size [Gal et al.
2007a; Schnabel et al. 2009; Li et al. 2011a]. In addition, all these
approaches use a predefined set of primitive types (e.g., spheres,
cylinders) except for [Gal et al. 2007b; Theobalt et al. 2007], which
work on elements as general proxies taken from a given database.
In contrast, our parts to be assembled have semantic labels and have
context information relative to their parent models in the database.

Our work is also related to example-based shape completion for
object classes whose shape spaces are better-defined and can even
be parameterized, e.g., human faces [Blanz and Vetter 1999; Weise
et al. 2011] and human bodies [Anguelov et al. 2005; Tong et al.
2012]. However, man-made objects we are tackling exhibit a more
variety of structures and thus their shape space is challenging to
model analytically.

Since its first release in 2010, the Kinect system has attracted
great interest from the research community and has been used
to acquire shape geometry of human faces [Weise et al. 2011],
human bodies [Weiss et al. 2011; Shotton et al. 2011], and indoor
scenes [Izadi et al. 2011]. The powerful KinectFusion system
presented by Izadi et al. fuses live depth data from multiple
viewpoints into a single global 3D model of a physical scene in
real-time. However, their focus is on the reconstruction of low-
level surface geometry instead of high-level structures considered
in this paper.

3 Overview

With minimal user intervention, our goal is to recover high-level
structures, i.e., semantic parts with labels, from a single-view scan
of a man-made object acquired by the Kinect system, containing
an unorganized 3D point cloud (i.e., 3D scan) and a corresponding
RGB image under the same viewpoint. Such high-level structures
benefit various applications like structure-preserving modeling or
editing [Xu et al. 2011; Zheng et al. 2011; Zheng et al. 2012].
Aiming at a rapid 3D modeling tool, our technique also requires
the assembly of the recovered parts to be reasonably close to the
underlying geometry.

The same as [Ovsjanikov et al. 2011], we focus on classes of
man-made objects (e.g., chairs, tables, airplanes, bicycles etc.)
whose shape variability is low dimensional and can be expressed
in terms of the relative sizes and positions of shape parts. We
assume an available repository of polygonal mesh models that have
roughly the same functionality as the input object and have been
pre-segmented into semantic parts with corresponding labels (e.g.,
legs, arms etc.). Our key idea is then to recover the geometry
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and structure by part assembly with respect to the acquired data.
Using a repository of complete models with labeled semantic parts
instead of a repository of individual parts is crucial, since the
latter largely demands the pre-segmentation of the acquired data
into semantic parts, which is rather challenging given the poor
input data. Instead, each complete model in our repository is able
to provide a global context for its individual parts and to some
extent a possible segmentation of the acquired data, thus making
the recovered structure valid.

The acquired point cloud and the corresponding image have com-
plementary characteristics [Li et al. 2011b]. Although the point
cloud might be highly incomplete and noisy, it is inherently 3D and
thus provides more accurate cues for the underlying geometry and
structure when such data is available. In contrast, the image is lack
of critical depth information but captures the complete object under
the current viewpoint. Considering the complementary traits of the
acquired image and 3D scan, we design a novel structure recovery
algorithm which consists of the following key stages.

Candidate parts selection. A brute-force part assembly approach
is to seek for a best-fit composition among all the possible part
compositions via exhaustive search, which is, however, compu-
tationally prohibitive (exponential complexity in the number of
parts). Therefore, how to identify a small set of candidate parts
for each part category is crucial for deriving promising structures
efficiently (Section 4.1). This is achieved by matching individual
parts in the database with the input 3D scan and its corresponding
image. To reflect the fact of low-dimensional shape variation, each
part is searched only in a window of small size, determined by
its relative position with respect to its parent model that is already
globally aligned with the input 3D scan. This allows our algorithm
to quickly filter out most of the irrelevant parts and results in a
small set of top ranked candidates for each part category, roughly
positioned at the desired locations.

Structure composition. This step composes a structure by using a
subset of candidate parts for each category (Section 4.2). To achieve
this, we first search for candidate compositions of parts that are
more likely to form the desired structure. We take into account the
geometric fidelity of each part and the interaction between parts
(proximity, overlap) in the searching process. A score function
is devised to measure the quality of individual compositions and
identify the optimal structure composition as the one with the
highest score.

Part conjoining. This step is to conjoin the loosely placed parts
from the previous step to form a well-connected and visually
pleasing model (Section 4.3). We use a global optimization process
which first identifies the contact relations between parts and then
optimizes the sizes and positions of the parts to form a consistent
and complete model. It is driven by the proximity between the
currently involved parts and some prior knowledge learned from
the repository models.

4 Methodology

This section describes the algorithm and implementation details
at each key stage. Our algorithm is fully automatic except for
the preprocessing step which needs a moderate amount of user
assistance in the image domain.

Preprocessing of shape repository. Our algorithm requires a
repository of models with the same class as a man-made object to
be acquired. All the models in the repository are pre-segmented
into semantic parts with labels (see the supplemental materials).
This is achieved by the learning-based segmentation and labeling
algorithm [Kalogerakis et al. 2010; Chaudhuri et al. 2011]. We
also apply symmetry analysis to detect reflective and rotational
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symmetries between parts in individual models [Mitra et al. 2006].
Note this preprocessing task needs done only once for each object
class.

User-assisted preprocessing of acquired data. As we intend
to use the acquired RGB image to provide extra cues for the
missing regions in the 3D scan, having the object in the image
properly segmented is crucial to the structure recovery process.
Although there exist automatic methods for foreground extraction
(e.g., [Sun et al. 2007]), for simplicity we let the user interactively
cut out the object in the image, for which we use the GrabCut
algorithm [Rother et al. 2004]. It results in a binary object mask
(Figure 4(left)). Since the image and 3D scan are captured from
the same viewpoint, we can use this object mask to easily extract
the 3D scan pieces corresponding to the object by checking their
image projection against the object mask. Here we assume that the
object of interest is not occluded by any other objects in the scene.
Otherwise, more user intervention is needed.

4.1 Candidate Parts Selection

This step aims to select a small set of candidate parts for each
category of parts. The selection is basically achieved by retrieving
parts in the database that fit well some regions of the object both in
the image and the 3D scan. It is rather challenging to segment the
acquired data into meaningful parts given the poor quality of the
data. A straightforward fitting solution is then to directly search for
the best-fit parts in the repository over the entire domain of the 3D
scan and/or its corresponding image, which is equivalent to having
a repository of individual parts instead of complete models as input
(Figure 2). However, this is unlikely to produce good results, as
it essentially disregards the semantics associated with each part
and the interaction between different parts, without which their
composition as a whole would not be a semantically meaningful
structure.
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Figure 2: An example of directly fitting individual parts (using
Eq. 3 as the matching metric) to the input without considering
their parent models as a global context. Note that poorly placed
candidate parts, e.g., most arm candidates and all side bars, would
significantly confuse the subsequent composition process.

Since the objects we are interested in (e.g., chairs, airplanes etc.)
lie in a low-dimensional shape space defined with respect to the
relative sizes and positions of shape parts, we propose to employ
each 3D model in the repository as a global context to constrain
the search space of its individual parts for the best fitting to the
input. This not only greatly reduces the search space but also
implicitly enforces the semantic relation between different parts.
This motivated the following two-step approach: matching first
each repository model and then its individual parts to the acquired
data. Although we are aware of a variety of techniques designed
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Figure 3: Rough alignment of repository models with input scan.

for either global or partial shape matching (e.g., [Funkhouser et al.
2004; Gal et al. 2007b; Shao et al. 2011; Attene et al. 2011]), the
approach briefly described below works well in practice.

As a first step, we align each repository model with the input 3D
scan by global matching, though partial matching is also promising.
Unlike traditional template-based completion techniques [Pauly
et al. 2005], which require accurate matching for shape extrapola-
tion, rough matching is sufficient in our case since it will be refined
in the second step of part-based matching and bad candidates will
be filtered out in the step of structure composition. This is done
by first aligning their upright orientation: all the repository models
have their predefined upright orientation [Fu et al. 2008; Laga 2011]
and the upright orientation of the input 3D scan is automatically
determined by detecting the dominant supporting plane (e.g., the
ground plane) in the scene using a RANSAC approach [Schnabel
et al. 2007]. Each model is then translated and scaled to fit into the
bounding box of the 3D scan. Finally, we determine the remaining
degree of freedom, i.e., the orientation of the model around the
upright axis by matching the 3D scan with the model under a set of
sampled rotations (to minimize the squared distance error), whose
rotation axis is determined by the center of the bounding box and
the upright orientation. The robustness of the last step is enhanced
by jointly aligning the repository models with the 3D scan. To
achieve this, in the preprocessing step all the repository models
are manually aligned to have a consistent frontal orientation. After
the orientations around the upright axis are obtained for individual
models, we vote for the most frequently used rotation sample,
which is then applied to all the models (Figure 3).

Next, we match individual parts of each aligned repository model
to the 3D scan and its corresponding image. The use of the acquired
image is crucial to address the problem of missing data in the 3D
scan. To effectively account for low-dimensional shape variations
in terms of the relative positions of shape parts, we search for the
best match between each part in the aligned model and the input
only in a small 3D offset window around this part. Let B denote
such window which is centered at the original part centroid, with
size W x W x W. In our experiments, we always set W as 0.17,
where 7 is the diagonal length of the bounding box of the 3D scan.
The building block here is a partial shape matching scheme that
measures partial shape similarity between a 3D part and both the
3D and 2D region around a given point in the search window, as
described below. The design rationale of our similarity is to favor
parts that fit the local 3D and 2D region well and meanwhile have
high geometric contribution to the input.

We first pre-compute a 3D distance field for the input point cloud
by voxelization, denoted as F', and a 2D distance field for the edge
map of the image, denoted as G (Figure 4). See the appendix
for implementation details. A candidate part centered at a 3D
position p = [z,y,2]” is also voxelized (by embedding it into a
volumetric grid) as Vj,, with V;,(4, j, k) = 1 on voxels intersecting

with it and O otherwise. It is then perspectively projected onto the
image domain (the focal length of the Kinect system is available)
to generate a contour image. Let C}, denote such contour image
of the part at position p, with C,(4,5) = 1 on contour and
Cp(i,7) = 0 otherwise (Figure 4(right)). The geometric fidelity
score incorporating both the 3D and 2D information is then defined
as:
1 (Vo F) | (Cp,G)
S¢(p) = 2( No T N ) (€))

where Ny is the number of voxels of the candidate part with
Vp(3,7,k) = 1, N¢ is the number of pixels of the contour image
with Cp(i,j) = 1 and (,) is the scalar product. This score
measures the ratio of the candidate part covered by the acquired
data and thus can penalize parts that protrude too far. Using
this score alone might be always in favor of small parts that are
matched well locally but have low geometric contribution to the
input. However, in practice larger parts are preferred to compose
a structure. Therefore, we also consider the extent to which the
candidate part contributes to the input, leading to the following
geometric contribution score:
1LV, F) | (Cp,G)

SeP) =5y~ + ) )
where N is the number of voxels of the 3D scan with F'(3, j, k) >
0.95 and N¢ is the number of pixels with G(i,5) > 0.95. The
score S. measures how the 3D scan and the object contour are
covered by the candidate part. The final score that measures the
matching quality of a part with both the acquired 3D scan and the
image is then defined as:

?eag{(l—a) -Si(p)+a-Sc(p)}, 3

where B is the 3D search window and « is a weight balancing the
influence of geometric fidelity and contribution (o« = 0.7 in all our
examples). Note that accurately evaluating such a similarity score
is time consuming, while a coarse score could be enough for this
filtering step. We thus only evaluate it at a few sampled positions
within the search window. In our experiments, we use 5 X 5 X 5
uniformly sampled positions within the search window in this step,
which we find to be a tradeoff between accuracy and efficiency. For
the evaluation of Eq. 3, individual parts are translated within the 3D
search window around their original position. Rotation and scaling
are not applied in our current implementation.

By adopting the above matching strategy, our method quickly
compares each part of each model in the repository against the
shape of the input object, leading to lists of ranked parts. Suppose
that the class of the object we want to model has at most L different
categories of parts. For each category of parts in the database, we
pick at most top K parts with the highest matching scores as the
candidate parts, which will be used in the next step for structure
composition. Figure 5 shows several lists of top 5 candidate parts
for the target object in Figure 1(a). Note that the acquired image
information plays a crucial role in recovering certain parts when

Figure 4: Left: Binary object mask. Middle: Edge map. Right:
Projected contour C' (in red) overlayed on distance field G.
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Figure 5: Lists of top 5 candidate parts for the input in Figure I(a),
in the context of the acquired 3D scan. The parts picked for the final
composition are highlighted in blue box.

Figure 6: 2D projection of top 5 candidate parts for front leg (top)
and side bar (bottom), after position refinement (Section 4.2).

the corresponding geometry is severely missing, e.g., the front legs
and side bars, as shown in Figure 6.

Discussions. Currently the size of search window is fixed (with
respect to the 3D scan) and the same for all the categories of parts.
However, in practice, different categories of parts might exhibit
different degrees of shape variation. It would be interesting to
learn the size of search window for each part category from training
examples. In addition, we tried to match individual parts at different
scales, i.e., to reflect shape variations in terms of relative sizes of
shape parts, but found little noticeable improvement in terms of the
final structure recovery results in the various examples presented
in this paper. This may be due to the fact that a moderate number
of repository models can already contain parts with enough scale
variation.

4.2 Structure Composition

The previous step quickly filters out most of the irrelevant parts
for each category. However, it considers only the matching quality
of individual parts to the input and disregards explicit interaction
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of candidate parts. In this step, we aim to compose the underlying
structure by identifying a subset of candidate parts (possibly empty;
usually containing one part only) for each category. To achieve this,
we first search for promising compositions of candidate parts by
mainly examining the interaction between parts and then assess the
quality of each composition.

We observed that the parts which can contribute to a promising
composition usually satisfy the following geometric constraints:

Geometric fidelity: The parts should match the acquired data
reasonably well, i.e. having enough geometric fidelity score.

Proximity: The parts should not be far away from each other.
Isolated parts are undesired.

Overlap: The parts should not overlap with each other too much.
In other words, the intersection of the parts should be mini-
mized.

We first describe how to quantify the above constraints. The
geometric fidelity of a part is defined as maxpepSy(p) (Eq. 1).
The maximization process also refines the position of each part
(Figure 5) by exhaustively translating a part to sampled points
within the 3D search window and finding the one that maximizes
St(p). After all the candidate parts are moved to their optimal
positions, we measure the proximity between a new part and a set
of parts as the nearest distance between it and them. For the overlap
constraint, we identify two types of overlap between parts, namely
spatial and visual. The spatial one measures the overlap between
two candidate parts A and B in 3D, roughly approximated as

volume(H 4 )+volume(Hp)
volume e , where Ha, Hp and H¢ are the convex

hulls of A and B, and the union of A and B respectively. The
visual overlap is quantified as the ratio of a part covered by other
parts after projecting all of them onto the image domain. Note that
since we have only a single view as input, these two types of overlap
are not necessarily interdependent.

The values of both K and L are typically small enough to allow
us to explore large parts of the combinatorial solution space, which
we found crucial for deriving interesting structures and variations.
We take a backtracking search algorithm [Gurari 1999] which
incrementally builds composition candidates in a depth first manner
and backtracks by removing a part from a partial composition
candidate as long as one of the geometric constraints cannot be
satisfied. In our implementation, we expand a new part into a
partial composition of parts only if all the following conditions are
satisfied: the geometric fidelity score is above t; (typically 0.45);
the proximity is below 0.057; the visual overlap ratio is below 0.7;
and the spatial overlap is below ¢, (typically 0.75).

For objects with symmetric parts, we add their symmetric coun-
terpart to a composition candidate during the search process. Our
system currently supports reflective and rotational symmetric parts.
We use an admittedly less than perfect but simple and efficient
strategy to recover the symmetric parts. We assume that the
repository model from which the current part of interest comes
roughly shares the same reflective plane and rotational axis with
the input scan after pose alignment (Section 4.1). Symmetric parts
are then recovered by reflecting/rotating the current part along that
the roughly aligned reflective plane/rotational axis. The number of
rotational parts is automatically determined by enumerating (3-6)
and choosing the one with the maximum average geometric fidelity
score (Eq. 1). Such simple strategy might lead to some position
deviation of symmetric parts but can be resolved in the subsequent
part conjoining step.

Once a complete candidate composition C = {P1, P, ..., P,}
is formed, we use a global matching score to evaluate the over-
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Figure 7: From left to right, top to bottom: candidate compositions
with decreasing global evaluation scores.

all quality of the composition. The design rationale here is to
measure the overall geometric fidelity and contribution of the
composed structure, while also favoring compositions with locally
fine matched parts. Specifically it is formulated as follows:

1 ,
E(C):EZS?+,B-S?+7-SS. @)

The first term measures the average geometric fidelity of individual
parts, while the second and third terms are the geometric fidelity
and contribution scores of the globally composed model from C
(cf. Eq. 1 and Eq. 2). We always use the weights 5 = 1 and
v = 1 in our experiments. We identify the optimal structure
composition as the one with the highest score of F(C) (Figure 7(top
left)) among all the candidate compositions found (Figure 7). Note
that since multiple candidate parts tend to compete with each other
in the search of candidate compositions, the optimal composition
might not necessarily consist of the highest ranked candidate parts
(Figure 5).

4.3 Part Conjoining

Although the interaction between parts is employed in the previous
step, the parts are still loosely placed together (Figure 7(top left)).
This step aims to conjoin all the parts to form a well-connected
and visually-pleasing model. This is achieved by first identifying
contact parts as well as contact points and then refining the scales
and positions of the individual parts to reflect their underlying
mutual relations. For simplicity, we do not involve the input
image and 3D scan to guide the conjoining process, since we
believe that once a consistent, complete model is constructed, it
is straightforward to deform it to fit the acquired data for instance
using a variant of the photo-inspired approach by Xu et al. [2011].

We first identify pairs of parts that are likely to contact each other.
This is addressed from two aspects. First, we use the proximity
between a pair of parts: two parts P;, P; € C are possible to
contact with each other only if they are already close enough. This
leads to an indicator function d;5, with d;; = 1 if two parts are in
close proximity and d;; = 0 otherwise. Note that simply judging
the contact relation from such proximity is not reliable for objects
with cluttered components like bicycles. Thus we also employ the
prior knowledge from the repository models. Let L; and L; be the
part labels for P; and P;, respectively. It is reasonable to assume
that two parts P; and P; are more likely to contact each other if
the parts with label L; and those with label L; in the repository
are in frequent contact with each other. To quantify this, we pre-
compute the contact relations of different part categories in the
repository and count their frequency, leading to a set of contact

o

(b © (d)

Examples of primary contact points (in red) and

Figure 8:
secondary contact points (in blue).

confidence weights w;; € [0, 1], which will be used shortly in a
global optimization (Eq. 5).

Next we establish pairs of contact points between a pair of parts
P; and P; with §;; = 1. Again, by inspecting their corresponding
repository models, most of such contact points can be found [Jain
etal. 2012], which we call as the primary contact points (Figure 8(a,
b)). We then match pairs of the primary contact points between P;
and P; using a greedy strategy, in which we pick up pairs of the
closest primary contact points sequentially until there exists no pair
of primary contact points within a distance threshold ¢4 (typically
chosen as 0.057). Afterwards, we allow the remaining unmatched
primary points to match with their nearest points on the other part
if their distances are below t4. In an extreme case where even such
matching cannot be found, we simply use the pair of the nearest
points between the two parts to connect them. We call all the newly
generated nearest points on the parts as the secondary contact points
(Figure 8(c, d)). To enforce symmetry, we symmetrize the contact
points from the parts with self-reflective symmetry or among the
parts with reflective/rotational symmetry [Mitra et al. 2007]. Let
{(Pmy+Ph,)s (Prmys Phy), -} denote the resulting set of pairs of
contact points between P; and P; (Figure 9(left)).

Our final goal is to adjust the sizes and positions of the parts
to make the identified pairs of contact points meet each other as
much as possible. In other words, we need to solve for the scale
factor s; = [s%,s%,55]7 (allowing anisotropic scaling) and the
translation vector t; = [ti,t5,t5]7 for each part P; along its
principle axis. Let c; be the center of P; and Q; = [vi,v%, vi]
the matrix composed of the principal axes of P; via PCA. The
transformed position of a contact point pi on part P; can then
be expressed as T(pl) = Q:A:Q} (pi — ci) + c; + t;, where
A; = diag(st, s%, 5;@,) Taking the pre-computed confidence into
account, the goal of bringing the pairs of contact points together
leads to the following contact enforcement energy:

Eo=Y dywiy > _IT(pm,) — T(@h)I*- ®
irj k

We add another two shape preserving terms to avoid drastic changes

during adjustment:
Ee=>Y_|1tll”, ©)
i

E. =Y |si—of?
@

where o = [1,1,1]7. The new scale and translation of the parts
after adjustment are then obtained as:
argmin{siyti}wc -Ee+ws - Es +we - By, (@)

which leads to a linear least-squares minimization problem and
can be efficiently solved. We use the weights w. = 100, ws =
10, and w¢ = 1 in our experiments. Figure 9(right) shows the
conjoined parts after such global optimization, forming a cohesive
model. Note that independently, Kalogerakis et al. [2012] describe
a similar global optimization but with a different goal (i.e., open-
ended shape synthesis) from ours. One of the differences in terms
of the implementation is that we use two types of contact points
(primary and secondary) while their approach ensures the matching
of primary contract points (called as slots) between parts only. We
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generate new structures both in a hierarchical manner.

Figure 9: Left: Identified contact points of loosely placed parts
and their desired connections. Right: Conjoined parts.

found that having such secondary contact points (Figure 8) is more
flexible for our purpose.

5 Results and Discussion

In this section, we show a variety of structure recovery results
generated using our part assembly approach. The input objects
were all captured using the standard Kinect system of Microsoft,
which provides a RGB image and a corresponding depth image
both in the resolution of 640 x 480. Our method was tested on an
Intel Core 2 Duo 3GHz computer with 4GB RAM. The candidate
parts selection step took around 1 minute in total for a database
with 70 models. We chose the number of candidates K = 5 in
all our examples and the structure composition step took around
2 minutes in total under such configuration. The part conjoining
step took less than 1 second. Although our method involves a
few parameters, most of them always remain fixed as described
in each section. Only the parameters ts, £y (Section 4.2) and 4
(Section 4.3) might need certain adjustment. The spatial overlap
threshold ¢, is decreased to avoid excessive tiny parts for objects
like tables. The geometric fidelity threshold t; is reduced for
captured data with poorer quality (e.g. Figure 12(c)). The distance
threshold ¢4 is increased to encourage using primary contact points
for objects like bicycles.

We have applied our method to typical daily objects that can be
quickly captured using the Kinect system. Similar to [Ovsjanikov
et al. 2011], we mainly focus on four categories: chairs, tables, bi-
cycles and airplane models, since it is well known that they usually
exhibit large variations in both shape and structure. Therefore, their
global structures cannot be well captured without a large database
of models. For example, for our chair dataset that contains 70
chair models of different styles (see the supplemental material),
it is unlikely that a chair with the same global structure as the
input could be found. Figure 10(a) shows a list of chairs from
the repository which are structurally the most similar to the input
in Figure 1(a)(left), using the measurement in Eq. 4 followed by
our manual checking. A similar list of airplanes for the input in
Figure 1(a)(right) is shown in Figure 10(b). Although these models
bear certain local similarity to the input one, their global structures
are still different, reiterating the importance of structure recovery by
part assembly. Figure 11 also shows two more apparent examples
where new structures are constructed by assembling existing parts
from the repository models. For example, although the H-type
base of the chair in Figure 11(b) does not exist in the repository,
it can be synthesized by our approach with respect to the scan
data. Note that our implementation currently focuses only on part-
level structures. To recover novel structures at the level of sub-
components, a possible solution is to encode existing structures and

(b)

Figure 10: A list of repository models roughly ordered by their
structural similarity to the input ones in Figure 1(a) and Figure 1(b)
respectively.

Figure 11: Examples of constructing new structures (yellow).
Parts borrowed from different repository models (blue) are high-
lighted (red). Note that the H-type base of the chair in (b) does
not exist in the repository and is synthesized by our part assembly
approach.

To enable our part assembly approach, each model in the chair
dataset is segmented into 5-12 semantically meaningful parts. The
parts are also labeled and classified into 11 categories, including
seat, back, arm, etc. Figure 1(a) shows a challenging but typical
example with large missing data in the 3D scan due to the single-
view capturing and the highly reflective material of the legs. Its
seat, back and arms are recovered mainly owing to the 3D point
cloud information, while the legs and side bars are recovered
under the guidance of the image contour. These parts are tightly
conjoined together to form a well-structured model. The recovered
structure for this example borrows parts from 5 different models.
Figure 12(a-e) shows more structure recovery results of chairs, all
of which are automatically generated except for a small amount
of user interaction for segmenting out the objects in the captured
images (taking a couple of minutes). These examples exhibit
different structures, which do not exist in the repository (by our
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Figure 12: The result gallery generated using our part assembly approach for structure recovery from a single-view scan of man-made
objects acquired by the Kinect system. Parts borrowed from different repository models are shown in different colors.
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manual checking) but can be faithfully recovered by our approach.
Figure 12(e) shows the same object as Figure 1 but captured
from another view. Our approach is able to generate roughly the
same structure, showing that our approach is largely insensitive
to the capturing viewpoint. Note that for such objects containing
scanner-unfriendly materials, simply capturing the object from
more viewpoints would not help too much. Instead, our approach is
able to recover entirely missing parts with the help of the exemplar
parts and the acquired image information.

To facilitate structure recovery for tables, we prepare a dataset
containing 61 tables of different styles (see supplemental), each of
which is segmented into labeled parts. There are in total 4 part
categories in this dataset. Figure 12(f-j) shows several recovery
examples. The scanned table in Figure 12(f) is highly contaminated
in the lower half. With the aid of 2D and partial 3D information
as well as the dataset, the underlying structure still gets faithfully
recovered. Figure 12(g-j) shows other recovered tables, whose
structures also differ from the repository models. Figure 12(j) is
a typical case where the desktop region is largely missing due to
its glassy surface, which can be recovered using our approach by
assembling suitable parts from 3 different models. This is also
a typical example with symmetric components (i.e., the legs and
fences), which are successfully recovered by our technique.

Our repository for bicycles contains only 38 bicycle models of
different styles with totally 9 part categories (see supplemental).
Figure 12(k-0) gives several examples of captured bicycles with
various distributions of missing data. Our part assembly approach
successfully brings high-detailed components to the recovered
shapes despite the poor quality of both the acquired images and 3D
point clouds. Note that most handles of the bicycles are severely
contaminated in the 3D scans of these examples (e.g., Figure 12(n))
and are mainly recovered by the acquired image information. In
addition, since the repository models happen to contain pedals with
various orientations, our method successfully finds the suitable
ones to assemble. A more general solution might be to analyze
the degrees of freedom of such parts (e.g. rotational parts) in the
repository and explicitly exploit such information in the matching
process.

Finally, the airplane dataset contains 70 airplanes, with 6 part
categories in total (see supplemental). Figure 1(b) and Figure 12(p-
r) show the structure recovery results of several airplane models.
These airplane models also exhibit quite different structures from
the repository models. Figure 1(b) gives another typical example of
scanner-unfriendly materials. The engines of that airplane model
are entirely missing due to their dark surfaces and are also mainly
recovered with the help of the acquired image information. A sim-
ilar example is the propeller of the airplane model in Figure 12(r),
which fails to be captured by the Kinect but is recovered by our
approach.

Limitations. Our algorithm is largely based on the assumption that
shape variations within a certain class of models can be explained
in terms of the relative sizes and positions of the shape parts. Thus
our method might fail for objects whose shape variations cannot be
characterized by the spatial layout of the parts (e.g., facades with
irregular structures).

Second, our focus is on structure recovery instead of fine geometry
reconstruction. Therefore, although the resulting models are al-
ready geometrically similar to the underlying shape, it still exhibits
noticeable shape difference. However, we believe that this problem
can already be addressed by existing non-rigid structure-preserving
deformation techniques like [Xu et al. 2011].

Third, texture edges in the acquired image might be misunderstood
as shape edges especially when the corresponding 3D scan is
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severely missing, causing undesired candidate parts, though the
problem might be resolved by the step of structure composition.

Fourth, due to the low resolution of the input scan data, it might be
challenging for our part matching method to discriminate parts that
are close to each other. For example, as shown in Figure 13(a),
the three slim pillars in the middle of the table are mismatched
to a single bigger pillar, while more suitable parts do exist in
the repository. Besides, the performance of our technique may
degrade for the input with severely missing geometry. Figure 13(b)
shows such extreme case, where global alignment in the first
step is not reliable, misleading the subsequent steps and causing
wrong interpretation of the underlying structure. It can be possibly
addressed by adopting partial shape matching or relying more on
the image information in the alignment step.

Lastly, although our bottom-up approach allows a much more
effective reuse of existing 3D models, like the other example-based
approaches, it is still limited by the availability of exemplar parts.
Figure 13(c) shows a less satisfactory result where the geometry of
the highly curved arms and the cylindrical back is poorly recovered
due to the lack of corresponding parts in the repository. Some
uncommon structures may not be recovered well either if there is
no proper combination of parts in the database. To better illustrate
how our method behaves with a decreasing number of repository
models, we randomly pick 40, 20, 10, 5 out of the original 70
chair models and use them as the new repository for the input in
Figure 12(e). Such process is repeated for 4 times and all the
generated results are collected in Figure 14. As expected, the richer
the database, the more faithful reconstruction we can achieve. On
the contrary, the smaller the database, the lower the chance that a
desired result can be synthesized. The randomly generated results
also tend to be less stable for a repository of smaller size.

Figure 13: Less successful examples. (a) Due to limited resolution,
our part matching method fails to discriminate the three slim pillars
that are close to each other. (b) The input with severely missing
geometry can give rise to wrong interpretation of the underlying
structure. (c) The geometry is poorly recovered due to the lack of
suitable parts in the repository.
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Round 1 Round 2 Round 3 Round 4

N _/ ‘\]

40

20

Figure 14: Results under random subsets of the original reposi-
tory. The size decreases from 40 to 5 (from top row to bottom row).
Such random process is repeated for 4 times (from left column to
right column).

6 Conclusion

We have presented a bottom-up structure recovery approach based
on part assembly. Our approach effectively reuses a limited number
of existing 3D models to compose new structures automatically
adapted to the underlying object. The assembly process is guided
by the spatial layout of the parts in the repository models, allowing
us to quickly explore large parts of the exponential space formed
by part assembly, which correspond to semantically meaningful
structures. With only a shape repository of small size, our approach
is able to faithfully recover a variety of structures of man-made
objects from their single-view scanning acquisition by the Kinect
system.

As a future work, we are interested in extending our technique to
multi-view inputs, which can not only reduce the amount of user
interaction for cutting out the object of interest (via background
subtraction) but also alleviate the ambiguous problem. In our
current system, the structure composition step is solely dependent
on the step of candidate parts selection. It would be interesting
to investigate the interdependence of these two steps, which might
allow adaptive adjustment of the search window of parts with
respect to the existing ones. Our structure composition step relies
on geometric constraints only. We are interested in including style
or functional constraints to make the final shape a more coherent
and realistic model [Xu et al. 2012; Kalogerakis et al. 2012]. Our
current algorithm mainly focuses on individual objects. This is only
the first step towards our ultimate goal of automatic reconstruction
of indoor scenes.
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Appendix: 2D and 3D Distance Field Compu-
tation

To pre-compute a 3D distance field of an input point cloud, we
first embed it into a volumetric grid within its bounding box. The

distance field F is then calculated as F'(i,j,k) = e’d2/2”"2,
where d is the distance from voxel (i, j, k) to the nearest point in
the 3D point cloud. The voxel size is set to be 0.0057 in each
dimension, where 7 is the diagonal length of the bounding box. oy
is always set to be 0.017 in our experiments.

Similarly, we pre-compute another distance field on the image
domain to measure the matching quality of the part with the image.
We first detect edges in the input image [Canny 1986], generating
an edge map (Figure 4 (middle)). Its 2D distance field G is then
computed (Figure 4 (right)), with G(3, j) = e~di/201% o—d3 /20,7
where d; is the distance from pixel (4, j) to the nearest edge point
and d- is the distance to the nearest non-zero point of the binary
object mask. The second term is used to filter out edges that do
not belong to the object in a more continuous (fuzzy) way. We
use o7 = 0.01y in all the examples of the paper, where p is the
diagonal length of the object in the image.
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