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Summary 

 

Econometrics of high frequency data and nonnegative valued financial point 

process is addressed in an Autoregressive Conditional Duration (ACD) and 

Multiplicative Error Model (MEM). The basic idea is to model the nonnegative 

valued point process in terms of the product of a scale factor and an innovation 

process with nonnegative support. However, when extending such a model into a 

multivariate setting, the direct use of multivariate MEM model is restricted since 

conditional distributions for multivariate nonnegative valued random variables are 

often not available. A common strategy is to reduce the multivariate setting to a series 

of univariate problems by assuming: a) weak exogeneity. b) the independence of 

innovation terms. The objects of this thesis are to examine this strategy and develop a 

general form vector MEM. Three main Chapters have been developed. 

We begin with the analysis of weak exogeneity. The independence of innovation 

terms is considered as a special case of weak exogeneity. The simulation study 

indicates that a failure of the weak exogeneity assumption implies not only inefficient 

but also biased estimate of the parameters. We then derive an LM test for weak 

exogeneity and the empirical results indicate that the weak exogneity of duration is 

often rejected. Chapter 3 discusses the use of lognormal distribution for financial 

durations and we propose a lognormal ACD model. The empirical results show that 

lognormal ACD model is superior to Exponential and Weibull ACD model. It 

performs similarly to Burr or generalized gamma ACD model. In Chapter 4, we 

release weak exogeneity assumption and propose general form of vector MEM. Based 

on the results in Chapter 3, we further propose to use the multivariate lognormal 

distribution for the distribution of the vector MEM for which maximum likelihood is 

proved as a suitable estimation strategy. The model is then applied to the trade and 

quotes data from the New York Stock Exchange (NYSE) for the dynamics of trading 

duration, volume and price volatility. The empirical findings are generally consistent 

with market microstructure predictions.  
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Chapter 1 Introduction and Main Contributions 

 

 

High frequency data is also known as transaction data, (ultra) high frequency 

data, or tick data. It has become widely available in economics and finance over the 

past decade. As a result of the availability of these data sets and the rapid advance in 

computing power, there is a growing interest in models based on high-frequency 

financial data. Statistically speaking, high frequency data are realizations of point 

processes, that is, the arrival of the observations is random. This, jointly with other 

unique features of financial data (long memory, strong skewness, and kurtosis) 

implies that new methods and new econometric models are needed.  This has created 

a new body of literature which is often referred to as "the econometrics of (ultra-) 

high-frequency finance" or "high-frequency econometrics". Bauwens, Pohlmeier et al. 

(2008) , in a book covering recent developments, illustrate high frequency financial 

econometrics as a combination of observed high frequency data, market 

microstructure theory, and econometric modelling. The three aspects form a system in 

which each component nicely dovetails with the others. Market microstructure theory 

deals with models explaining price and agent‘s behaviour in a market governed by 

certain rules. On the other hand, empirical analysis deals with the study of market 

behaviour using real financial data. For example, what are the relationships between 

traded volume, trade time, and price variations? How does the trade activity reflect 

information content in the fundamental asset price?  
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In this chapter, we discuss the three aspects of high frequency econometrics as an 

introduction of this thesis and then outline the motivations and main contributions. 

The remainder of this chapter is organized as follows. Section 1 gives an overview of 

institutional background of financial market and discusses the types of high frequency 

financial data. Section 2 provides a compact overview of major branches of market 

microstructure theory. We briefly explain the main principles of the information based 

model and inventory based models. Section 3 reviews the econometric approach to 

model the dynamics of high frequency data. In particular, ACD and MEM models are 

discussed in this section. Section 4 is the motivations and main contributions of this 

thesis. 

1.1 High Frequency Financial Data 

This section gives an overview of institutional background of financial market and 

different types of high frequency financial data. We first introduce to the institutional 

framework of trading. And then we discuss the different types of high frequency data 

and illustrate its time series patterns as well as the problems which should be taken 

into account in empirical analysis.  

1.1.1 The Institutional Framework  

When introducing the institutional framework of trading, we limit our discussion 

to those aspects that are closely related to empirical part of this thesis, particularly the 

types of markets, types of traders, and types of orders. 

(1) Types of Markets 

Based on the existence of market makers, two types of markets are identified: 

quote driven (dealer) markets and order driven markets.  
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In a quote driven (dealer) market, trades are only executed by market makers 

(dealers). The market makers quote the bid and ask prices by standing on the opposite 

side of the market. In a pure quote driven market, the traders are not allowed to trade 

themselves but must execute their trades by market makers. The market makers earn 

profit from the bid-ask spread and provide liquidity to the market. Despite the high 

availability of automation and electronic trading system, most markets, including very 

active ones such as the foreign exchange market, rely on market makers to act as 

intermediaries. Other examples are the NASDAQ stock market, New York Stock 

Exchange and London Stock Exchange.  

In an order driven market, traders trade directly with each other. Since there are 

no market makers serving as the intermediaries, trading occurs according to specific 

rules.  It is commonly structured as an automatic limit order book market. With a limit 

order, an investor associates a price with every order such that the order will be 

executed only if the investor receives that price or better. Effectively, the limit order 

providers supply liquidity. The studies by Harris and Hasbrouck (1996), and Foucault 

(1999), among others provide the knowledge of liquidity provision in the limit order 

book. In markets where dealers are also present, limit orders directly compete with 

them and serve as a check on their market power. On the NYSE, for example, the 

specialist can only trade after all limit orders at the best bid or offer order have been 

fulfilled. 

(2) Types of Traders  

Based on asymmetric information, three types of traders are identified: informed 

traders, uninformed traders and market makers. Informed traders are usually defined 

as a corporate officer with private information. Uninformed traders are mainly 

liquidity motivated, who simply behave as their belief of current information. Market 
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makers are assumed uninformed. Informed traders hope to get profit from their 

information while the market maker loses to informed traders on average. But the 

market makers are specialists and they can access the information by learning the 

signals in the market such as trading directions and volumes, thus recouping these 

losses on noise traders. Glosten and Milgrom (1985) assume that the bid-ask spread is 

increasing in information asymmetry. And different trader type‘s behavior is reflected 

in the bid price and ask price.  

(3) Type of Orders 

An order represents all the relevant trade information, such as what to trade, when 

to trade and how much to trade.  A bid (ask) order reflects a trader‘s willingness to 

buy (sell) and contains the respective price and quantity the trade will accept. Bid and 

ask prices are the price that the trades are willing to trade. The highest (lowest) bid 

(ask) price available is called the best bid (ask) price or best bid (ask) quote. A market 

quotation gives the best bid and offer (ask) in the market and is called best bid and 

offer (BBO). In US, the best bid and offer across consolidated markets for National 

Market System (NMS) stock is called the National Best Bid and Offer (NBBO). The 

difference between the best ask and bid is called the bid-ask spread.  

A market order is an order that trades immediately at the best price currently 

available in the market. The corresponding price at which the order is executed is 

called transaction price. Market order traders ―pay‖ the bid-ask spread as long as the 

order is filled with the offered quantity at the best ask or bid price. If the size of the 

market order is larger than the quantity offered at the best ask or bid, the trader must 

move prices and thus has to pay an extra premium (―price concession‖). Then, buyers 

(sellers) have to bid prices up (down) in order to find a counter-party who is willing to 

take the other side a large trade. The resulting price movements are called 
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(instantaneous) market impacts or price impacts and naturally increase with the order 

size and are the dominant part of the trading costs (on top of the bid-ask spread).These 

trading costs induced by a potential market impact and the execution price uncertainty 

are often referred to as the price traders have to pay to obtain priority in the market, 

i.e., the ―price of immediacy‖. 

A limit order is a trade instruction to trade at a price which is no worse than the 

so-called limit price specified by the trader. As the corresponding limit price is not 

necessarily offered on the other side of the market, a limit order faces execution risk. 

If no one is willing to take the opposite side at the required limit price, the order is not 

executed and is placed in the limit order book where all non-executed limit orders are 

queued according to price and time priority. Correspondingly, the larger the distance 

between the limit order and the best quote, the worse is the order‘s position in the 

queue and the lower is its execution probability in given time. A limit order with a 

limit price at or above (below) the best ask (bid) price in case of a buy (sell) order is 

executed immediately and, if necessary, filled until the limit price level is reached. 

Such an order is called a marketable limit order corresponding to a market order 

where the trader limits the potential price impact (by correspondingly setting the limit 

price). Finally, a market-to-limit order is a market order, which is executed at the best 

ask/bid quote in the order book. Any unfilled part of a market-to-limit order 

automatically enters the order book. 

1.1.2 Database and Trading Variables  

The high frequency data are the data that are recorded whenever a trade, quote or 

a limit order occurs. This data is also called transaction data, (ultra) high frequency 

data, or tick data. High frequency data is widely used in the analysis of market 

microstructure theory. The most popular and widely used database is the Trades and 
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Quotes (TAQ) dataset released by the NYSE. It contains detailed information of the 

intraday trade and quote process at NYSE, NASDAQ and other local exchanges in the 

US. They are all quote driven markets.  The TAQ database consists of two parts: the 

first reports the trade data, while the second lists the quote data posted by the market 

maker. The trade dataset contains trade volume, trade price, and the exact trade time 

(to the second). And the quote dataset contains bid (offer) price, bid (offer) size and 

the exact quote time(to the second). Table 1-1 and Table 1-2 show extracts of raw 

files from the ―Trade and Quote‖ (TAQ) database released by the NYSE. 

 

 

Table 1-1: TAQ data recorded on trades for AIRGAS on January 02, 1998 

SYMBOL DATE EX TIME PRICE SIZE CORR 

ARG 980102 N 93858 1412500 1500 0 

ARG 980102 M 93900 1412500 200 0 

ARG 980102 N 93904 1412500 1000 0 

ARG 980102 T 94220 1412500 800 0 

ARG 980102 N 94257 1425000 500 0 

ARG 980102 N 94319 1425000 500 0 

ARG 980102 N 94346 1431250 2000 0 

ARG 980102 N 94357 1431250 2000 0 

ARG 980102 N 94536 1431250 100 0 

ARG 980102 N 94618 1437500 1000 0 

ARG 980102 N 94627 1437500 1000 0 

ARG 980102 N 95403 1437500 400 0 

SYMBOL: stock symbol, DATE: trade date, EX: exchange on which the trade occurred, TIME: 

trade time, PRICE: transaction price, SIZE: trade size, CORR: correction indicator of 

correctness of a trade 
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Table 1-2: TAQ data recorded on quotes for AIRGAS on January 02, 1998  

SYMBOL DATE EX TIME BID BID SZ OFFER OFF SZ MOOD 

ARG 980102 N 93915 1406250 50 1425000 10 10 

ARG 980102 X 93916 1350000 1 1450000 1 12 

ARG 980102 M 93918 1300000 4 1625000 5 12 

ARG 980102 M 93918 1387500 1 1437500 1 12 

ARG 980102 T 93918 1400000 1 1437500 1 12 

ARG 980102 T 93918 1400000 1 1437500 1 12 

ARG 980102 P 93919 1393750 1 1437500 1 12 

ARG 980102 B 93920 1387500 1 1437500 1 12 

ARG 980102 N 94311 1406250 50 1437500 10 12 

ARG 980102 X 94313 1350000 1 1462500 1 12 

ARG 980102 T 94314 1400000 1 1450000 1 12 

ARG 980102 T 94314 1400000 1 1450000 1 12 

SYMBOL: stock symbol, DATE: quote date, EX: exchange on which the trade occurred, TIME: 

quote time, BID: bid price, BID SZ: bid size in number of round lots (100 shares), OFFER: 

offer (ask) price, OFF SZ: offer size in number of round lots (100 shares), MODE: quote 

condition 

 

1.1.3 Matching Trades and Quotes 

As in many other quote driven markets, the trade and quote data in the TAQ 

dataset are recorded separately, which raises the issue of appropriately matching the 

two datasets. The matching procedure is necessary whenever the analysis has to link 

the trade characteristics, like trade sizes and trade time, to the prevailing quote 

updating process (for example, Engle (2000),Manganelli (2005)).  For NYSE data, 

Lee and Ready (1991) propose a 5 second rule to reduce the potential mismatching 

problem. Specifically, a trade is associated with a quote posted at least 5 seconds 

before the trade, since the quotes can be posted more quickly than trades are recorded. 

Lee and Ready (1991) show that this rule leads to the lowest rates of mismatching. 

This procedure becomes a standard rule in microstructure studies. 

1.1.4 Data Characteristics  

The high frequency data, commonly of most interest, are time stamps of trades, 

the best bid/ask quote updates, the traded volume, and the best bid-ask price. They 
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share some common properties, such as being irregularly spaced in time, non-

negatively valued, discreteness of price change, temporal dependence, and intraday 

seasonality.  

(1) Irregularly spaced in time 

The transactions data are inherently irregularly spaced in time. Perhaps this is the 

most important property. As we can see from Table 1-1 and Table 1-2,  some 

transactions appear to occur only seconds apart while others, for example at 9:54 in 

trade data, may be five or ten minutes apart. The result is that the commonly used 

econometric models, which are specified for fixed intervals, are not applicable for this 

analysis. One possibility is to interpolate the irregularly spaced data over fixed 

intervals. Alternatively, if the time interval itself is of interest, then its stochastic 

property needs to be taken into account.  

(2) Discreteness of price change 

For transaction data, institutional rules often restrict minimum price change, 

which is called a tick. The transaction price change must fall on multiples of ticks. In 

a market for an actively traded stock it is not generally common for the price to move 

a large number of ticks from one transaction to another. US stocks have undergone a 

transition from trading in 1/16th of a dollar to decimalization. For example, NYSE 

permitted 1/16th prices. This discreteness has an impact on many aspects of the 

market; for example, market liquidity, measuring volatility, or any characteristic of 

prices that is small relative to the tick size. 

(3) Intraday seasonality  

It is well known that intraday data, such as duration, volume and volatility exhibit 

strong intraday periodic components, with a high trading activity at the beginning and 
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end of the day. For most stock market‘s volatility, the frequency of trades, volume, 

and spreads all typically exhibit a U-shaped pattern over the course of the day. 

(4) Temporal dependence  

Unlike their lower frequency counterparts, high frequency financial returns data 

typically display strong dependence. The dependence is largely the result of price 

discreetness and bid-ask bounce.   

Econometric frameworks and models to capture these specific properties are    

discussed in section 1.3.   Before that, the theoretical background is discussed in the 

following section. 

1.2 The Theoretical Background of Market Microstructure 

In this section, we give a compact overview of the market microstructure 

literatures. As stated in O'Hara (1995) and Madhavan (2000), market microstructure 

deals with the topics, such as price discovery, inventory, liquidity, information 

diffusion and dissemination in market, the behaviour of the market participants. It 

provides theoretical explanation on the models of high frequency data. Typically, the 

market microstructure literature explain the trading activity using two types of models: 

asymmetric information based and inventory based models. Specifically, trading 

occurs either for information motivated or liquidity motivated reasons. The 

predictions of the relations between duration, volume and price volatility differ.  

In the information-based model, three types of traders are assumed: informed 

traders; uninformed traders; and market makers. Informed traders are usually defined 

as corporate officers with private information, while uninformed traders are liquidity 

motivated and simply behave according to their current information. Market makers 

are also assumed to be uninformed. Apparently, the different traders have asymmetric 

information. Informed traders hope to obtain profits from their information so, on 
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average, the market makers lose out to the informed traders. Market makers are 

specialists and can access information by reading the signals in the market, such as 

trading intensity and volume, and can thus recoup any losses as uninformed traders. 

Their activities are covered by the sequential trade model (Glosten and Milgrom 1985; 

Diamond and Verrecchia 1987) and the strategic trade model ((Kyle 1985; Admati 

and Pfleiderer 1988; Easley and O'Hara 1992).) 

In the sequential trade framework, the market maker and market participants 

behave competitively. Trades take place sequentially, with only one trader allowed to 

transact at any given point in time. Informed traders would like to trade as much (and 

as often) as possible. So the market maker would quickly (perhaps instantly) adjust 

prices to reflect this information. It apparent that trading volume is positively (perhaps 

contemporaneously) correlated with price volatility. The strategic model allows the 

agents to act strategically. For example, in order to make full use of their private 

information, the informed traders may conceal their trading type by timing their trades 

carefully or choosing their trade sizes (Kyle 1985; Easley and O'Hara 1992). 

Uninformed traders may also learn by observing the actions of informed traders. In 

particular, Admati and Pfleiderer (1988) distinguish two types of uninformed traders 

in addition to informed traders: non-discretionary traders are similar to liquidity 

traders in the previous model; while discretionary traders, while uninformed, trade 

strategically. Discretionary traders choose the timing of their trades. They usually 

select the same period of transaction in an attempt to minimize adverse selection costs, 

and informed traders follow the pattern introduced by discretionary traders. 

In inventory based models, the trading process is effectively motivated by the 

market makers desire to keep their inventory position at some specific level. Based on 

their inventory position and uncertainty about order flow, dealers alter their bid and 
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ask prices to elicit the desired imbalance of buy and sell orders thereby moderating 

deviations in order flow. The dealer‘s action in the market is simply independent of 

information. It only depends on trading costs, the dealer‘s previous position and net 

demand to the dealer (Ho and Stoll 1981; O'Hara and Oldfield 1986).  

These types of model generally induce patterns of various trade characteristics, 

such as timing, price and volume. These factors contain information and reflect trade 

behaviour in the market.  

1.3 The Empirical Modelling of High Frequency Data 

The transactions data are inherently irregularly spaced in time. The result is that 

the commonly used econometric models, which are specified for fixed intervals, are 

not applicable for this analysis. One possibility is to interpolate the irregularly spaced 

data over fixed intervals, but some important information may lose. Alternatively, if 

the time interval itself is of interest, then its stochastic property needs to be taken into 

account. This, jointly with other unique features (such as long memory; strong 

skewness; and kurtosis) implies that new methods and new econometric models are 

needed. It was first addressed first addressed, by Engle and Russell (1998) in the 

context of an ACD model for the dynamics of transaction time and then extended by 

Engle (2002) and Manganelli (2005) in the context of an Multiplicative Error Model 

for the dynamics of other nonnegative valued financial point processes(for example, 

trade volume, bid-ask spread, different measurement of price volatility).  

1.3.1 ACD models 

The basic reference ACD model is proposed by Engle and Russell (1998) whose 

explicit objective is the modelling of times between events.  There are at least two 

reasons to model transaction time in the ACD literature. First, the high frequency data 
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are naturally irregularly spaced in time. As long as transaction time is measured, the 

other trading variables (for example, trade volume, and price) can be modelled 

associated with transaction time. Second, the time interval itself is of interest. Market 

microstructure literature that is based on asymmetric information (Easley and O'Hara 

(1992) and Easley, Kiefer et al. (1997)) argue that the transaction time convey 

information and have a deep impact on the behaviour of market agents, thus should be 

modelled as well.  

Let td  be the time duration between events occurring at time it  and 1it , such that
 

1t i id t t   . The basic idea of ACD model is that duration can be modelled as product 

of its conditional expectation and an innovation term with nonnegative support, 

 
t t td                         (1.1) 

where 1( )t t tE d   and 1t  denotes the information available up to period 1it  . 

The ACD model is further characterized by the assumption that the innovation 

terms t  are independently and identically distributed ( . .i i d ). The second equation of 

ACD model is that the conditional expected duration is modelled as a linear function 

of past duration and past expected duration:  

             
1 1t t td       . 

(1.2) 

To ensure positivity of the conditional expected duration, common restrictions on 

the coefficients are that 0,0,0   . Bauwens and Giot (2000) also propose a 

logarithmic version of the ACD model to guarantee the positivity. Two specifications 

are considered, referred to as Log-ACD1 and Log-ACD2, respectively: 

 
1 1log log logt t td        ,                      

(1.3) 

 
11 loglog   ttt   . 

(1.4) 
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Since the ACD model is very similar to the GARCH model, it is not surprising 

that the linear ACD model can be extended in several ways. A flexible specification is 

the augmented ACD (AACD) model by Fernandes and Grammig (2006). It is 

obtained by a Box-Cox transformation and permits an asymmetric response to small 

and large shocks. The first-order parameterization is given by: 

 
1 1 1 1[ ( )]v

t t t t tb c b                 . 
(1.5) 

Other specifications of the ACD model can be found in a summary paper Pacurar 

(2008); for instance, the Zhang, Russell et al. (2001)‘s threshold ACD and model and 

Bauwens and Veredas (2004)‘s  stochastic conditional duration model. One can also 

incorporate additional regressors in the ACD model to examine the microstructure 

effect.  

To close the model, the specification of the conditional distribution of innovation 

terms is needed. By definition, t  is a random variable with probability density 

function denied over a nonnegative support.  Engle and Russell (1998) initially 

consider the exponential distribution for the error t  with density  

 0),exp()(  tttf   . (1.6) 

The exponential distribution has a flat hazard function, which is too restrictive. 

Engle and Russell (1998) also consider the Weibull distribution for the error, which 

nests the exononential distribution as special case(  =1). The standard Weibull
1
 

density function is: 

 0),exp()()|( 1  

ttttf 


 . 
(1.7) 

                                                 
1
  We call it as ―standard Weibull‖ because the scale parameter in this distribution is normalized as 1. 
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The Weibull distribution is flexible and permits both an increasing hazard 

function if  >1 or a decreasing hazard function if  <1. 

Grammig and Maurer (2000) and Lunde (1999) further propose the use of the 

Burr distribution and generalized gamma (GG) distribution. Both the Burr and the GG 

distributions have two shape parameters which allow for hump-shaped hazard 

functions, thereby more flexible than exponential or Weibull distribution. Moreover, 

the Weibull and exponential distributions can be nested in the Burr and GG 

distributions.  

1.3.2 Multiplicative Error Model 

Other high frequency data, commonly of most interest, are the trading volume, 

bid-ask spread, and the price volatility. They share some common properties as 

duration. For example, they are irregularly spaced in time, nonnegatively valued, and 

persistently clustered over time. As a extension of GARCH (Bollerslev 1986) and 

ACD (Engle and Russell 1998) approach, Engle (2002) propose a class of models, 

named Multiplicative Error Model (MEM), which are particularly suitable for the 

dynamics of such nonnegative valued financial point process. The basic idea it to 

model the nonnegative valued process in term of the product of a (conditional 

autoregressive) scale factor and an innovation process with nonnegative support. 

Let tx be a discrete time process defined on [0, ) , and let 1t  the information 

available up to period 1t  . { }tx follows a MEM if it can be specified as the product 

of an autoregressive scale factor and an . .i i d  innovation term. 

 
t t tx                         (1.8) 

where 1( )t t tE x  , t  is a random variable with probability density function (pdf) 

denied over a [0, )  support. Typically, the flexible assumption of a Gamma pdf 
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with unit mean . .i i d  t terms is adopted and t assumes following a GARCH-type 

process. The properties of ACD model can be applied to MEM. The base (1,1) 

specification of t is: 

 
1 1t t tx        . 

(1.9) 

The logarithmic version is also adopted to ensure positivity of the conditional 

expectation of tx ,  

 
1 1log log logt t tx         . 

(1.10) 

Other extension for the conditional mean is also possible in the literature, for 

example, by adding predetermined variables or incorporating asymmetric effects in 

the model. The estimation of the parameters in t is consistent by the Quasi maximum 

likelihood derivation.  

The first two moment conditions of the MEM are also given by: 

 
1( | )t t tE x    , 

2

1( | ) ( )t t t tVar x Var    .                 
(1.11) 

The ACD model by Engle and Russell (1998) is a special case of MEM, but 

absolute return, trading volume, bid-ask spread and number of trades in a certain 

interval can be modelled with MEMs. Empirical results show a good performance of 

these models in capturing the stylized facts of the observed series (see, for example, 

Manganelli (2005); Hautsch (2008)).  

1.3.3 Multivariate MEM -- A Recursive Framework  

There are many instances in which the joint consideration of several nonnegative 

valued financial point processes is of interest. Example are joint modelling the 
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dynamics of trading duration, volume and price volatility for the same asset 

(Manganelli 2005). This motivates the multivariate extension of the univariate MEM.  

It is notable that a completely parametric formulation of the multivariate MEM 

requires a full specification of the conditional distribution of multivariate nonnegative 

valued random variables. As a first step one may attempt to generalize the univariate 

gamma (or other exponential) distribution to a suitable multivariate version. But this 

is frustrated by the limitations of the multivariate Gamma distribution. Cipollini, 

Engle et al. (2007) find the only useful multivariate Gamma distribution only admits 

positive correlation, which is too restrictive.   

To simplify the estimation procedure, a common strategy in this study is to reduce 

the multivariate estimation to a series of univariate problems. Among them, Engle 

(2000) proposed a recursive framework, in which the joint density of several financial 

point processes are decomposed into the product of the marginal density of one 

process and conditional densities of other processes. For example, Engle (2000) 

express the joint density of duration and volatility as the product of the marginal 

density of the duration times and the conditional density of the volatility, given the 

duration. Under the assumption of weak exogeneity, the duration process and price 

volatility process can be estimated separately. This model is further extended by 

Manganelli (2005) to incorporate trading volume. The recursive framework of Engle 

(2000) and  Manganelli (2005) reduces the complexity of the model, and are widely 

adopted in the existing empirical literature (see, for example, Engle (2000), Dufour 

and Engle (2000), Manganelli (2005); Russell and Engle (2005) and Engle and Sun 

(2007)). This is also one of research object of this thesis. We take Manganelli (2005) 

model for example to illustrate this recursive framework in detail.   



 

17 

 

Define{ , , }t t td v r , 1, ,t T  as the three-dimensional time series associated with 

intraday trading duration, trading volume and the return process, respectively. In 

particular, duration is defined as the time elapsing between consecutive trades, 

volume is the trade size associated with each transaction and return is measured as the 

mid-quote change. The trivariate trading process - duration, volume and return 

volatility - can be modelled as follows:  

 
1{ , , } ~ ( , , | ; )t t t t t t td v r f d v r    

(1.12) 

where   is a vector incorporating the parameters of interest.  

In the recursive model, the joint distribution is decomposed into the product of 

three components: marginal density of durations, the conditional density of volumes 

given durations and the conditional density of the return volatility given durations and 

volumes. Specially,  

 
1 1 1{ , , } ~ ( | ; ) ( | , ; ) ( | , , ; )t t t t t d t t t v t t t t rd v r g d h v d k r d v      .                     (1.13) 

Manganelli (2005) considers the following MEMs for duration, volume and 

volatility: 

 2

1

2

1

1

2 2

1

( ; ) , ~ . . .(1, )

( ; , ) , ~ . . .(1, )

ˆ ( ; , , ) , ~ . . .(0,1)

ˆ ( ; , , ) , ~ . . .(1, )

t t d t t t u

t t v t t t t

t t r t t t t t

t t r t t t t t

d u u i i d

v d i i d

r h d v i i d

or r h d v i i d





  

    

  

   

















                      (1.14) 

where 2

t̂r  is the proxy for volatility
2
, ( , , )t t th  are the conditional expectations of 

duration, volume and volatility, respectively, and
 

,

1 2( , ,...., )s     is a vector of s 

                                                 
2
 In order to obtain a price change sequence which is free of the bid-ask bounce that affects price, we 

follow Ghysels, et al. (1998) and tr̂  is obtained as the residuals of an ARMA(1,1) process of return 

series. See also in Hautsch (2008). One advantage of using tr̂  is that it avoids the problem of exact 

zero values in tr . 
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parameters of interest. Manganelli (2005) adopts the univariate exponential 

distribution for the innovations in this specification.  

To capture the causal and feedback effect among these variables, he specifies the 

following first order autoregressive conditional model: 

2

1 11 1 12 1 13 1 11 1 12 1 13 1

2 12

2 21 1 22 1 23 1 21 1 22 1 23 1 0

2 13 23

3 31 1 32 1 33 1 31 1 32 1 33 1 0 0

ˆ( ) ( ),

ˆ( ) ( ) ,

ˆ( ) ( )

t t t t t t t

t t t t t t t t

t t t t t t t t t

w a d a v a r b b b h

w a d a v a r b b b h a d

h w a d a v a r b b b h a d a v

  

  

 

     

     

     

      

       

         .

 (1.15) 

Under the restrictions of weak exogeneity and independence of the innovations terms, 

the three components are estimated separately. One additional advantage of the 

recursive model is that the contemporaneous information is also incorporated.  

1.4 Motivations and main Contributions of this Thesis 

Similar to Manganelli (2005), we are initially interested in the modelling of 

nonnegative valued financial point processes, particularly the dynamics of trading 

duration, volume and price volatility. However, when extending ACD/MEM model 

into a multivariate setting, the full specification requires the joint probability 

distribution of nonnegative valued random variables, hence occurrences of such 

distribution are limited in the literature. Instead, Engle (2000) and Manganelli (2005) 

propose a recursive framework, which  reduce the multivariate setting to a series of 

univariate problems, by making the following two assuming: a) weak exogeneity. b) 

the independence of innovation terms. Then each process can be estimated separately. 

The motivations and the main contributions of this thesis are based on the two 

assumptions.  

First, following the recursive model of Engle (2000) and Manganelli (2005), the 

assumption of weak exogeneity of duration is often made. If this assumption is valid, 

then the marginal density and conditional densities can be estimated separately. 
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However, the consistent estimation of the parameters is based on the weak exogeneity 

assumptions, which is often left untested. Moreover, the consequences of the failure 

of the weak exogeneity are still open questions. This motivates our second Chapter, in 

which we analyse weak exogeneity problem in financial point processes. We consider 

the independence of innovation terms as a special case of weak exogeneity and 

propose three cases in which the weak exogeneity condition will break down. The 

simulation study suggests that a failure of the exogeneity assumption implies biased 

estimators. The biases are very large in the third case non-weakexogeneity, which 

makes the econometric inferences on the parameters unreliable or even misleading. In 

empirical analysis, we also derive an LM test for weak exogeneity and test the weak 

exogeneity of duration in a trivariate (duration, volume and volatility) system. The 

empirical results indicate that the weak exogneity is often rejected for frequently 

traded stocks, but is less likely to be rejected for infrequently traded stocks. This 

suggests the trivariate should be modelled and estimated jointly.  

Second, the recursive model assumes that the specific processes are independent. 

To incorporate the contemporaneous information, Engle (2000) and Manganelli (2005) 

specifies causality from duration to volume and from duration and volume to price 

volatility. However, modelling the distribution of price as being conditional on 

duration and volume is just one strategy to obtain their joint distribution. As pointed 

out by Engle and Sun (2007), it is also possible to go from the price process and 

model duration conditional on its contemporaneous return. Theoretically, variation in 

duration and variation in the price process would be related to the same news events 

or the underlying information process. Empirical studies by Grammig and Wellner 

(2002) and Hautsch (2008) also address the interdependence of the individual  process. 
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In particularly, Hautsch (2008) finds the existence of a common unobserved 

component that jointly drives the dynamics of the trade and price processes.  

It is therefore necessary to extend the recursive model into a vector form, by 

allowing the three processes to be interdependent and relaxing weak exogeneity. This 

is the motivation of Chapter 3 and Chapter 4. Chapter 3 discusses the use of 

lognormal distribution for financial durations. We compare the performance of 

lognormal ACD with the alternative specifications. The empirical results show that 

Lognormal ACD model is superior to Exponential ACD model and Weibull ACD 

model. It performs similarly to Burr ACD model or generalized gamma ACD model. 

The study in chapter 3 opens a door to use lognormal distribution for nonnegative 

valued financial point process and provides further support for the methodology of 

chapter 4. In Chapter 4, we release the weak exogeneity assumption and propose 

general form of vector MEM. We further propose a multivariate lognormal for the 

distribution of the distribution of vector MEM, which allows the innovation terms to 

be interdependent. In this way, the two restrictions imposed by previous work are 

releases and the maximum likelihood is proved to be a suitable estimation strategy. 

The vector MEM is then applied to the trade and quotes data from the New York 

Stock Exchange (NYSE) for the dynamics of trading duration, volume and price 

volatility. The empirical results show that the vector MEM captures the dynamics of 

the trivariate system successfully. We find that times of greater activity or trades with 

larger size coincide with a higher number of informed traders present in the market. 

But it is unexpected component of trading duration or trading volume that carry the 

information content. Moreover, the empirical results suggest a significant feedback 

effect from price process to trading intensity, in which the persistent quote changes 

and transient quote changes affect trading intensity in different direction.  
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Chapter 2 Weak Exogeneity in the Financial Point Processes 

 

 

2.1 Introduction 

The relationship between financial duration and market marks
3
 is critical for 

financial market microstructure studies. When modelling financial duration and other 

marks jointly, the multivariate extension of univariaite ACD/MEM is required. 

However, the direct use of multivariate MEM model is restricted since joint 

probability distributions for nonnegative valued random variables are often not 

available in the literature. 

To simplify the optimization procedure, a commonly used strategy in the literature 

is to decompose the joint distribution of duration and market marks into the product of 

the marginal density of duration and the conditional density of marks given duration. 

In estimation, if the weak exogeneity of duration is valid, then the marginal density of 

duration and the conditional density of marks can be estimated separately equation-

by-equation. This approach simplifies the estimation procedure and is generally 

adopted in the empirical market microstructure. However, if the parameters in the 

conditional density depend on some of the parameters of the marginal density (for 

example, the weak exogeneity condition fails, the estimators would be inefficient or 

even inconsistent, leading to invalid inference (White (1981,1982)).   

                                                 
3
 Enlge (2000) use ―marks‖ to denote trading duration, volatility and other variables associated with 

trading time. We adopt same idea here.  
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This chapter examines weak exogeneity problems in financial point processes. We 

consider three cases in which the weak exogeneity condition will break down and we 

use a Monte Carlo simulation to study the consequences of the failure of weak 

exogeneity. The simulation study suggested that a failure of the exogeneity 

assumption implied biased estimators. The bias is very large in third cases non-weak 

exogeneity. In empirical analysis, we derive an LM test, which is similar to Dolado, 

Rodriguez-Poo et al. (2004). We use a more fruitful specification of the conditional 

mean, which implies that the rejection of null is less likely due to the misspecification 

of conditional mean. Using two groups of high frequency data, we test both the weak 

exogeneity of duration and the joint weak exogeneity of duration and volume. The 

empirical results indicate the assumption of weak exogeneity is often rejected. 

The remainder of this chapter is structured as follows. Section 2 reviews the 

related studies on weak exogeneity. Section 3 introduces the notion of weak 

exogeneity and methodology. Section 4 presents a simulation study to examine the 

consequences of incorrectly assuming weak exogeneity. Section 5 derives an LM test 

for weak exogeneity. Section 6 contains an empirical application.  

2.2 Related Studies on Weak Exogeneity 

Different definitions of exogeneity are clarified by Engle, Hendry et al. (1983), for 

example, weak exogeneity, strong exogeneity, super exogeneity and invariance. Weak 

exogeneity is proposed as an answer to the question of under what conditions can one 

estimate the parameters of conditional density without loss of information from 

neglecting the marginal process. The idea of weak exogeneity is be expressed simply 

by saying that estimation and inference on the parameters of the marginal density and 

the conditional density can be undertaken separately, without loss of efficiency, if the 

endogenous variable in the marginal density is weakly exogenous for parameters in 
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the conditional density. Engle and Hendry (1993) develop the different classes of tests 

of weak exogeneity. In particular, if the marginal processes are constant, Wu-

Hausman test is commonly used for test weak exogeneity.  

The original Hausman test (Hausman 1978) contrasts two estimates obtained from 

different estimators (unconstrained and constrained parametric models). Under a null 

hypothesis, both of these estimators are consistent while only the second estimator is 

efficient. Under the alternative hypothesis of endogeneity, the first estimator is 

consistent while the second is not. This Hausman statistic has, under the null 

hypothesis, an asymptotically chi-squared distribution with the number of degrees of 

freedom equal to the number of endogenous regressors. An alternative to the 

Hausman contrast test is the two-stage Wald version test, originally derived by Wu 

(1973). In the first stage, by careful construction
4
, a reduced form model (marginal 

model) is specified for the endogenous variables which are estimated consistently. 

Then, the fitted values of the endogenous variables are computed and in the second 

stage, the conditional model is augmented by plugging in the fitted values as 

additional variables. If the fitted values are jointly significant in the conditional model, 

the null hypothesis of weak exogeneity is rejected. A simple Wald statistic can be 

used to test the joint significance. Effectively, this two-stage Wald version test leads 

to a test which is asymptotically equivalent to the Hausman contrast test [an algebraic 

derivation of this result can be found in the Davidson and MacKinnon (2004, Section 

8.7)]. Using Monte Carlo simulation, Adkins, Campbell et al. (2012)shows, under a 

series of different conditions, that the Wald version of the Hausman test often has 

better properties that the contrast version. 

                                                 
4
 See Terza, Basu and Rathouz (2008) for the conditions of choosing IV.  

 

http://en.wikipedia.org/wiki/Chi-square_distribution
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The Hausman test has been widely used in various areas, such as macroeconomics, 

health economics, and international trade. For example, Fischer (1993) and Boswijk 

and Urbain (1997) test the weak exogeneity of Swiss money Demand. Terza, Basu et 

al. (2008) address the endogeneity in a econometric model of health. Staub (2009) 

tests for the exogeneity of a binary explanatory variable in a count data regression 

model. Darrat, Hsu et al. (2000) test export exogeneity in Taiwan. However, Hausman 

tests suffer from three problems when applied to financial point process. Firstly, 

economic theory does not yield insights which guide the choice of instrumental 

variables. Secondly, the test is developed in a Gaussian/linear framework, whereas the 

market point process usually belongs to the exponential family. Thirdly, correct 

specification of the conditional mean is a fundamental assumption underlying the test, 

since the rejection of the null hypothesis could be due either to the absence of weak 

exogeneity or to the misspecification of the conditional mean.  

We extend the Hausman test of weak exogeneity in a time series model and 

propose three cases in which weak exogeneity conditions will break down. A Monte 

Carlo simulation study is used to examine the consequences of the failing of weak 

exogeniety. In empirical analysis, we derive an LM test, which is similar to Dolado, 

Rodriguez-Poo et al. (2004). However, we use a more powerful specification of the 

conditional mean and test both weak exogeneity of duration and jointly weak 

exogeneity of duration and volume.  

2.3 Methodology 

2.3.1 Formal Definition of Weak Exogeneity 

As in Engle, Hendry et al. (1983) and Engle and Hendry (1993), we start with a 

bivariate stochastic process { , }t tx y  and the joint density ( , ; )t t tf x y  , where  t  
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denotes the information available up to period t ,which includes lags and other 

important variables. Commonly, the joint density ),( tt yx  can be factorized into the 

product of the marginal density tx   and conditional density of ty  given tx  

 ( , ; ) ( ; ) ( , ; )x y

t t t x t t t t ty x
f x y f x f y x     

 

(2.1) 

where ),( yx  . Let )( f  be the parameters of interest, which are assumed 

to be present only in the conditional density. The key issue, addressed by Engle, 

Hendry et al. (1983),is to know under what conditions it is possible to estimate   just 

as function of y and without loss of information. In other words, that all the 

information needed for estimation of  is
y x

f .  

Engle, Hendry et al. (1983) define a variable of tx  as weakly exogenous for a set 

of parameters of interest   if: 

i) )( f ,   is a function of parameters y  alone, and  

ii) y  and x  are variation free, i.e. 
yxyx ),(  . 

Consequently, if tx  is weakly exogenous for , there is no loss of information 

about   from neglecting the process determining tx . Otherwise, the estimation of  

y  would be inefficient or even inconsistent.  

In econometric, the marginal density might also be interested. Weak exogeneity is 

also expressed simply by saying that estimation and inference on x and y can be 

undertaken separately without loss of information, if tx is weak exogenous for 

y .Engle, Hendry et al. (1983) further introduce the notation of ―sequential cut‖ and 

―cross-restriction‖ to illustrate weak exogeneity, saying that ix is weak exogenous for 
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y , if [ ( ; ), ( , ; )]x y

x t t t t ty x
f x f y x   operates a sequential cut on ( , ; )t t tf x y  , or 

if x and y is not subject to ―cross-restriction‖.  

2.3.2 Different Types of Weak Exogeneity in Financial Point 

Processes 

Manganelli (2005) proposes a framework for the joint dynamics of trading 

duration, volume and price volatility. This model incorporates both causality and 

feedback effect among variables of interested and thereby can explain the various 

strategic models in the market microstructure literature. So we take Manganelli 

(2005)‘s model for specification the dynamics of financial point processes. To 

simplify, we only consider the jointly distribution of duration and volume. Define

{ , }t td v , 1, ,t T  as the two-dimensional time series associated with intraday trading 

duration and trading volume. In particular, duration is defined as the time elapsing 

between consecutive trades, volume is the trade size associated with each transaction. 

The bivariate trading process- duration, volume - can be modelled as follows:  

 { , } ~ ( , | ; )t t t t td v f d v                        (2.2) 

where   is a vector incorporating the parameters of interest.  

In Manganelli (2005)‘s framework, the joint distribution is decomposed into the 

product of marginal density of durations and the conditional density of volumes given 

durations:  

 { , } ~ ( | ; ) ( | , ; )t t t t d t t t vd v g d h v d     .                   (2.3) 

Manganelli (2005) specifies the following univariate ACD/MEM model for duration 

and volume: 
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 2

2

( ; ) , ~ . . .(1, )

( ; , ) , ~ . . .(1, )

t t d t t t u

t t v t t t t

d u u i i d

v d i i d 

  

    

 

 
                      (2.4) 

where ( , )t t  are the conditional expectations of duration and volume,
 

( , )d v    is 

a vector of s parameters of interest. The innovation terms are uncorrelated with each 

other by construction.  

The log likelihood can be expressed as: 

         

1

( , ) [log ( ; ) log ( , ; )]
T

v d

t t d t t t v

t

L g d h v d   


    . (2.5) 

Follows Manganelli (2005), the conditional mean of duration and the conditional 

mean of volume conditional on duration are expressed as:  

     ( ; )d

t tg d      ~     
0 1 1 2 1 3 1

( ; )

,

t t d t t

t t t t

d

a a d a v

  

   

 

   
 

              ( , ; )v

t t th v d    ~    
0 1 1 2 1 3 1 4

( ; , )

.

t t v t t t

t t t t t

v d

b b d b v b b d

  

   

 

    
 

(2.6) 

It is well know that estimation and inference on the parameters characterising each 

density can be undertaken separately, without loss of efficiency, if two of following 

condition hold: a) weak exogeneity, and b) the respective densities are correctly 

specified. Consequently, failing of weak exogeneity would result in inefficient or 

even inconsistent estimators, leading to unreliable inferences.  

In the econometrics literature, the Hausman specification is usually used to test 

weak exogeneity. As explained by Engle, Hendry et al. (1983) , if none of the 

parameters in the marginal model appear in the conditional model, then weak 

exogeneity is valid. Therefore, testing weak exogeneity implies testing the 

significance of the predictor from the marginal model, in the conditional model. 

However, Hausman set is initially developed for a test of cross sectional model, 

whereas the ACD/MEM model is a time series model and the dynamics of 
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endogenous variables should also be considered. In this section, we extend the 

Hausman test of weak exogeneity in a time series model and propose three cases in 

which the weak exogeneity condition will break down. We use the so called ―non- 

weak exogeneity‖ thereafter to express the notation that weak exogneiety condition 

breaks down.  

 

Case 1: The first case of non-weak exogeneity is based on the Hausman specification. 

As explained by Engle, Hendry et al. (1983), Hausman test for weak exogeneity 

implies testing the significance of the predicted variable from the marginal model, in 

the conditional model. In the ACD/MEM models, it is natural to use the conditional 

expected value instead of predicted value, since the conditional expectation of 

duration is directly measured. This is also mentioned in Engle (2000). So to specify 

Hausman test for weak exogeneity in financial point process, we re-write equation 

(2.6) as: 

 2

0 1 1 2 1 3 1

( ; ) , ~ . . (1, ),

.

t t d t t t

t t t t

d i i d

a a d a v

    

   

 

   
 

2

0 1 1 2 1 3 1 4 5

( ; , ) , ~ . . (1, ),

.

t t v t t t t

t t t t t t

v d i i d

b b d b v b b d b

    

    

 

     
 

(2.7) 

Under assumption that the parameters of interest depend solely on the parameters 

of the conditional distribution, i.e. 0 1 2 3 4( , , , , )v f b b b b b   and the expected duration 

t  is estimated from the duration process (marginal density), then it suffices to test 

the significance of t in the volume process (conditional density) in order to test weak 

exogeneity of duration. If it is insignificant, the parameters of interest are not subject 

to cross equation restrictions and v  are variation free with respect to the parameters 
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of the duration process. Thus, the condition for weak exogeneity is that 5b =0 in 

equation (2.7). 

If we look at in another way and assume  

 2

1

2

2

~ . . (0, )

~ . . (0, ).

t t t

t t t

d i i d

v i i d





  

  

 

 
 (2.8) 

equation (2.7) then becomes
5
  

 
0 1 1 2 1 3 1 1

1 1 2 1 3 1 4 5 2( )

t t t t t

t o t t t t t

d d a v

v b b d b v b b b d

   

 

  

  

    

      
 

(2.9) 

where 2 5 1 2t t tb      .Therefore, 2

1 2 5 1 5( , ) var( )t t tCov b b         . The condition 

for weak exogeneity is 5b =0 or 0),( 21 
ttCov  . In such a case, the parameters of 

interest v are not subject to cross equation restrictions and are variation free with 

respect to the parameters from duration equation d .  

The Hausman specification test might also take another form, see for example 

Dolado, Rodriguez-Poo et al. (2004). They specify the following functional form for 

testing weak exogeneity: 

 

0 1 1 2 1 3 1 4 5

( ; , )

( ) .

t t v t t t

t t t t t t

v d

b b d b v b b b d

  

    

 

     
 (2.10) 

Generally speaking, if any linear or nonlinear forms of expected duration 

significantly enter the volume process (conditional density), the weak exogeneity of 

duration will break down
6
.   

 

                                                 
 
5
 See Appendix 1for proof.   

 
6
 Since the nonlinear term can be linearized as ( ) ( ) ( ) ( )t t tf f f       . The proof 

thereafter is the same as is done in the Hausman test.    
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Case 2: The second case of non-weak exogeneity is motivated by Manganelli 

(2005)‘s model. Manganelli (2005) initially considers the following specification for 

the duration and volume process.  

 

 
),1(..~,),;(

),1(..~,);(

2

2









diidv

diid

ttttvtt

tttdtt





 

0 1 1 2 1 3 1 4 1

0 1 1 2 1 3 1 4 1 5 .

t t t t t

t t t t t t

a a d a v a

b b d b v b b b d

  

  

   

   

    

     
 

(2.11) 

Writing it in matrix form: 

 
0 1 3 4 11 2

50 1 2 1 3 4 1

0 0
.

0

t t t t

t t t t

a d a a da a

bb b b v b b v

 

 

 

 

             
                

            

 (2.12) 

Both the parameters in marginal density and conditional density are interested. In 

order to optimize the two processes separately, the assumption of weak exogeneity 

has to be imposed. In this case, the condition for weak exogeneity is 4 30, 0b   , 

since only under this condition can )];,(),;([ v

ttt

d

tt dvhdg    operate a 

sequential cut on );,( ttt vdf   whereupon there is no cross-section restrictions 

between marginal and conditional density (Engle, Hendry et al. 1983). 

If we look at it in another way and assume:  

 2

1

2

2

~ . . (0, )

~ . . (0, )

t t t

t t t

d i i d

v i i d





  

  

 

 
, (2.13) 

then the above becomes
7
 

0 1 3 2 4 1 1 3 4 1 1

50 1 3 2 4 1 2 3 4 2 1

0 0

0

t t t t t

t t t t t

d a a a d d a a

bv b b b b b v v b b

   

 

 

 

                 
                    

                  
.   (2.14) 

                                                 
   7

 See Appendix 2 for proof.  
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Again, the condition of weak exogeneity is that 4 30, 0b   , since only under 

such condition can d and v be variation free and subject to no cross equation 

restrictions.  

Generally speaking, if any lagged expected (or fitted) value from marginal model 

is present in the conditional model, or any lagged expected (or fitted) value from 

conditional model is present in marginal model, the weak exogeneity condition will 

break down. 

 

Case 3: Motivated by the case 1 of non-weak exogeneity, we may consider a more 

restrictive case of non-weak exogeneity, where the innovations between marginal and 

conditional distributions are correlated. Let‘s look at the following model of duration 

and volume: 

 ( ; ) ,

( ; , ) ,

t t d t t

t t v t t t

d

v d

  

  

 

 
 

~ . . .( , )
t

t

i i d




 
  

   

0 1 1 2 1 3 1

0 1 1 2 1 3 1 4

t t t t

t t t t t

a a d a v

b b d b v b b d

 

 

  

  

   

    
 

(2.15) 

where  is the unit vector, ( , ) , 0t tcorr      .  

If the innovations from the marginal and conditional distributions are correlated, 

the weak exogeneity condition will break down, since the parameters of volume 

equation ( v ) are subject to cross equation restrictions and are not variation free with 

respect to parameters from the duration equation ( v ). In this case, the condition of 

weak exogeneity is that the innovation terms in marginal and conditional distribution 

are independent. Effectively, Hausman specification can also be viewed a special case 

where the innovations between the marginal and conditional distributions are 
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correlated.  It is sufficient to test case 1 weak exogeneity in order to test case 3 weak 

exogeneity in empirical analysis.   

Summary of conditions for weak exogeneity 

a) The expected (or fitted) value from marginal model does not enter in the 

specification of conditional density. 

b) The lagged expected (or fitted) value from marginal model is not present in 

the specification of conditional density, and the lagged expected (or fitted) 

value from conditional model is not present in the specification of marginal 

density.  

c) The innovation terms from the marginal and conditional distributions are 

uncorrelated. 

The violation of either one of the above conditions will result in the breaking down of 

weak exogeneity. 

2.4 Consequences of Incorrectly Assuming Weak Exogeneity- a 

Simulation Study 

Based on the three cases of non-weak exogeneity above, we study the 

consequences of ignoring weak exogeneity in this section. We examine the 

consequences if one estimates the model under the assumption of weak exogeneity 

when there is none. To do so, we conduct a simulation study.  

The experiments are designed as follows. The joint distribution of duration and 

volume is chosen as the benchmark model. The data is generated based on the fact 

that weak exogeneity condition breaks down. In particular, we generate the duration 

and volume data in accordance with each of the three cases of non-weak exogeneity 

discussed in section 2.3.2.  
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Case 1  The expected value from the marginal model is present in the conditional 

distribution.  The data are generated according to equation (2.7). 

Case 2  The lagged expected value from the marginal model is present in the 

conditional distribution and the lagged expected value from the conditional model is 

present in the marginal distribution. The data are generated according to equation 

(2.11) 

Case 3  The innovations from the marginal and conditional distributions are 

correlated. The data are generated according to equation (2.15) 

We chose the sample sizes at N =2000, 5000, and 10000 respectively and the 

number of simulations equals 2000. In the first two cases of non-weak exogeneity, we 

use an exponential distribution with mean value 1 to generate the random disturbances 

t and t . In the third case, we use a bivariate exponential distribution with 

correlations 0.1  and 0.5  to generate the random disturbances t and t  jointly.  

We then estimate each model by two approaches. In the first approach, we assume 

the weak exogeneity condition is valid. The marginal process of duration and 

conditional process of volume given duration are estimated separately. We denote this 

estimation method the conditional MLE. In the second approach, we estimate the 

model under the fact of non-weak exogeneity. The duration and volume processes are 

estimated jointly. We call this latter approach the full MLE. After estimation, we 

compare the estimation results of conditional MEL with those from the full MLE. In 

particular, we focus on a comparison of the bias/inconsistency and efficiency of the 

estimators.  Table 2-1, Table 2-2 and Table 2-3 report the simulation results for the 

three cases.  
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Table 2-1: Case 1 simulation summary statistics.  Estimated parameters 

  N=2000  N=5000  N=10000  

 Conditional MLE  Full MLE Conditional MLE  Full MLE Conditional MLE  Full MLE 

 Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

a0 

a1 

a2 

a3 

0.111 

0.049 

0.052 

0.842 

0.041 

0.014 

0.018 

0.038 

0.107  

0.049  

0.051  

0.846 

0.029 

0.013 

0.016 

0.026 

0.104 

0.049 

0.051 

0.847 

0.022 

0.009 

0.011 

0.022 

0.103  

0.049  

0.051  

0.848 

0.018 

0.008 

0.010 

0.017 

0.103 

0.050 

0.051 

0.848 

0.015 

0.006 

0.008 

0.015 

0.102  

0.049  

0.051  

0.849 

0.012 

0.005 

0.007 

0.012 

b0 

b1 

b2 

b3 

b4 

b5 

0.034 

0.062 

0.042 

0.715 

0.100 

0.018 

0.022 

0.017 

0.033 

0.019 

0.108  

0.051  

0.048  

0.802  

0.100  

-0.107 

0.040 

0.024 

0.016 

0.049 

0.018 

0.048 

0.033 

0.061 

0.043 

0.716 

0.099 

0.011 

0.014 

0.011 

0.020 

0.012 

0.103  

0.051  

0.050  

0.799  

0.100  

-0.101 

0.022 

0.014 

0.010 

0.028 

0.012 

0.027 

0.033 

0.061 

0.043 

0.716 

0.099 

0.008 

0.010 

0.007 

0.014 

0.008 

0.102  

0.050  

0.050  

0.800  

0.100  

-0.101 

0.014 

0.010 

0.007 

0.019 

0.008 

0.017 

 

Data generation process (DGP):  
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 

 
   ,

  

0 1 1 2 1 3 1

0 1 1 2 1 3 1 4 5

t t t t

t t t t t t

a a d a v

b b d b v b b d b

 

  

  

  

   

     
. 

The random disturbances t and t are generated from an exponential distribution with mean value 1. 

The population parameter values: 

     
1.000  ba , 05.011  ba , 2 2 0.05a b   

     3 0.85a  , 3 0.80b  , 4 0.1b  , 5 0.1b  
 

The parameters values are chosen partly from the empirical work of Manganelli (2005).   
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Table 2-2: Case 2 simulation summary statistics.  Estimated parameters 

  N=2000  N=5000  N=10000  

 Conditional MLE  Full MLE Conditional MLE  Full MLE Conditional MLE  Full MLE 

 Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

a0 

a1 

a2 

a3 

a4 

0.132 

0.038 

0.054 

0.759 

0.048 

0.018 

0.013 

0.067 

0.106  

0.048  

0.051  

0.846  

-0.050 

0.032 

0.017 

0.012 

0.062 

0.035 

0.125 

0.038 

0.053 

0.767 

0.026 

0.011 

0.008 

0.036 

0.102  

0.049  

0.051  

0.849  

-0.051 

0.020 

0.011 

0.007 

0.038 

0.020 

0.124 

0.039 

0.053 

0.767 

0.018 

0.007 

0.006 

0.026 

0.101  

0.050  

0.051  

0.849  

-0.050 

0.013 

0.007 

0.005 

0.026 

0.014 

b0 

b1 

b2 

b3 

b4 

b5 

0.088 

0.057 

0.045 

  

0.771 

0.100 

0.035 

0.039 

0.016  

 

0.046 

0.033 

0.103  

0.052  

0.048  

-0.046  

0.795  

0.101 

0.049 

0.036 

0.016 

0.098 

0.053 

0.032 

0.084 

0.056 

0.046  

 

0.774 

0.100 

0.020 

0.024 

0.010  

 

0.027 

0.021 

0.100  

0.051  

0.049  

-0.047  

0.798  

0.100 

0.030 

0.022 

0.010 

0.061 

0.032 

0.020 

0.083 

0.055 

0.047  

 

0.775 

0.100 

0.014 

0.017 

0.007  

 

0.019 

0.015 

0.100  

0.050  

0.049  

-0.048  

0.799  

0.100 

0.020 

0.015 

0.007 

0.041 

0.021 

0.014 

 

DGP: 

 

2

2

( ; ) , ~ . . (1, )

( ; , ) , ~ . . (1, )

t t d t t t

t t v t t t t

d i i d

v d i i d





    

    

 

    ,         

0 1 1 2 1 3 1 4 1

0 1 1 2 1 3 1 4 1 5

t t t t t

t t t t t t

a a d a v a

b b d b v b b b d

  

  

   

   

    

     
. 

The random disturbances t and t are generated from an exponential distribution with mean value 1. 

The population parameter values;  

      1.000  ba , 05.011  ba , 2 2 0.05a b   

      3 0.85a  , 4 0.05a   , 3 0.05b   , 4 0.80b  , 1.05 b  

The parameters values are chosen partly from the empirical work of Manganelli (2005).   
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Table 2-3: Case 3 simulation summary statistics. Estimated parameters 

 (Only conditional MLE is reported) 

  0.1   
  0.5    

  N=2000 N=5000 N=10000 N=2000 N=5000 N=10000 

 Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

a0 

a1 

a2 

a3 

0.108 

0.048 

0.051 

0.847 

0.033 

0.014 

0.012 

0.025 

0.104 

0.049 

0.050 

0.848 

0.021 

0.009 

0.007 

0.015 

0.102 

0.050 

0.050 

0.849 

0.014 

0.006 

0.005 

0.011 

0.110 

0.048 

0.051 

0.847 

0.030 

0.016 

0.012 

0.022 

0.103 

0.049 

0.051 

0.849 

0.018 

0.010 

0.008 

0.014 

0.102 

0.050 

0.050 

0.849 

0.012 

0.007 

0.005 

0.009 

b0 

b1 

b2 

b3 

b4 

0.090  

-0.098  

0.040  

0.790  

0.279 

0.041 

0.042 

0.015 

0.035 

0.037 

0.086  

-0.101  

0.041  

0.792  

0.279 

0.025 

0.026 

0.009 

0.021 

0.023 

0.084  

-0.102  

0.041  

0.793  

0.280 

0.018 

0.019 

0.007 

0.015 

0.017 

0.050  

-0.515  

0.021  

0.749  

0.796 

0.067 

0.096 

0.018 

0.088 

0.049 

0.041  

-0.528  

0.019  

0.765  

0.794 

0.044 

0.059 

0.012 

0.053 

0.031 

0.036  

-0.534  

0.019  

0.772  

0.794 

0.018 

0.036 

0.008 

0.028 

0.022 

 

DGP:    

( ; ) ,

( ; , ) ,

t t d t t

t t v t t t

d

v d

  
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t
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i i d




 
  

 
,  ( , ) , 0t tcorr       ,    

0 1 1 2 1 3 1

0 1 1 2 1 3 1 4

t t t t

t t t t t

a a d a v

b b d b v b b d

 

 

  

  

   

    
 

The disturbances t and t are generated jointly from a bivariate exponential distribution with mean value  and correlations 0.1  and 0.5  . 

 The population parameter values: 

        
1.000  ba , 05.011  ba , 2 2 0.05a b   

       3 0.85a  , 3 0.80b  , 4 0.1b   

The parameters values are chosen partly from the empirical work of Manganelli (2005).
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From Table 2-1 (the first case of non-weak exogeneity), the means of the full 

MLE are all close to the population means. As the number of observations increases, 

the standard deviation of the full MLE gets smaller and the performance generally 

improves. The full MLEs work well as a whole. On the other hand, the performance 

of the conditional MLE is somewhat different to that of the full MLE. For the 

marginal distribution, the means of the conditional MLEs are unbiased and consistent 

in general. And the standard deviations of conditional MLEs are slightly larger than 

that of full MLEs, suggesting an efficient gain when duration and volume are 

estimated jointly. For the conditional distribution, both 2b and 3b are downward biased. 

In particular, the sum of 2b and 3b  is downward biased towards smaller estimated 

persistence for volume. The conditional MLE of 1b is greater than its population 

means, suggesting the impact of duration on volume is over estimated. As the number 

of observations increases, the performance of the conditional MLEs generally 

improves. However, the same characteristics of conditional MLE continue to hold. It 

seems that when the first weak exogeneity condition breaks down, the conditional 

MLEs for marginal distribution work fine, where the conditional MLEs for 

conditional distribution are biased. The poor performance of the conditional MLE is 

due to the fact that the information from the marginal distribution contains some of 

the information of the conditional distribution. 

From Table 2-2 (the second case of non-weak exogeneity), we get similar results 

for the full MLE approach. The means of the full MLE are all close to the population 

values and the full MLE works well as a whole. The performance of the conditional 

MLE is different to that of the full MLE. In the duration process, both 1a and 3a are 

smaller than the population values. And the sum of 1a and 3a  is downward biased 
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towards smaller estimated persistence for duration. The conditional MLE of 2a  is 

larger than those from the full MLEs, suggesting that the impact of volume on 

duration is over estimated. The same result is also hold for the volume process, where 

the sum of 2b  and 4b  is downward biased towards smaller estimated persistence and 

1b  is upward biased suggesting a larger duration impact on volume. Besides, the 

conditional MELs are less efficient than those from the full MLEs in general, but the 

efficient loss is not significant in most of cases. It can be seen that the same 

characteristics of the conditional MLEs continue to hold when N= 2000, 5000 and 

10000.  

Table 2-3 (the third case of non-weak exogeneity) only reports the results from 

conditional MLE. The full MLE and joint estimation method will be discussed in 

chapter 4. The conditional MLEs of the marginal distribution are unbiased and 

consistent in this case, even if the correlation between the marginal and conditional 

distributions is high. In the conditional distribution, the conditional MLE of 3b  is 

unbiased and consistent when the correlation of errors between the marginal 

distribution and the conditional distribution is relatively small ( 0.1  ), and it gets 

slightly biased and inconsistent when the correlation is relatively high ( 0.5  ). The 

greater differences are observed for the conditional MLEs of 1b and 4b , which 

evaluate the impact of duration on volume. It can be seen that the conditional MLE of 

1b is negative in this case, and the negative size increases drastically as the correlation 

of the errors increases. The conditional MLE of 4b  is much larger that its population 

mean. As the correlation of the errors increases, the conditional MLE of 4b  gets larger. 

Thus, the incorrectly assuming case 3 weak exogeneity has severe consequences on 

the estimation results, which makes the inferences on the parameters unreliable or 
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even misleading.  Again, the same characteristics of the conditional MLEs continue to 

hold when sample size increases.  

To summarize, the simulation study suggests that a failure of the exogeneity 

assumption implies biased estimators. The biases are very large in the third case non-

weak exogeneity. In particular, the failure of weak exogeneity assumptions have 

severe effects on the conditional distribution, where the persistence of volume will be 

downward biased and the impact of duration on volume will be over estimated. 

Besides, the failure of the weak exogeneity also implies inefficient estimators, but the 

efficiency loss is relatively small. The simulation results are partially consistent with 

White (1981, 1982). The results indicate that the econometric inferences on the 

parameters are unreliable or even misleading if weak exogeneity condition fails.   

It is therefore necessary to conduct a test for weak exogeneity before estimation in 

empirical analysis. 

2.5 An LM Test for Weak Exogeneity in Financial Point Processes 

In this section, we will derive a Langrage-multiplier (LM) or efficient score test 

for weak exogeneity. It proves to be particularly useful since it only requires 

estimation of the restricted model.  

In the literature, the Hausman test is often used to test weak exogeneity. However, 

correct specification of the conditional mean is a fundamental assumption for the 

validity of the test since the rejection of the null hypothesis could be due to either the 

rejection of weak exogeneity or the result of misspecification of the conditional mean. 

To take this into consideration, we introduce an Augmented ACD (AACD) model 

(Fernandes and Grammig 2006) for the specification of the conditional mean of 

duration. The AACD model of Fernandes and Grammig (2006) is given by 
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The AACD model is then obtained by rewriting it as  

 
1 1 1 1[ ( )]v

t t t t tb c b                 (2.16) 

where 1*    and *  . 

The AACD model provides a flexible functional form and permits the conditional 

duration process { t } to respond in distinct manners to small and large shocks. The 

shock impact curve 
v

tti bcbg )]([)( 11    incorporates such asymmetric 

responses through the shift and rotation parameters b and c, respectively. The shape 

parameter v  plays a similar role to  , which determines whether the Box-Cox 

transformation is concave ( 1 ) or convex ( 1 ) 

Appendix 3 summarizes the typology of ACD models which can be nested by the 

AACD model. The AACD model provides a flexible functional form and 

encompasses most of the current ACD models. The rejection of the null is less likely 

to be due to misspecification of the conditional mean.  

To simplify, only the case one weak exogeneity is discussed in the LM test and in 

empirical analysis. It is necessary but not sufficient for weak exogenety. The case two 

weak exogeneity can be derived in the same way. As it is mentioned, the first case of 

non-weak exogeneity is a special case of the third case of non-weak exogeneity. The 

test procedure also serves as a test of the case three weak exogeneity.   
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2.5.1 Testing Weak Exogeneity of Duration 

Let us specify the duration and volume as represented by the AACD and 

augmented autoregressive conditional volume (AACV) models respectively with the 

errors belonging to the exponential distribution family (exponential, Weibull or Burr 

distribution); for example 
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(2.17) 

As explained in section 2.3, it suffices to test 0H  : 01 a  in order to test for weak 

exogeneity of duration. In such a case, the parameters of interest are not subject to 

cross equation restrictions and are variation free with parameters from marginal 

model.   

Due to the inherent complexity of the AACD model, the LM or efficient score 

testing principle is proved to be particularly useful for this purpose, since it requires 

estimation under the null hypothesis only.  

Under 0H      
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 (2.18) 

Under 1H  
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Assuming that the densities are correct, the general theory of ML leads to a simple 

score test for 01 a .Given correctly specified duration and volume models, the quasi 

log-likelihood function is  
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The quasi log-likelihood MLE approach is most suitable since it allows for a wide 

range of different distributions capturing all possible supports of the point process.  

Moreover, under 0H  of weak exogeneity, the AACD and AACV model can be 

estimated separately. Then, the score/LM test has the familiar form 

 )(ˆ)()(ˆ 111 1

c
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where 

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
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


L
I c )(1


 are the components corresponding to  1a  

in the empirical score and Hessian from constrained model. Under mild regularity 

conditions it is well known that, the score test has an asymptotically )1(2  

distribution under 0H . 

2.5.2 Testing Joint Weak Exogeneity of Duration and Volume 

The above testing approach enables a test of weak exogeneity of duration for one 

market mark (volume or volatility). In market microstructure, sometimes more than 

two variables are interested and modelled jointly. For example, Manganelli (2005) 

models duration, volume and volatility jointly. The joint distribution is decomposed 

into the product of the three components: the marginal distribution of duration, the 

conditional distribution of volume given duration, the conditional distribution of 

volatility given duration and volume.  In such case, testing joint weak exogeneity of 

duration and volume is needed. In this section, we propose the joint weak exogeneity 

test principle. We start with the joint distribution of duration, volume and volatility 

and test the joint weak exogeneity of duration and volume for volatility equation. 
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However, this approach can be extended to test the joint weak exogeneity of more 

than two variables.  

The joint distribution is decomposed into the product of the three components, 

specially,  

( , , ) ~ ( , , ; ) ( ; ). ( , ; ). ( , , ; ).d v r

t t t t t t t t t t t t t t t td v r f d v r g d h v d k r d v         (2.22) 

The log likelihood can be expressed as: 

1

( , , ) [log ( ; ) log ( , ; ) log ( , , ; )].
T

d v r d v r

t t t t t t t t t

t
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

       (2.23) 

As illustrated in the previous section, we allow for a more flexible functional form 

for duration, volume and volatility process. This results in a LM score test. The 

conditional expectation of duration and volume are assumed to follow an AACD and 

AACV process and the conditional expectation of volatility are assumed to follow an 

Asymmetric Power GARCH (APGARCH) (Ding, Granger et al. 1993) process, which 

is similar to the AACD specification. Then the volatility model has the following 

form: 
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 (2.24) 

For the same reason, it suffices to test that 01211   in order to test jointly the 

weak exogeneity of duration and volume.  

Under 0H  
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(2.25) 

The density for both the AACD and AACV models is the exponential while for 

the APGARCH model it is a standard normal distribution. Assuming that the densities 

are correct, the general theory of ML leads to a simple Score test for 01211  . 
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Given that the Augmented GARCH, AACV and AACD models are correctly 

specified, the quasi log-likelihood function is 
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(2.26) 

Moreover, under 0H  of weak exogeneity, the APGARCH and the AACD and 

AACV models can be estimated separately. The score/LM test has the familiar form 
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empirical score and Hessian from unconstrained model corresponding to 11 .and 12 . 

Under mild regularity conditions it is well known that, the score test has an 

asymptotic )2(2  distribution under 0H . 

2.5.3 Power of the Test 

How powerful is the LM test for weak exogeneity in this study? How many 

observations do we need to have? To answer these questions, we need to conduct an 

investigation of the statistical power of the LM test. We begin with the ACD/MEM model 

below. 
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Choosing a 5% significance level, the simulation results indicate that the empirical 

test size is 6.7% for sample size n=10000, 7.2% for sample size n=5000 and 8.9% for 

sample size n=2000.  

To explore the power of the test, we generate data under the alternative hypothesis 

and estimate the model under null hypothesis
8
. Under the alternative hypothesis the 

parameter 4b varies between -0.2 to 0.2 with step 0.025. Given the sample size and 

empirical test size, the power of the test is the probability of rejecting a hypothesis 

when it is false. The results of the LM test for different sample sizes and effective test 

size are listed in Table 2-4. 

 

Table 2-4: Power of the test 

4b  
Power of test 

N=2000 N=5000 N=10000 

-0.200 

 -0.175 

 -0.150  

-0.125  

-0.100  

-0.075 

 -0.050  

-0.025  

0.000  

0.025 

0.050  

0.075  

0.100  

0.125  

0.150  

0.175  

0.200 

0.825 

0.736 

0.614 

0.457 

0.354 

0.232 

0.149 

0.084 

0.052 

0.041 

0.054 

0.105 

0.164 

0.260 

0.414 

0.547 

0.642 

0.989 

0.977 

0.933 

0.803 

0.610 

0.403 

0.210 

0.093 

0.051 

0.057 

0.120 

0.277 

0.458 

0.684 

0.848 

0.924 

0.970 

1.000 

1.000 

0.999 

0.972 

0.878 

0.600 

0.347 

0.141 

0.051 

0.098 

0.236 

0.502 

0.781 

0.938 

0.987 

0.997 

1.000 

Note: Power of the test is the percentage rejections of the LM tests at empirical 

significant level for testing 04 b against 04 b  

 

  

                                                 
8
 To avoid present of negative value of volume, we use logarithmic version of ACD 

model for GDP process and estimation. 
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As the sample size increases, the power of LM test increases. It can also be seen 

when 4b decreases to 0, the power tends to be 5%. The test power grows quickly to 1 

as 4b  move away from zero. The results are also plotted in Figure 2-1. They are 

appropriately symmetric. The simulation shows that the LM test has good power to 

test for weak exogeneity in a financial market point process. 

 

 

N=2000 N=5000 

 
N=10000 

 
 

 

 

Figure 2-1: Power of the test 
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2.6 Empirical Analysis 

In this section, we use the method discussed in section 5 to test weak exogeneity 

of duration for two groups of high frequency data. The empirical analysis starts with 

the joint distribution of the three variables: duration, volume and price volatility. 

These three variables are key factors in analysing market microstructure. Specifically, 

we will test weak exogeneity of duration for volume process and weak exogeneity of 

duration for volatility process respectively. We also test the joint weak exogeneity of 

duration and volume for volatility process. 

2.6.1 Data 

We use the data from the Trades and Quotes (TAQ) dataset at NYSE. The TAQ 

data consists of two parts: the first reports the trade data while the second lists the 

quote data (bid and ask data). The data were kindly provided by Manganelli (2005). 

He constructed 10 deciles of stocks covering the period from Jan 1,1998 to June 30, 

1999, on the basis of the 1997 total number of trades of all stocks quoted on the 

NYSE. We randomly selected 5 stocks from the eighth decile (frequently traded 

stocks) and 5 from the second decile (infrequently traded stocks) covering the period 

from Jan 1,1998 to June 30, 1999. The tickers and names of the ten stocks are 

reported in Table 2-5. 

 

Table 2-5: Stock used in this analysis 

A. Frequently traded    B. Infrequently traded 

TRN Trinity Industries  ABG Group ABG 

R Ryder System Inc.  OFG Oriental Finl Grp Hold Co. 

ARG Airgas Inc.  LSB LSB Industries Inc. 

GAS Nicor Incorporated   FEP Franklin Electronic Publisher 

TCB TCF Financial Corp.  HTD Huntingdon Life S.G. 
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Before the analysis began, we adopted Manganelli (2005)‘s strategy to prepare the 

data. First, all trades before 9:30 am or after 4:00 pm were discarded. Second, 

durations over night were computed as if the overnight periods did not exist. For 

example, the time elapsing between 15:59:50 and 9:30:05 of the following day is only 

15 seconds. We keep overnight duration because our samples for infrequently traded 

stocks are very small. Eliminating this duration would cause the loss of important data 

for these stocks. Third, all transaction data with zero duration are eliminated. These 

transactions are treated as one single transaction, and the related volumes are summed. 

Fourth, to deal with the impact of dividend payments and trading halts, we simply 

deleted the first observation whose price incorporated the dividend payment or a 

trading halt. Fifth, to adjust the data for stock splits, we simply multiplied the price 

and volume by the stock split ratio. Sixth, the price of each transaction is calculated as 

the average of the prevailing bid and ask quote. To obtain the prevailing quotes, we 

use the 5 second rule used by Lee and Ready (1991) which links each trade to the 

quote posted at least 5 seconds before , since the quotes can be posted more quickly 

than trades are recorded. This procedure is standard in microstructure studies. Seventh, 

the returns were computed as the difference of the log of the prices. To obtain a return 

sequence that is free of the bid-ask bounce that affects prices (see Campbell et al., 

1997, chapter 3), we follow Ghysels, Gouriéroux et al. (2004) in using the residuals of 

an ARMA(1,1) model estimated on the return data. 

The second issue to be addressed prior to the analysis concerns the intraday 

pattern in the data. It is well known that duration, volume and volatility exhibit strong 

intraday periodic components, with a high trading activity at the beginning and end of 

the day. To adjust for this, we make use of a method used by Engle (2000). We 

regress the durations, volumes and returns squares on a piecewise cubic spline with 
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knots at 9:30, 10:00, 11:00, 12:00, 13:00, 14:00, 15:00, 15:30 and 16:00. The original 

series are then divided by the spline forecast to obtain the adjusted series. Figure 2-2 

depicts the nonparametric estimate of daily pattern of duration and return square for 

one typical stock ARG. Generally, less frequently traded stocks do not exhibit any 

regular intraday pattern. More frequently traded stocks typically show the inverted U 

pattern for duration, the L pattern for return squares, and no regular pattern for 

volume.  

 

  

      Figure 2-2: Nonparametric estimate of daily pattern of transaction duration and 

return   square. 

 

 

Some summary statistics for the cleaned data are reported in Table 2-6. For the 

frequently traded stocks, the number of observations range from 33,850 to 63,862 in 

the sample period, and the average trading duration ranges from 137 seconds to 259 

seconds. For the infrequently traded stocks, the number of observation ranges from 

2,074 to 7,212 in the sample period, with the average trading duration ranging from 
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1,215 seconds to 4,215 seconds. The trading volume does not show any difference 

between frequently traded stocks and infrequently traded stocks. The number of 

trading volumes ranges from 833 to 5,295. Ljung–Box statistics suggests that duration, 

volume and volatility show strong serial correlations. And this is particularly true for 

high frequently traded stocks, which motivates the ACD models.  

 

Table 2-6: Summary statistics for the 10 stocks 

  

Notes: LB(20) denotes Ljung–Box statistics for order 20. The mean statistics report 

the average valued for the raw data. LB (20) statistics report serial correlation for the 

data after adjusting the intraday pattern.  

 

2.6.2 Testing for Weak Exogeneity - Empirical Results   

Table 2-7 reports the LM test statistics. The first row is the LM statistics for weak 

exogeneity of duration for volume process and the second row is the LM statistics for 

weak exogeneity of duration for volatility process. The third row is the LM statistics 

for jointly weak exogeneity of duration and volume for volatility process. 

  

 Obs Mean  LB(20) 

Duration Volume  Duration Volume Variance 

TRN 55582 157.86 1369.43  3780.09          1383.35 3769.80          
GAS 41999  212.93 827.77  5951.85           2338.08           4073.09          
TCB 55208 158.94 1855.20  4171.36  2644.11 2925.82 
R 63862 137.41 1800.74  14072.3  7276.91 23685.7 
ARG 33850 259.2 1280.70  3780.09  1383.35 3769.80 

                   
ABG 2074 4214.88 5259.05  120.28  225.07 146.00 
OFG 7212 1214.58 833.86  523.16  1343.43 738.09 
LSB 2962 2962.19 1971.61  481.41  435.69 523.58 
HTD 2505 3422.28 3943.59  268.52  682.92           297.01 
FEP 4405 1989.58 1565.89  2431.00  660.60 788.81 
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Table 2-7: Weak Exogeneity Test -- LM Test Statistics 

 TRN      R     ARG   TCB      GAS  ABG   OFG    LSB                                FEP                                 HTD                               
            

Volume 2.78 20.2 15.8 74.5 >100  0.72 2.00 4.20 8.91 3.02 

Volatility >100 >100 0.51 9.81 >100  >100 >100 2.14 41.0 3.78 

            

Volatility-

J 

31.9 >100 >100 >100 >100  >100 >100 >100 >100 >100 

Note:  Critical values 
05.0

2 )1( =3.84, 05.0

2 )2( =5.99 

                                        
01.0

2 )1( =6.63, 
01.0

2 )2( =9.21 

 

First, let‘s look at the frequently traded stocks. In volume equation, the null 

hypothesises that duration is weak exogenous is rejected in 4 out of 5 cases. In 

volatility equation, the same result is found. This suggests that the weak exogeneity of 

duration in financial point processes is not supported by the frequently traded data. 

The testing results for joint weak exogeneity of duration and volume in volatility 

equation are similar. We can see that the null hypothesis is rejected in all the 5 stocks, 

which suggests the duration and volume are not jointly weak exogenous in volatility 

equation.   

A different picture emerges from infrequently traded stocks. In volume equation, 

the null of weak exogeneity of duration is not rejected in 4 out of 5 cases (under 1% 

level). And in volatility equation, the null is not rejected for 2 out of 5 stocks. 

However, the joint weak exogeneity of duration and volume is rejected in all the 5 

cases. The different results found for frequently traded stocks and infrequently traded 

stocks are striking.  

In general, the weak exogeneity of duration is rejected for frequently traded stocks, 

while it is less likely to be rejected for infrequently traded stocks. But the jointly weak 

exogeneity of duration and volume is rejected in all of the cases. This indicate that 

that the empirical model of Engle (2000) and Manganelli (2005) on market 
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microstructure analysis, in which duration and marks are estimated separately, may 

only be suitable for infrequently traded stocks. It is more efficient to estimate duration, 

volume, and price volatility jointly for frequently traded stocks.      

2.7 Conclusion  

A common practice when modelling several financial point processes jointly is to 

factor the joint density into the product of the marginal density of duration and 

conditional density of marks given duration. In estimation, the assumption of weak 

exogeniety of duration is made in order to estimate the marginal density and 

conditional density separately. This chapter analyses the issues related to weak 

exogeneity in financial point processes. We propose three cases of in which the weak 

exogeneity condition will break down, which extends the application of the Hausman 

test of weak exogeneity to a time series model. We then do a simulation to study the 

consequences of incorrectly assuming weak exogeneity in estimation. We find that 

incorrectly assuming weak exogeneity implied biased estimators. The biases are very 

large in the third case non-weak exogeneity. In particular, the failure of weak 

exogeneity assumptions have severe effects on the conditional distribution, where the 

persistence of volume will be downward biased and the impact of duration on volume 

will be overestimated. This makes econometric inferences on the parameters are 

unreliable or even misleading.   

In empirical analysis, we derive a test for weak exogeneity based on LM test 

principles. The LM test is attractive because it only requires estimation of the 

restricted model. A simulation study suggests that the LM test has good power. We 

apply the method to two groups of high frequency data. The empirical results indicate 

that weak exogeneity of duration is often rejected for frequently traded stocks, but is 

less likely to be rejected for infrequently traded stocks.   
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Chapter 3 The Lognormal Autoregressive Conditional 

Duration (LNACD) Model and a Comparison with 

Alternative ACD Models 

 

3.1 Introduction 

In microstructure, the timing of transactions is a key factor in understanding 

economic theory. For example, the time duration between market events has been 

found to have a deep impact on the behaviour of market agents and on the intraday 

characteristics of the price process. Recent models in market microstructure literature 

based on asymmetric information argue that time may convey information and should 

be modelled as well.  

Econometric modelling the dynamics of transaction time was discussed, for 

example, in the context of an Autoregressive Conditional Duration (ACD) model by 

Engle and Russell (1998). They model the arrival times of trades as random variables 

that follow a point process. The reference ACD model is extended in several ways.  

The motivation of this chapter derives from an idea that the ACD model can be 

formulated as an ARMA specification but the innovation of the ARMA process is 

highly non-Gaussian. We ask what is the distribution of the ARMA innovation and 

under what conditions is the innovation is Gaussian distributed.  
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To answer this question, we begin with a logarithmic version of the ACD model 

(Bauwens and Giot 2000). The duration tx  is defined as the time elapsed between 

events occurring at time it  and 1it , so that
 1 iit ttx .Then the log-ACD model has 

a standard form; 11 logloglog,   tttttt xx  . After transformation, 

the log-ACD model is equivalent to 11)log()()log(   tttt eexcx  , where 

)log( iie   and cxc   . This is an ARMA specification. It is interesting to 

observe that as long as the innovation of the ACD model follows a lognormal 

distribution, the innovation of ARMA form will be normal distributed. 

The commonly used specifications of the duration distribution in the ACD 

literature are the exponential distribution (Engle and Russell 1998), Weibull 

distribution (Engle and Russell 1998; Bauwens and Giot 2000), Burr distribution 

(Grammig and Maurer 2000; Fernandes and Grammig 2006), and generalized gamma 

(GG) distribution (Lunde 1999). The use of the lognormal distribution in duration 

modelling has attracted less interest in the literature. Additionally, empirical studies 

have found that the hazard function of several types of financial durations may be 

increasing for small durations and decreasing for long duration (Grammig and Maurer 

2000; Bauwens and Veredas 2004). Specifically, the financial duration usually 

exhibits an inverted U-shaped hazard function. The lognormal distribution seems to 

capture this stylized factor very well. This motivates us to develop a lognormal ACD 

(LNACD) model and evaluate its performance.  

There are several advantages of using the lognormal distribution to specify the 

ACD model: (a) the LNACD model permits a hump-shaped hazard function for 

financial duration (compared with the Exponential ACD and Weibull ACD models), 

(b) it only has one shape parameter, which implies a simpler computation and 

estimation procedure (compared to the Burr ACD and generalized gamma ACD 
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models). (c)  it opens the door to use lognormal distribution for other financial point 

process. 

The remainder of this chapter is as follow. Section 2 briefly reviews the ACD 

models. Section 3 specifies the LNACD model and its likelihood function. Section 4 

introduces two latest developed specification tests for the financial duration model. 

Section 5 reports the empirical results.  

3.2 ACD Models  

3.2.1 Model Specification 

The duration tx  is defined as the time elapsed between events occurring at time it  

and 1it , such that
 1 iit ttx .The basic reference ACD model is proposed by Engle 

and Russell(1998). They model the conditional expected duration )( ttt xE  , 

where t  is the conditioning information set generated by the durations proceeding 

tx , as a linear function of past duration and past expected duration: 

             
11   ttt x 
 (3.1) 

The ACD model is further characterized by the assumption that the standard 

durations  
)( t

t

t
f

x


   , where )(/)( ttt Ef   , are independently and identically 

distributed. 

To ensure positivity of the conditional duration, common restrictions on the 

coefficients are that 0,0,0   .  However, if additional explanatory variables 

implied by market microstructure are included in equation (3.1), a negative value of 

conditional duration may arise. To avoid this situation, Bauwens and Giot (2000) 
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propose a logarithmic version of the ACD model. Two specifications are considered, 

referred to as Log-ACD1 and Log-ACD2, respectively: 

 
11 logloglog   ttt x                        

(3.2) 

 
11 loglog   ttt    

(3.3) 

Since the ACD model is very similar to the GARCH model, it is not surprising 

that the linear ACD model can be extended in several ways. A flexible specification is 

the augmented ACD (AACD) model by Fernandes and Grammig (2006). The AACD 

model is obtained by a Box-Cox transformation of the conditional duration and 

permits an asymmetric response to small and large shocks. The first-order 

parameterization is given by: 

   1111 )]([   t

v

tttt bcb   
(3.4) 

Other specifications of the ACD model can be found in a summary paper Pacurar 

(2008); for instance, the Bauwens and Veredas (2004) stochastic conditional duration 

model and the Zhang, Russell et al. (2001) threshold ACD model . One can also 

incorporate additional regressors in the ACD model to model the microstructure effect.  

3.2.2 Density Assumption 

Engle and Russell (1998) initially consider the exponential distribution for the 

error i  with density  

 0),exp()(  tttf    
(3.5) 
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The exponential distribution has a flat hazard function, which is too restrictive. 

Engle and Russell (1998) also consider the Weibull distribution for the error, which 

nests the exononential distribution as special case(  =1). The standard Weibull 

density function is : 

 0),exp()()|( 1  

ttttf 


  
(3.6) 

The hazard function is derived analytically as: 

 1

)(1

)(
)( 


  t

tF

tf
t   

(3.7) 

The Weibull distribution is flexible and permits both an increasing hazard 

function if  >1 or a decreasing hazard function if  <1 

However, Bauwens and Veredas (2004) and Grammig and Maurer (2000) 

questioned the assumption of a monotonic hazard. They find the hazard function of 

several types of financial durations may be increasing for small durations and 

decreasing for long durations. To account for this stylized factor, Grammig and 

Maurer (2000) propose the use of the Burr distribution and Lunde (1999) propose the 

use of GG distribution for financial durations. Both the Burr and the GG distributions 

have two shape parameters which allow for hump-shaped hazard functions. Moreover, 

the Weibull and exponential distributions can be nested in the Burr and GG 

distributions. The density and hazard functions for the standard Burr distribution are: 

  
0,

)1(

)(
),|(

2/112

1

2 







t

t

t

tf 









  
(3.8) 

 










t

t
t

2

1

1

)(
)(






 . 
(3.9) 

The density for GG distribution is: 
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0),exp(

)(

)(
),|(

1







tt

t

tf 








  
(3.10) 

There is no closed form Hazard function for the GG distribution since it involves 

the incomplete gamma integral. However, with numerical analysis, Tony (1990) and 

Lunde (1999) show the conditions under which the hazard functions is increasing, 

decreasing, U-shaped and inverted U-shaped.   

The GG and Burr distributions both allow for flexibility of the hazard function; 

however, the Burr distribution seems more popular in ACD literature. The main 

reason lies in the fact that it has closed form survival and hazard functions. However, 

not all moments for Burr distribution necessarily exist unless some restrictions are 

imposed on parameters. This may result in poor modelling of the higher 

(unconditional) moments of duration (Bauwens, Galli et al. 2003); Bauwens, Galli et 

al. (2003). On the other hand GG distributions involve the incomplete gamma integral 

and hence none of these functions can be written in closed form. This has led to the 

GG distribution being less frequently used in ACD literature to some extent. But 

several specification tests (Fernandes and Grammig 2005; Allen, Lazarov et al. 2009) 

find that generalized gamma ACD model usually performs better and it is the only 

model pass the specification test in some cases.  

3.3 Methodology  

3.3.1 Lognormal ACD Model 

In probability theory, a lognormal distribution is a probability distribution of a 

random variable whose logarithm is normally distributed. See Appendix 7 for 

introduction of lognormal distribution. 
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The lognormal distribution is very commonly used in reliability analysis, but less 

so in financial duration models. To our knowledge, the only paper which mentioned 

the estimation of ACD models with log-normally distributed errors is Allen, Lazarov 

et al. (2009). The reasons for this might be (a) it cannot produce a closed form CDF 

and Hazard function, and (b) the shape of the hazard function is less clear (Telang and 

Mariappan 2008). However, by comparing the density and hazard function produced 

by the Burr and lognormal distributions (Figure 3-1), we find that they have a very 

similar shape. Since it only requires one shape parameter to generate a hump shaped 

hazard function, it makes the lognormal distribution quite attractive for modelling a 

duration distribution.  This motivates us to investigate the performance of lognormal 

ACD models. 

 

 

 

Figure 3-1: Density and Hazard of lognormal and Burr distribution 

 

Defining the dynamics of duration tx  as ACD (1,1) specification of Engle and 

Russell (1998)        
 

 
11   ttt x 
 (3.11) 

and )(/ ttt fx    , where )(/)( ttt Ef   , are independently and identically 

distributed. We consider the properties of the standard lognormal distribution that 
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arises when the mean of its normal counterpart is zero and the standard deviation is 

 . Then the lognormal distribution only has one shape parameter  . The density 

function for a standard lognormal distribution is,  

 
0,]

2

log
exp[

2

1
)|(

2

2

2
 t

t

t

tf 





   

(3.12) 

If the innovations of the ACD model follows a lognormal distribution, then  
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(3.13) 

where )
2

1
exp(/)(/)( 2 tttt Ef                              

The conditional density of tx  is then: 
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(3.14) 

The log-likelihood function can be expressed as:  

 2 2

2
1

(log log 0.5 )1
{ log(2 ) log( ) log( ) }

2 2

T
t t

t

t

x
L x

 
 



 
       

(3.15) 

3.3.2 ARMA Specification of Lognormal ACD Model 

One of advantage in using the lognormal ACD model is that it has an equivalent 

ARMA specification with an innovation that follows a Gaussian distribution. To 

explain this, let‘s change the lognormal ACD model slightly and consider the Log-

ACD specification of Bauwens and Giot (2000).    

 
tttx 
 

11 logloglog   ttt x 
 

(3.16) 
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Note that in this specification, we assume that mean of its normal counterpart is 

25.0    to guarantee that the expectation of the lognormal error term is one. Then 

taking logs on the first part of equation (3.16) 

 
itt ecx  )log()log( 
 

11 logloglog   ttt x   
(3.17) 

where 25.0 c  and  te  is iid  ),0( 2N . 

Rewriting equation (3.17),we get 

  
11)log()()log(   tttt eexcx 
 (3.18) 

where   ccc    

This is an ARMA (1,1) process where the long dependence of duration is 

measured by the coefficient of lagged duration, which has the same size as what is 

measured by the Log-ACD model. The stationarity of the ARMA model is guaranteed 

by the condition that 1   and the invertibility of the ARMA model is guaranteed 

by the condition that 1 .  

3.3.3 The Shape of Hazard Function of Lognormal Distribution – 

Numerical Analysis 

The hazard function involves the integral of the normal distribution, which does 

not have any closed form. The behaviour of the hazard rate of the lognormal random 

variable, as has been reported in some recent publications, is quite misleading. 

Wadsworth, Stephens and Godfrey (1986) state ―for standard deviation 

approximately equal to 0.5, the failure rate is constant;  for  less than 0.2, the failure 

rate is increasing, while for σ greater than 0.8, it is decreasing‖. Sweet (1990) 

criticises this judgement analytically. He expresses the hazard rate of the lognormal 
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distribution in terms of the probability density function of a standard normal and plots 

the curves of the lognormal hazard rate for   equal to 0.3, 0.5 and 0.7 respectively 

and it shows a hump-shaped hazard rate. Telang and Mariappan (2008) carry out 

analytical and numerical investigations of the behaviour of the hazard rate for the 

lognormal distribution. It was shown that the hazard rate is a unimodal function with 

convexity upwards. Hence we do a numerical simulation to clarify the shape of hazard 

function in this section. 

 

Figure 3-2: Hazard of a lognormal distribution with different   

 

 

Following Sweet (1990), we simply choose a sequence of   to generate the 

hazard rate. As we can see in Figure 3-2, the hazard function seems to be either an 

increasing ( 2.0 ), hump-shaped ( 18.0   and ) or decreasing ( 0.2 ) 

function. We further investigate the conditions under which the shape of hazard 

function is determined. For   between 0.2 and 1.5, it has been confirmed that hazard 
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function is hump shaped. The numerical study focus on hazard functions when   is 

below 0.2 and above 1.5. We do a simulation study over the interval 0.1 to 0.2 with a 

step of 0.01 and over the interval 1.5 to 2.5 with a step of 0.1. We use gradient 

analysis. If its gradient is positive, the hazard function is increasing. If it is zero, the 

hazard function is constant. And if it is negative, the hazard function is decreasing.  

We set the criteria that when the 99% numbers of the gradients are positive (negative), 

the hazard function is increasing (decreasing). The replicate number is 1000. 

Appendix 5 reports the numerical output. The results are summarized as follow: 

1. 8.117.0   hump-shaped 

2. 8.1      decreasing  

3. 17.0     unstable
9
 

From the above analysis, it can be seen that the hazard rates of the lognormal 

distribution takes on two desirable shapes: decreasing and skewed hump-shaped. The 

results are consistent with Arnold L. Sweet (1990) and slightly different to 

Wadsworth, Stephens and Godfrey(1986).  

Apparently, the hazard function is not as flexible as in the case of the GG or Burr 

distribution. For example, the GG distribution can show a decreased, increased U-

shaped and inverted U-shaped hazard function, while the lognormal distribution only 

shows a decreased and U-shaped hazard function. But considering there is only one 

free parameter, this performance is quite impressive. Furthermore, empirical studies 

on financial duration work find that the hazard function is either decreasing or has a 

skewed inverse U-shape (Grammig and Maurer 2000).This makes the lognormal a 

promising distribution to use when modelling and estimating the ACD model.  

                                                 
9
 When the standard deviation is smaller than 0.17, the hazard rate is infinite for large values. The 

smaller the standard deviation, the more will be the numbers of infinite hazard rates. This is not 

acceptable in reliability analysis. We call this case ―unstable‖. 
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3.4 Specification Tests 

In this section, we introduce the method to test the adequacy of Lognormal ACD 

model. Despite the variety of ACD specification in the literature, the question of 

testing the specification of a particular model has so far attracted less interest. A 

common way of evaluating ACD models consists of examining the dynamic and 

distributional properties of the estimated standardized duration. If the estimated model 

is adequate, the standardized durations are independent and identically distributed 

( ... dii ). The approach used by Engle and Russell (1998) and followed by subsequent 

authors, consists of applying the Ljung-Box Q-statistic to test for serial correlation.  

However, the question of whether the distribution of the duration is correctly 

specified is not addressed by this test. In the following we review two recently 

proposed specification test methods. 

3.4.1 Testing Financial Duration Model via Density Forecasts  

The first way to test specification of duration model is on the basis of evaluation 

of density forecasts, which was originally developed by Shephard (1994), Diebold, 

Gunther et al. (1998) and Kim, Shephard et al. (1998). The motivation behind these 

procedures is rather intuitive and easily understood. The sequence of probability 

integral transforms of the one-step-ahead density forecast has a distribution     

uniform (0,1)U  under the null hypothesis that the one-step-ahead prediction of the 

conditional density of duration is the correct density forecast for the data-generating 

process. Bauwens, Giot et al. (2004) introduce this method for testing financial 

duration, which is adopted by Allen, Lazarov et al. (2009).  

Let us denote by 1{ ( )}m

t t t tp x   a sequence of one-step-ahead density forecasts 

and by 1{ ( )}m

t t t tf x   the sequence of densities defining the data-generating process. 



 

65 

 

Diebold et al show that the forecast user would always prefer a model which produces 

the correct density function, regardless of their loss function. This suggests that 

forecasts should be evaluated by assessing whether the forecasting densities are 

correct, i.e. where  

         
1 1{ ( )} { ( )}m m

t t t t t t t tp x f x   
 (3.19) 

The true density 1{ ( )}m

t t t tf x   is never observed but Rosenblatt (1952) provides 

the solution by evaluating its probability integral transform. Under the null hypothesis 

that the model is correctly specified, the sequence of probability integral transforms     

( )
tx

tz p u du


   is           .  

A straightforward  
2  goodness-of-fit test can be computed by exploiting the 

statistical property of the uniform distribution. In addition, Diebold et al. recommend 

graphical tools that complement statistical tests for ... dii  uniformity. For example, by 

plotting a histogram based on the empirical z  sequence ,to detect departures from 

uniformity, and by plotting the autocorrelogram for z-sequence, to identify potential 

deficiencies of a model to account for the dynamics of the duration model.  

3.4.2 Non-parametric Testing of Conditional Duration Model 

One drawback of the density evaluation method is that the effect of parameter 

estimation is not considered. Fernandes and Grammig (2005) introduce tests for the 

distribution of the error term based on a comparison between parametric and non-

parametric estimates of the density function of the standard durations.  

The first step consists in estimating the conditional duration process by QML. The 

second step then gauges the closeness between parametric and nonparametric 
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estimates of the baseline density function of the residuals. To be more specific, 

Fernandes and Grammig (2005) test the null 

  gH :0 such that  )(),( xgxg g 
 (3.20) 

where  )(xg  is the true density of the standardized duration and ),( gxg  the density 

implied by the parametric model. The alternative hypothesis is that there is no such 

g . The true density ).(g is of course unknown. The authors advise to estimate 

the density function using a non-parametric kernel method, which produces consistent 

estimates irrespective of the parametric specification of the distribution. Since the 

parametric density estimator is consistent only under the null, the natural test is to 

gauge the closeness between these two density estimates (Fernandes and Grammig) 

therefore measure the following distance: 

  




0

2 )()}(),(){( dxxgxgxgSxg 
 (3.21) 

where (.)l is the indicator function. The compact subset S  is introduced to avoid 

regions in which density estimation is unstable. This test is referred as D-test. The 

sample analogy of  (3.21) reads 
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


      (3.22) 

where ̂  and (.)ĝ denote consistent estimates of the true parameter g and density 

).(g ,respectively. The null hypothesis is rejected if the D-test statistic ĝ  is large 

enough. Under the null and with a set of regularity assumptions, Fernandes and 

Grammig show that the limiting distribution of the D statistic is 

 )ˆ,0()ˆ( 2

ˆ

2/1

D

d

Dgn Nh  
 (3.23) 
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nh denotes the bandwidth used for the density estimation and 
D̂  and 

2ˆ
D  are 

consistent estimates of ])([ xKD gSxIEe   and ]))(([ 32

xKD gSxIEv  , 

respectively, where duuKe
u

K )(2

  and dvduvuKuKv
v u

K

2

})()({    

The test inspects the whole distribution of the residuals, not only a limited number 

of moment restrictions, and is shown to be nuisance parameter free. All results are 

derived under mixing conditions; hence there is no need to perform a previous test for 

serial independence of the standardized durations.  

Since the standardized duration is bounded and strictly positive, D-test statistic 

may perform poorly due to the boundary bias that haunts non-parametric estimation 

using fixed kernels. One solution is to work with log-duration whose support is 

unbounded, using the result that for         )log(XY   we have     

)exp()][exp()( yyfyf XY  .  

3.5 Empirical Application  

3.5.1 Data 

In this section, we use real data to assess the significance of using the lognormal 

as the distribution of duration in ACD model. The main purpose of this empirical 

analysis is to compare the performance of lognormal ACD and alternative 

specification of ACD models. Grammig and Maurer (2000) has developed a Burr 

ACD model and intensively compares the Burr ACD with other specification of ACD 

models. For comparison reason, we use same data used by Grammig and Maurer 

(2000). A full description of the data can also be found in Bauwens and Giot 

(2000,2003), who have constructed a database from the NYSE Trade and Quote 

(TAQ) raw data. They choose the data for the months of September, October, and 
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November 1996 and construct the price duration of five actively traded stocks: Boeing, 

Coca-Cola, Disney and Exxon and IBM. The price duration is defined by thinning the 

quote process with respect to a minimum change in the mid-price of the quotes. More 

specifically, price duration is defined as the time interval needed to observe a 

cumulative change in the mid-quote of at least $0.125. Durations between events 

recorded outside the regular opening hours of the NYSE (9:30am to 4:00 pm) are 

discarded.  

As documented by a previous empirical study(Giot 2000; Bauwens, Giot et al. 

2004),the duration process features a strong time-of-day effect, which stems from 

predetermined market characteristics such as opening/closing of trading or lunch time 

for traders. To adjust for this, we employ a method used by Engle (2000). The raw 

duration is first regressed on a cubic spline using knots of every half hour. Separate 

splines are used for each day of the week.  The adjusted durations are then obtained 

via dividing the raw duration by the spline forecast. For brevity of notation, we will 

henceforth refer to the time-of-day adjusted durations simply as durations. Table 

3-1reports the descriptive statistics for the price duration. The price durations for the 

group of stocks exhibit two features: high serial correlation and some degree of 

overdispersion, which motivates ACD modelling. 

 

Table 3-1: Descriptive statistics for the price durations. 

Stock   Sample size Mean Overdispersion Q(10) 

Boeing (BA)               2620 1.001 1.338 322.3 

Coca-Cola(KO)         1690 1.002 1.171 69.7 

Disney (DIS)              2160 1.004 1.209 137.3 

IBM                            6728 1.015 1.427 1932.6 

Note: Overdispersion stands for the ratio between standard deviation and mean. )10(Q

denotes the Ljung-Box statistics for order 10. 
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3.5.2 Estimation Results 

In estimation, we use first two thirds of the sample for each stock. The remainder 

of the dataset is reserved for out-of-sample analysis. To simplify, we restrict the 

model for estimation to the ACD (1, 1) specification and exclude any pre-determined 

explanatory variables. For purpose of comparison, alternative ACD models, specified 

in section 2, are estimated in addition to the Lognormal ACD model. The alternative 

ACD models are, henceforth, referred to as the EACD (Exponential ACD model), the 

WACD (Weibull ACD model), the BACD (Burr ACD model) and the GGACD 

(Generalized gamma ACD model). In addition, we estimate both ACD (1,1) and Log-

ACD(1,1) specifications for the mean, and find that the results do not differ 

qualitatively. The estimation results for the Log-ACD models are not reported here 

for the sake of brevity. Maximum Likelihood estimation results and robust standard 

errors of the ACD models are reported in Table 3-2.  

For LNACD estimates, all coefficients are significant. The sum of a  and   is 

always greater than 0.9, implying high persistence of duration. The estimated shape 

parameters   are all significant and appropriately equal 1.2, suggesting an estimated 

inverted U-shaped hazard function from LNACD model.  

For EACD and WACD models, the estimates of   and   are similar and the 

shape parameter of the WACD model ( ) is small but very close to 1. This suggests 

that nothing much is gained by replacing the exponential distribution with the Weibull 

distribution for the specification of the error. Lunde (1999) argues that the sum of a  

and   of the EACD and WACD models is upward biased towards greater persistence, 

while the BACD and GGACD models produces an unbiased estimate of persistence, 

which is also confirmed from our empirical results. The spurious persistence of the 
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conditional mean implied by EACD and WACD model is due to the lack of flexibility 

of the distribution. 

It is notable that the lognormal ACD estimates of a  and  are significantly 

different to the EACD and WACD estimates. Indeed, they are close to the BACD and 

GGACD estimates. In particular, the LNACD seems to give quite similar coefficient 

estimates for a  and   to the GGACD estimates, although the lognormal distribution 

is not nested by the generalized gamma distribution and the former has one parameter 

less. Given the fact that empirical studies support GGACD and BACD model, the 

LNACD model performs pretty well in terms of the coefficient estimates.  

The shape parameters estimated from BACD model are significantly different 

from zero and the shape parameters estimated from GGACD model are significantly 

different from one. This empirical evidence does not support a reduction from the 

Burr or GG specification to a simpler distribution (i.e Exponential or Weibull 

distribution). The lognormal distribution, which is restricted to one free shape 

parameter, is not nested in the Burr or GG distribution. Thus, justifying the flexibility 

brought about by the use of the Burr and GG formulations does not imply a rejection 

of the lognormal formulation of the ACD model.  

With respected to the hazard function, both BACD and GGACD estimates support 

an inverted U-shaped conditional hazard function, which is also consistent with the 

LNACD model.  
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Table 3-2: ACD model estimates results   

   a      2  

 EACD 0.031  

(0.023)  

0.114 

(0.041) 

0.861 

(0.059) 

  

 WACD 0.034  

(0.025)  

0.121 

(0.042) 

0.851 

(0.061) 

0.895 

(0.016) 

 

BA BACD 0.057  

(0.033)  

0.169 

(0.046) 

0.789 

(0.067) 

1.093 

(0.036) 

0.339 

(0.061) 

 LNACD 0.089 

(0.047) 

0.199 

(0.056) 

0.759 

(0.081) 

1.259 

(0.022) 

 

 GGACD 0.081 

(0.040) 

0.188 

(0.040) 

0.744 

(0.069) 

0.550 

(0.043) 

2.422 

(0.334) 

       

 EACD 0.159 

(0.042)  

0.109 

(0.026) 

0.727 

(0.051) 

  

 WACD 0.159  

 (0.026)  

0.109 

(0.042) 

0.727 

(0.051) 

0.959 

(0.019) 

 

KO BACD 0.161 

(0.042)  

0.124 

(0.030) 

0.715 

(0.051) 

1.124 

(0.050) 

0.286 

(0.079) 

 LNACD 0.181 

(0.048) 

0.136 

(0.036) 

0.711 

(0.055) 

1.182 

(0.025) 

 

 GGACD 0.178 

(0.043) 

0.122 

(0.027) 

0.692 

(0.050) 

0.568 

(0.048) 

2.564 

(0.389) 

       

 EACD 0.074 

(0.030)  

0.046 

(0.015) 

0.889 

(0.033) 

  

 WACD 0.074  

(0.031)  

0.046 

(0.015) 

0.888 

(0.034) 

0.969 

(0.018) 

 

DIS BACD 0.099 

(0.044)  

0.048 

(0.018) 

0.867 

(0.049) 

1.219 

(0.045) 

0.396 

(0.067) 

 LNACD 0.153 

(0.088) 

0.050 

(0.023) 

0.830 

(0.085) 

1.148 

(0.022) 

 

 GGACD 0.137 

(0.078) 

0.051 

(0.017) 

0.825 

(0.078) 

0.567 

(0.045) 

2.684 

(0.389) 

       

 EACD 0.065 

(0.037)  

0.046 

(0.016) 

0.890 

(0.048) 

  

 WACD 0.066 

(0.038)  

0.045 

(0.016) 

0.889 

(0.049) 

0.962 

(0.016) 

 

XON BACD 0.102 

(0.055)  

0.039 

(0.015) 

0.863 

(0.061) 

1.250 

(0.044) 

0.464 

(0.068) 

 LNACD 0.156 

(0.323) 

0.031 

(0.020) 

0.827 

(0.323) 

1.144 

(0.020) 

 

 GGACD 0.945 

(0.037) 

0.053 

(0.029) 

0.000 

(.) 

0.411 

(0.065) 

4.840 

(1.475) 

       

 EACD 0.010 

(0.005)  

0.090 

(0.019) 

0.905 

(0.021) 

  

 WACD 0.010  

(0.005)  

0.090 

(0.019) 

0.904 

(0.021) 

0.985 

(0.011) 

 

IBM BACD 0.017 

(0.009)  

0.112 

(0.029) 

0.880 

(0.033) 

1.263 

(0.025) 

0.420 

(0.038) 

 LNACD 0.032 

(0.017) 

0.136 

(0.039) 

0.853 

(0.050) 

1.121 

(0.012) 

 

 GGACD 0.023 

(0.011) 

0.125 

(0.026) 

0.859 

(0.033) 

0.536 

(0.028) 

3.092 

(0.298) 
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Note:  If it is the WACD model or the LNACD model,   stands for the shape 

parameter of (  ) and ( 2 ), respectively. If it is GGACD model,   and 2 stand for 

the corresponding shape parameter of    and a  

 

3.5.3 Specification Test Results 

To further evaluate the performance of the Lognormal ACD model, we employ 

the test procedures introduced in section 3.4. We conduct both in-sample and out-of-

sample tests. The alternative specification of the ACD model is tested at the same 

time for comparative purposes. One advantage of our tests is that they both allow for 

visual diagnostic checks, which are helpful for interpreting the numerical outputs.   

For sake of brevity, we take the Boeing and EXXON results to illustrate the visual 

diagnostic checks. The graphs for the other stocks are more or less the same. They are 

attached in Appendix 6. 

Figure 3-3 and Figure 3-4 depict the non-parametric density function and their 

parametric counterparts implied by EACD, WACD, LNACD, BACD and GGACD 

for the two stocks. The non-parametric density is computed based on a Gaussian 

kernel and log-durations.  For the Boeing stock, the non-parametric density appears to 

fluctuate tightly around the parametric densities implied by LNACD, BACD and 

GGACD, while the performance of LNACD seems the best. Densities implied by 

EACD and WACD are more or less further away from the non-parametric density. 

For EXXON stock, the similar results hold. The parametric densities implied by 

LNACD, BACD and GGACD are close to the non-parametric density, while the 

GGACD seems to match the non-parametric density most closely. Densities implied 

by EACD, WACD are deviate considerably away from non-parametric density.  

Figure 3-5 and Figure 3-6 plot a histogram of z. Z-sequences is the distribution of 

the empirical probability integral transform produced by the conditional duration 
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forecast. Under the null hypothesis, the z-sequence is (0,1)iid U . For EXXON, the 

histograms for EACD and WACD have a distinct non-uniform distribution. It can be 

seen that far too few realizations fall into the very low tails of the forecast densities. 

One would expect more observations under the null hypothesis (data were really 

generated by the assumed data generating process). On the other hand, small (but not 

very small) durations are over-represented: the frequencies associated with the third to 

seventh histogram bins are above the confidence interval. The reason for this result 

can be found as follows. Because the estimates of the   parameter for the Weibull 

distribution are smaller than one, the density tends to infinity as x  tends to zero and 

then drops dramatically as   increases. As a result, there are not enough very small 

durations and fewer small (but not too small) durations. A similar explanation holds 

for the exponential distribution. It can be seen that the  -histogram for GGACD 

matches the  -histogram of uniform distribution most closely. The LNACD also has 

similar z -histogram to the uniform distribution and the performance of BACD is 

slightly worse than LNACD.  For Boeing, the z -histograms of all the 5 models seem 

not to match the z-histogram of the uniform distribution, but still the ones implied by 

LNACD BACD and GGACD are the closest.  

Figure 3-7 and Figure 3-8 depict the autocorrelations for   that are significant at 

the 5% level. For the two stocks, all ACD specifications capture the duration 

dynamics in more or less the same way. The LNACD, BACD and GGACD show 

slight advantages. The last two columns in Table 3-3 contain the number of 

autocorrelations (out of 50) for z  that is significant. It can be seen that GGACD 

model performs best in most of the cases, followed by BACD and LNACD models.  
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Figure 3-3: Non-parametric and parametric densities: BA Out sample results 

 
Figure 3-4: Non-parametric and parametric densities: XON Out sample results 
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Figure 3-5: Histogram of Z:  BA Out sample results 
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Figure 3-6: Histogram of Z, XON out of sample results. 
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Figure 3-7:  Autocorrelation of z for BA out sample 

 
Figure 3-8 : Autocorrelation of z for XON out of sample 
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Table 3-3: Specification test results. 

 D-test GOF2  AC( z ) 

Stock  In sample Out of 

sample 
In sample Out of 

sample 
In sample Out of 

sample 

 EACD 0.000 0.000 0.000 0.000 8 4 

 WACD 0.000 0.000 0.000 0.000 9 4 

BA LNACD 0.000 17.24 0.003 0.53 6 3 
 BACD 13.77 0.94 20.10 0.01 7 3 

 GGACD 43.84 0.47 32.00 0.04 6 3 

        

 EACD 2.91 82.07 0.000 1.77 2 0 

 WACD 31.62 87.68 0.02 11.40 2 0 

KO LNACD 54.68 20.84 11.4 8.29 2 0 
 BACD 66.57 96.89 19.72 6.15 2 0 

 GGACD 94.39 97.70 69.76 46.07 2 0 

        

 EACD 0.00 0.00 0.00 0.00 5 20 

 WACD 0.00 0.00 0.00 0.00 5 20 

DIS LNACD 0.14 26.22 0.40 0.00 4 29 
 BACD 15.98 0.00 5.10 0.00 4 24 

 GGACD 10.78 0.00 46.23 0.00 3 23 

        

 EACD 0.00 0.67 0.00 0.00 4 2 

 WACD 0.00 2.80 0.00 0.01 4 2 

XON LNACD 46.78 32.30 14.63 10.77 3 1 
 BACD 13.72 26.06 2.56 5.52 3 2 

 GGACD 53.14 91.31 12.65 87.76 3 4 

        

 EACD 0.00 0.00 0.00 0.00 7 4 

 WACD 0.00 0.00 0.00 0.00 7 4 

IBM LNACD 0.00 3.47 0.00 0.00 5 4 
 BACD 0.28 0.00 0.03 0.00 6 6 

 GGACD 34.49 0.00 1.37 0.00 5 5 

 

The numerical statistical output is summarized in Table 3-3. The D-test statistics 

are computed based on a Gaussian kernel and log-durations. The corresponding p-

values of are reported in the table. A large p-value means that the model passes the 

test and fits data well. The tests indicate a clear rejection of EACD and WACD model, 

with the sole exception of Coca-Cola. For the other four stocks, the in sample test 

results are in favour of GGACD model, while the out of sample results support 
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LNACD model. IBM is an exception, since all models are rejected, but the GGACD 

and LNACD still produce the best results.  

The 
2  goodness-of-fit test is designed to evaluate the models‘ density forecasts.  

The results are in line with D-test results. EACD and WACD are clearly rejected for 

all stocks, including Coca-Cola. The GGACD produces the largest p-value in most of 

cases. BACD and LNACD have a similar performance and perform slightly worse 

than GGACD model. However, the superiority performance compared to EACD and 

WACD is obvious. The p-values for IBM, once again, are smaller than 5% for all 

specifications.  

In all, the performance of the LNACD specification is quite impressive, 

considering that it has one fewer free parameter than the BACD and GGACD 

specifications.  The GGACD specification performs best in most cases while LNACD 

is superior to specifications other than GGACD.  

3.6 Conclusion 

In this chapter, we extend the Engle and Russell (1998) ACD model to a 

Lognormal ACD model. The Lognormal ACD model permits a humped-shaped 

hazard function with one free shape parameter which demonstrates computational 

advantages compared to the ACD specification. We compare the performance of the 

Lognormal ACD model with an alternative specification of the ACD model. The 

empirical results show that the Lognormal ACD model is superior to the Exponential 

and Weibull ACD models and its performance is similar to the Burr ACD and 

Generalized Gamma ACD models. The significance of this study is that it opens a 

door to use lognormal distribution for financial point processes.   
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Chapter 4 The Dynamics of Trading Duration, Volume and 

Price Volatility – a Vector MEM Model  

 

 

4.1 Introduction  

Microstructure theory generally indicates that trading duration and trading volume 

convey information with respect to fundamental asset prices, and reflect the behaviour 

of financial market participants.
10

 Since French and Roll (1986) have found evidence 

that price volatility is caused by private information that affects prices when informed 

investors trade, the empirical studies on trade and price processes have been based on 

increasingly on the analysis of the dynamics of trading duration, volume and price 

volatility. However, prior research on this issue is based on a recursive framework, in 

which the trade and price processes are independent of each other.  

In this chapter, we extend the recently developed recursive framework of Engle 

(2000) and Manganelli (2005) for high frequency data to a vector MEM model in 

which the trading duration, volume and price volatility are involved simultaneously 

and are interdependent. Based on the results from Chapter 3, we further propose a 

multivariate lognormal for the distribution of the vector model, which allows the 

innovation terms to be correlated contemporaneously. In addition, maximum 

                                                 
   10

 In general, duration is considered to reflect the trading strategy of informed traders or is an 

indicator of liquidity (Easley and O‘Hara 1992), while volume is viewed as an important determinant 

of the strength of a market move and reflects information about changes in investors‘ expectations 

(Harris and Ravid, 1993). 
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likelihood is proposed as a suitable estimation strategy. The vector MEM release two 

restrictions often imposed by previous empirical work and incorporates various causal 

and feedback effects among these variables. We also construct impulse response 

functions that show how the price reacts to a perturbation of its long-run equilibrium. 

The method is applied to a trade and quote dataset of the NYSE, and the model is 

estimated using a sample of ten stocks.  

Our empirical results are generally consistent with the previous findings in the 

empirical microstructure literature (see, for example, Dufour and Engle (2000), Engle 

(2000) and Manganelli (2005)). But our work is novel in two ways. First, we find that 

duration and duration shocks have a significant impact on price volatility, while only 

the unexpected components of volume are considered to carry information content 

with respect to price. This generally suggests that it is the unexpected components of 

trading characteristics rather than the trading variables themselves that carry 

information content with respect to fundamental asset prices. In addition, impulse 

response analysis shows that that shocks to duration or volume are incorporated 

appropriately into the price within one trading day for frequently traded stocks, but 

this takes up to one week for infrequently traded stocks. Second, our empirical results 

suggest that volatility has a negative impact on trading intensity, while volatility 

shock has a positive impact on trading intensity. We explain this by considering the 

persistent quote change (volatility) to be motivated by information based reason, and 

transient quote change (volatility shock) to be motivated by inventory based reason. 

The results confirm Hasbrouck (1988,1991)‘s prediction that persistent quote changes 

(volatility) reduce trading intensity and transient quote changes increase trading 

intensity.  
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The remainder of this chapter is organized as follows. Section 2 reviews the 

relevant literature; the theoretical and empirical work on the relationship of duration, 

volume and volatility are reviewed in this section. Section 3 outlines the empirical 

motivation and describes the model and methodology used in the analysis. Section 4 

introduces the high frequency data and empirical results. Section 5 concludes the 

chapter. 

4.2 Relevant Theoretical and Empirical studies  

Theoretically, the market microstructure literature explains trading activity using 

two types of model: information based and inventory based models. Accordingly, 

predictions of the relations between duration, volume and price volatility differ. In 

empirical analysis, the operation of the market is customarily undertaken by using 

time-series, high-frequency data. The dynamics of such positive-valued variables is 

generally modelled by a type of ACD model. In this section, we first review the 

market microstructure prediction of the relations between duration, volume and 

volatility, and then the ACD model of the relevant empirical findings on these 

relationships. 

4.2.1 Market Microstructure Predictions 

The market microstructure literature explains trading activity using two types of 

model: information based and inventory based models. Specifically, trading occurs 

either for information motivated or liquidity motivated reasons. A compact overview 

of the market microstructure was discussed in Chapter 2.2. This section gives reviews 

on relevant predictions with respect to the relations between trading duration, volume 

and price volatility. 



 

83 

 

The market indicators, commonly of most interest, are time stamps of trades, the 

best bid/ask quote updates, the traded volume, and the best bid-ask price. Among the 

key variables considered, the timing of the trade plays an important role. It is ignored 

initially, and incorporated explicitly into market microstructure models by Diamond 

and Verrecchia (1987) and Easley and O'Hara (1992). Diamond and Verrecchia (1987) 

develop a rational expectations model with short-sale constraints. They summary the 

time effect of trade as ―No trade means bad news‖. In their model, the informed 

traders‘ actions are driven by the arrival of private information, while uninformed 

traders are assumed to trade for reasons unrelated to the arrival of such information. If 

the news is bad, informed traders will wish to sell (or, alternatively, to short-sell if 

they do not own the stock). Given short-sale constraints, there may be no trade. 

Therefore, long durations are associated with bad news and should lead an adjustment 

of the prices and hence to increase the return volatility. This is summarized as ―No 

trade means bad news‖. The implicit prediction from their model is that long 

durations increase the price volatility of the next trade.  

Easley and O'Hara (1992) provide a different explanation for the role of time. 

Informed traders only trade when there is new information (whether good or bad) 

arriving in the market. So variations in trading intensity are closely related to the 

change in the participation rate of informed traders. It follows that short trade duration 

is a signal that informed traders are participating in the market. Consequently, the 

market maker adjusts his/her prices to reflect the increased risk of trading with 

informed traders, which reveals a higher volatility and wider bid–ask spreads in the 

market. To summarize, ‗No trade means no news‘. In the strategic trading assumption, 

the informed trader may choose to segment large volume trades into a greater number 

of smaller-volume, information-based trades, and hence conceal their type and make 
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full use of private information. It follows that both trading intensity and trading 

volume may provide information concerning the behaviour of market participants. A 

consequence of this is that short durations and high volumes should increase the price 

volatility of the next trade.  

A relationship between time duration and price volatility is also explained by the 

model of Admati and Pfleiderer (1988). It is assumed that frequent trading is 

associated with liquidity traders, and therefore low trading means that liquidity 

(discretionary) traders are inactive, which leaves a high proportion of informed traders 

in the market. This again translates into quick price adjustment and hence high 

volatility. 

Goodhart and O'Hara (1997)  examine the price effect of trade. Traders may learn 

over time from the information-based model, and adjust their speed of trading in 

reaction to this. For example, a large change in a market maker‘s mid-quote price may 

be a signal to the informed traders that their private information has been revealed to 

the market makers, assuming that no new signal has been released subsequently. This 

means that private information is no longer superior, and therefore the incentive to 

trade disappears, which decreases trading intensity. However, from the inventory 

model perspective, large quote changes would immediately attract opposite-side 

traders, thus increasing trading intensity. In addition, when uninformed traders behave 

strategically (O'Hara 1995), it becomes more complex, since the uninformed will 

increase the probability they attach to the risk of informed trading when they observe 

large absolute returns or large trading volume. Consequently, they will reduce the 

overall trading intensity. Hasbrouck (1988,1991) explains the two effects using the 

short-run and long-run characteristics of trading behaviour. The private information is 

persistent and long-lived; the persistent quote change is related to private information, 
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and should have a negative impact on trading intensity. The inventory level in 

stationary and inventory control is inherently a transient concern, the transient quote 

change is related to inventory control, and has a positive impact on trading intensity. 

Table 4-1 summarizes the related market microstructure literature and its 

predictions. 
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Table 4-1: Summary of the related market microstructure literature 

Model  Authors and year Main feature Predictions 

Information-based 

model 

 

 

 

 

 

 

 

 

 

 

 

Sequential 

trade model 

Glosten and 

Milgrom (1985) 

All agents act 

competitively 

Volume is positive correlated with price volatility 

Diamond and 

Verrecchia (1987) 

Short sale constraints 

Incorporating time  

No trade means bad news (long durations increase the 

price volatility of the next trade.) 

Strategic 

trade model 

 

Kyle (1985) Informed traders act 

strategically 

Long-lived 

information 

 

Easley and O‘Hara 

(1992) 

Incorporating time No trade means no news (short durations and high 

volumes increase the price volatility of the next trade.) 

Admati and 

Pfleiderer (1988) 

Parlour (1998) 

Uninformed traders 

also act strategically 

Short-lived 

information 

Rational expectations 

Trade intensity increases, the informativeness of trades 

decreases. 

Large quote change is a risk of informed trading; liquidity 

traders may leave or slow down trading activity 

Inventory-based 

model 

Ho and Stoll (1981) 

O‘Hara and Oldfield (1986) 

Hasbrouck (1991) 

Market makers use 

price to balance their 

inventory 

Large quote changes attract opposite-side traders, thus 

increasing trading intensity 
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4.2.2 Empirical Studies  

Empirically investigation of market microstructure predictions is subject to the 

availability of high-frequency transaction data. Statistically speaking, high-frequency 

data are realizations of point processes; that is, the arrival of the observations is 

random. This, jointly with other unique features of financial data (long memory; 

strong skewness; and kurtosis) implies that new methods and new econometric 

models are needed. It was first addressed, by Engle and Russell (1998) in the context 

of an ACD model for the dynamics of transaction time. It represents the time duration 

as product of a (autoregressive) scale factor and non-negative valued random process. 

In the ACD framework, the trade characteristics associated with time are 

incorporated and modelled simultaneously, so that the market microstructure 

predictions can be evaluated at the transaction level. Zhang, Russell et al. (2001) 

develop an threshold ACD model and find that the fast trading regime is characterized 

by wider spread, larger volume and high volatility, all of which proxy for informed 

trading. Taylor (2004) models future market trading duration using various 

augmentations of the basic ACD model, and confirms that bid–ask spread and 

transaction volume have a significant impact on the subsequent trading intensity. 

The most significance work is done by Engle (2000). He proposes a recursive 

framework to represent the dynamics of duration and other trading characteristics 

jointly, so that various market microstructure predictions can be tested empirically. In 

Engle (2000), the joint density of duration and volatility is expressed as the product of 

the marginal density of the duration times and the conditional density of the volatility, 

given the duration. The result provides evidence of the bad-news effect of long 

durations, which is the reverse of the Diamond and Verrecchia (1987) result. The 

recursive framework of Engle (2000) reduces the complexity of the model, since each 
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process is estimated separately, and used widely by later empirical works. For 

example, Engle and Sun (2007) model the joint density of the duration and the tick-

by-tick returns within a recursive framework. They build an econometric model for 

estimating the volatility of the unobserved efficient price change. Using this model, it 

is easy to forecast the volatility of returns over an arbitrary time interval through 

simulation using all the observations available.  

Manganelli (2005) notes that other high-frequency data (trading volume, bid–ask 

spread) share similar characteristics to duration (for example, they are positive-valued 

and persistently clustered over time), so that their dynamics can be represented using 

the same autoregressive process. He further extends Engle (2000)‘s model by 

incorporating the trading volume and develops a framework to model jointly duration, 

volume and price volatility. Following Engle (2000), the joint distribution of duration, 

volume and volatility is decomposed into the product of the marginal distribution of 

duration; the marginal distribution of volume, given duration; and the conditional 

distribution of volatility, given duration and volume. Further assumptions of weak 

exogeneity are made, such as that the three processes are independent so they can be 

estimated separately. Manganelli (2005) studies the causal and feedback effects 

among the three variables and found that times of greater activity coincided with a 

larger fraction of informed traders being present in the market. However, his 

empirical results suggest that lagged volatility increases trading intensity, which is in 

contrast to Easley and O'Hara (1992), but confirms the inventory based model 

predictions that large returns attract opposite side traders and increase trading 

intensity.  

Grammig and Wellner (2002) extend Engle (2000)‘s model in another way. One 

of the key assumptions of Engle (2000)‘s recursive model is that the duration and 



 

89 

 

volatility processes are  independent so they can be estimated separately. Grammig 

and Wellner (2002) notice that duration and volatility might be interdependent. They 

formulate an interdependent intraday duration and volatility model. In this model, 

conditional volatility and intraday duration evolve simultaneously. The conditional 

volatility is formulated as a GARCH process, with time-varying parameters that are 

functions of the expected intraday duration. Their empirical results show that lagged 

volatility significantly reduces transaction intensity, which is consistent with Easley 

and O'Hara (1992).  

The interdependence of these trading processes are also addressed by Hautsch 

(2008). He analyses the return volatility, trade size and trading duration under the 

Multivariate Error Model (MEM) framework. Rather than using transaction data, 

Hautsch (2008) uses the cumulated five-minute data and focuses on the study of the 

underlying common factors that jointly drive the trading processes. He finds that the 

common factor captures most causal relations and cross-dependencies between the 

individual variables. The existence of common factors is an indicator of the 

interdependence of the three processes.  

In additional to the ACD framework, the vector autoregressive (VAR) model is 

used in the study of high frequency data. For example, Bowe, Hyde et al. (2009) used 

a trivariate VAR model to analyse the interrelationship between trading volume, 

duration and price volatility, which is similar to Dufour and Engle (2000). But it is 

also similar to the recursive model and assumes that trade and price processes are 

cross-independent. Using the data from an emerging futures market, they find that 

duration is affected positively by volatility, which is consistent with Diamond and 

Verrecchia (1987).  
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To summarize the empirical studies, the recursive frameworks are generally 

adopted for the analysis of high frequency data, but this is challenged by some 

empirical evidence. The empirical results with respect to the relations of trade and 

price process as are partially contradictory and there is no uniform conclusion at 

present.  

4.3 Methodology 

In this section, we first specify the dynamics of duration volume and price 

volatility according to the Engle (2000) and Manganelli (2005) recursive framework 

and discuss the statistic and economic concerns with this framework. We then extend 

the recursive framework of Engle (2000) and Manganelli (2005) to a vector 

specification in which trading duration, volume and price volatility evolve 

simultaneously and are interdependent.    

4.3.1 Duration, Volume and Price Volatility --- a Recursive 

Framework 

Define{ , , }t t td v r , 1, ,t T  as the three-dimensional time series associated with 

intraday trading duration, trading volume and the return process, respectively. In 

particular, duration is defined as the time elapsing between consecutive trades, 

volume is the trade size associated with each transaction and return is measured as the 

mid-quote change. The trivariate trading process - duration, volume and return 

volatility - can be modelled as follows:  

 
1{ , , } ~ ( , , | ; )t t t t t t td v r f d v r    

(4.1) 

where 1t  denotes the information available up to period 1t  , and   is a vector 

incorporating the parameters of interest.  
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In the recursive model (Manganelli 2005), the joint distribution is decomposed 

into the product of three components: marginal density of durations, the conditional 

density of volumes given durations and the conditional density of the return volatility 

given durations and volumes. Specially,  

 
1 1 1{ , , } ~ ( | ; ) ( | , ; ) ( | , , ; )t t t t t d t t t v t t t t rd v r g d h v d k r d v      .  (4.2) 

For the dynamics of such a nonnegative valued financial point process, Engle and 

Russell (1998) first propose an ACD specification for financial duration. They model 

duration as the product of its conditional expectation and the non-negative supported 

innovation term,  

 2

1( ; ) , ~ . . .(1, )t t d t t t ud u u i i d   .  (4.3) 

The ACD model is further characterized by the assumptions that the conditional 

duration t follows a GARCH-type process and the innovations are independently 

and identically distributed. The base (1,1) specification of t is: 

 
1 1.t t td         

(4.4) 

The logarithmic version is also specified (Bauwens and Giot 2000) to ensure 

positivity of the conditional duration,  

 
1 1log log log .t t td          (4.5) 

To close the model, the parametric density function for the innovations is needed. 

Engle and Russell (1998) initially consider the exponential and Weibull distribution, 

which is extended later by Grammig and Maurer (2000), Allen, Lazarov et al. (2009) 

and Xu (2011), offering more flexible density and hazard functions.   

Following the ACD model, Manganelli (2005) considers similarly specifications 

for volume and volatility. Then the trivariate system has the following specifications: 
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1
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1

( ; ) , ~ . . .(1, )

( ; , ) , ~ . . .(1, )
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t t r t t t t t
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v d i i d

r h d v i i d

or r h d v i i d


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  

    

  

   

















 
(4.6) 

where 2

t̂r  is the proxy for volatility
11

, ( , , )t t th  are the conditional expectations of 

duration, volume and volatility, respectively, and
 

,

1 2( , ,...., )s     is a vector of s 

parameters of interest. Manganelli (2005) considers the univariate exponential 

distribution for the innovations in this specification.  

To capture the causal and feedback effect among these variables, he specifies the 

following first order autoregressive conditional model: 

  

2

1 11 1 12 1 13 1 11 1 12 1 13 1

2 12

2 21 1 22 1 23 1 21 1 22 1 23 1 0

2 13 23

3 31 1 32 1 33 1 31 1 32 1 33 1 0 0

ˆ( ) ( ),

ˆ( ) ( ) ,

ˆ( ) ( )

t t t t t t t

t t t t t t t t

t t t t t t t t t

w a d a v a r b b b h

w a d a v a r b b b h a d

h w a d a v a r b b b h a d a v

  

  

 

     

     

     

      

       

         .

 (4.7) 

Under the restrictions of weak exogeneity
12

 ( 0ijb  for i j ) and independence of 

the innovations terms, the three components are estimated separately. This approach is 

generally adopted in the existing empirical literature (see, for example, Engle (2000), 

Dufour and Engle (2000), Manganelli (2005) and Engle and Sun (2007)). 

4.3.2 Econometric Concerns  

Following Manganelli (2005), there are two concerns regarding the recursive 

model. First, it assumes that the specific processes are independent. To incorporate the 

contemporaneous information, Manganelli (2005) specifies causality from duration to 

volume and from duration and volume to price volatility. However, modelling the 

                                                 
11

 In order to obtain a price change sequence which is free of the bid-ask bounce that affects price, 

we follow Ghysels, et al. (1998) and tr̂  is obtained as the residuals of an ARMA(1,1) process of return 

series. See also in Hautsch (2008). One advantage of using tr̂  is that it avoids the problem of exact 

zero values in tr . 
12

 This corresponds the second case weak exogeneity proposed in Chapter 2.   
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distribution of price as being conditional on duration and volume is just one strategy 

to obtain their joint distribution. As pointed out by Engle and Sun (2007), it is also 

possible to go from the price process and model duration conditional on its 

contemporaneous return. Theoretically, variation in duration and variation in the price 

process would be related to the same news events or the underlying information 

process. Empirical studies also address this issue. For example, Hautsch (2008) finds 

the existence of a common unobserved component that jointly drives the dynamics of 

the trade and price processes. This common component explains most of the causality 

between the trade and the price processes, even if the contemporaneous effect of the 

trade variable on the price variable is controlled. We test first case of weak exogeneity 

in chapter 2 and the empirical result show the existence of cross-restriction between 

the duration and price process. Therefore, the advisable approach is to allow the 

innovation terms to be contemporaneous correlated, and specify a vector form for the 

dynamics of the trivariate system. 

Second, Manganelli (2005) assumes weak exogeneity
13

, which means the 

conditional expectation of one variable is a function only of its own past conditional 

expectation, while the past conditional expectations of other variables are not taken 

into consideration. This strategy has been adopted by most empirical microstructure 

papers (see, for example, Dufour and Engle (2000)). However, we argue that this 

assumption is too restrictive. When studying the price impact of trade, various 

specifications of duration and volume should be considered. For example, trade 

innovation is an exclusive a manifestation of the private information of the informed 

trader. Engle (2000) and Wuensche, Grammig et al. (2007) argue that it is the 

unexpected components of the trade process that carry informational content with 

                                                 
13

 This corresponds the second case of weak exogeneity discussed in Chapter 2.  
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respect to the fundamental asset price, since price change is unpredictable. And the 

same happens for the feedback effects from price to trading intensity. For example, 

Grammig and Wellner (2002) find that expected volatility and volatility shocks have 

significant effects on trading intensity. Manganelli (2005) conducts a robustness test 

on this restriction. Specifically, he regresses the residuals of the three equations 

against past conditional expectations of other variables. The results indicate that the 

coefficients of past expected variables are almost never significant, and thus the 

recursive model is correctly specified. However, the robustness check might be 

misleading, since the dynamics of expected variables have been distorted when 

estimating and predicting the expected variables using recursive models. It is also 

shown by Grammig and Maurer (2000) in a simulation study that the misspecification 

of the conditional mean has severe consequences for the expectation of conditional 

duration.  

We therefore extend the recursive model into a vector form, by allowing the three 

processes to be interdependent and relaxing weak exogeneity. 

4.3.3 Vector MEM  

Let ( , , ) 't t t tx d v r , ( , , ) 't t t th    and ( , , ) 't t t tu   . Following Engle (2002) 

and Cipollini, Engle et al. (2007) we write this system of equations as a trivariate 

vector multiplicative error model (MEM). The three-dimensional vector MEM for 

duration, volume and volatility is:  

 ( )t t t t tx diag                            (4.8) 

where   denotes the Hadmard (element by element) product and (.)diag  denotes a 

diagonal matrix with the vector in the augment as main diagonal. The innovation 

vector is a 3 dimensional random variable defined over a 
3[0, )  support. t  has a 
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mean vector I  with all components unity and general variance-covariance matrix

 ,i.e, 1| ~ ( , )t t D I   . t is defined as before, except that now we are dealing with 

3-dimensional vector. The multivariate specification for t is:  

 
0

1 1

p q

t l t l l t l t

l l

A x B A z   

 

                           (4.9) 

where tz  is a vector of predetermined variables 

The first two moment conditions of the vector MEM are given by: 

 
1

1

( | )

( | ) ' ( ) ( )

t t t

t t t t t t

E x

Var x diag diag



   







   
  

(4.10) 

which is a positive defined matrix by construction, as emphasized by Engle (2002). 

We do not specify recursively the contemporaneous relationship from duration to 

volume and from duration and volume to volatility (Manganelli 2005). However, we 

allow the innovation terms to be contemporaneously correlated. By this specification, 

the conditional expectation of one variable is a function not only of its own past 

conditional expectation, but also of past conditional expectations of other variables. 

The two restrictions imposed by the recursive model are released. 

The mean equation is further extended to be a logarithmic version to ensure the 

positivity of the individual processes without imposing additional parameter 

restrictions. 

 
0

1 1

ln( ) ln( ) ln( ) ln( )
p q

t l t l l t l t

l l

A x B A z   

 

     .                    (4.11) 

4.3.4 Specification of t  

A completely parametric formulation of the vector MEM requires a full 

specification of the conditional distribution of t . In the ACD literature, Engle and 
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Russell (1998) initially consider the exponential and Weibull distribution for the error

t , which is extended later by Grammig and Maurer (2000) to be a Burr distribution, 

by Lunde (1999) to be a generalized gamma distribution, and recently by Allen, 

Lazarov et al. (2009) and also in our third Chapter to be a lognormal distribution. 

Figure 4-1 plots the comparison of density functions implied by these parametric 

distributions. It can be seen that only the exponential distribution implies a 

monotonically decreasing density function, while the others imply hump shaped 

density functions. In our third Chapter, we also tests the specification of the duration 

distributions, and finds that the lognormal ACD model is superior to the Exponential 

ACD and Weibull ACD models, while its performance is similar to the Burr or 

Generalized Gamma ACD models. It is well known that price volatility is lognormally 

distributed, while Andersen, Bollerslev et al. (2001) and Cizeau, Liu et al. (1997), 

among others, also showed that the lognormal distribution fitted the realized volatility 

distribution very well.  
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Figure 4-1: A comparison of parametric densities 

 

So we propose to use the multivariate lognormal distribution for the MEM. Indeed, 

the multivariate lognormal distribution seems to be the only feasible choice in the 

specification of vector MEM. It has a closed form conditional density function, so that 

ML estimation can be conducted. Cipollini, Engle et al. (2007) consider appropriate 

multivariate gamma versions but find that the only useful version admits only positive 

correlation, which is too restrictive. The multivariate lognormal distribution admits 

both positive and negative correlations. Moreover, Allen, Chan et al. (2008) prove 

that the lognormal distribution is sufficiently flexible to provide a good approximation 

to a wide range of non-negative distributions, and is also sufficiently accurate so as 

not to induce unnecessary numerical difficulties. 
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Assume t follows a multivariate lognormal distribution such that

| ~ ln ( , )t t N v D  14
. The density function is

15
: 

1/2/2 1 1

1 ,

1

1
( | , ) (2 ) ( exp (ln ) ' (ln )

2

K
k

t t i j t t

i

f D D v D v    
  





 
    

 
  (4.12) 

where 0t  . The conditional density of tx  is then: 

1/2/2 1 1

1 ,

1

1
( | , ) (2 ) exp (ln ln ) ' (ln ln )

2

K
K

t t i t t t t t

i

f x D x x v D x v   
  





 
      

 
 . (4.13) 

The log likelihood of the model is then: 

 
1

1 1

ln ( , )
T T

t t t

t t

l l f x 

 

                       (4.14) 

where 

 
1 ,

1

1

1
ln ( , ) ln(2 ) ln( )

2 2

1
(ln ln ) ' (ln ln )

2

K

t t t i t

i
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K
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





    
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
                    

(4.15) 

The first and second moments of the multivariate lognormal distribution are given 

by:  

1
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1 2
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1
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


 

   
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where 
1

2
i iiv d   and 

ijd  is the ij th element of D . It is clear that if 

1 2(ln , ln , , ln )k    are independent, then 1 2( , , , )k   are also independent and 

vice versa. The multivariate lognormal distribution allows both positive and negative 

                                                 

14
 where 

1

2
i iiv d   to guarantee that 1( )t tE I    

15
 See Appendix 7 for the derivation of density function for multivariate lognormal distribution.  
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correlation, which is much more flexible than the multivariate gamma distribution 

(Cipollini, Engle et al. 2007).  

The lognormal belongs to the exponential family. The parameters are still 

consistently estimated, even if the chosen density is wrong. However, the asymptotic 

distribution of the QML estimator differs from that of the ML estimator. The 

variance-covariance matrix is not the inverse of the Fisher information. It has the so-

called ‗sandwich‘ form. 

 1 1ˆ ˆ ˆ ˆ( ) (0, ( ) ( ) ( ))QMLN N I J I                           
(4.16) 

where
2 ˆln ( ; )ˆ( )

ˆ ˆ '

L x
I E




 

 
   

  
,

ˆ ˆln ( ; ) ln ( ; )ˆ( )
ˆ ˆ

L x L x
J E

 


 

            

 are, 

respectively, the components of the empirical average Hessian and the empirical 

average outer product of the gradients evaluated at the estimates̂ .   

4.3.5 Impulse Response Function 

Following the vector MEM, we can derive the impulse response functions. We 

concentrate on the first order model and exclude the predetermined variables.  

 

1 1

,

ln ln ln .

t t t

t t t

x

A x B

 
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 

  
                    

(4.17) 

In the impulse response, we work on the impulse of 0 0ln   on the natural 

logarithmic of the interested variable ln tx . The impulse responses function of the 

model (4.17) for 0t   is
16

:  

 

0

ln

'

t
t

x




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
                    (4.18) 

                                                 
16

 See Appendix 8 for proof.  
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where 1( ) ( )t

t A B A B     , 0 I  .
 

This process can be rewritten in such a way that the residuals of different 

equations are uncorrelated. For this purpose, we choose a decomposition of the white 

noise covariance matrix 'W W    , where   is a diagonal matrix with positive 

diagonal elements and W  is a lower triangular matrix with unit diagonal. Thus,  

 
1

0

ln , .t i t i i i

i

x W 








                         (4.19) 

Then the impulse response function of the model (4.17) for 0t   is: 

 

0
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x




 


                    (4.20) 

The standard errors for the impulse response are computed as followings. Let 

( 1)
[ ', ', '] 'd v r

p
   

  and  ( )t tvec   . If ˆ( ) (0, )

a

T N Q   , then

ˆ( ) (0, ')
a

t t t tT N G QG   , where 
'

t
tG









. 

4.3.6 Vector ARMA Representation 

One of the advantages of using the lognormal distribution for the vector MEM 

model is that it has an equivalent Vector ARMA specification with an innovation that 

follows a multivariate Gaussian distribution.  

From the following log vector MEM model,  

 
t t tx    ,                    (4.21) 

 
0

1 1

ln( ) ln( ) ln( ) ln( )
p q

t l t l l t l t

l l

A x B A z   

 

     . (4.22) 

If we take logs of equation (4.21), we obtain 

 ln( ) ln( ) ln( ) ln( )t t t t tx c e                           (4.23) 
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where 1| ~ (0, )t te iid N  .  

Then, 

 ln( ) ln( )t t tx c e    ,                    (4.24) 
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Substituting ln( )t  and 
1

ln( )
q

l t l

l

B  



  into equation (4.25), it follows that 
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where 
1

q

l

l

c c B c


   .  

It is interesting that the vector MEM model is equivalent to a VARMA 

specification. In particular, it provides a good way to adopt the VARMA inference to 

make inferences in the vector MEM model
17

.  

4.4 Empirical Analysis 

4.4.1 Data 

We use the data from the Trades and Quotes (TAQ) dataset at NYSE. The TAQ 

data consists of two parts: the first reports the trade data, while the second lists the 

quote data (bid and ask data) posted by the market maker. The data were kindly 

provided by Manganelli (2005). He constructed 10 deciles of stocks covering the 

period from Jan 1,1998 to June 30, 1999, on the basis of the 1997 total number of 

trades of all stocks quoted on the NYSE. We randomly selected 5 stocks from the 

eighth decile (frequently traded stocks) and 5 from the second decile (infrequently 

                                                 
17

 See  Lütkepohl (2005) for  the inference of VARMA model 
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traded stocks) covering the period from Jan 1,1998 to June 30, 1999. The tickers and 

names of the ten stocks are reported in Table 4-2. 

 

Table 4-2: Stocks used in the analysis 

A. Frequently traded    B. Infrequently traded 

TRN Trinity Industries  ABG Group ABG 

R Ryder System Inc.  OFG Oriental Finl Grp Hold Co. 

ARG Airgas Inc.  LSB LSB Industries Inc. 

GAS Nicor Incorporated   FEP Franklin Electronic Publisher 

TCB TCF Financial Corp.  HTD Huntingdon Life S.G. 

 

We adopt the same strategy used in Chapter 2 to prepare the data and adjust the 

time of day effect.  Please see Chapter 2 of the detailed specification. Some summary 

statistics for the cleaned data are reported in Table 4-3. For the frequently traded 

stocks, the number of observations range from 33,850 to 63,862 in the sample period, 

and the average trading duration ranges from 137 seconds to 259 seconds. For the 

infrequently traded stocks, the number of observation ranges from 2,074 to 7,212 in 

the sample period, with the average trading duration ranging from 1,215 seconds to 

4,215 seconds. The trading volume does not show any difference between frequently 

traded stocks and infrequently traded stocks. The number of trading volumes ranges 

from 833 to 5,295. The multivariate Ljung–Box statistics, computed according to 

Hosking (1980) and is given by 

1 1 2 2

0 0

1

1 ˆ ˆ ˆ ˆ( ) : ( 2) ( ) ~ ( )
s

j j

j

MLB s n n trace C C C C k s
n j

 



  



 

(4.27) 

where k denotes the dimension of the process ( in this case k=3), s is the number of 

lags taken into account, and ˆ
jC is the j th residual autocovariance matrix. It is 

apparent that duration, volume and volatility showstrong serial autocorrelations, and 

this is particularly true for high frequency traded stocks. The large multivariate Ljung-
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Box statistics in the table indicate that the trivairate system reveals strong dynamic 

and contemporaneous dependencies. These indicators suggest the use of vector form 

MEM.  

 

Table 4-3: Summary statistics for the 10 stocks 

  Notes: LB(20) denotes Ljung–Box statistics for order 20. MLB(20) denotes 

multivariate Ljung–Box statistics. The mean statistics report the average valued for 

the raw data. LB and MLB statistics report serial correlation for the data after 

adjusting the time of day effect.  Critical values for LB statistics 2

0.05(20) =31.41, 
2

0.01(20) =37.57. 2

0.05(180) =212.30, 2

0.01(180) =227.06.  

 

 

 

We also depict the non-parametric density and parametric densities implied by the 

exponential and lognormal distributions.
18

 Figure 4-2 reports the comparison of 

parametric and non-parametric densities for one typical stock LSB. It can be seen that 

the lognormal distribution fits with the true density very well for the duration data. 

This result is consistent with Xu (2011). For volume data, we are surprised to find the 

lognormal distribution has the best performance. And the raw data fluctuates closely 

around the lognormal distribution. Even for volatility, the lognormal distribution also 

                                                 
18

 See Xu (2011a) and Grammig and Maurer (2000) for the discussion of parametric and non-

parametric density. 

 Obs Mean  LB(20) MLB(20) 

Duration Volume  Duration Volume Variance 

TRN 55582 157.86 1369.43  3780.09          1383.35 3769.80          12744.02  
GAS 41999  212.93 827.77  5951.85           2338.08           4073.09          19049.05  
TCB 55208 158.94 1855.20  4171.36  2644.11 2925.82 14716.45 
R 63862 137.41 1800.74  14072.3  7276.91 23685.7 58049.96 
ARG 33850 259.2 1280.70  3780.09  1383.35 3769.80 12744.02 

                    
ABG 2074 4214.88 5259.05  120.28  225.07 146.00 760.08 
OFG 7212 1214.58 833.86  523.16  1343.43 738.09 3557.98 
LSB 2962 2962.19 1971.61  481.41  435.69 523.58 2110.88 
HTD 2505 3422.28 3943.59  268.52  682.92           297.01 1571.99 
FEP 4405 1989.58 1565.89  2431.00  660.60 788.81 4564.73 
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performs well. For brevity, the other 9 stocks have are not been reported for brevity, 

but these findings are robust across the stocks.  

The data we use in this chapter strongly support the multivariate lognormal MEM 

model for the dynamics of duration, volume and price volatility.  
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Figure 4-2: A comparison of parametric density and non-parametric densities--LSB 

Duration Volume Volatility 
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4.4.2 Empirical Model  

In the empirical analysis, we are interested in the causal and feedback effects 

among the variables. In contrast to the previous recursive model, we allow trade 

duration, volume and innovations of these variables to affect price volatility and vice 

versa: the volatility and volatility shocks are allowed to affect trading intensity. So we 

specify and estimate the following vector MEM:  

 
t t tx     , 1| ~ ( , )t t D I                        

1
1 1

1

ln ln ln ln t
t t t

t

x
A x B C  




 



   

 

(4.28) 

where B is a diagonal matrix and C is a matrix where the diagonal elements are zero. 

Then, 31a ( 32a ) measures the impact of duration (volume) on price volatility, 31c ( 32c ) 

measures the impact of duration (volume) shocks on price volatility, 13a measures the 

impact of volatility on trading intensity and 13c measures the impact of volatility 

shocks on trading intensity. The estimation results and various diagnostics for the five 

frequently traded stocks are reported in Table 4-4 and results for the five infrequently 

traded stocks are reported in Table 4-5.  

The first purpose of empirical analysis is to examine the performance of the vector 

MEM. Considering the diagnostic statistics of the model, these suggest that the vector 

MEM improves the dynamic properties of the model significantly, as we can see from 

the sharp drop in the Ljung-Box statistics. This is particularly true for the volatility 

process. Moreover, the vector MEM reduces the multivariate Ljung-Box statistic 

significantly, indicating that the vector MEM does a good job in capturing the 

multivariate dynamics and interdependencies between the individual processes. For 

frequently traded stocks, the dynamics of the system are still not captured completely 
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by the model. But this is commonly the case with such large time series (see, for 

example, Engle (2000)). For infrequently traded stocks, the dynamics of the system 

are captured completely by the vector MEM.  

In Manganelli(2005)‘s recursive model, the assumption of weak exogeneity is 

made in the specification of the conditional mean. The past expected variables are 

assumed not to carry any information ( 0ijc  ). Manganelli (2005) and Dufour and 

Engle (2000) also conduct robustness tests of this restriction, in which the residuals of 

the three models are regressed against lagged expected variables. They find that the 

lagged expected variables are insignificant. However, we find that the most lagged 

expected variables are significant (
ijc ) in our vector MEMs. It is particularly true for 

infrequently traded stocks. The LR tests also suggest that the lagged expected 

variables are jointly significant in almost all cases. We argue that the robustness 

checks conducted by Manganelli (2005) and Dufour and Engle (2000) are misleading, 

since the dynamics of expected variables has been distorted by the marginal model. 

Therefore, the weak exogeneity assumption is not supported by the empirical data. 

The lagged expected variables should be incorporated in this trivariate system. 
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Table 4-4: Estimation results and diagnostics: frequently traded stocks. 

 ARG TRN TCB GAS   R 

11  0.060*** 0.089  0.055*** 0.062  0.064 

12  0.107** 0.228***  0.122***  0.216***  0.168  

13  0.012*** 0.007***  0.025***  0.009  0.018  

21  -0.067** 0.113**  -0.003**  0.121  0.018  

22  0.125  0.124  0.098  0.118*** 0.125  

23  -0.009 -0.004  -0.009***  -0.007***  -0.011** 

31  -0.337*** -0.204***  -0.387***  -0.065  0.071***  

32  -0.109 0.219***  0.371***  -0.019  -0.434  

33  0.389*** 0.241*** 0.278*** 0.316*** 0.195  

11b
 

0.939*** 0.730*** 0.942*** 0.724*** 0.912*** 

22b
 

0.508*** 0.638*** 0.695***  0.706*** 0.606** 

33b
 

0.239*** 0.301*** 0.075*** 0.246*** 0.629*** 

12c
 

-0.171*** -0.331*** -0.202*** -0.338*** -0.265  

13c
 

-0.023*** -0.017*** -0.035*** -0.014*** -0.032  

21c
 

0.064  -0.127** -0.013*** -0.132  -0.031  

23c
 

0.004  0.005** 0.008*** 0.007*** 0.009*** 

31c
 

0.015  -0.084*** 0.015*** -0.170  -0.414*** 

32c
 

0.629*** 0.353*** 0.260*** 0.474*** 0.882** 

 LR test
19

     

H0: 

0,ijc i j   

240 519 345 408 1587 

 Diagnostics     

LL  -221998  -358758  -365788  -260314  -407773  

BIC  444247  717780  731838 520883  815812  

MLB  565.8*** 991.6** 1018*** 684.3*** 1086 

_LB d  101.4*** 36.23** 104.0*** 52.82*** 60.37*** 

_LB v  95.97*** 184.1*** 182.3*** 83.37*** 355.9*** 
2ˆ_LB r
 

174.3*** 308.7*** 457.0*** 219.9*** 70.30*** 

 

Note: *** denotes significance at 1% level. ** denotes significance at 5% level.  

LL denotes Log likelihood function. BIC denotes Bayes Information Criterion. LB 

denotes Ljung-Box statistics of flitted residuals and MLB denotes multivariate Ljung-

Box statistic. The Ljung-Box statistics are computed based on 20 lags. Critical values 

of LR statistics 2

0.05(6) =12.59, 2

0.01(6) =16.81 

  

                                                 
19

 We estimate five different vector MEMs for comparison. The results have not reported for 

brevity. LR test is based on the likelihood values of restricted and unrestricted models. 
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Table 4-5: Estimation results and diagnostics: infrequently traded stocks. 

 ABG HTD LSB HUN  FEP 

11  0.042*** 0.019** 0.032  0.056*** 0.056*** 

12  -0.079***  0.015***  0.049  -0.002  0.016  

13  -0.021***  0.018***  -0.004  0.013**  0.085  

21  0.019***  -0.564***  -0.083  -0.005  -0.051  

22  0.231*** 0.198  0.166  0.133** 0.185*** 

23  -0.079***  -0.090**  -0.009  -0.025***  -0.155  

31  -0.023***  -0.446  -0.145***  0.032  -0.062  

32  -0.599***  -0.408***  -0.140  -0.374  -0.134  

33  -0.079***  -0.090**  -0.009  -0.025***  -0.155  

11b
 

0.912*** 0.980*** 0.967*** 0.932*** 0.910*** 

22b
 

0.366*** 0.290*** 0.569  0.708*** 0.643*** 

33b
 

0.682*** 0.665*** 0.522*** 0.67*** 0.318** 

12c
 

0.108*** -0.061*** -0.118  -0.013*** -0.103*** 

13c
 

0.024*** -0.038*** 0.006  -0.028** -0.094  

21c
 

-0.034*** 0.549*** 0.087  0.000  0.042  

23c
 

0.079*** 0.095** 0.013  0.028*** 0.149*** 

31c
 

-0.024*** 0.370  0.028  -0.160*** -0.006*** 

32c
 

0.919*** 0.663*** 0.389  0.721** 0.580** 

 LR test      

H0: 

0,ijc i j   

35.1 54.7 10.4 110 34.0 

 Diagnostics     

LL  -14392  -17116  -19370  -37243  -28574  

BIC  28967  34420  38932  74695  57310  

MLB  221.3** 191.3  249.3*** 167.2  195.7  

_LB d  36.47** 32.81** 48.37** 25.04  29.12  

_LB v  22.17  17.11  37.52*** 19.98  10.38  
2ˆ_LB r
 

27.78 21.57  35.27** 12.73  65.36*** 

 

Note: *** denotes significance at 1% level. ** denotes significance at 5% level.  

LL denotes Log likelihood function. BIC denotes Bayes Information Criterion. LB 

denotes Ljung-Box statistics of flitted residuals and MLB denotes multivariate Ljung-

Box statistic. The Ljung-Box statistics are computed based on 20 lags. Critical values 

of LR statistics 2

0.05(6) =12.59, 2

0.01(6) =16.81 
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4.4.3 Empirical Results  

The second purpose of empirical analysis is to examine the dynamics relationship 

of the trivariate system. Looking first at the price volatility ( th ) process. The 

coefficient of duration ( 31a ) and coefficient of duration shocks ( 31c ) in the volatility 

equation are negative and significant in most cases. This is consistent with Easley and 

O'Hara (1992), indicating that trades with short duration or the shocks of trading 

intensity are related to the arriving of new information, which reveals a higher 

volatility impact. The implicit application is that market makers will associate the 

higher trading activity or trading activity that is higher than its expected level as a 

signal of informed trading. 

The volume coefficient ( 32a ) is only significant for 4 out of 10 stocks and the sign 

is unclear. However, the volume shocks coefficient ( 32c ) are all significant and 

positive. This implies that the unexpected component of volume rather than the raw 

volume carry information. Implicitly, market makers will only consider trade size that 

is larger than its expected level as a signal of private information, and adjust bid-ask 

price accordingly. The expected large trade size is simply for liquidity reason. The 

results partly support the prediction from Easley and O'Hara (1987,1992).  

This exercise of the price impact of trade is novel in two aspects. First, most 

empirical market microstructure literature (see, for example,Dufour and Engle (2000) 

and Manganelli (2005)) uses raw duration (volume) to determine the presence of 

informed traders in the market. We highlight that it is the unexpected components of 

trade that carry information with respect to asset prices. Second, in contrast to 

Manganelli (2005), our findings are generally robust for less frequently stocks. There 
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is no reason why the informed traders should avoid taking advantage of their private 

information if it is related to infrequently traded stocks. 

The strikingly different results, with respect to the feedback effects from the price 

process to trading intensity, are found in the duration equation. For the frequently 

traded stocks, the coefficient of volatility ( 13a ) is always positive but significant for 3 

out of 5 stocks and the coefficients on volatility innovation ( 13c ) is always negative 

but significant for 4 out of 5 stocks. Following Hasbrouck (1988,1991), we explain 

this by considering the persistent quote change (volatility) to be information 

motivated and transient quote change (volatility shock) to be inventory motivated. 

Then our results are consistent with microstructure predictions. For example, 

information motivated large absolute quote changes indicate a risk of informed 

trading and the liquidity traders may leave or slow down the trading activity to avoid 

adverse selection(Admati and Pfleiderer 1988; Easley and O'Hara 1992), while 

inventory motivated large quote changes may attract opposite side traders and 

increase trading intensity. Similar results can be found for infrequently traded stocks, 

but the effects are less significant.  

In the existing empirical microstructure literature, Dufour and Engle (2000) and 

Manganelli (2005) find that short durations follow large returns, while Grammig and 

Wellner (2002) find that lagged volatility significantly reduces trade intensity. Our 

findings enhance the existing literature by incorporating both of these effects in one 

model.  
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4.4.4 Impulse Response Analysis 

From the estimates of the MEM in equation (4.28), we generate the impulse 

responses which trace the effect of a one­time shock to one of the innovations on the 

future values of the endogenous variables. The impulse response function for two 

representative stocks TRN and ABG are plotted in Figure 4-3 and Figure 4-4. This 

gives the effects of a variation on the forecast up to the 10th trade. Since the impulse-

response functions are plotted in transaction time, they are not directly comparable 

among different stocks. We use the Manganelli (2005) method to approximate the 

calendar time the system takes to return to its long-run equilibrium, by multiplying the 

number of transactions by their average duration. The average duration per trade of 

the two representative stocks is 158 seconds for TRN and 4215 seconds for ABG. 

This implies, for example, that a shock to the duration of TRN is absorbed by the 

expected duration after about 27 trades, or, on average, after 1.2 hours. In the case of 

ABG, the same shock is absorbed after 54 transactions, which corresponds, on 

average, to a period of 63.3 hours. Similar results hold for the other impulse-responses, 

indicating that the more traded the stock, the faster the market returns to its full 

information equilibrium after an initial perturbation. In particular, this is consistent 

with the (plausible) assumption that the more frequently traded the stock the higher 

the number of informed traders. 
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Figure 4-3: Impulse response function for TRN 

 
Figure 4-4: Impulse response function for ABG 
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Table 4-6 summarizes the results for the other stocks, confirming that the price 

volatility of frequently traded stocks converges much faster to its long-run 

equilibrium
20

 after an initial perturbation. In general, for frequently traded stocks, the 

new information is implicitly incorporated in the price within one trading day, while it 

takes up to a week for the new information to be included into the price for 

infrequently traded stocked. Overall, the effect is to suggest that the market is 

reasonably efficient. This result, in contrast to Kyle (1985), confirms Admati and 

Pfleiderer (1988) and Holden and Subrahmanyam (1992)‘s finding that information is 

short lived. For example, Holden and Subrahmanyam (1992) show that with multiple 

informed traders there will be more aggressive trading in the early periods, causing 

more information to be revealed earlier in the process. 

 

Table 4-6: Time (in hours) it takes to absorb shocks to the long term equilibrium 

variances 

 ARG TRN TCB GAS R 

Shock to duration 2.5 1.2 0.8 1.7 3.1 

Shock to volume 2.5 1.2 0.8 1.7 3.1 

Shock to price 

volatility 

2.4 1.1 0.7 1.7 3.0 

 ABG HTD LSB HUN FEP 

Shock to duration 63.3 59.0 37.8 29.7 7.7 

Shock to volume 69.1 61.9 38.7 31.3 8.9 

Shock to price 

volatility 

63.3 59.0 38.7 29.3 7.2 

 

  

                                                 
20

 The threshold at which the shock producing the impulse–response is assumed to be absorbed is 

at 1e-7 for shocks. That is, Table 7 reports the time it takes for the impulse–response of the variance to 

fall below 1e-7. 
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4.5 Conclusion  

In this chapter, we extend the recursive framework of Engle (2000) and 

Manganelli (2005) for the transaction data to a vector MEM, in which trading 

duration, volume and price volatility are interdependent. We further propose a 

multivariate lognormal for the distribution of the vector MEM, which allows the 

innovations terms to be contemporaneously correlated. In this way, we can build a 

system that incorporates various causal and feedback effects among these variables. 

The method is applied to the trade and quote dataset of the NYSE and the model is 

estimated using a sample of 10 stocks. The empirical findings are summarized as 

follows: 

 

(1) The diagnostic statistics show that the vector MEM improves the dynamic 

properties of the model significantly. Moreover, the lagged (un)expected variables 

are widely significant in the MEM model, challenging the weak exogeneity 

assumptions used in the empirical market microstructure literature.  

(2) We find a significant price impact of trade. However, we highlight the effect of 

unexpected components of trading characteristics. Both duration and duration 

shocks carry price information, while only unexpected volume carries most of the 

volume related information content.  

(3) We also find significant feedback effects, with volatility and volatility shocks 

affecting duration in different directions. This finding confirms Hasbrouck 

(1988,1991)‘s prediction that persistent quote changes are driven by private 

information, which decreases trading intensity, while the transient quote changes 

are motivated by inventory control, which would attract opposite side traders and 



 

116 

 

increase trading intensity. However, this effect is only robust for frequently traded 

stocks.  

(4) With the impulse response, we find that the new information is implicitly 

incorporated in to the price within one trading day for frequently traded stocks, 

and it takes up to one week for infrequently traded stocks.  
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Chapter 5  General Conclusion  

The study of financial market behaviour is increasingly based on the econometrics 

of HFD. The intrinsic feature of HFD is represented by the transaction or tick-by-tick 

data in which events are recorded one by one as they arise. Consequently, these data 

are naturally irregularly spaced in time and are realized as point processes. This, 

jointly with other unique features (such as nonnegative valued; long memory; strong 

skewness and kurtosis) implies that new methods and new econometric models are 

needed. Econometric modelling of HFD was first addressed, by Engle and Russell 

(1998) in the context of an ACD model whose explicit object is the modelling of time 

between events, and then extended by Engle (2002) and Manganelli (2005) in the 

context of an Multiplicative Error Model for the modelling of other nonnegative 

valued financial point processes. The basic idea it to model the nonnegative valued 

process in terms of the product of a (conditional autoregressive) scale factor and an 

innovation process with nonnegative support.  

Extending the ACD/MEM model into a multivariate setting is frustrated by the 

limitation of a multivariate nonnegative random process. The full specification of the 

model requires the joint probability distribution of nonnegative random variables: 

hence occurrences of such specifications are limited in the literature. Thereby, a 

common strategy adopted in this study is to reduce the multivariate setting to a series 

of univariate problems, by making the following two assumptions: a) Weak 

exogeneity. b) The independence of innovation terms. Then, the multivariate 

estimation can be done separately equation by equation, as univariate MEM. The 

object of this thesis is to examine issues related to this strategy and to propose a way 

to model several nonnegative valued financial point processes jointly. In particular, 
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we are interested in modelling the dynamics of trading duration, volume and price 

volatility.  Three main Chapters have been developed for this purpose.  

We begin with the analysis of weak exogeneity in the second Chapter. The 

independence of innovation terms is considered as a special case of weak exogeneity 

in this Chapter. We propose three cases in which the weak exogeneity condition will 

break down. The simulation study suggests that a failure of the exogeneity assumption 

implies biased estimators. The biases are very large in the third case nonweak 

exogeneity, which makes the econometric inferences on the parameters unreliable or 

even misleading. In empirical analysis, we also derive an LM test for weak exogeneity 

and test the weak exogeneity of duration in a trivariate (duration, volume and 

volatility) system. The empirical results indicate that the weak exogneity is often 

rejected for frequently traded stocks, but is less likely to be rejected for infrequently 

traded stocks. 

In the analysis of weak exogeneity, we find that as long as the innovation term of 

ACD model follows a lognormal distribution, the equivalent ARMA model will be a 

Gaussian distributed. To our knowledge, the lognormal distribution, which is no-

negatively supported, is less interested in the ACD literatures. This motivates us to 

develop a lognormal ACD model and empirically evaluate its performance in the third 

Chapter. The Lognormal ACD model permits a humped-shaped hazard function with 

one free shape parameter, which shows a computation advantage comparing with the 

existence ACD specification in the Literature. The empirical results show that 

Lognormal ACD model is superior to Exponential ACD model and Weibull ACD 

model. It performs similarly to Burr ACD model or generalized gamma ACD model. 

Moreover, it provides a door of using lognormal distribution for other nonnegative 

valued financial point processes.   
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In the fourth Chapter, we propose a general form of vector MEM for the dynamics 

of several nonnegative valued financial point processes jointly. The vector MEM 

relaxes these two restrictions imposed by previous work, by allowing interdependence 

among the variables and releasing weak exogeneity restrictions. Based on results from 

Chapter three, we further propose to use the multivariate lognormal distribution for 

the vector MEM. And the maximum likelihood is proposed as a suitable estimation 

strategy. The model is then applied to the trade and quotes data from the New York 

Stock Exchange (NYSE) for the dynamics of trading duration, volume and price 

volatility. The empirical results show that the vector MEM captures the dynamics of 

the trivariate system successfully. We find that times of greater activity or trades with 

larger size coincide with a higher number of informed traders present in the market. 

We highlight that it is unexpected component of trading duration or trading volume 

that carry the information content. Moreover, the empirical results suggest a 

significant feedback effect from price process to trading intensity, in which the 

persistent quote changes and transient quote changes affect trading intensity in 

different direction. 

With respect to further research, the methodology developed in Chapter 4 can 

easily be extended to model any nonnegative valued variables. An interesting 

extension is to model financial volatilities. For example, there are different measures 

of volatility, but no individual one appears to be a sufficient measure on its own. One 

possibility is to consider absolute daily returns, daily high-low range and daily 

realized volatility in the vector MEM for forecasting volatility (see Engle and Gallo 

(2006)). A second example, the multivariate GARCH model is usually used in 

modelling dynamics interactions among volatilities in different markets. But it is 

hindered by parametric limitations. However, one can model directly the volatility 
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proxy (i.e. daily range) for each market and insert other markets‘ volatility in the 

expression of its conditional expectations in the vector MEM. This is a very 

promising possibility, since there is no parametric limitation.  
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Appendices 

Appendix 1 Proof of Case 1 Weak Exogeneity 

Suppose we have the following model for analysis of case 1 weak exogeneity:  
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Using matrix form for the two equation, 
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Appendix 2 Proof of Case 2 Weak Exogeneity  

Support we have the following model for analysis of case 2 weak exogeneity: 
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Using the same method, the above model can be transformed into: 
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Appendix 3 Typology of ACD Models 

Augmented ACD  
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Asymmetric power ACD ( v ) 
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Asymmetric logarithmic ACD ( 0  and 1v ) 
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Asymmetric ACD ( 1 v ) 
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Power ACD ( v  and b=c=0) 

      11   ttt x  

Box-Cox ACD ( 0  and b=c=0)               Dufour and Engle (2000) 

    11 loglog   ttt 
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Logarithmic ACD type I ( 0, v  and b=c=0)      Bauwens and Giot‘s (2000) 

    11 logloglog   ttt x   

Logarithmic ACD type II ( 0 , 1v  and b=c=0)  Bauwens and Giot‘s (2000) 

    11 loglog   ttt   

Linear ACD ( 1 v  and b=c=0 )                Engle and Russell(1998) 

    11   ttt x   
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Appendix 4 Survival and Hazard Rate 

Suppose there is a random variable T with the continuous cumulative distribution 

function (CDF) )(Pr)()(
0

tTobdssftF
t

   (where t is a realization of T). Then, its 

survival function is expressed as:  )(Pr)(1)( tTobtFtS  . That is, the survival 

function is the probability that the length of the spell is at least t. 

Given that the spell has lasted until time t, the probability that it will end in the 

next short interval of time, say t ,is  )(Pr),( tTtttobttl  . 

This characterization is represented as the hazard rate: 
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The hazard rate is the probability of an event occurring in the time interval

],[ ttt  , given that it did not occur before time t. The integrated hazard function is 

expressed as 
t

dsst
0

)()(   for which    
)()( tetS  .  So the integrated 

hazard function   is related to the survival rate, such that )(ln)( tSt  .  
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Appendix 5 Hazard Rate of Lognormal Distribution 

Simulation study of hazard rate for different  

 
     

 

Hazard rate 

Percept of  

positive grads     

Percept of  

negative grads      

2.4        0.0008    0.9992 

2.3        0.001    0.999 

2.2        0.002    0.998 

2.1        0.003    0.997 

2.0        0.005     0.995 

1.9        0.008     0.992 

1.8        0.012     0.988 

1.7        0.017     0.983 

1.6        0.024     0.976 

1.5        0.035     0.965 

 

   Percept of Infinite 

Hazard rate 

Percept of 

Positive grad 

Percept of 

Negative grad 

0.20 0.000 0.643 0.356 

0.19 0.000 0.679 0.321 

0.18 0.000 0.703 0.297 

0.17 0.000 0.704 0.296 

0.16 0.058 0.705 0.237 

0.15 0.133 0.707 0.161 

0.14 0.202 0.674 0.124 

0.13 0.266 0.633 0.102 

0.12 0.323 0.592 0.085 

0.11 0.378 0.551 0.072 

0.10 0.427 0.512 0.061 
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Appendix 6 The Visual Diagnostic Checks for other Three Stocks 

 
 1.  Non-parametric and parametric densities: KO  out of sample result 

 
 2.  Non-parametric and parametric densities: DIS out of sample result 
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 3.  Non-parametric and parametric densities: IBM out of sample result 

 

 

 
Autocorrelation of z :  KO out of sample result 
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Autocorrelation of z:  DIS out of sample result 

 

Autocorrelation of z : IBM out of sample result 
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KO out of sample result. DIS out of sample result. IBM out of sample result. 
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Appendix 7 Lognormal Distribution  

Univariate lognormal distribution 

A lognormally-distributed random variable is a random variable whose logarithm 

is normally-distributed. Consider a lognormally-distributed x ,whose logarithmic 

transofrmaiton log( )y x  is normally-distributed with mean   and standard deviation 

 . The probability density function for a lognormal distribution is given by,  

 2
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
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As noted, for example, in Hines and Montgomery (1990). This distribution is 

skewed with a longer tail to the right of the mean. When  and  are known for y, the 

corresponding mean and variance for x can be found from the following: 

2

2 2

1

2

2

( )

( ) ( 1)

E x e

Var x e e

 

  







 

 

Multivariate lognormal distribution  

Let 1 2( , , , )ky y y y is a k-dimensional random variable having multivariate 

normal distribution with mean v  and covariance matrix ( )ijD d . The probability 

density function of y is defined as:   

1/2/2 11
( | ) (2 ) *exp ( ) ' ( )

2

k

yf y D D y v D y v
  

    
   

Then, the variable, exp( )x y , have a multivariate lognormal distribution. It is 

defined as ~ ln ( , )x N v D .Use Jacobian transformation, and ( ) ln( )y h x x   the 

probability density for multivariate lognormal distribution has the following form:  
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1/2/2 1 1

1 2

( | ) ( ( ) | )

1
(2 ) ( * * * ) *exp (ln ) ' (ln ) 0

2

x y

k

k i

dh
f x D f h x D

dx

D x x x x v D x v y
  



 
      

 

Law and Kelton (2000) show the covariance and correlation of the bivariate 

lognormal variables 1 2( , , , )kx x x x  as follows: 

1

2
1 2

( )
2

( ) ( , , , ) '

( )( ) ' ( 1)

1

( 1)( 1)

i ii

ii jj
i j

ij

ij

jjii

v d

k i

d d
v v d

ij ij

d

ij
dd

E x e

E x x e e

e

e e

    

   






 

  

      




 

 

where 
ij

d  is the ijth element of D . It is clear that if 1 2, , , ky y y  are independent, then 

1 2, , , kx x x are also independent and vice verse.  

Jacobian transformation 

Let 1( , , )ky y y  be a k-dimensional random variable with probability density 

function (pdf) ( )yf y : ( ) : k

yf y R R . Define some 1:1 differentiable transformation 

of y  into x  using : k kg R R , 

1 1( )

( )

( )k k

g y x

g y x

g y x

   
   

  
   
        

with inverse 

1 1( )

( )

( )k k

h x y

h x y

h x y

   
   

  
   
        

The pdf of y, the transformed random variable, is  

( ) ( ( ))x y

dh
f x f h x

dx

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where  

1 1 1

1 2

2 2 2

1
1 2

1

1 2

( , , )

( , , )

k

k
k

k

k k k

k

h h h

x x x

h h h
h hdh

x x x
dx x x

h h h

x x x

  

  

  


   


  

  
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Appendix 8 Proofs of Impulse Response Function 

Suppose we have the following vector MEM model:  

t t tx    ,   

 1 1ln ln lnt t tA x B     
 

Firstly, we transform the vector MEM into a VARMA model, by substituting   

ln t  with ln ln t
t

t

x
x


 . Then, 

1
1 1

1

1 1

ln ln ln ln ln

ln ln ln

t t
t t t

t t

t t t

x x
x A x B x

A x B


 

  


 



 

 
     

 

    

 

where A A B   , and B B   . 

The causal and feedback effect are not affected by this transformation. Therefore, it is 

feasible to assume that ln i  follows a multivariable Gaussian distribution. Then, 

(quasi) maximum likelihood estimation can be used to estimate the parameters of 

VARMA model. Suppose t  is a multivariable Gaussian distributed random variables, 

then 

1 1ln lnt t t tx A x B   
      

where ~ (0, )t N   , , ( )D BD D dia       . 

In the impulse response, we work on the impulse of t on the ln tx  in a standard 

way. Writing the VARMA (1,1) equation as an infinite VAR model: 

0

ln ( )t i t i t

i

x L   






      

where
1 2 2 3( ) ( ' ) ( ' ) ( ' ') '( ' ') ' ( ' ')L I A L I B L I A B L A A B L A A B L             

and  1 1' ( ' ') ( )i i

i A A B A B A B       , 0 I  . 
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The impulse response function is : 

ln

'

t
s

t s

x

 


 


 

Or the impulse response function for 0t   is : 

0

ln

'

t
t

x




 


 

This process can be rewritten in such a way that the residuals of different 

equations are uncorrelated. For this purpose, we choose a decomposition of the white 

noise covariance matrix 'W W    , where   is a diagonal matrix with positive 

diagonal elements and W  is a lower triangular matrix with unit diagonal. This 

decomposition is obtained from the Choleski decomposition 'PP    by defining a 

diagonal matrix D which has the same main diagonal as P and by specifying 

1W PD  and 'DD  . 

1

0

ln ,t i t i i i

i

x W 








      

Then the impulse response function for 0t   is : 

0

ln

'

t
t

x




 


 

 


