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We explore the degeneracy between mass and spin in gravitational waveforms emitted by black-

hole-binary coalescences. We focus on spin-aligned waveforms and obtain our results using phenome-

nological models that were tuned to numerical-relativity simulations. A degeneracy is known for

low-mass binaries (particularly neutron-star binaries), where gravitational-wave detectors are sensitive

to only the inspiral phase, and the waveform can be modeled by post-Newtonian theory. Here, we con-

sider black-hole binaries, where detectors will also be sensitive to the merger and ringdown, and

demonstrate that the degeneracy persists across a broad mass range. At low masses, the degeneracy is

between mass ratio and the black-hole spins, with chirp mass accurately determined. At higher masses,

the degeneracy persists but is not so clearly characterized by constant chirp mass as the merger and

ringdown become more significant. We consider the importance of this degeneracy both for performing

searches (including searches where only nonspinning templates are used) and in parameter extraction

from observed systems. We compare observational capabilities between the early (�2015) and final

(2018 onwards) versions of the Advanced LIGO detector.
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I. INTRODUCTION

The Advanced LIGO and Virgo detectors are likely to
allow us to observe numerous black-hole-binary coales-
cences in the coming years [1,2]. While the detectors are
being installed, the challenge is to devise search and source
extraction methods that will identify all black-hole-binary
signals in the data while also allowing for the most accurate
estimation of the source parameters possible.

Our understanding of gravitational waveforms emitted
by black-hole mergers has improved dramatically over the
past five years, with the aid of a large number of numerical
simulations, from which several models of the waveforms
have been constructed (see e.g., Ref. [3] for an overview).
A large fraction of the simulations have focused on non-
precessing systems (where the black holes are either non-
spinning or have spins aligned with the orbital angular
momentum); see, for example, Refs. [4,5]. Other than for
high black-hole spins (greater than a� 0:8), this space has
been rather well covered for comparable-mass binaries,
and several waveform models are available [6–8]. The
models characterize waveforms based on the masses of
the two components and, in the case of the models we
will consider in this paper, the total spin of the system. We
will make use of these waveform models to investigate
degeneracies in the waveforms at signal-to-noise ratios
(SNRs) close to the detection threshold in advanced detec-
tors. Since we are only considering a three-dimensional
subspace of the full eight-dimensional space of binary
masses and spins, many effects, most notably precession,
cannot be probed. However, recent results have shown that
the waveform for a precessing binary can be factorized into
precessional effects and a nonprecessional part that is well
modeled by the three parameters we consider here [9].

Thus, although strong precession may mitigate the degen-
eracy considered here, it is likely that even precessing-
binary signals will share some of the features we observe.
In post-Newtonian (PN) theory, there is a well known

degeneracy between the black holes’ mass ratio and the
black-hole spins, which arises at 1.5PN order, while a
combination of the total mass and mass ratio (the ‘‘chirp
mass’’) remains relatively well constrained [10,11]. Here,
our focus is on higher-mass waveforms that include a
merger and ringdown. We demonstrate that the degeneracy
persists in the full waveforms and also up to higher masses
where only the later part of the inspiral and the merger/
ringdown are in the detector’s sensitivity band. However,
for the high-mass binaries, the degeneracy in mass and spin
is not so clearly characterized by the chirp mass.
A degeneracy in the emitted gravitational waveform

across the parameter space has numerous consequences
for gravitational wave (GW) searches, both good and
bad. The positive effect is that a degeneracy in the para-
meter space will reduce the volume that needs to be
searched, thereby reducing the computational cost and
trials factor associated with the search. The majority of
searches of LIGO and Virgo data have made use of non-
spinning components in the template waveforms (see e.g.,
Refs. [12,13]). A degeneracy between mass and spin means
that the template waveforms have covered a larger fraction
of the parameter space than might be naively expected.
Furthermore, it has recently been argued that a two-
dimensional bank of templates is sufficient to cover the
space of spinning neutron-star binaries [14]. In this paper,
we investigate the effect of using nonspinning waveforms
in a search for black-hole binaries with spins and show that
the mass-spin degeneracy renders the search more sensitive
to spinning systems than might be expected. Nevertheless,
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a search using waveforms incorporating spin effects would
be a significant improvement and the degeneracy should
make it computationally feasible.

On the other hand, a degeneracy has a negative effect on
parameter estimation. To make the most of gravitational-
wave observations, accurate extraction of the physical
parameters is of paramount importance. There are detailed
multidimensional methods under development to accu-
rately recover the parameters [15–18]. However, there is
nothing that can be done about a real degeneracy in the
emitted waveforms—there is no way of telling them apart.
We evaluate the effects of mass-spin waveform degeneracy
on our ability to accurately recover masses and spins and
discuss the astrophysical implications. In the process we
introduce a simple method to estimate the parameter-
estimation confidence intervals.

Throughout the paper, we will provide sample results
using a number of waveforms at different masses and mass
ratios. We also make use of a number of noise curves for
the advanced detectors, to illustrate how this effect is likely
to change as the detectors approach their final, design
sensitivity. No attempt has been made to perform an
exhaustive study across the full parameter space, and this
is left as a future project.

The layout of the paper is as follows: in Sec. II we
outline the waveform models that we use, and discuss
some of the assumptions that went into producing them
and their range of applicability. We also discuss the
interpretation of results in terms of mismatches between
waveforms and introduce the detector noise curves used
in our studies. In Sec. III we focus on the degeneracy
between mass ratio and spin for low-mass binaries, giving
the post-Newtonian argument for this degeneracy and
illustrating the degeneracy for a number of cases and
different detector sensitivities, and discuss implications
for searches. Then, in Sec. IV we extend the results to
higher-mass binaries and show that the degeneracy per-
sists, although in a different form. In Sec. V we discuss
implications for the accurate estimation of parameters and
astrophysical inference.

II. MODEL AND METHODS

A. The phenomenological waveform models

We describe the GW signal from black-hole binaries
with nonprecessing spins (i.e., the spins are aligned or
antialigned with the binary’s orbital angular momentum)
using the phenomenological models presented in
Refs. [6,7]. For consistency with the labeling used within
the LIGO-Virgo Collaboration [19] we refer to these
models respectively as ‘‘PhenomB’’ and ‘‘PhenomC.’’
(‘‘PhenomA’’ refers to an earlier model of nonspinning
binaries [20–22].) In both models the waveforms are pa-
rametrized by their total mass M ¼ m1 þm2, mass ratio
� ¼ m1m2=M

2, and an effective total spin parameter

� ¼ 1

M
ðm1�1 þm2�2Þ ¼ �s þ ��a; (1)

where �i ¼ Si=m
2
i for each black hole with angular

momentum Si, � ¼ ðm1 � m2Þ=M, and the sym-
metric and antisymmetric combinations of the spins are
�s ¼ ð�1 þ �2Þ=2 and �a ¼ ð�1 � �2Þ=2, respectively.
The phenomenological models incorporate a PN descrip-
tion of the inspiral, while the merger and ringdown regimes
are tuned using the results of numerical simulations.
Both models have the same basic structure. The wave-

form is represented in the Fourier domain as hðfÞ ¼
AðfÞei�ðfÞ. The amplitude AðfÞ and phase �ðfÞ are mod-
eled separately, using input from PN theory (inspiral), the
observed properties of NR waveforms (plunge-merger), or
results from perturbation theory (ringdown). The models
are all power series in the frequency f, and the coefficients
in the model are written as polynomials in the two physical
parameters � and � (the total mass is an overall scale
factor), and it is the coefficients of these polynomials that
are then calibrated to hybrids of PN and NR waveforms.
For both models, the amplitude is constructed in a similar
manner, with expressions for each of the inspiral, plunge-
merger, and ringdown portions of the waveform modeled
independently. In PhenomB [6] the three parts are con-
nected as piecewise functions, and in PhenomC [7] smooth
tanh-function interpolation is used. To obtain an expression
for the phasing, PhenomB uses a single series expansion,
matching the coefficients beyond leading order to hybrid
waveforms, as well as results from the test mass (� ! 0)
limit. PhenomC, on the other hand, uses the complete
TaylorF2 PN inspiral phasing, and only the late inspiral/
merger phase is fitted in a narrow frequency range to
numerical simulations, while the ringdown waveform is
obtained from analytically derived quasinormal mode
expressions for the frequency and attached continuously
to the merger phase. There are 54 free parameters in
PhenomB, and 45 in PhenomC, although the final models
are both functions of only fM;�; �g. There are three no-
table differences between the two models: (i) the PhenomB
PN-NR hybrids are produced in the time domain, using
TaylorT1 for the PN part, and the PhenomC hybrids are
produced in the frequency domain, using TaylorF2 for the
PN part [23]; (ii) PhenomB incorporates information about
the test-mass limit; (iii) in PhenomC the phase evolution
during inspiral incorporates PN calculations up to 3.5PN
order (although the spin terms are complete only up to
2.5PN), while in PhenomB only the leading-order PN
inspiral term is fixed, and the remaining terms up to
3.5PN order are tuned to the hybrid waveforms.
There is good qualitative agreement between the two

models [7], although no detailed quantitative comparison
has yet been performed. We choose to work with PhenomB
for generating the results presented in this paper. We have
also cross-checked some of the calculations against
PhenomC, and we comment further on this in Sec. IV.
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B. Detectors and noise curves

In this paper we compare spinning- and nonspinning-
binary signals with reference to the expected sensitivity of
the Advanced LIGO detector (aLIGO) [24–26]. The sensi-
tivity curves we use are shown in Fig. 1. During the early
science runs, expected around 2015, the Advanced LIGO
detector is unlikely to be at its full design sensitivity.
Consequently, we use the ‘‘early aLIGO’’ noise curve
[27] to give results indicative of what may be achieved in
the early runs. At its optimum sensitivity several years
later, the anticipated sensitivity is given by the ‘‘zero-
detuned high-power’’ noise curve [28]. In this paper we
will take that as the ‘‘final’’ design sensitivity of the
detector. Over the parameter space of binaries that we
study in this paper, the early aLIGO curve represents a
sensitivity of roughly 5 times greater in the SNR than in the
initial LIGO detectors during their final S6 science run,
which corresponds to an increase in potential sources of 2
orders of magnitude. The final curve represents a further
factor of 3 improvement in SNR, or about 30 times as many
potential sources over early aLIGO. Finally, we also
consider the ‘‘no signal recycling’’ (no-SRM) configura-
tion of the detector, that could be achieved by the aLIGO
detector operating without a signal recycling cavity. This
has comparable low-frequency sensitivity to the final
configuration but significantly worse sensitivity at high
frequencies. Although it is unlikely to be an observational
mode, the non-signal-recycled curve offers a means to
compare the effects of low- and high-frequency sensitivity
upon our results.

C. Waveform mismatches

We use the standard inner product between two wave-
forms, h1ðfÞ and h2ðfÞ with respect to the power spectral
density SnðfÞ of a detector [29],

ðh1jh2Þ ¼ 4Re
Z 1

0

h1ðfÞh�2ðfÞ
SnðfÞ df: (2)

The match between two waveforms is defined as their
normalized inner product, maximized over time and phase
shifts of the waveform:

Mðh1; h2Þ ¼ max
�t;��

ðh2jh2Þ
jh1jjh2j : (3)

Alternatively, we can consider the situation of a true
waveform produced by a physical source, hT , and a model
waveform hM that we will use to search for the real signal
in detector data. If we normalize both waveforms, then we
can split the model waveform into a component parallel to
the true waveform, plus a component that is orthogonal to
the true waveform, in the sense of our inner product. In
other words, we have

ĥ M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
ĥT þ xĥE; (4)

where ĥE is the normalized ‘‘error’’ waveform that satisfies

ðhTjhEÞ ¼ 0. In this form, the match is MðhT; hMÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
� 1� x2=2. Thus, the match is directly related

to the (relative) amplitude of the error waveform.
In a GW search, a template bank of model waveforms is

constructed [30] such that the match between every point
in the waveform parameter space and the nearest template
in the bank is at least 0.97. Assuming that the model
waveforms are physically correct, such a template bank
ensures that we will lose no more than 10% of signals in
our search. (A match of 0.97 means that the sensitivity
range of the detector is only 97% of its optimum, and the
detector is therefore sensitive to only 0:973 � 0:9 of its
optimum volume, and so we lose about 10% of signals.)
If the physical waveforms do not agree exactly with the

model waveforms, this will lead to an additional loss in
match between a signal and the best-matched template, and
consequently a reduction in the number of signals observed
above threshold. In addition, to counter nonstationary
detector noise, a number of signal consistency tests are
included into analyses to distinguish signals from
nonstationarities or ‘‘glitches’’ in the data [31]. These tests
are used to either remove completely any transients that do
not match the templates or else to downweight their
significance. Since searches performed to date have made
use of nonspinning waveform families these thresholds
have been set relatively loosely (and tested with spinning
signals) to ensure they are not removing signals. For the
high matches between signal and template we consider in
this paper, the effect of signal consistency tests will be
minimal, and we will not consider it further.
In the next sections we will identify the regions of the

nonspinning waveform parameter space that provide a
match of greater than 0.97 with the chosen waveform
(which will usually incorporate spin). In doing so, we
densely sample the nonspinning waveforms to identify
all points with a match above 0.97. When performing a
search, there will then be two contributions to the
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FIG. 1. Noise curves for the Advanced LIGO detector
configurations that we consider in this paper: early, no-SRM
and final, which corresponds to the zero-detuned, high-power
configuration. See text for more details.
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mismatch between the signal and the best-matched tem-
plate: one due to the difference between the waveform and
search space and a second arising from the discrete sam-
pling of the template space. The match between the signal
and the closest template is guaranteed to be above 0.94 as
the mismatches add linearly in this case (see e.g., Ref. [32]
for details). We are therefore requiring that the potential
loss of SNR due to a mismatch between the model wave-
form and true waveform is no greater than the maximum
possible loss due to the discreteness of the template bank.

We will also investigate how the parameters of the
best-match nonspinning waveform vary when the signal
corresponds to a nonprecessing binary. In Sec. V we will
see how the match can be used to give an estimate of the
parameter estimation accuracy.

III. DEGENERACY BETWEEN � AND �
AT LOW MASSES

We first consider the degeneracy between the symmetric
mass ratio � and the effective total spin � of the binary.
This effect is already well known in PN theory [10,11],
which we will discuss first, and then we will look at
inspiral-merger-ringdown (IMR) signals at three different
values of the total mass, M ¼ f20; 50; 100gM�.

A. Degeneracy in PN theory

The phase evolution of a compact binary in PN theory
has been calculated up to 3.5PN order in the nonspinning
terms, and up to 2.5PN in the spin effects; see Ref. [23] for
a recent summary of PN treatments of the phase. Up to the
leading order that includes spin, the phase for nonprecess-
ing binaries is given in the frequency domain by

�ðfÞ ¼ 3

128�v5

�
1þ v2

�
3715

756
þ 55�

9

�

� v3

�
16��

�
113

3
� 76�

3

�
�s � 113�

3
�a

��
;

where v ¼ ð�MfÞ1=3. If we define the chirp mass of the

binary asM ¼ M�3=5, then we see that the leading factor

is proportional to 1=ðM�fÞ5=3, and the phase evolution is
dominated by the chirp mass. This motivates the observa-
tion that in GW searches we expect to measure the chirp
mass with high accuracy, and we will see examples of this
in Sec. III B. At the next-to-leading order, the phase
evolution depends on the mass ratio �, and dependence
on the spins enters at the following order. We can absorb all
of the spin effects at this order into an effective spin term,
�PN ¼ �s þ ��a � ð76�=113Þ�s, and this is what is pro-
posed in the inspiral template family discussed in Ref. [33]
(and this is proportional to the leading-order spin-orbit
parameter � used in Refs. [10,11]). The phenomenological
models [6,7] use the simpler effective spin � ¼ �s þ ��a

to describe full inspiral, merger and ringdown waveforms.

If we adopt for the moment the PN effective spin term,
we can write the deviation from the leading-order term as

��ðfÞ ¼ 3

128�v3

�
3715

756
þ 55�

9
þ v

�
113�PN

3
� 16�

��
:

(5)

Thus, it is possible to mimic the effect of spin by modifying
the mass ratio (while keeping the chirp mass constant). It is
clear, however, that the required modification to � will
vary as v changes over the course of the chirp, as expected
as this is only an approximate degeneracy. The majority of
the power from a binary merger is accumulated between
around 30–300 Hz, and over this range � changes by only
a factor of 2. This explains why the approximation is
reasonable across the whole signal, and this leads to the
common claim that nonspinning templates can be used to
detect GW signals from spinning binaries, but there will be
an offset in the measurement of the mass ratio and the total
mass. It may also be possible to exploit this degeneracy to
search for spinning binaries using a nonspinning model,
but with � extended to unphysical values, �> 0:25, in
order to cover more of the spinning-binary parameter
space; a similar idea has already been suggested to extend
inspiral-only searches beyond their expected region of
validity [34]. It is the degeneracy between mass ratio and
spin that we will investigate here.

B. Degeneracy in full IMR models

We would now like to investigate whether the degener-
acy from post-Newtonian theory is present in full IMR
waveform models.
We consider a set of spinning signals and those non-

spinning waveforms (i.e., the phenomenological model
with � ¼ 0) that provide a good match to the signal. The
efficacy of a waveform model in a GW search can be
estimated by calculating the best match (fitting factor)
between any member of the waveform model and the target
signal. Therefore, this will give an immediate indication
of the merits (or otherwise) of using a nonspinning wave-
form model to search for mergers of spinning black holes.
We consider fitting factors above 0.97 to be adequate as
discussed previously.
Figure 2 shows the results for a binary with a total mass

of 20M� and mass ratio 1:4 (� ¼ 0:16), i.e., a 4M�–16M�
binary, and matches calculated using the early aLIGO
spectrum. We consider sources with an effective total
spin in the range ½�1; 1� in steps of 0.1. For each configu-
ration, we identify nonspinning waveforms which give a
match of greater than 0.97 with the spinning source. When
the binary spin is zero, the nonspinning model matches the
target signal at the correct parameters (indicated by a star),
and along a strip in the parameter space with a width of 5%
in mass, and 10% in �. When the binary contains spinning
black holes, the nonspinning model matches the signal, but
with a bias in the mass and mass ratio. The binary spins are
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indicated with different colors, labeled by the effective
total spin of the binary. For large-spin signals there are
no nonspinning waveforms that have a match above 0.97.
When using the early aLIGO noise curve, the range of
spins for which nonspinning waveforms have a match
above 0.97 is ½�0:7; 0:5�. However, for spins above about
� ¼ 0:3, the best-match waveform has an unphysical value
of the mass ratio �. The curve of constant chirp mass

M�3=5 is indicated by a dotted line.
The first thing to note is that, in all cases, the chirp mass

of the best-matched nonspinning waveform is very similar
to the true chirp mass of the system. We can see from Fig. 2
that the high-match regions follow a line of constant chirp
mass. In Fig. 3 we reparameterize the results of Fig. 2 in

terms of � and M. We see that, even though there is a
strong degeneracy between � and �, the correct chirp mass
M ¼ 6:66M� falls within the high-match region for most
values of spin. The deviation from the correct chirp mass is
no more than �3% for large antialigned spins.
The second important point relates to the mass-spin

degeneracy. For aligned-spin binaries (�> 0), the best
match is obtained with a lower-mass, higher-mass-ratio
model, while for antialigned spins, the best-matched non-
spinning waveform has a higher mass and lower mass ratio.
This is to be expected as aligned spins are expected to
cause the system to ‘‘hang up’’ and chirp more slowly,
mimicking a lower-mass signal.
We caution the reader against overinterpreting the sizes

of the high-match regions. The figure does not show the
values of the matches, only those that are above 0.97, and
we do not believe that our current waveform models are
sufficiently accurate that we can gain significant physical
insight from the comparative rate of decay of the matches
between different configurations.
It is informative to return to the post-Newtonian phasing

given in Eq. (5) to see whether the observed degeneracy
matches what is theoretically expected. In low-mass
binaries, the signal is dominated by the inspiral, which
can be represented in a PN expansion, as described in
Sec. III A. The chirp mass is determined to high accuracy
by the leading-order term in the PN expansion of the phase
in the Fourier domain, and we can then solve Eq. (5) (with
fixed chirp mass) to find the symmetric mass ratio that
mimics the effect of the spin. We do this by solving (5) as a
function of frequency (in the detector’s sensitive band) and
then averaging over the values of� that we obtain. Figure 4
shows the symmetric mass ratio that corresponds to each
value of the spin, as predicted from Eq. (5), and as found in
the mismatch analysis of the phenomenological models
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FIG. 2 (color online). Match between spinning 20M� wave-
forms with nonspinning templates in early aLIGO. Each of the
strips shows the region of M-� space for which the nonspinning
waveform has a match of 0.97 or higher with a spinning signal.
The effective total spin is indicated next to each region. For spins
above 0.5 or below �0:7 the best overlap with a nonspinning
waveform is less than 0.97. The curve of constant chirp mass is
indicated by a dotted line.

0.5 0.0 0.5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

PN

FIG. 4 (color online). Comparison of the �-� degeneracy as
found for the phenomenological model (stars), and from the
requirement that �� ¼ ��ð�PN ¼ 0Þ in Eq. (5) for fixed chirp
mass, for signals with M ¼ 20M� and � ¼ 0:16. The naive PN
prediction agrees well with the full IMR results for low spins,
and for most antialigned spins.
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FIG. 3 (color online). The same results as in Fig. 2, but now
parametrized in terms of chirp mass and symmetric mass ratio.
This figure reinforces the accuracy with which the chirp mass
can be recovered.
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that is shown in Fig. 2. We see that the PN estimate is
remarkably close to that found for the full IMR models, at
least for the 20M� binaries used in this example.

C. Evolution of noise curves

We present results for two design aLIGO configurations
in Fig. 5: the no-signal-recycling (no-SRM) configuration
and the final high-power zero-detuned sensitivity curve
(final). Qualitatively, the results are quite similar for the
no-SRM and final noise curves. Again spinning signals are
recovered with a match above 0.97 using nonspinning
templates, with a decrease in recovered mass for positive
spin systems. The chirp mass is still well recovered.
However, the detector’s extra sensitivity makes it easier
to distinguish the spinning signals with a nonspinning
model. The range of spins for which we can find a non-
spinning signal with matches greater than 0.97 is now only
� 2 ½�0:4; 0:3� for no-SRM and � 2 ½�0:3; 0:3� for the
final configuration. We also see that each match region
shrinks, although its location is unchanged. In moving
from the early noise curve to no-SRM, the most significant
sensitivity improvement is at low frequency, while the final
configuration offers much greater high-frequency sensitiv-
ity. The results for these two curves are quite comparable

(and significantly better than the early curve) indicating
that it is low-frequency sensitivity that provides the biggest
improvement in breaking the degeneracy. With the later
noise curves, the variation of chirp mass between the
spinning signal and nonspinning template is less than 1%.1

In the 20M� configurations we have studied, most of the
SNR is accumulated during the inspiral. For comparison, in
Fig. 6 we show the high-power zero-detuned noise curve
results when using an inspiral-only waveform model,
TaylorF2 [10,35,36], for which the inspiral is modeled to
the highest-known post-Newtonian orders (3.5PN in non-
spinning terms, and 2.5PN in spin terms). The results are
similar to those with the inspiral-merger-ringdown model,
but the confidence regions are larger. This suggests that the
inclusion of merger and ringdownmitigates to some degree
the degeneracy.

IV. MASS-SPIN DEGENERACY
AT HIGHER MASSES

For black-hole binaries with masses greater than 20M�
the merger and ringdown parts of the signal become
increasingly important and contribute an ever increasing
fraction of the signal-to-noise ratio. At higher masses, we
do not expect the chirp mass to determine the waveform to
such an extent as for the 20M� system and there is no
a priori reason to expect that a degeneracy between mass
and spin will persist.
We begin by considering a 50M� binary with mass ratio

1:4. At this mass, the merger and ringdown will provide a
significant fraction of the signal to noise ratio. As a crude
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FIG. 5 (color online). Matches of spinning 20M� waveforms
with nonspinning templates in aLIGO at design sensitivity. The
upper panel shows the results for the no-SRM configuration,
while the lower panel shows results for the final sensitivity.
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FIG. 6 (color online). Final sensitivity results using an
inspiral-only model.

1The figures may seem to indicate that a 20M� binary with
total spin of 0.5 that would be detected by a nonspinning search
in the early aLIGO configuration, but not later ones. This is of
course not true: the final detector is roughly 3 times more
sensitive at these masses, and so a signal with SNR 10 in early
aLIGO would have an SNR of 30 in the final configuration. Even
with a match of 0.9, this would still give an SNR of 27, and the
match would be sufficient that it would pass any signal consis-
tency tests.
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estimate of the effect, imagine that the inspiral part of the
waveform is valid up to the innermost stable circular orbit
of a point particle orbiting a Schwarzschild black hole,
which is at 90 Hz for a 50M� binary. For the early aLIGO
noise curve, the inclusion of the merger and ringdown will
increase the SNR by a factor of 2. At the final aLIGO
sensitivity, the improved low-frequency response increases
the contribution of the inspiral but the inclusion of merger
and ringdown still increase the SNR by�20%. Thus, there
is no reason to expect that the chirp mass is still well
recovered or that the degeneracy discussed previously
still holds.

In Fig. 7 we again show the regions of the nonspinning
parameter space which give a match greater than 0.97 with
a spinning binary (with values of � from�1 to 1 in steps of
0.1). Here, we show the results for both the early and final
aLIGO spectra. The results are qualitatively similar to
the 20M� binary with spinning signals well recovered by
the nonspinning waveforms, and the chirp mass accurately
recovered. The sizes of the regions are roughly consistent
with the lower mass system, with a mass accuracy of
�10% and range in � of 0.05–0.1 for the early noise
curve. For both early and design curves, signals with spins
between 0.2 and �0:4 have matches above 0.97 with
nonspinning waveforms. Interestingly the degeneracy still
roughly follows the line of constant chirp mass, even
though the merger and ringdown contributed significantly
to the SNR of the signal.

Next, we increase the mass to 100M� and repeat the
analysis. At this mass, the point-particle innermost stable
circular orbit is at 40 Hz, so there is essentially no power
from the inspiral in the initial detectors, and only a small
amount in the early aLIGO. Even at the final sensitivity, the
inclusion of merger and ringdown increase the SNR by
about 60% over inspiral alone. Thus one expects that it is
really the merger that dictates the waveform as seen by the

detector. Figure 8 shows results for 100M�, again with
� ¼ 0:16. For aLIGO at final design sensitivity, the curves
are again lying pretty much along the line of constant chirp
mass.
We do not show results for the early aLIGO sensitivity

curve in Fig. 8, because the results depend strongly on the
choice of model, either PhenomB or PhenomC. The varia-
tion of the two models with respect to the physical parame-
ters is sufficiently large through merger and ringdown that
they lead to qualitatively different results in our mismatch
studies, when we use the early aLIGO noise curve, where
the merger and ringdown contribute essentially all of the
SNR. The two models were developed as pioneering mod-
els of aligned-spin IMRwaveforms for use in searches, and
for this we expect that they are sufficient; but their fidelity
with respect to parameter estimation at high masses has not
yet been tested and should be a focus of future work to
refine them.

V. PARAMETER RECOVERY

Once a black-hole merger has been detected, we wish to
extract the signal parameters as accurately as possible.
Parameter estimation proceeds by identifying regions of
parameter space which give a signal that is most consistent
with the data. It stands to reason that these regions will
contain waveforms that have a good match with the
observed signal. Thus we might expect that confidence
regions in parameter estimation are associated with regions
of high match between signal and template. In this section,
we show this expectation to hold in detail in the high-SNR
limit and derive an expression for the value of the match
that corresponds to a given confidence at a given SNR.
We begin by presenting the argument, using the Fisher

matrix formulation, and then we use this connection to
reinterpret our earlier results in terms of parameter recov-
ery. We follow the formalism used Ref. [37], but provide
only a brief discussion of the Fisher matrix formalism, and
refer the reader to Ref. [37] (and references therein) for
more details.
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FIG. 7 (color online). Matches of spinning 50M� waveforms
of mass ratio 4:1 with nonspinning templates in early and final
aLIGO. Each of the strips shows the region of M-� space for
which the nonspinning waveform has a match of 0.97 or higher
with a spinning signal.
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FIG. 8 (color online). Matches of spinning 100M� waveforms
of mass ratio 4:1 with nonspinning templates in design aLIGO.
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A. Connection between mismatch
and confidence regions

Let us assume that a signal h0 is present in the data. The
detector data is given as

sðtÞ ¼ h0ðtÞ þ nðtÞ: (6)

To investigate signal recovery and parameter extraction at
leading order, we Taylor expand the signal in a region of
the true parameters (� ¼ 0) as

hð�Þ ¼ h0 þ �ihi þ � � � : (7)

Here hi ¼ @ih is used to denote the derivative of the
waveform with respect to the parameters �i, which will
include M, �, � as well as the amplitude, phase and
coalescence time that are maximized over in the match
calculations.

The likelihood, for a given set of �i, is

pðsj�Þ / exp

�
�ðs� hð�Þjs� hð�ÞÞ

2

�
: (8)

Substituting the expressions for s (6) and hð�Þ (7) into the
above and keeping leading order terms gives

pðsj�Þ / exp

�
�ðnjnÞ

2
þ �iðnjhiÞ �

�i�jðhijhjÞ
2

�
: (9)

In the context of Bayesian parameter estimation, this can
be recast in terms of a posterior probability distribution for
the parameters �i using Bayes theorem:

pð�jsÞ / pðsj�Þpð�Þ; (10)

where pð�Þ is the prior probability distribution for the
parameters. In what follows, we use a uniform prior on
the parameters. In general, such a prior will not be physi-
cally motivated but, for a detectable signal, the likelihood
will be peaked in a small enough region of parameter space
to make this approximation reasonable.

Given the above, we are interested in calculating the
expected offset between the true parameters and the mean
value from the posterior distribution. We also want to
evaluate the size of a confidence region containing a given
fraction p of the posterior probability. These quantities
give us two different measures of the expected accuracy
of parameter recovery.

We begin by calculating the mean of the parameter �i as

h�ii ¼
Z

d��ipð�jsÞ ¼ ðhijhjÞ�1ðnjhjÞ: (11)

Thus, the mean of the posterior distribution will be offset
from the true parameter values due to the presence of noise.
One way to characterize this is the expected size of the
error waveform, hE ¼ hðh�iiÞ � h0, as

hh2Ein ¼ hðnjhiÞðhijhjÞðhjjnÞin ¼ k; (12)

where k is the dimension of the parameter space and
h in indicates the expectation value over many noise

realizations. Thus, on average the difference between the
true signal and ‘‘best fit’’ waveform will have an amplitude

of
ffiffiffi
k

p
.

Next, we turn our attention to confidence regions in
parameter space—a region � of parameter space that
contains a given probability p of the posterior distribution,

p ¼
Z
�
d�pð�jsÞ: (13)

There are many ways to construct such a region, and one
typically also requires the smallest possible region. To
calculate confidence regions in the Fisher approximation,
we begin by observing that the covariance between
parameters is given as

h�i�ji ¼ ðhijhjÞ�1: (14)

Using this expression and Eq. (11), we can reexpress the
posterior distribution as

pð�jsÞ / exp

�
� 1

2
ð�i � h�iiÞðhijhjÞð�j � h�jiÞ

�

’ exp

�
� 1

2
ðjhð�Þ � hðh�iÞj2Þ

�
: (15)

Then, the minimum volume region which contains a
fraction p of the posterior probability is the one for which

jhð�Þ � hðh�iÞj2 <�2
kð1� pÞ; (16)

where �2
kð1� pÞ is the chi-square value for which there is

1� p probability of obtaining that value or larger, and k
denotes the degrees of freedom, determined by the number
parameters included in �i. At leading order, the confidence
interval contains all points for which the amplitude of the
difference between the model and best fit waveforms lies
below the given threshold.
There are six parameters in the aligned-spin waveform

model: M, �, �, A, �c and tc. When calculating matches,
we have maximized over the latter three parameters
(amplitude, phase and time) and reported match over the
three-dimensional space of mass, mass ratio and spin.
Thus, we have calculated the three-dimensional matches
Mðh1jh2Þ, maximized over A, �c and tc. It is straightfor-
ward to recast our earlier results in terms of mismatches.
To do this, we note that

min
A2

jh1 � h2j2 ¼ jh1j2
�
1� ðh1jh2Þ2

jh1j2jh2j2
�
: (17)

When we restrict to the subspace of masses and spins,
we can write the final term as the match between the
waveforms.
By substituting Eq. (17) into Eq. (16), we see that the

confidence region is defined by all points in the parameter
space for which the match satisfies
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Mðhð�Þ; hðh�iÞ � 1� �2
kð1� pÞ
2	2

; (18)

where the value of k is given by the dimension of the
remaining parameter space. This expression gives us a
straightforward way to reinterpret the match calculations
presented earlier. For example, with a three-dimensional
parameter space, the 90% confidence region at a given
SNR is given by

Mðhð�Þ; hðh�iÞ � 1� 3:12

	2
; (19)

which has the nice property that a match of 0.97 corre-
sponds to a 90% confidence region at an SNR of 10. For a
two-dimensional parameter space, the right-hand side is
1–2:3=	2, meaning that a match of 0.97 corresponds to
90% confidence region at an SNR of 9.

We should note that there are numerous assumptions
used in the derivation of these results. Most significantly,
all of the Fisher matrix results consider only leading-order
effects and become less reliable at lower SNR; see e.g.,
Ref. [37] for a detailed discussion of the issues. When
actually calculating confidence regions for a signal,
detailed parameter estimation analyses calculate the pos-
terior distribution (15) and integrate to find the region
containing 90% of the probability. Here, we are using a
hybrid approach: we use the result of the Fisher matrix
calculation to decide the threshold on match required to
define the given confidence region, but then calculate the
match between waveforms exactly, without recourse to any
approximations. Furthermore, we are maximizing the
match over three dimensions, analytically for A and �
and using a Fourier transform to search over time. Thus,
we are only applying the Fisher result to the three-
dimensional subspace of mass, mass ratio and spin. Even
there, we are merely using the calculation to determine the
appropriate match threshold: the matches are calculated
exactly. Consequently, the match regions should be in good
agreement with the 90% confidence regions. We verified
that for an SNR of 20, the region identified by our match
criteria did contain 90% of the probability to within
	0:5%.

B. Implications for detectability
and parameter estimation

Let us now return to the results of Secs. III and IV and
use the relationship derived above to reinterpret the results
in terms of confidence intervals. We can interpret Fig. 2 in
two ways: in the context of either a nonspinning or spin-
aligned templated search. If we were to perform a search
with nonspinning templates and observe a M ¼ 20M�,
� ¼ 0:16 binary with nonspinning components with SNR
9, then the 90% confidence region would lie along a strip in
the parameter space with a width of 5% in mass, and 10%
in �. For a binary containing the same mass black holes

with spins of�0:5, the 90% confidence region would be of
approximately the same size (5% in mass, and 10% in �)
but centered atM ¼ 27M�, � ¼ 0:10.2 The same holds for
other values of the spins: the reported statistical uncer-
tainty in parameters is relatively small, while the system-
atic errors can be significant.
Alternatively, we can consider the three-dimensional

space of M-�-�. In that case, a match above 0.97 corre-
sponds to a 90% confidence region at SNR of 10. Thus, for
example, Fig. 2 shows that the 90% confidence region for a
signal with m1 ¼ 16, m2 ¼ 4 and � 2 ½�0:7; 0:5� would
contain waveforms with nonspinning components.
Figures 3–8 can be interpreted in a similar manner. For
higher SNRs, the confidence intervals shrink. At SNR 10
they correspond to matches of 0.97, SNR 20 to 0.992 and
SNR 30 to 0.9965.
We can use the analysis of the previous section to

estimate the 90% confidence intervals if we employ an
aligned-spin model for parameter estimation. For signals
with an SNR of 10, the three-dimensional confidence
region in ðM;�; �Þ will correspond to matches greater
than 0.97. In these cases we calculate the matches between
a given aligned-spin signal, and all other aligned-spin
model waveforms with varying mass, mass ratio and total
spin. In Fig. 9 we show the 0.97 match volume for a 20M�
1:4 binary with � ¼ 0:2, using the final aLIGO noise
curve. The top panel shows the full three-dimensional
confidence region, and in the lower panels the results are
projections onto the M-� and m1 �m2 planes, to aid the
interpretation. Figure 10 shows similar results, but for a
binary with � ¼ �0:2.
Since our waveform model now includes spin, the best

match is unity at the correct parameters. But from the
figures we see that the 90% confidence region extends
well beyond the correct parameters and is far from the
naive image conjured by the term ‘‘error ellipse.’’ We note
in particular that this volume includes a region of the
nonspinning binary parameter space; the intersection
with the � ¼ 0 plane is consistent with the lower panel
of Fig 5. If wewere to estimate the parameters of this signal
with an aligned-spin waveform model, we would find that
the best-fit parameters indicated that the black holes were
spinning, but could not rule out that they might in fact
be nonspinning—or indeed have spins with the opposite
orientation.
The reason for this large uncertainty in the parameters is

that the SNR is low; it is only 10. For an SNR of 20, the
90% confidence interval corresponds to a match of above
0.992, and for an SNR of 30, the match must be above
0.9965. We see that for these higher SNRs, the confidence

2Strictly speaking, if the best match between the signal and a
model waveform is less than unity, the relation between match
and confidence region in Eq. (18) must be modified to reflect
this. The 90% confidence region will contain all points with a
match of 0.97 or greater with the best-fit model waveform.
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region shrinks. However, only at SNR 30 is a nonspinning
signal excluded from the 90% confidence region for the
� ¼ 0:2 case, and even at this SNR (which may be quite
rare in aLIGO observations), the smaller mass is deter-
mined to within only 25%. When � ¼ �0:2 (Fig. 10),
the 90% confidence region includes spins as high as
� ¼ �0:7, even when the SNR is 20. Note also that in
these figures we have included only those portions of the

confidence regions with � 
 0:25, i.e., physically accept-
able values; the confidence region would extend further in
the upper two panels if the model were not constrained.

VI. CONCLUSIONS

We have investigated the degeneracy between mass ratio
and spin in gravitational waveforms, going beyond inspiral
models to include merger and ringdown signals from
black-hole-binary mergers. We have used phenomenologi-
cal IMR models to study the subset of the full binary
parameter space that includes nonspinning black holes
and black holes with spins parallel or antiparallel to the
orbital angular momentum of the binary.
A degeneracy between mass ratio and spin is already

known for inspiral signals, which are relevant to

FIG. 9 (color online). 90% confidence intervals for a 20M�,
1:4 (� ¼ 0:16) signal with spin � ¼ 0:2, using the design
aLIGO noise curve. The top panel shows the full three-
dimensional confidence region for SNR ¼ 10; the gray surface
indicates the � ¼ 0 plane and corresponds to the � ¼ 0:2 region
in Fig. 5. The lower two panels show the same data projected
onto the M-� and m1 �m2 planes, and also indicate the 90%
confidence regions for SNRs 20 (blue) and 30 (green)
(The regions of SNR 10, 20 and 30 are successively smaller).
The true physical parameters are indicated by a ball (top panel)
or star (lower panels). Regions with unphysical � (> 0:25) are
not shown.

FIG. 10 (color online). The same as Fig. 9, but now the signal
has spin � ¼ �0:2.
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ground-based gravitational-wave detectors for masses
M 
 12M� [14,38]. We find that this degeneracy persists
at higher masses, where the detectors are also sensitive to
the merger and ringdown. This means that in a GW search
that uses only nonspinning binary templates (and this is
computationally cheaper than including spin), the signal
may still be detected, but the best-match template will have
strongly biased parameters. The mass-ratio–spin degener-
acy follows lines of constant chirp mass, so the chirp mass
will be recovered with reasonable accuracy, even up to
high masses and for spinning signals. However, the total
mass and mass ratio of the best-matched template will
be biased. As shown in Fig. 2, binaries with higher aligned
spins will be recovered with a higher mass ratio, while
those with antialigned spins will be recovered with a
lower mass ratio. If we restrict the search to physical
values of the symmetric mass ratio �, then comparable-
mass binaries whose spins are aligned with the orbital
angular momentum will tend to be missed in the search.
We show how these results will change as the detector
evolves towards its final sensitivity in Fig. 5 and for higher
masses in Figs. 7 and 8.

We also demonstrated that it is possible to use match
calculations to estimate the confidence intervals in parame-
ter estimation. For example, the 90% confidence region
for the three-dimensional parameter space of ðM;�; �Þ for
signals with SNR 10 is given by the region with matches
above �0:97. This allows us to estimate how the mass-
ratio–spin degeneracy will be reflected in parameter esti-
mation. We show that for modest SNRs (�10) it may be
difficult to determine whether a binary includes spin, and
even for high SNRs (�30), the mass-ratio–spin degeneracy
impairs the accurate recovery in the individual black-hole
masses; see Figs. 9 and 10. These results will affect the
astrophysical conclusions that can be drawn from GW
observations, and this will be explored in more detail in
future work. It would also be interesting to exploit our
knowledge of the mass-ratio–spin degeneracy in a jump
proposal for Bayesian parameter-estimation codes [15–17].

Our results are restricted to aligned-spin binaries and
will be affected by the inclusion of precession effects. At
present, no complete inspiral-merger-ringdown model for
precessing systems exists. To date, there is no detailed

study of the effects of precession on parameter degeneracy
for stellar mass black holes, even with inspiral-only wave-
forms. It has, however, been shown that the inclusion of
precession in supermassive black hole waveforms detect-
able by LISA can significantly improve the accuracy with
which the mass ratio and component spins can be recov-
ered [39,40], although the degeneracy still persists at some
level when the spins are close to aligned [41]. It is difficult
to immediately translate these results to aLIGO, in large
part due to the fact that the typical SNR of such systems
would be around 1000, rather than 10 or 20 as discussed
here. At high SNRs, even subdominant effects will be well
measured and consequently break the observed degener-
acy. It remains to be seen whether precession at moderate
SNRs can alleviate the degeneracy we discuss and allow
for accurate measurement of the component masses and
spins. In general it is far more likely that increasing the
dimensionality of the model parameter space will increase
the parameter uncertainty, because the confidence regions
will now correspond to lower matches. The recent results
in Ref. [9] show that precession effects have only a weak
impact on the phasing, which suggests that while the
inclusion of precession is unlikely to break the degeneracy
discussed here, it is also unlikely to introduce an additional
degeneracy in these three parameters. On the other hand,
the inclusion of higher harmonics, which were ignored in
this study, may improve the accuracy of the parameters (as
was seen for high SNR inspiral-only signals in both
ground- [42] and space-based [41] detectors). The net
impact of these two effects remains to be studied in more
detail in future work.
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