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Summary

In this thesis two different models and numerical methods have been developed to
investigate the dynamics of bubbles in viscoelastic fluids. In the interests of gaining
crucial initial insights, a simplified system of governing equations is first considered.
The ambient fluid around the bubble is considered incompressible and the flow irrota-
tional. Viscoelastic effects are included through the normal stress balance at the bubble
surface. The governing equations are then solved using a boundary element method.
With regard to spherical bubble collapse, the model captures the behaviour seen in
other studies, including the damped oscillation of the bubble radius with time and the
existence of an elastic-limit solution. The model is extended in order to investigate
multi-bubble dynamics near a rigid wall and a free surface. It is found that viscoelastic
effects can prevent jet formation, produce cusped bubble shapes, and generally prevent
the catastrophic collapse that is seen in the inviscid cases.

The model is then used to investigate the role of viscoelasticity in the dynamics of rising
gas bubbles. The dynamics of bubbles rising in a viscoelastic liquid are characterised
by three phenomena: the trailing edge cusp, negative wake, and the rise velocity jump
discontinuity. The model predicts the cusp at the trailing end of a rising bubble to
a high resolution. However, the irrotational assumption precludes the prediction of
the negative wake. The corresponding absence of the jump discontinuity supports the
hypothesis that the negative wake is primarily responsible for the jump discontinuity,
as mooted in previous studies.

A second model is developed with the intention of gaining further insight into the
role of viscoelasticity and corroborating the findings of the first model. This second
model employs the full compressible governing equations in a two dimensional domain.
The equations are solved using the spectral element method, while the two phases are
represented by “marker particles”. The results are in qualitative agreement with the
first model and confirm that the findings presented are a faithful account of bubble
dynamics in viscoelastic fluids.
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Eötvös number. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.6 Evolution of the rise velocity for a selection of Reynolds numbers with

Eö = 106. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.7 Evolution of the rise velocity for a selection of Reynolds numbers with
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Chapter 1

Introduction

1.1 Motivation

This thesis is concerned with the development of numerical methods to investigate

the dynamics of bubbles in viscoelastic fluids. When a body of liquid is heated under

constant pressure, or when its pressure is reduced at a constant temperature; vapour

and/or gas filled bubbles can form and grow. The latter process of rupturing a fluid

by a decrease in pressure is often called cavitation [29]. The occurrence of bubbles in

Nature and industry is innumerable and their role in fluid systems is one of fundamen-

tal importance. A few example industrial systems are combustion engines, pipelines,

pumps, and distillation columns [124]. In medicine and biology, bubbles are important

in ultrasound [166] and shock-wave lithotripsy [51, 85] procedures. In Nature, besides

the world’s oceans and rivers being natural bubbly flows, bubbles are utilised by living

organisms such as the snapping shrimp in subduing their prey [96].

Many of the fluids in such systems are best described by non-Newtonian, and in par-

ticular, viscoelastic models. This is especially true of common biological and industrial

fluids such as blood, oils, and lubricants. Briefly, viscoelastic fluids are those which

possess characteristics of both the elastic solid and viscous fluid. In 1867 Maxwell first

proposed a mathematical model for a viscoelastic material. By combining the concepts

of the ideal elastic solid proposed by Hooke (1676) with the ideal viscous fluid proposed

by Newton (1687), Maxwell derived the well-known constitutive equation

λ
∂T

∂t
+ T = µγ̇, (1.1)
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relating the stress T to the rate of strain (or rate of deformation) γ̇. The constants of

proportionality µ and λ are called the viscosity and relaxation time, respectively. The

relaxation time is an important property of viscoelastic materials and, broadly speak-

ing, provides an order of magnitude estimate of the time it takes for the stress to relax

to some limiting value. Physically, the relaxation time is associated with the rate at

which structures within the material change their configurations. In the case of water

the relaxation time is approximately 10−12s, while that of low density polyethylene is

about 10s. It is often the case, for example in polymeric liquids, that there will be a

range of time constants associated with a range of polymer molecule configurations,

and consequently the fluid will have a spectrum of relaxation times. Due to their com-

plex structure, in reality few viscoelastic materials obey the simple linear relationship

proposed by Maxwell, particularly in flows with large deformations. In a landmark

paper, Oldroyd [109] discussed the use of frame invariant rheological models, suitable

for application to all conditions of motion and stress. This set up the framework for

the development of non-linear constitutive equations and, to this day, ever more so-

phisticated rheological models are being proposed to better describe viscoelastic flow

behaviour.

The dynamics of viscoelastic fluids are interesting and varied, and can differ greatly

from Newtonian fluids. One can then expect the behaviour of bubbles within a vis-

coelastic fluid to differ drastically from a Newtonian fluid. Despite their prevalence

and more interesting dynamics, bubbles in viscoelastic fluids have received little at-

tention compared to their Newtonian counterparts. Theoretical and numerical studies

are, in the most part, restricted to spherical bubble dynamics and the solution of the

governing non-linear ODE. In reality, bubbles rarely remain spherical. While a multi-

tude of numerical methods have been developed to simulate non-spherical Newtonian

dynamics, numerical studies into non-spherical viscoelastic dynamics are sadly lacking.

The bubble dynamic process which receives the greatest attention in this thesis is

arguably the most important and interesting; that of bubble collapse.

1.2 Bubble Collapse and Cavitation Damage

Bubble collapse occurs implosively and is a catastrophic phenomenon producing high

pressures, velocities, temperatures, loud noises and even light [29]. As a result of

2



such high pressures and velocities, bubble collapse can cause substantial damage to

nearby surfaces; so called cavitation damage. As stated by Knapp et al. [84]: “Cav-

itation is a most unpleasant hydrodynamic phenomenon, whose harmful effects are

both widespread and obvious and seriously handicap many phases of science and en-

gineering”. Figure 1.1 shows images of a propeller which has succumbed to cavitation

damage.

Figure 1.1: Cavitation damage on a propeller blade1.

One of the first studies of cavitation damage was under commission from the British

Admiralty, which wanted research carried out to determine the cause of damage to

ship propellers. It was reported that damage was due to “hydraulic blows” to the

blades from collapsing cavitation bubbles [18]. The first serious theoretical study of

cavitation was undertaken by Lord Rayleigh in 1917 [126]. Considering the collapse

of a spherical void in an infinite bath of fluid, it was shown that collapse created high

pressures and velocities in close proximity to the bubble surface. For fifty years the

development of high pressures was seen as a sufficient reason for cavitation damage.

It was not until the pioneering experimental work of Benjamin and Ellis [9] in 1966,

that it was realised a more complex dynamic occurred. During collapse near a wall

the bubble no longer remains spherical. In fact a high speed liquid jet forms, which

can penetrate and thread the bubble and impact upon the wall. The resulting bubble

can then have a toroidal form. A simple diagrammatic representation of this process

is given in Figure 1.2

Jet velocities during bubble collapse can typically reach 100ms−1 [86,138]. It was sub-

sequently proposed that the impact of this liquid jet upon a nearby surface was the

1Picture available for reuse under licence, see http://creativecommons.org/licenses/by-
sa/2.5/deed.en
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Figure 1.2: Sketch of jet formation and impact during collapse near a rigid wall - and
the possible damage that results.

primary mechanism for cavitation damage [158]. More recently it was found that, fol-

lowing jet impact, the subsequent toroidal dynamics can produce large pressure shock

waves, which also contribute to cavitation damage [115]. The proposed source of these

shock waves is a “splashing effect”, which arises from the collision of fluid from the

liquid jet with the oppositely directed flow [151]. Hence, whether acting directly or

indirectly, jet formation is a major factor in the creation of cavitation damage. Cav-

itation damage remains a subject of intense research due to its prevalence in many

different processes. These include shockwave lithotripsy (cavitation damage can occur

on internal organs during the procedure [51]), the flow around hydrofoils [47] and jour-

nal bearings [44] (both of which can succumb to cavitation damage) and interestingly,

the snapping shrimp (their snapping claw produces bubbles which collapse, stunning

their prey [96]).

1.3 Numerical Approaches in the Modelling of Bub-

ble Dynamics

Bubble dynamics falls under the broader subject of multi-phase flows; the bubble is

comprised of one phase (gas or vapour), while the ambient fluid comprises of another

(liquid). One need not dwell on the importance of multi-phase flows, but their incred-

ible prevalence means that they have been a subject of intense research for decades.

Short of analytical solutions but for the simplest cases, a multitude of numerical meth-

ods have been developed to simulate their dynamics. Broadly speaking, the numerical

methods can be split into two groups; fixed (Eulerian) mesh techniques or moving

(Lagrangian) mesh techniques. The main methods within these two groups, and their

relative merits, will be briefly discussed.
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1.3.1 Eulerian Techniques

Since the computational mesh is fixed, additional functions need to be defined to trace

fluid boundaries. These functions can be designed and implemented in such a way as

to capture large deformations and coalescence/splitting with ease. The are two distinct

approaches - surface tracking methods and volume tracking methods.

Surface Tracking

Surface tracking methods specify a set of marker points or use height functions to

describe the surface explicitly. Extensively used techniques include the front track-

ing method of Unverdi and Tryggvason [156] and the level set method of Osher and

Sethian [111]. The front tracking method and the level set method are typically ap-

plied in “one-fluid” methods. Briefly, all phases are governed by one set of governing

equations with densities and viscosities varying appropriately for each phase (for ex-

ample the density of the region describing the bubble should be less than the ambient

fluid). The front tracking method specifies a series of marker points on the bubble

surface. The surface is well defined but the sharp change in variables across the sur-

face is smoothed as information is passed on to the fixed grid. The level set method

defines a function φ that is zero on the boundary, positive in one phase, and negative

in the other. Since the function is advected with the flow and the boundary, φ will

theoretically retain these values indefinitely. The set of points such that φ = 0 defines

the position of the surface, but as with the front tracking method, smoothing is re-

quired over the interface when passing information onto the fixed grid. The advantage

the level-set method has over the front tracking method is that no special treatment is

required when interfaces meet. In the former the interface needs to be reconstructed

accordingly, while for the latter the interface is always defined by φ = 0. The level

set method, however, suffers from poor mass conservation, with mass being spuriously

created or destroyed, especially under significant topological changes of the interface.

The MAC method, originally of Harlow and Welch [64], is not dissimilar to the front

tracking method in the respect that the surface is traced by advected marker points.

However, marker points are also distributed throughout the fluid bulk, and so the

method can be considered more a volume tracking technique rather than surface track-

ing. Here marker points indicate the position of the fluid interface on the grid and so

where the free surface boundary conditions can be applied. In the original implemen-
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tation, the free surface boundary conditions were included in a crude manner as no

detail regarding the form of the free surface could be deduced (only its whereabouts on

the grid). However, this has since been considerably refined. For example, Popinet and

Zaleski [121] in their finite volume study, interpolate such marker points using cubic

splines - producing a well defined surface allowing for an accurate implementation of

the boundary conditions.

Volume Tracking

The most commonly used volume tracking techniques are variations and extensions

of the well known “volume of fluid” method (VOF). A volume fraction parameter, f

(sometimes called a colour function), is assigned to each of the grid cells such that it is

full of liquid if f = 1, is empty if f = 0, and partially full if 0 < f < 1. The function f

is then calculated at subsequent time steps using an advection equation. As with the

level set method, the major benefit is its ability to deal with large deformations and

changes in topology without any additional effort. The volume fraction f is simply

updated using the advection equation to determine what portion of fluid is in each

grid cell. The major problem is that the interface is not explicitly described. There

have been a number of methods which infer the interface geometry in a variety of

ways, including SLIC (simple line interface calculation), PLIC (piecewise linear inter-

face construction) and ELVIRA (efficient least squares VOF interface reconstruction

algorithm). However such techniques can lead to unwanted smoothing of the surface,

i.e. “numerical surface tension”. Consequently the accuracy of surface tension forces

can be significantly affected. Though traditionally used in conjunction with finite dif-

ference grids, VOF methods have also been used with finite element methods, see for

example [103]. The main benefit of doing so is that boundary conditions on the in-

terface can be implemented in a more natural and physical way using appropriately

shaped elements along fluid interfaces. “One fluid” finite difference methods typically

accommodate such conditions through an additional body force term in the equation

of motion. Different methods exist for calculating this body force, such as the CSF

(continuum surface force) method, but these inevitably require smoothing the force

over a finite interface.

The marker particle (MP) method of Rider and Kothe [128] bears a semblance to
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both the volume of fluid and MAC method. In a similar manner to VOF, a colour

function C is updated using the usual advection equation. However, instead of directly

tracking volume, massless marker particles are tracked. Each particle is assigned a

particular “colour” depending upon the phase in which it resides. Since a particle of

fluid will remain of that fluid type (assuming no change in phase), a particle will keep its

colour indefinitely. Within fluid-fluid interface regions, where two (or more) differently

coloured sets of marker particles reside, an average is taken of the surrounding particles

to determine an interpolated colour at the point in question. To accurately describe

the different phases, the whole computational domain is filled with a high density of

these marker particles, with each being updated to a new position every time step.

An obvious disadvantage compared to VOF methods is the additional computational

cost in tracking such a large number of particles. The main advantages include the

ease of implementation, the trivial extension to compressible flows, and the minimal

numerical diffusion of the colour function over time (particle information is never lost).

Furthermore, the method retains the VOF’s ability to deal with large deformations

and topology changes automatically.

1.3.2 Lagrangian and Semi-Lagrangian Techniques

Alternatively, one can eliminate the need for additional phase defining functions through

the employment of a moving or Lagrangian mesh technique. Defining the surface of

the bubble or drop to be the boundary of the computational domain, one can solve the

governing equations and update the mesh to determine the evolution in bubble shape.

Generally such an approach allows an accurate implementation of the stress boundary

conditions between phases, which is indeed necessary to complete the system of gov-

erning equations. In most cases however, and in contrast to many one-field Eulerian

models, the gas/vapour phase is not explicitly modelled (but its influence can still be

exerted through the boundary conditions).

Finite element methods are a popular choice in solving such moving mesh problems

due to their flexibility in handling irregular geometries. However, a limitation of La-

grangian techniques is the development of large distortions in the mesh, as it deforms

with the flow. To prevent stretching and distortion of the mesh, and subsequent on-

set of numerical instability, substantial remeshing has to be undertaken. Appropriate

remeshing can be difficult and can itself introduce additional errors in the solution. The

Arbitrary Lagrangian Eulerian (ALE) method attempts to alleviate mesh distortion,
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by mapping the advecting physical domain onto a computational domain. The com-

putational domain is moved with a velocity that can be different from that of the flow.

This allows its deformation to be controlled, enabling it to stay relatively structured

even though the physical domain is heavily distorted [124]. In two or more dimen-

sions, Lagrangian and semi-Lagrangian techniques can be quite tricky to implement.

Boundary element methods (BEM) have been very popular in describing multiphase

flows as the dimensionality of the problem is effectively reduced by one. Not only is

this more computationally efficient, but updating and redistributing the mesh is easier

to implement. Consequently, BEM methods are adept in handling large flow deforma-

tions. However, boundary element methods are best reserved for the numerical solution

of linear PDE’s. Though it is possible to extend BEM to non-linear equations - this

will inevitably involve some domain calculations [59]. As a result, boundary element

methods are well suited to solving incompressible and irrotational flows (governed by

Laplace’s equation: ∇2φ = 0), and Stokes flows (∇ · σ = 0). The use of boundary

element methods in solving Stokes’ equation for bubble and drop problems has been

investigated by Khayat [75], for example. Khayat looks at several industrial processes,

such as cavity flow in polymer solutions with moving boundaries [75] (the polymeric

liquid under study is assumed to be of Jeffrey’s type), drop deformation in confined

flow [76], and extrusion of a viscous fluid through a solid cylinder [77]. Though able to

describe extremely slow or viscous flows [43], the Stokes approximation cannot be used

to describe high speed cavitation phenomena, such as jet formation and bubble collapse.

In previous studies of non-spherical bubble collapse, the application of Laplace’s equa-

tion has proven most successful. The problem was first tackled by Plesset and Chap-

man [119] who assumed an inviscid, incompressible and irrotational fluid, and solved

Laplace’s equation using a finite difference method. Blake et al. [19] then solved the

same model problem using the more efficient and accurate boundary element method.

Following experimental observations, axisymmetry was also assumed. Their results

show the production of the liquid jet (up until the point of impact upon the lower

bubble surface) and bear good agreement with experiment. Subsequent developments

to the model include a cubic spline representation of the boundary and the surface

functions [46], the inclusion of non-condensible bubble contents [11], the simulation of

bursting of bubbles near free surfaces [26], and fully 3D calculations [122,167]. Best [10]

also extended the theory to study the dynamics of the toroidal bubble created after the
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liquid jet penetrates the cavity. Subsequent numerical studies of the toroidal splashing

effect have been reported in [151]. These studies have all assumed the fluid around

the bubble to be inviscid. There is a common misconception that an irrotational flow

implies an inviscid fluid. Importantly, and as recently stressed by Joseph [70], this is

certainly not the case.

1.4 The Direction of this Thesis

In the interests of gaining some crucial insights into viscoelastic bubble dynamics, a

simplified system of governing equations is first considered. Given the success of the

irrotational boundary element method in describing inviscid bubble collapse, the first

course of action is to extend the method to include viscoelastic effects. The assump-

tion is that the viscoelastic (and viscous) effects are important only in the immediate

proximity of the bubble surface, with the ambient fluid flow remaining irrotational.

This model will allow a valuable and unique insight into dynamics, as well as provide a

particularly good approximation to inertia dominated flows, such as jet formation. In

such flows viscous/viscoelastic effects are important only in thin boundary layers near

the bubble surface.

Indeed, the irrotational flow approximation has provided some very satisfactory results

for a range of viscous/viscoelastic bubble and drop phenomena. As mentioned, an ir-

rotational flow does not imply an inviscid fluid; viscous, and indeed viscoelastic effects,

still reside and can appear through the boundary conditions. This is a fact that has

been reemphasised in a number of recent papers by Joseph and co-workers (see for

example [70]). The ability of viscous/viscoelastic irrotational flows to provide good

approximations to full solutions arises from the small amount of vorticity generated

at the bubble’s shear stress-free free surface. As stated by Batchelor [7] p. 366, there

is only a small variation in velocity across the boundary layer, and energy dissipation

is dominated by the external irrotational flow. Studies where viscous and viscoelastic

potential flows have been particularly fruitful are in the study of rising bubbles in vis-

cous liquids [88,106,107], capillary instabilities in viscous [56] and Maxwell fluids [57],

and in the Rayleigh-Taylor instability of viscoelastic drops [71]. Furthermore, such

potential flow approximations are not necessarily restricted to high Reynolds numbers.

An analysis of spherical cap bubbles using a viscous potential flow approximation gives
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excellent agreement with experiment for Reynolds numbers as low as Re = 0.1 [69].

Similarly, agreement between experiment and potential flow calculations for viscous

rising bubbles are fairly good for even for Re ∼ O(1) [70].

Such is the dearth of numerical research into viscoelastic bubble dynamics, and par-

ticularly bubble collapse, that employing an irrotational assumption and solving the

simplified system is an important first step. This approach was recommended indepen-

dently by Brujan [32]. With regard to simulating bubble collapse near rigid boundaries

in viscoelastic fluids, Brujan suggests the model proposed here; employing an irrota-

tional approximation in the bulk with viscoelastic effects included at the bubble surface.

Besides being able to provide a faithful approximation to many bubble phenomena, the

model can be used to provide other unique and useful insights into viscoelastic bubble

dynamics. In particular, the model allows one to ascertain the relative importance of

surface and bulk viscoelastic effects, and also (in situations where they are known to

occur) the importance of wake structures on dynamics, which are prevented under the

irrotational approximation.

The overall aim of the model is to provide valuable and accessible initial insights

into bubble dynamics in viscoelastic fluids, using an effective and efficient numerical

method. It is an important first step in the development of more sophisticated models.

Following this first venture, and given that the potential flow approximation does pre-

clude an exacting account of the role of viscoelasticity, a second model and numerical

method is then developed to describe bubble dynamics in viscoelastic fluids. The in-

tention is to gain further insight into the role of viscoelasticity, but also to support

the findings of the boundary element study. Now both the bubble and the ambient

fluid are directly modelled, and the full governing equations are solved over the whole

fluid domain. Whereas the boundary element method is a fully Lagrangian technique,

the second method is (mostly) Eulerian. It is a one-field model with the compress-

ible equations of motion being solved on an Eulerian grid using the spectral element

method. Compressibility is necessary, given that the fluid within the bubble is now

explicitly modelled and requires the ability to change volume during collapse. It is also

well known that during collapse compressibility effects can be important in the am-
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bient fluid, particularly in the final stages, when collapse velocities are non-negligible

compared to the speed of sound [30]. Necessarily, a suitable constitutive equation for

compressible viscoelastic fluids will also be discussed. The multiphase description to

be employed is the marker particle method described in the previous section. As men-

tioned, particular benefits of the scheme include the ease of implementation, the trivial

extension to compressible flows, the minimal numerical diffusion of the colour function

over time, and the ability to deal with large deformations and topology changes auto-

matically.

While particularly good quantitative agreement between the two models is not to be

expected (given the notable differences), the extent of their qualitative agreement will

be discussed.

1.5 The Outline of this Thesis

This thesis is structured as follows: Chapter 2 introduces the first mathematical model

and describes the numerical solution of the governing equations. The numerical scheme

is validated through comparison with available analytical solutions. The dynamics of

spherical bubble collapse in viscoelastic fluids is discussed and the predictions of the

model compared with those of the literature. The majority of the work in this chapter

has been published in the Journal of Non-Newtonian Fluid Mechanics [94].

Chapter 3 utilises the model of Chapter 2 and investigates the role of viscoelasticity in

the collapse of a bubble near a rigid wall/boundary. The numerical scheme is validated

through the comparisons with the results for the inviscid case, which are available in

the literature. Viscous and viscoelastic effects are then included and the subsequent

dynamics discussed. A version of this chapter has been submitted to Theoretical and

Computational Fluid Dynamics [92].

Chapter 4 extends the work of Chapter 3 and looks at the dynamics of two bubbles

near a rigid boundary. For in reality bubbles rarely form in single configurations but

as a part of large bubble clouds. Consequently, an understanding of the bubble-bubble

interaction when near a wall is important.
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Chapter 5 investigates the dynamics of a single bubble near a free surface. This is an-

other important situation, particularly in biological applications, where bubbles form

near flexible membranes and tissue. Bubble collapse near such surfaces can then result

in cell and tissue damage. Furthermore, a study of the role of viscoelasticity is impor-

tant, as many biological fluids (e.g. blood, plasma) are viscoelastic in nature. A version

of this chapter is in preparation for submission to the Journal of Fluid Mechanics [91].

Chapter 6 investigates the dynamics of gas bubbles rising in viscoelastic fluids. It is a

fundamental problem of great importance and has received much attention from exper-

imentalists. The dynamics are drastically different to their Newtonian counterparts.

Viscoelastic phenomena includes the formation of trailing end cusps, a negative wake,

and a jump in the rise velocity for bubbles over a certain volume. The aim is to resolve

the debate in the literature over the cause of this “velocity jump discontinuity” seen

in experiment. The irrotational assumption precludes the formation of the negative

wake, allowing important insights into the dynamics. Much of the work in this chapter

is to appear in a paper that has been accepted for publication in the Journal of Non-

Newtonian Fluid Mechanics [90].

In Chapter 7, we return to the problem of bubble collapse near a wall. Here however

the full compressible governing equations are solved using a spectral element method.

A volume-of-fluid-like scheme called the marker particle method is used to track and

distinguish the bubble and ambient fluid phases. The results are compared with those

of Chapter 3 with the aim of corroborating the previous findings and gaining more in-

sight into the effect of viscoelasticity on cavitation dynamics. A version of this chapter

is in preparation for submission to the Journal of Computational Physics [93].

In Chapter 8, the conclusions of the thesis are presented. This includes a summary

of the findings, a critical analysis of the numerical methods, and the possibilities for

further research.
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Chapter 2

Spherical Bubble Collapse in

Viscoelastic Fluids

2.1 Introduction

As mentioned in Chapter 1, the dynamics of cavitation bubbles play a crucial role in

many different areas of science, medicine and engineering. The importance is reflected

in the plethora of studies, both experimental and theoretical, that are available in the

literature. Cavitation processes occur frequently in non-Newtonian fluids in indus-

try and in medicine. Given their importance, an understanding of spherical bubble

dynamics is an essential first port of call.

2.1.1 The Rayleigh-Plesset Equation

The Rayleigh-Plesset equation is the non-linear ordinary differential equation govern-

ing the dynamics of a spherical bubble in a Newtonian fluid. First derived for the

inviscid case by Lord Rayleigh [126], with viscous effects introduced by Plesset [120],

it can be readily derived by considering the Naiver-Stokes equations in spherical polar

co-ordinates.

Consider a spherical bubble of radius R(t), in an infinite domain of fluid with a pressure

p∞(t) at infinity. The fluid is considered incompressible with a constant density ρ and

viscosity µ. It is assumed the bubble contents are homogenous and the pressure pb(t)

uniform. In the spherically symmetric geometry, the Navier-Stokes equations are given

by

13



ρ
∂u

∂t
+ ρu

∂u

∂t
= −∂p

∂r
+ µ

(
1

r2

∂

∂r
(r2∂u

∂r
)− 2u

r2

)
. (2.1)

Conservation of mass requires that

u(r, t) =
F (t)

r2
. (2.2)

In the case of zero mass transfer across the surface, u(R, t) = dR/dt = Ṙ and so

F (t) = R2Ṙ. This can be shown to be a good approximation even when evaporation

or condensation occurs at the interface [29]. Therefore, (2.2) can be written as

u(r, t) =
R2Ṙ

r2
. (2.3)

Substituting (2.3) into (2.1) and integrating gives

2RṘ2 + R2R̈

r
− R4Ṙ2

2r4
=

p− p∞
ρ

, (2.4)

using the fact that p → p∞ when r →∞.

Now consider the stress boundary condition on the bubble fluid interface: the resultant

stress on an infinitely thin lamina radially outwards is given by

(σrr)r=R + pb − 2S

R
, (2.5)

where pb is the pressure inside the bubble and S the surface tension. In the absence of

mass transfer, this stress must be zero and hence

p = pb + 4µ
Ṙ

R
− 2S

R
. (2.6)

(Since σrr = −p+2µ∂u
∂r

) Finally, substituting (2.6) into (2.4) gives the Rayleigh-Plesset

equation; a description of spherical bubble dynamics in a Newtonian fluid:

RR̈ +
3

2
Ṙ2 + 4µ

Ṙ

R
+

2S

R
=

pb − p∞
ρ

. (2.7)

For the inviscid case (µ = 0), if one neglects surface tension (S = 0) then (2.7) can be

integrated in time to give the form derived by Rayleigh [126]:
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Ṙ =

(
2(p∞ − pb)

3ρ

(
R3

0

R3
− 1

))1/2

. (2.8)

From this one can derive the collapse time tc for a spherical cavity in an inviscid

incompressible fluid (the time it takes for R → 0), to give

tc = R0

(
ρ

6(p∞ − pb)

)1/2
Γ(5/6)Γ(1/2)

Γ(4/3)
≈ 0.91468R0

(
ρ

(p∞ − pb)

)1/2

. (2.9)

The inviscid collapse time tc allows important comparisons to be made and is a useful

time scale for bubble collapse phenomena.

The Rayleigh-Plesset equation (2.7) is a second order, non-linear ODE that can be

solved in a straightforward manner using standard numerical techniques. Using a

fourth-order Runge-Kutta scheme, the numerical solution of (2.7) can be obtained for

different values of viscosity µ (see Fig. 2.1). The effects of surface tension are neglected

(S = 0) in the interest of determining the effects of fluid rheology on dynamics.
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Figure 2.1: Numerical solution of the Rayleigh-Plesset equation for different viscosities.

As expected intuitively, an increase in viscosity results in an increase in the collapse

time; the dynamics being increasingly damped in the presence of increasing viscous

forces.
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2.1.2 Viscoelastic Spherical Bubble Dynamics

In a similar manner to the Newtonian case, a general Rayleigh-Plesset equation can

be derived given a general equation of motion with an extra stress tensor T. The

spherical symmetry of the system means that all shear stress components are zero and

that Tθθ = Tϕϕ. Consequently, the equation of motion is given by

ρ

(
∂u

∂t
+ u

∂u

∂r

)
= −∂p

∂r
+

(
∂Trr

∂r
+

2(Trr − Tθθ)

r

)
. (2.10)

The stress balance on the bubble/fluid surface (again neglecting surface tension) is

given by

p = pb + Trr. (2.11)

Furthermore, it is commonly assumed that the extra stress tensor is trace free (Tii =

0), allowing the stress components to be written in terms of Trr only. Subsequent

integration of (2.10) between R and ∞ gives the generalised Rayleigh-Plesset equation:

RR̈ +
3

2
Ṙ2 =

pb − p∞
ρ

− 3

ρ

∫ ∞

R

Trr

r
dr (2.12)

A primary characteristic of spherical bubble collapse (or expansion) in most viscoelastic

fluids, is the damped oscillation of the bubble radius in time. This intuitive effect is

due to the competition between inertial, viscous and elastic forces - and occurs only in

fluids with characteristically large elasticities, such as the Maxwell and Oldroyd models

(it is consequently not seen in a second order fluid [50]).

Many authors have noted this and other effects by solving a generalised Rayleigh-

Plesset equation for a range of different constitutive relations. Fogler and Goddard [54]

undertook one of the first theoretical studies of collapse in a viscoelastic medium, using

a Rayleigh-Plesset equation to solve the problem of a collapsing spherical cavity in a

linear Maxwell fluid. For a range of Reynolds and Deborah numbers, the viscoelastic

Rayleigh-Plesset equation was solved using finite difference methods. Their results

show for very large Deborah numbers the bubble will either oscillate about an equi-

librium radius, or collapse without oscillation, depending on some critical value. The

important finding of the study is that elasticity in the liquid can significantly retard the

collapse of a void and produce large oscillatory motion whenever the relaxation time

of the fluid is of the same order of magnitude as the Rayleigh collapse time. Later,
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the Jeffreys model was investigated by Ellis and Ting [50] and also Tanasawa and

Yang [148]. Again, the oscillation of the bubble radius in time was predicted. It was

also noted that, due to the presence of elasticity, viscous damping effects on collapse

are less in a viscoelastic fluid than in a purely viscous Newtonian fluid.

More recently Kim [78] investigated collapse in an upper convected Maxwell fluid, and

solved the appropriate Rayleigh-Plesset equation using a 1D finite element method.

The study notes the “highly oscillatory behaviours observed for moderate to high De”.

Additionally, it was observed that collapse is faster in the early stages, but slower in

the later stages; remarking that this retardation could suppress catastrophic collapse

and reduce cavitation damage in viscoelastic fluids.

Many other studies on spherical viscoelastic bubbles exist in the literature. Fogler and

Goddard [53] and Allen and Roy [2] have investigated bubble dynamics in an Oldroyd

fluid, but with applications to acoustics. Hence, frequency forcing terms were included

in the models to study bubble oscillation. Brujan [30] considered the influence of com-

pressibility on the spherical collapse of a bubble in a Jeffreys fluid. The study showed

that rebound and the period of oscillation during collapse are significantly less than

in the incompressible case, as energy is lost through sound radiation. The important

thing to note is that, despite the subtle differences in each study, each one captures

the essential viscoelastic dynamics - the damped oscillation of the radius with time.

The Rayleigh-Plesset equation is restrictive in the sense that its solution describes only

spherical dynamics. However, some of the most important bubble dynamic processes,

such as jet formation, are non-spherical (yet still axisymmetric [19]). In this chapter

we present the first of two numerical methods developed in the study of non-spherical

viscoelastic bubble collapse. Under the assumption of irrotationality and incompress-

ibility, the mass continuity equation is solved using an axisymmetric boundary element

method. An equation of motion is then formulated in terms of a generalised Bernoulli

equation. Although developed with the ultimate intention of simulating non-spherical

dynamics, in this chapter we present the details of the numerical scheme and its predic-

tions for spherical bubble dynamics only. Non-spherical investigations are reserved for

the subsequent chapters. The model is shown to describe all the important spherical

phenomena observed in the literature for the well-studied Maxwell fluid. The dynamics

of more complicated constitutive equations are also investigated using this method.
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In Section 2, the mathematical model and governing equations are presented. In Section

3 the numerical technique for solving the governing equations is described. Then in

Section 4, some numerical results are presented for several viscoelastic models detailing

the influence of the Deborah and Reynolds numbers on bubble dynamics. Conclusions

to the study are presented in Section 5.

2.2 Mathematical Model and Governing Equations

Consider a spherical bubble of initial radius R0 in an infinite expanse of fluid. Let the

fluid domain be labelled Ω with the fluid boundary, or equivalently the bubble surface,

labelled ∂Ω. A description of fluid and bubble dynamics can be determined by solution

of the equations governing fluid motion; the conservation of mass

Dρ

Dt
+ ρ∇ · u = 0, (2.13)

and the conservation of momentum,

ρ
Du

Dt
= −∇p +∇ ·T. (2.14)

Here ρ is the fluid density, u the velocity, p the pressure and T is the extra stress

tensor.

As noted in the theoretical studies of Brujan [30,31], the effects of compressibility can

be important, particularly in the late stages of collapse, when bubble interface velocities

become non-negligible compared to the speed of sound in the liquid. Despite this, we

follow the majority of other works in the literature, and assume only a small fraction

of bubble kinetic energy is radiated away as sound, and so impose incompressibility.

Hence the conservation of mass (Equation (2.13)) reduces to,

∇ · u = 0. (2.15)

As stated in Chapter 1, in the interests of gaining some crucial initial insights into

viscoelastic bubble dynamics, a simplified system of governing equations is considered.

As suggested by Brujan [32], the fluid flow is assumed to be irrotational,

∇× u = 0, (2.16)

with viscous and viscoelastic effects included at the bubble surface. Besides allowing
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a valuable and unique insight into dynamics, this assumption can provide a faithful

approximation, especially in the modelling of inertia dominated phenomena such as jet

formation. In such cases it is well known that viscous effects are important only in thin

boundary layers near surfaces [7]. The fluid outside of these boundary layers behaves

as if it is inviscid and the flow is irrotational. Similarly, in the case of viscoelastic fluids,

Beard and Walters [8] and Denn [45] assume such an (effectively) inviscid external flow

in their study of viscoelastic boundary layers. In the case of bubbles (and drops), the

shear stress-free free surface generates little vorticity and so flow within the boundary

layer is only slightly perturbed from irrotationality [7]. Thus, to a good approximation,

the bulk of the fluid can be modelled as (effectively) inviscid and irrotational, with vis-

cous and viscoelastic effects appearing through the normal stress boundary condition

at the bubble interface.

This approximation has proven extremely fruitful in many studies of viscous and vis-

coelastic drop and bubble dynamics. These include the study of rising bubbles in vis-

cous liquids [88,106,107], capillary instabilities in viscous [56] and Maxwell fluids [57],

and in the Rayleigh-Taylor instability of viscoelastic (Oldroyd B) drops [71]. Due to

the complexity of some problems, several studies necessarily employ the boundary ele-

ment method (BEM) in their viscous potential flow solution. Georgescu et al. [60] and

Boulton-Stone and co-workers [25, 26] undertake a viscous potential flow study of a

bursting bubble near a free surface, with the results of the former showing good agree-

ment with experiment. Similarly Rush and Nadim [135] use a viscous potential BEM

in their study of viscous drop oscillation; as do Canot and Davoust [40] in their study

of viscous buoyant bubbles near walls. Evidently, the viscous/viscoelastic potential

flow approximation has provided a successful description of many multiphase systems,

and in many cases gives excellent agreement with experiment.

The success of the description is due to reduced vorticity generation at the free sur-

face, compared to the corresponding no-slip surface. Consequently, not only can the

irrotationality of the ambient fluid be maintained, but the potential flow can provide a

better than expected approximation at lower Reynolds numbers. An analysis of spher-

ical cap bubbles using a viscous potential flow approximation gives excellent agreement

with experiment for Reynolds numbers as low as Re = 0.1 [69]. Similarly, agreement

between experiment and potential flow calculations for rising bubbles are fairly good
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for even for Re ∼ O(1) [70].

Besides being able to provide a faithful approximation to many bubble phenomena, the

model can be used to provide other unique insights into viscoelastic bubble dynamics.

This includes information on the relative importance of surface and bulk viscoelastic

effects, and also (in situations where they are known to occur) the importance of wake

structures on dynamics, which are prevented under the irrotational approximation. In

any case, the model will provide a valuable and accessible first insight into problems

that notoriously require complex numerical implementations and excessive computa-

tional resources.

The spherical symmetry of the problems studied in this chapter means that the flow is

inherently irrotational. However, the analysis presented here is kept completely gen-

eral and is applicable to any irrotational flow and to non-spherical dynamics. In the

interests of primarily studying the viscoelastic effects, the following assumptions are

also made: the effects of gravity are negligible and the bubble contents are comprised

of a uniform vapour or gas.

Following the assumptions of incompressibility and irrotationality, it follows from the

conservation of mass that there exists a velocity potential φ which satisfies Laplace’s

equation:

∇2φ = 0, (2.17)

in the region Ω, exterior to the bubble. By Greens theorem, there exists an integral

solution to (2.17), defined in terms of the boundary integral [113]

c(p)φ(p) =

∫

∂Ω

(
∂φ

∂n
(q)G(p,q)− φ(q)

∂G

∂n
(p,q)

)
dS (2.18)

where the constant c(p) is given by

c(p) =

{
2π if p ∈ ∂Ω,

4π if p ∈ Ω\∂Ω

In 3D, the Greens function G(p,q) is given by
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G(p,q) =
1

|p− q| . (2.19)

As mentioned, the boundary ∂Ω represents the bubble surface. Hence the bubble is

represented by a void in the fluid domain Ω and is not explicitly modelled. In reality,

bubbles will never be complete voids or vacuums, hence any dynamics associated with

the bubble contents are introduced artificially through the boundary conditions on the

bubble surface (as in the Rayleigh-Plesset equation).

Given an initial potential φ0 on the bubble surface ∂Ω, the integral equation (2.18) can

be solved numerically (details of which will be given later) for the normal velocity to

the surface ∂φ
∂n

. The tangential velocity ∂φ
∂s

can be calculated given the potential φ0, and

the surface geometry ∂Ω. Hence the velocity on the surface is completely described.

Fluid particles with position vector x initially on the surface ∂Ω will remain there.

Consequently, the surface can be updated in a Lagrangian manner according to

Dx

Dt
= ∇φ, x ∈ ∂Ω. (2.20)

To update the potential φ we require an appropriate equation of motion. For an

irrotational velocity field u = ∇φ, the conservation of momentum (Eqn. (2.14)) can

be rewritten as

∇
(

ρ
∂φ

∂t
+

ρ

2
|∇φ|2 + p

)
= ∇ ·T. (2.21)

Hence one can formulate an irrotational equation of motion (a generalised Bernoulli

equation) provided that

∇ ·T = ∇ψ, (2.22)

for some real scalar function ψ. So, assuming such a function exists, a Bernoulli

equation (of motion) results from the integration of (2.21),

ρ
∂φ

∂t
+

ρ

2
|∇φ|2 + p− ψ = C(t). (2.23)

Equation (2.22) is not satisfied for general constitutive equations in general irrotational

flows [72]. In this study, viscous and viscoelastic effects are confined to the bubble

surface. The bulk contribution is negligible in comparison (i.e. ∇ ·T = 0) and so the

condition on the stress (Eqn. (2.22)) is satisfied by any constant ψ.
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If it is assumed that φ, ψ → 0 as x → ∞, then by (2.23) C(t) = p∞, the pressure at

infinity. On the surface of the bubble therefore, the following equation holds,

p(x) = −ρ
Dφ

Dt
+

ρ

2
|∇φ|2 + p∞, x ∈ ∂Ω. (2.24)

Consider an infinitely thin lamina across a segment of the surface. Assuming that there

is no mass transfer, the resultant forces must be zero [29] and so we have

pb = −σnn(x) + Sκ, (2.25)

where pb is the pressure inside the bubble and σnn is the normal component of the

normal stress vector σ ·n at the point x ∈ ∂Ω. The surface tension and total curvature

of the surface are given by S and κ, respectively. The fluid pressure on the surface

p(x) can now be related to the pressure pb inside the bubble given by (2.25) through

p(x) = pb + Tnn(x)− Sκ x ∈ ∂Ω. (2.26)

As in Kim [78], we here choose to neglect the effect of surface tension (set S = 0) and

focus solely on the viscoelastic effects.

Hence a dynamic boundary condition on the bubble surface is given by

ρ
Dφ

Dt
=

ρ

2
|u|2 − Tnn + p∞ − pb. (2.27)

The evolution of φ in time can be determined using (2.27). Subsequently, the integral

equation (2.18) can be solved to determine ∂φ/∂n and hence the velocity field. The

particle positions are then updated using (2.20). This serves to determine the new

location of the bubble surface and the process is repeated to obtain a complete de-

scription of the bubble dynamics.

Bubble Contents

A description of the internal bubble pressure, pb, requires some consideration. A stan-

dard approach is to assume the bubble contents are uniform and contain either some

condensible vapour (see, for example, Blake et al. [19]) or non-condensible gas (Best

and Kucera [11]). Condensible vapour contents can be adequately approximated by a

constant bubble pressure, due to the vapour evaporation during bubble expansion and
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condensation during contraction [87]. The non-condensible gas contents are commonly

modelled by an adiabatic ideal gas law viz.,

pb = pv + p0(V0/V )γ, (2.28)

where V and V0 are the current and initial volumes of the bubble, respectively, pv is

a constant vapour pressure, and γ is the ratio of specific heats. The presence of these

contents induce oscillation in the bubble during collapse, due to the high pressures

built up by the internal gas. Consequently, in this chapter we assume a simple constant

vapour pressure within the bubble, so the effects of viscoelasticity on dynamics can be

clearly seen.

2.2.1 Modelling Newtonian Dynamics

The extra stress tensor T for a Newtonian fluid is given by

T = µγ̇ = µ
(
(∇u) + (∇u)T

)
. (2.29)

Under the irrotational assumption, the velocity gradient is symmetric, and hence

T = 2µ(∇u). (2.30)

If the velocity gradient is then expressed in terms of boundary fitted co-ordinates

(n, s), where n and s are the normal and arclength, respectively, then using the Frenet

formulae, the normal-normal component of the stress Tnn can be expressed in the form

Tnn = 2µ
∂2φ

∂n2
. (2.31)

Therefore the equation of motion for the Newtonian problem is given by

ρ
Dφ

Dt
=

ρ

2
|u|2 − 2µ

∂2φ

∂n2
+ p∞ − pb. (2.32)

This model has been applied to many different studies in the literature, including jet

drop ejection [60], viscous buoyant bubbles near walls [40], and the oscillation of drops

with viscous effects [135].

The second normal derivative can be expressed in a more tractable form by making

use of Laplace’s equation (2.17) expressed in boundary fitted coordinates. Considering
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a cylindrical geometry, Laplace’s equation can be written as

∂2φ

∂n2
+

∂2φ

∂s2
+ C ∂φ

∂n
+

1

r

(
nr

∂φ

∂n
+ sr

∂φ

∂s

)
= 0, (2.33)

where nr, sr are the components of the normal and tangent vectors (in the radial

direction), respectively, and C is the in-plane curvature. On the axis of symmetry

(r = 0), equation (2.33) becomes

∂2φ

∂n2
+ 2

∂2φ

∂s2
+ 2C ∂φ

∂n
= 0. (2.34)

The first normal derivative is found directly from the boundary element method, while

the first and second derivatives with respect to arclength are approximated using cen-

tred differences. The second normal derivative is thus fully determined from equations

(2.33) and (2.34).

As in [19], the variables are non-dimensionalised as follows. Lengths are scaled with

respect to the initial bubble radius R0,

r∗ =
r

R0

, z∗ =
z

R0

, (2.35)

and time, pressure and the potential are scaled, respectively, according to

t∗ =
t

R0

(
p∞ − pb

ρ

)1/2

, (2.36)

p∗ =
p− pb

p∞ − pb

, (2.37)

φ∗ =
φ

R0

(
ρ

p∞ − pb

)1/2

. (2.38)

This choice of non-dimensionalisation yields a Reynolds number defined by

Re =
R0((p∞ − pb)ρ)1/2

µ
. (2.39)

Note that our definition of Reynolds number, defined with respect to pressure not

velocity, can still permit high speed flow and significant inertia at lower values. Hence

the irrotational assumption can still provide a valid approximation to the flow, even if

the Reynolds number defined by (2.39) is not particularly large.

So, (re-labelling dimensionless variables without asterisks) the dimensionless Newto-
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nian equation of motion reads

Dφ

Dt
= 1 +

1

2
|u|2 − 2

Re

∂2φ

∂n2
. (2.40)

2.2.2 Modelling Viscoelastic Effects

Initially we choose to model the viscoelastic effects using the Maxwell rheological model.

The reason for this is that the Maxwell model is the simplest model that provides

significant elastic effects. The linear version of this model, though fundamentally ap-

plicable, is limited since it is only able to describe viscoelastic effects under small

deformations [15]. For this reason, the so called “material” Maxwell model will be

used to describe the viscoelastic effects. The partial time derivative in the linear model

is replaced by a material derivative. This provides us with a more physically astute

constitutive relation, which allows for substantial deformation. The material Maxwell

model has been applied successfully in other studies of spherical viscoelastic bubble

dynamics, including Brujan [30, 31] and Fogler and Goddard [54]. Perhaps the most

satisfying feature of the model is that the extra stress tensor on the bubble surface

can be calculated with ease, since the material derivative reduces to the ordinary time

derivative in the particle reference frame. Furthermore, under the assumption of an ir-

rotational flow, the material derivative also satisfies frame invariance. This can be seen

by considering the frame invariant Jaumann derivative, which reduces to the material

derivative in an irrotational flow [68].

The constitutive equation for the material Maxwell model is given by

λ
DT

Dt
+ T = µγ̇. (2.41)

Where λ is the relaxation time and µ the viscosity.

The choice of scaling in the previous section yields an additional dimensionless param-

eter associated with elastic effects: the Deborah number

De =
λ

R0

(4p

ρ

)1/2

. (2.42)

The dimensionless equation of motion is then,

Dφ

Dt
= 1 +

1

2
|u|2 − Tnn, (2.43)
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where Tnn is found from the constitutive equation

De
DTnn

Dt
+ Tnn =

1

Re
γ̇nn. (2.44)

It is not immediately obvious that Tnn satisfies the above equation, given that the

boundary fitted co-ordinate system (n, s) is advected with the flow. However, it can be

shown that in a general axisymmetric geometry, the material derivative of the normal

vector is parallel to the tangent vector [102]. Specifically,

Dn

Dt
=

(
C ∂φ

∂s
− ∂

∂s

(
∂φ

∂n

))
s. (2.45)

Consequently, given the physical requirement that shear stresses are zero (n ·T · s = 0)

on the bubble free surface,

DTnn

Dt
=

Dn

Dt
·T · n + n · DT

Dt
· n + n ·T · Dn

Dt
= n · DT

Dt
· n.

Equation (2.44) then follows directly from Equation (2.41).

2.3 Numerical Solution of Governing Equations

Much of the relevant phenomena in cavitation bubble dynamics, such as spherical col-

lapse and jet formation near a boundary, is seen to be axisymmetric [19]. In making

this assumption the dimensions of the problem effectively reduce from 3D to 2D, as

the third dimension is treated analytically.

In terms of cylindrical polar co-ordinates (p = (r0, 0, z0), q = (r, θ, z)), the Green’s

function (2.19) can be written as

G(p,q) =
1

[(r + r0)2 + (z − z0)2 − 4rr0 cos2(θ/2)]1/2
, (2.46)

and similarly,

∇G(p,q) = − (r cos θ − r0, r sin θ, z − z0)

[(r + r0)2 + (z − z0)2 − 4rr0 cos2(θ/2)]3/2
. (2.47)

The boundary ∂Ω (the bubble surface) is discretised into N segments and N +1 nodes,

with nodes 1 and N + 1 lying on the axis of symmetry on the top and bottom of the

bubble, respectively. The surface variables r(s) and z(s) and the potential φ(s), are
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represented by cubic splines so that

qi(s) = qi0 + qi1(s− si) + qi2(s− si)
2 + qi3(s− si)

3, (2.48)

for si ≤ s ≤ si+1, i = 1, . . . , N . Note that si is the cumulative arclength along the

surface from node 1 to i. The choice of cubic spline is essential for the accuracy of

the discretisation. Given that both φ(s) and z(s) are symmetric about the axis of

symmetry (even variables with respect to total arclength), their first derivatives with

respect to arclength are thus zero on this axis. Therefore, clamped cubic splines are

used to represent these variables; enforcing zero derivatives on the axis. The variable

r(s) is antisymmetric (odd with respect to total arclength), and hence has a zero second

derivative on the axis of symmetry. A natural cubic spline is used to represent r(s)

and enforce this requirement. Details on the construction of these splines can be found

in Appendix A. The normal derivative of the potential ∂φ
∂n

is represented linearly with

respect to arclength.

Following the above discretisation, the integral solution to the Laplace equation (2.18)

can be written as

c(pi)φ(pi) =
N∑

j=1

∫ sj+1

sj

∂φ

∂n
(s)

(∫ 2π

0

G(pi, s)r(s) dθ

)
ds

−
N∑

j=1

∫ sj+1

sj

φ(s)

(∫ 2π

0

∂G

∂n
(pi, s)r(s) dθ

)
ds (2.49)

The azimuthal integrations can be calculated analytically and give

∫ 2π

0

G(pi, s)r(s) dθ =
4r(s)K(k(s))

[(r(s) + ri)2 + (z(s)− zi)2]1/2
, (2.50)

∫ 2π

0

∂G

∂n
r(s) dθ =

−4
r

[(r + ri)2 + (z − zi)2]3/2

([
dz

ds
(r + ri)− dr

ds
(z − zi)− 2ri

k2

dz

ds

]
E(k)

1− k2
+

2ri

k2

dz

ds
K(k)

)
,

(2.51)

where

27



k2(s) =
4r(s)ri

(r(s) + ri)2 + (z(s)− zi)2
, (2.52)

and K(k) and E(k) are complete elliptical integrals of the first and second kind, re-

spectively. These integrals are approximated by

K̃(k) = P (1− k2)−Q(1− k2) log(1− k2), (2.53)

Ẽ(k) = R(1− k2)− S(1− k2) log(1− k2), (2.54)

where P , Q, R, S are tabulated polynomials [1].

Equation (2.49) can now be written as a system of N + 1 linear equations thus,

c(pi)φi +
N∑

j=1

Aij =
N∑

j=1

(Bijψj + Cijψj+1), (2.55)

i = 1, . . . , N+1. Here ψj denotes the unknown value of the normal derivative ∂φ
∂n

at node

j. Let αi(s) and βi(s) denote the azimuthal integrals (2.51) and (2.50) respectively,

then the remaining coefficients are

Aij =

∫ sj+1

sj

φj(s)αi(s) ds (2.56)

Bij =

∫ sj+1

sj

(sj+1 − s)

∆sj

βi(s) ds (2.57)

Cij =

∫ sj+1

sj

(s− sj)

∆sj

βi(s) ds (2.58)

The integrals are approximated using a 10-point Gaussian quadrature rule. A weak

logarithmic singularity occurs whenever integration is done over a segment that con-

tains the collocation point pi. This integration is then treated separately using a

log-Gaussian quadrature rule [142]. Further details on this special treatment can be

found in Appendix B.

The resulting matrix system is generally full but is very small compared to other nu-

merical schemes. Hence Gaussian elimination is used to solve the system for ψj.

After solving the system (2.55) for the normal velocity, the tangential velocity is deter-

mined in order to completely describe the velocity on the surface. Given the potential
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φ, the tangential velocity and higher derivatives are found from the finite difference

formulae for non-uniform grids given in [89]. Typically a fourth or sixth order centred

difference scheme is used.

With the velocity fully described on ∂Ω, the bubble surface can now be evolved in a

Lagrangian manner over a time step according to (2.20). Similarly, the potential is

updated using the equation of motion (2.43). Both equations are integrated using a

fourth-order Runge-Kutta time stepping scheme.

The constitutive equation for the extra stress (Eqn. (2.44)) is solved either using a

simple backward Euler approximation (as in [76]),

De

(
Tnn(x(t), t)− Tnn(x(t−4t), t−4t)

4t

)
+ Tnn(x(t), t) =

1

Re
γ̇nn(x(t), t), (2.59)

or a second-order trapezoidal approximation. Investigations have shown that results

between the two discretisations are indistinguishable.

In phenomena such as bubble collapse, the velocity can increase rapidly in time. In

order to capture the high speed dynamics, a variable time step is used. In particular,

following Blake et al. [19], we choose

∆t =
∆tmax

max[1 + (1/2)|u|2] . (2.60)

This choice ensures the time step is sufficiently small enough to capture any high speed

dynamics. The value of ∆tmax is taken to be 10−3 for the simulations undertaken.

At each time step, the points on the bubble surface are redistributed to ensure equal

spacing with respect to arclength to prevent “bunching up” and the subsequent on-

set of instabilities. Such remeshing is standard procedure and is often required with

Lagrangian methods.
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2.4 Numerical Results and Discussion

2.4.1 Validation

Laplace Solver

To validate the Laplace solver, numerical results are compared with the analytical

solution for a spherical void of radius 1, in an infinite domain with a potential φ = 1

on the boundary. The exact solution is ∂φ
∂n

= −1.

No of Segments Linear Splines
4 1.336× 10−1 1.232× 10−3

8 3.120× 10−2 7.070× 10−5

16 7.664× 10−3 4.630× 10−6

32 1.907× 10−3 5.530× 10−7

64 4.762× 10−4 3.921× 10−7

Table 2.1: Relative error of the normal velocity ∂φ
∂n

for the test case of a sphere of radius
R = 1.

The comparison of the relative errors in the computed value of ∂φ
∂n

using linear surface

segments and cubic splines is listed in Table 2.1. As can be seen, the use of cubic

splines produces very accurate results - even at low mesh refinement. Note that the

small decrease in the error from increasing the number of segments from 32 to 64, does

not warrant the increase in computational time. For this reason, for the simulations

undertaken in this study, 40 segments are usually used.

Inviscid Spherical Bubble Collapse

The full numerical code is compared with the analytical Rayleigh equation (2.8) for

a spherical void collapsing in an infinite inviscid fluid. Setting Tnn = 0 in equation

(2.27) gives the appropriate inviscid equation of motion, with which surface potential

is updated

Dφ

Dt
= 1 +

1

2
|u|2. (2.61)

Figure 2.2 shows a plot of the solution of the Rayleigh equation (2.8). Figure 2.3 shows

the relative error of the BEM code, and its variation with cavity radius.

As can be seen from Fig. 2.3, the relative error stays small until the very final stages

of collapse. Instabilities in the radial velocity start to occur when R ≈ 5× 10−3. The
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Figure 2.2: A plot of the solution of the Rayleigh equation.
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Figure 2.3: Relative error in the radial velocity of a spherical cavity in an inviscid fluid,
varying with radius
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collapse time at this point is tc = 0.914680 (6sf); which is in excellent agreement with

the analytical result (see Eqn. (2.9)).

Viscous Newtonian Spherical Bubble Collapse

The Newtonian bubble boundary element code is validated through comparison with

the numerical solution of the Rayleigh-Plesset equation (Eqn. (2.7)). The non-linear

ODE is solved using a 4th order Runge-Kutta scheme. Comparisons are made for

Reynolds numbers Re = 100 (Fig. 2.4(a)), Re = 20 (Fig. 2.4(b)), and Re = 10 (Fig

2.4(c)). As can be seen the results are in good agreement.
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Figure 2.4: Comparison of the BEM to the numerical solution of the Rayleigh-Plesset
equation for a selection of Reynolds numbers.
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2.4.2 Viscoelastic Dynamics

In this section, we investigate the influence of viscoelasticity on the dynamics of spher-

ical bubble collapse and compare the predictions of the model with other studies in

the literature. We begin by investigating the large Reynolds number case. Figure 2.5

displays the evolution of bubble radius for a range of De at Re = 100. It is evident that

for such a large Reynolds number the dynamics do not differ greatly from the inviscid

case. At De = 0, the solution obtained matches that of the Newtonian Rayleigh-Plesset

equation. Increasing the Deborah number, leads to a decrease in the collapse time and

the dynamics tend to those of the inviscid bubble as the increasing elastic effects negate

the viscous damping effects - as reported in [148]. In fact at De = 100, the collapse

time agrees with that for the inviscid bubble to 4 significant figures.
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Figure 2.5: Variation of the radius of spherical bubble with time for different De.
Re = 100.

When Re = 10 (Fig. 2.6) we see similar behaviour as before. When De = 0, the

Newtonian result is obtained. Yet as the Deborah number is increased, the collapse

time decreases, and the dynamics tend towards the inviscid case as elastic effects begin

to negate the viscous effects. Mathematically, the reason for this can be easily seen

from equation (2.44). We can see that the viscous term on the right hand side of (2.44)

is already reasonably small given the choice of high Reynolds numbers. Increasing the

Deborah number means that the derivative term is large, and so the other terms in the

equation are negligible in comparison. With the zero initial extra stress condition, the
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effective equation describing the extra stress is

DT

Dt
= 0, T(0) = 0. (2.62)

Therefore the extra stress is zero on the moving bubble surface throughout collapse

and so the dynamics are identically inviscid.
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Figure 2.6: Variation of radius of spherical bubble with time for different De. Re = 10

More interesting results are seen when the Reynolds number is decreased further. Fig-

ure 2.7 shows the variation of bubble radius with time for Re = 1. For a small Deborah

number we can see there is little effect on the dynamics since elastic effects are damped

by the large viscous forces. By increasing the Deborah number to be of the order of

the Reynolds number we see the damped oscillation of the bubble radius; the typical

dynamic of bubbles in viscoelastic fluids, as seen in previous work such as Kim [78].

By increasing the Deborah number further, rebound does not occur and the dynamics

resemble the Newtonian case. A similar effect at a large Deborah number was reported

by Fogler and Goddard [54], and will be discussed in more detail shortly.

Figure 2.8 shows the effect of decreasing the Reynolds number further. As can be seen,

oscillations are considerably more damped and require larger values of the Deborah

number to be induced in the first instance. Yet still, if the Deborah number is large

enough, the bubble will not rebound and dynamics similar to the Newtonian case result.

Fig. 2.9 shows the effect of increasing De within the rebound limit, for a fixed Re. As

reported in previous studies, the increase in elastic effects results in increasingly large
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Figure 2.7: Variation of radius of spherical bubble with time for different De. Re = 1

oscillations and a decrease in their frequency (the bubble taking longer to rebound

larger distances). As the bubble collapses, the frequency of oscillation then increases

as the amplitude attenuates. Fig. 2.10 shows the effect of Re, while keeping De fixed.

Again, we obtain the expected results of increasingly damped oscillations with decrease

in Reynolds number (increase of viscous effects). With such a range of effects present

in this phenomenon, it is clear that the ratio (or product) of the Deborah and Reynolds

number is a crucial parameter in describing the dynamics.
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Figure 2.8: Variation of radius of spherical bubble with time for different De. Re = 0.1
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Figure 2.9: Variation of radius of spherical bubble with time for different De. Re = 0.2

To draw quantitative comparison with experimental results is difficult. The number of

experimental papers in the literature is limited and, in most cases, they are restricted to

the study of the collapse of cavities near rigid boundaries. Consequently, given the non-

spherical nature of bubble dynamics near boundaries, to make meaningful comparisons

with the spherical case studied here is not strictly valid. Despite this, some general

observations made in experiments are relevant to the present study. Importantly,

Chahine and Fruman [41] and Brujan et al. [34,37] note the inhibiting effect of polymer

additives on bubble collapse. In essence, this effect is predicted using the numerical

scheme presented here. The inclusion of elastic effects causes the oscillation in radius

and inhibits the catastrophic bubble collapse seen in the Newtonian case.

Fig. 2.11 compares the results of Kim [78] with those of the present study for Re =

0.5 and De = 0.5. Kim [78] solves the full Rayleigh-Plesset equation for the upper

convective Maxwell model. However, the qualitative similarity in the model predictions

is evident. The amplitude and number of the oscillations are very similar, and the

maximum difference in radius is approximately 10%.

Collapse Phenomena at Large Deborah Number

As already mentioned, the rebound limit at large Deborah number was reported also

by Fogler and Goddard [54]. In the limit of very large Deborah numbers, a rebound

condition on De and Re is derived analytically. Their condition states, that if
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Figure 2.10: Variation of radius of spherical bubble with time for different Re. De = 5

DeRe >
2π2

9
, (2.63)

then collapse will occur without rebound. Vice versa, if

DeRe <
2π2

9
, (2.64)

then rebound will occur before collapse. The same phenomenon is apparent in the

model under investigation in the present paper. The corresponding Rayleigh-Plesset

equation relevant to our model is that with the viscoelastic effects present in the stress

boundary condition at the bubble surface, viz.,

ρ(R̈R +
3

2
Ṙ2) = pb − p∞ − 4

∫ t

0

M(t− t′)

(
Ṙ(t′)
R(t′)

)
dt′, (2.65)

where M(t) = (µ/λ) exp(−t/λ).

Consider the asymptotic case λ → ∞. Since exp(−t/λ) → 1 as λ → ∞ for finite t,

equation (2.65) becomes

ρ(R̈R +
3

2
Ṙ2) = pb − p∞ − 4

µ

λ
ln

(
R

R0

)
(2.66)

in the limit λ → ∞. Multiplying (2.66) by 2R2 and integrating over [R0, R] gives an

expression for the kinetic energy viz.
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Figure 2.11: Variation of radius of spherical bubble with time for Re = 0.5, De = 0.5.
The solid line shows the result of Kim [78], and the dashed line is that of the present
study.

ρṘ2R3 =
2

3
(p∞ − pb)(R

3
0 −R3)− 8

µ

λ

∫ R

R0

ln

(
R

R0

)
R2dR (2.67)

The first term on the right-hand side is the work done by the pressure and the second

is the elastic potential energy. If the kinetic energy is equated to zero, then the roots

of the resulting equation will give the radii at which rebound occurs. Subsequent

simplification and non-dimensionalisation yields the following energy function

f(R) = 4 ln(R)R3 +

(
4

3
−DeRe

)
(1−R3) = 0. (2.68)

Considering the limit of rebound at R = 0, equation (2.68) yields,

DeRe =
4

3
. (2.69)

Hence, for the bubble to collapse without rebound we require

DeRe >
4

3
, (2.70)

and for collapse with rebound

DeRe <
4

3
. (2.71)
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Figure 2.13 shows the collapse with and without rebound, near to the DeRe = 4/3

limit.

0.0

f
0.2

−0.2
R

1.00.750.50.250.0

Figure 2.12: Plot of energy function f(R); the roots of which indicate a zero kinetic
energy.

A plot of energy function f(R) for DeRe = 1 < 4
3

is given in Fig. 2.12. Figure 2.14

shows the near elastic oscillations of the radius with time for a large Deborah number

(De = 100, Re = 0.01) calculated using the BEM. From Fig. 2.14 we can see the

first rebound radius is approximately 0.45804. The corresponding root of equation

(2.68) (using a simple bisection method) is found to be 0.45892 (5 s.f.). This is a

reasonably good agreement (the relative percentage error is approximately 0.2% ) given

the numerical method is unable to attain the analytical limit.

Jeffreys Fluid

With prior use of the viscous Newtonian and Maxwell models - extending the viscoelas-

tic model to the Jeffreys fluid is straightforward. The Jeffreys constitutive equation is

given by

T + λ1
DT

Dt
= µ

(
γ̇ + λ2

Dγ̇

Dt

)
(2.72)

It can be shown, through the decomposition of the stress into solvent and polymeric
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Figure 2.13: Variation of radius with time for DeRe above and below the rebound
limit DeRe = 4/3 ≈ 1.333 (De = 100).
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Figure 2.14: Near elastic oscillation of radius with time for De = 100, Re = 0.01)
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contributions, that the Jeffreys model can be rewritten as,

T = µsγ̇ + τ . (2.73)

where τ is given by the Maxwell constitutive equation

τ + λ1
Dτ

Dt
= µpγ̇, (2.74)

and µs and µp are the solvent and polymeric viscosities, defined respectively as

µs =
λ2

λ1

µ, (2.75)

µp =

(
1− λ2

λ1

)
µ. (2.76)

Re-casting the constitutive equation in the form of (2.73) - as the sum of a viscous and

polymeric stress - allows the problem to be solved easily given that both contributions

(Newtonian and Maxwellian) have been studied previously. Let the above constitutive

equation be rewritten in dimensionless variables, with De and Re defined previously

and β = µs/µ.

The results for the Jeffreys model are as expected. Figure 2.15 shows the evolution of

bubble radius R for values of β as a fraction of the Reynolds number Re (equivalent to

a varying solvent viscosity µs). The Deborah number here is De = 10 and a constant

polymeric viscosity is assigned by setting (1 − β)/Re = 10. For β = 0, expectedly

the Maxwell case is recovered and the results match those of Fig. 2.6 for De = 10.

Increasing the solvent viscosity causes the oscillations to become increasingly damped.

Indeed, increasing the solvent viscosity enough would damp oscillations until the New-

tonian result is obtained as the polymeric part becomes small in comparison. Notably,

the amplitude of the oscillations decrease but the period remains approximately con-

stant as µs varies. This indicates that the relaxation time λ1 is the controlling factor

in determining the frequency of oscillation.

By setting β = 1 (equivalent to a zero polymeric viscosity), as expected (regardless of

the value of De), one obtains the corresponding Newtonian dynamics with a Reynolds

number Re (Fig. 2.16).
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Figure 2.15: Variation of radius with time for a Jeffreys fluid, with De = 10
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Figure 2.16: Variation of radius with time for a Jeffreys fluid, with λ1 = 10 and µp=0
(β = 1).
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The Generalised Maxwell Model

It should be mentioned that further extensions to the viscoelastic model can be easily

made. The above models are limited to a single set of parameters. To fit experimental

data, more parameters are often required [101]. It is for this reason that one can define

a generalised or multi-mode model viz.,

T =
N∑

k=1

Tk, (2.77)

where each Tk obeys its own constitutive equation:

Tk + λk
DTk

Dt
= µkγ̇, k = 1, . . . , N (2.78)

The model then has a spectrum of relaxation times and viscosities which allow greater

flexibility in fitting model predictions to experimental data. The convention is that

λ1 > λ2 > · · · > λN . Typically, N = 3, 4 or 5 in the representation (2.77) [101].

If necessary, one can select the parameters µk, λk with the following empiricisms [15]:

µk = µ0
λk∑
k λk

; λk =
λ0

kα
. (2.79)

The Rouse molecular theory for dilute polymer solutions very nearly gives equations

(2.79), with α = 2. In a similar manner, the Doi-Edwards molecular theory for polymer

melts suggests the following parameters [15]:

µk = µ0
λ2

k∑
k,odd λ2

k

; λk =
λ0

π2k2
. (2.80)

Taking a maximum of three terms for each model, Figure 2.17 shows the variation of

bubble radius with time for the Rouse and Doi-Edwards theories.

It can be seen that, for the parameter set considered, the Rouse model exhibits a

small oscillation in the radius, while the Doi-Edwards does not. This is because the λk

associated with a given µk are smaller in the Doi-Edwards model. Consequently the

elastic forces are not large enough to induce a rebound.
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Figure 2.17: Variation of bubble radius with time for Rouse and Doi-Edwards like
fluids, with λ0 = 0.5, µ0 = 0.5.

2.5 Conclusions

The effect of viscoelasticity on spherical bubble dynamics has been studied for several

different constitutive equations. A novel boundary element scheme has been developed,

with the ultimate intention of gaining insights into non-spherical dynamics. Even

though viscoelastic effects only appear through the normal stress condition on the

free surface, we find the model predicts all the important phenomena seen in other

studies. More specifically, the model predicts the damped oscillation of the bubble

radius with time, the near elastic oscillations in the high Deborah number limit, and

the no-rebound condition. Consequently, one can argue that it is the surface effects that

primarily govern the bubble dynamics, in comparison to those viscoelastic effects within

the bulk of the fluid. This is not surprising as, of course, the dynamics of the bubble are

directly governed by its boundary with the fluid. Any internal viscous or elastic effects

of the fluid on the bubble, are likely to be small compared to those directly experienced

at the interface. On consideration of the Jeffreys constitutive relation in the model,

we see the expected result of an increasingly damped radius with increasing solvent

viscosity. Increasing the solvent viscosity, of course, has no effect on the relaxation

time, and hence the period of oscillation for the model remains approximately constant.

One can generalise the Maxwell model, allowing for a spectrum of relaxation times and

viscosities to be prescribed. Empiricisms relating to Rouse and Doi-Edwards molecular
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theories are used to prescribe the parameters. The Doi-Edwards model does not exhibit

any oscillation in bubble radius. Only a slow decay of bubble radius with time is

predicted. In comparison, the Rouse model predicts a small low amplitude rebound

before being completely damped. This is in stark contrast to the more elastic behaviour

predicted by the Maxwell and Jeffreys models.
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Chapter 3

The Influence of Viscoelasticity on

the Collapse of Bubbles Near a

Rigid Boundary

3.1 Introduction

In this chapter, the mathematical model developed in Chapter 2 is extended in order

to simulate the dynamics of a bubble near a rigid boundary. As mentioned in Chapter

1, when a bubble collapses near a rigid boundary, a high speed liquid jet can form and

penetrate the bubble. This jet can either inflict damage directly by impacting upon the

boundary, or indirectly by initiating the “splashing” effect which can release damaging

pressure shock-waves. It was the experimental work of Benjamin and Ellis [9] that

first observed these jets and postulated on their damage capability. The popularity

of numerical simulation in subsequent decades meant that this otherwise intractable

problem could be attacked with gusto.

Due to the high velocities seen in bubble collapse and jet formation, the common ap-

proach was to assume that the fluid was inviscid and the flow irrotational. Plesset and

Chapman [119] undertook one of the first numerical studies, solving Laplace’s equation

using finite difference techniques. Blake et al. [19,20] then solved the same model prob-

lem using the more efficient and accurate boundary element method. The application

of the boundary element method to this problem proved extremely fruitful and spawned

a wide range of extensions to the model. These included cubic spline representation
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of the boundary and the surface functions [46], the inclusion of non-condensible bub-

ble contents [11], fully 3D calculations [167], the extension to toroidal dynamics [10],

prediction of the splashing effect [21,151], the study of pulsating buoyant bubbles [38],

bubbles bouncing off walls [40], explosion bubbles near structures [80], investigations

into the effect of surface tension [171], and collapse near curved rigid boundaries [150].

Few studies of bubble collapse near rigid boundaries have considered anything other

than an inviscid fluid. To the author’s knowledge, the only theoretical studies of this

phenomenon that include viscous effects are those of Popinet and Zaleski [121] and

Kim et al. [79]. In both contributions, the full Navier-Stokes equations are solved nu-

merically - the first uses a finite volume technique, while the second utilises a finite

element approach with an ALE formulation. Both note the mitigating effect viscosity

has on the jet dynamics - slowing the jet down and even preventing formation. Nu-

merical studies of viscoelastic dynamics have numbered even less. In a recent paper,

Brujan [32] notes the particularly slow pace of theoretical and numerical research into

cavitation dynamics near a rigid wall in a viscoelastic fluid. Given the difficult nature

of the problem and the success of the boundary element method, Brujan independently

suggests the model developed in Chapter 2; employing a potential flow approximation

with viscoelastic effects included at the bubble surface. In this chapter we present

and discuss the predictions of this model for viscoelastic bubble collapse near a rigid

boundary.

Section 3.2 summaries the aforementioned mathematical model and the extensions re-

quired to include the rigid boundary. In Section 3.3, the numerical results are presented

and discussed, and conclusions are drawn in Section 3.4.

3.2 Mathematical Model and Governing Equations

As mentioned, it is known that experimentally cavitation collapse near a rigid boundary

is, to a high degree of accuracy, an axisymmetric phenomena [19]. Hence, as in previous

studies, we consider the axisymmetric problem geometry shown in Fig. 3.1. Initially,

the bubble has radius R0 and its centre is located at a distance h from a rigid wall.

We recall the key features of the model developed in Chapter 2. The ambient fluid is

considered to be incompressible
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Figure 3.1: Schematic set up of bubble collapse near a wall problem.

∇ · u = 0. (3.1)

and the flow irrotational,

∇× u = 0. (3.2)

Hence the velocity field of the fluid can be expressed as the gradient of some scalar

potential function φ (u = ∇φ), which satisfies Laplace’s equation. By Green’s theorem,

Laplace’s equation can be recast as integral over the bubble surface ∂Ω viz.,

c(p)φ(p) =

∫

∂Ω

(
∂φ

∂n
(q)G(p,q)− φ(q)

∂G

∂n
(p,q)

)
dS (3.3)

where the constant c(p) is given by

c(p) =

{
2π if p ∈ ∂Ω,

4π if p ∈ Ω\∂Ω

In contrast to the previous study of spherical dynamics, the bubble now resides near a

rigid boundary positioned at z = 0. The boundary is represented by a no-penetration

condition, viz.

∂φ

∂z
= 0, z = 0. (3.4)

In order to satisfy equation (3.4), the Green’s function, G(p,q), is given by
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G(p,q) =
1

|p− q| +
1

|p′ − q| . (3.5)

This is the sum of two free space Green’s functions, where p′ is the reflected image of

p in the rigid wall. The use of (3.5) means the boundary condition (3.4) automatically

holds, so no integration over the expanse of the wall is necessary.

On the premise that viscous and viscoelastic effects are important only in the immediate

proximity of the bubble surface, a generalised Bernoulli equation at the surface provides

an equation of motion for the potential φ,

Dφ

Dt
= 1 +

1

2
|u|2 − Tnn. (3.6)

The normal-normal component of the extra stress Tnn is found from an appropriate

constitutive equation. This study, for the most part, considers viscoelastic effects as

described by the material Maxwell model

De
DTnn

Dt
+ Tnn =

1

Re
γ̇nn. (3.7)

The Deborah number De and the Reynolds number Re are defined as previously, in

equations (2.42) and (2.39) respectively.

Equation (3.3) is solved using collocation, with nodal points on the bubble surfaces

and the potential φ interpolated using cubic splines. The discrete system is solved

for the normal velocity using Gaussian elimination. The tangential velocity and higher

derivatives of φ are found using generalised centred difference formulae found in [89]. A

fourth-order Runge-Kutta scheme is then used to update the bubble surface and poten-

tial using (2.20) and (3.6) respectively. In the presence of viscoelasticity (De 6= 0), the

constitutive equation is updated using an implicit second-order time stepping method.

Note that the transition to the toroidal phase of dynamics is not currently modelled

in this study. The investigation into viscoelastic effects shows that, in the majority of

cases, collapse into a toroidal bubble will not occur.

As in almost every study of cavitation dynamics using the boundary element method,

(see [19,20,170], for example) instabilities can develop in the surface during computa-

tion. These are suppressed using the 5-point smoothing formula of Longuet-Higgins and

Cokelet [97], which is implemented every 5-20 times steps as in Best and Kucera [11].
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3.3 Numerical Results and Discussion

3.3.1 Validation

To validate the algorithm, the problem of inviscid growth and collapse of a bubble

near a rigid horizontal wall is examined, allowing direct comparison with the results

of Blake et al. [19]. Figure 3.2 shows the bubble wall profiles at different times for

the growth and collapse of an initially small bubble (R0 = 0.1), centred at a distance

h = 1.0 from the boundary. The bubble profile shapes obtained agree well with those

of Blake et al. [19] and Taib [146]. Figure 3.3 shows the jet velocities for a selection of

heights. The maximum jet velocities obtained here are given by vmax = 8.5 for h = 1.0,

vmax = 10.8 for h = 1.5, and vmax = 15.4 for h = 2.0. These compare well to the jet

velocities obtained by Blake et al. [19], given respectively by vmax = 8.6, 11.0, 16.1.

The difference in the values can be attributed to the surface discretisation used in each

study. Blake et al. [19] use linear piecewise elements, while cubic splines are used here.

As with previous investigations, we see a plateau in the jet velocity in the final stages

of collapse for a cavity near to the wall. Also, we note that during the growth phase

the transient behaviour of the jet velocity is independent of the initial distance h from

the wall. The influence of h can only be seen in the final stages of collapse.
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Figure 3.2: Bubble surface profiles at different stages of growth and collapse at an
inception distance h = 1.0 from the boundary
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3.3.2 Newtonian Dynamics

In extending to the viscous Newtonian and non-Newtonian cases, only the collapse of

a cavity near a wall is considered. This allows the simulations to run for longer in

the more interesting phase of the dynamics. Simulations are carried out for a range

of Reynolds and Deborah numbers at dimensionless distances h = 1.1, 1.5, 2.0 from

the wall to the initial bubble centroid with R0 = 1. The values of the Reynolds

and Deborah numbers are chosen to demonstrate the dependence of dynamics on the

material parameters.

Figure 3.4 shows a selection of profiles during the collapse of an inviscid bubble at a

distance h = 1.1 from the wall.
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Figure 3.4: Bubble surface profiles at different stages of collapse at a distance h = 1.1,
Re = ∞

It can be seen that close to the wall the bubble surface undergoes large deformation

during collapse with a significantly pronounced jet forming in Fig. 3.4. For bubbles

positioned further from the wall, collapse is less asymmetric with the liquid jet being

less pronounced. Also, the lessened deformation means the final volume of the bubbles

is smaller. The jet velocities associated with different h values can be seen in Fig. 3.5.

The maximum jet velocities in each case are vmax = 12.9, 16.9, 26.9 for h = 1.1, 1.5, 2.0,

respectively. It is generally true that closer to the wall the fluid velocities are smaller

in magnitude. This is to be expected as the presence of a rigid boundary restricts
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the flow of the fluid. Note that for h = 1.1 and h = 1.5 the jet tip plateaus in the

final stages of collapse. As mentioned by Best and Kucera [11]; when the bubble

collapses much of the fluid momentum manifests itself in the jet. Since only a finite

amount of momentum can be transferred to the jet, it cannot continue to accelerate

following the finite momentum transfer. Also, as a result of smaller velocities, the

lifetime tf of the bubble increases the closer it is to the wall; given in each case by

tf = 1.079, 1.032, 1.004, respectively. We define the bubble lifetime (or collapse time)

as the time at which either the liquid jet impacts upon the bubble underside or the jet

velocity displays near-singular behaviour.

Time

Je
tV

el
oc

ity

0 0.5 1

2

4

6

8

10

12

14

16

18

20

22

24

26

28

h = 1.1
h = 1.5
h = 2.0

Figure 3.5: Jet velocities for the collapse of an inviscid bubble at different initial
distances from a rigid wall.

We now look at the bubble dynamics following the inclusion of viscous effects. Figure

3.6 shows the influence of h on jet velocities for Re = 100. The maximum jet velocities

in this case are vmax = 13.1, 18.0, 30.1 for h = 1.1, 1.5, 2.0, while the final collapse

times tf are given by tf = 1.089, 1.042, 1.013. Despite there being little difference in

the collapse times compared to the inviscid case, there is a marginal increase in the

maximum jet velocity. This results from the bubble reaching a slightly smaller size

before jet formation occurs. Consequently, surface velocities are larger - producing a

slightly faster jet.

Figures 3.7-3.9 display bubble wall profiles for Re = 20. It is clear that increasing the

viscosity has a more marked effect on the wall profiles and the dynamics. Fig. 3.7
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Figure 3.6: Jet velocities during collapse with Re = 100 for different initial distances
from wall.

shows the wall profiles at h = 1.1. It can be seen that the formation of the liquid jet

occurs much later in the collapse (when the cavity is substantially smaller) than in the

inviscid case. The surface velocities are larger overall and while the jet penetrates, the

bubble continues to collapse at a high speed. This results in the formation of an arrow-

head bubble profile, as the underside comes up to meet the jet. The same mechanism

explains the collapse behaviour shown in Figures 3.8 and 3.9, in which thin almost disc-

like bubbles are produced. Note that the collapse times are also significantly longer

than those obtained at higher Re with tf = 1.126, 1.083, 1.054, for h = 1.1, 1.5, 2.0,

respectively.

It is clear then that viscosity has a prohibitive effect on jet production, as reported in

Popinet and Zaleski [121] and Kim et al. [79]. Perhaps the most important phenomena

in Newtonian bubble dynamics, namely the complete suppression of the formation of

the liquid jet, can be observed if viscous effects are increased further. Figures 3.10-3.12

show the bubble wall profiles for Re = 10. Note that in each case (h = 1.1, 1.5, 2.0) no

jet forms on the top side of the bubble. Only in the very final stages, when the bubble

is very small, does the top side of the surface dimple slightly but does not continue

to produce a penetrating jet. Another interesting occurrence is the elongation and

“cusping” on the underside of the bubble. The same phenomena is reported by Kim

et al. [79] for moderate Reynolds numbers, in their finite element study of collapse

of a Newtonian bubble near a rigid wall. This cusping results from the left and right
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Figure 3.7: Bubble surface profiles at different stages of collapse at a distance h = 1.1,
Re = 20

sides of the bubble surface moving slightly faster than the bubble underside. Evidently,

viscous forces are more effective at inhibiting movement of the underside, due to the

increased strain rates nearer the wall. Indeed, cusping is more pronounced closer to

the wall (for h = 1.1, 1.5), where differences in velocity between the top and underside

of the bubble are larger. Further from the wall (h = 2.0), as the velocity field is more

uniform, the viscous forces inhibit almost uniformly, causing the bubble to remain very

nearly spherical as it collapses.

As expected, collapse times are again longer, given the decrease in Reynolds number

(tf = 1.183, 1.142, 1.115 for h = 1.1, 1.5, 2.0 respectively). Also, as can be seen from

Figure 3.14 the (jet) velocities become extremely large as the bubble is able to collapse

to a very small size, without there ever being jet impact.
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Figure 3.8: Bubble surface profiles at different stages of collapse at a distance h = 1.5,
Re = 20
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Figure 3.9: Bubble surface profiles at different stages of collapse at a distance h = 2.0,
Re = 20
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Figure 3.10: Bubble surface profiles at different stages of collapse at a distance h = 1.1,
Re = 10

r

z

-1 -0.5 0 0.5 1
0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

t=0
t=1.29653
t=1.14183

Figure 3.11: Bubble surface profiles at different stages of collapse at a distance h = 1.5,
Re = 10

57



r

z

-1 -0.5 0 0.5 1
1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

t=0
t=1.09976
t=1.11432

Figure 3.12: Bubble surface profiles at different stages of collapse at a distance h = 2.0,
Re = 10
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For ease of comparison, Figures 3.13 and 3.14 show the evolution of jet positions and

jet velocities for various Reynolds numbers at a fixed distance, h = 1.1 from the wall.

Here the jet position is defined as the axial co-ordinate on the top of the bubble (the

North Pole); it is the position where the jet is expected to form. Clearly, at a given

distance, a decrease in Reynolds number slows collapse and so extends the collapse

time. Fig. 3.13 shows the jet positions at h = 1.1. Note that in the inviscid case, the

jet position decreases sharply in the final stages of collapse. The profile then becomes

smoother as one decreases Re. Similarly, studying the jet velocities at h = 1.1, at a

given time the velocity decreases with the Reynolds number. Since the bubbles are

able to attain smaller sizes with increasing viscosity, the collapse times are longer and

the final velocities much larger. So much so, that for moderate Reynolds numbers, the

jet velocity exhibits singular behaviour.
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Figure 3.13: Position of jet point on z axis with time, at a distance of h = 1.1, with
varying Re.
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Figure 3.14: Jet velocities during collapse with varying Re. h = 1.1.
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3.3.3 Viscoelastic Dynamics

The inclusion of elastic effects produces some very interesting dynamics, particularly

when close to the rigid wall. As seen in spherical studies of viscoelastic cavitation dy-

namics e.g. [54], bubble oscillations occur during collapse. However, unlike the spherical

case, the presence of the rigid wall induces an asymmetry in the oscillating bubble. As

in the moderate Reynolds number Newtonian case, jet formation is completely sup-

pressed in the viscoelastic case. Jet suppression has also been seen experimentally in

viscoelastic fluids by Brujan et al. [37] and Chahine and Fruman [41]. Additionally, we

observe cusping of varying degrees close to the wall, for some of the parameters studied.

Figure 3.15 shows bubble profiles for Re = 1, De = 1, h = 1.1. Due to the close prox-

imity of the wall, the deformation in the underside is significant. The bubble rebounds

due to elastic effects and during the second stage of collapse, a portion of the bubble

underside meets on the central axis, and the computation breaks down. Of course, the

presence of elasticity causes the bubble to rebound, and subsequently collapse times

are significantly longer. Similarly, the velocities are reduced as the oscillating bubble

does not have a chance to attain a large velocity before it rebounds.
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Figure 3.15: Bubble surface profiles at different stages of collapse at a distance h = 1.1,
Re = 1, De = 1.

Figure 3.16 shows the variation of the jet position with time for different initial dis-
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tances of the bubble from the wall. Note that the time at which the bubble first

rebounds decreases with increasing distance from the wall. This is due to the lower

velocity near the wall preventing the generation of sufficient elastic energy to balance

the work done by the external pressure in compressing the bubble. From looking at the

jet velocities in Fig. 3.17 one can see a plateau and small decrease in the jet velocity

(for h = 1.1) at t ≈ 1.25. Similar perturbations can be seen near the other peaks

and troughs for h = 1.5 and also h = 2.0. This is an interesting occurrence, and is a

consequence of the cusping and the subsequent out of phase oscillation of the top and

bottom of the bubble. For example, as the bubble begins to collapse and then cusp, it

seems the extra fluid drawn to the underside from the bulk of fluid around the bubble,

causes the jet velocity to fall slightly. It then increases as fluid is replenished from

elsewhere.

As the initial distance of the centre of the bubble from the wall increases, the perturba-

tion in the jet velocity decreases. Also, we note that further from the wall, the lifetime

of the bubble is longer: tf = 2.72 and 3.59 for h = 1.5 and 2.0, respectively. This is

due to the reduced deformation of the bubble further from the wall. Away from the

wall, the flow around the bubble is not as irregular, and it takes longer for the bubble

to deform into its self-destructive shape (as in Fig. 3.15).

Figures 3.18-3.20 show the jet velocities for different De at each of the studied distances

from the wall. As in the spherical dynamics, a large enough De results in the bubble

not rebounding, but instead resembling the Newtonian dynamics.
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Figure 3.16: Position of jet point on z axis with time, Re = 1, De = 1, for varying
height.
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Figure 3.17: Jet velocities during collapse with varying height. Re = 1 and De = 1.
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Figure 3.18: Jet velocities during collapse with varying De. Re = 1 and h = 1.1.
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Figure 3.19: Jet velocities during collapse with varying De. Re = 1 and h = 1.5.
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Figure 3.20: Jet velocities during collapse with varying De. Re = 1 and h = 2.0.
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Figure 3.21 demonstrates the integrity of the solution with mesh refinement for the

case De = 1, Re = 1 and h = 1.5. The differences in the jet velocity are negligible as

the number of segments N is increased from N = 40 to N = 100.
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Figure 3.21: Jet velocity with different mesh refinements for De = 1, Re = 1, h = 1.5

Figure 3.22 shows the bubble profiles during collapse for Re = 2.0, De = 0.5. In

a similar manner to Fig. 3.15, note the development of a sharp cusp on the bubble

underside. However, despite being able to induce cusping, the reduced elastic effects

are, in this case, unable to instigate bubble rebound.

Figure 3.23 shows the jet velocities for varying Reynolds numbers, with De = 0.5,

h = 1.1. As expected, an increase in Reynolds number results in dynamics that

increasingly resemble the inviscid case. The bubble changes from having a cusped

underside with a rounded body (Fig. 3.22), to a shape with a pronounced jet formation

(as previously observed in Fig. 3.4 for example).

Figures 3.24-3.26 show the bubble profiles for Re = 0.2 and De = 5 for h = 1.1,

1.5, and 2.0, respectively. Of course, one should be cautious of these lower Reynolds

numbers which test the validity of the irrotational flow approximation. However, as

mentioned, depending on the Deborah number, high velocity and hence high local

Reynolds number flows are still permissible. Combined with the fact that vorticity

generation is reduced on a free surface, these lower Reynolds numbers can still provide

some important physical insights. As in the previous case, a cusping of the underside

of the bubble occurs which is more pronounced for smaller values of h. At h = 1.1
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Figure 3.22: Bubble surface profiles at different stages of collapse at a distance h = 1.1,
Re = 2, De = 0.5.

(Fig. 3.24) a sharp cusp develops in the final stages. Until then the deformation is not

quite as extensive as that seen in the Re = 1, De = 1 case, due to the increased viscous

effects. At h = 1.5 (Fig. 3.25) cusp formation becomes noticeably less pronounced,

while at h = 2.0 (Fig. 3.26), deformation is further reduced with the bubble remaining

nearly spherical.

Figure 3.27 shows the jet positions during the collapse, for different distances from the

wall. It can be seen that, as in the Re = 1, De = 1 case, the time between oscillations

decreases slightly (i.e. the frequency of oscillation increases) with increasing distance

from the wall, though the amplitude of oscillation remains very similar with varying h.

Also, perturbations in the gradient of the jet position are visible in the h = 1.1 case.

Studying the jet velocities, these becomes more evident as significant perturbations

appear in the velocity near its peaks and troughs (Fig 3.28). Figure 3.29 allows the

comparison of jet positions and velocities at h = 1.1, and the corresponding pertur-

bations, to be made more easily. Initially, as the underside cusps and rebounds, the

top and underside of the bubble begin to oscillate slightly out of phase. This disrupts

the uniformity of the flow around the bubble and creates the perturbations in the jet

velocities. In particular a large jump occurs during the second rebound stage at about

t = 4.2. This results from the underside rebounding before the top and throwing fluid

out from the bubble vicinity; this then aids the top in rebounding, causing a sharp in-

crease in rebound velocity. The oscillation of the velocity at the North and South pole
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Figure 3.23: Jet velocities during collapse with varying Re. De = 0.5 and h = 1.1.

of the bubble are shown in Fig. 3.30. One can see a clear time lag between the time

the top and the bottom of the bubble rebound (when the velocity is zero). From Fig.

3.28, we can see that for larger initial distances from the wall, the reduced deformation

in the bubble shape means that this effect is less prominent.

Figures 3.31-3.33 show jet velocities at different distances for a selection of Deborah

numbers, for Re = 0.2. For h = 1.1 the perturbations in the jet velocity at De = 5.0 can

be significantly damped by decreasing De, as the viscous forces become more dominant.

So much so, that for De = 1.0 the jet velocities tend toward to zero, indicating that

the system is tending to a steady state. The effect of the damping can be seen at each

distance h, and in fact at h = 2.0, the influence of the wall is suppressed to the extent

that the velocity profile is almost indistinguishable from the spherical case.

The Effect of the Deformation Terms

In this section, we will briefly discuss the effect of the upper convected Maxwell (UCM)

viscoelastic model on bubble dynamics. Namely by including the missing deformation

terms in the material Maxwell model. Given the diagonal form of stress tensor on the

shear-stress-free free surface, the normal-normal component of the extra stress, Tnn, is

found from
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Figure 3.24: Bubble surface profiles at different stages of collapse at a distance h = 1.1,
Re = 0.2, De = 5.

De

(
DTnn

Dt
− 2Tnnγ̇nn

)
+ Tnn =

1

Re
γ̇nn. (3.8)

Figure 3.34 shows the bubble profiles and jet velocity for De = Re = 1, h = 1.1,

using the UCM model. Firstly, note that the primary characteristics associated with

viscoelastic bubble collapse are still predicted; namely the oscillation of the bubble

radius with time and the development of a cusped underside near the wall. Making

more quantitative comparisons between the two models, we find that the dynamics

predicted by the UCM model are more damped than those of the material model. Not

only are the jet velocities (Fig. 3.34(b)) lower in amplitude, but deformation in the

bubble is inhibited to the extent that the bubble no longer “pinches off”, as in the

material case (see Fig. 3.15). Consequently, the computation continues for longer with

the bubble assuming a thin prolate tear-drop shape, with a longer, sharper cusp (Fig.

3.34(a)).

Such behaviour is not unexpected because, as can be seen from Eqn. (3.8), the addi-

tional deformation terms resemble the viscous rate of deformation term on the right-

hand side. Hence one would anticipate that dynamics are not dissimilar to those

observed when viscous effects are increased.

Figure 3.35 shows the bubble profiles and jet velocities when the initial distance of the

bubble from the wall is increased to h = 2.0. The usual response to increasing distance
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Figure 3.25: Bubble surface profiles at different stages of collapse at a distance h = 1.5,
Re = 0.2, De = 5.

is observed. Firstly, deformation is reduced and the bubble remains close to spherical

for most of its lifetime. Secondly, as a consequence of the reduced deformation, the

jet velocity profile is more regular (see Fig. 3.35(b)) than in the h = 1.1 case (Fig.

3.34(b)). The perturbations in the velocity profile, that result from the unsynchronised

oscillations of the bubble surface when close the wall, are no longer seen.

In summary, while the dynamics of the UCM and material models differ quantita-

tively, their behaviour and predictions are in general agreement and confirm the role

of viscoelasticity on bubble collapse. The UCM model also predicts oscillatory bubble

collapse, pronounced cusping, and perturbations to the jet velocity when near the wall.
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Figure 3.26: Bubble surface profiles at different stages of collapse at a distance h = 2.0,
Re = 0.2, De = 5.
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Figure 3.27: Position of jet point on z axis with time, Re = 0.2, De = 5, for varying
height.
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Figure 3.28: Jet velocities during collapse with varying height. Re = 0.2 and De = 5.
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Figure 3.29: Comparison of jet positions and velocities, for h = 1.1, Re = 0.2 and
De = 5.
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Figure 3.30: Comparison of North and South pole velocities, for h = 1.1, Re = 0.2 and
De = 5.
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Figure 3.31: Jet velocities during collapse with varying De. Re = 0.2 and h = 1.1.
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Figure 3.32: Jet velocities during collapse with varying De. Re = 0.2 and h = 1.5.
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Figure 3.33: Jet velocities during collapse with varying De. Re = 0.2 and h = 2.0.
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Figure 3.34: Bubble collapse near a wall using the UCM model. De = Re = 1, h = 1.1
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Figure 3.35: Bubble collapse near a wall using the UCM model. De = Re = 1, h = 2
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3.3.4 The Pressure Field

The high pressures associated with bubble collapse are still considered to be a factor in

phenomena such as cavitation damage. Therefore, it is important to study the pressure

field surrounding the bubble and, interestingly, how this pressure field depends upon

viscoelastic effects. The pressure field is calculated from the Bernoulli equation viz.,

p(x) = −ρ
∂φ

∂t
− ρ

2
|∇φ|2 + p∞ (3.9)

The internal potentials φ are calculated at a selection of points using the boundary

integral formula. Internal velocities can then be found using finite differences. To test

the accuracy of the pressure contours produced, the spherical Rayleigh bubble in an

infinite medium was initially considered. Figure 3.36 shows the pressure contour plots

for a radius of R ≈ (1/20)R0. Rayleigh [126] states that the pressure just outside the

bubble at this radius should be approximately p = 1260. The contour plot shows a

good agreement with this calculation.

Figure 3.36: Pressure contours following the collapse of the Rayleigh bubble to a radius
R = 1

20
R0.

Considering the Newtonian case Re = 10, Figure 3.37 displays the pressure contours

at distance h = 1.1 from the wall. The suppression of jet formation, and the resulting

small bubble sizes attained mean that the pressures around the bubble are very large

- of the order of those produced by the Rayleigh bubble. The high pressure regions
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are indicative of regions of large accelerations and deformation. Expectedly therefore,

we see a high pressure region on the top of the bubble (where the bulk of fluid is

preferentially drawn) and on the underside of the bubble (where the cusping and high

curvatures exist).

Figure 3.37: Pressure contours in the final stages of collapse, with h = 1.1, Re = 10,
De = 0.
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Pressure contours for Re = 1, De = 1 are displayed in Figures 3.38 and 3.39. The

pressures are significantly smaller than the previous case as elastic effects prevent the

catastrophic collapse and the associated high pressures. For h = 1.1 (Fig. 3.38) we see

a high pressure region at the point of “pinch-off” - where the rate of surface deforma-

tion is the greatest.
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Figure 3.38: Pressure contours in the final stages of collapse (t ≈ 1.600), with h = 1.1,
Re = 1, De = 1.

At h = 2.0 (Fig. 3.39) the high pressure region is again found around the bubble

underside, near the cusp. The larger curvatures in this region mean the surrounding

pressures are slightly larger than in the h = 1.1 case. Figure 3.40 shows the maxi-

mum pressure in the field plotted with time. Note that close to the wall, there are

perturbations in the maximum pressure much like those previously observed in the jet

velocity profiles, indicative of the increased deformation in the bubble near the wall.

The variation in the maximum pressure then becomes more regular as the distance

from the wall is increased and bubble deformation is decreased.

Figure 3.41 shows the pressure contours for Re = 0.2, De = 5 at a distance h = 1.1. A

higher pressure region at the cusp is noticeable as before. Again the pressures remain

small in comparison to the Newtonian case, as the rebounding bubble prevents the

build up of large pressures. Fig. 3.42 shows the maximum pressure variation with

time. As in the De = 1, Re = 1 case, we see perturbations in the pressure close to the

wall, which diminish with increasing distance. Also, the further the bubble is from the
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Figure 3.39: Pressure contours in the final stages of collapse (t ≈ 3.580), with h = 2.0,
Re = 1, De = 1.

wall, the decrease in deformation results in a slight decrease in the maximum pressure

on average.

From the results presented in this section it is clear that viscoelasticity has a significant

effect on the dynamics of bubbles near a rigid wall. Jet formation can be completely

suppressed and entirely different dynamics can emerge. There are marked changes in

bubble shape with varying distances from the wall. For example, close to the wall one

can observe cusping in the bubble underside, while at greater distances, the bubble

can remain near sphericity. Viscoelastic effects can prevent the catastrophic collapse

observed in Newtonian fluids and the subsequent build up of large pressures. Given

these results, it is clear that fluid rheology is the dominating factor in bubble dynamics,

rather than the presence of a rigid boundary.

3.4 Conclusions

The effect of viscoelasticity on the dynamics of cavitation bubbles near boundaries has

been studied. We validate the inviscid predictions with the literature and note the

effect of viscosity in inhibiting jet formation and jet speed. For the values of Reynolds

number and Deborah number necessary to induce oscillation, we find that during col-

lapse near a wall the liquid jet will not form. Instead, the underside of the bubble can

cusp and cause parts of the bubble surface to oscillate out of phase. The incoherent
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Figure 3.40: Maximum pressure with time at different heights Re = 1, De = 1.

oscillations disrupt flow around the bubble causing perturbations in its position and

velocity profiles. The cusping and perturbations are more noticeable closer to the wall,

and less perceptible as one moves further away. Increasing viscous effects can prevent

large deformations in bubble shape, regardless of distance from the rigid wall; and

so reduce the incoherent oscillations and perturbations in the velocity. Viscoelastic

effects can prevent the catastrophic collapse and the associated high pressures seen in

the Newtonian cases. The bubbles oscillate near the wall for a significant period of

time, without significant changes in volume. For some parameters, the results suggest

that a steady state can be attained, as inertial forces become balanced by the elastic

and viscous forces.

The implications of this investigation to cavitation damage are clear. The suppression

of the liquid jet and the lower velocities and pressures suggest that viscoelasticity has

a mitigating effect. Although this has been proposed experimentally by Williams et

al. [165], this chapter is the first attempt to predict these effects using a mathematical

model for bubble collapse in viscoelastic fluids. Provided the parameters are such that

elastic rebound of the bubble can occur, velocities and pressures will not be as large

as the inviscid case - and, consequently, one can postulate that cavitation damage will

be less prominent.
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Figure 3.41: Pressure contours in the final stages of collapse (t ≈ 5.720), with h = 1.1,
Re = 0.2, De = 5.
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Figure 3.42: Variation of maximum pressure with time at different heights: Re = 0.2,
De = 5.
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Chapter 4

The Effect of Viscoelasticity on the

Dynamics of Two Gas Bubbles

Near a Rigid Boundary

4.1 Introduction

In reality, bubbles do not occur in isolation but in large numbers or bubble clouds.

Given the importance of bubble dynamics in science, industry and medicine, and the

implications to cavitation damage, a theoretical understanding of bubble-bubble in-

teraction, as well as the bubble-boundary interaction, is extremely important. Also,

in many practical situations, the ambient fluid is not ideal and fluid rheology plays a

crucial role in the dynamics. Many important fluids (oils, lubricants, blood) are best

modelled by non-Newtonian and viscoelastic constitutive equations. Multi-bubble dy-

namics have been studied numerically in the literature for some time. For example

Bunner and Tryggvason [39] undertake a numerical study of the dynamics of bubbly

flows, while Lu et al. [99] consider the effect of bubbles on wall drag in turbulent chan-

nels. The focus has tended towards studying the effect of bubbles on the fluid flow,

and not on the near wall bubble dynamics and mechanisms of cavitation damage, such

as jet formation. Blake et al. [16] use a boundary element technique to describe the

growth and collapse of two cavitation bubbles near a rigid wall in an inviscid fluid. The

resulting dynamics and jet formation show good agreement with experiment. Zhang

and Zhang [172] consider the same problem, but include the effect of surface tension.

They note that surface tension resists deformation in the cavity, as well as causing
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faster collapse.

In this chapter, a numerical investigation is undertaken to determine the effect of

viscoelasticity on multi-bubble dynamics near a rigid boundary. The boundary element

method described in Chapter 2, which allows for the inclusion of viscoelastic effects,

is extended to deal with multi-bubble geometries. However, in this chapter we only

present results for the dynamics of two bubbles situated on an axis of symmetry near

a wall.

4.2 Mathematical model

The fluid domain Ω surrounding the bubbles is assumed to be incompressible and the

motion irrotational. It follows from the conservation of mass that there exists a velocity

potential φ which satisfies Laplace’s equation:

∇2φ = 0, (4.1)

in the region Ω. By Greens theorem, there exists an integral solution to (4.1), defined

in terms of the boundary integral [113],

c(p)φ(p) =
N∑

i=1

∫

∂Ωi

(
∂φ

∂n
(q)G(p,q)− φ(q)

∂G

∂n
(p,q)

)
dSi (4.2)

where ∂Ωi is the surface of bubble i, and the constant c(p) is given by

c(p) =

{
2π if p ∈ ∂Ωi,

4π if p ∈ Ω\∂Ωi

In 3D, the appropriate Greens function G(p,q) is given by

G(p,q) =
1

|p− q| +
1

|p′ − q| , (4.3)

where p′ is the image of p in the rigid boundary. Consequently the no penetration

condition on the rigid boundary is immediately satisfied.

Given an initial potential φ0 on the bubble surface ∂Ωi, the integral equation (4.2) can

be solved numerically for the normal velocity to the surface ∂φ
∂n

. The tangential velocity
∂φ
∂s

can be calculated given the potential φ0, and the surface geometry ∂Ωi. Hence the
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velocity on the surface is completely described. The fluid particles with position vector

x initially on the surface ∂Ωi will remain there. Consequently, the surface can be

updated in a Lagrangian manner according to

Dx

Dt
= ∇φ, x ∈ ∂Ωi. (4.4)

A generalised Bernoulli equation provides an equation of motion from which the po-

tential φ can also be updated in a Lagrangian manner

ρ
Dφ

Dt
=

ρ

2
|u|2 − Tnn + p∞ − pb. (4.5)

Here Tnn is the normal normal component of the extra-stress, p∞ is the fluid pressure far

from the bubbles, and pb is the internal bubble pressure. The viscoelastic constitutive

equation for Tnn is restricted to Maxwell type, and is given by

λ
DTnn

Dt
+ Tnn = µγ̇nn. (4.6)

Note that setting λ = 0 recovers a Newtonian fluid of constant viscosity µ.

In contrast to the previous chapters, we include the bubble growth from an initially

small spherical bubble, in addition to studying the bubble collapse. In the previous

chapter, bubble growth near the wall does not significantly impact upon bubble shape,

and the shape just before collapse was very nearly spherical. Here however, the presence

of an additional bubble adds an extra perturbation to the flow. The two deformable

bubble surfaces are unlikely to remain spherical during growth and so the initial shapes

just before collapse are unlikely to be spherical. The shape prior to collapse is likely

to play an important role in the subsequent dynamics.

Bubble growth is driven by the internal bubble pressure pb which, as in many physical

situations, results from the non-condensible gas content of the bubble. Assuming this

gas to be ideal and adiabatic, the bubble pressure can be expressed as

pb = p0

(
V0

V

)γ

, (4.7)

where V0 is the initial bubble volume, and γ is the ratio of specific heats - in this case

taken to be γ = 1.25.

As a consequence of also modelling bubble growth, the physical variables in the above

equations are non-dimensionalised in a slightly different way to that described in Chap-
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ter 2, viz.,

t∗ =
t

Rm

(
p∞
ρ

)1/2

,

p∗ =
p

p∞
, (4.8)

φ∗ =
φ

Rm

(
ρ

p∞

)1/2

,

where Rm is the maximum radius a single gas bubble would attain in an inviscid,

infinite fluid domain. The subsequent non-dimensional equations are then given by

(dropping asterisks)

Dφ

Dt
= 1 +

1

2
|u|2 − Tnn − ε

(
V0

V

)γ

, (4.9)

where Tnn is found from

De
DTnn

Dt
+ Tnn =

1

Re
γ̇nn. (4.10)

The dimensionless parameters for the problem (slightly different to the previous chap-

ters) are defined viz.: the Deborah number,

De =
λ

Rm

(
p∞
ρ

)1/2

, (4.11)

the Reynolds number,

Re =
Rm(p∞ρ)1/2

µ
, (4.12)

and the bubble “strength”

ε =
p0

p∞
. (4.13)

Initially, we consider two bubbles of small radii at rest. As mentioned, bubble growth

is then driven by the internal compressed gas content. The initial conditions on the

bubble surface are then φ(x, 0) = 0 and Tnn(x, 0) = 0. The bubble strength of each

bubble is taken to be ε = 100 for all results in this study. Given this choice of ε we

can find the initial bubble radius required for a single bubble in an infinite inviscid
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fluid to expand to a maximum radius of Rm = 1. This then ensures a consistent

non-dimensionalisation. To find the initial radius R0, the following variation of the

Rayleigh-Plesset equation is solved numerically,

ε

γ − 1

(
R3γ

0 −R3
0

)
= −1 + R3

0. (4.14)

For the stated values of γ and ε, Equation (4.14) provides an initial radius of R0 ≈
0.149.

Figure 4.1 details the initial configuration. In the interests of efficient nomenclature,

the bubbles shall be referred to as B1 and B2, with B1 always referring to the bubble

closest to the wall. The heights h1 and h2 are the respective initial distances from the

wall to each bubble centroid.

Rigid Wall

h

2

1

h

B

B
1

2

Figure 4.1: Schematic diagram detailing initial configuration.

Equation (4.2) is solved using collocation, with nodal points on the bubble surfaces

and the potential φ interpolated using cubic splines. The discrete system is solved for

the normal velocity using Gaussian elimination. The tangential velocity and higher

derivatives of φ are found using generalised centred difference formulae found in [89].

A fourth-order Runge-Kutta scheme is then used to update the bubble surface and

potential using (4.4) and (4.9), respectively. In the presence of viscoelasticity (De 6=
0), the constitutive equation is updated using an implicit second-order time stepping

method. The nodal points on the bubble surfaces are redistributed with respect to

arclength at each time step and, as is necessary with such boundary integral schemes,
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smoothing is periodically used to prevent the onset of numerical instability.

4.3 Numerical Results

4.3.1 Validation

An initial validation of the multi-bubble code is to compare the dynamics of two identi-

cal bubbles in an infinite expanse of fluid, with that of a single bubble near a rigid wall.

The formulations are mathematically identical, but differ slightly in computation. In

the rigid wall case, the boundary conditions on the wall are imposed by the inclusion

of a mirror image of the bubble on the other side of the wall. To do this a single image

term is added to the Green’s function in the single bubble integral (Eqn. 4.3).

To validate the two bubble case, this second (mirror) bubble is explicitly modelled with

its surface being summed over and updated in time in the usual way. Figure 4.2 shows

the near identical jet velocities obtained in both cases.
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Figure 4.2: Jet velocities for a bubble near a rigid wall and one bubble near an identical
bubble

To validate the code further, the results are compared with those of Blake et al. [16].

Their study concerns the interaction and dynamics of two inviscid bubbles near a rigid

boundary.
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In the paper of Blake et al. [16], the lengths are scaled with respect to the maximum

equivalent bubble radius. To prescribe the correct initial potentials to give the max-

imum bubble radii observed in experiment, the following Newton-Raphson iterative

scheme is used,

φk+1
i = φk

i − [J−1]k(Ri −Rk
i ), (4.15)

where J is the Jacobian matrix element and is calculated using finite differences. Here

Ri is the desired maximum radius of bubble i. It typically takes 3-4 iterations to attain

an error in Rk
i of less than 0.5%. Note that the choice of scaling here is such that if B2

has the largest radius, then R2 = 1 with 0 < R1 ≤ 1, and vice versa.

Two cases are presented here in the interest of validation. Figure 4.3 shows the bubbles

shapes during the collapse of two approximately equal-sized bubbles near a wall. The

results indicate that the lower bubble perceives the upper bubble as an identical one,

and consequently acts much like an image system, with the collapse of the upper bubble

resembling that near a rigid wall. The lower bubble behaves as if it were between two

rigid parallel plates, and so begins collapse from the side, producing the observed

elongated shape. Identical profiles are observed in Fig. 9(a) of Blake et al. [16].

Figure 4.4 shows the centroid motion of each bubble in time - again showing excellent

agreement with [16].
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Figure 4.3: Bubble shapes of two approximately equal-sized bubbles near a rigid bound-
ary. h2 = 0.99, h1 = 3.60, R1 = 0.94. Different colours indicate different instances in
time.

88



Time

C
en

tr
oi

d

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

Figure 4.4: Evolution of bubble centroids. h2 = 0.99, h1 = 3.60, R1 = 0.94

Figure 4.5 shows the bubble shapes for two different-sized bubbles near a rigid wall.

The dynamics are markedly different. The growth near the rigid boundary causes the

flattening of the underside of the lower bubble. During the collapse, the fluid flow

parallel to the rigid boundary is far less restricted than that in the normal direction.

Consequently, an annular jet penetrates the lower bubble, while the upper bubble

displays a marked protrusion on its underside. Figure 4.6 shows the variation of the

bubble centroid with time. Again, these results are in excellent agreement with those

of Blake et al. [16].
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Figure 4.5: Bubble shapes of two different-sized bubbles near a rigid boundary. h2 =
0.47, h1 = 2.17, R2 = 0.57. Different colours indicate different instances in time.
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Figure 4.6: Evolution of bubble centroids. h2 = 0.47, h1 = 2.17, R2 = 0.57.
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4.3.2 The Growth and Collapse of Gas Bubbles near a Rigid

Boundary

Equal-sized bubbles

In this section we present some numerical results showing the growth of two initially

equal-sized gas bubbles. Firstly let us consider a fixed height configuration (h1 = 1.0,

h2 = 3.6) and investigate the influence of fluid parameters. Figure 4.7 displays bubble

profiles for the inviscid case (De = 0, Re = ∞). The profiles resemble closely those

seen in Fig. 4.3 and so suggest that in this instance, the inclusion of non-condensible

gas content has little effect on bubble dynamics. Figure 4.8 shows bubble profiles but

with Newtonian effects included (Re = 100). Expectedly, given the high Reynolds

number, the profiles resemble those for the inviscid case shown in Figures 4.7 and 4.3.

r

z

-2 -1 0 1 2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

time = 1.215
time = 2.276
time = 2.383

Figure 4.7: Bubble shapes for De = 0, Re = ∞, h1 = 1.0, h2 = 3.6. Different colours
indicate different instances in time.

Figure 4.9(a) shows the North pole jet velocities of each bubble for Re = 100. One can

plainly see the larger final velocity in B2 that coincides with the liquid jet penetrating

the bubble. The velocity vectors for the flow can then be seen in Fig. 4.9(b), and their

notably larger values in the jet region. Additionally, the pressure contours show the

creation of a high pressure region just above B2. This is often seen in jet formation in

single bubble dynamics near a wall, but here the maximum pressure is smaller due to

the presence of B1 and the associated restriction in fluid flow and acceleration.
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Figure 4.8: Bubble shapes for De = 0, Re = 100, h1 = 1.0, h2 = 3.6. Different colours
indicate different instances in time.
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(a) North pole jet velocities. (b) Velocity vector and pressure contour plots.

Figure 4.9: (a) North pole jet velocities, (b) velocity vector and pressure contour plots
at t ≈ 2.3 for De = 0, Re = 100, h1 = 1.0, h2 = 3.6
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Figure 4.10 shows bubble profiles with the inclusion of viscoelastic effects for De = 1

and Re = 2. The dynamics are markedly different. A liquid jet penetrates B1, while

one only begins to form in B2. This is almost the opposite occurrence to the previous

cases where the jet would first penetrate B2. In Fig 4.11(a) we see a large difference in

the North pole jet velocities as the velocity rapidly grows in B1, but in B2 it becomes

negative as the bubble begins to rebound. As we have seen in previous chapters,

bubble rebound is a well-known characteristic of viscoelastic bubble dynamics. The

above behaviour can be explained as follows: During the growth phase the viscous

dissipation prevents either bubble from attaining as large a volume as the previous

cases. Consequently, bubble interaction between the two is considerably less - the

main influence of B1 therefore is the wall. In wanting to revert to a prior state, elastic

forces then encourage collapse in the early stages, but as inertia quickly increases, they

can do little to inhibit collapse and jet formation in the final stages. In B2 meanwhile,

due to its distance from the wall, a jet does not fully form and the bubble collapses

until a combination of the elastic stresses and gas content on the bubble cause the

bubble to rebound.

As is typical with jet formation, in Fig. 4.11(b) we see a high pressure region develop

above B1, whereas around B2, the pressure is considerably lower and more uniform.
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Figure 4.10: Bubble shapes for De = 1, Re = 2, h1 = 1.0, h2 = 3.6. Different colours
indicate different instances in time.

In Figure 4.12 the Deborah number is increased to De = 2.5. We see that the general
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(a) North pole jet velocities. (b) Velocity vector and pressure contour plots at
t ≈ 1.04.

Figure 4.11: North pole jet velocities and velocity vector and pressure contour plots
for De = 1, Re = 2, h1 = 1.0, h2 = 3.6

profile shape reverts back to dynamics similar the Newtonian cases - a jet forms first

in B2 but not in B1. In this case though, note that B1 is of a much smaller size than

that attained in a Newtonian fluid. Thus the growth/collapse process occurs more

quickly, with jet impact occurring at t ≈ 1.36 in the viscoelastic case and t ≈ 2.36

in the Newtonian (Re = 100). In the growth phase the larger elastic contribution

counteracts viscous dissipation, consequently the bubbles grow to a slightly larger size

than in the De = 1 case (but still smaller than the Newtonian), and so interaction

between the bubbles is greater. The influence of B2 on B1 then inhibits jet formation

in B1 as in the Newtonian case. The high pressure region above B2 (Fig. 4.13(b)) is

also greater in magnitude than in the Newtonian case. This is most probably due to

the increased freedom of the ambient fluid, as the influence of B1 is reduced due to its

smaller size. The jet velocities here (Fig. 4.13(a)) bear semblance to the Newtonian

case (Fig. 4.9(a)) as contributions from the extra-stress are in the most part dwarfed

by the high inertia during the growth and once again during collapse.
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Figure 4.12: Bubble shapes for De = 2.5, Re = 2, h1 = 1.0, h2 = 3.6. Different colours
indicate different instances in time.

Now let us consider the dynamics of equal-sized bubbles, with fixed fluid parameters

De = 1, Re = 2, at varying height configurations. Figure 4.14 shows bubble profiles

for h1 = 0.5, h2 = 2.0. Note the jet formation in B1, but given the close proximity

of B2, B2 itself deforms considerably into a heart-like shape. Evidently, the underside

has deformed inwards towards the central axis as a result of the fluid flow forming the

jet of B1. Meanwhile, the influence of the wall and B1 means that a jet also begins to

form in B2.

We see in Fig. 4.15, as B2 is moved further away to a distance h2 = 4.0, and the

influence of B1 and the wall decrease, deformation in B2 is minimal and the profile

remains mostly spherical. The primary influence of B1 is again the wall, and we see

collapse with jet formation in a manner very similar to Fig. 4.14.

The two bubbles are now moved away from the wall slightly, with h1 = 1.0 and h2 = 2.5,

in the hope that bubble-bubble interaction becomes more evident. This is the case in

Fig. 4.16, where the profile of B2 resembles closely that in Fig. 4.14, but now B1, being

further from the wall, is more susceptible to the influence of B2. This is evidenced by

the inception of an upwards directed jet on the underside of B1, as well as a fully

formed downward jet from the topside (indicating that the wall is still the dominant

influence).

If B2 is moved further away to h2 = 4.5, as in Fig. 4.17, we see that B1 is almost

entirely influenced by the wall, with the formation of a single downward jet during
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(a) North pole jet velocities. (b) Velocity vector and pressure contour plots at
t ≈ 1.35

Figure 4.13: North pole jet velocities and velocity vector and pressure contour plots
for De = 2.5, Re = 2, h1 = 1.0, h2 = 3.6

collapse. Meanwhile B2, under little influence from the near wall dynamics, remains

approximately spherical while oscillating due to the effect of the elastic stresses and

gas content.
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Figure 4.14: Bubble shapes for De = 1, Re = 2, h1 = 0.5, h2 = 2.0. Different colours
indicate different instances in time.
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Figure 4.15: Bubble shapes for De = 1, Re = 2, h1 = 0.5, h2 = 4.0. Different colours
indicate different instances in time.
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Figure 4.16: Bubble shapes for De = 1, Re = 2, h1 = 1.0, h2 = 2.5. Different colours
indicate different instances in time.
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Figure 4.17: Bubble shapes for De = 1, Re = 2, h1 = 1.0, h2 = 4.5. Different colours
indicate different instances in time.
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Different-sized bubbles

We will now consider the dynamics of two initially different-sized bubbles. The initial

radius of B1, will always be half that of B2. As previously, we consider a fixed height

configuration and vary the fluid parameters at first. Then the influence of varying hi

for a fixed fluid will be studied.

Figure 4.18 shows bubble profiles for the inviscid case. The height configuration (h1 =

0.5, h2 = 2.25) is similar to Fig. 4.5. We see a similar annular jet penetrate the

bubble from the side, but due to the presence of non-condensible gas content, the

upper segment of B1 then expands in volume. Consequently, this creates a much larger

upper lobe than that seen in Fig. 4.5.
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Figure 4.18: Bubble shapes for De = 0, Re = ∞, h1 = 0.5, h2 = 2.25. Different colours
indicate different instances in time.

Figure 4.19(a) shows the North pole jet velocities, which remain small as no high speed

axial jet forms. Similarly, the pressure contours remain small, with the highest pressure

region developing above B2, possibly anticipating jet formation.

Figure 4.20 shows the bubble profiles with the inclusion of Newtonian effects (Re =

100). In the equal bubble case there was little difference between the inviscid and

Newtonian dynamics at Re = 100 (Figures 4.7 and 4.8). Here however, the dynamics

between the two are drastically different. In B1 there is no sideways annular jet -

the bubble only becomes more prolate during collapse and in the final stage possible

jet inception occurs on B1’s underside. In B2 meanwhile, a downward jet (directed
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Figure 4.19: North pole jet velocities and velocity vector and pressure contour plots
for De = 0, Re = ∞, h1 = 0.5, h2 = 2.25

towards the wall) forms during collapse. The reason for the drastic difference between

the profiles in Figures 4.18 and 4.20 results from the inhibiting effect of viscosity on

deformation. In Fig. 4.18, due to the presence of B2 and the wall, fluid flows in from

the sides to produce the annular penetrating jet. The width of this jet is thin, and

velocities and curvatures - and consequently velocity gradients, will be high in this

region. The presence of large velocity gradients mean that viscous effects will also be

large and will act to inhibit fluid flow. As well as this, velocity gradients are larger in

smaller bubbles. Hence the fact that B1 was initially half the size of B2, and so subject

to larger viscous effects, is the crucial reason for such differing dynamics between the

inviscid and Re = 100 case.

Figure 4.21(a) shows the jet velocity profiles. We see the significantly larger velocity

of the liquid jet in B2 which has been able to form due to the extended lifetime of B1

(B1 has not succumbed to the annular jet and split). As expected, the jet formation

also coincides with a high pressure region above B2 (Fig. 4.21(b)).
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Figure 4.20: Bubble shapes for De = 0, Re = 100, h1 = 0.5, h2 = 2.25. Different
colours indicate different instances in time.

Including viscoelastic effects (De = 1, Re = 2) we see in Fig. 4.22, as in the equal-sized

case, the bubble behaviour switches; B1 succumbs to jet penetration, while B2 remains

almost spherical. Here, however, we see no sign of jet inception in B2 compared with

Fig. 4.10, as the influence of B1 is diminished due to its smaller size.

Figure 4.23(a) shows the jet velocity profiles. Note the small oscillation in B1 before the

velocity increases rapidly as the jet forms. Meanwhile in B2, the jet velocity increases

before it rapidly becomes negative as the bubble begins to rebound (again a result of

elastic effects and bubble gas content). Here we also demonstrate the integrity of the

numerical solution, by presenting the jet velocity profiles obtained with different mesh

refinements. Increasing the number of elements N from 50 to 100 makes no visible

difference to the results, and so setting N = 50 elements on each bubble surface is

deemed sufficient. As is expected, the high pressure region now appears above B1 in

correspondence with the jet formation (Fig. 4.23(b)). The maximum pressure though

is significantly lower here than the corresponding equal-size case (Fig. 4.11(b)), as B1

is closer to the wall and so fluid flow is more restricted. This also explains why the

final jet velocity in B1 in this case is also slightly smaller comparatively.

Increasing the Deborah number to De = 2.5 (Fig. 4.24), we again note a considerable

difference in dynamics. A jet now forms in B2 as in the equal-size case, but we now also

see jet formation in B1. Figure 4.25(a) shows the similarity in the jet velocity profiles

of each bubble, and the approximately equal final velocity. It seems that in this case

101



time

Je
tV

el
oc

ity

0 0.5 1 1.5 2

-4

-3

-2

-1

0

1

2

3

4

5

6

7

8

9

10

B1

B2

(a) North pole jet velocities. (b) Velocity vector and pressure contour plots at
t ≈ 2.17.

Figure 4.21: North pole jet velocities and velocity vector and pressure contour plots
for De = 0, Re = 100, h1 = 0.5, h2 = 2.25

the increased elastic effects have counteracted the viscous effects to allow both bubbles

to grow to a slightly larger size. Consequently, B2 is large enough to be influenced by

B1 and the wall (and so a jet forms), but it is not so large as to negate the effect of

the wall on B1 and prevent jet formation there. Hence high speed jets form in both

bubbles. As we see jet formation in the two bubbles we see a high pressure region

develop above each of them (Fig. 4.25(b)). The maximum pressure although resides

above B2 where fluid flow is less restricted.
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Figure 4.22: Bubble shapes for De = 1, Re = 2, h1 = 0.5, h2 = 2.25. Different colours
indicate different instances in time.

We shall now fix the fluid parameters (De = 1, Re = 2) and study dynamics for

different height configurations. For h1 = 0.5 and h2 = 1.5 (Fig. 4.26) the wall effects

dominate and we see the formation of a liquid jet in B1 and, due to the close proximity

of B2, jet inception also begins to take place on B2’s topside.

Moving B2 away from the wall to h2 = 3.0 (Fig. 4.27), as expected we see that B1

is still dominated by the presence of the wall, while B2 - now under little external

influence, remains near sphericity, undergoing oscillatory collapse.

Figure 4.28 shows jet velocities in B1 as B2 is moved further away (as h2 is increased).

We see that with increasing h2, the final jet velocity also increases, as fluid flow around

B1 becomes less restricted. To accompany this, the oscillations in B1 also increase in

magnitude with increasing h2. The pressure fields behave similarly with increasing h2

(Fig. 4.29). For B2 close to B1, the pressure around B1 is small compared to that

around B2 (Fig. 4.29(a)). As h2 is increased the maximum pressure now occurs above

B1 (Fig. 4.29(b)) and then continues to increase with increasing h2 (Fig. 4.29(c)), as

fluid motion becomes increasingly less restricted.

In Figure 4.30 the bubbles are moved away from the wall slightly with h1 = 1.0, h2 =

2.0. It is clear that bubble-bubble interaction plays a greater role than previously. The

collapse of B1 results in the formation of an annular axial liquid jet, which penetrates B1

to leave an axial bubble “spike”. Similar bubble shapes are seen in bubbles collapsing

next to infinitely long free surfaces which include viscoelastic (see Chapter 5) and
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Figure 4.23: North pole jet velocities and velocity vector and pressure contour plots
for De = 1, Re = 2, h1 = 0.5, h2 = 2.25

elastic effects [81]. This suggests the smaller bubble B1, sees B2 almost as an infinite

free surface and in fact B2 has become the dominant influence over B1, instead of the

wall.

Predictably, as B2 moved further away (Fig. 4.31), its influence on B1 is less compared

to the wall, and the usual jet formation in B1 results. Expectedly, B2 remains very

nearly spherical.
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Figure 4.24: Bubble shapes for De = 2.5, Re = 2, h1 = 0.5, h2 = 2.25. Different
colours indicate different instances in time.
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Figure 4.25: North pole jet velocities and velocity vector and pressure contour plots
for De = 2.5, Re = 2, h1 = 0.5, h2 = 2.25
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Figure 4.26: Bubble shapes for De = 1, Re = 2, h1 = 0.5, h2 = 1.5. Different colours
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Figure 4.27: Bubble shapes for De = 1, Re = 2, h1 = 0.5, h2 = 3.0. Different colours
indicate different instances in time.
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Figure 4.28: Jet velocities in B1 at h1 = 0.5, for varying h2 (De = 1, Re = 2).
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Figure 4.29: Pressure contour plots for varying h2 with De = 1, Re = 2, h1 = 0.5
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Figure 4.31: Bubble shapes for De = 1, Re = 2, h1 = 1.0, h2 = 3.5. Different colours
indicate different instances in time.
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4.4 Conclusion

The dynamics of two bubbles near a rigid boundary are both interesting and varied,

and are made more so with the inclusion of viscoelastic effects. The dynamics are

strongly dependent on initial bubble size, the distance between the bubbles and the

wall, and on the fluid parameters. Table 4.1 summarises the behaviour observed in this

study.

Equal-sized Different-sized
Inviscid B1: Large, prolate B1: Annular side jet

B2: Jet formation B2: Large, near-spherical
Newtonian B1: Large, prolate B1: Jet formation

B2: Jet formation B2: Possible jet inception
Viscoelastic B1: Jet formation B1: Jet formation

(moderate De) B2: Possible jet inception B2: Jet inception
Viscoelastic B1: Small, near-spherical B1: Jet formation
(larger De) B2: Jet formation B2: Jet formation

Table 4.1: Summarising observed bubble behaviour for different bubble sizes and fluid
parameters

Bubble-bubble interaction clearly plays an important role, but does not necessarily

dominate when including viscoelasticity. Jets readily form in certain situations in

viscoelastic fluids (a sign of greater wall influence) but not in the corresponding New-

tonian case (suggesting bubble-bubble interaction dominates). This may provide some

explanation for the ambiguity present in the experimental works which directly mea-

sure cavitation damage in viscoelastic fluids. Ashworth and Procter [4] and Shima

et al. [139] find an increased incidence and rate of cavitation damage in dilute poly-

mer solutions, while other studies e.g. Brujan et al. [33] note a decrease in cavitation

damage. The fact that jet formation is so subtly dependent on bubble size, distances

from the wall and each other, and the fluid parameters, means that it is reasonable to

expect that instances of cavitation damage will be high for some viscoelastic fluids and

low for others, and will depend crucially on neighbouring bubbles. Given that these

bubbles can exist in “clouds” where they number thousands, to attempt to control or

model bubble interaction, and the subsequent influence on cavitation damage, is nearly

impossible. The ideal theoretical situation studied here, and the range of behaviours

observed, merely highlights the complex situation that exists in nature. Evidently,

more experimental and theoretical research on multi-bubble dynamics and the role of
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viscoelasticity is required. Obvious extensions to the current theory include the de-

velopment of a fully 3D system that allows for multi-bubble dynamics which are not

restricted to the axis of symmetry.
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Chapter 5

The Effect of Viscoelasticity on the

Dynamics of Gas Bubbles Near

Free Surfaces

5.1 Introduction

The study of bubble dynamics near a free surface has received considerable attention

for a number of years. Since World War II, the problem has been studied extensively

given the application to underwater explosions. More recently however, the interaction

of cavitation bubbles with such deformable boundaries has become of great importance

to the medical field, particularly with the advent of ultrasound and laser techniques.

The creation of bubbles within the body plays a crucial role in shock lithotripsy [42],

drug delivery [166], and tissue and cell damage [85].

One of the first numerical studies of a bubble near a free surface was undertaken by

Dommermuth and Yue [46]. Under the assumptions of incompressibility and irrotation-

ality, the boundary element method was used to calculate, amongst other free surface

problems, the growth and collapse of a cavity near a free surface. This work was ex-

tended by Blake et al. [20], who used the same techniques to specifically study bubble

collapse near a free surface in more detail. Their results showed good agreement with

the experimental work of Blake and Gibson [17], and highlighted the formation of a

free surface liquid jet and a liquid jet which penetrates the bubble. Depending on the

magnitude of buoyancy forces the bubble will either migrate away (small buoyancy
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forces) or towards the boundary with the bubble jet directed away or toward the free

surface, respectively.

Given the success of the boundary element method in free surface studies, research

using such techniques continued. Boulton-Stone and Blake [26] used the BEM to in-

vestigate the bursting of gas bubbles near a free surface, and the subsequent free surface

jet. The motivation behind the study being the cell damage observed in bioreactors as

a result of such bursting bubbles. The study also included viscous effects at the bubble

surface. This study was extended by Boulton-Stone [25] to include the presence of

surfactants on the bubble surface, where it was found that surface dilatational viscos-

ity can slow and even prevent the formation of the liquid jet. The bursting bubble

problem was also investigated by Georgescu et al. [60] who, using a similar boundary

element scheme, included the drop ejection from the formed liquid jet. Viscous effects

were included solely through the normal stress balance and their results showed good

agreement with experiment.

Simultaneously, improvements were made to techniques in studying the collapse of

bubbles near free surfaces. Wang et al. [161] used a nonlinear distribution of nodes

on the free and bubble surface which allowed for greater surface deformations and

closer bubble-surface proximities which were unattainable in [20]. This work was then

extended in [160] to include non-condensible gas content of the bubble and also the

evolution of the bubble into toroidal form following jet impact. Similarly Robinson

et al. [132] undertook a numerical and experimental investigation into one and two

bubble dynamics near a free surface. Using a non-linear node distribution and cubic

splines in their BEM scheme, they were able to reproduce the sharp free surface spikes

and bubble centroid motions observed in their experiments. The work of Pearson et

al. [114] then extended this work to include the transition of the bubble into toroidal

form.

While the aforementioned work was concerned with bubble interaction with free sur-

faces, biological application motivated study in the theoretically similar, but more gen-

eral, bubble interaction with fluid/fluid interfaces. The aim being to better model the

fluid difference across tissue boundaries and cell membranes. Klaseboer and Khoo [81]

used the boundary element method to describe bubble dynamics near an interface of

112



two fluids of different densities. In the limit of the density of the external fluid tending

to zero, the free surface situation mentioned above is reached. Conversely, if this den-

sity was to approach infinity, the bubble dynamics mirror those near a rigid boundary.

Consequently a liquid jet within the bubble could be directed away or toward the in-

terface, depending on the density ratio of the two fluids. Given that biological fluids

exhibit elastic properties, Klaseboer and Khoo [82] extended their previous work to

model bubble dynamics (in an inviscid fluid), near an elastic fluid. The elasticity of

the second fluid being modelled through a pressure term at the fluid-fluid interface.

A wide range of bubble shapes were observed, including the usual liquid jetting but

also mushroom-like bubble shapes and bubble splitting. Good agreement was found

with the experimental work of Brujan et al. [35, 36], who investigated the comparable

situation of the dynamics of laser induced cavitation bubbles in water near a poly-

acrylamide gel. A similar study by Turangan et al. [155] proceeded to investigate

experimentally and numerically, the bubble dynamics near an elastic membrane. They

noted that bubble shapes closely resemble those near elastic boundaries, despite the

different boundary physics.

This chapter investigates the effect of viscoelasticity on bubble dynamics near a free

surface. While the Newtonian dynamics have been well documented, the influence

of viscoelasticity on bubble and free surface dynamics has not. The experimental

literature is also sparse, but for the work of Williams et al. [165], on liquid free surface

jets formed by bubbles in non-Newtonian fluids. They note that jet production is

markedly suppressed in elastic fluids than in their Newtonian counterparts. We shall

comment on these results in relation to the numerical ones to be presented here. Also,

given the semblance with the aforementioned work on bubbles near elastic boundaries,

appropriate comparisons will be made.

5.2 Mathematical model

The fluid in domain Ω is assumed to be incompressible and the fluid motion irrotational.

It follows from the conservation of mass that there exists a velocity potential φ which

satisfies Laplace’s equation:

∇2φ = 0, (5.1)
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in the region Ω. By Greens theorem, there exists an integral solution to (5.1), defined

in terms of the boundary integral [113],

c(p)φ(p) =

∫

∂Ω

(
∂φ

∂n
(q)G(p,q)− φ(q)

∂G

∂n
(p,q)

)
dS (5.2)

where ∂Ω = ∂Σ ∪ ∂B is the boundary of the fluid domain and ∂Σ and ∂B are the

boundaries of the free surface and the bubble respectively. The constant c(p) is given

by

c(p) =

{
2π if p ∈ ∂Ω,

4π if p ∈ Ω\∂Ω

In 3D, the appropriate Greens function G(p,q) is given by

G(p,q) =
1

|p− q| (5.3)

Given an initial potential φ0 on the fluid surface ∂Ω, the integral equation (5.2) can be

solved numerically for the normal velocity to the surface ∂φ
∂n

. The tangential velocity
∂φ
∂s

can be calculated given the potential φ0, and the surface geometry ∂Ω. Hence

the velocity on the surface is completely described. The fluid particles with position

vector x initially on the surface ∂Ω will remain there. Consequently, the surface can

be updated in a Lagrangian manner according to

Dx

Dt
= ∇φ, x ∈ ∂Ω. (5.4)

As previously, a generalised Bernoulli equation provides an equation of motion from

which the potential φ can also be updated in a Lagrangian manner. This equation takes

a slightly different form on the free and bubble surfaces. The normal fluid stresses are

balanced by the internal bubble pressure pb on the bubble surface ∂B and by the

hydrostatic pressure p∞ on the free surface ∂Σ. Hence we have

ρ
Dφ

Dt
=

ρ

2
|u|2 − Tnn + p∞ − pb on ∂B, (5.5)

and

ρ
Dφ

Dt
=

ρ

2
|u|2 − Tnn on ∂Σ. (5.6)

For the same reasons as the previous chapter, bubble growth as well as bubble collapse

is modelled. The internal bubble pressure pb results from the ideal and adiabatic gas
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content of the bubble, described by equation (4.7). The governing equations are non-

dimensionalised in an identical manner to the previous chapter (see equations (4.8)),

to give,

Dφ

Dt
= 1 +

1

2
|u|2 − Tnn − ε

(
V0

V

)γ

on ∂B, (5.7)

and
Dφ

Dt
=

1

2
|u|2 − Tnn on ∂Σ, (5.8)

where Tnn is found from

De
DTnn

Dt
+ Tnn =

1

Re
γ̇nn. (5.9)

Equation (5.2) is solved using collocation, with nodal points on ∂Ω and the potential

φ interpolated using cubic splines (which are parameterised with respect to arclength

s). The free surface ∂Σ requires special consideration. As in [114] the free surface is

partitioned into an analytic portion in the far field, and treated numerically within the

vicinity of the bubble. It can be argued that in the far field leading order behaviour

is like that of a dipole with the velocity decaying like O(|r|−3). Consequently the

quantities z, φ and ψ are taken to be of the form

f(r, t) =
(rmax

r

)3

f(rmax, t) if |r| > rmax. (5.10)

rmax denotes the last point of the numerical portion of ∂Σ. As in [161] we take rmax =

10Rm (ten maximum bubble radii). Consequently, equation (5.10) forces the cubic

spline interpolants to be clamped at the far-field end of the free surface, by enforcing

the following

dr

ds
=

1

D
, (5.11)

dz

ds
= − 3z

Dr
, (5.12)

dφ

ds
= − 3φ

Dr
, (5.13)

with D = (1 + (3z/r)2)1/2.

The subsequent discretisation of (5.2) gives
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c(pi)φi +
2∑

s=1

Ns∑
j=1

As
ij + Pi =

2∑
s=1

Ns∑
j=1

(Bs
ijψ

s
j + Cs

ijψ
s
j+1) + Liψ

1
N1+1, (5.14)

where i varies over all the collocation points on ∂Ω, i = 1, ..., NT , where NT =

N1 + 1 + N2 + 1 is the total number of points on ∂Ω. Subscript label 1 refers to

the free surface, and label 2 to that of the bubble. Pi and Li represent the integration

over the analytic portion of the free surface.

The discrete system is solved for the normal velocity ψ using Gaussian elimination.

The tangential velocity and higher derivatives of φ are calculated using the spline in-

terpolation. A fourth-order Runge-Kutta scheme is then used to update the bubble

surface and potential from equations (5.4), (5.5) and (5.6). In the presence of viscoelas-

ticity (De 6= 0), the constitutive equation is updated using an implicit second-order

time stepping method.

As in [114], the nodal points on the bubble surface are redistributed equally with respect

to arclength at each time step. On the free surface, the redistribution is enacted using

the following function

si =
smax

2

(
i− 1

N1

)1.1 (
1 +

1

(N1 − i + 2)2

)
(5.15)

for i = 2, ..., (N1 + 1). The above redistribution function ensures a high density of

nodes near the axis of symmetry allowing the formation of any free surface jets to be

captured accurately.

As is necessary with such boundary integral schemes, smoothing is periodically used

to prevent the onset of numerical instability. Smoothing needs only to be applied to

the bubble surface given the employment of (5.15) on the free surface. To preform

the smoothing, as in [114] a scheme based on the fourth-order diffusion-like equation

is used

∂f

∂t
= −α′

∂4f

∂s4
, (5.16)

which damps high order modes, but leaves lower order modes virtually unchanged.

Here f is the function to be smoothed and α′ is a diffusive constant. Solution of (5.16)

using an Euler scheme for the time derivative and a centred difference scheme for the

spatial derivative yields the following applicable formula
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f̄j = fj − α(fj−2 − 4fj−1 + 6fj − 4fj+1 + fj+2). (5.17)

f̄ is the smoothed function and α is a smoothing parameter. The presence of this pa-

rameter means one has more freedom in choosing to what degree smoothing is applied

(other than how frequently). A choice of α = 1/16 gives the previously used smoothing

formula of Longuet-Higgins and Cokelet [97]. In practice one can smooth sufficiently

for a value of α < 1/16, regardless of bubble distance from the free surface. In most

situations this formula is applied every ten time steps.

Initially, we consider a single gas bubble of small radius at rest a distance h from an

unperturbed free surface z = 0. A schematic diagram of the set up is given in Fig.

5.1. Bubble growth is then driven by the internal compressed gas content. The initial

conditions on the bubble and free surface are then φ(x, 0) = 0 and Tnn(x, 0) = 0. The

bubble strength is taken to be ε = 100 for all results in this study. As in the previous

chapter, to ensure a consistent non-dimensionalisation, this choice of ε requires an

initial radius of R0 ≈ 0.149.

Figure 5.1: Schematic diagram of initial set up.
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5.3 Numerical Results

5.3.1 Validation

The free surface boundary element formulation is now validated through comparison

with the free surface results of Wang et al. [161] for an inviscid bubble. The bubble

is assumed to have zero gas content and is prescribed an initial velocity through an

initial potential given by

φ0 = −A ·R0

(
2

3

((
Rm

R0

)3

− 1

))0.5

, (5.18)

where

A = 1− 1√
(z + h)2 + r2

(5.19)

Equation (5.18) is like that for the potential of an inviscid spherical bubble in an in-

finite fluid, as used in [19], but for the inclusion of parameter A (Equation (5.19)),

which accommodates the presence of the free surface.

Fig. 5.2 shows the bubble/free surface profiles for a distance of h = 0.5 from the un-

perturbed free surface. The bubble and free surface shapes show very good agreement.

The maximum height reached by the free surface jet is zmax ≈ 2.8 - as predicted by

Wang et al. [161].

Fig. 5.3 shows the bubble/free surface profiles for h = 1.0. Again, there is excellent

agreement. The bubble and free surface shapes are identical to those in [161] with the

free surface jet reaching the same maximum height, zmax ≈ 0.85.

Fig. 5.4 presents the variation of the bubble centroid with time for different distances

h. Once again, the results show excellent agreement with those of Wang et al. [161].

5.3.2 Newtonian Dynamics

Now, we present results for the growth and collapse of a gas bubble near a free surface,

and investigate the influence of viscous effects. Fig. 5.5 shows the bubble/free surface

profiles for h = 0.5 in the inviscid case. The profile shapes resemble closely those of

previous results, where instead the bubble was prescribed an initial velocity with zero

gas content. A tall thin, free surface jet forms, while a thin jet penetrates the bubble,
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Figure 5.2: Bubble and free surface shapes for h = 0.5. Different colours indicate
different instances in time.

directed in the opposite direction.

Figure 5.6 shows a three dimensional visualisation of Fig. 5.5, the instant before bubble

jet impact. The tall, thin free surface jet, in relation to the bubble size and shape, can

be fully appreciated.

If viscous effects are included with Re = 50, we see the small effects of viscous dissipa-

tion playing a part in the dynamics. Figure 5.7 shows the bubble/free surface profiles

for Re = 50, h = 0.5. Most notably, the free surface jet now attains a smaller height

(zmax ≈ 2.2) than in the inviscid case (zmax ≈ 2.5). Kinetic energy that would be

provided by the growing gas bubble to the free surface jet, is reduced as a result of the

energy lost to viscous dissipation in both the bubble and free surface. We also note

the formation of a slightly thinner sharper jet being formed in the bubble as a result

of the viscous effects. Increasingly thinner jets with decreasing Reynolds number were

noted by Popinet and Zaleski [121] in their study on the effect of viscosity on bubble

collapse near a rigid wall. This results from viscosity inhibiting fluid flow into the jet,

creating a less voluminous jet, with a subsequently sharper tip.
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Figure 5.3: Bubble and free surface shapes for h = 1.0. Different colours indicate
different instances in time.

Figure 5.8 displays bubble/free surface profiles for an inviscid bubble at h = 1.0. In

being further from the free surface, the interaction between it and the bubble is less

than the h = 0.5 case. The free surface jet is much smaller and broader, attaining a

maximum height of zmax ≈ 0.8. Similarly, the bubble jet forms and grows wider during

collapse, causing the bubble to assume a more bowl-like shape in the final stages.

Figure 5.9 shows bubble/free surface profile shapes following the inclusion of viscous

effects (Re = 50). We note a similar occurrence to the h = 0.5 case - namely, a shorter

free surface jet (zmax = 0.6), and a slightly thinner bubble jet. But again, in general

appearance, the form and shape of the bubble are still similar to the inviscid case.
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Figure 5.4: Bubble centroid positions for a range of values of h

Figure 5.10 shows the pressure contours and velocity vector plot in the final stages of

collapse for the inviscid h = 0.5 case. Notable aspects are the high pressure region

above and below the bubble and free surface jet respectively; a point of focus as fluid is

drawn in to form either jet. The velocity vectors then highlight the significant velocities

in both of the liquid jets, directed in opposite directions.

Figure 5.11 shows the pressure contours/velocity vectors for an inviscid bubble a dis-

tance h = 1.0 from the unperturbed free surface. A high pressure region is observed

above the bubble jet where fluid acceleration is greatest. The maximum magnitude

of the pressure is higher here (pmax ≈ 12.3) than in the h = 0.5 case (pmax ≈ 2.0),

as a greater volume and mass of fluid is focused into the bubble jet region, with a

comparative increase in fluid momentum.

Figure 5.12 shows the pressure contour/velocity vectors at h = 1.0 for Re = 50. The

general form of the fields is similar to the inviscid case, but expectedly, the high pressure

region is slightly smaller in magnitude as fluid flow is inhibited slightly by the effects

of viscous dissipation.

Figure 5.13 displays the free surface jet height varying with time, for different h and

Re. As we have seen, the distance of the bubble from the free surface is the dominant

factor in determining jet height. Jets are taller and thinner for bubbles closer to a

free surface than for bubbles further away. The effect of viscosity, though small in

comparison, is also evident. Increasing viscous effects results in decreased jet heights
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Figure 5.5: Bubble and free surface shapes for an inviscid fluid at h = 0.5. Different
colours indicate different instances in time.

as the kinetic energy that would be used in the formation of these jets is lost through

viscous dissipation.
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Figure 5.6: 3D visualisation of Fig. 5.5
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Figure 5.7: Bubble and free surface shapes with Re = 50 at h = 0.5. Different colours
indicate different instances in time.
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Figure 5.8: Bubble and free surface shapes for an inviscid fluid at h = 1.0. Different
colours indicate different instances in time.
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Figure 5.9: Bubble and free surface shapes with Re = 50 at h = 1.0. Different colours
indicate different instances in time.
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Figure 5.10: Pressure contours and velocity vectors at t = 0.973 for an inviscid fluid
(h = 0.5).

Figure 5.11: Pressure contours and velocity vectors at t = 1.595 for an inviscid fluid
(h = 1.0).
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Figure 5.12: Pressure contours and velocity vectors at t = 1.545 with Re = 50 (h =
1.0).
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Figure 5.13: Jet height varying with time for different Reynolds number at h = 0.5
and h = 1.0.
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5.3.3 Viscoelastic Dynamics

With the inclusion of viscoelastic effects we see a marked change in the dynamics.

Figure 5.14 shows the bubble and free surface profiles for De = 1.0, Re = 1.0, h = 0.5.

Interestingly, the usual axial jet does not form. Instead we see the formation of an

annular, ring-like jet which is centred on the axis of symmetry. This produces an

“upsidedown mushroom” like bubble shape, with a sharp stem. Similar bubble shapes

are seen by Klaseboer and Khoo [82] and Turangan et al. [155] following bubble collapse

near an elastic surface and membrane. The similarities between these studies will be

discussed in more detail in Section 5.3.4.
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Figure 5.14: Bubble and free surface shapes with De = 1, Re = 1 at h = 0.5. Different
colours indicate different instances in time.

To ensure that a sufficient mesh refinement is used in obtaining these results, Fig.

5.15 shows the jet velocity on the free surface with different mesh refinements on the

bubble and free surface. From this it can be seen that Nf = 75 and Nb = 50 provides

a sufficiently refined mesh, and is consequently used in obtaining the following results.

Also, to ensure that the distance to which the numerical portion of the free surface

extends is large enough, Fig 5.16 displays the free surface jet velocity at rmax = 10 and

20 for different mesh refinements. For the mesh with Nb = Nf = 75, increasing rmax

to 20, creates a discrepancy in the results as increasing the length of the free surface

causes the mesh to become under-refined. If the mesh refinement is then increased,

the results match those of the rmax = 10, Nb = Nf = 75 case well. This suggests that
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Figure 5.15: Free surface jet velocity for De = 1, Re = 1, with mesh refinement

rmax = 10 is indeed sufficiently long enough to describe the numerical portion of the

free surface.

If the Deborah number is decreased to De = 0.5, we observe a bubble shape similar

to that for De = 1 (Fig. 5.14). Here though, the annular jet which forms, continues

to travel through to the opposite side of the bubble. Also, during collapse, the bubble

begins to expand as a result of the internal gas content and the effect of the elastic

stresses. This helps to create the small ringed jet, with a thin bubble “stem” and

a large surrounding body. Given that viscous dissipation effects are more dominant

now, the height reached by the free surface is significantly less (zmax ≈ 0.2) than that

reached in the De = 1.0 case (zmax ≈ 0.4).

Figure 5.18 shows a 3D visualisation of the final stage of collapse for De = 0.5, Re =

1.0. The annular jet, having penetrated the top of the bubble about the thin axial

stem, can be seen clearly.

Now if the Deborah number is increased to De = 2.5 (Fig. 5.19), we see a reversion in

the dynamics. Instead of an annular ring jet, an axial jet, much like those seen in the

Newtonian case, forms. Although, this jet is considerably larger and the jet tip broader

and flatter than its Newtonian counterparts. The increase in Deborah number means

that viscous effects are suppressed by the increasing elastic effects. Consequently,

the effect of viscous dissipation is less and the bubble is able to expand to a larger

volume and interact and deform with the free surface. With viscous effects reduced,
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Figure 5.16: Free surface jet velocity for De = 1, Re = 1, with varying mesh refinement
and rmax values.

the bubble now succumbs to more dominant inertia terms and the usual axial jet forms

and penetrates the bubble. In addition, the free surface jet produced is significantly

taller (zmax ≈ 1.0), but still less than half the size of its inviscid Newtonian counterpart

(Fig. 5.5) - emphasising that viscosity still plays a considerable role.

The effect of varying Deborah number can be readily seen in Figures 5.20 and 5.21. As

the Deborah number is increased, so do the jet velocity and height on the free surface.

For De = 0.5 viscous dissipation plays a more important role and consequently the

free surface jet velocity and free surface height are smaller, as energy is dissipated

into the fluid. Also, note the rebound in the jet velocity at t ≈ 0.3, describing the

re-expansion of the bubble due to elastic and internal gas effects. By increasing the

Deborah number one increases the effect of elasticity, but also inertia, as viscous effects

are offset. Subsequently, the velocity of the jet and the height reached by the jet

increase.

Similar behaviour is observed with the bubble. Figure 5.22 shows the variation of

the bubble centroid position with time. Evidently, the mobility of the bubble’s centre

of mass increases with Deborah number. Reduced viscous dissipation results in the

bubble being able to move more freely along the axis of symmetry.

Figures 5.23 and 5.24 display the pressure contours and velocity vectors for the above

parameters.

For Deborah number De = 2.5 (Fig. 5.23), we see a pressure field much like that

129



r

z

-1 0 1

-1

0

1

time = 0.121
time = 0.299
time = 0.388

Figure 5.17: Bubble and free surface shapes with De = 0.5, Re = 1.0 at h = 0.5.
Different colours indicate different instances in time.

observed in the Newtonian case, with the formation of the axial jet accompanied by

the corresponding high pressure region between the bubble and free surface. The

maximum pressure here is larger than the corresponding Newtonian case, given the

greater volume/mass of fluid focused into the larger, voluminous bubble jet.

Fig. 5.24 displays corresponding results for De = 1.0, Re = 1.0, h = 0.5. Expectedly,

a high pressure region occurs in the vicinity of the bubble - specifically along the thin,

sharp “stem” that is produced during collapse. This is a consequence of the extremely

high curvatures near the tip of this stem and the subsequent large normal stresses.

Note the larger velocities around the axis of symmetry, forming the annular ring jet.

For a Deborah number of De = 0.5 (Fig. 5.25), we see the high pressure region form

at the tip of the annular jet that penetrates and impacts upon the opposite side of the

bubble. The maximum value of this pressure is significantly less than the De = 1.0

case as the surface curvatures in this region are smaller, and the increased effect of

viscous dissipation acts to suppress the high pressures. Note the negative pressure

around the outer body of bubble, indicating the expansion of this outer segment, due

to the expansion of the internal gas content and elastic stresses.
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Figure 5.18: 3D visualisation of Fig. 5.17.
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Figure 5.19: Bubble and free surface shapes with De = 2.5, Re = 1.0 at h = 0.5.
Different colours indicate different instances in time.
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Figure 5.20: Free surface jet velocity for h = 0.5 with different De.
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Figure 5.21: Free surface jet height for h = 0.5 with different De.
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Figure 5.22: Bubble centroid position for h = 0.5 with different De.

Figure 5.23: Pressure contours and velocity vectors at t = 0.574 with De = 2.5,
Re = 1.0 (h = 0.5).
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Figure 5.24: Pressure contours and velocity vectors at t = 0.393 with De = 1.0,
Re = 1.0 (h = 0.5).

Figure 5.25: Pressure contours and velocity vectors at t = 0.388 with De = 0.5,
Re = 1.0 (h = 0.5).
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We shall now briefly comment on the dynamics when the bubble is positioned further

away from the free surface at an initial distance h = 0.75. Figure 5.26 shows the

bubble and free surface profiles for De = 1.0 and Re = 1.0, h = 0.75. Interestingly, the

annular jet that was seen in the h = 0.5 case is no longer seen for h = 0.75. The bubble

expands and causes slight deformation in the free surface, then during collapse the top

of the bubble flattens before an axial liquid jet penetrates the bubble and impacts upon

the underside. Indentations in the flattened bubble surface at t = 0.435 indicate the

possibility of an annular jet forming, before the irresistible action of the axial jet.
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Figure 5.26: Bubble and free surface shapes with De = 1.0, Re = 1.0 at h = 0.75.
Different colours indicate different instances in time.

Figure 5.27 shows the bubble and free surface profiles when the Deborah number is

decreased to De = 0.5. As before, viscous forces become more dominant, and inertia

plays a smaller role. Consequently the elastic effects become more discernible from the

inertial. During growth, the bubble undergoes minimal deformation, and perturbs the

free surface only slightly. The collapse is then characterised by the oscillation of the

bubble surface with time. Such oscillation being due to the action of the compressed

gas content and the elastic stresses. No jet of any kind forms, and the deformation in

the bubble throughout its oscillation is small.

This oscillation can be seen readily in the graphs of the free surface jet velocity (Fig.

5.28) and jet height (Fig. 5.29). For De = 1.0 there is a single oscillation in the

free surface, despite there being no oscillations in the bubble. For De = 0.5 there are

several oscillation during the growth phase and collapse phase, but with the jet velocity

135



r

z

-1 0 1

-1

-0.5

0

0.5

1

1.5

2

time = 0.149
time = 0.296
time = 0.664
time = 16.70

Figure 5.27: Bubble and free surface shapes with De = 0.5, Re = 1.0 at h = 0.75.
Different colours indicate different instances in time.

or height never reaching as large a value as seen for De = 1.0, due to the increased

effect of viscous dissipation.

Similarly, the plot of centroid position with time (Fig. 5.30) highlights the difference

in the oscillatory nature of the dynamics. The De = 1.0 case resembles the centroid

profiles observed previously, while De = 0.5 displays a marked difference as the bubble

centre of mass undergoes a large oscillation first, before subsequent smaller oscillations.
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Figure 5.28: Free surface jet velocity for h = 0.75 with different De.
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Figure 5.29: Free surface jet height for h = 0.75 with different De.

137



Time

C
en

tr
o

id
p

os
iti

on

0 0.25 0.5 0.75 1

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

De=1.0
De=0.5

Figure 5.30: Bubble centroid position for h = 0.75 with different De.
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The initial position of the bubble from the free surface is now increased to h = 1.0.

Figure 5.31 shows the bubble and free surface profiles for De = 1.0, Re = 1.0, h = 1.0.

Expectedly, the deformation in the free surface is less as the influence of the bubble

decreases with increasing distance. No discernible free surface jet forms. As in the

previous case when h = 0.75, there is no annular jet, but an axial one which penetrates

the bubble, while the bulk of the bubble expands due to the gas content and elasticity.
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Figure 5.31: Bubble and free surface shapes with De = 1.0, Re = 1.0 at h = 1.0.
Different colours indicate different instances in time.

If the Deborah number is decreased to De = 0.5 (Fig. 5.32), as in the h = 0.75

case, the effects of inertia are suppressed by the viscous effects, so jet formation is

prevented and the elastic effects become more apparent. The bubble oscillates as it

grows and collapses, and given the increased distance of the bubble from the free

surface the bubble remains very nearly spherical throughout its lifetime, with minimal

deformation in the free surface.

Figures 5.33 and 5.34 display the free surface jet velocity and jet height, respectively.

The oscillation in the free surface for both De = 1.0 and De = 0.5 is evident. Given

the reduced effects of viscous dissipation, the maximum velocity and height of the free

surface jet is larger in the De = 1.0 case. Whereas the computation stops following jet

impact for De = 1.0, the near-spherical oscillations for De = 0.5 are able to continue.

Figure 5.35 shows the variation of the bubble centroid positions with time. The plots

resemble those of the h = 0.75 case, with the bubble migrating from the boundary

when De = 1.0 (as also seen in the Newtonian case). But when De = 0.5, the bubble

139



r

z

-2 -1 0 1 2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

time = 0.164
time = 5.190
time = 17.60

Figure 5.32: Bubble and free surface shapes with De = 0.5, Re = 1.0 at h = 1.0.
Different colours indicate different instances in time.

centroid undergoes low amplitude oscillations near its initial position.

As alluded to, the bubble and free surface will continue to oscillate until an apparent

steady state is reached. In fact such a situation occurs for h = 0.75, De = 0.5, Re = 1.0

also, but we just discuss the results for the h = 1.0 case here. Figure 5.36 shows the

bubble centroid, free surface jet height and jet velocity over a larger time interval for

the parameters De = 0.5, Re = 1.0, h = 1.0. The arrival at a steady state is clear as

beyond t ≈ 8.0 each measure reaches a constant value, with the jet velocity very nearly

zero.

Considering the pressure contours and velocity vectors, Fig. 5.37 plots an instant in

time just before jet impact for De = 1.0. In contrast to the pressure fields usually

seen for axial jets, the high pressure region occurs within the jet, with a maximum at

the jet tip. This is a result of the high curvatures present in the sharp jet tip and the

subsequently large normal stresses.

For the De = 0.5 case, the apparent arrival at a steady state is confirmed. The

pressure throughout the fluid is approximately p ≈ 1.0, namely hydrostatic pressure.

With little variation from the hydrostatic pressure the fluid must be near stationary,

with the gas pressure inside the bubble and the atmospheric pressure beyond the free

surface, balanced exactly by the fluid pressure.

Note that steady states were also observed for the collapse of viscoelastic cavities near
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Figure 5.33: Free surface jet velocity for h = 1.0 with different De.

rigid boundaries in Chapter 3 and suggests that this is a consistent phenomenon in

viscoelastic bubble dynamics.
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Figure 5.34: Free surface jet height for h = 1.0 with different De.
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Figure 5.35: Bubble centroid position for h = 1.0 with different De.
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Figure 5.36: Bubble centroid position, free surface jet position and free surface velocity
for h = 1.0, De = 0.5, Re = 1.0.

Figure 5.37: Pressure contours and velocity vectors at t = 0.532 with De = 1.0,
Re = 1.0 (h = 1.0).
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Figure 5.38: Pressure contours and velocity vectors at t = 17.6 with De = 0.5, Re = 1.0
(h = 1.0).
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5.3.4 Comparison with bubbles near elastic boundaries

As mentioned in Section 5.3.3, the mushroom-like bubble shapes produced in the cur-

rent work are similar to those produced when a bubble collapses near an elastic medium

or membrane. Figure 5.39(a) presents the results of [82] (Fig. 3) which show a bubble

collapsing near an elastic medium. The density ratio between the two fluids is 0.967,

and the elasticity coefficient is 0.799. The experimental images below (Fig. 5.39(b))

are those of Brujan et al. [35] for a bubble near a PAA/ 85% water sample. The results

show good agreement until the very final stages.

Figure 5.39: Bubble collapse near an elastic medium2.

Note the similarity in the bubble shapes of Fig. 5.39(a), Frame A, to that of Fig. 5.14

for example. The studies of Klaseboer and Khoo [82] and Turangan et al. [155] note that

such shapes are not produced when elasticity is not present in the external medium. In

concurrence with the Newtonian studies presented here, no such shapes are observed.

The current work seems to confirm the role of elasticity in the formation of such

mushroom shaped bubbles in close proximity to (visco)elastic surfaces. The presence of

the free surface is the crucial factor, for if the bubble is positioned further from the free

surface, as seen in Fig. 5.27, the mushroom shape does not form, despite the presence

of viscoelasticity. Interestingly, such mushroom shapes were observed in the study of

2Reprinted with permission from E. Klaseboer and B. C. Khoo, An oscillating bubble near an
elastic material, Journal of Applied Physics, 2004, Vol. 96, 5808. Copyright 2004, American Institute
of Physics.
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two bubble dynamics near a wall in Chapter 4. For two bubbles positioned a moderate

distance from the wall, the lower smaller bubble forms into a mushroom-like shape,

under the influence the upper, larger bubble. Evidently, the smaller bubble views

the larger bubble as an approximation to an infinite free surface, and subsequently,

exhibits similar dynamics. As described in Klaseboer and Khoo [82], the reason for the

formation of these shapes is the introduction of a perturbation in the bubble surface,

by the neighbouring free surface. Deformations resulting from the elastic responses of

the free surface exert a force on the neighbouring bubble, introducing perturbations

in its surface. In [82], depending on parameters, these perturbations can travel along

the whole length of the bubble, or only a short distance before the bubble collapses,

producing different shapes. In the current work, the perturbations do not seem to

travel far from the north-pole of the bubble before fluid inertia causes bubble collapse,

and creates the observed annular jets and thin-stemmed mushrooms with voluminous

bodies. Figure 5.40 highlights the formation of this perturbation graphically. Without

a doubt it is the effect of viscous dissipation that dampens the propagation of these

perturbations along the bubble surface, in comparison to [82], where no dissipative

mechanisms are present.

Figure 5.40: The instigation of a perturbation in the bubble surface by the free surface,
resulting in annular jet formation.
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5.3.5 Comment on comparison with experimental work of Williams

et al. [165]

Williams et al. [165] performed an experimental study of the liquid jets formed in free

surfaces by bubble collapse in viscoelastic fluids. The study utilises the novel exper-

imental technique described in [164] in creating the free surface jets. A gas bubble

created in a cylindrical column of viscoelastic fluid rises through the column to a free

surface, coming to rest directly beneath it. The liquid column is then subject to dy-

namic tension causing cavitation bubbles to form. The collapse of these cavitation

bubbles creates a shockwave which then drives the collapse of the gas bubble near the

free surface, creating the free surface jet. Figure 5.41 shows the gas bubble near the

free surface, and the subsequent jet produced by bubble collapse. The experimental

technique in fact approximates in vivo situations where multiple cavities are formed,

and the interaction of shocks with bubbles play an important part in cavitation damage.

Although modelling this situation using the BEM is possible, considerable extensions

to the theory are necessary. A pressure pulse can be introduced into the scheme as in

the work of Klaseboer et al. [83]. Their BEM results compare well to other compress-

ible numerical methods in studying bubble collapse in an infinite medium due to shock

waves, despite their theory being incompressible.

The pressure pulse incident on the gas bubble is assumed to have the simplest possible

form (that of a square waveform, see Fig. 5.42), with amplitude Ps, velocity Us, and

width Ws. A schematic depiction is given in Fig. 5.43. The propagation of the pulse is

then included by setting the hydrostatic pressure p∞ in Equation (5.5) to the pressure

of the pulse when the pulse passes through the region of space in question, while p∞ is

set to a reference pressure Pref everywhere else. Mathematically,

p∞ =





Pref if z < z0 + tUs −Ws

Ps if z0 + tUs −Ws < z < z0 + tUs

Pref if z > z0 + tUs

The variables are non-dimensionalised as in Section 5.2 but with respect to the refer-

3Reprinted from the Journal of non-Newtonian Fluid Mechanics, Vol. 76, P. R. Williams and P.
M. Williams and S. W. J. Brown, A study of liquid jets formed by bubble collapse under shock waves
in elastic and Newtonian liquids, 307-325, Copyright (1998), with permission from Elsevier.
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Figure 5.41: Jet formation in Newtonian silicon oil, with a shear viscosity of 0.18Pa·s.3

ence pressure, Pref, instead of hydrostatic pressure p∞. The reference pressure Pref is

taken to be atmospheric pressure, Pref = 1× 105Pa. To attempt to model the phenom-

ena observed in experiment, we place an initially spherical bubble near a free surface

at h = 1.5, before initiating its collapse by subjecting it to the shockwave defined

above. The simulation starts at the instant the shockwave strikes the bubble, hence

z0 = 2.5. From the pressure record provided by Williams et al. [165], the amplitude

of the shockwave is Ps ≈ 1.3 × 107Pa, while the speed of the shock is of the order

of Us ∼ 400ms−1. Scaling with respect to the reference pressure, maximum bubble

radius (approximately 2.5mm), and assuming the fluid density ρ ≈ 1000kgm−3, the

non-dimensional parameters are, P ′
ref = 1, P ′

s = 130, and U ′
s = 40. The shock width is

taken to be W ′
s = 100.
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Figure 5.42: Form of pressure pulse

The fluid used in the experiment of Fig. 5.41 was Newtonian with a shear viscosity

of µ = 0.18Pa·s. By Equation (4.12), the corresponding Reynolds number is approxi-

mately Re = 140. Hence assuming the fluid to be inviscid is a viable approximation,

certainly for illustrative purposes. Figure 5.44 shows the computed bubble and free

surface profiles during collapse.

The top left image details the initial configuration, with the incident shockwave rep-

resented by the red horizontal line. The shockwave then initiates collapse, and as it

passes through the bubble, a liquid jet begins to form. The jet begins to penetrate the

bubble, travelling in the direction of the shockwave - the opposite direction to the jets

observed in Section 5.3.2. These results are promising, closely resembling the transi-

tion from frame 2 to frame 3 of Fig. 5.41. That is, the moment before the arrival of

the shockwave (frame 2) and the thin flattened bubble produced before the formation

of the free surface jet (frame 3). In the experiment, the liquid jet then completely

penetrates the bubble, passing through to the free surface to create a thin free surface

jet (frames 4-8) - much like those seen in Section 5.3.2. Meanwhile, the newly formed

toroidal bubble continues to collapse. In the current study however, the theory has

yet to be extended to include the evolution to a toroidal geometry. This is a necessity

in order to model the high speed jet fully penetrating the bubble and creating that

observed in the free surface. The most popular methodology in modelling toroidal

dynamics was introduced by Best [10]. Considering the dynamics immediately prior to

and after jet impact, Best derived the following integral equation appropriate for the
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Figure 5.43: Schematic diagram of pulse, bubble, and free surface

doubly-connected toroidal geometry,

c(p)φ(p) =

∫

∂Ω

(
∂φ

∂n
(q)G(p,q)− φ(q)

∂G

∂n
(p,q)

)
dS −∆φ

∫

T

∂G

∂n
(p,q) dS, (5.20)

where T denotes the surface over which jet impact takes place. This surface is retained

throughout the simulation, acting as an imaginary link across the centre of the toroidal

bubble in order to restore the singly-connected geometry. The quantity ∆φ is the jump

in potential across T and is equal to the circulation set up in the flow following jet

impact. This extension to a toroidal geometry and the study of post-penetration

dynamics is reserved for future work.
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Figure 5.44: Bubble collapse under a shockwave, near a free surface, in a Newtonian
inviscid fluid
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5.4 Conclusions

This chapter has investigated the effect of viscoelasticity on the dynamics of gas bub-

bles near free surfaces. The phenomenon is most befitting to biological applications

and has implications for cell damage and drug delivery to name only two. Besides

this, the work gives a greater understanding of the role of viscoelasticity in bubble

dynamics in general. A range of dynamics is seen to occur, with a subtle dependence

on the Deborah number, Reynolds number and the initial distance of the bubble from

the free surface. In the presence of viscoelasticity, the motion of free surface jets can be

significantly retarded compared to the Newtonian cases, and the bubbles take a wide

range of shapes. Provided inertial forces are not too large, the usual axial jet observed

in many instances in the Newtonian dynamics, is no longer seen. Instead, an annular,

ring like jet forms and can penetrate the bubble to produce mushroom-like shapes.

Similar shapes are observed in bubbles collapsing near purely elastic boundaries, and

are due to perturbations in the bubble surface resulting from the elastic responses of

the free surface. This study acts to confirm the role of elasticity in producing such

shapes. But the proximity of the free surface is crucial, for if the bubble is moved fur-

ther away from the free surface, little interaction takes place and the bubble collapses

in a near-spherical, oscillatory manner, before reaching some steady state. Given that

no high speed jets form in the bubble or free surface, the implications for cavitation/cell

damage can clearly be mitigatory. But the role of elasticity is not generally inhibitive,

for it is the balance between inertial, viscous and elastic effects that determines dynam-

ics. Increasing elastic effects can abate viscous effects to the extent that in fact inertia

dominates dynamics, so that at higher Deborah number, a reversion to Newtonian-like

dynamics occurs, with the formation of an axial bubble jet. The observed dynamics,

though veracious in exhibiting viscoelastic behaviour, is of course constitutive model

dependent. The simple material Maxwell model has been used here, and so future work

will entail further studies on the same situations but with other compatible viscoelastic

models.

Brief comparisons with the experimental work of Williams et al. [165] have also been

made. The model was extended to include the propagation of shock waves and shock-

induced bubble collapse. The results are promising in the early stages, but to recreate

the observed free surface jets, the theory needs to be extended to include evolution

to a toroidal geometry, to allow the liquid jet to fully penetrate the bubble and form
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the free surface jet. Future work will include this extension to the theory, allowing full

comparisons to be made.
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Chapter 6

The Effect of Viscoelasticity on a

Rising Gas Bubble

6.1 Introduction

The study of the motion of air bubbles in liquids has received much attention for many

years due to its fundamental and practical importance. The rise of bubbles in New-

tonian fluids has been studied intensively both theoretically and experimentally. The

dynamics of rising Newtonian bubbles depends primarily on the effects of surface ten-

sion and the Reynolds number. When surface tension effects are dominant the bubble

can remain spherical during ascension. Similarly at very small Reynolds numbers, de-

formation is small and the bubble remains spherical. In the limit of negligible inertia,

Stokes approximation for a translating rigid sphere [141] provides a reasonable approx-

imation to the flow and the drag on the bubble [29]. This approximation was extended

independently by Hadamard [62] and Rybzynski [136], who considered a fluid sphere

which allowed for slip and a zero shear stress on the bubble surface. Levich [88] and

Moore [106] employed a viscous potential flow approximation, and their drag predic-

tion is in better agreement with experiments in cases where inertia is not negligible.

As its size increases, the bubble deviates from its spherical shape. At progressively

larger volumes the bubble evolves into a prolate ellipsoid with an increasingly flat-

tened underside until, at negligible surface tension effects, a spherical cap bubble can

form [163]. There are many numerical studies examining the deviation from the spher-

ical shape seen in Newtonian fluids. The work of Boulton-Stone [24,27] and Robinson

et al. [131] use the boundary element method to study the deformation in rising gas
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bubbles in an inviscid fluid for the 3D axisymmetric and 2D cases, respectively. Their

numerical simulation studies reproduce many of the bubble shapes observed in ex-

periment. Similarly, Pozrikidis [122] uses a boundary element method to study the

oscillations in rising bubbles for the fully 3D problem, noting that rising bubbles oscil-

late at higher frequencies than stationary bubbles. Miksis et al. [105] use a boundary

element method to study the bubble shapes produced in a steady-state viscous poten-

tial flow. Again, their results bear a strong resemblance to experimental observations

and empirical results. Non-BEM studies include that of Pillapakkam and Singh [116],

who use a level set finite element method, and similarly Sussman et al. [144] who use a

level set method but with finite differences. Ryskin and Leal [137] solve a steady-state

reformulated Navier-Stokes equation to determine terminal bubble shapes, while Tryg-

gvason et al. [154] use a front tracking scheme combined with a finite volume method,

in modelling rising bubbles and associated phenomena. Each of these studies captures

many of the essential features observed experimentally for the Newtonian rising bubble.

Unsurprisingly, the characteristics of a rising viscoelastic bubble differ drastically from

the Newtonian case. Subsequently, the interesting dynamics associated with viscoelas-

tic fluids has spurred a plethora of experimental studies, although comparatively few

theoretical and numerical ones. At low Reynolds numbers one still observes near spher-

ical rise as viscous effects dominate and inhibit deformation. However, larger bubbles

form more prolate ellipsoidal shapes with the underside becoming increasingly drawn

out. As explained by Bird et al. [15], this results from an additional tension along the

streamlines, squeezing the bubble at the equator. Beyond a certain critical volume, a

cusp can then form at the trailing end [118]. Accompanying the change in shape from

fully concave to cusped can be a large increase in the terminal rise velocity. Given the

small change in volume over which this transition takes place, it effectively represents

a discontinuity [72]. One of the first studies of this velocity jump was undertaken by

Astarita and Apuzzo [6] who attributed it to a transition from a Stokes to Hadamard

regime. Subsequent studies have proposed other reasons such as drag reduction [95],

the presence of surface active agents [133] combined with surface tension forces [134],

and the appearance of a negative wake [66] in the flow behind the rising bubble. The

negative wake behind a rising gas bubble in a non-Newtonian elastic liquid is a typical

occurrence, first observed by Hassager [65]. It is a non-Newtonian phenomenon but not

unique to gas bubbles, having also been observed behind spheres settling in viscoelastic
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liquids [3, 63]. Although there have been several studies of the flow field around the

rising bubble (e.g. Funfschilling and Li [58]), a full explanation of the appearance of

the negative wake behind bubbles is not yet available. Herrera-Velarde et al. [66] find

that the negative wake only appears at bubble sizes above the critical volume. But

as pointed out by Kemiha et al. [73], the deformation in the surface (cusping) at the

critical volume cannot fully explain the origin of the wake, given that it is also seen

behind settling rigid spheres. They conclude that the viscoelastic properties of the

fluid must be responsible.

Numerical studies are fewer in number than their experimental counterparts. Wag-

ner et al. [159] and Frank and Li [55] use 2D Lattice Boltzmann methods to study

the problem, using Maxwell type constitutive equations for the ambient fluid. Both

are able to predict the observed cusp, with the latter also predicting the formation

of the negative wake. However, the velocity jump discontinuity is not observed in ei-

ther of these studies. Málaga and Rallison [102] undertake an axisymmetric boundary

element study of the problem, under the assumption of Stokes flow in a FENE fluid.

Once again, despite reproducing a small cusp at the trailing end, no jump discontinuity

was observed. The numerical technique which seems to have borne most fruit is that

of Pillapakkam et al. [117]. They make use of a 3D level-set finite element method to

solve the full equations of motion with an Oldroyd B constitutive equation. Not only

do they observe a cusp and the negative wake, but also the velocity jump discontinuity.

As in Herrera-Velarde et al. [66], they attribute the principal cause of the jump to the

negative wake.

The above review highlights the complex and fascinating dynamics observed in rising

bubbles in viscoelastic fluids. Furthermore, it emphasises that little is still known about

the three characteristic phenomena - the formation of the cusp, the jump discontinu-

ity, the negative wake, and crucially, their relationship to one another. The variety of

explanations given in the experimental literature, and the sparsity of numerical results

means there is much work still to be done in gaining a full understanding of the dy-

namics. In this chapter we use a modification of the theory presented in chapter 2 to

attempt to describe the dynamics of a gas bubble rising in a viscoelastic fluid. The

choice assumptions allow crucial insights into the dynamics that could not be made in

experiments, allowing us to vindicate theories proposed in previous experimental and
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numerical works.

6.2 Mathematical Model and Governing Equations

As in previous numerical studies (for example [24, 102, 131]), we consider the rise of

a constant volume gas bubble. This is also consistent with experimental observa-

tions [118] and, in effect, means that the change in hydrostatic pressure as the bubble

rises is small compared to the ambient fluid pressure. The bubble rises under the action

of buoyancy forces, and is subject to viscoelastic effects as it ascends. As outlined in

chapter 2, the fluid surrounding the bubble is assumed to be incompressible and irro-

tational, with viscoelastic effects appearing in the normal stress balance on the bubble

surface. Consequently, the conservation of mass is described by Laplace’s equation

∇2φ = 0, (6.1)

while the potential is governed by the following irrotational equation of motion

ρ
Dφ

Dt
=

ρ

2
|u|2 + p∞ − p + ρgz, (6.2)

where u is the fluid velocity and ρ the fluid density. Note the additional buoyancy

term due to the inclusion of the gravity body force, where g is the acceleration due to

gravity and z is the vertical displacement from some reference height.

At any instant in time, the fluid pressure p is related to the bubble pressure pb(t) and

viscoelastic effects, through the normal stress balance

p = pb(t)− σκ + Tnn, (6.3)

where σ is the surface tension, κ is the curvature, and Tnn is the normal-normal com-

ponent of the extra stress.

We assume the bubble is initially spherical and that it starts at rest, centred at z = 0.

The reference pressure p∞ is defined such that p = p∞ at z = 0, and thus the initial

normal stress balance gives

p∞ = pb(0)− σ

R0

. (6.4)

(Noting that Tnn = 0 since the fluid is at rest). Substituting equations (6.4) and (6.3)
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in equation (6.2) gives the following equation of motion, in terms of bubble pressure

term ∆pb(t) = pb(t)− pb(0)

ρ
Dφ

Dt
=

ρ

2
|u|2 + ∆pb − Tnn + σ

(
κ− 1

R0

)
+ ρgz, (6.5)

with the rheological properties governed by the Maxwell constitutive equation viz.,

λ
DTnn

Dt
+ Tnn = µγ̇nn, (6.6)

where λ is the relaxation time and µ is the shear viscosity. Meanwhile, the solution of

Eq. (6.1) can be expressed in the usual integral form,

c(p)φ(p) =

∫

∂Ω

(
∂φ

∂n
(q)G(p,q)− φ(q)

∂G

∂n
(p,q)

)
dS (6.7)

where ∂Ω is the boundary of the bubble in fluid domain Ω, and the constant c(p) is

given by

c(p) =

{
2π if p ∈ ∂Ω,

4π if p ∈ Ω\∂Ω

Spatial variables are non-dimensionalised with respect to the initial bubble radius R0,

while time, pressure and the potential are scaled, respectively, according to

t∗ =
t

(R0/g)1/2
, (6.8)

p∗ =
p

ρgR0

, (6.9)

φ∗ =
φ

(R3
0g)1/2

. (6.10)

The subsequent non-dimensionalised governing equations are (dropping asterixes),

Dφ

Dt
=

1

2
|u|2 + ∆pb − Tnn +

4

Eö
(κ− 1) + z, (6.11)

and

De
DTnn

Dt
+ Tnn =

1

Re
γ̇nn, (6.12)

with the conservation of mass given as in Eqn. (6.7). The non-dimensional parameters

are the Deborah number,
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De =
λg1/2

R
1/2
0

, (6.13)

the Reynolds number,

Re =
ρg1/2R

3/2
0

µ
(6.14)

and the Eötvös number,

Eö =
4ρgR2

0

σ
. (6.15)

The Eötvös (or Bond) number can be described as a ratio between the buoyancy and

surface tension forces.

As mentioned, experimental observation shows that rising gas bubbles in Newtonian

and viscoelastic fluids remain very nearly constant in volume. Therefore, during bubble

ascension, the internal bubble pressure pb(t) must vary in accordance with the changing

external hydrostatic pressure. This provides an additional unknown with an additional

equation provided by the volume constraint. The equation of motion (Eq. (6.11)) and

the conservation of mass (Eq. (6.7)) now need to be recast to remove dependence on

the unknown pressure term ∆pb. Define a new potential ϕ, such that

ϕ = φ + k(t), (6.16)

where

k(t) =

∫ t

0

(pb(t)− pb(0)) dt. (6.17)

Crucially, the fluid velocity is independent of this definition since ∇k(t) = 0 and so

u = ∇ϕ = ∇φ. Consequently, substituting Eq. (6.16) into the equation of motion

(Eq. (6.11)) results in

Dϕ

Dt
=

1

2
|u|2 − Tnn +

4

Eö
(κ− 1) + z. (6.18)

In particular, note that Tnn(ϕ) = Tnn(φ) as we start from an initial zero extra stress

and γ̇nn = ∂2φ
∂n2 = ∂2ϕ

∂n2 . Equation (6.18) is essentially the same as Eq. (6.11) but for the

absence of the internal bubble pressure term ∆pb.
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Secondly, substituting Eq. (6.16) into Eq. (6.7) gives,

c(p)ϕ = 4πk +

∫

∂Ω

(
∂ϕ

∂n
G− ϕ

∂G

∂n

)
dS. (6.19)

The first term on the right hand side derives from the property that c =
∫

∂G
∂n

dS = 2π

on the bubble boundary.

To determine k(t) one requires an additional equation provided by the volume con-

straint. If the volume of the bubble is to remain constant, then the net flux of fluid

into the bubble surface must be zero. Therefore,

∫

Sb

∂ϕ

∂n
dS = 0. (6.20)

Equivalently, for a constant volume bubble, the divergence of the velocity u∗ of some

hypothetical fluid within Vb must be zero. Hence, by the divergence theorem of Gauss

0 =

∫

Vb

∇ · u∗ dV =

∫

Sb

u∗ · n∗ dS = −
∫

Sb

∂ϕ

∂n
dS, (6.21)

and we arrive at Eq. (6.20).

Given a potential ϕ, Eqns (6.19) and (6.20) can be solved simultaneously to obtain

the normal velocity ∂ϕ
∂n

and the pressure integral k(t). Subsequently, the potential

can be updated using Eq. (6.18), and the motion of the bubble tracked, in the usual

Lagrangian manner.

6.3 Numerical Solution of Governing Equations

Many of the phenomena in bubble dynamics, such as spherical collapse and jet forma-

tion near a boundary, are seen to be axisymmetric [19]. Rising bubbles in viscoelas-

tic fluids are also known to maintain axisymmetry over the jump inclusive volume

ranges [118]. Consequently, as in the numerical study of Málaga and Rallison [102], we

assume axisymmetry about the direction of motion. The problem is then effectively

reduced from 3D to 2D, as the third dimension is treated analytically.

The boundary (the bubble surface) ∂Ω is discretised into N segments, characterised
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by the nodes si, 1 ≤ i ≤ N + 1, with nodes 1 and N + 1 lying on the axis of symmetry

on the top and bottom of the bubble, respectively. The surface variables r(s) and z(s)

and the potential ϕ(s), are represented by cubic splines so that

qi(s) = qi0 + qi1(s− si) + qi2(s− si)
2 + qi3(s− si)

3, (6.22)

for si ≤ s ≤ si+1, i = 1, .., N . The normal derivative of the potential ∂ϕ
∂n

is represented

linearly with respect to arclength.

Subsequent discretisation of the integral conservation of mass (Eq. (6.19)) and the

volume constraint (Eq. (6.20)) results in the following linear system for k and the

normal velocities (ψi) at each nodal point,

c(pi)ϕi +
N∑

j=1

Aij = 4πk +
N∑

j=1

(Bijψj + Cijψj+1), (6.23)

N∑
j=1

(Djψj + Ejψj+1) = 0. (6.24)

The coefficients in Eqs. (6.23) and (6.24) are given by

Aij =

∫ sj+1

sj

ϕj(s)αi(s) ds,

Bij =

∫ sj+1

sj

(sj+1 − s)

∆sj

βi(s) ds,

Cij =

∫ sj+1

sj

(s− sj)

∆sj

βi(s) ds, (6.25)

Dj =

∫ sj+1

sj

(sj+1 − s)

∆sj

r(s) ds,

Ej =

∫ sj+1

sj

(s− sj)

∆sj

r(s) ds,

where αi and βi denote the analytical azimuthal integrations viz.,

αi(s) =

∫ 2π

0

∂G

∂n
(pi, s)r(s) dθ, (6.26)

βi(s) =

∫ 2π

0

G(pi, s)r(s) dθ. (6.27)
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The integrals in (6.25) are approximated using a 10-point Gaussian quadrature rule

while Gaussian elimination is used to solve the linear system (Eq. (6.23) and (6.24)).

After solving the system for the normal velocity, the tangential velocity and higher

derivatives of ϕ are found using a high-order finite difference approximation on non-

uniform grids [89]. With the velocity now fully described on ∂Ω, the bubble surface

is advected in a Lagrangian manner while the potential and extra stress are updated

using Eqs. (6.18) and (6.12), respectively. A fourth-order Runge Kutta method is

used in updating the surface and the potential, with a second-order trapezoidal rule

employed for the extra stress.

6.4 Rising Bubbles in a Newtonian Fluid

In this section we present the numerical results obtained in studying the rise of a gas

bubble in a Newtonian fluid, and investigate the influence of the Reynolds and Eötvös

numbers on the rise dynamics and terminal bubble shape. Figure 6.1 shows the bub-

ble profile for Re = ∞ and a high Eötvös number, Eö = 106 (near negligible surface

tension), at different points during the bubble ascent. The bubble shapes are identical

to those obtained in the boundary element study of Boulton-Stone [24] and the level-

set approach detailed by Sussman et al. [144]. Here inertia and buoyancy dominate,

creating a fluid jet that forms on the underside of the bubble and then travels upward,

in the direction of bubble motion, before impacting on the upper surface. If the the-

ory allowed for toroidal geometries, a toroidal vortex ring bubble would then form, as

modelled by Lundgren and Mansour [100].

Figure 6.2 shows the rising bubble profiles following a decrease in the Eötvös number to

Eö = 6.6. Once again the bubble profiles agree well with those of Boulton-Stone [24].

As the jet forms, surface tension forces act to prevent deformation, creating a much

broader jet with an increasingly thin outer rim. Surface tension forces then act to

retract this outer rim, causing the bubble to pinch off the outer lobe (see final frame)

creating a second thin ring bubble.

Figure 6.3 shows the bubble profiles for Eö = 2.4. The effects of surface tension are

such that no distinguishable liquid jet forms. The upward action of the buoyancy force
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Figure 6.1: Bubble profiles at select times during ascent for Re = ∞ and Eö = 106.

combined with the retractive effect of surface tension causes the bubble to evolve into a

thin disk-like shape. Eventually the bubble thickness decreases to the point where up-

per and lower surfaces meet, allowing a possible transformation into a toroidal shape.

Again, these results agree closely with those of Boulton-Stone [24].

Figure 6.4 shows the evolution of bubble profiles for two Eötvös numbers, Eö = 106 and

Eö = 2.4, following the inclusion of viscous effects with Re = 50. Clearly the Reynolds

number is still rather large and consequently there is no great difference in the terminal

bubble shapes. However, the presence of viscosity has still had a noticeable effect on

the transient dynamics. In particular, the time at which the final (non-toroidal) bubble

shape occurs, has increased in both cases. This increase is substantial for Eö = 2.4,

with tf ≈ 6.7 for Re = ∞, but tf ≈ 14.5 for Re = 50. Subsequently, the final height

reached is significantly larger, with hmax ≈ 9.4 for Re = ∞ and hmax ≈ 21.8 for

Re = 50. Evidently viscosity is acting in the usual manner - inhibiting the fluid flow

and bubble deformation. Consequently, bubbles undergo deformation at a slower rate

and so exist (in their initial singly-connected form) for longer.

163



r

z

-2 -1 0 1 2
-0.5

0

0.5

1

1.5

2

2.5

3

3.5
t=1.530

r

z

-2 -1 0 1 2
0.5

1

1.5

2

2.5

3

3.5

4

4.5
t=2.700

r

z

-2 -1 0 1 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
t=0.00

r

z

-2 -1 0 1 2
0

0.5

1

1.5

2

2.5

3

3.5

4
t=2.214

Figure 6.2: Bubble profiles at select times during ascent for Re = ∞ and Eö = 6.6.

In the interests of conciseness, Figure 6.5 displays the final or steady state bubble shapes

for a selection of Reynolds and Eötvös numbers. One can clearly see the wide range of

bubble shapes produced, exemplifying the combined inhibitive role viscosity and surface

tension have in preventing jet formation and bubble deformation. At Eö = 106, the

final bubble shapes are nearly identical for all chosen values of the Reynolds number.

Decreasing the Eötvös number to Eö = 6.6, at high Reynolds number we see the

skirted bubbles discussed previously, whereas at moderate Reynolds number Re ≤ 20,

steady state bubble shapes are achieved. A curved thin disk forms for Re = 20,

while a fatter perturbed ellipsoid is produced for Re = 10. In fact, for Re ≤ 20 and

Eö ≤ 6.6 all the bubbles attain a steady state, with the profiles resembling those seen

by Sussman and Smereka [145] and Ryskin and Leal [137] at comparable Reynolds

and Weber numbers (an alternative dimensionless parameter for the surface tension).

At the lower Eötvös and Reynolds numbers the combined resistance to deformation

means that the steady state shapes are very nearly ellipsoidal, a comparatively small

deviation from the original spherical shape.
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Figure 6.3: Bubble profiles at select times during ascent for Re = ∞ and Eö = 2.4.

Figures 6.6-6.8 show the rise velocity of the bubble with time, at each Eötvös number

and Reynolds number. The rise velocity U is defined in the following way,

U =

∫
s
uz ds

smax

. (6.28)

Essentially, this is an average of the z-component of velocity over the arc-length of the

bubble surface. Figure 6.6 shows the variation of U with time for Eö = 106 at a selec-

tion of Reynolds numbers. The bubbles exist for a comparatively short time (tf < 2.5)

in their singly-connected state, and expectedly, a decreasing Reynolds number results

in a reduced rise velocity, but an increase in lifetime as deformation is slowed.

Figure 6.7 shows the rise velocity when Eö = 6.6. The rise velocities in this case are

slightly smaller in magnitude compared to the corresponding Eö = 106. This is a

consequence of the more oblate shape assumed and the absence of a distinguishable

liquid jet due to the increase in surface tension. Once again, at like times, decreasing

the Reynolds number is accompanied by a decrease in the rise velocity, but notably for
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(a) Eö = 106

r

z

-2 -1 0 1 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
t=0.00

r

z

-2 -1 0 1 2
5

5.5

6

6.5

7

7.5

8

8.5

9
t=5.00

r

z

-2 -1 0 1 2
13

14

15

16

17
t=10.00

r

z

-2 -1 0 1 2
20

20.25

20.5

20.75

21

21.25

21.5

21.75

22

22.25

22.5

22.75

23

23.25

23.5

23.75

24
t=14.46

(b) Eö = 2.4

Figure 6.4: Bubble profiles at select times during ascent for Re = 50.

Reynolds numbers Re = 10, 20 the rise velocity attains a constant value as the rising

bubbles reach their steady state terminal velocity UT . For Re = 20, UT ≈ 0.73, while

for Re = 10, UT ≈ 0.52.

Figure 6.8 displays the rise velocity for Eö = 2.4. As before, for like times, decreasing

Reynolds number results in a decrease in rise velocity. Again, for Re = 20 and Re = 10

the bubble attains a steady state, with the rise velocity tending to its terminal value.

For Re = 20, UT ≈ 0.96, while for Re = 10, UT ≈ 0.50. For Re = 10, the terminal

rise velocity is approximately equal (UT ≈ 0.5) for both Eö = 6.6 and Eö = 2.4.

For Re = 20 however, the difference is more significant with UT = 0.73 and 0.96

for Eö = 6.6 and 2.4, respectively. This difference can be explained by the differing

drag on the bubbles, resulting from their different shapes - itself a consequence of the

different surface tensions. At Eö = 6.6, the bubble is noticeably thinner, and has a

larger surface area exposed to the flow direction. Thus the drag is larger and so its

terminal velocity smaller, regardless of the fluid rheology. It seems that for Re = 10,

the difference in shape between Eö = 6.6 and Eö = 2.4 is not significant enough to

produce a significant change in drag.
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Figure 6.5: The terminal bubble shapes for different values of the Reynolds and Eötvös
number.
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Figure 6.6: Evolution of the rise velocity for a selection of Reynolds numbers with
Eö = 106.
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Figure 6.7: Evolution of the rise velocity for a selection of Reynolds numbers with
Eö = 6.6.
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Figure 6.8: Evolution of the rise velocity for a selection of Reynolds numbers with
Eö = 2.4.
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6.5 Rising Bubbles in Viscoelastic Fluids

6.5.1 The Rise of a Near-Spherical Gas Bubble

The rise of a spherical gas bubble in a Newtonian fluid under the effect of gravity has

been well documented. Analytical approximations to the drag on the bubble can be

found by approximating the form of the ambient flow. The three main flow approxima-

tions yield the Stokes, Hadamard-Rybczynski, and Levich drag, with the former two

giving a better experimental agreement when inertia is negligible, and the lattermost

otherwise. Each equation for the drag is of the same form (to leading order), namely

D = AπRµUT , for some dimensionless constant A. Balancing the drag with the dis-

placed fluid weight allows one to derive an expression for the terminal rise velocity UT

of the bubble, viz.

AπRµUT =
4

3
πR3∆ρg ⇒ UT = Le

∆ρgR2

µ
, (6.29)

where Le is Levich number and takes the following values depending on the drag

approximation

Le =





2
9

(Stokes)

1
3

(Hadamard)

1
9

(Levich)

The numerical results of Brabston [28] show that the rise velocity is in fact bounded

below and above by the Levich and Stokes approximations, respectively. The increased

complexity of viscoelastic constitutive equations means that equivalent expressions for

viscoelastic fluids are intractable for all but for the simplest cases. Joseph and Liao [72],

in their study of viscoelastic potential flow consider a rising spherical bubble in second

order and linear Maxwell fluids. In both cases the drag equals the Levich drag at steady

state, with no dependence on elastic parameters. This is a surprising result, and as

reported by Astarita [5], is not seen in experiments. In fact, in the moderate Reynolds

number regime, the observed Levich number is much less (about 50%) than the New-

tonian Le = 1/9, with Le ≈ 0.05. Astarita uses an order-of-magnitude dimensional

analysis to gain some insight into the motion of spherical bubbles in Maxwell fluids.

The approach is applicable to more general Maxwell models, like the material Maxwell

model used here. As such we adopt a similar analysis in an attempt to confirm the
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behaviour observed numerically.

The terminal velocity is found from equating the drag to the displaced fluid weight, or

equivalently balancing the rate of dissipation in the flow,

ED =

∫

V

T : ∇u dV, (6.30)

with the rate of positional energy loss

EP =
4

3
π∆ρgR3UT . (6.31)

If rates of strain are taken to be of order UT /R, and the derivatives of T of order

[T ]UT /R, then a dimensional analysis of the Maxwell constitutive equation gives,

[T ] +

[
λ

UT

R
T

]
+

[
µ

UT

R

]
= 0. (6.32)

The square brackets indicate the appearance of one or more terms, the order of mag-

nitude of which is given within the brackets. The order of magnitude of the stress is

thus

[T ] = f(We) · µUT

R
, (6.33)

where f is some function of the Weissenberg number, which is defined as

We = λ
UT

R
. (6.34)

Substituting Eq. (6.33) into Eq. (6.30), yields the leading order energy dissipation

rate

ED = f(We)µRU2
T . (6.35)

Equating this with the positional energy (Eq. (6.31)) one obtains a leading order

equation for the terminal rise velocity

UT = f(We)
ρgR2

µ
. (6.36)

Note that this is of the same form as Eq. (6.29) - suggesting that in the case of a

Maxwell fluid, the Levich number will be some function of the Weissenberg number
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(We), or without loss of generality, the Deborah number (De). Namely,

Le = f(De). (6.37)

Thus, for a fixed Deborah number, the terminal rise velocity of a spherical bubble in a

Maxwell fluid behaves as in a Newtonian fluid (to leading order). Non-dimensionalising

Eq. (6.36) yields the following expression in terms of Reynolds number Re,

UT = LeRe. (6.38)

Thus, for a fixed Deborah number, the terminal rise velocity UT should still vary linearly

with the Reynolds number Re (over not too large a range). Figure 6.9 displays the

numerically obtained rise velocity for different Reynolds numbers, at fixed De = 0.1.

The Reynolds numbers are restricted to a range in which the sphericity of the bubble

is near-preserved. Unlike the analytical studies, this is not explicitly enforced. The

relationship is clearly linear, supporting the theoretical argument presented above.

Figure 6.9: Variation of terminal rise velocity with Reynolds number in a Maxwell
fluid. The equation of the linear fit to the data is UT = 0.044Re.
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6.5.2 The Rise of a Non-Spherical Gas Bubble

As described in the introduction, the rise of a bubble in a viscoelastic fluid is charac-

terised by three distinct phenomena: (i) the formation of a cusp at the trailing end of

the bubble, (ii) an apparent discontinuity in the steady state velocity as a function of

bubble volume, and (iii) the presence of a negative wake in the region of the trailing

edge. As discussed, the relation between each of these phenomena is still a matter for

debate.

Figure 6.10 shows snapshots of the bubble profile during ascension for a viscoelastic

fluid with De = 0.93 and Re = 1.18. As the bubble rises it begins to assume a more

prolate shape before the underside becomes drawn out, eventually forming a trailing

edge cusp as seen in the final frame.
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Figure 6.10: Bubble profiles at select times during ascent for De = 0.93, Re = 1.18

The bubble shape observed in the final frame of Figure 6.10 is typical of that seen in

experiments (see, for example, Astarita and Apuzzo [6]). In Figure 6.11 one can see

the particularly striking resemblance of the numerical profile to the picture found in

Wagner et al. [159] of a bubble rising through liquid soap.
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Figure 6.11: Comparison of numerical bubble profile (left) with the experimental image
of a bubble rising in liquid soap (right)4

Similar cusp-like shapes are reproduced in other numerical studies, but to the knowl-

edge of the authors, no numerical study has reproduced such a sharp interface. Full

domain numerical studies such as the level-set finite element studies of Pillapakkam

et al. [116, 117] and the lattice Boltzmann studies of Wagner et al. [159] and Frank

and Li [55], produce visibly rounded tips. It seems that factors such as the mollified

density change over the fluid interface by the level-set method and the computational

restrictions in mesh refinement in both schemes, results in an under resolved cusp.

The boundary element method provides a truly discontinuous pressure/density inter-

face, and allows for an easy re-distribution of nodes and refinement in the vicinity of

the cusp, without costly domain calculations. Such benefits apply to the boundary el-

ement scheme of Málaga and Rallison [102], but it seems the lack of a sharp elongated

cusp in their work results from the neglect of inertia in their model and the associated

reduction in deformation.

Liu et al. [95] find from their experiments that the 2D-cusps formed by rising bubbles

adopt a universal asymptotic form of z = a|r|2/3. Although the cusps here are axisym-

metric, not 2D, it is interesting to see if they can fit a similar analytical expression.

Figure 6.12 shows a close up of the cusp formed for De = 0.934, Re = 1.180. Using the

method of least squares, the curve z = 1.01|r|0.381 (shown in red) is found to give a fit

with a residual mean square of 1.46 × 10−3. This suggests that perhaps more general

4Reprinted from Computer Physics Communications, Vol. 129, A. J. Wagner, L. Giraud and C.
E. Scott, Simulation of a cusped bubble rising in a viscoelastic fluid with a new numerical method,
227-232, Copyright (2000), with permission from Elsevier.
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cusps can be described by analytical expressions of the form z = a|r|n, certainly to

leading order. Note that n < 1 in order that the surface be convex.

Figure 6.12: The numerical cusp (circles) from Fig. 6.10 and the associated least
squares fit (red line).

The variation in bubble volume is an important focus of experiment studies, especially

due to the velocity jump discontinuity that takes place once the bubble exceeds a cer-

tain critical volume. Figure 6.13 displays the terminal bubble profiles of a rising bubble

at increasing volumes. The fluid has fixed material parameters but given the change

in volume, the relevant Reynolds and Deborah number are given within each frame.

The transition in shape for Re = 0.21 to Re = 1.18, is qualitatively very similar to

the transition in bubble shape seen experimentally when increasing volume. See for

example Pilz and Brenn [118] or Soto et al. [140]. At the lower Reynolds numbers,

Re = 0.21, 0.30, viscous effects dominate and inhibit deformation so terminal bubble

shapes deviate little from sphericity. At Re = 0.42 the viscous effects abate slightly,

and elastic effects play a more significant role as the bubble becomes more prolate

with evidence of a more pointed underside. Between Re = 0.42 and Re = 0.50 the

shape undergoes a marked change from a wholly convex interface to the underside now

displaying a concave portion with an accompanying pseudo-cusp. By increasing the

volume further, the increased effect of elasticity causes this pseudo-cusp to sharpen and

lengthen, culminating in the terminal cusped bubble shape observed for Re = 1.18,
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De = 0.93. The shapes beyond this (those outside of the red box) do not seem to

reach a steady state. The shapes shown are those before the computation undergoes

numerical difficulties. Yet, once again one can see there is a general transition in bubble

shape. A cusp no longer forms and instead a liquid jet seems to form on the bubble

underside, as in the Newtonian case studied in Section 6.4. Evidently the increase

in volume is such that viscous and elastic effects are subdued by the increasing effect

of buoyancy and inertia. Subsequent bubbles have increasingly larger jets, with the

shape tending from a prolate to a more oblate form. At Re = 6.67, De = 0.53 viscous

and elastic effects have diminished to the extent that the profile resembles that of the

inviscid Newtonian case with negligible surface tension, as seen in Fig. 6.5.

Figure 6.13: Final profiles of rising bubbles of different volumes in a viscoelastic fluid.
Steady state bubble shapes reside within the red box.

Figures 6.14-6.17 display the transient rise velocity with time for a selection of the

above profiles. Figure 6.14 shows the rise velocity for Re = 0.21, De = 1.66. The

damped oscillation in the velocity, a characteristic of so many viscoelastic phenomena,

is the most notable feature. The impulse provided by the buoyancy force initialises

the repeated over and undershoots in the velocity, which decay in magnitude until U

reaches a steady-state value of UT ≈ 0.01. Oscillations in the rise velocity are also

seen by Pillapakkam et al. [117] in their study of a bubble rising in an Oldroyd B

fluid. Generally, their oscillations number less but this is consistent with the increased
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viscous properties of the Oldroyd model over the more elastic Maxwell model used here.
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Figure 6.14: Variation of rise velocity U with time for Re = 0.21, De = 1.66.

Figure 6.15 shows the rise velocity with time for Re = 0.5, De = 1.25. The increased

volume and Reynolds number means that buoyancy plays a more prominent role. Con-

sequently the maximum and terminal rise velocities are larger, with UT ≈ 0.02. Also,

the frequency of the oscillations is markedly reduced.
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Figure 6.15: Variation of rise velocity U with time for Re = 0.5, De = 1.25.

The trend continues when the volume is increased further with Re = 1.18 and De =

0.93 (Fig. 6.16). The increased buoyancy force results in a larger maximum and
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terminal velocity (UT ≈ 0.05). Once again, the frequency of the oscillations is also

reduced but the oscillations themselves seem less structured and coherent. This can be

explained by the increased irregularity in the bubble shape, caused by the formation

of the cusp as the bubble rises.
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Figure 6.16: Variation of rise velocity U with time for Re = 1.18 and De = 0.93.

Figure 6.17 shows the variation of rise velocity with time for some of the larger bubble

volumes. Expectedly, oscillations no longer occur due to the decrease in viscous and

elastic effects over the increased strength of buoyancy forces. By the same means the

rise velocity continues to increase with volume, but as mentioned, does not necessarily

tend to a steady state (as has also been observed with Newtonian dynamics). Un-

surprisingly, in increasing the Reynolds number to Re = 6.67, the behaviour of the

transient rise velocity begins to bear semblance to the Newtonian rise velocity profile

(Fig. 6.6).

Studying the terminal rise velocity of a rising bubble in a viscoelastic fluid for a range

of bubble volumes, experimentalists can observe a single large jump in the magnitude

of the velocity over a small change in volume. This change is such that it effectively

resembles a discontinuity. The size of the jump varies from study to study and, of

course, depends on the ambient fluid, but can range from a two to ten fold increase in

the rise velocity [95, 117]. As mentioned in the introduction, the reason for this jump

is still debatable. Furthermore, its relationship to cusping and the negative wake is

not fully understood. Astarita and Apuzzo [6] attributed the jump to a change in the
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Figure 6.17: Variation of rise velocity U with time for a selection of Reynolds and
Deborah numbers.

bubble dynamics from the Stokes to Hadamard regime. Later studies recognised that

the jump takes place at a critical volume where the bubble underside first becomes

convex and starts to cusp. Liu et al. [95] suggest that the jump is due to the reduction

in drag caused by the cusped bubble shape. Rodrigue et al. attributed the jump to

the presence of surface active agents (such as polymer molecules) [133] combined with

surface tension forces [134]. Herrera-Velarde et al. [66] conclude that the jump is due

to the appearance of the negative wake, which they found only appears for bubbles

larger than the critical volume. Soto et al. [140] report that the jump is the direct

result of the appearance of (measurable) elastic stresses, which causes the change in

shape and so a drag reduction which causes the jump (as in [95]). They then form a

dimensionless group comparing elastic to capillary forces to determine a jump condi-

tion for the liquids tested. Similarly, Pilz and Brenn [118] derive empirical relations for

the critical bubble volume. They then postulate that the jump discontinuity is due to

the relaxation of polymer chains, with the change in conformation being accompanied

by forces which push the bubble upwards.

Figure 6.18 displays plots of the terminal rise velocity UT with increasing bubble vol-

ume V . We find no discernible velocity jump as one increases bubble volume. The

inserted bubble profiles indicate approximately the point where the cusp first forms,

which according to experiment should be the point at which the discontinuity appears.

The results have been repeated for a range of viscosities, relaxation times and surface
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tensions, without any indication of the rise velocity jump being present.

Figure 6.18: Terminal rise velocity for different bubble volumes. Noteworthy bubble
shapes are indicated at particular bubble volumes.

By not predicting the jump discontinuity, important insights can still be gained in

understanding this phenomenon. Firstly, the cusping of the bubble surface can be

predicted, but given that this change in shape does not result in a significant increase

in velocity, it suggests that the decrease in drag due to the cusping is not the reason

for the jump (the affirmative was suggested by Liu et al. [95] and Soto et al. [140]).

Also, the proposition of Rodrigue et al. [133, 134] that the discontinuity is a surface

phenomenon is unlikely. They claim that the presence of surface active agents, such as

polymer molecules or surfactants, can cause the jump. The action of polymer molecules

and the surface physics on the bubble is modelled here (all be it simply) through the

normal stress balance and the Maxwell constitutive law (in effect assuming molecules

are infinitely extendable dumbbells in a negligible viscosity Newtonian solvent). The

results suggest that the presence of the molecules produces the observed change in

shape and cusping, but does not create any additional forces that would cause the

jump in velocity. The cause of the jump therefore, must lie within the ambient fluid.

In particular, there is one occurrence in the dynamics of a rising bubble that the current

method certainly cannot predict - the negative wake. The imposition of an irrotational

flow around the bubble suppresses the formation of the rotational flow that comprises

the vortex ring seen in the wake. Figure 6.19 displays the velocity vectors in the field
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around the cusped bubble for Re = 1.18 and De = 0.93. Expectedly, there is no

evidence of a negative wake in the region behind the rising bubble.
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Figure 6.19: Velocity field in the fluid around the rise bubble. The velocity in the wake
of the bubble is everywhere directed upwards, i.e. there is no negative wake.

The absence of both the jump discontinuity and the negative wake corroborates the ex-

perimental findings of Herrera-Velarde [66] who concluded that the negative wake was

the main reason for the jump discontinuity. This is supported by the numerical study

of Pillapakkam et al. [117] which, to the author’s knowledge, is the only numerical

study that can predict the jump. As in [66] they find the formation of a negative wake

once the bubble begins to cusp. They note that the additional surface tension force

created by the cusp is not significant enough to explain the large jump observed (the

effect of surface tension will be discussed further in the next section). Also the bubble

shape does not change drastically with increasing concentration parameter, but the

magnitude of the jump and the negative wake do - indicating that the jump depends

more importantly on changes in the external flow than on bubble shape and drag ef-

fects. They provide the following explanation for the negative wake creating the jump.

Consider a box-shaped control volume surrounding the rising bubble, as in Fig 6.20.

In the steady state the sum of the net momentum through sidewalls BC and DA must

be zero (else there would be sideways movement). In a Newtonian fluid the velocity

through the surfaces AB and CD is always directed upwards. The net momentum flux
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through these surfaces is then determined by the difference in the velocity magnitudes,

and should be positive given the bubble is rising upwards, i.e. Mnet = MCD−MAB > 0.

In a viscoelastic fluid with a negative wake, the velocity through bottom surface AB is

pointed downwards and consequently, the net momentum flux is guaranteed to be pos-

itive and will be larger than if there was no negative wake, i.e. Mnet = MCD + MAB.

This results in an additional thrust in the upward direction. It can be thought of

in a similar way to the jet engine, with thrust provided by the expulsion of gas in

the opposite direction (Newton’s third law). In this case the oppositely directed flow

(the negative wake) is formed purely as a consequence of the viscoelasticity of the fluid.

Figure 6.20: Indication of direction of velocities in rising bubble with negative wake,
resulting in an additional upward thrust.

6.5.3 The Effect of Surface Tension

In this section we briefly discuss the effect of surface tension on the rising viscoelastic

bubble. From Section 6.4 on the Newtonian rising bubble it is clear the surface tension

plays an important role in determining bubble shape and subsequently drag and termi-

nal rise velocity. Figure 6.21 shows the terminal bubble shapes for a selection of Eötvös

numbers, with Re = 1.18 and De = 0.93. For zero surface tension (Eö = ∞) we see

the case presented previously, with the sharp cusp formed on the bubble underside.

For Eö = 53 there is a clear difference in profiles, with surface tension forces acting

to smooth out the sharp cusp and prevent high curvature deformations. The shape
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is still representative of a pseudo-cusp, with a region of convexity on the underside

and so in experiment one would still expect to see this beyond the jump discontinuity.

The rightmost figure has the largest surface tension with Eö = 6.6. The prevention of

deformation is such that no evidence of cusping occurs and the shape is near-spherical

but still visibly prolate in form. Consequently, we would expect such a shape to form

at a volume smaller than that at the jump discontinuity.
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Figure 6.21: Terminal bubble profiles at varying Eötvös numbers, with Re = 1.18 and
De = 0.93.

Figure 6.22 displays the transient rise velocities of the rising bubble for the different

Eötvös numbers. Despite large variations in surface tension, the effect on the rise

velocity is minimal. The plots for Eö = ∞ and Eö = 53 follow each other closely,

while that for Eö = 6.6, despite exhibiting high frequency oscillations, still follows

the general trend on the larger scale. The high frequency oscillations are interesting

and describe the fast, localised low amplitude oscillations in the bubble surface as

the whole bubble rises with a viscoelastic, oscillatory, overall velocity. An analogous

response to the increase in surface tension can be found in a stretched elastic band.

Under increasing tension, oscillations are higher in frequency and smaller in amplitude.

Notably the terminal velocities are very nearly equal, with the rise speed for Eö = ∞
being only slightly larger. Evidently, the rise velocity has little dependence on the

surface tension for the viscoelastic rising bubble. This then supports the claim made

by Pillapakkam et al. [117] that the effect of surface tension is not significant enough

to explain the jump discontinuity. Additionally, given that both the pre- and post-

jump bubble shapes have approximately the same terminal rise velocity, this again

shows that drag reduction due to cusping is negligible and cannot be responsible for

the velocity jump.
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Figure 6.22: Rise velocity with time for a selection of Eötvös numbers with Re = 1.18
and De = 0.93

6.5.4 The Effect of the Deformation Terms

It is interesting to note the effect of the deformation terms, which would otherwise

appear in the Upper Convected Maxwell model, on dynamics. While it can be expected,

given the above discussion, that they will have no effect on the jump discontinuity, they

are likely to play a measurable role in forming the bubble shape. Figure 6.23(a) shows

the steady state bubble shape for the same material parameters as studied previously.

The volume is such that the Reynolds number is Re = 1.18 and the Deborah number

De = 0.93. Comparing this to the corresponding case for the material Maxwell model

(Fig. 6.10), we see that on including the deformation terms, the bubble is much more

stretched and elongated with a longer trailing-end cusp. By reducing the Deborah

number to De = 0.47 (Figure 6.23(b)), the length of the cusp decreases and there is a

greater degree of concavity in the bubble’s underside.

6.6 Conclusions

In this chapter, the dynamics of a rising gas bubble under the influence of viscous and

viscoelastic effects are studied. The bubble is assumed to be constant in volume, rising

through an incompressible fluid under an irrotational flow. Viscous and viscoelastic ef-

fects act directly on the bubble through the normal stress boundary condition. Results

for the Newtonian rising bubble show good agreement with previous studies and steady

state bubble shapes qualitatively match full domain solutions. In the viscoelastic case,
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Figure 6.23: Steady state bubble shapes for the Upper Convected Maxwell (UCM)
constitutive equation.

the results predict the bubble’s prolate shape and the formation of the trailing end

cusp. The method allows for high curvatures and deformations and so can capture

the sharpness of the cusp to a higher degree than seen in other numerical schemes.

Furthermore, the cusped bubble profile bears a good qualitative agreement to experi-

mental observations. The imposition of an irrotational flow prevents the formation of

the negative wake, allowing insights into the mechanisms of the velocity jump discon-

tinuity that cannot be ascertained experimentally. Proposed reasons for the velocity

jump include drag reduction due to cusping [95], the action of surface forces [133] and

the negative wake [66]. Here, we include the appropriate surface effects and inertia

terms and observe cusping, but detect no velocity jump discontinuity. This suggests

that the negative wake is primarily responsible for its occurrence, corroborating previ-

ous experimental and numerical findings [66, 117].
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Chapter 7

The Prediction of Bubble Dynamics

using a Spectral Element Marker

Particle Method

7.1 Introduction

In this chapter we return to the problem of bubble collapse near a rigid wall, in a

viscoelastic fluid. In Chapter 3 a simplified model was devised and solved using the

boundary element method. The model assumed that viscoelastic effects were confined

to thin layers near the surface, and that the ambient fluid was irrotational. Predictions

include the ability of viscoelasticity to the prevent jet formation, and to form cusps

in the underside of the bubble when near the wall. Despite the insight gained by em-

ploying the above model, the potential flow approximation does preclude an exacting

account of the role of viscoelasticity, as mentioned in Chapter 1.

Hence, in this chapter, the aim is to solve the full governing equations over the whole

fluid domain. This is done not only to gain further insight into the role of viscoelas-

ticity, but also to validate the predictions of the boundary element study. While the

boundary element method fell squarely within the Lagrangian class of multiphase nu-

merical methods, in this chapter a mainly Eulerian approach will be employed. It is a

one-field model [124], so a single set of governing equations will be used in describing

the both the fluid (gas) comprising the bubble and ambient liquid. Fluid properties,

such as viscosity, then vary appropriately within each phase. For example, the density

185



and viscosity in the region describing the bubble should be less than the ambient fluid.

The compressible governing equations must be solved given the requirement for the

bubble to change volume during collapse.

The multiphase description is provided by the marker particle method. The marker

particle (MP) method of Rider and Kothe [128] bears a semblance to both the volume

of fluid and MAC method. In a similar manner to VOF, a colour function C is up-

dated using the usual advection equation. However, instead of directly tracking volume,

massless marker particles are tracked. Each particle is assigned a particular “colour”

depending upon the phase in which it resides. Since a particle of fluid will remain of

that fluid type (assuming no change in phase), a particle will keep its colour indefi-

nitely. Within fluid-fluid interface regions, where two (or more) differently coloured

sets of marker particles reside, a weighted average is taken of the surrounding particles

to determine an interpolated colour at the point in question. To accurately describe

the different phases, the whole computational domain is filled with a high density of

these marker particles, with each being updated to a new position every time step. An

obvious disadvantage compared to VOF methods is the additional computational cost

in tracking such a large number of particles. The main advantages include the ease of

implementation, the trivial extension to compressible flows, and the minimal numerical

diffusion of the colour function over time. Furthermore, the method retains the VOF’s

ability to deal with large deformations and topology changes automatically.

Traditionally, the marker particle method has been combined with finite difference

schemes and with a high degree of success. However, in prescribing velocities to parti-

cles from the grid, a low order interpolation is typically used. This can be a significant

source of error and can produce a velocity field which is not divergence free (for the

incompressible case) [12]. Also finite difference grids can be restrictive in the sense

that mesh refinement around regions of interest, and so improved efficiency, can be

tricky. Discretising non-rectangular domains is also a particularly cumbersome task.

To overcome these shortfalls, we present a new numerical scheme where we combine

the marker particle method with the spectral element method (SEM). The SEM will

solve the compressible governing equations, while the marker particle method provides

the overlying multiphase description. The spectral element method is, in essence, a

high-order finite element method and so is more adept at discretising irregular domains
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and selective mesh refinement. Additionally, the marker particles can be prescribed a

very accurate velocity by using high-order polynomial approximations on each element.

In Section 7.2 we will present the mathematical model and governing equations. Sec-

tion 7.3 will then provide details on the combined spectral element and marker particle

method. Within Section 7.4 we validate the numerical method with the available liter-

ature before presenting results obtained for bubble collapse near a wall in a viscoelastic

fluid.

7.2 The Mathematical Model and Governing Equa-

tions

Consider a bubble of initial density ρ1, surrounded by fluid of initial density ρ2 (all

subsequent variables with index 1 shall refer those associated with the bubble, while

those labelled 2, with the ambient fluid). A schematic depiction of this is given in Fig.

7.1. As mentioned in the introduction, a “one field” model is utilised in describing

the two phases. Here a single set of governing equations is solved with the different

phases possessing different material parameters such as viscosity and relaxation time.

Therefore, in solving the governing equations one must note that these material pa-

rameters are required to vary as one moves from one phase into the next (but they can

be constant within each phase).

Figure 7.1: Schematic of bubble and ambient fluid, each with different densities and
material properties.

In general, the equations governing fluid motion are the mathematical statements of

conservation of momentum
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ρ
Du

Dt
= −∇p +∇ · S, (7.1)

and conservation of mass

Dρ

Dt
+ ρ∇ · u = 0. (7.2)

In modelling bubble dynamics, particularly growth or collapse, one needs to account

for the change in volume of the bubble and so any fluid which may reside within

must be modelled as compressible. In utilising a “one field” model, where the bubble

content as well as the ambient fluid is described, the full conservation of mass equation

needs to be retained. Consequently, to complete the system of governing equations, a

thermodynamic equation of state needs to be prescribed. The choice of an appropriate

equation of state is itself a non-trivial task. Initially, we take the equation of state to

be the ideal gas law viz.,

p = c2ρ, (7.3)

where c is the speed of sound within the medium. Despite its simplicity, the model

is a valid choice. Firstly, it can provide an accurate thermodynamic description for

the bubble’s gaseous contents. Secondly, by adopting a variable speed of sound, one

can use an increased value within the ambient fluid to attain near-incompressibility.

Furthermore, it is well known that the compressibility of the ambient fluid plays an

important role in bubble collapse, particularly during the final stages [29]. Such a

model enables the role of compressibility to be easily investigated.

7.2.1 Rheological Equations of State for Compressible Fluids

A Compressible Newtonian fluid

The constitutive equation, or rheological equation of state, for a compressible New-

tonian fluid is well known. A Newtonian fluid is defined by the extra stress S being

proportional to the velocity gradient, namely

Sij = Aijkl
∂uk

∂xl

, (7.4)

where Aijkl is a fourth-order isotropic tensor, detailing the material properties. Any
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fourth-order isotropic tensor can be written as a combination of Kronecker delta func-

tions viz.,

Aijkl = η1δikδjl + η2δijδkl + η3δilδjk, (7.5)

for scalar constants η1, η2, η3. The symmetry of the Cauchy stress tensor implies

symmetry of the extra stress Sij, and so Aijkl is symmetric with respect to i and j.

Consequently, from Equation (7.5), η1 = η3 and so the extra stress becomes,

Sij = η1

(
∂ui

∂xj

+
∂uj

∂xi

)
+ η2

(
∂uk

∂xk

)
δij, (7.6)

or, in vector notation,

S = η1(∇u +∇uT ) + η2(∇ · u)I. (7.7)

This is the most general constitutive equation for a Newtonian fluid, having imposed

no restrictions on compressibility or on the scalars η1,2. Here η1 is named the (dynamic)

shear viscosity coefficient while η2 is the dilatational viscosity coefficient. Commonly,

one abides by Stokes’ Hypothesis and sets the bulk viscosity κ, defined κ =
(

2
3
η1 + η2

)
,

to zero [49]. Consequently the pressure p in Equation (7.1) becomes equivalent to a

mean mechanical pressure p∗ since

p∗ := −1

3
σii = p−

(
2

3
η1 + η2

)
(∇ · u) = p. (7.8)

By assuming
(

2
3
η1 + η2

)
= 0, the extra stress S is now trace free i.e. Sii = 0.

We must emphasise that generally p 6= p∗, and so care must be exercised in applying

the correct pressure to the thermodynamic equation of state. As reiterated by both

Oldroyd [110] and Truesdell [153], it is p not p∗ that should be used. Generally, the

Cauchy stress is always split into a part that does work which is recoverable pδij and a

part which is always dissipative, Sij. However, (in the Newtonian case) Stokes’ hypoth-

esis (equivalently Sii = 0, p = p∗) means that there is no energy dissipation due to a

change of volume within the fluid, and so all changes in volume are thermodynamically

recoverable. Although it may provide a good approximation in some cases, such an

assumption is clearly unphysical. In fact, the Stokes hypothesis has been debated for

many years, see for example Truesdell [152]. Even Stokes himself had doubts over its
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validity [149]. It is a moot point for incompressible fluids since the contestable term

vanishes since ∇ · u = 0. Within this work Stokes’ hypothesis is not adopted, and

the more general form of the compressible Newtonian extra stress (Equation (7.7)) is

retained.

Compressible Maxwell/Oldroyd type models

Satisfied in the choice of a constitutive equation for a compressible Newtonian fluid, the

question remains as to what form non-Newtonian compressible constitutive equations

assume. The answer is not entirely straightforward and there has been much incon-

sistency in compressible viscoelastic models in the literature, particularly in those of

Maxwell/Oldroyd type, which of course is an essential first port of call in compiling

compressible viscoelastic models. In the incompressible case, the Oldroyd B constitu-

tive equation is

S + λ1

O
S = η0

(
γ̇ + λ2

O
γ̇

)
, (7.9)

where γ̇ = (∇u +∇uT ) is the usual rate of strain tensor.

This can then be recast in terms of solvent and polymeric contributions viz.,

S = ηsγ̇ + τ , (7.10)

with

τ + λ1
O
τ = ηpγ̇. (7.11)

Here ηs and ηp are the solvent and polymeric viscosities, respectively, defined by

ηs = λ2

λ1
η0, ηp =

(
1− λ2

λ1

)
η0. (7.12)

Note that η0 = ηs + ηp.

Keshtiban et al. [74], in extending this model to study compressible viscoelastic con-

traction flows, include the appropriate compressible term in the rate of deformation

as in Equation (7.7). This is the only compressible term present in their model. A

slightly different model is used by Matuš̊a-Nečasová et al. [104] who include compress-
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ible effects only in the solvent contribution to the stress, leaving the polymeric part in

its incompressible form. Edwards and Beris [48] show that if one includes compress-

ibility in the kinetic theory derivation of the Oldroyd B model, an additional term of

the form ∇ · uS, appears in the convected derivative. However, they do not include

a compressible term in the rate of deformation. Sureshkumar [143] undertakes a sta-

bility analysis of a compressible UCM fluid. The compressible term of Edwards and

Beris [48] is incorporated while the term η2(∇·u)I from Eq. (7.7) is added as a forcing

term to the momentum equation. It is not included as part of the constitutive equation.

The above discussion highlights the rather eclectic range of compressible viscoelastic

models in the literature. With the aforementioned studies in mind, the aim is to con-

struct a compressible Oldroyd constitutive model which is as general as possible. One

must firstly include the additional compressible terms that appear in the convected

derivative (as derived by Edwards and Beris [48]). Secondly, as these models originate

from simple relations between stress and the rate of strain, if the rate of strain (Eq.

(7.7)) contains compressible components then these should appear within the consti-

tutive equation in the usual way (as in [74]), and not as detached forcing terms (as

in [143]). Finally, one should ensure that the model is consistent in the appropriate

limits. For example, if λ2 = 0, one should attain a compressible UCM fluid. Then if

λ1 = 0, a compressible Newtonian fluid, as described by Equation (7.7), should result.

Furthermore, in the incompressible limit, compressible terms should vanish and the

familiar incompressible Oldroyd B constitutive equation (Eq. (7.9)) should remain.

Consequently, the following compressible Oldroyd B constitutive equation is proposed:

S = ηs
1(∇u +∇uT ) + ηs

2(∇ · u)I + τ (7.13)

with

τ + λ1

(O
τ + (∇ · u)τ

)
= ηp

1(∇u +∇uT ) + ηp
2(∇ · u)I (7.14)

where superscripts s and p indicate solvent and polymeric viscosities respectively. The

above form is general in the respect that it contains all known compressible terms and

retains them in the UCM and Newtonian limits.

Compressibility is an important property and in general should be compatible with any
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rheological constitutive equation. Consequently, we will briefly discuss the extension

of other popular rheological models to compressible fluids.

Compressible Generalised Newtonian models

One of the earliest empiricisms in attempting to describe non-Newtonian effects ob-

served in rheometry, was to extend the Newtonian model by assuming some dependence

of viscosity on the scalar invariants of the rate of strain tensor. Hence the constitutive

equation becomes

S = η(I, II, III)γ̇, (7.15)

where the viscosity η is some function of the scalar invariants I, II, III, defined by,

I =
∑

i

γ̇ii, (7.16)

II =
∑
i,j

γ̇ij γ̇ij, (7.17)

III =
∑

i,j,k

γ̇ij γ̇jkγ̇ki. (7.18)

The standard assumptions are then that the fluid is incompressible (in which case

I = 0), and that the flow is shearing or very near shearing (as for simple shear III = 0).

The viscosity can then be expressed as a function of the magnitude of the rate of strain,

or the strain rate γ̇, defined viz.,

γ̇ =

√
1

2
II. (7.19)

Despite the assumptions of shear flow in this empiricism, the model is frequently ap-

plied to more complicated flows and can be a successful description, particularly in

flows with large shear components [15]. Then under the assumption of a such a model

providing a good description of the flow, the contribution of compressibility becomes

moot since, for a shearing flow, the divergence of the velocity field is zero - despite

the fluid being compressible. Hence, assuming a dominant shear component to re-

move dependence on III in Equation (7.15), automatically removes a dependence on

I, without making any assumptions on the fluids compressibility. Consequently, in the

application of generalised Newtonian models to compressible flows, given the assump-
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tions inherently made, one can argue that the current models for viscosity (such as the

Carreau-Yasuda or Power-Law models) provide a sufficient description. Such is the

approach of Taliadorou et al. [147], in their study of a compressible Herschel-Bulkley

fluid, with the incompressible expression for the viscosity being retained.

Compressible Order Fluids

In wishing to construct a constitutive equation that describes small departures from

Newtonian behaviour, the extra stress can be expressed as a series expansion of in-

creasing powers of the rate of strain tensor γ̇ and of its (convected) derivatives (a

“retarded motion” expansion) [15]. Retaining only the second order terms results in

the constitutive equation for the second-order fluid, which for an incompressible fluid

is

S = α1γ̇ + α2

O
γ̇ + α11(γ̇ · γ̇) + α1:1(γ̇ : γ̇)I. (7.20)

Prud’homme and Bird [125], in their study of the dilatational properties of suspensions

of gas bubbles, discuss the generalisation of a second order constitutive model to a

compressible fluid. They note that, in analogy to the derivation of the incompressible

model, a compressible second order fluid would contain all possible combinations of γ̇

and ∇ · u which yield tensors that are quadratic in velocity. Of course an identical

approach allows generalisation to N th order fluids. Hence, the constitutive equation

for a compressible second order fluid will take the form,

S = α1γ̇ + β1(∇ · u)I +
O

(α2γ̇ + β2(∇ · u)I)

+α11γ̇ · γ̇ + β11(∇ · u)γ̇ + (α1:1(γ̇ : γ̇) + β1:1(∇ · u)2)I. (7.21)

The scalars αi, βi are retarded motion expansion coefficients. Note that by retaining

only the first order term, the constitutive equation is that of a compressible Newtonian

fluid, with the shear viscosity given by α1 and the dilatational viscosity by β1.

In this chapter, the focus will be on rheological models of the Maxwell and Oldroyd

type, with the other models reserved for future work.
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7.2.2 Non-dimensionalisation of the Governing Equations

Velocities are non-dimensionalised with respect to some reference velocity U . In the

benchmark problem of planar Poiseuille flow, U corresponds to the centreline steady-

state velocity, while in bubble dynamic problems, U is some reference speed of sound.

Distances are scaled with respect to the channel width, or in bubble dynamics problems,

the initial bubble radius R. Similarly, the density is scaled with respect to initial fluid

density or initial bubble density ρb. Hence pressures and stresses are scaled with respect

to ρbU
2, with non-dimensional viscosities η∗ scaled thus

η∗ =
η

ρbUR
. (7.22)

A Reynolds number can be defined as Re = 1/η∗, but it is perhaps more beneficial to

continue to refer to non-dimensional viscosities given the several viscous parameters

present in compressible models. In the case of viscoelastic flows, one has the usual

dimensionless parameter for the relaxation time, the Weissenberg number,

We =
λ1U

R
. (7.23)

Therefore, dropping asterixes, the non-dimensional governing equations for a compress-

ible Oldroyd B fluid are the equation of motion,

ρ
Du

Dt
= −∇p +∇ · S, (7.24)

the conservation of mass,

Dρ

Dt
+ ρ∇ · u = 0, (7.25)

the thermodynamic equation of state,

p = c2ρ, (7.26)

and finally, the constitutive equation,

S = ηs
1(∇u +∇uT ) + ηs

2(∇ · u)I + τ , (7.27)

where the polymeric stress τ is given by
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τ + We
(O
τ + (∇ · u)τ

)
= ηp

1(∇u +∇uT ) + ηp
2(∇ · u)I. (7.28)

7.2.3 The Log-Density Formulation of the Governing Equa-

tions

As in Bollada and Phillips [22], we note that the dynamic viscosities η1,2 vary linearly

with density, such that

η1 = µρ, η2 = νρ, (7.29)

for some kinematic viscosities µ and ν.

Defining a log density viz.

q := ln ρ, (7.30)

the conservation of mass and momentum can be rewritten in the following forms,

Du

Dt
= −dp

dρ
∇q +∇ ·T +∇q ·T (7.31)

and

Dq

Dt
+∇ · u = 0, (7.32)

where T is a kinematic extra stress defined such that S = ρT. Note that for the ideal

gas equation of state (7.3), dp
dρ

= c2 (for a constant speed of sound with respect to

density).

The constitutive equation for the kinematic extra stress follows directly from Equation

(7.13), to give

T = µs(∇u +∇uT ) + νs(∇ · u)I + P, (7.33)

where µs, νs are solvent kinematic viscosities and P is the kinematic polymeric stress

(with τ = ρP).

Similarly, one can determine the constitutive equation for P, given that τ = ρP satisfies
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the original polymeric constitutive equation (7.14) viz.,

We
O

(ρP) + We(ρP)(∇ · u) + (ρP) = ρµp(∇u +∇uT ) + ρνp(∇ · u)I. (7.34)

Making use of the definition of the upper-convected derivative on scalars,

O
ρ =

Dρ

Dt
, (7.35)

and the conservation of mass (7.2), the compressible term of Edwards and Beris [48]

vanishes to give

We
O
P + P = µp(∇u +∇uT ) + νp(∇ · u)I. (7.36)

Although the compressible term of Edwards and Beris [48] does not appear explicitly

in the recast form of the polymeric constitutive equation, it is, of course, present im-

plicitly through the implementation of the log-density formulation.

So finally, the set of reformulated, non-dimensional governing equations to be solved

are,

the equation of motion (conservation of momentum),

Du

Dt
= −c2∇q +∇ ·T +∇q ·T, (7.37)

the conservation of mass,
Dq

Dt
+∇ · u = 0, (7.38)

and the constitutive equation,

T = Ts + P, (7.39)

where the polymeric stress P is found from,

We
O
P + P = Tp. (7.40)

Here, Ts denotes the solvent stress

Ts = µs(∇u +∇uT ) + νs(∇ · u)I, (7.41)
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and Tp the corresponding rate of deformation contribution to the polymeric stress,

Tp = µp(∇u +∇uT ) + νp(∇ · u)I. (7.42)

Note that henceforth, in referring to density and stress, we in actuality mean the log

density and kinematic stress, given the simple relation between these quantities and

their log form.

7.3 Numerical Solution of the Governing Equations

7.3.1 Time discretisation

As in Bollada and Phillips [22, 23] we employ a semi-Lagrangian treatment of the

material derivative in the momentum equation. In discretising the constitutive equation

we will investigate two different approaches. A 1st order semi-Lagrangian scheme which

is semi-implicit with respect to the stress, and a 2nd order Eulerian scheme which is

explicit with respect to the stress. We first provide details of the semi-Lagrangian

treatment of the material derivative.

Semi-Lagrangian Treatment of the Material Derivative

A first order Lagrangian approximation to the material derivative is,

Du

Dt
≈ un+1(xn+1)− un(xn)

∆t
= f(un+1), (7.43)

where xn denotes the position of a fluid particle at time tn that is at the point xn+1 at

time tn+1. The function f is the right hand side of the equation of motion (7.37). Given

un, we wish to solve Equation (7.43) implicitly for un+1 at each nodal point (note that

by construction xn+1 lies upon a nodal point). Hence, in order to approximate the

material derivative, one needs the previous position xn of the fluid particle that moves

onto the node with velocity un+1. This is illustrated in Fig. 7.2. We solve for un+1

iteratively, and give details of the scheme below.

1. Firstly provide an initial approximation un+1
0 to un+1(xi) at a nodal point xi,

namely un(xi)
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2. Then use un+1
0 to approximate previous position of particle xn

0 , using

xn
0 = xi − un+1

0 ∆t.

Then un(xn
0 ) is calculated (as un is known everywhere).

3. Set m = 1

4. The next approximation to un+1(xi) can then be found by solving the equation

of motion,
un+1

m (xi)− un(xn
m−1)

∆t
= f(un+1

m ).

5. An improved approximation to the previous particle position xn
m is now found

using the mid point approximation

xn
m = xi − ∆t

2
(un+1

m (xi) + un(xn
m−1)). (7.44)

The velocity at this new particle position is then un(xn
m).

6. If maxS |un(xn
m) − un(xn

m−1)| < ε then we have converged upon the previous

particle position xn
m and its velocity. Hence the material derivative is correctly

approximated, and so we can set un+1(xi) = un+1
m (xi) to obtain the converged

velocity at node i, time step n + 1. The computation can then proceed to the

next time step.

7. Else, if maxS |un(xn
m)−un(xn

m−1)| ≥ ε then set m := m + 1 and return to step 4.

Here ε is some small tolerance (typically ε = 1 × 10−6). Having converged upon the

previous position xn of the fluid particle at node i, the material derivative of other

quantities such as density q can be found directly from the approximation,

Dq

Dt
≈ qn+1(xi)− qn(xn)

∆t
. (7.45)

Discretisation of the Polymeric Stress

Two discretisations of the polymeric stress are investigated. Firstly we present the

second-order scheme as used in van Os and Phillips [157] and Fiétier and Deville
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Figure 7.2: Movement of fluid particle at xn at time n on to GLL node at time n + 1.
The position xn and the velocity at the GLL node at time n + 1 are determined
iteratively.

[52]. The material derivative is approximated using a second order backward difference

formula viz.,

DP

Dt
=

∂P

∂t
+ u · ∇P ≈ 3Pn+1 − 4Pn + Pn−1

24t
+ 2un · ∇Pn − un−1 · ∇Pn−1. (7.46)

The deformation terms, labelled thus F = (∇u)P + P(∇u)T , are then approximated

using a second order extrapolation scheme

Fn+1 ≈ 2Fn − Fn−1. (7.47)

The rate of deformation terms Tp (and the solvent stress Ts) are treated implicitly.

The semi-discrete polymeric constitutive equation is therefore

(1 +
3We

24t
)Pn+1 −Tn+1

p = λBn, (7.48)

where Bn is given by

Bn =
1

24t
(4Pn −Pn−1)− (2un · ∇Pn − un−1 · ∇Pn−1) + (2Fn − Fn−1). (7.49)

The second scheme to be investigated incorporates the semi-Lagrangian treatment

already being used in the conservation of momentum. The material derivative of the

stress is approximated using an identical first order Lagrangian description,
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DP

Dt
≈ Pn+1(xi)−Pn(xn)

∆t
, (7.50)

where xn is the previous particle position, already found iteratively from the process

described in subsection 7.3.1. The remaining terms, the deformation terms F and rate

of deformation are treated semi-implicitly to yield the following semi-discrete equation,

(
1 +

We

∆t

)
Pn+1 −We

(
(∇un+1)Pn + Pn(∇un+1)T

)−Tn+1
p =

We

∆t
Pn(xn). (7.51)

Note that it is indeed possible to implement a fully implicit equation with respect to

both P and u by replacing Pn by Pn+1 in the deformation terms. However, as will

be explained shortly, to do so would result in a significant increase in computation time.

To summarise, the time discretised governing equations to be solved using the spectral

element method are:

The equation of motion,

un+1 − un

∆t
= −c2∇qn+1 +∇ ·Tn+1 +∇qn+1 ·Tn+1. (7.52)

The conservation of mass,

qn+1 − qn

∆t
+∇ · un+1 = 0. (7.53)

The constitutive equation,

Tn+1 = Tn+1
s + Pn+1 = µs(∇un+1 + (∇un+1)T ) + νs(∇ · un+1)I + Pn+1. (7.54)

The polymeric stress Pn+1 is found either from the second order scheme (henceforth

called scheme A),

(
1 +

3We

24t

)
Pn+1 −Tn+1

p = WeBn, (7.55)

where Bn is given in Equation (7.49), or from the first order Lagrangian scheme (scheme

B),
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(
1 +

We

∆t

)
Pn+1 −We

(
(∇un+1)Pn + Pn(∇un+1)T

)−Tn+1
p =

We

∆t
Pn(xn). (7.56)

7.3.2 The Spectral Element Method

The Weak Formulation

Let Ω represent the whole fluid domain, comprised of both the bubble and the ambient

fluid. Let the boundary of this domain be ∂Ω. In solving Equations (7.52)-(7.54) by

the spectral element method, the weak form of said equations must first be derived.

The dependent variables u, q and stresses Ts, P, are chosen from the following function

spaces,

u ∈ V ⊆ [H1(Ω)]2, (7.57)

q ∈ Q = [H1(Ω)], (7.58)

Ts,P ∈ R = [H1(Ω)]4s. (7.59)

Here V is some subset of [H1(Ω)]2 whose entries satisfy the desired velocity boundary

conditions on ∂Ω, while R is the space of symmetric 2× 2 tensors whose components

belong to H1(Ω). Furthermore, we define the following test space for the velocity

V0 = {v ∈ [H1(Ω)]2,v = 0 on ∂Ω}. (7.60)

Multiplying the strong form of the governing equations by the appropriate test function

and then integrating, we arrive at the weak formulation:

Find u ∈ V , q ∈ P , and Ts, P ∈ R such that,

∫

Ω

u− un

∆t
·v+

∫

Ω

(Ts +P) : ∇v = c2

∫

Ω

q∇·v+

∫

Ω

∇q · (Ts +P) ·v ∀v ∈ V0, (7.61)

∫

Ω

(
q − qn

∆t
+∇ · u

)
p = 0 ∀p ∈ Q, (7.62)
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∫

Ω

Ts : W −
∫

Ω

µs∇u : (W + WT ) =

∫

Ω

νs(∇ · u)tr(W) ∀W ∈ R, (7.63)

Scheme A

∫

Ω

(
1 +

3We

24t

)
P : W =

∫

Ω

µp∇u : (W + WT )

+

∫

Ω

νp(∇ · u)tr(W) +

∫

Ω

WeBn : W ∀W ∈ R,(7.64)

Scheme B

∫

Ω

(
1 +

We

4t

)
P : W =

∫

Ω

µp∇u : (W + WT )

+

∫

Ω

νp(∇ · u)tr(W)

+

∫

Ω

We((∇u)Pn + Pn(∇u)T ) : W

+

∫

Ω

We

∆t
Pn : W ∀W ∈ R. (7.65)

Transfinite Mapping

The physical domain Ω is discretised into a number of non-overlapping, conforming,

convex quadrilateral spectral elements labelled Ωα,β. As in finite element methods, one

has the freedom to design meshes suited to the problem geometry and to create highly

resolved meshes near any regions of interest. Each spectral element is mapped onto

the parent element D = [−1, 1]× [−1, 1] using the simple bilinear transfinite mapping,

x =
1

4
(1−ξ)(1−ζ)x1+

1

4
(1+ξ)(1−ζ)x2+

1

4
(1+ξ)(1+ζ)x3+

1

4
(1−ξ)(1+ζ)x4, (7.66)

where (ξ, ζ) ∈ D corresponds to point x = (x(ξ, ζ), y(ξ, ζ)) ∈ Ωα,β, with the vertices of

Ωα,β given by x1, ...,x4 (See Figure 7.3).

Spectral Approximation

The velocity, density and the stresses, are approximated on each element using La-

grangian interpolation through a select set of nodal points, called Gauss-Lobatto-
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Figure 7.3: Illustration of mapping between quadrilateral spectral element and parent
element.

Legendre (GLL) points. In one dimension, the N + 1 GLL points are roots of the

polynomial (1− ξ2)L′N(ξ), where LN is the Legendre polynomial of degree N . Conse-

quently, the standard Lagrange interpolant

hi(ξ) =

∏N
j=0,j 6=i(ξ − ξj)∏N
j=0,j 6=i(ξi − ξj)

, (7.67)

can be shown to take the form

hi(ξ) = − (1− ξ2)L′N(ξ)

N(N + 1)LN(ξi)(ξ − ξi)
, (7.68)

with GLL points ξi, 0 ≤ i ≤ N . Also, note that by the definition of the Lagrange

interpolant,

hi(ξj) = δij. (7.69)

The Legendre polynomials are a subset of the polynomial eigenfunctions (Jacobi poly-

nomials) of the singular Sturm-Liouville problem. This means that the expansion of a

C∞ function in terms of these eigenfunctions converges with spectral accuracy [112].

Hence, an expansion in terms of the Lagrange interpolants hi (Equation (7.68)) ex-
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hibits spectral properties, while also naturally lending itself to Gauss-Lobatto numeri-

cal quadrature.

In 2D, the GLL points form a (N + 1)2 grid within each element, interpolation over

which yields the representation of the velocity component a over the parent element

ua(ξ, ζ) =
N∑

i=0

N∑
j=0

ua
ijhi(ξ)hj(ζ), (7.70)

where ua
ij is the approximation to ua at GLL nodal point (ξi, ζj).

Similarly, the stress components and density are represented as,

P ab(ξ, ζ) =
N∑

i=0

N∑
j=0

P ab
ij hi(ξ)hj(ζ). (7.71)

q(ξ, ζ) =
N∑

i=0

N∑
j=0

qijhi(ξ)hj(ζ). (7.72)

The Discrete Equations

The integrals in the weak form are calculated using the Gauss-Lobatto quadrature rule

∫ 1

−1

∫ 1

−1

f(ξ, ζ)dξdζ ≈
N∑

i=0

N∑
j=0

f(ξi, ζj)λiλj (7.73)

for GLL points (ξi, ζj) and weights λi. The approximation is exact when f is a polyno-

mial of degree 2N−1 or less in each of the independent variables. The discrete equations

are obtained by inserting the variable expansions (Equations (7.70) - (7.72)), into the

weak form (Equations (7.61) - (7.65)). By applying the above quadrature rule and the

properties of the Lagrangian interpolant, substitution yields the following local arrays

for each spectral element,

Āijkl =

∫

D

J(ξ, ζ)hi(ξ)hj(ζ)hk(ξ)hl(ζ) = Jijλiλjδkiδlj, (7.74)

C̄b
ijkl =

∫

D

Zcb(ξ, ζ)hi(ξ)hj(ζ)[hk(ξ)hl(ζ)],c = λiλjZ
cb
ij





Dikδlj, c = 1

δkiDjl, c = 2
(7.75)
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Here J is the Jacobian of the mapping (given by Equation (7.66)) from the spectral to

the parent element , while Zcb are the geometric factors associated with the mapping,

defined

Zcb
ij =

(
∂ξc

∂xb
J

)
(ξi, ζj). (7.76)

The matrix D with entries Dij = h′j(ξi) is known as the Legendre pseudospectral

differentiation matrix. Closed form expressions for the entries of D may be found

using the properties of the Legendre polynomials

Dij =





1

(ξi − ξj)

LN(ξi)

LN(ξj)
, i 6= j,

0, 1 ≤ i = j ≤ N − 1,

−N(N + 1)

4
, i = j = 0,

N(N + 1)

4
, i = j = N.

In effect, the matrix Āijkl contains the weights and Jacobian of the spectral element

mappings, while C̄b
ijkl is the discretisation associated with the gradient operator. The

global matrices Aijkl and Cb
ijkl can be assembled from the local matrices, Āijkl and

C̄b
ijkl, using the following construction:

We define a matrix ¯̄Lijkl with global indices i, k ∈ [0, N̂ ], j, l ∈ [0, M̂ ] thus,

¯̄Lαβ
ijkl =

{
L̄αβ

ijkl if i, j, k, l ∈ [0, N ]

0 otherwise.

Here N̂ + 1 and M̂ + 1 are the total number of GLL points (within domain Ω) in the

x and y directions respectively.

The global matrix Lijkl can then be assembled by summing over the contributing

spectral elements, viz.,

Lijkl =
α̂∑

α=0

β̂∑

β=0

¯̄Lαβ
i−αN,j−βN,k−αN,l−βN . (7.77)
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Co-ordinates (α, β) label each spectral element, with (α̂ + 1), (β̂ + 1) denoting the

number of spectral elements in the x and y directions, respectively.

Consequently, in terms of the global arrays, the discretisation of the weak form yields

the following set of discrete governing equations,

the conservation of momentum,

ua
ijAijkl + ∆t((Ts)

ac
ij + P ac

ij )Cc
ijkl = (un)a

ijAijkl + ∆tc2qijC
a
ijkl + ∆tqij((Ts)

ac
kl + P ac

kl )Cc
klij,

(7.78)

the conservation of mass,

qijAijkl + ∆tub
ijC

b
klij = qn

ijAijkl, (7.79)

the solvent part of the extra stress,

(Ts)
ab
ij Aijkl = uc

ij

[
(µs)kl(C

b
klijδ

ac + Ca
klijδ

bc) + (νs)klC
c
klijδ

ab
]
, (7.80)

the polymeric part of the extra stress, discretised using scheme A,

(
1 +

3(We)kl

24t

)
P ab

ij Aijkl = uc
ij

[
(µp)kl(C

b
klijδ

ac + Ca
klijδ

bc) + (νp)klC
c
klijδ

ab
]
+(We)kl(B

n)ab
ij Aijkl,

(7.81)

and then scheme B,

(
1 +

(We)kl

4t

)
P ab

ij Aijkl = uc
ij

[
(µp)kl(C

b
klijδ

ac + Ca
klijδ

bc) + (νp)klC
c
klijδ

ab + (We)klΓ
abcd
kl Cd

klij

]

+
(We)kl

∆t
(P n)ab

ij Aijkl, (7.82)

where Γabcd
kl in Equation (7.82), is given by

Γabcd
kl = δac(P n)bd

kl + δbc(P n)ad
kl . (7.83)

In the above equations the summation convention is employed over i, j and c, d.

Substituting the stresses T ab
s , P ab and the density q, into the conservation of momentum

yields the following linear system for ub
ij,

Mab
ijklu

b
ij = va

kl. (sum over i, j, b) (7.84)
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where M is the stiffness matrix, given by

Mab
ijkl = δabAijkl+∆t[(Λab

pqC
c
pqij+Λcb

pqC
a
pqij+Υac

pqC
b
pqij+Φabcd

pq Cd
pqij)C

c
pqkl+∆tc2Cb

pqijC
a
pqkl]A

−1
pqpq,

(7.85)

with summation over p, q and c, d.

Here, the matrix of dilatational viscosity coefficients Υab
ij is given by

Υab
ij =

(
(νs)ij +

(νp)ij

(CT )ij

)
δab, (7.86)

while the matrix of shear viscosity coefficients is

Λab
ij =

(
(µs)ij +

(µp)ij

(CT )ij

)
δab. (7.87)

Φabcd
ij contains the non-linear convection terms from the constitutive equation and arises

only in the semi-implicit treatment (scheme B). Hence

Φabcd
ij =





0 for scheme A,

(We)ij/(CT )ij(δ
ab(P n)cd

ij + δbc(P n)ad
ij ) for scheme B.

The right-hand side of Eq. (7.84), va
kl, is given by

va
kl = (un)a

ijAijkl + c2∆tqn
ijC

a
ijkl + ∆tya

kl −∆tGab
ij Cb

ijkl, (7.88)

where Gab
ij is given by,

Gab
ij =





(We)ij

(CT )ij
(Bn)ab

ij for scheme A,

(We)ij

∆t(CT )ij
(P n(xn))ab

ij for scheme B.

The stiffness matrix M needs to be calculated at every time step, since parameters

like viscosity and Weissenberg number are permitted to vary. Hence M−1 needs to be

calculated at each time step used in the iterative process to calculate un+1.

It is for this reason that scheme B is not fully implicit in P, because to use Pn+1
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within the stiffness matrix would require compilation, factorisation, and inversion of

the matrix for each iteration within each time step. Such an approach is far too

costly in terms of computation time. Note that for scheme A, the stiffness matrix

becomes symmetric in the sense that, Mab
ijkl = M ba

klij, although this is not true for

scheme B. Hence at each time step M is factorised once, using LU decomposition in

the asymmetric case, and Cholesky decomposition in the symmetric case. Given the

sparsity of the stiffness matrix following a spectral element discretisation, the parallel

direct sparse solver routine PARDISO* is used to factorise and invert M . This first

requires that the stiffness matrix be recast in terms of three full one dimensional arrays,

detailing the value and position of the non-zero elements.

7.3.3 Marker Particle Method

The marker particle method is a Lagrangian scheme to track multiple fluid phases and

interfaces. A large number of particles placed within the domain act as “markers”,

providing the identity of the fluid at a point in time and space. The approach was first

suggested by Rider and Kothe [128,129] and shows favourable comparisons with VOF

and level set methods. Particular benefits include the absence of numerical diffusion

and numerical surface tension, and the ability to handle severe topological changes

with ease. Furthermore, the scheme is straightforward to implement and is very ro-

bust [128]. It has been subsequently applied in Newtonian drop dynamics studies by

Bierbrauer and Zhu [14] and Bierbrauer and Phillips [13].

The fluid domain Ω is filled with initially equally spaced massless particles - a specified

number per unit area. Every marker particle p is initially located at a unique position

(xp, yp), and assigned a colour, or identity, Cm
p defined by

Cm
p =

{
1 if particle p is in fluid m,

0 if particle p is not in fluid m.
(7.89)

Assuming no change in phase, particles initially of fluid m will remain so indefinitely

and will be advected with fluid m. Hence the colour function satisfies the advection

equation viz.

DCm
p

Dt
= 0. (7.90)

208



Note the similarity with VOF and level set methods. Here (7.90) is ensured through

the Lagrangian treatment of the marker particles, whereas VOF/level set methods

solve an analogous equation to (7.90) explicitly in an Eulerian manner for the volume

fraction/level set function. As the particles remain of type fluid m, they can be assigned

the constant material properties associated with fluid m. In this study, the material

properties constant within each fluid are the viscosities µp,s, νp,s, the relaxation time

λ1 (which we have non-dimensionalised to the Weissenberg number) and the speed of

sound c2.

Grid to particle interpolation.

The marker particles, and hence the position of the relative phases, are updated using

the velocities calculated on the Eulerian spectral element grid. The velocities are in-

terpolated to each marker particle and the particles are advected with these velocities

according to u = Dx/Dt. The benefits of a spectral element formulation mean that

internodal velocities can be found with ease and high accuracy using the Lagrange in-

terpolant expansions (7.70). Therefore a particle at (xp, yp) can be easily and accurately

assigned a velocity u(xp, yp) and hence updated in position accordingly.

Particle to grid interpolation

The fluids’ material properties, carried with the marker particles, then need to be

projected onto the grid before solving the governing equations for the next time step.

Analogous to the many articles in the literature on volume-of-fluid (VOF) methods (for

example [61]), it seems reasonable to assign material properties, such as viscosities and

relaxation times, to each Gauss-Lobatto-Legendre node using the following averaging

process

φij =
M∑

m=1

φmCm
ij . (7.91)

Here φm denotes a material constant within fluid m, and M the total number of sepa-

rate phases/fluids. Note that in this study M = 2, as we have only two distinct phases

- the bubble and the ambient fluid.

The quantity Cm
ij is the interpolated colour function at the point (i, j) given by,
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Cm
ij =

∑Np
p=1 S(xp − xi, yp − yj)C

m
p∑Np

p=1 S(xp − xi, yp − yj)
, (7.92)

where Np is the total number of particles and S(x, y) a bilinear weighting function

given by,

S(x− xi, y − yi) =





(1−
∣∣x−xi

∆x

∣∣)(1−
∣∣∣y−yi

∆y

∣∣∣) if 0 ≤
∣∣x−xi

∆x

∣∣,
∣∣∣y−yi

∆y

∣∣∣ ≤ 1,

0 otherwise.

Also, note that by definition,

M∑
m=1

Cm
ij = 1. (7.93)

Although Cm
ij is found by summing over all particles in the domain (see Eq. (7.92)),

only those within a square of area 4∆x∆y contribute to determine the average colour

function at GLL node (i, j). The average colour function will be weighted towards the

colour function (Eqn. (7.89)) of the majority of particles which are in close proximity

to point (i, j). Consequently, by Eqn. (7.91), the material constants will be weighted

toward those of the dominant fluid about (i, j). Of course this is important only in

regions near the interface where two distinct fluid types are present. Within the bulk

of fluid m = 1 say, C1
p = 1, while C2

p = 0 for all particles p near (i, j). So C1
ij = 1 and

C2
ij = 0 and hence φij =

∑2
m=1 φmCm

ij = φ1.

We have some choice in specifying the size of the search square 4∆x∆y. For regular

finite difference meshes, ∆x, ∆y are taken to be the regular grid spacings. However,

the GLL points are unequally spaced. Consequently it seems prudent to leave the size

of the search square as an independent parameter, which can be altered to suit the

problem at hand, under the restriction that

min(∆ξi) ≤ ∆x, ∆y ≤ max(∆ξi), (7.94)

where ∆ξi = |ξi+1−ξi|, i = 0, ..., N−1, is the spacing between consecutive GLL points.

In most instances, setting the search lengths ∆x, ∆y to be an average of the ∆ξi, gives

very reasonable results.
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Particle boundary conditions

It may be the case that particles near the boundary in the current time step, may step

outside the boundary in the next. To remedy this the particles are simply reflected

back into the domain by the amount at which they exceed it. This exact approach is

used by Bierbrauer and Zhu [14] in their finite difference study.

7.4 Validation

7.4.1 Marker Particle Test Solutions

In this section the marker particle scheme will be validated through the employment

of some standard interface tracking tests. In particular, the simple rotation, the time

reversed vortex, and the Zalesak slotted disk rotation test will be considered. In each

test, an initially circular body of fluid type 1 is surrounded by a fluid of type 2,

within a domain Ω. The identity of each fluid can be determined by its constituent

marker particles according to definition (7.89). The fluid is advected by some analytical

velocity field before returning to its initial position. Error measurements are made on

differences in data between the initial and final states. Specifically we measure the L1

error in the initial and final interpolated colour functions,

EC =

∫

Ω

|C1
ij(T )− C1

ij(0)| dΩ (7.95)

and the error in the mass of fluid 1,

EM = |Mexact −Mnumerical| (7.96)

where

Mnumerical =

∫

Ω

C1
ij dΩ. (7.97)

The exact mass is known from the analytical initial conditions: for example, Mexact =

πr2, where r is the radius of a circle of fluid 1. We also monitor the size of the

transition region between fluids 1 and 2. Ideally this transition region should be as

small as possible, and remain so, in order to resemble the discontinuous boundary

between two fluid phases. A transition function ∆Tij is defined such that,
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Mesh MP Density EC EM Max Atr

No of GLL points (α̂ + 1) (β̂ + 1) N (particles/unit area)

1. 1012 10 10 10 1012 6.23× 10−4 2.23× 10−4 1.50× 10−2

2. 2012 6.33× 10−4 2.13× 10−4 2.02× 10−2

3. 3012 6.23× 10−4 1.38× 10−4 2.25× 10−2

4. 6012 6.43× 10−4 4.51× 10−5 2.35× 10−2

5. 20 20 5 3012 6.47× 10−4 1.18× 10−4 2.22× 10−2

6. 5 5 20 3012 6.14× 10−4 1.28× 10−4 2.17× 10−2

7. 2012 10 10 20 2012 6.42× 10−4 2.16× 10−4 7.05× 10−3

8. 6012 6.34× 10−4 8.19× 10−6 1.09× 10−2

Table 7.1: Errors between initial and final states for the simple rotation problem.

∆Tij =

{
1 if 0 < Cij < 1

0 otherwise

A measure of the area of the transition region at a point in time can then be found

from

Atr =

∫

Ω

∆Tij dΩ. (7.98)

Note that this by no means gives an accurate measure of the interfacial area, but pro-

vides an indication of its size and any variation thereof.

Simple rotation

An initially circular body of fluid 1, radius r = 0.15, is ensconced in fluid 2, within

domain Ω = [0, 1]2. Both fluids are advected according to velocity field

u = −2π(y − 0.5), (7.99)

v = 2π(x− 0.5), (7.100)

causing all fluid elements to rotate about the point (0.5,0.5). The body will undergo a

single rotation in 1 time unit, without changing shape. The initial interpolated colour

function is shown in Figure 7.4.

The problem is studied for several different Gauss-Lobatto meshes and marker particle

densities. The meshes are regular, containing equally sized spectral elements, and are

defined by the number of elements α̂+1 and β̂+1 in the x and y directions respectively,

and the polynomial order N . Table 7.1 presents the meshes and the associated errors.
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Figure 7.4: The initial colour function for the simple rotation and vortex test problems.

Importantly note the independence of the error in the colour function EC from the

mesh and marker particle density. This demonstrates perhaps the most alluring fea-

ture of the marker particle method. That once interpolation error from the particles

to grid has been removed, numerical diffusion of the colour function is minimal as a

fixed number of particles will carry the fluid information indefinitely. The primary

source of error in EC comes from the time stepping scheme used in updating each

particle, which in this case is a second order trapezium rule with ∆t = 1× 10−2. This

is corroborated by decreasing the time step to ∆t = 1× 10−3, in which case the error,

EC , for mesh 3 reduces to 6.23× 10−6. EM provides an indication of the interpolation

error from particle to grid, as we compare an interpolated mass, with the analytical

Manalytical = πr2. For mesh 1, increasing the density of marker particles results in

increasingly accurate approximations to the mass. Refining the grid allows a more re-

fined interface and a smaller transition region between the two fluids. However, to have

accompanying improvements in EM requires a corresponding increase in the particle

density to ensure enough particle information is read in over the refined interpolation

region. The maximum measure of the transition area Atr is suitably small, with no
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Mesh MP Density EC EM Max Atr

(α̂ + 1) (β̂ + 1) N (particles/unit area)
10 10 10 3012 3.29× 10−5 2.22× 10−4 1.25× 10−1

Table 7.2: Errors between initial and final states for the time reversed vortex problem.

significant dependence on the choice of mesh. Increasing the marker particle density

results in a very slight increase in the transition area as regions near the interface are

more likely to contain particle contributions from another fluid (and so ∆Tij = 1). Ex-

pectedly, refining the grid results in a smaller transition area as the interpolation area

decreases with the average grid spacing. Note that for all the above error measures,

varying the number of spectral elements and polynomial order while keeping the total

number of GLL points constant, does not have a significant effect.

Time reversed vortex

Using identical initial conditions to the simple rotation (see Fig. 7.4), the fluid is now

distorted according to the vortex flow

u = − sin(2πy) sin2(πx), (7.101)

v = sin(2πx) sin2(πy). (7.102)

This is a far more stringent test, with significant stretching and deformation of the

fluid. By multiplying the above velocity field by cos(πt/Tf ), the flow will reverse at

time t = Tf/2 and return to its initial position at t = Tf . Figure 7.5 shows the deformed

fluid at t = Tf/2, where the final time Tf = 8.0.

Table 7.2 shows the errors associated with the flow for a single mesh. Once again,

despite the severity of the flow, we note that the error in the initial and final solutions

EC , and in the mass EM , remain very small. The transition area shows a marked

increase in this test, which is to be expected given the strong deformation and stretching

of the diffuse interface. Once again these errors compare well to other marker particle

studies [12,128].

In particular, note the error E∗
C in the scheme compared to other algorithms at similar

mesh refinements (see Table 7.3). Error E∗
C is defined as EC , but includes the interpo-

lation error from an initial “exact” colour function. The scheme performs favourably,
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Figure 7.5: The colour function for the time reversed vortex problem at t = Tf/2 = 4.0.

with an error of a similar magnitude to other schemes. However, in subtracting the

initial error we recognise the scheme’s superior conservation properties. The remaining

error EC , which arises from the advection of the colour function between the initial and

final states, is very small EC = 3.08 × 10−5. This again demonstrates, interpolation

aside, that numerical diffusion of the colour function over time is minimal, even under

such a stringent test.

Zalesak slotted disk rotation

In this test a slotted disk is revolved once around the centre of the computational

domain with a constant angular velocity, as in the simple rotation. The disk is of

radius 0.5, with the rectangular slot having dimensions (0.12× 0.6). The initial set up

is given in Fig 7.6.

For comparison with previous studies, an additional measure of the error in the colour

function is made,
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Method E∗
C

Rider and Kothe [130] 1.44× 10−3

EMFPA/Youngs [98] 2.13× 10−3

Adaptive triangular grid [168] 5.09× 10−4

THINC/WLIC [169] 2.75× 10−3

Present study 2.34× 10−3

Present study (initial error) 2.31× 10−3

Table 7.3: Error E∗
C (EC including initial interpolation error) in colour function for

time reverse vortex Tf = 8.0. In each case grid sizes are 128× 128.

Mesh MP Density EC EM Max Atr

(α̂ + 1) (β̂ + 1) N (particles/unit area)
10 10 20 6012 8.79× 10−3 3.16× 10−4 1.97× 10−1

Table 7.4: Errors between initial and final states for the Zalesak slotted disk rotation
problem.

EZ =

∑
Ω |Cij − Cexact

ij |∑
Ω Cexact

ij

. (7.103)

Here Cexact
ij is the exact colour function at the nodal points (i, j), i.e. there is no

interpolation over the boundary of the two phases. Hence, as well as the error arising

from advection of the particles, EZ contains the error associated with the interpolation

from the particles to grid. The computation is also done on a more refined grid with

2012 GLL points and 6012 marker particles being used. The errors for this test are

given in Table 7.4.

Once again, the marker particle scheme performs well with the error in the colour

function EC and mass EM suitably small. The maximum transition area is somewhat

larger than the rotating disk study, but only because the area of the slotted disk in

this case is larger (the radius here is 0.5 compared to 0.15). Table 7.5 shows the error

in the colour function EZ compared with other studies in the literature at similar

mesh refinements. Clearly the scheme compares favourably with the other methods,

and particularly well when the initial interpolation error is subtracted. Again this

emphasises a defining property of the marker particle method. While interpolation

can introduce a significant source of error (which will indeed be present in all diffuse

interface methods), subsequent error in the colour function is minimal.
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Figure 7.6: The initial colour function for the Zalesak slotted disk rotation problem.

7.4.2 Transient Poiseuille Flow of a near-incompressible New-

tonian Fluid

To test the validity of the numerical solution of the governing equations, the velocity

field is first compared with the analytical velocity for start up of Newtonian Poiseuille

flow (in the near-incompressible limit). The analytical solution for an incompressible

fluid viz.

u = −4y(y − 1)− 32
∞∑

n=1

sin(ny/H)

n3
exp(−n2µst/H

2) (7.104)

is prescribed at the inflow and outflow. Test points are chosen in the centre of the

domain, where we compare the numerical and analytical velocity field, and on the

boundary y = 0 where the error in the steady state stress is measured. The only

non-trivial component of the stress is the shear stress

Txy = µs
∂u

∂y
= µs(4− 8y). (7.105)
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Method EZ

SLIC VOF [108] 8.38× 10−2

Hirt-Nichols VOF [67] 9.62× 10−2

Adaptive triangular grid [168] 1.25× 10−2

THINC/WLIC [169] 2.46× 10−2

Present study 4.87× 10−2

Present study (initial error) 4.69× 10−2

Table 7.5: Error EZ for the Zalesak disk test for different multi-phase algorithms.

Figure 7.7 shows the numerical solution u at the test point (0.5, 0.5) for a selection of

(solvent) viscosities. In this case Ω = [0, 1]2 and is partitioned into four equally sized

spectral elements with α,β = 1 and N = 6. The time step is ∆t = 1× 10−2. The time

averaged error in the velocity, calculated using

Eu =

∫ |uanalytical − unumerical| dt

Tf

, (7.106)

and the relative error in the stress ET , are given in Table 7.6.

µs Eu ET

0.1 4.26× 10−5 6.08× 10−5

0.5 1.00× 10−4 5.35× 10−4

1.0 1.78× 10−4 1.07× 10−3

Table 7.6: Errors for Newtonian Poiseuille Flow for a selection of viscosities.

It is interesting to note the relationship between the channel length L and the com-

pressibility of the fluid. Consider the case c2 = 1× 103, µs = 0.5 with a longer channel

length of L = 10. We see a significant difference in the numerical and analytical ve-

locity at the domain centre (Fig. 7.8). The initial increase in the velocity from zero

is delayed and then exhibits an overshoot of about 0.1, before oscillating down to the

steady state value. This suggests that the value of c is not large enough to approx-

imate an incompressible fluid in this extended geometry. What is being observed is

the transient Poiseuille flow of a compressible Newtonian fluid. A truly incompressible

fluid transmits information instantaneously, whereas a compressible fluid does so at

some finite speed. In the shortened geometry, the speed of sound was sufficiently large

in approximating the instantaneous transmission of the boundary conditions to the

centre of the domain, and subsequently good agreement was obtained with the analyt-
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Figure 7.7: Numerical approximation of horizontal velocity component u(0.5, 0.5, t)
with time for Poiseuille flow. Here c2 = 1× 103 and the channel length is L = 1.

ical incompressible solution. By lengthening the domain the effect of compressibility

becomes apparent as the time to transmit information to the centre of the domain

increases. This explains the time lag observed in the initial increase in the numerical

velocity. As can be seen from Fig. 7.8, by increasing the speed of sound, the numerical

compressible solutions converge toward the incompressible analytical solution, allowing

one to recapture the incompressible solution in this longer channel.
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Figure 7.8: Incompressible analytical and compressible numerical solutions for velocity
u for transient Poiseuille flow. By increasing the speed of sound the compressible
solutions tend towards the incompressible solution. The channel length in this case is
L = 10.
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7.4.3 Transient Poiseuille Flow of a near-incompressible Ol-

droyd B fluid

The implementation of the Oldroyd B model, with the two temporal discretisations,

will now be compared with the analytical solution for transient Poiseuille flow. The

analytical solution for start-up transient Poiseuille flow of an incompressible Oldroyd

B fluid was derived by Waters and King [162] for Re 6= 0. The non-trivial velocity

component u is given by

u = −4y(y − 1)− 32
∞∑

n=1

sin(Ny)

N3
exp

(
−αN t

2S1

)
GN(t), (7.107)

where GN(t) is defined as

GN(t) = cosh

(
βN t

2S1

)
+

(
1 + N2(S2 − 2S1)

βN

)
sinh

(
βN t

2S1

)
. (7.108)

The remaining parameters are

N = (2n− 1)π, (7.109)

S1 =
We

Re
, (7.110)

S2 = βS1, (7.111)

αN = 1 + S2N
2, (7.112)

βN = ((1 + S2N
2)2 − 4S1N

2)1/2. (7.113)

Direct comparisons are made with the study by Van Os and Phillips [157], who employ

a spectral element method in their solution of transient viscoelastic flows. Consider a

2×2 (α, β = 1) spectral element gird, with N = 6. The numerical solution is calculated

for β = 1/9, We = 1 and Re = 1 for a channel length L = 16. Here we choose a large

speed of sound (c2 = 1 × 106) to ensure compressibility effects are minimal. The

numerical velocity and stress are measured on the penultimate vertical grid line, and

compared with the boundary conditions at the inflow. Figure 7.9 shows the velocity

and stress components calculated using both temporal discretisation schemes. One

can see the divergence in the numerical solution using the second order explicit scheme

(scheme A) at around t ≈ 22.0 time units. The first order implicit scheme (scheme

B) on the other hand seems to remain stable indefinitely, with a time averaged error
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in the velocity of Eu = 1.44 × 10−4. Such a divergence in the explicit solution was

observed by Van Os and Phillips [157], for identical mesh and material parameters, at

approximately t ≈ 10.8 time units. Decreasing the channel length to L = 8 (Fig. 7.10)

sees the onset of divergence at an earlier stage for the explicit scheme, at t ≈ 3.8 (Van

Os and Phillips [157] observed divergence at t ≈ 4.2). However, once again the implicit

scheme demonstrates superior stability properties, showing no evidence of divergence.

The time averaged error in this case is Eu = 3.92 × 10−4. Van Os and Phillips [157]

found that keeping the channel length fixed, but increasing the number of streamwise

elements, also decreases the time at which the solution diverges (Fig. 7.11). Using a

4 × 2 (α = 3, β = 1) mesh with L = 16 (Fig. 7.11(a)) we find for the explicit scheme

the solution diverges at t ≈ 3.9, while once again, the implicit scheme remains stable

with Eu = 2.55× 10−4. Only by decreasing the channel length to L = 8 (Fig. 7.11(b))

do we see the implicit scheme succumb to numerical instability. The solution diverges

at t ≈ 11.6 for the implicit scheme, while at t ≈ 1.3 for the explicit (Van Os and

Phillips [157] observe divergence at t ≈ 1.0).

Figures 7.12 and 7.13 display the velocities and stresses for Poiseuille flow for We = 0.1

and We = 10, respectively. Calculations are performed using the semi-implicit scheme

with a single spectral element and N = 4. Despite the two orders of magnitude

difference in We, the scheme maintains its integrity with the numerical approximation

being indistinguishable from the analytical solution.

The implementation of the Oldroyd B constitutive equation has been validated through

comparison with the transient analytical solution of Waters and King [162]. Despite

being a compressible model, a near incompressible limit can be attained which provides

accurate solutions to the incompressible flow. Broadly speaking, the spectral element

scheme here exhibits similar stability properties seen in other spectral element studies

[52, 157]. Namely, increasing the number of elements in the streamwise direction or

shortening the channel length, brings forward the onset of instability. From the above

discussion it is clear that the implicit scheme has more favourable stability properties,

as well as being remarkably accurate in describing transient viscoelastic flows. It is

for these reasons that the implicit scheme shall be used in the forthcoming study of

viscoelastic multi-phase flows.
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Figure 7.9: Analytical and numerical solutions of an Oldroyd B fluid in Poiseuille
flow for different numerical schemes. L = 16, We = 1, Re = 1, β = 1/9. The grid
parameters are: N = 6, α = 1, β = 1.

223



Time

u

10 20 30 40

0.5

1

1.5

2

2.5

Analytical
Implicit
Explicit

Figure 7.10: Analytical and numerical component of velocity u with time for an Oldroyd
B fluid in Poiseuille flow. L = 8, We = 1, Re = 1, β = 1/9. The grid parameters are:
N = 6, α = 1, β = 1
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Figure 7.11: Analytical and numerical solutions of an Oldroyd B fluid in Poiseuille
flow for different numerical schemes at different channel lengths L, with increased
streamwise mesh refinement. The grid parameters are: N = 6, α = 3, β = 1.
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Figure 7.12: Analytical and numerical solutions of an Oldroyd B fluid in Poiseuille
flow. L = 16, We = 0.1, Re = 1, β = 1/9. The grid parameters are: N = 4, α = 0,
β = 0.
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Figure 7.13: Analytical and numerical solutions of an Oldroyd B fluid in Poiseuille
flow. L = 16, We = 10, Re = 1, β = 1/9. The grid parameters are: N = 4, α = 0,
β = 0.
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7.5 Numerical Results

7.5.1 Bubble Collapse in a Newtonian Fluid

In this section we present the numerical predictions for bubble collapse near a rigid

boundary, within a Newtonian fluid. As described in the introduction, the bubble

is initially represented as a circular region with a separate density and viscosity to

the ambient fluid. Particles within this region are assigned an identity which they

retain indefinitely. Hence the position of the bubble can be tracked by following these

particles. We consider the bubble dynamics for a selection of ambient fluid viscosities

and heights from the rigid boundary. In all cases, unless otherwise stated, we assume

that the bubble contents consist of a compressible Newtonian fluid with viscosity µs =

1 × 10−5 (an order of magnitude similar to air) and initial density q = 0. The initial

density of the ambient fluid is taken to be q = ln 4 ≈ 1.386. Hence the density ρ of the

ambient fluid is four times that of the bubble phase. The rigid boundary in question

is taken to be the line y = 0 in a computational domain D = [0, 10]2. On y = 0 and

the remaining boundaries the no-slip condition applies. The mesh is refined around

the area of interest, namely the bubble, with larger elements fanning outwards to the

edges of the computational domain. An example mesh is given in Figure 7.14. Typical

mesh parameters are α = β = N = 8 and the time step used in the simulations is

∆t = 5× 10−3.
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Figure 7.14: An example of the spectral element mesh used in the bubble collapse
problems.

We consider first a bubble initially positioned to be just touching the rigid boundary.
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Figure 7.15 shows the colour function at a selection of times for an ambient fluid

viscosity µs = 1 × 10−3. The initial difference in pressure between the bubble and

ambient fluid initiates and drives bubble collapse. During collapse the bubble flattens,

with its contents being pushed towards the wall by the greater bulk of fluid above it.

As fluid follows most freely along the centre of the domain, a jet of fluid begins to form

and then penetrate the body of the bubble. As the jet proceeds towards the wall, the

bulk of the bubble is pushed out in either direction. The speed at which collapse occurs

is so great that the outer edges of the bubble break up in an effect not dissimilar to

“splashing”. Splashing has been observed experimentally and predicted numerically,

and is caused by the collision of fluid from the jet (travelling outwards from the centre)

with the fluid from the oppositely directed ambient flow. Consequently, the fluid (or

splash) is projected upwards from the boundary and can cause surface breaking and

the formation of smaller cavities [151].
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Figure 7.15: Bubble collapse near a wall in a Newtonian fluid with µs = 1× 10−3.

Evidently, besides predicting the well-known phenomenon of jet formation, phenom-

ena such as splashing and bubble break up can be handled straightforwardly by the

method. This is a clear advantage of the marker particle algorithm over the BEM,
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where modelling bubble break up requires special treatment. By increasing the viscos-

ity of the ambient fluid we see a similar response to that of our boundary element study.

Figure 7.16 shows the colour function for µs = 1 × 10−2. In this case jet formation

is not as pronounced, with the top of the bubble being only slightly indented during

collapse. However, a jet of sorts still forms, impinging on the boundary and pushing

the bubble contents out towards the side walls. Also, bubble break up on the outer

fringes is significantly reduced.
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Figure 7.16: Bubble collapse near a wall in a Newtonian fluid with µs = 1× 10−2.

If the viscosity is increased further to µs = 0.1 (Fig. 7.17) we see that jet formation

is almost completely suppressed. As the bubble collapses, it deforms into a flattened,

bowl like shape with no discernible jet formation. Any further spreading of the bubble

and any bubble break up is also prevented.

Increasing the viscosity further to µs = 1.0 (Fig. 7.18) we find that, not surprisingly,

jet formation is once again prevented, although in this case, the effect of viscosity is so

great that deformation in the bubble is minimal and it does not deviate significantly

from sphericity. Following an initial decrease in volume, the bubble also quickly settles

down into a steady state. Note that the bubble shape is such that the underside is
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Figure 7.17: Bubble collapse near a wall in a Newtonian fluid with µs = 0.1.

drawn inward, producing a more pointed bottom. Comparing this shape to those in

Figure 3.10, one can see that these features, including jet prevention, are also predicted

by the BEM for significant viscosities.

Figure 7.19 shows the variation of the jet position with time, for the aforementioned

viscosities. As before, the jet position is defined as being the material point on the north

pole of the bubble, where the jet is expected to form. In the very early stages of collapse,

the profiles are indistinguishable as inertia dominates. The bubble collapses rapidly

before rebounding due to the compressed fluid content within the bubble. After these

initial stages, the effects of viscosity become more apparent. Expectedly, µs = 1×10−3

shows the fastest decrease in position, with the jet proceeding toward the wall with the

largest velocity. This rate decreases with increasing viscosity, with µs = 1.0 attaining

a steady state, as the jet position becomes constant and the jet velocity zero. Clearly,

increasing viscosity can delay, slow and if large enough, prevent jet formation. This

is well-known and has been observed in the previous boundary element study, and in

other numerical studies such as that by Popinet and Zaleski [121]. While this behaviour

is qualitatively similar to that predicted by the BEM, the jet position profiles are rather
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Figure 7.18: Bubble collapse near a wall in a Newtonian fluid with µs = 1.0.

different. The liquid jet constantly accelerates during collapse in the previous BEM

study, but can decelerate here. The reason for this is that the bubble in the BEM

study was modelled as containing a constant pressure pb. Here, the bubble is modelled

as a compressible Newtonian fluid. Hence, as mentioned at the start of the paragraph,

the bubble contents act to resist collapse and decelerate the surrounding fluid. The

build up in pressure within the bubble can be sufficient to temporarily slow, stop, and

even reverse collapse. This also explains the small, low amplitude oscillations in the

jet position.

Figure 7.20 shows the variation of jet position with time for µs = 0.1, for different mesh

refinements. On varying the polynomial order N there is little change in the solution

(to within an acceptable tolerance) for N ≥ 6, suggesting that a choice of N = 8 does

indeed provide a sufficient level of refinement.

We will now consider the effect of increasing the distance of the bubble from the rigid

boundary. Figure 7.21 shows the colour function at different times for an ambient fluid

viscosity µs = 0.1, a distance h = 1.1 from the lower wall. Compared to Fig. 7.17,

where the bubble was just attached to the wall, the small increase in distance causes
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Figure 7.19: Position of jet with time for varying solvent viscosity µs.

the bubble shape to change quite substantially. As in the boundary element study (see

Figure 3.11 for example), increasing distance from the wall causes a decrease in the

deformation of the bubble. Closer to the wall, the bubble is more elongated along the

x axis, with the topside more flattened. Increasing the distance to h = 1.1, the bubble

has now deformed in a similar manner but to a lesser extent. For in the near wall case,

fluid flows most easily from above the bubble, causing it to push down upon the bubble

and create the more elongated shape and flatten topside. While this flow mechanism

is still apparent for h = 1.1, it is not to the same extent. Fluid is able to flow more

freely from all directions around the bubble, and so collapse is more uniform.

Increasing the distance from the wall further to h = 2.0 (Fig. 7.22) we note a further

decrease in bubble deformation, as expected. In fact, the distance is such that de-

formation in the bubble is minimal, with it hardly changing from its initially circular

shape. The fluid around the bubble is able to flow more freely from all sides, so the

collapse is extremely uniform. This is also predicted in the equivalent Newtonian BEM

case; see Figure 3.12. Here though the bubble collapses and decreases in volume, but

given the fluid content of the bubble acting to resist collapse, it quickly settles down
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Figure 7.20: Dependence of the position of the jet on mesh refinement for µs = 0.1.

to a steady state.

To conclude the discussion on Newtonian dynamics, we reiterate the qualitative agree-

ment in the dynamics observed here, to those predicted by the boundary element

study in Chapter 3. Close to the wall deformation in the bubble is severe as fluid flow

is restricted near the wall, while unrestricted from above the bubble. In both cases,

depending on viscosity, the preferential fluid flow from above can cause the bubble

topside to flatten, with the possibility of jet formation. Further from the wall, as the

flow around the bubble is more regular, the deformation in the bubble is more uni-

form, and can in fact remain near sphericity/circularity during collapse. Additionally,

both methods predict a decrease in deformation and jet prevention for large enough

viscosities.
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Figure 7.21: A plot of the colour function at different times, representing bubble col-
lapse near a wall in a Newtonian fluid with µs = 0.1, h = 1.1.
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Figure 7.22: A plot of the colour function at different times, representing bubble col-
lapse near a wall in a Newtonian fluid with µs = 0.1, h = 2.0.
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7.5.2 Bubble Collapse in an Upper Convected Maxwell Fluid

In this subsection we investigate the role of viscoelasticity on bubble collapse. The

rheological properties of the ambient fluid are determined by the upper convected

Maxwell (UCM) constitutive equation. The bubble contents remain Newtonian, with

the parameters assigned previously. Figure 7.23 displays the colour function at various

points in time, indicating bubble shape during collapse. The Weissenberg number of

the ambient fluid is We = 0.03 and the polymeric viscosity µp = 0.1. The bubble is

initially positioned such that h = 1.1. Comparing Figure 7.23 with the corresponding

Newtonian case (Fig. 7.21), one can see a notable difference in the bubble shapes

due to the presence of viscoelasticity. During collapse, the bubble shapes are more

prolate than their Newtonian counterparts and also form a marked cusp feature on

their underside. Figure 7.24 shows a close up of the bubble for both the viscoelastic

and Newtonian cases, at time t = 0.5.
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Figure 7.23: A plot of the colour function at different times, representing bubble col-
lapse near a wall in a UCM fluid with µp = 0.1, We = 0.03, h = 1.1.

In the viscoelastic case (on the left), a more elongated and cusped underside is clearly

visible, in comparison to the Newtonian case on the right. The cusping and extensive
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concavity of the bubble underside, when near the wall, is also predicted by the boundary

element method (see Fig. 3.15, for example). It is interesting to note that over the

course of this project, cusp formation has been a recurring feature in viscoelastic bubble

dynamics.
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Figure 7.24: A plot of the colour functions in a UCM fluid (left) and Newtonian fluid
(right) at time t = 0.5.

Evidently, near the wall there is a mechanism encouraging concavity in the bubble

surface, which arises from the elastic properties of the surrounding fluid. While this

also occurs in the BEM study, the full domain solution here can perhaps afford more

insights into cusping mechanisms. A cusp forms when fluid just around the tip flows at

a higher velocity than the tip itself, suggesting the presence of an additional stress that

“squeezes” the bottom of the bubble from the sides. Figure 7.25 shows the contours

of the different components of the extra stress near the wall. In the viscoelastic case,

there is an extra stress layer in the Txx component which is absent in the Newtonian

case (see Fig. 7.26). This stress layer can become very large, particularly in the initial

stages of collapse, where inertia is dominant and thin velocity boundary layers exist on

the wall. In fact, this large stress layer can be a major source of numerical instability

and the reason that results for Weissenberg numbers greater than We ≈ 0.03 cannot be

obtained in this case. This Weissenberg number limit will be discussed in more detail

later. Though this value of Weissenberg number seems rather small, the alternative

dimensionless measure of elasticity, the Deborah number De = λR0 (4p/ρ)1/2, yields

an initial value of De ≈ 0.82. This is a much more satisfactory upper bound and

suggests that perhaps De provides a better measure of elastic effects for such problems.

By our definition, the Deborah number provides a time scale associated with the flow

process, while the Weissenberg number is associated with fluid characteristics. The
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reason the Deborah number is not used here is because it is not constant, but varies

with bubble density and pressure.

It seems that this build up of an elastic normal stress, which is directed along the x

axis around the underside of the bubble, is the likely reason for cusp formation. The

build up of normal stress in the vicinity of the cusp also occurs in the BEM study (see

Fig 3.38, for example). Though quite different in structure, it is clear in both cases

that additional viscoelastic stresses preferentially develop about the bubble underside.

After all, the basic flow structure that exists between the bubble and rigid wall during

collapse, should be similar in both cases.
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Figure 7.25: Contour plots of the extra stress components near the rigid boundary at
time t = 0.5. It is a UCM fluid with µp = 0.1, We = 0.03, h = 1.1.

The shear stress Txy contours are similar to the Newtonian case (see Fig. 7.26) in both

magnitude and structure, suggesting that Txy plays a minor role in cusp formation.

Similarly the normal stress Tyy, although different in structure, is small in both cases.

Figure 7.27 shows the jet velocities in a Newtonian and UCM fluid. We compare the

velocities after the initial collapse and rebound phase, as in this phase inertia dominates

and the differences in dynamics are negligible. Even after this stage, the difference in
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Figure 7.26: Contour plots of the extra stress components near the rigid boundary at
time t = 0.5. The fluid is Newtonian with µs = 0.1, h = 1.1.

the jet velocities is small, demonstrating that in this study the bubble content is the

principal cause of bubble oscillation. The oscillations in the UCM fluid are fractionally

larger in amplitude in most instances - alluding to the ability of the viscoelastic stresses

to induce oscillation in the bubble. The combined effect of this and the bubble contents

then create oscillations of a slightly larger amplitude. Increased amplitude oscillation

with increased Deborah/Weissenberg number is of course a well known characteristic

of viscoelastic bubble dynamics, and is predicted by the BEM in the spherical and

non-spherical cases studied in the preceding chapters. See, for example, Figure 2.9.

Figure 7.28 shows the colour function at select times when the bubble has been moved

from the wall to a distance h = 2.0. As in the Newtonian case, deformation in the

bubble is markedly reduced and it remains very nearly circular during collapse.

Figure 7.29 shows the bubble jet velocities, after the initial collapse phase, at different

distances from the wall. Expectedly, we see that further from the wall the amplitude

of the oscillation in jet velocity is larger, because the fluid flow is less restricted and

can flow at larger speeds. Increasing jet velocities with distance from the wall was also

239



Time

Je
tV

el
oc

ity

2 4 6 8
-1.5

-1

-0.5

0

0.5

1

We=0.00
We=0.03

Figure 7.27: Variation of jet velocity with time (after the initial collapse) in a Newto-
nian and UCM fluid, µp = 0.1, h = 1.1.

predicted by the BEM study (see Fig. 3.5, for example). Interestingly, note the small

perturbations in the jet velocity for h = 1.1 at about t = 2, for example. These were

also observed in the BEM study (see Fig. 3.17 and the accompanying paragraph), and

result from the wall perturbing flow around the bubble and causing it to oscillate “out

of phase”, i.e. the lower part of the bubble may collapse, while the upper part expands.

In turn, the unsynchronised flow field around the bubble produces perturbations in the

jet velocity.

Additionally, at greater bubble distances from the wall, larger upper bounds on the

Weissenberg number are permitted. For h = 2.0 for example, the maximum Weis-

senberg number for which stability is sustained is Wemax ≈ 0.15. This is not surpris-

ing, as a greater bubble distance from the wall means that the flow adjacent to the

wall is less severe (reduced velocities and increased uniformity). Consequently, velocity

gradients are significantly smaller and so the stress boundary layers, the most likely

source of the numerical instability, are smaller in magnitude.
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Figure 7.28: A plot of the colour function at different times, representing bubble col-
lapse near a wall in a UCM fluid with µp = 0.1, We = 0.03, h = 2.0.
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Figure 7.29: Variation of the jet velocity with time, at different distances h from the
wall, in a UCM fluid with µp = 0.1, We = 0.03.
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7.5.3 Bubble Collapse in an Oldroyd B Fluid

Variation of Solvent Viscosity

In this section we investigate the dynamics of a bubble within a fluid whose rheological

properties are governed by the Oldroyd B constitutive equation. It is well known

that the Oldroyd B equation is comprised of the UCM model but with an additional

Newtonian solvent stress contribution (see Equation (7.9)). It can be anticipated that,

as is often observed in the literature, that this additional viscous stress will abate

elastic effects and permit higher upper bounds on the Weissenberg number. Figure

7.30 shows the colour function at time t = 0.5 for a selection of solvent viscosities. The

Weissenberg number is We = 0.03 (for comparison with the previous UCM studies)

and the initial bubble distance from the wall is h = 1.1. Unsurprisingly, by increasing

the solvent viscosity the small cusp on the bubble underside becomes less prominent

and the somewhat sharpened underside becomes smoothed out. As expected, the

elastic effects, which we know to be the reason for cusp formation, are suppressed with

increasing solvent viscosity. This can be further appreciated by studying the stress

component Txx for each solvent viscosity.
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Figure 7.30: A plot of the colour function at t = 0.5 in an Oldroyd B fluid for different
solvent viscosities µs. The remaining parameters are µp = 0.1, We = 0.03, h = 1.1.

The contours of the stress component Txx are shown in Figure 7.31. We know that

this component of stress differs drastically in the Newtonian and viscoelastic cases,

and that it is the dominant stress component in cusp formation. Expectedly we see

significantly different stress contours for the different solvent viscosities. For µs = 0 we

see the thin, relatively high magnitude stress boundary layers observed in Fig. 7.25. By

increasing the solvent viscosity to µs = 0.1, viscous effects begin to abate elastic effects

and the stress layers become thicker and decrease in magnitude. Increasing viscosity
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to µs = 1.0, we see that no discernible stress layers form and that the contour field

resembles the Newtonian case (both in structure and magnitude). Evidently, increasing

viscous effects increasingly suppress the elastic effects, thus providing an explanation of

the transition in bubble shape from a cusped/concave to smoothed/convexed underside.
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Figure 7.31: The stress contours of component Txx for different solvent viscosities µs.
The remaining parameters are µp = 0.1, We = 0.03, h = 1.1.

Figure 7.32 shows the variation of the jet velocity with time for the different solvent

viscosities discussed above. Once again, the behaviour is as expected. By increasing

the viscosity the amplitude of oscillation decreases due to increased energy loss through

viscous dissipation. Consequently, the bubble attains a zero kinetic energy steady state

with µs = 1.0, before the cases µs = 0, 0.1. A similar response to increasing solvent

viscosity has been predicted by the BEM when using the Jeffreys model, in the case of

spherical bubble dynamics. Figure 2.15, for example, shows the increasingly damped

oscillations of the radius with time.
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Figure 7.32: Variation of the jet velocity with time for different solvent viscosities, with
µp = 0.1, We = 0.03, and h = 1.1.
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Variation of Weissenberg Number

Considering the case µp = µs = 0.1, h = 1.1, we shall now investigate the effect

of varying the Weissenberg number. As we have mentioned, it is well known that the

inclusion of a solvent stress can permit larger upper bounds on the Weissenberg number.

Such is the case in this study. The inclusion of a solvent viscosity µs = 0.1 has allowed

an order of magnitude increase in the maximum attainable Weissenberg number, with

Wemax ≈ 0.65. Figure 7.33 shows the colour function at t = 0.5 for a selection of

Weissenberg numbers. The difference in the bubble shapes is not particularly striking,

but one does notice an increasingly cusped underside for Weissenberg numbers We =

0.1 and 0.5. Once again, this highlights the role of elasticity in the formation of cusps.
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Figure 7.33: A plot of the colour function at t = 0.5 for different Weissenberg numbers.
The remaining parameters are µp = µs = 0.1, h = 1.1.

The contours of stress component Txx are given in Fig. 7.34. For We = 0.03, we see

the thickest layers and smallest in magnitude. Increasing the Weissenberg number to

We = 0.1, results in slightly thinner and more elongated layers with values of Txx which

are larger in magnitude. The increased magnitude of the stress is evidently responsible

for the increased cusping. Increasing the Weissenberg number further to We = 0.5,

we see yet thinner layers develop, with values of Txx which are again significantly

larger in magnitude. Such behaviour of the stress boundary layers, when varying

Weissenberg number, has been well documented in the literature. For example, for the

UCM model, Renardy [127] noted that boundary layer thickness decreased as We−1

with increasing Weissenberg number. Under-refinement of these layers can result in

numerical instability, and in many studies in computational rheology this is cited as the

reason for the high Weissenberg number problem [112]. This also seems the case here.

For We = 0.5, accompanying the thin boundary layers, are lower amplitude spurious

oscillations originating from the boundary. Though these are not significant enough
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to pollute and destroy the whole solution, it clearly indicates that we are nearing the

limiting Weissenberg number for this problem. As stated, this was found to be at

around Wemax ≈ 0.65. Further refinement of these layers is possible and while it may

allow increases in Weissenberg number, it merely postpones the issue.
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Figure 7.34: The stress contours of component Txx for different Weissenberg numbers.
The remaining parameters are µp = µs = 0.1, h = 1.1.

Despite considerable differences in the stress contours for varying Weissenberg numbers,

as we can see in Figure 7.35, the difference in the jet velocities is not as pronounced.

It seems elastic effects are most significant near the wall and primarily act to alter

bubble shape in this region. We do, however, see a slight increase in the amplitude

of oscillation with increasing Weissenberg number, due to the increased elastic energy

in the system over viscous dissipation. Of course, we know this to be a quintessential

characteristic of viscoelastic bubble dynamics.
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Figure 7.35: (a) Variation of jet velocity with time (after initial collapse) for different
Weissenberg numbers, with µp = µs = 0.1, h = 1.1. (b) Close up of the jet velocities,
indicating the increasing amplitude oscillations with We.
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Variation of Polymeric Viscosity

Now the solvent viscosity and the Weissenberg number will be keep fixed at We =

µs = 0.1, but the polymeric viscosity will be varied. Figure 7.36 shows plots of the

colour function at t = 0.5 for various polymeric viscosities. By increasing the poly-

meric viscosity, the bubble goes from having a more rounded shape with an appreciable

cusped tail, to a more prolate (squashed along the y axis shape), with a less distin-

guishable cusp. Once again the stress contours Txx can provide important insights into

the formation of these different shapes.
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Figure 7.36: A plot of the colour function at t = 0.5 for different polymeric viscosities.
The remaining parameters are We = µs = 0.1, h = 1.1.

Figure 7.37 shows the Txx contours for the different polymeric viscosities. Increas-

ing the polymeric viscosity does not particularly effect the thickness or length of the

stress boundary layer, for as we have discussed, this is primarily determined by the

Weissenberg number. However, an increase in µp does result in stresses of increased

magnitude, which vary in structure further from the boundary. For µp = 0.05 and

µp = 0.1 the stress field in the region around the bubble, just away the wall, is quite

uniform. Consequently, in both cases, the uniform distribution of stress results in the

bubble shape, away from the wall, remaining relatively circular. For µp = 0.5, besides

the sizable increase in the overall magnitude of Txx, there is a notable difference in

structure, with a region of high stress around the bottom half of the bubble and a

lower stress region around the top half. The increased magnitude, particularly around

the lower half of the bubble, has the effect of squashing the bubble and producing a

more prolate shape with no definite cusp formation.

Figure 7.38(a) shows the jet velocities for the selection of polymeric viscosities. As

expected, increasing µp sees a decrease in the amplitude of oscillation, as elastic effects

which would act to encourage oscillation, are suppressed due to increased viscous dis-
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Figure 7.37: The stress contours of component Txx for different polymeric viscosities.
The remaining parameters are We = µs = 0.1, h = 1.1.

sipation. Of course, such a response is well known and has been observed in the BEM

study in the spherical and non-spherical cases (see, for example, Figure 2.10)
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Figure 7.38: (a) Variation of jet velocity with time (after initial collapse) for different
polymeric viscosities, with We = µs = 0.1, h = 1.1. (b) Close up of the jet velocities,
indicating the decrease in the amplitude of oscillations with increasing viscosity.
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Variation of the Speed of Sound

We shall now investigate the bubble dynamics for different fluid compressibilities. This

property is parameterised by the speed of sound. Figure 7.39 shows the colour function

at t = 0.5 for different speeds of sound c2. The material parameters are µs = µp =

We = 0.1, with h = 1.1. Decreasing the speed of sound causes a notable change

in bubble shape. At c2 = 1000 we see the usual rounded bubble with a protruding

cusped tail. At c2 = 500, the cusped tail is no longer visible but the underside is at

the limit of concavity. For c2 = 100 there is no sign of concavity in the surface and the

bubble has assumed a more prolate form. This transition from initial to final shape is

not dissimilar to that observed when one increases the solvent or polymeric viscosity

(as in Figures 7.30 and 7.36, respectively). Since the equation of state is p = c2ρ,

and the initial density difference ∆ρ is a constant, this means that the initial pressure

difference ∆p between to two phases varies linearly with c2. Hence a large c2 implies

a large initial pressure difference, and consequently, produces large initial inertias and

collapse velocities. By decreasing the speed of sound, the initial pressure difference and

hence the inertia also decrease. Of course, increasing the viscosity produces a similar

effect, as can be seen by considering the alternative definition of Reynolds number used

in the preceding chapters, Re∗ = R0(ρ∆p)1/2/µ. Despite the similar inertial effects,

compressibility and viscosity are of course two different fluid properties and do produce

different physical effects. The unique role of compressibility can be readily seen from

the jet velocity profiles shown in Fig. 7.40.
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Figure 7.39: A plot of the colour function at t = 0.5 for different speeds of sound c2.
The remaining parameters are We = µs = µp = 0.1, h = 1.1.

The most notable difference in the jet velocities is the frequency of the oscillations.

Decreasing the speed of sound c2, results in a decrease in the frequency of bubble

oscillation. This is essentially due to the pressure differences between the bubble and
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ambient fluid. For large speeds of sound the pressure difference is large, which causes

the bubble to collapse rapidly. However, as the bubble collapses and decreases in

volume, there is a rapid increase in bubble density, and hence a rapid increase in

pressure within the bubble as p = c2ρ. This large pressure then halts collapse and

causes the bubble to rapidly expand, with this process of rapid expansion/contraction

then continuing, but becoming progressively slower due to viscous dissipation. At lower

speeds of sound, collapse is not as rapid and it takes longer for the bubble density to

increase to the point where the pressure is large enough to cause bubble rebound.

Consequently, the frequency of the bubble oscillations is much lower.
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Figure 7.40: (a) Variation of jet velocity with time (after initial collapse) for different
speeds of sound, with We = µs = µp = 0.1, h = 1.1. (b) Close up of the jet velocities,
indicating the increase in the frequency of oscillations with increasing sound speed.

Due to the smaller pressure difference at lower speeds of sound and the subsequently

smaller initial collapse velocities, the associated reduction in the severity of the flow

suggests that larger Weissenberg numbers can be obtained. This is indeed found to

be the case. In fact, reducing the speed of sound to c2 = 100 seems to eliminate

any upper bound on the Weissenberg number. Figure 7.41 shows the jet velocities

for different We with c2 = 100. As usual, we see an increase in the amplitude of

oscillation resulting from the increasing elastic effects. However, continually increasing

We sees progressively smaller changes in the amplitude as the solution tends to a

Hookean elastic limit. The reduced inertia and smaller velocity gradients mean that

upon increasing the Weissenberg number, the constitutive equation for the polymeric

253



stress

O
P + We−1P = We−1µp(∇u +∇uT ) (7.114)

becomes increasingly better approximated by

O
P = 0. (7.115)

It seems that the velocity gradients are small enough to permit increases in We with-

out amplifying the troublesome deformation terms in the upper convected derivative.

Such a high Weissenberg number limit was observed in the BEM study and in other

studies of viscoelastic bubble dynamics (e.g. [54]). The models predicted an elastic

limit that resembles the inviscid solution for bubble collapse (see Figure 2.7, and the

accompanying explanation, for example). Similarly, according to Equation (7.115), the

polymeric stress P remains constant on following a deforming parcel of fluid. Since

we have a zero initial stress condition, P = 0 indefinitely. The solution is not inviscid

however, as we still have a non-zero Newtonian solvent stress contribution.
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Figure 7.41: (a) Variation of jet velocity with time (after initial collapse) for different
Weissenberg numbers, with µs = µp = 0.1, c2 = 100, h = 1.1. (b) Close up of the jet
velocities, indicating a limiting elastic solution at larger Weissenberg numbers.
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7.6 Conclusions

In this chapter we have developed a numerical method to simulate two-phase viscoelas-

tic flows. The full compressible, two-dimensional governing equations are solved using

a spectral element method. The two phases are modelled using a marker particle

method - a scheme which bears a strong resemblance to volume of fluid techniques. On

the understanding that compressibility can play an important role in bubble collapse,

we briefly discuss the modelling of compressible viscoelastic fluids and subsequently

propose a more complete model to those used previously in the literature. The marker

particle method is validated using some standard test problems, and this has high-

lighted the beneficial properties of the scheme, including minimal numerical diffusion

and robustness. The spectral element solution of the governing equations was validated

through comparison with the analytical solution for transient Poiseuille flow, in both

the Newtonian and viscoelastic (Oldroyd B) cases. The agreement in both cases is

excellent. The compressible formulation can be used to approximate the solution of

the incompressible problem to a high degree of accuracy by simply increasing the speed

of sound. Two different temporal discretisations for the polymeric stress were investi-

gated; a second order explicit scheme which has been used previously by Fiétier and

Deville [52] and Van Os and Phillips [157], and a first order semi-implicit scheme. The

semi-implicit scheme was found to be considerably more stable and was subsequently

employed in the study of two-phase viscoelastic flows. The compressible formulation

was found to enhance stability slightly compared to the incompressible approach, but

in general it exhibited the same behaviour with varying polynomial order and number

of spectral elements.

The results for bubble collapse near a rigid boundary qualitatively agree with the

dynamics observed in the boundary element study, other numerical studies, and exper-

imental observations. Given the differences in the different models, a good quantitative

agreement was not expected, and indeed, not observed. In the Newtonian case, for low

viscosities, the model predicts jet formation and a splashing-like phenomenon. As vis-

cosity is increased, jet formation is suppressed and bubble deformation is restricted.

Including viscoelastic effects, firstly in the form of the Upper Convected Maxwell model,

we find that during collapse jet formation can be prevented and a cusp can form on the

bubble underside. This was also observed in the BEM study of Chapter 3, and is due to

a build up of (visco)elastic stresses around the cusp when near the wall. In this study
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large stress boundary layers can form, which can cause the solution to breakdown if the

Weissenberg number exceeds a certain value. This upper bound on the Weissenberg

number was found to increase with increasing distance from the wall. As is generally

the case, the Oldroyd B model proved able to support considerably higher Weissenberg

numbers, due to the inclusion of a solvent viscous stress. As in the UCM case, predic-

tions from the Oldroyd B model include cusp formation on the bubble underside and

also larger amplitude oscillations in the jet velocity with increasing Weissenberg num-

ber. Once again, this behaviour was also predicted by the BEM study and has been

well documented in other numerical studies of spherical bubble dynamics. It was found

that increasing the compressibility of the two fluids (by decreasing the speed of sound)

resulted in smaller inertial effects and smaller initial collapse velocities. The frequency

of the oscillation of the bubble was also markedly reduced. Due to the smaller inertial

effects, and subsequently smaller velocity gradients near the wall, the elastic boundary

layers were also significantly smaller in magnitude. Consequently, because these layers

are unable to grow enough in magnitude to induce numerical instability, there seems

to be no upper limit on the Weissenberg number. There is however an “elastic” solu-

tion in the limit of large Weissenberg numbers, as the polymeric constitutive equation

reduces to a simpler form. An elastic limit was observed in the BEM study for the

particular model used, and has also been predicted in other numerical/theoretical work

on spherical bubble dynamics.

In conclusion, this study confirms the role of viscoelasticity in the dynamics of bubble

collapse near a wall; a role which was first ascertained in the BEM study. Such vis-

coelastic effects include increased bubble oscillation with Weissenberg/Deborah num-

ber, considerable deformation and cusping near the wall, and perhaps most importantly,

the ability to prevent jet formation. One might say that this reaffirms the opinion that

viscoelasticity has a mitigating effect on cavitation damage. As we have guessed, it

appears that perhaps such a statement might not be so simple. Specifically in the case

of viscoelasticity, we have seen that large stresses can build up on the boundary. It

is very possible that these may have a detrimental effect on the surface. Evidently,

more research needs to be carried out, and in particular with more advanced rheolog-

ical models which can perhaps give a more physical description of dynamics near the

wall. Another important modelling extension is the study of more advanced equations

of state and thermodynamic effects. There are, of course, a plethora of equations of
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state, such as the equation of Tait, which may be better suited to describing the ther-

modynamic properties of the system. Indeed, it may even be possible to combine two

equations of state, one for each phase, in a manner like the viscosity. Further exten-

sions include modelling multi-bubble dynamics, studying the dynamics of an array of

bubbles above, below and adjacent to one other. For in reality, bubbles rarely form

singly but as part of a bubble cloud, with substantially different dynamics and impli-

cations for cavitation damage. Improvements to the numerical scheme include being

able to support a larger (and more realistic) difference in initial densities between the

bubble and ambient fluid, while still being able to attain a satisfactory Weissenberg

number. Perhaps including SUPG or similar schemes might be beneficial with regard

to increasing the Weissenberg number limit.
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Chapter 8

Conclusions

In this thesis two different models and numerical methods have been developed to

investigate the dynamics of bubbles in viscoelastic fluids.

8.1 The First Model

In the interests of gaining some crucial initial insights into viscoelastic bubble dynam-

ics, a simplified system of governing equations is considered. The bubble is modelled as

a void in the computational domain and the ambient fluid is considered incompressible

and the flow irrotational. Viscous and viscoelastic effects then appear through the

normal stress balance at the bubble surface. The model can be a good approximation,

particularly for moderate to high velocity phenomena such as bubble collapse, due to

the small amount of vorticity generated at free surfaces and the confinement of vis-

cous/viscoelastic effects to thin boundary layers. Following experimental observations

of bubble dynamics, axisymmetry is assumed, effectively reducing the problem from a

three-dimensional one to a two-dimensional one. An efficient and versatile boundary

element method is then developed to solve the governing equations.

8.1.1 Spherical Bubble Dynamics

In Chapter 2 the predictions of the model for spherical viscoelastic bubble dynamics

are investigated. The model is first validated through comparison with the inviscid

and viscous solutions for collapse of a spherical cavity, as described by the Rayleigh-

Plesset equation. The predictions of the model with regard to spherical viscoelastic

bubble dynamics are then discussed for several different constitutive equations. Even

259



though viscoelastic effects only appear through the normal stress condition on the free

surface, the model predicts all the important phenomena seen in other spherical dy-

namics studies. More specifically, the Maxwell model predicts the damped oscillation

of the bubble radius with time, the near elastic oscillations in the high Deborah number

limit, and the no-rebound condition. Furthermore, the results are in good quantitative

agreement with full solutions of the viscoelastic Rayleigh-Plesset equation. This sup-

ports the argument that surface effects alone can offer a comprehensive description of

bubble dynamics. Considering the Jeffreys constitutive relation, predictions include an

increasingly damped radius with increasing solvent viscosity. A generalised Maxwell

model is also investigated, with empiricisms relating to Rouse and Doi-Edwards molec-

ular theories prescribing the parameters. The Doi-Edwards model does not exhibit any

oscillation in bubble radius - only a slow decay of bubble radius with time is predicted.

In comparison, the Rouse model predicts a small low amplitude rebound before being

completely damped. This is in stark difference to the more elastic behaviour predicted

by the Maxwell and Jeffreys models. The majority of the work in this chapter has been

published in the Journal of Non-Newtonian Fluid Mechanics [94]

8.1.2 Bubble Dynamics Near a Rigid Wall

In Chapter 3, the numerical scheme is modified to study bubble collapse near a rigid

wall. When a bubble collapses near a rigid wall, a liquid jet can form which can pene-

trate the bubble and possibly impact upon the wall. It is well known that this jet plays

an important role in the creation of cavitation damage. The numerical scheme is vali-

dated through comparison with the inviscid results available in the literature. Viscous

Newtonian investigations confirm the effect of viscosity in inhibiting jet formation and

jet speed, as reported in other numerical studies. For the values of Reynolds number

and Deborah number necessary to induce oscillation, we find that during collapse near

a wall the liquid jet will not form. Instead, the underside of the bubble can cusp and

cause parts of the bubble surface to oscillate out of phase. The incoherent oscillations

disrupt flow around the bubble causing perturbations in its position and velocity pro-

files. The cusping and perturbations become less perceptible as one moves further from

the wall. Increasing viscous effects can prevent large deformations in bubble shape,

regardless of distance from the rigid wall; and so reduce the incoherent oscillations

and perturbations in the velocity. Crucially, viscoelasticity can prevent catastrophic

bubble collapse. Instead the bubbles can oscillate near the wall for a significant period
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of time, without significant changes in volume. For some parameters, steady states

can be attained. The suppression of the liquid jet suggests that viscoelasticity has a

mitigating effect on cavitation damage. A version of this chapter has been submitted

to Theoretical and Computational Fluid Dynamics [92]

8.1.3 Two Bubble Dynamics Near a Rigid Wall

Chapter 4 is an extension of Chapter 3 and considers the dynamics of two bubbles near

a rigid wall. The motivation is that bubbles in nature rarely form singly, but as part

of bubble clouds. Hence bubble-bubble interaction near a wall requires consideration.

The dynamics are interesting and varied, and strongly depend on initial bubble size, the

fluid properties, and the distances between the bubbles and the wall. Jets readily form

in certain situations in viscoelastic fluids (a sign of greater wall influence) but not in

the corresponding Newtonian case (suggesting bubble-bubble interaction dominates).

Though this behaviour seems to contradict the findings of the previous chapter, it in

fact highlights the importance bubble-bubble interactions have on the overall dynamics.

This may provide some explanation for the ambiguity present in the experimental

literature, where direct measurements of cavitation damage in viscoelastic fluids have

been contradictory. Cavitation dynamics depends as much on neighbouring bubbles as

it does on the fluid properties.

8.1.4 Bubble Dynamics Near a Free Surface

In Chapter 5, the effect of viscoelasticity on bubble dynamics near a free surface is

investigated. The situation is pertinent to biological applications and has implications

for cell damage and drug delivery. A range of dynamics is seen to occur, with a subtle

dependance on the Deborah number, Reynolds number and the distance from the

free surface. In the presence of viscoelasticity, the motion of free surface jets can be

significantly retarded compared to the Newtonian cases, and the bubbles take a wide

range of shapes. On including viscoelastic effects, the usual axial jet observed in so

many instances in the Newtonian dynamics, is no longer seen. Instead, an annular,

ring like jet can form and can penetrate the bubble to produce mushroom-like shapes.

Similar shapes are observed in bubbles collapsing near purely elastic boundaries, and

are due to perturbations in the bubble surface resulting from elastic responses in the

free surface. Further from the free surface however, the bubble can collapse in a near-
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spherical, oscillatory manner, before reaching some steady state. The conclusions are

similar to those of bubble collapse near a rigid wall: Given that no high speed jets

can form in the bubble or free surface, the implications for cavitation/cell damage are

mitigatory. Brief comparisons with the experimental work of Williams et al. [165] have

also been made. The model was extended to include the propagation of shock waves

and shock-induced bubble collapse. The results are promising in the early stages, but

to recreate the observed free surface jets, the theory needs to be extended to include

evolution to a toroidal geometry, to allow the liquid jet to fully penetrate the bubble

and form the free surface jet. A version of this chapter is in preparation for submission

to the Journal of Fluid Mechanics [91]

8.1.5 Rising Gas Bubbles

In Chapter 6, we apply the model to the study of rising bubbles in viscoelastic fluids.

The bubble is assumed to be constant in volume, rising through an incompressible

fluid under an irrotational flow. Results for the Newtonian rising bubble show good

agreement with previous studies and steady state bubble shapes qualitatively match

full domain solutions. In the viscoelastic case, the results predict the bubble’s prolate

shape and the formation of the trailing end cusp. The method allows for high cur-

vatures and deformations and so can capture the sharpness of the cusp to a higher

degree than seen in other numerical schemes. Furthermore, the cusped bubble profile

bears a good qualitative agreement with experimental observations. Proposed reasons

for the velocity jump include drag reduction due to cusping [95], the action of surface

forces [133] and the negative wake [66]. Here, we include the appropriate surface effects

and inertia terms and observe cusping, but detect no velocity jump discontinuity. This

suggests that the negative wake is primarily responsible for its occurrence, corroborat-

ing previous experimental and numerical findings [66, 117]. Much of the work in this

chapter is to appear in a paper that has been accepted for publication in the Journal

of Non-Newtonian Fluid Mechanics [90]

8.2 The Second Model

In Chapter 7, we return to the problem of Chapter 3, that of bubble collapse near a

rigid wall. However, a new model and numerical method are devised. The intention

being to gain further insight into the role of viscoelasticity, but also to corroborate the
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findings of Chapter 3. The second model employs the full compressible equations of

motion in a two dimensional domain. In contrast to the boundary element method,

the governing equations are solved on a fixed Eulerian grid using the spectral element

method. The two phases are modelling using a marker particle method. On the under-

standing that compressibility can play an important role in bubble collapse, we briefly

discuss the modelling of compressible viscoelastic fluids and subsequently propose a

more complete model to those used previously in the literature. The marker parti-

cle method is validated using some standard test problems, and this has highlighted

the beneficial properties of the scheme, including its minimal numerical diffusion and

robustness. The spectral element solution of the governing equations was validated

through comparison with the analytical solution for transient Poiseuille flow, in both

the Newtonian and viscoelastic (Oldroyd B) cases. The agreement in both cases is

excellent.

The results for bubble collapse near a rigid boundary qualitatively agree with the

dynamics observed in the boundary element study, other numerical studies, and exper-

imental observations. Given the differences in the different models, a good quantitative

agreement was not expected, and indeed, not observed. In the Newtonian case, for low

viscosities, the model predicts jet formation and a splashing-like phenomenon. As vis-

cosity is increased, jet formation is suppressed and bubble deformation is restricted.

Including viscoelastic effects, firstly in the form the Upper Convected Maxwell model,

we find that during collapse jet formation can be prevented and a cusp can form on the

bubble underside. This was also observed in the BEM study of Chapter 3, and results

from a build up of (visco)elastic stresses near the wall. In this case large stress bound-

ary layers can form, which can cause the solution to breakdown if the Weissenberg

number exceeds a certain value. This upper bound on the Weissenberg number was

found to increase with increasing distance from the wall. As is generally the case, the

Oldroyd B proved able to support considerably higher Weissenberg numbers, due to the

inclusion of a solvent viscous stress. As in the UCM case, predictions of the Oldroyd

B model include cusp formation on the bubble underside and also larger amplitude

oscillations in the jet velocity with increasing Weissenberg number. Once again, this

behaviour was also predicted by the BEM study and has been well documented in

other numerical studies of spherical bubble dynamics. It was found that increasing

the compressibility of the two fluids (by decreasing the speed of sound) resulted in

smaller inertial effects and smaller initial collapse velocities. The frequency of the os-
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cillation of the bubble was also markedly reduced. Due to the smaller inertial effects,

and subsequently smaller velocity gradients near the wall, the elastic boundary layers

were also significantly smaller in magnitude. Consequently, because these layers are

unable to grow enough in magnitude to induce numerical instability, there seems to

be no upper limit on the Weissenberg number. There is however an “elastic” solution

in the limit of large Weissenberg numbers, as the polymeric constitutive equation re-

duces to a simpler form. Similarly, an elastic limit was observed in the BEM study for

the particular model used, and has also been predicted by other numerical/theoretical

works on spherical bubble dynamics. A version of this chapter is in preparation for

submission to the Journal of Computational Physics [93].

8.3 Model Comparisons

As already mentioned, the models are too different to expect good quantitative agree-

ment. The first model assumes a 3D axisymmetric irrotational flow with viscoelastic

effects included at the bubble surface, while the second model solves the 2D governing

equations and employs an ideal gas equation of state for the fluid and bubble. However,

despite these considerable differences, it is reassuring to see that both models predict

the same qualitative behaviour, including:

• Increased amplitude bubble oscillations with increasing We, De.

• Jet prevention.

• The formation of a cusped bubble underside when near the wall.

• The existence of an elastic limit solution for large enough We, De.

• Identical responses to increases in viscosity or distance from the wall.

This helps to confirm that the findings presented in this thesis are a veracious account

of viscoelastic bubble dynamics near a rigid wall.

Both models have their pros and cons. It can be argued that the second model provides

a fuller description of the physics, by making no restrictions on the structure of the

ambient flow. However, the more developed model can pose further modelling issues,

such as determining an appropriate equation of state. The ideal gas equation is a less
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than satisfactory choice. The model is also a two dimensional approximation to a three

dimensional problem. Computationally, the BEM method is quick and efficient and re-

quires little memory. Conversely, the spectral element marker particle method (SEMP)

is computationally expensive and requires substantial computing resources due to the

increased domain calculations and the large numbers of particles involved. Currently,

without further parallelisation, the extension to a three dimensional system would be

computationally prohibitive. As a free surface model, the BEM has the advantage that

the bubble surface is a true density/pressure discontinuity, far more representative of

real situations. The accurate surface discretisation also means that surface physics and

boundary conditions can be included to a high degree of accuracy. In contrast, the bub-

ble surface in the SEMP method is not well defined, and is essentially an average of the

different fluid properties over a finite distance. Furthermore, from a numerical point

of view, SEMP does not permit large discontinuities, for example in density, between

phases. Spectral methods are at their most powerful when approximating problems

that have smooth solutions, in which case exponential convergence can be achieved. A

major advantage of the scheme however is the ability to handle topology changes, such

as jet penetration and bubble break-up, with ease. Though possible with the BEM

method, topology changes require cumbersome, ad-hoc mesh treatments.

The two methods developed in this thesis originate from two very different approaches

in modelling multiphase flows. As mentioned, the fact they predict the same qualita-

tive behaviour is an assurance that findings in this work are a faithful description of

viscoelastic bubble dynamics. The above discussion highlights the fact that no method

is perfect. In choosing to accurately or efficiently describe one aspect of your system,

you sacrifice accuracy or efficiency elsewhere. This is one reason why multiphase flows

remain the subject of intense research. They pose some of the greatest numerical and

computational challenges in science and engineering, and will continue to do so, for

many years to come.

8.4 Further Work

There is a great deal of scope for further work with both the boundary element and

spectral element marker particle method. Work common to both studies, is firstly, the

necessity to investigate dynamics for more complex rheological constitutive equations.
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In this thesis the models were restricted to Maxwell/Oldroyd type in order to gain

important initial insights into the role of viscoelasticity. There are a range of more

physical constitutive equations which deserve investigation. Secondly, both methods

need to be extended to include general multi-bubble configurations. Bubbles often

form as a part of bubble clouds and, as highlighted in Chapter 4, bubble-bubble inter-

action is crucial in providing further insight into the mechanisms of cavitation damage.

Ideally, this extension would include development to fully 3D models in both cases.

With regard to the BEM method only, further work includes the ability to model post-

jet impact toroidal dynamics. This would allow computations to continue and permit

phenomena such as the free surface jets that form under shock-waves (see Section 5.3.5,

Chapter 5). For the second model, further work to be done includes an investigation

into an appropriate thermodynamic equation of state. Indeed, a separate thermody-

namic relation may need to be applied in each phase. With regard to the numerical

scheme, improvements include the ability to support larger (and more realistic) den-

sity differences between the bubble and ambient fluid, while still being able to attain a

satisfactory Weissenberg number. Perhaps including SUPG or similar schemes might

be beneficial with regard to increasing the Weissenberg number limit.
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Appendix A

Cubic Spline Construction

The cubic spline is an extremely effective tool in interpolation.

Given a set of points Pi, i = 1, ..., (n + 1) on surface S, qi is cubic spline in [P1, Pn+1]

if:

1. S, when restricted to [Pi, Pi+1], is a polynomial of degree at most 3, and

2. S ∈ C2[P1, Pn+1]

Let qi(s) be defined parametrically w.r.t arclength s on [Pi, Pi+1] by

qi(s) = ai(s− si)
3 + bi(s− si)

2 + ci(s− si) + di (A.1)

for i = 1, .., n.

Then by point 2 above, the following conditions must be enforced:

1. qi(si+1) = qi+1(si+1) to ensure function continuity.

2. q′i(si+1) = q′i+1(si+1) to ensure continuity in the first derivative.

3. q′′i (si+1) = q′′i+1(si+1) to ensure continuity in the second derivative.

Therefore, applying these conditions to equation (1), gives the following restriction on

the coefficients ai, bi, ci, di,

di+1 = ais̃
3
i + bis̃

2
i + cis̃i + di,

ci+1 = 3ais̃
2
i + 2bis̃i + ci, (A.2)

bi+1 = 3ais̃i + bi,
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where s̃i = si+1 − si.

A.1 Natural Spline

The natural cubic spline imposes a zero second derivative condition at the end points

viz.,

q′′1(s1) = 0 (A.3)

q′′n(sn+1) = 0. (A.4)

This implies that b1 = 0 and 3ans̃n + bn = 0.

Substituting into (A.2) and rearranging, one can obtain a linear system of equations

for bi:




2(s̃1 + s̃2) s̃2 0 0

s̃2 2(s̃2 + s̃3) s̃3 0

0
. . .

. . .

s̃n−2 2(s̃n−2 + s̃n−1) s̃n−1

0 s̃n−1 2(s̃n−1 + s̃n)







b2

b3

...

...

bn−1

bn




= 3




d̃2

...

...

...

...

d̃n




(A.5)

Where d̃i = di+1−di

s̃i
− di−di−1

s̃i−1
, i = 2, . . . , n.

A.2 Clamped Spline

The clamped cubic spline imposes a zero first derivative condition at the end points

viz.,

q′1(s1) = 0 (A.6)

q′n(sn+1) = 0. (A.7)

Consequently, c1 = 0 and 3ans̃2
n + 2bns̃n + cn = 0. Substituting into (A.2) and rear-

ranging yields the following linear system;
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


2s̃1 s̃1 0 0

s̃1 2(s̃1 + s̃2) s̃2 0

0
. . .

. . .

s̃n−1 2(s̃n−1 + s̃n) s̃n

0 s̃n 2s̃n







b1

b2

...

...

bn

bn+1




= 3




d2−d1

s̃1

...

d̃i

...

...
dn−dn+1

s̃n




(A.8)

The above tri-diagonal systems can be solved with ease and efficiency for bi using the

Thomas algorithm [123]. The remaining spline coefficients can then be found from

substitution into (A.2).
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Appendix B

Treatment of the Logarithmic

Singularity in the Boundary

Integral

As mentioned in Section 2.3, the azimuthal integration of the Green’s function G(p,q)

and its normal derivative can be calculated analytically and give

∫ 2π

0

G dθ =
4r(s)K(k(s))

[(r(s) + ri)2 + (z(s)− zi)2]1/2
, (B.1)

and

∫ 2π

0

∂G

∂n
dθ =

−4
r

[(r + ri)2 + (z − zi)2]3/2

([
dz

ds
(r + ri)− dr

ds
(z − zi)− 2ri

k2

dz

ds

]
E(k)

1− k2
+

2ri

k2

dz

ds
K(k)

)
,

(B.2)

where

k2(s) =
4r(s)ri

(r(s) + ri)2 + (z(s)− zi)2
, (B.3)

and K(k) and E(k) are complete elliptical integrals of the first and second kind, re-

spectively. These integrals are approximated by
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K(k) = P (1− k2)−Q(1− k2) log(1− k2), (B.4)

E(k) = R(1− k2)− S(1− k2) log(1− k2), (B.5)

where P,Q, R, S are tabulated polynomials [1].

From equation (B.3) we can see that if collocation point (ri, zi) = (r(s), z(s)) then

k2 = 1 and a logarithmic singularity will occur in the elliptical integrals K(k) and E(k).

Evidently, this will only occur if the collocation point lies on a segment over with we

want to integrate - and then only at the endpoints of the segment. To demonstrate this

we consider the singularity at the point (r(sj), z(sj)) over segment 4s = sj+1− sj. To

deal with this singularity the logarithm in (B.4) is split into a singular and non-singular

contribution viz.

log(x) = log

(
x

((s− sj)/4s)2

)
+ 2 log((s− sj)/4s), (B.6)

where x = 1−k2. The singular contribution is now contained in the second term on the

right hand side of (B.6). Substituting (B.6) into (B.4) and subsequently into integrals

(B.1) and (B.2), one is then able to factor out the singular component. For example,

∫

sj

∫ 2π

0

Gdθ =

∫

sj

4r(s)

[(r(s) + ri)2 + (z(s)− zi)2]1/2

(
P −Q log

(
x

((s− sj)/4s)2

))
ds+

∫

sj

8r(s)

[(r(s) + ri)2 + (z(s)− zi)2]1/2
(P −Q log ((s− sj)/4s)) ds (B.7)

The first integral is not singular and can be treated with standard Gaussian quadra-

ture. The second integral can be integrated using a special quadrature scheme that

incorporates the singularity; the details of which (the appropriate quadrature points

and weights) are found in [142].

271



Bibliography

[1] M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions. Dover,

1965.

[2] J.S. Allen and R.A. Roy. Dynamics of gas bubbles in viscoelastic fluids. Linear

viscoelasticity. J. Acoust. Soc. of Am., 107(6):3167–3178, 2000.

[3] M. T. Arigo and G. H. McKinley. An experimental investigation of negative

wakes behind spheres settling in a shear-thinning viscoelastic fluid. Rheol Acta,

37:307–327, 1998.

[4] V. Ashworth and R. P. M. Procter. Cavitation in dilute polymer solutions.

Nature, 258, 1975.

[5] G. Astarita. Spherical gas bubble motion through Maxwell liquids. Ind. Eng.

Chem. Fundamen., 5(4):548–553, 1966.

[6] G. Astarita and G. Apuzzo. Motion of gas bubbles in non-Newtonian liquids.

A.I.Ch.E Journal, 11(5):815–820, 1965.

[7] G. K. Batchelor. An introduction to Fluid Dynamics. Cambridge University

Press, 1967.

[8] D. W. Beard and K. Walters. Elastico-viscous boundary-layer flows. I. Two-

dimensional flow near a stagnation point. Proc. Camb. Phil. Soc., 60:667, 1964.

[9] T. B. Benjamin and A. T. Ellis. The collapse of cavitation bubbles and the

pressures thereby produced against solid boundaries. Phil. Trans. R. Soc. Lond.

A, 260:221, 1966.

[10] J.P. Best. The formation of toroidal bubbles upon the collapse of transient

cavities. J. Fluid Mech., 251:79–107, 1993.

272



[11] J.P. Best and A. Kucera. A numerical investigation of non-spherical rebounding

bubbles. J. Fluid Mech., 245:137–154, 1992.

[12] F. Bierbrauer. Mathematical modelling of water-droplet impact on hot galvanised

steel surfaces. PhD thesis, University of Wollongong, Australia, 2004.

[13] F. Bierbrauer and T. N. Phillips. The numerical prediction of droplet deformation

and break-up using the Godunov marker-particle projection scheme. Int. J. Num.

Meth. Fluids, 58(8):1155–1160, 2007.

[14] F. Bierbrauer and S. Zhu. A numerical model for multiphase flow based on the

GMPPS formulation. Part I: Kinematics. Comput. Fluids, 36:1199–1212, 2007.

[15] R.B. Bird, R.C. Armstrong, and O. Hassager. Dynamics of Polymeric Liquids.

John Wiley & Sons, 1987.

[16] J. R. Blake, P. B. Robinson, A. Shima, and Y. Tomita. Interaction of two

cavitation bubbles with a rigid boundary. J. Fluid Mech., 255:707–721, 1993.

[17] J.R. Blake and D.C Gibson. Growth and collapse of a vapour cavity near a free

surface. J. Fluid Mech., 111:123–140, 1981.

[18] J.R. Blake and D.C. Gibson. Cavitation bubbles near boundaries. Ann. Rev.

Fluid Mech., 19:99–123, 1989.

[19] J.R. Blake, B.B. Taib, and G. Doherty. Transient cavities near boundaries. Part

1. Rigid boundary. J. Fluid Mech., 170:479–497, 1986.

[20] J.R. Blake, B.B. Taib, and G. Doherty. Transient cavities near boundaries. Part

2. Free surface. J. Fluid Mech., 181:197–212, 1987.

[21] J.R. Blake, Y. Tomita, and R.P. Tong. The art, craft and science of modelling

jet impact in a collapsing cavitation bubble. App. Sci. Res., 58:77–90, 1998.

[22] P. C. Bollada and T. N. Phillips. On the effects of a compressible viscous lubricant

on the load-bearing capacity of a journal bearing. Int. J. Num. Meth. Fluids,

55:1091–1120, 2007.

[23] P. C. Bollada and T. N. Phillips. An anisothermal, compressible, piezoviscous

model for journal bearing lubrication. Int. J. Num. Meth. Fluids, 58:27–55, 2008.

273



[24] J. M. Boulton-Stone. Application of boundary integral methods to rising and

bursting bubbles. PhD thesis, University of Birmingham, 1993.

[25] J. M. Boulton-Stone. The effect of surfactants on bursting gas bubbles. J. Fluid

Mech., 302:231–257, 1995.

[26] J. M. Boulton-Stone and J. R. Blake. Gas bubbles bursting at a free surface. J.

Fluid Mech., 254:437–466, 1993.

[27] J. M. Boulton-Stone, P. B. Robinson, and J. R. Blake. A note on the axisym-

metric interaction of pairs of rising, deforming gas bubbles. Int. J. Multiphase

Flow, 21(6):1237–1241, 1995.

[28] D. C. Brabston. Part I. Numerical solutions of steady viscous flow past spheres

and gas bubbles. PhD thesis, California Institute of Technology, 1974.

[29] C.E. Brennen. Cavitation and Bubble Dynamics. Oxford University Press, 1995.

[30] E. A. Brujan. A first order model for bubble dynamics in a compressible vis-

coelastic liquid. J. Non-Newtonian Fluid Mech., 84:83–103, 1999.

[31] E. A. Brujan. The equation of bubble dynamics in a compressible linear vis-

coelastic liquid. Fluid Dynamics Research, 29:287–294, 2001.

[32] E. A. Brujan. Cavitation bubble dynamics in non-Newtonian fluids. Polymer

Engineering and Science, 49:419–431, 2009.

[33] E. A. Brujan, A. F. H. Al-Hussany, R. L. Williams, and P. R. Williams. Cavita-

tion erosion in polymer aqueous solutions. Wear, 264:1035–1042, 2008.

[34] E. A. Brujan, T. Ikeda, and Y. Matsumoto. Dynamics of ultrasound-induced

cavitation bubbles in non-Newtonian liquids and near a rigid boundary. Phys.

Fluids, 16:2402, 2004.

[35] E. A. Brujan, K. Nahen, P. Schmidt, and A. Vogel. Dynamics of laser-induced

cavitation bubbles near an elastic boundary. J. Fluid Mech., 433:251–281, 2001.

[36] E. A. Brujan, K. Nahen, P. Schmidt, and A. Vogel. Dynamics of laser-induced

cavitation bubbles near an elastic boundary: influence of the elastic modulus. J.

Fluid Mech., 433:283–314, 2001.

274



[37] E. A. Brujan, C. D. Ohl, W. Lauterborn, and A. Philipp. Dynamics of laser-

induced cavitation bubbles in polymer solutions. Acustica, 82:423–430, 1996.

[38] E. A. Brujan, A. Pearson, and J. R. Blake. Pulsating, buoyant bubbles close to

a rigid boundary and near the null final Kelvin impulse state. Int. J. Multiphase

Flow, 31:302–317, 2005.

[39] B. Bunner and G. Tryggvason. Dynamics of homogeneous bubbly flows Part 1.

Rise velocity and microstructure of the bubbles. J. Fluid Mech., 466:17–52, 2002.

[40] E. Canot and L. Davoust. Numerical simulation of the buoyancy-driven bouncing

of a 2D bubble at a horizontal wall. Theor. Comput. Fluid Dyn., 17:51–72, 2003.

[41] G. L. Chahine and D. Fruman. Dilute polymer solution effects on bubble growth

and collapse. Phys. Fluids, 22:1406–1407, 1979.

[42] A. J. Coleman, J. E. Saunders, L. A. Crum, and M. Dyson. Acoustic cavitation

generated by an extracorporeal shock wave lithotripter. Ultrasound in medicine

and biology, 13(2):69–76, 1987.

[43] N. Curle and H. J. Davies. Modern Fluid Dynamics, volume 1. D. Van Nostrand,

1968.

[44] D. Dawson and C. M. Taylor. Cavitation in bearings. Ann. Rev. Fluid Mech.,

11:35–66, 1979.

[45] M. M. Denn. Boundary layer flows for a class of elastic fluids. Chem. Eng. Sci.,

22(3):395–405, 1967.

[46] D. G. Dommermuth and D. K. P. Yue. Numerical simulation of nonlinear ax-

isymmetric flows with a free surface. J. Fluid Mech., 178:195–219, 1987.

[47] M. Dular, B. Bachert, B. Stoffel, and B. Sirok. Relationship between cavitation

structures and cavitation damage. Wear, 257(11):1176–1184, 2004.

[48] B. J. Edwards and A. N. Beris. Remarks concerning compressible viscoelastic

fluid models. J. Non-Newtonian Fluid Mech., 36:411–417, 1990.

[49] M. Gad el Hak. Questions in fluid mechanics: Stoke’s hypothesis for a Newtonian,

isotropic fluid. J. Fluids Eng., 117:3–5, 1995.

275



[50] A. T. Ellis and R. Y. Ting. Non-Newtonian effects on flow generated cavitation

in a pressure field. Fluid Mechanics Acoustics and Design of Turbomachinery,

(1):403–421, 1974.

[51] A. Evan, L. Willis, J. McAteer, M. Bailey, B. Connors, Y. Shao, J. Lingeman,

J. Williams Jr., N. Fineberg, and L. Crum. Kidney damage and renal functional

changes are minimized by waveform control that suppresses cavitation in shock

wave lithotripsy. J. Urology, 4(1):1556–1562, 2002.

[52] N. Fiétier and M. O. Deville. Time-dependent algorithms for the simulation of

viscoelastic flows with spectral methods: applications and stability. J. Comput.

Phys., 186:93–121, 2003.

[53] H. S. Fogler and J. D. Goddard. Oscillations of a gas bubble in viscoelastic

liquids subject to acoustic and impulsive pressure variations. J. Appl. Phys.,

42(1):259–263, 1971.

[54] H.S. Fogler and J.D. Goddard. Collapse of spherical cavities in viscoelastic fluids.

Phys. Fluids, 13(5):1135–1141, 1970.

[55] X. Frank and H. Z. Li. Complex flow around a bubble rising in a non-Newtonian

fluid. Phys. Rev. E, 71:036309, 2005.

[56] T. Funada and D. D. Joseph. Viscous potential flow analysis of capillary insta-

bility. Int. J. Multiphase Flow, 28(9), 2002.

[57] T. Funada and D. D. Joseph. Viscoelastic potential flow analysis of capillary

instability. J. Non-Newtonian Fluid Mech., 111:87–105, 2003.

[58] D. Funfschilling and H. Z. Li. Flow of non-Newtonian fluids around bubbles: PIV

measurements and birefringence visualisation. Chemical Engineering Science,

56:1137–1141, 2001.

[59] X. Gao. A promising boundary element formulation for three dimensional viscous

flow. Int. J. Numer. Meth. Fluids, 47:19–43, 2005.

[60] S.-C. Georgescu, J.-L. Achard, and E. Canot. Jet drops ejection in bursting gas

bubble processes. Euro. J. Mech. B/Fluids, 21:265–280, 2002.

276



[61] D. Gueyffier, J. Li, A. Nadim, R. Scardovelli, and S. Zaleski. Volume of fluid

interface tracking with smoothed surface stress methods for three dimensional

flows. J. Comput. Phys., 152:423–456, 1999.

[62] J. Hadamard. Movement permanent lent d’une sphere liquide et visqueuse dans

un liquide visqueux. Comptes Rendus, 152:1735, 1911.

[63] O. G. Harlen. The negative wake behind a sphere sedimenting through a vis-

coelastic fluid. J. Non-Newtonian Fluid Mech., 108:411–430, 2002.

[64] F. H. Harlow and J. E. Welch. Numerical calculation of time-dependent viscous

incompressible flow of fluid with a free surface. Phys. Fluids., 8:2182–2189, 1965.

[65] O. Hassager. Negative wake behind bubbles in non-Newtonian liquids. Nature,

279:402, 1979.

[66] J. R. Herrera-Velarde, R. Zenit, D. Chehata, and B. Mena. The flow of non-

Newtonian fluids around bubbles and its connection to the jump discontinuity.

J. Non-Newtonian Fluid Mech., 111:199–209, 2003.

[67] C. W. Hirt and B. D. Nichols. Volume of fluid (VOF) methods for the dynamics

of free boundaries. J. Comput. Phys., 39:201–225, 1981.

[68] D. D. Joseph. Fluid Dynamics of Viscoelastic Liquids. Springer-Verlag, 1990.

[69] D. D. Joseph. Rise velocity of a spherical cap bubble. J. Fluid Mech., 488:213–

223, 2003.

[70] D. D. Joseph. Potential flow of viscous fluids: Historical notes. Int. J. Multiphase

Flow, 32:285–310, 2006.

[71] D. D. Joseph, G. S. Beavers, and T. Funada. Rayleigh-Taylor instability of

viscoelastic drops at high Weber numbers. J. Fluid Mech., 453:109–132, 2002.

[72] D.D. Joseph and T.Y. Liao. Potential flows of viscous and viscoelastic fluids. J.

Fluid Mech., 265:1–23, 1994.

[73] M. Kemiha, X. Frank, S. Poncin, and H.Z. Li. Origin of the negative wake

behind a bubble rising in non-Newtonian fluids. Chemical Engineering Science,

61:4041–4047, 2006.

277



[74] I. J. Keshtiban, F. Belblidia, and M. F. Webster. Numerical simulation of com-

pressible viscoelastic liquids. J. Non-Newtonian Fluid Mech., 122:131–146, 2004.

[75] R. E. Khayat. A boundary element analysis of multiply connected three dimen-

sional cavity mixing flow of polymer solutions. Int. J. Numer. Meth. Fluids,

31:1173–1194, 1999.

[76] R. E. Khayat. Three-dimensional boundary element analysis of drop deformation

in confined flow for Newtonian and viscoelastic systems. Int. J. Numer. Meth.

Fluids, 34:241–275, 2000.

[77] R. E. Khayat and K. Marek. An adaptive boundary element approach to 3D

transient free-surface flow of viscous fluids. Engineering Analysis with Boundary

Elements, 23:111–122, 1999.

[78] C. Kim. Collapse of spherical cavities in Maxwell fluids. J. Non-Newtonian Fluid

Mech., 55:37–58, 1994.

[79] S. J. Kim, K. H. Lim, and C. Kim. Deformation characteristics of spherical bubble

collapse in Newtonian fluids near the wall using the finite element method with

ALE formulation. Korea-Australia Rheol. J., 18(2):109–118, 2006.

[80] E. Klaseboer, K. C. Hung, C. Wang, C. W. Wang, B. C. Khoo, P. Boyce,

S. Debono, and H. Charlier. Experimental and numerical investigation of the

dynamics of an underwater explosion bubble near a resilient/rigid structure. J.

Fluid Mech., 537:387–413, 2005.

[81] E. Klaseboer and B. C. Khoo. Boundary integral equations as applied to an

oscillating bubble near a fluid-fluid interface. Computat. Mech., 33(2):129–138,

2004.

[82] E. Klaseboer and B. C. Khoo. An oscillating bubble near an elastic material. J.

Appl. Phys., 96(10):5808, 2004.

[83] E. Klaseboer, C. Turangan, S. W. Fong, T. G. Liu, K. C. Hung, and B. C.

Khoo. Simulations of pressure pulse-bubble interaction using boundary element

method. Comput. Meth. Appl. Mech. Eng., 195:4287–4302, 2006.

[84] K. T. Knapp, J. W. Daily, and F. G. Hammitt. Cavitation. McGraw-Hill, 1970.

278



[85] T. Kodama and K. Takayama. Dynamic behavior of bubbles during extracorpo-

real shock-wave lithotripsy. Ultrasound in medicine and biology, 24(5):723–738,

1998.

[86] W. Lauterborn and H. Bolle. Experimental investigations of cavitation-bubble

collapse in the neighbourhood of a solid boundary. J. Fluid Mech., 72(2):391–399,

1975.

[87] M. Lee, E. Klaseboer, and B. C. Khoo. On the boundary integral method for

the rebounding bubble. J. Fluid Mech., 507:407–429, 2007.

[88] V. G. Levich. The motion of bubbles at high Reynolds numbers. Zh. Eksp. Teor.

Fiz., 19:8, 1949.

[89] J. Li. General explicit difference formulas for numerical differentiation. J. Com-

put. Appl. Math., 183:29–52, 2005.

[90] S. J. Lind and T. N. Phillips. The effect of viscoelasticity on a rising gas bubble.

J. Non-Newtonian Fluid Mech., doi:10.1016/j.jnnfm.2010.04.002, 2010.

[91] S. J. Lind and T. N. Phillips. The effect of viscoelasticity on bubble dynamics

near a free surface. J. Fluid Mech. (in preparation), 2010.

[92] S. J. Lind and T. N. Phillips. The influence of viscoelasticity on the collapse of

cavitation bubbles near a rigid boundary. Submitted to Theor. Comput. Fluid

Dyn., 2010.

[93] S. J. Lind and T. N. Phillips. Predictions of bubble dynamics using a spectral

element marker particle method. J. Comput. Phys. (in preparation), 2010.

[94] S. J. Lind and T. N. Phillips. Spherical bubble collapse in viscoelastic fluids. J.

Non-Newtonian Fluid Mech., 165:56–64, 2010.

[95] Y. J. Liu, T. Y. Liao, and D. D. Joseph. A two-dimensional cusp at the trailing

edge of an air bubble rising in a viscoelastic liquid. J. Fluid Mech., 304:321–342,

1995.

[96] D. Lohse, B. Schmitz, and M. Versluis. Snapping shrimp make flashing bubbles.

Nature, 413:477–478, 2001.

279



[97] M. S. Longuet-Higgins and E. D. Cokelet. The deformation of steep surface

waves on water. I. A numerical method of computation. Proc. R. Soc. Lond. A.,

350:1–26, 1976.
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