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Summary  

The direct synthesis of hydrogen peroxide from molecular hydrogen and oxygen represents an 

attractive atom efficient alternative to the current industrial auto-oxidation process which relies 

on the sequential oxidation and reduction of an anthraquinone. The first and most widely studied 

catalysts for this reaction were palladium based however over-hydrogenation of the synthesised 

hydrogen peroxide is a problem.  Recent advances demonstrate that the addition of gold to the 

catalyst has been shown to significantly improve the productivity of the catalysts by suppressing 

the hydrogenation and decomposition activity. The work in this thesis shows that tin can be used 

as a catalyst additive as a direct replacement for gold by a simple impregnation method. By 

tuning the heat treatments of these bimetallic tin-palladium catalysts it was possible to switch off 

the competing hydrogenation and decomposition reactions. The construction of a small scale 

flow system has allowed the independent study of reaction variables and the determination of 

global kinetics and rate constants for the synthesis and subsequent reactions. It was shown that in 

a flow system it was the decomposition reaction that had a greater limiting effect on the 

production of hydrogen peroxide than the hydrogenation reaction. A study was also carried out 

into CO oxidation using gold / iron oxide catalyst prepared in Cardiff and by Prof. Haruta’s 

group in Tokyo. These catalysts underwent extensive tests to try and identify the active species 

of the catalyst. Detailed testing and STEM characterisation of the samples identified the 

possibility of different mechanisms operating at different temperatures and no correlation 

between the nanoparticle population and activity at sub ambient temperature could be made 

which challenges the hypothesis that nanoparticles are the most active species and that sub 

nanometer clusters may be the active species at low temperatures.   
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Abstract 

The research presented in this thesis describes investigations into two precious metal catalysed 

reactions; the direct synthesis of hydrogen peroxide from molecular hydrogen and oxygen and 

the oxidation of carbon monoxide. 

The direct synthesis of hydrogen peroxide from molecular hydrogen and oxygen offers a much 

greener and sustainable approach when compared to the current industrial anthraquinone process 

and the work presented in this thesis examines some of the key factors in determining if the 

process will be viable, with the study focussing on producing a cheaper catalyst and also 

understanding the reaction in a continuous flow system.                

The first part of this thesis aims to identify a replacement for Au in the typical Au-Pd bimetallic 

catalysts used for this reaction. The work carried out in this thesis shows that tin can be used as a 

catalyst additive as a direct replacement for gold. By tuning the heat treatments of catalysts 

prepared by a simple impregnation method the activity of bimetallic tin-palladium catalysts 

could be tuned to switch off the competing hydrogenation and decomposition reactions. The 

development of these low hydrogenation catalysts which were comparable in activity to the Au-

Pd analogues and stable on commercial supports such as TiO2 and SiO2 represents a major 

milestone.  

The second part of this thesis reports the construction and operation of a small continuous flow 

reactor to study independently the reaction variables and also allow the the determination of 

global kinetics and rate constants for the synthesis and subsequent reactions using a standard Au-

Pd catalyst. It was shown that in a flow system is was the decomposition reaction that had a 

greater limiting effect on the production of hydrogen peroxide than the hydrogenation reaction 

and a global kinetic model was shown to agree well with experimental results             

The third section of this thesis reports an investigation into Au / FeOx catalysts for CO oxidation 

in collaboration with Prof. Haruta and Prof Kiely. STEM analysis of a range of catalysts was 

carried out along with kinetic studies and it was identified that different mechanisms may be 

operating at different temperatures. No correlation between the nanoparticle population and 

activity at sub ambient temperature could be made which challenges the hypothesis that 

nanoparticles are the most active species and actually sub nanometer clusters may be the active 

species at sub ambient temperatures. 
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Chapter 1 

 

1. Introduction 

In this chapter the principles of catalysis are introduced along with the catalytic systems 

subsequently discussed and investigated in this thesis. 

 

1.1 - Catalysis: Definitions and Basic Concepts 

Catalysis is vital to modern society in many ways, for example without the production of 

ammonia by the Haber-Bosch process which leads to the manufacture of artificial fertilisers, the 

world’s food production would only be able to sustain half of the current population.
1
 The 

chemical industry is heavily reliant on the field of catalysis as the vast majority of chemical 

products are produced using some form of catalytic process. 

A high proportion of these catalysed reactions are carried out using an heterogeneous catalyst, 

this means that the catalyst is in a different phase than the reactants. Typically this involves a 

solid catalyst with the reactant and products in the gas or liquid phase. The definition of a 

catalyst is a substance that increases the rate of a reaction without affecting the overall change in 

standard Gibbs energy of the reaction.
2
 The ability of a catalyst to increase this reaction rate is of 

enormous benefit to industry as the rate of many reactions is essentially zero under conditions 

where the reaction is thermodynamically favourable. The rate of these reactions is essentially 

zero because of a large energy barrier associated with a reaction intermediate or transition state, 
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called the activation energy (Ea). The catalyst can enhance the reaction rate by reducing this 

activation barrier by means of providing a lower energy pathway for the reaction to take place, 

possibly through several intermediates or transition states as seen in figure 1.1. 

.  

 

 

Figure 1.1 – Energy level diagram to compare the difference in activation energy between a 

catalysed and un-catalysed reaction of A + B to give product C.  

Ea = activation energy ΔG = change in Gibbs free energy 

As shown in figure 1.1 the catalysed reaction pathway is more energetically favourable because 

of the lower activation barriers, however this pathway may contain more reaction steps and 

intermediates than the un-catalysed reaction. The activation barrier in all these steps is 

significantly lower than the activation barrier of the un-catalysed reaction which is the reason for 

the much higher reaction rate in the presence of a catalyst. As can be seen from figure 1.1, a 

catalyst does not alter the thermodynamics of a reaction. The overall Gibbs free energy (ΔG) of a 

reaction is the same for catalysed and un-catalysed reactions, it is only the rate of reaction that is 

enhanced by a catalyst. 

 

A + B

C
ΔG

Ea without 
Catalyst

Ea with Catalyst

En
e
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y 

Reaction Progress 
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The overall catalytic process can typically be divided into a number of elementary steps, 

including adsorption of the reactants onto the catalyst surface, breaking or weakening of reactant 

bonds, reaction to form products and finally desorption of the products, which ideally leaves the 

catalyst unaltered and ready for a new reaction cycle. These steps are shown on the energy 

diagram in figure 1.2. 

 

Figure 1.2 - Energy level diagram to show the possible steps in a catalysed reaction of A + B to 

give AB. 

A heterogeneous catalyst provides a surface or active site on which the reactants can be brought 

together in such a way so as to react to give the desired product and consequently the activity of 

a catalyst scales with the number of active sites. These active sites are often provided by a 

precious metal such as platinum or palladium. To achieve a high number of active sites and to 

keep the total amount of precious metal low, the precious metals are often dispersed as 

nanoparticles on high surface area supports, such as alumina or silica.  

 

1.2 - Hydrogen Peroxide  

Hydrogen peroxide is a simple inorganic molecule and since its discovery by Louis Jacques 

Thénard in 1818, hydrogen peroxide (H2O2) has become an extremely important commodity 

chemical with both industrial and domestic uses.  Domestically, H2O2 is contained in household 

bleaches and hair dyes at around 5 wt% and can also be used in lower concentrations as a 

A + B

AB

ΔG

Ea
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+
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sterilant for cleaning wounds and water purification. In 2006 the annual production of H2O2 

stood at around 4 million metric tonnes increasing by 4% annually.
3
 Around 40% of H2O2 is 

used in the pulp and paper industry as an alternative to chlorine containing oxidants such as 

chlorine dioxide and sodium chlorate.
4
 H2O2 is also used as an oxidant in the synthesis of a 

number of organic and inorganic chemicals and since the development of TS-1, a titanium 

silicate catalyst, several oxidation reactions using H2O2 in bulk processes have now been 

achieved, such as the oxidation of thioethers and sulfoxides
5
, epoxidation of propene

6, 7
 and 

cyclohexane oxidation.
8
 Another major use is in water purification where H2O2 has been shown 

to destroy thiocyanate, nitrate, chlorine, hypochlorite and other potentially toxic chemicals which 

may be present in waste water.
9
 Oxidation by H2O2 is considered to be a greener alternative 

compared to other bulky oxygen donors such as sodium perborate, metallic peroxides and 

percarboxylic acids which are less atom-efficient and have less environmentally friendly by-

products. As the only by-product of oxidation by H2O2 is water it can be seen as an atom 

efficient environmentally friendly oxidant.  

 

1.3 – Auto-oxidation (Anthraquinone) Process 

Over 90% of the world’s H2O2 is manufactured by the indirect anthraquinone process, otherwise 

known as the auto-oxidation process, which was developed during the 1930’s to meet increasing 

H2O2 demand. The indirect synthesis of H2O2 by the sequential oxidation and hydrogenation of 

alkyl anthraquinones was first developed by Ridel and Pfleiderer in 1939.
10-12

 The anthraquinone 

process involves the hydrogenation of a substituted anthraquinone using a nickel or palladium 

catalyst to form a diol. The diol is then oxidised by an O2 rich air feed to reform the original 

anthraquinone and give H2O2 as a by-product. The process is based on the work of Manchot
13

 

who showed that hydroquinone and hydrobenzenes undergo auto-oxidation in alkaline 

conditions to produce peroxides. The process is summarised in the scheme shown in figure 1.3. 
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Currently the anthraquinone process accounts for the majority of H2O2 produced industrially, 

with plants capable of producing up to 120,000 metric tonnes of concentrated H2O2 per year.
14

 

While this process is now large scale and energy efficient, there remain a number of problems 

associated with the anthraquinone process.  The anthraquinone process is only viable on a large 

scale which means that concentrated H2O2 (70 wt%) solutions need to be stored and transported 

which can be hazardous, and the solutions may require the addition of acid or halide as 

stabilisers. While the process is operated at mild temperature and pressure, anthraquinone 

derivatives can be formed irreversibly which do not participate in the formation of H2O2. This 

means that the original anthraquinone molecule needs to be continually added to maintain the 

efficiency of the system. The use of a highly active hydrogenation catalyst can also result in the 

decomposition of the anthraquinone again reducing the efficiency of the system. In terms of the 

safety of the process the relatively mild conditions and the facility to keep H2 and O2 apart 

greatly reduces the chance of working in the explosive region. 

 

The fact that an environmentally friendly oxidant is made this way when typical applications 

require 3-5 wt% H2O2 solutions has prompted research and development into more efficient, 

small-scale widespread synthesis routes to produce H2O2 at lower market value. 

 

O

O

R

O

O

R

OH

OH

R

OH

OH

R

+ H2

Catalyst

+ O2 + H2O2

Figure 1.3 - Schematic of the industrially used auto-oxidation process to make H2O2. 
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1.4.  Direct Synthesis of H2O2 

The direct synthesis of H2O2 by the combination of molecular H2 and O2, removing the need for 

an anthraquinone intermediate would provide a much greener route to H2O2 as the reaction 

would be 100% atom efficient. The first patent for the direct synthesis of H2O2 was granted to 

Henkel and Weber in 1914,
15

 however the process has not yet been commercialised. While the 

combination of molecular H2 and O2 seems conceptually a simple reaction there are inherent 

problems associated with the process. The biggest of these problems is that catalysts which are 

active for the synthesis of H2O2 (1) also tend to be active for the hydrogenation (2) of H2O2 and 

the direct combustion of H2 and O2 (4), both reactions producing water as shown in figure 1.4. 

Also as H2O2 is an unstable molecule the product can decompose (3) into water after being 

synthesised. This decomposition reaction can also be catalysed by the same catalyst used to 

synthesise the H2O2.  

 

Figure 1.4 -  Reaction scheme for the direct synthesis of H2O2. 

ΔG1 = -120 kJ mol
-1 

ΔG2 = -354 kJ mol
-1

 

ΔG3 = -117 kJ mol
-1

 

ΔG4= -237 kJ mol
-1

 

  

The parallel combustion and subsequent hydrogenation and decomposition reactions all form 

water meaning that the efficient utilisation of H2 towards the synthesis of H2O2 in this process 

represents a major problem. The subsequent hydrogenation and combustion reactions are also 

catalysed by the same catalyst that activates H2 for the synthesis reaction.
16,17

 Stopping the 

competing reactions to improve H2 efficiency represents a major challenge. There are a number 

of ways to overcome the problem of selectivity in the direct synthesis of H2O2, for example 

H2 + O2 H2O2 2 H2O
H2

H2O + ½ O2

21

4
3
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decreasing the reaction temperature or contact time with the catalyst. Also the addition of 

chemical additives such as acid and halide can decrease the rates of subsequent and competing 

water forming reactions and these approaches will be discussed later in this chapter.  

Another reason that the process has not been commercialised nearly 100 years after its discovery 

is that H2 / O2 high pressure gas mixtures carry an inherent hazard because they are explosive 

over a wide range of compositions (5 – 95% vol H2 at ambient temperature).  To improve safety 

the reactant gases need to be diluted with an inert gas, such as N2, to allow work below the lower 

explosive limit. This dilution of reactants can limit the amount of H2O2 it is possible to make.  

  

1.4.1 - Direct Synthesis of H2O2 using Palladium Catalysts 

Many research groups have worked on the development of catalysts for the direct synthesis of 

H2O2 so it is hard to standardise and compare results due to the different reaction set ups. The 

variable factors include reactor type (batch or flow), temperature, solvent system (organic or 

aqueous), pressure, ratio of H2 to O2, additives (acid or halide) and reaction time. All these 

variables need to be considered before attempting to assess the effectiveness of different 

catalysts and preparation methods on the direct synthesis of H2O2. Despite this, general trends 

can be extrapolated from various data sets and general conclusions drawn about effective catalyst 

systems. 

Since 1914 when it was first shown that Pd could be used as an effective catalyst for the direct 

synthesis of H2O2
15

 the vast majority of catalytic studies have remained focused on Pd as the 

catalytic species. Early studies tended to use gas compositions that were in the explosive region 

to produce as much H2O2 as possible at a high rate. Using these explosive gas mixtures at 

elevated pressure in the presence of a palladium catalyst meant that high concentrations of H2O2 

could be made (35 wt%) however the operation of such a process commercially would be 

extremely problematic in terms of safety.
18

 

 

1.4.1.1 - Acid Addition 

In 1961 Pospelova showed in a seminal study that the addition of acids such as HCl and HNO3 

were essential to achieve high productivities when using palladium catalysts to synthesise  
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H2O2.
19-21

 The addition of acid to the reaction medium improves the yield of H2O2 by 

suppressing the base catalysed decomposition reaction.  

A study by Choudhary compared a series of acids as reaction stabilisers to suppress the 

decomposition activity for a 5 wt% Pd / C catalyst in an aqueous reaction medium.
22

 The acids 

tested included mineral acids, such as phosphoric acid, and a series of halide acids and it was 

suggested that the nature of the anion present resulted in an increase in H2O2 productivity for 

different reasons.  Non-coordinating ions such as phosphate, nitrate and sulphate are thought not 

to block any active palladium sites during the reaction, so only a decrease in the decomposition 

reaction was seen leading to higher selectivity.  Conversely direct synthesis in a reaction medium 

containing a halide acid showed a decrease in H2 conversion but an increased selectivity towards 

H2O2. This indicates an additional role being played by the halide ion in solution by the 

additional suppression of the hydrogenation reaction.  

 

1.4.1.2 - Halide Addition 

The effect of adding halide into the reaction medium and by incorporation into the catalyst 

during preparation has been extensively studied.
22-34  

Studies with Pd catalysts on a range of 

supports: ZrO2, Ga2O3, CeO2, SiO2 and Al2O3 showed that the addition of halides, in particular 

Cl
-
 and Br

-
 had a beneficial effect (at low concentrations) on the direct synthesis of H2O2 when 

acid was also present in the reaction medium. The improved productivity and selectivity caused 

by halide incorporation as a metal salt in the reaction medium were shown to be of similar 

magnitude to catalysts with halide incorporated into the catalyst preparation.  The nature of the 

halide in the reaction medium was found to reduce H2 conversion in the descending order  KF > 

no halide > KCl > KBr for a Pd / CeO2 catalyst.
35

 This order was reversed when selectivity was 

examined showing reducing selectivity in the order KBr > KCl > no halide > KF. This order of 

decreasing selectivity showed that F
-
 additives, whilst increasing H2 conversion gave the lowest 

H2O2 selectivity, indicating that F
-
 acts as a promoter for the competing combustion and 

hydrogenation reactions. The presence of iodide ions was shown to be detrimental to the catalyst 

activity due to co-ordination of iodide to palladium resulting in surface poisoning.  

The increase in selectivity and decrease in H2 conversion with the addition of a small amount of 

halide, especially Br
-
, is thought to occur through the selective poisoning of the very reactive 

hydrogenation sites of palladium particles. Burch noted that this trend in catalytic behaviour did 
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not linearly correlate with electronegativity of the halide series and suggested the reason is due to 

sigma/pi donation effects with overall co-ordination ability increasing down group 7.
36

 Iodide 

should form strong sigma bonds and fluoride is the best π-donor of the halides. Halides with 

intermediate sigma/pi donation ability such as Br
-
 and Cl

-
 have been shown to enhance transition 

metal catalysed oxidation reactions. An optimum amount of Br
-
 is crucial for achieving the 

maximum yield of H2O2 as shown in figure 1.5. Excess Br
-
 can cause indiscriminate blocking of 

the remaining catalytic sites, which are still active for the direct synthesis of H2O2.  

 

 

Figure 1.5 - Effect of bromide concentration on H2O2 synthesis reaction taken from reference 

28. 

 

1.4.1.3 - Palladium Oxidation State 

Choudhary et al. have extensively studied Pd catalysts for the direct synthesis of H2O2.
22-30, 32-34, 

37-41
 Initial findings showed that reduced palladium catalysts were inactive for the synthesis of 

H2O2 with the combustion reaction being responsible for the high H2 conversion observed.
23

 

Subsequent treatment with an oxidising species showed improved H2O2 yield due to a higher 

selectivity towards H2O2. The competing decomposition reaction was studied over reduced and 

oxidised Pd and it was shown that the catalysts with the highest yield tended to be the catalysts 
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that showed the lowest decomposition rate. The low decomposition rate after oxidation is 

thought to be due to the presence of PdO on the surface of the particles.  It was also shown that 

to achieve high yields using reduced Pd catalysts it is essential to use halide promoters and an 

acidic reaction medium as described previously. 

Choudhary postulated that the homolytic fission of H2O2 over Pd
0

 is inhibited by halides. 

Choudhary demonstrated that oxidised catalysts were less active for the decomposition of H2O2 

when compared to the reduced palladium catalysts. Hence, the formation of metallic Pd on 

catalysts during a reaction when under a partial pressure of H2 could be responsible for the 

deactivation of the catalyst between catalyst tests. The identification of PdO as the most selective 

phase is in contrast to the work of Burch and Ellis who reported that Pd
0
 was responsible for 

high selectivity and conversion.
36

 The identification of the active species as oxidised or reduced 

palladium is inherently difficult as the catalyst is under a partial pressure of both H2 and O2 

during the reaction so it is feasible that both species could co-exist during a reaction. 

 

1.4.1.4 - Colloidal Palladium 

While the addition of acid and halide into the reaction mixture has been shown to be necessary to 

enhance the H2O2 selectivity and productivity the acidic nature of the reaction medium may 

cause the dissolution of Pd from the catalyst support. Work by Lunsford showed that when high 

concentrations (0.1-1 M) of HCl were added to the reaction mixture [PdCl4]
2-

 and colloidal Pd 

were formed by the leaching of Pd from a silica supported catalyst.
42-44

 It was shown that even 

after the catalyst was removed from the system H2O2 was still being produced, indicating that the 

colloidal Pd formed was active for the reaction as a homogeneous catalyst by the mechanism 

proposed in figure 1.6. 
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Figure 1.6 - Proposed reaction mechanism for the synthesis of H2O2 by colloidal palladium. 

 

The presence of an acid in the reaction medium which could cause dissolution of the active 

phase along with the reactor internals should be avoided to keep the reaction strictly 

heterogeneously catalysed. Acidic properties can be introduced to the reaction by other means 

such as highly acidic catalyst supports including hetropolyacids
45-47

 or through surface 

modification of common catalyst supports like SiO2 and TiO2 by groups such as SO3H
48, 49

 

which leads to a higher selectivity and yield of H2O2 than similar systems containing no acid 

source. 

1.5 - Summary of Critical Factors and Mechanism for H2O2 Direct Synthesis 

A linear relationship between colloid concentration and H2O2 formation rate was observed 

during time on stream studies, while 
16

O2 / 
18

O2 isotope experiments and Raman spectroscopy 

confirmed that H2O2 is derived from molecularly adsorbed O2 on the palladium surface.
44

 

Further testing of different O2 / H2 ratios using the colloidal catalytic system indicated that the 

formation of H2O2 was first-order with respect to H2 and zero-order with respect to O2. This 

shows  H2 activation as being the rate limiting step in the synthesis of H2O2.
50

 Lunsford and Liu 

also showed that the role of chloride ions in solution is to prevent the O – O bond cleavage. This 

observation is advantageous for two reasons, firstly it prevents the direct combustion of H2 and 

O2 to form water and secondly it prevents the dissociation of the O – O bond of H2O2, hence 

reducing the hydrogenation and decomposition reactions and increasing selectivity towards 

H2O2.  
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The solvent system used in the direct synthesis reaction is also critical to the yields of H2O2. In 

the absence of an organic component such as methanol, the reaction proceeds at a very slow rate 

even if the water is acidified.
51, 52

 The slow reaction rates in water only solvents are due to mass 

transport effects whereby low solubility of H2 and O2 limit the concentration of reactants in 

contact with the catalyst surface therefore limiting the maximum reaction rate. However, the use 

of an alcohol as the reaction medium can result in high hydrogenation rates at long reaction 

times due to the high concentration of H2 in the alcohol. To produce high reaction rates and 

selectivity towards H2O2, careful control of the solvent composition and reaction time is needed. 

 

1.6.  Direct Synthesis of H2O2 using Gold - Palladium based Catalysts 

To commercialise a direct synthesis process to produce H2O2 using a palladium catalyst would 

be problematic because of the additives needed to attain a high reaction rate and selectivity. The 

palladium catalyst system requires the addition of acid and halide which might be undesirable in 

the final solution of H2O2 if it is to be used in further chemical processes. Therefore a new 

catalyst system had to be developed that would improve on the efficiency of palladium catalysts. 

Hutchings et al. were the first to demonstrate that Au could be used as a catalyst to synthesise 

H2O2 and in the first case Au / Al2O3 was used as a catalyst.
53, 54

 The key advance in the design 

of new catalysts came when it was shown that Au and Pd have a synergistic effect when used to 

catalyse the direct synthesis of H2O2. The addition of other metal additives to Pd / ZrO2 and Pd / 

Ga2O3 catalysts has been studied by Choudhary et al..
23, 33

 They revealed that the addition of Ru 

and Rh metals decreased H2O2 yield, while enhancement was observed for Pt and Au, although 

the effect of Pt was not as pronounced. The observation that the addition of Au to Pd produced 

more active catalysts agrees with the observation by Corma
55, 56

 that hydroperoxy species have 

been observed experimentally, and therefore stabilised with respect to Pd, on gold catalysts. This 

hydroperoxy species is likely to act as a key intermediate in H2O2 synthesis and if this is 

stabilised by the presence of Au in the catalyst, a higher rate of synthesis should be expected.
57

 

H2O2 synthesis using Au-based catalysts was also reported by Haruta
58

 and Ishihara.
59

  

Since the discovery of the synergistic effect between Au and Pd for the direct synthesis of H2O2 

an extensive study has been carried out into the nature of this effect on a series of oxides.
60-70

 

TiO2
67

, SiO2
62

, Al2O3
66

, Fe2O3
68

 and Carbon
70

 supports have been used and the synergistic effect 

of adding Au to Pd was observed for all these systems when catalysts were prepared by an 
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impregnation methodology, as shown in table 1.1. Typically the addition of Au leads to lower H2 

conversion but a more selective catalyst giving a higher yield of H2O2. 

 

 Productivity / mol H2O2 kg
-1

 h
-1

 

(Selectivity %) 

Catalyst Support 5% Au 2.5% Au 2.5% Pd 5% Pd 

Fe2O3 1 16 4 

TiO2 7 

(n.d.) 

64 

(70) 

30 

(21) 

SiO2 1 

(n.d) 

108 

(80) 

80 

(80) 

Al2O3 3 15 9 

Carbon 1 

(n.d.) 

110 

(80) 

55 

(34) 

Table 1.1 - Comparison on mono and bimetallic catalysts on various supports for the direct 

synthesis of H2O2. 

Reaction Conditions - 5% H2/CO2 (2.9 MPa ) and 25% O2/CO2 (1.1 MPa) , 8.5 g solvent (5.6 g 

MeOH + 2.9 g H2O), 0.01 g catalyst, 2 
o
C , 1200 rpm, 30 mins 

 

Hutchings et al. studied the direct synthesis of H2O2 at 2 °C whilst using dilute H2 to stay well 

below the lower flammability limit. The solvent system was free from any acid and halide 

additives and consisted of 66% MeOH and 34% H2O. The choice of CO2 as a diluent for H2 has 

been shown to act as an in-situ promoter for the reaction. Under pressure of CO2, carbonic acid 

forms in the solvent mixture, and this acts as a stabiliser for the H2O2 during the reaction. Further 

studies have shown that the addition of stabilisers such as Br
-
 were deleterious for the highly 

active Au – Pd catalysts. The addition of  Br
-
 to highly active Au-Pd / C catalyst only gave a 

subtle enhancement in the yield of H2O2 in marked contrast to monometallic Pd catalysts which 

need halide additives to achieve high yields.
71
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1.6.1 - Support effects 

Table 1.1 shows that the H2O2 synthesis activity over Au-Pd catalysts also depends on the nature 

of support, this was studied by Ntainjua et al. 
72

 and Edwards et al..
65

 The activity of the Au-Pd 

bimetallic catalysts followed the order C > SiO2 > TiO2 > Al2O3 ~ Fe2O3. Subsequent 

hydrogenation and decomposition are the main pathways for the loss of selectivity and yield in 

the direct synthesis of H2O2. Studies have shown that the choice of support is crucial in limiting 

these subsequent reactions.  In particular the acidity and isoelectric point of the supports was 

determined to be crucial in achieving high yields. As shown in Figure 1.a and b the productivity 

of bimetallic Au-Pd catalysts is highly dependent on the support chosen. Acidic supports such as 

carbon and SiO2 show the highest H2O2 productivity whereas basic supports such as MgO and 

Al2O3 show much lower productivity. The trend generally follows the trend in isoelectric points 

of the supports. The isoelectric point of the support controls the surface charge and clearly high 

isoelectric point supports lead to the catalysis of non-desired sequential hydrogenation and 

decomposition of H2O2. These trends are similar to those observed for Pd catalysts in that adding 

acid into the reaction medium helps to improve the selectivity towards H2O2.  Relative to Pd 

catalysts, selectivity is generally increased by the acidic nature of the support and the addition of 

Au.  

 

a)  

 

Figure 1.7a) - Shows the dependence of H2O2 productivity on isoelectric point for Au – Pd 

catalysts.
73 
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b)  

Figure 1.7 b) Graph to show productivity increases as hydrogenation decreases for various 

supports.
73

 

 

1.6.2 - Particle morphology  

A common feature of these bimetallic catalysts is that careful control of heat treatment is crucial 

in producing active stable catalysts. For all of the oxide supported materials the Pd and Au – Pd 

catalysts were most active after just a drying step. After drying, Pd catalysts have a very high 

conversion, 80% for Pd / TiO2 and Au-Pd catalysts show very high selectivity, almost 90% for 

2.5% Au 2.5% Pd / TiO2.
74

 However these catalysts are unstable and have been shown to lose up 

to 90% of their metal after reaction. After calcination at a temperature of 400 ºC these catalysts 

lose activity but remain stable after multiple reaction cycles. XPS and STEM studies have shown 

that dried bimetallic catalysts on oxide supports consist of homogeneous alloys of Au and Pd. 

During calcination to improve the catalysts stability the particles change morphology, forming 

core shell structures consisting of a Au core surrounded by a Pd shell. HAADF images of core 

shell structures of bimetallic particles on TiO2 and Al2O3 catalysts are shown in figure 1.8. 
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Figure 1.8 - HAADF images of bimetallic particle showing homogeneous Au-Pd alloy on 

carbon and core shell structures on TiO2 and Al2O3. 

 

The homogeneous alloys of Au – Pd present on dried samples are more active than the core shell 

structures formed after calcination on oxide supports. Interestingly carbon maintains a 

homogenous alloy after calcination, as shown in figure 1.8, and this may explain why carbon is 

the most active support for Au – Pd catalysts for the synthesis of H2O2. The strong tendency for 

palladium surface segregation, observed after calcination, was thought to be brought about by the 

preferential formation of Pd–O bonds at the alloy surface, because palladium oxidises more 

readily than gold in this temperature range. A composition dependence on size was also noted 

during the STEM study of these catalysts. The dried 2.5% Au / 2.5% Pd / TiO2 catalyst consisted 

of a bimodal particle size distribution. Small particles were observed, 1-5 nm, consisting of pure 

Au with a smaller amount of pure Pd particles whereas the larger particles consisted of Au –Pd 

alloys. After calcination the same bimodal distribution was seen with the larger particles being 

core shell alloys; however no small Au particles were observed. Comparing the calcined and 

uncalcined catalysts, the most striking difference was the composition of the smaller particles. 

This can be explained by the fact that at the nm scale the melting point of a metal is much lower 

than the bulk metal. At the calcination temperature used small Au particles would be much more 

mobile than small Pd particles and these small Au particles can sinter with Pd particles to form 
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the larger alloyed particles which are thought to be responsible for the synergistic effect of Au 

and Pd for the synthesis of H2O2. 

 

1.6.3 - Acid treatment 

The observation that acidic supports tend to give higher H2O2 yields led to studies into the acid 

pre-treatments of supports prior to and during catalyst preparation. An important contribution by 

Edwards et al.
70

 observed that by using a carbon supported Au – Pd catalyst, it was possible to 

switch off the hydrogenation activity by using an acid washing pre-treatment of the support prior 

to impregnation of the precious metals. The pre-treatment step consists of suspending the 

catalyst support in a 2 wt% aqueous HNO3 solution for three hours followed by subsequent 

washing (thoroughly with approximately 1 L H2O) and then drying (120 ºC). This reduction in 

hydrogenation activity resulted in a significant enhancement in the selectivity of the catalyst, in 

some cases reaching + 95% as shown in table 1.2.  

Table 1.2 - Comparison of selectivities and productivities of 2.5% Au 2.5% Pd / C after various 

pre-treatments 

The acid pre-treatment did not alter the previously seen particle morphology with homogeneous 

Au-Pd alloys observed in the stable samples after calcination. The beneficial effect of acid pre-

treatment was to enhance the Au dispersion generating smaller Au-Pd nanoparticles between 1-5 

nm that retained the homogeneous alloy previously observed on carbon supports. The increase in 

activity for the direct synthesis of H2O2 is therefore thought to be due to the formation of many 

smaller active alloy nanoparticles which block support sites that are active for the hydrogenation 

and decomposition of H2O2 which leads to higher selectivities towards H2O2. A similar effect 

was seen when using TiO2 as a catalyst support with selectivities of up to 95% observed with a 

greater population of particles in the 1- 4 nm range when compared to the untreated catalysts.
69

 

To date the acid treated catalysts are the most active and selective catalysts to be reported in the 

literature. 

Pretreatment Selectivity % Productivity mol H2O2 kg
-1

 h
-1

 

 

None 80 110 

Water 80 110 

2% HNO3 + 95% 160 
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1.7 - Reactor Types for the Direct Synthesis of H2O2 

 

1.7.1 - Batch 

By far the most common method of testing catalysts for the direct synthesis of H2O2 is a batch 

autoclave. This means that the catalyst will be in contact with the H2O2 produced for an extended 

period of time.  When testing a catalyst for synthesis activity in a batch system it is difficult to 

achieve very short residence times, with the shortest feasible reaction being 1 min. By testing in 

the batch system you are only able to measure the H2O2 concentration at a certain time after the 

reaction has started, which makes it very difficult to measure the absolute rate of H2O2 synthesis 

due to the contribution of the subsequent reactions. This means that any measure of rate will only 

be an observed rate, kobs, which is made up of contributions from the synthesis, hydrogenation 

and decomposition reactions whilst measure of conversion by H2 consumption must take into 

account the direct combustion reaction. 

1.7.2 - Flow Reactors 

An important reaction parameter to consider when dealing with a process which has subsequent 

and competing reactions is the time the reaction product is in contact with the catalyst. By 

carefully controlling the time that the reactants are in contact with the catalyst it is possible to 

control and suppress the subsequent hydrogenation and decomposition reactions. By using a 

fixed bed reactor it is possible to flow gas and liquid through the system to give a well defined 

residence time over the catalyst to study synthesis of H2O2 along with hydrogenation and 

decomposition reactions.
75, 76

 Using this reactor setup to limit the sequential reactions, reaction 

conditions such as pressure, temperature, gas ratios and solvent composition can easily be varied 

and studied along with the long term stability of the catalyst in a flow system. A common feature 

with the studies carried out in the literature is the use of halogen and acid promoters to suppress 

the side reactions and enhance selectivity towards H2O2.  

1.7.3 - Membrane 

To avoid the inherent hazards involved in the direct reaction of H2 and O2, a number of attempts 

have been described to run the reaction in an inherently safe membrane reactor. In a reactor of 

this type, where O2 and H2 are physically separated, only a small flux of H2 can reach the 

catalytic sites where it immediately reacts to create H2O2, allowing high concentrations of gases 
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to be used. The reactor setup shown in figure 1.9 involves feeding H2 gas from an internal 

section of the membrane to an O2 saturated reactant solution; since the palladium membrane is 

permeable to H atoms and not molecular H2 this gives improved safety. Work by Abate has 

indicated that defective surface sites on the Pd-catalyst surface are responsible for parallel and 

sequential unselective reaction taking place to different extents (confirmed by kinetic studies) 

under the adopted reactor setup.
77, 78

 This suggests that while this reactor setup may be a safer 

alternative to work with higher gas concentrations, unwanted side reactions still pose a problem.  

 

Figure 1.9 - Schematic setup of a membrane reactor taken from reference 77. 

 

1.8 - Summary of the Background of H2O2 Synthesis 

Many advances have been made towards a feasible process for the direct synthesis of H2O2, 

however the problem of low selectivities because of subsequent hydrogenation and 

decomposition reactions remain a major obstacle. The addition of Au to Pd has helped to address 

the problem of low selectivity however a pressure for catalysts to have cheaper and simpler 

preparation methods and use cheaper reagents remains a driving force for further developments. 

Research into new approaches to catalyst design including using less expensive metals and 

investigating optimum reaction conditions in different reactor configurations may provide further 

developments that could help the commercialisation of the process. 
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1.9 - Carbon Monoxide Oxidation  

Bulk gold has limited use as a catalyst due to its inability to activate molecules such as H2, O2 

and CO.  However when gold particles on the nano scale are synthesised and supported on 

transition metal oxides, gold catalysts show high catalytic activity in a number of industrially 

useful reactions. Breakthroughs in gold catalysis came from Haruta’s work on CO oxidation at 

ambient and sub ambient temperatures,
79,80

 and Hutchings’ work on catalysing ethyne 

hydrochlorination.
81,82

 Since these observations the number of publications concerning gold 

catalysis has risen substantially, with over 1200 research articles being published up to 2007.
57

 

Since the discovery by Haruta et al.
79,80

 that Au nanoparticles were exceptionally active for the 

oxidation of CO at sub-ambient temperatures, CO oxidation has become possibly the most 

studied reaction in heterogeneous catalysis. This conceptually simple reaction has fascinated 

scientists for nearly 30 years mainly because high reaction rates can be achieved at very low 

temperatures. Haruta reported in the first examples of CO oxidation by Au catalysts that catalysts 

were still highly active at -78 °C,
79, 80

 and more recently model catalysts such as Au /Ni (111) 

have been shown to be active at temperatures as low as -203 °C.
83

   

 

1.9.1 - Preparation Methods 

Preparation methods have now been published that show active catalysts can be made using a 

number of metal oxides as supports including Fe2O3,
80, 84-90

 TiO2
79, 91-96

 and CeO2.
97, 98

 High 

activity catalysts on a variety of supports are typically prepared by deposition and co-

precipitation methods. This preparation methodology is needed to generate small Au nano 

particles which are active for CO oxidation. Au / TiO2 catalysts prepared by impregnation show 

almost no activity for CO oxidation in contrast to H2O2 synthesis where impregnation has been 

shown to be an effective preparation methodology. The impregnation of Au onto oxide supports 

may be problematic because of the tendency of Au to sinter into larger inactive nanoparticles. 

Also, during heat treatments of Au catalysts where HAuCl4(aq) is used as a precursor, the 

presence of chloride greatly enhances the tendency of the Au particles to sinter. To achieve high 

reaction rates and Au particles below 10 nm it is important to choose the appropriate 

methodology for preparation and this may depend on the nature of the support being used. 
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1.9.2 - Particle Size effects 

A common theory in the literature regarding CO oxidation is that small Au nanoparticles are 

needed for high catalytic activity. Lopez et al.
99

 collated data from published literature regarding 

Au catalysts on a variety of supports and this showed the general trend that activity increased 

with decreasing particle size, shown in figure 1.10. The authors concluded that the most 

important factor controlling activity is particle size and that the nature of the support and 

support-particle interaction played a smaller role. However, there is a considerable error 

associated when trying to estimate particle sizes at the lower end of the scale and the fact that the 

particle size is only an averaged particle size must not be ignored. Many species smaller than the 

particle size given may be present in the catalyst but these, due to their size, do not contain many 

gold atoms and can therefore be overlooked using some characterisation techniques. 

 

 

Figure 1.8 - Data collated by Lopez et al.
99

 correlating CO oxidation activity with Au particle 

size for a variety of supports. 

 

Haruta et al.
100

 report that an FT-IR spectra for CO adsorption at 90 K over Au / TiO2  having a 

mean particle diameter of 2.4 nm exhibits a large peak intensity at  2110 -2120 cm
-1

. This can be 

attributed to the linear adsorption of CO on the metallic Au sites. When the diameter of the Au 

particles is increased to 10 nm by calcination at high temperatures, the intensity of the peak 

reduces remarkably, indicating that CO adsorption might preferentially occur on the high energy 
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steps, edges, and corners of the Au particles and not on the smooth surfaces. This may indicate 

that the adsorption of molecules onto the surface of Au may change with decreasing particles 

size which may affect the reaction pathway. 

Hutchings and co-workers reported a HAADF STEM study which undertook a statistical 

analysis of gold particle size and type, comparing an extremely active CO oxidation catalyst and 

an inactive CO oxidation catalyst at a range of calcination temperatures.
101

 They classified Au 

species into 4 main groups, isolated atoms, monolayer structures, bilayer structures and species 

above 1 nm, figure 1.11 shows a high resolution image of a dried Au / FeOx catalyst with 

individual atoms indicated by white circles and bilayer structures indicated by black circles. On 

increasing calcination temperature they found that catalytic activity dropped from 100% 

conversion after drying to 0% conversion after calcination at 600 °C for 3 h.   They found that on 

heat treatment, the number of isolated atoms decreased, the number of monolayers remained 

relatively constant and the number of bilayers decreased where as the number of species above   

1 nm increased. This means that the active catalysts contained a higher number of bilayers and 

fewer clusters above 1 nm. They concluded that these bilayer structures consisting of ~8-10 Au 

atoms were the source of the high activity in the dried sample. Theoretical studies have shown 

that the activity of a Au surface is maximised when the Au structures are two atomic layers 

thick
102

 which is in agreement with the findings of Hutchings et al. and the theoretically reported 

TOF for a bilayer structure is in close agreement with that of the experimental results when it is 

assumed that all of the activity comes from these bilayer structures present in the catalyst, which 

only accounted for 0.6 atomic %  of Au present. 
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Figure 1.9 - A high resolution image of a dried Au / FeOx catalyst with individual atoms 

indicated by white circles and bilayer structures indicated by black circles. 

 

1.9.3 - Mechanism 

Despite the CO oxidation reaction being extensively studied over the last 30 years a conclusive 

identification of the reaction mechanism and active site has not yet been made. A reason for this 

is that in reality the conceptually simple reaction may be occurring by a variety of mechanisms at 

a variety of active sites, as catalysts prepared in the laboratory by precipitation methods contain a 

large variety of gold nanoparticles. The large variety in Au particle size and morphology 

contributing towards experimental results also makes modelling the reaction very difficult.  

Bond and Thompson
103

 proposed a model where Au atoms at the interface between the Au 

particles and oxide support are the active oxidation species.  The periphery of a Au nanoparticle 

has exposed Au atoms that can interact with the oxide support. The smaller the Au nanoparticles 

the higher the proportion of Au atoms which will be able to interact with the oxide support, 

leading to a higher reaction rate. Bond and Thompson
103

 proposed that the atoms at the periphery 

could be cationic and that these atoms were responsible for the activation of O2 in the reaction 

mechanism. They postulated that a hydroxyl group migrates to one of the cationic periphery Au 

atoms leaving an anion vacancy in the support. This hydroxyl then reacts with an adsorbed CO 

molecule to form a carboxylate species on the periphery, while the anion vacancy is filled by an 

O2 molecule to form O2
-
 as shown in figure 1.12. The O2

-
 can then oxidise the carboxylate by 

abstracting the hydrogen atom to form CO2 and OOH
-
 which can then oxidise another 

carboxylate and restore the hydroxyl to the catalyst surface.  
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Figure 1.10 - Schematic of part of the reaction scheme proposed by Bond and Thompson  

Kung et al.
104

 also proposed a reaction mechanism which involves cationic gold at the periphery 

of gold nanoparticles. They favoured the formation of a bicarbonate species with the 

involvement of a hydroxyl species activated by the Au
δ+

 that is stabilized at the peripheral 

position. The idea that CO is activated by adsorption on the surface of the gold nanoparticles and 

that O2 is activated by cationic Au atoms at the periphery between the support and the gold nano 

crystals has yet to be conclusively proven, however a unique feature of Au catalysts is that 

apparent activation energies are very low for CO oxidation using Au / TiO2 catalysts prepared by 

deposition precipitation with typical values of 20 - 40 kJ mol
-1

 below 300 K and nearly                

0 kJ mol
-1 

above 300 K. At room temperature, Au is more active by 1-4 orders of magnitude for 

CO oxidation when compared to Pt group metal catalysts prepared by similar methods.
100

 These 

two very distinct activation energies may even suggest that different mechanisms operate at 

different reaction temperatures. Recent work has shown that at low temperature the support can 

play a key part in the reaction by delivering CO to the periphery gold sites to react with O2. A 

study by Green et al. 
105

 observed by in-situ IR using a Au / TiO2 catalyst that the CO adsorbed 

onto the TiO2 surface was the first to react with activated O2 at the periphery of the Au nano 

particles at temperatures of 120 K. At this low temperature the CO that was adsorbed on the Au 

was stuck due to a high diffusion barrier. This example of CO supply from the support and not 

the CO that was adsorbed on Au shows that this reaction is very complicated and the presence 

multiple active sites and mechanisms are likely. 

1.9.4 - CO Oxidation using Gold Iron Oxide Catalysts 

During the seminal study by Haruta in the 1980’s, gold supported on iron oxide was identified as 

an extremely active catalysts for CO oxidation.
79, 80

 The study of FeOx supported Au for this 

reaction is still ongoing in the literature and still contains many discrepancies that need to be 

OH

CO

COOH

-

O2

O2
-
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addressed with regard to the most active state of the support, the most desired Au particle size 

and the active site present. 
57, 84-86, 101, 106-108

 

The preparation method of Au / FeOx  catalysts has been shown to drastically effect the CO 

oxidation activity.
68

 Catalysts prepared by impregnation show very little activity whereas 

catalysts prepared by deposition precipitation and co-precipitation are much more active, with 

the preferred preparation method being co-precipitation. The effect on the gold particle size 

distribution with different preparation method is thought to be the reason for this, with 

impregnation producing mostly particles above 4-5 nm whereas as co-precipitation has been 

shown to produce particles from 2-4 nm particles down to isolated Au atoms, and it has been 

shown by many groups that activity is highly dependent on particle size. Hutchings and co-

workers
101

 postulated that Au bilayer structures were responsible for the high activity on iron 

oxide. In contrast Schuth and co-workers
108

 have prepared catalysts with a tight 2 nm particle 

size distribution and they were still highly active. This may suggest that a number of gold species 

could be responsible for the activity with competing rates and mechanisms.  

Another area of uncertainty in the Au / FeOx system is the nature of the support. Many studies 

report that the nature of the support after a co-precipitation procedure is amorphous, iron 

oxyhydroxide phase.
84, 85

 These catalysts on calcination at higher temperatures, up to 400 °C, 

become more crystalline and lose Au dispersion by sintering processes and Au can also become 

trapped within the support as it crystallises. This results in lower catalytic activity the higher the 

heat treatment prior to testing.  This is in contrast to Haruta who reports that after preparation of 

the catalysts by the same methods it results in a crystalline iron oxide catalyst, which becomes 

more active with calcination up to 300 °C and then rapidly loses activity.
79,80

  This clear 

difference in support phases and heat treatment between Au / FeOx illustrates that there are many 

differing observations in the literature regarding Au / FeOx catalysts for CO oxidation that are 

yet to be resolved, with a major challenge still being identification of the most likely active site. 
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1.10 - Thesis Aims 

 

The aims of this thesis are outlined below: 

1. It has been shown that Au addition to Pd can enhance H2O2 productivity by suppressing 

the subsequent hydrogenation and decomposition reactions. However for a process to be 

commercialised the cost of the catalyst must be taken into account. Investigation into the 

addition of less expensive second metals to Pd will be carried out with the aim of 

matching the activity of Au-Pd catalysts with catalyst that contain no or much less Au. 

2. A fixed bed gas liquid reactor is to be designed and operated for the direct synthesis of 

H2O2 with the aim of investigating reaction parameters in a continuous flow system. This 

will allow the determination of kinetic parameters for each of the synthesis, 

hydrogenation and decomposition reaction to be explored and kinetic models to be 

proposed. 

3. Further investigation into the active site for CO oxidation using Au / FeOx catalysts will 

be carried out by undertaking kinetic studies of catalytic activity along with extensive 

characterisation using STEM to attempt to determine complete particle size distributions 

ranging from 10 nm particles down to single atoms.  
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Chapter 2 

 

2. Experimental 

This chapter outlines the experimental procedures followed when preparing, testing and 

characterising the materials subsequently discussed in this thesis.  

 

2.1 - Materials Used 

PdCl2 – Johnson Matthey  

Pd(NO3)2.2H2O – Sigma Aldrich (40% Pd assay) 

HAuCl4 – Johnson Matthey 

SnCl4.5H2O – Sigma Aldrich (> 98%) 

Fe(NO3)3.9H2O – Sigma Aldrich (99.99% trace metal basis) 

Na2CO3 – Sigma Aldrich (99.995% trace metal basis) 

TiO2 – Degussa p25 (99.5% trace metal basis, 20-30 nm particle size)  

SiO2 – Matrex 60  

MeOH  – Sigma Aldrich (HPLC Grade) 

Water – Sigma Aldrich (HPLC Grade) 

50 % H2O2 – Sigma Aldrich (Stabilised)  

(NH4)2Fe(SO4)2.6H2O – Sigma Aldrich (98%) 

Ce(SO4)2 – Sigma Aldrich (> 98%) 
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2.2 - Catalyst Preparation 

2.2.1 – Gold, Palladium and Gold-Palladium Catalysts prepared by 

Impregnation  

Monometallic and bimetallic gold palladium catalysts were prepared by impregnating or co-

impregnating the appropriate catalyst support with solutions of PdCl2 and HAuCl4. The catalysts 

contained a nominal metal content of 5 wt% unless otherwise stated. A typical preparation for 1 

g of 2.5% Pd / 2.5% Au / TiO2 was carried out according to the following procedure which has 

been previously reported in the literature.
1
 0.042 g of PdCl2 was added to 2.04 ml of HAuCl4 

(12.25 g Au / 1000 ml) and heated to 80 °C with stirring and left until the PdCl2 had completely 

dissolved. 0.95 g of the desired support was then added to the solution and the water allowed to 

evaporate until the mixture formed a paste like consistency. The samples were dried at 110 ºC 

for 16 h and then calcined in static air at various temperatures, typically 400 ºC for 3 h with a 

ramp rate of 20 ºC min
-1

. To prepare pelletised catalysts the samples were pressed after 

calcination into discs using a hydraulic press at a pressure of 10 tonnes for 10 minutes. The 

sample disks were then ground and sieved to the desired particle size, typically 450-225 micron. 

2.2.2 – Tin, Palladium and Tin-Palladium Catalysts prepared by 

Impregnation 

Tin and palladium monometallic and bimetallic catalysts were prepared by impregnating or co-

impregnating aqueous solutions of metal salts onto the appropriate catalyst support which 

included TiO2 and SiO2. The catalysts prepared had a nominal total metal loading of 5 wt% 

unless otherwise stated. A typical preparation for 1 g of 2.5 % Pd / 2.5% Sn / TiO2 was carried 

out as follows; 0.063 g Pd(NO3)2.2H2O was first dissolved in 2 ml of de-ionised water and 

heated to 80 ºC with stirring. 0.074 g of SnCl4.5H2O was dissolved in a minimal amount of water 

and added to the aqueous palladium solution and left for 15 min. 0.95 g of the support was then 

added to the solution and the water allowed to evaporate until the mixture had formed a paste 

like consistency. Samples were then dried at 110 ºC for 16 h and calcined in static air at various 

temperatures for 3 h with a ramp rate of 20 ºC min
-1

. Samples were also calcined at other 

conditions to evaluate their effects on catalyst performance and stability. Selected samples were 

reduced at various temperatures under a flow of 5% H2/Ar for 2 h with a ramp rate of                 

20 ºC min
-1

. 
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2.2.3 - Au / Fe2O3 Co-precipitated Catalysts  

Gold supported on iron oxide was prepared by co-precipitation of HAuCl4 and Fe(NO3)3.9H2O 

using Na2CO3. A typical preparation of 5 wt% Au / Fe2O3 was carried out according to the 

following procedure which has been reported previously in the literature.
2
 4.807 g of 

Fe(NO3)3.9H2O was dissolved in 200 ml of de-ionised water, 4.08 ml of HAuCl4 (12.25 g Au in 

1000 ml) was added to this solution and stirred vigorously while the solution was heated to       

80 ºC. The solution had an initial pH of around 0.8. The pH of the solution was increased by 

adding Na2CO3 until the pH reached 8.5. The solution was then left for 1 h under continuous 

stirring. During this time the pH of the solution rose from 8.5 to approximately 9.2. The solution 

was then suction filtered and washed with 2 L of warm water at around 80 ºC. The solid was then 

dried in a GC oven under flowing air at 120 ºC for 16 h. Parts of the sample were then calcined 

at 200, 300, 400 and 500 ºC for 3 h with a ramp rate of 20 ºC min
-1

. 

 

The catalyst preparation procedure was varied according to the methods listed below: 

 Method 1 - Na2CO3 was added drop wise, over 30 min, to the solution of HAuCl4 and 

Fe(NO3)2.9H2O.  

 Method 2 - Na2CO3 was added quickly, over 2 min, to the solution of HAuCl4 and 

Fe(NO3)2.9H2O.  

 Method 3 - HAuCl4 and Fe(NO3)2.9H2O solution was added drop wise, over 30 min, to the 

Na2CO3 solution. 

 Method 4 - HAuCl4 and Fe(NO3)2.9H2O solution was added quickly, over 2 min, to the 

Na2CO3 solution. 

 

2.2.4 - Au / Fe2O3 Catalysts Prepared by Deposition Precipitation 

Gold supported on iron oxide was also prepared by a deposition precipitation method.
3
 A typical 

preparation of 1 g of 5 wt% Au / iron oxide is outlined by the following procedure. 0.95 g of a 

pre-prepared iron oxide support was suspended in 200 ml of de-ionised water and held at 60 °C 

whilst stirring the solution. 4.08 ml of HAuCl4 (12.25 g Au in 1000 ml) was added to this 

solution and stirred for 15 min. A Na2CO3 solution was then added drop wise until the pH of the 

solution stabilised at 8.5. The preparation was then left for 1 h before filtration and washing with 
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1 L of hot deionised water (80 °C). The sample was then dried at 110 °C for 16 h followed by 

calcination at various temperatures between 200 – 500 °C in static air. 

 

2.3 - Catalyst Testing 

2.3.1 - H2O2 Synthesis in a Batch System 

The performance of each catalyst for the direct synthesis of H2O2 from H2 and O2 was determined 

using a Parr Instruments stainless-steel autoclave (equipped with an overhead stirrer and 

temperature/pressure sensors) with a nominal volume of 100 ml and a maximum working 

pressure of 14 MPa. During a standard synthesis test the autoclave was charged with 5.6 g of 

MeOH, 2.9 g of HPLC grade H2O and 10 mg of catalyst. The autoclave was pressurised with 2.9 

MPa 5% H2/CO2 and 1.1 MPa 25% O2/CO2 to give a total reaction pressure of 4 MPa. The 

autoclave was cooled to 2 °C and then stirred at 1200 rpm for 30 min. After the reaction was 

complete the solvents were filtered from the catalyst and 0.25 g aliquots of the solvent were 

titrated against a diluted Ce(SO4)2 solution acidified with 2% H2SO4 using ferroin as an 

indicator. The exact concentration of the Ce(SO4)2 solution was determined by titration of a 

known amount of (NH4)2Fe(SO4)2.6H2O again using ferroin as an indicator.  

To compare the performance of the catalysts over the 30 min reaction the average rate of H2O2 

production was calculated and normalised to catalyst mass to give a productivity value which is 

presented as molH2O2 h
-1

 kgcat
-1

. The wt % of H2O2 was also determined for each reaction using 

the following calculations: 

 

Volume Ce(SO4) to titrate whole reaction solution =     Titre x 8.5       (2.1) 

                                                                  Sample mass 

  

 

Moles Ce(SO4) = Vol. Ce(SO4) to titrate  reaction solution x [Ce(SO4)2]   (2.2) 

                               1000 

 

 

Moles H2O2 = Moles Ce(SO4)2     (2.3) 

                                                                                2 
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            Productivity  =                        Mol H2O2                    (2.4)   
                                      Catalyst mass (kg) x Reaction Time (h) 

 

 

    wt% H2O2 = Moles H2O2 x Mr H2O2      (2.5) 

                 8.5 

 

2.3.2 - H2O2 Hydrogenation in a Batch System 

The hydrogenation activity of a catalyst was tested in a similar way to the direct synthesis 

activity. The autoclave was charged with 5.6 g of MeOH, 0.67 g 50 wt% H2O2 and 2.23 g of 

HPLC grade H2O (Aldrich) and thoroughly mixed, after which 10 mg of catalyst was added. 

This solvent composition is equivalent of a 4 wt% H2O2 solution of the same volume used 

previously in the H2O2 synthesis experiments. 2 drops of the solvent solution each weighing 

around 0.04 g were removed and titrated with the acidified Ce(SO4)2 solution using ferroin as an 

indicator to determine accurately the initial H2O2 concentration. The autoclave was pressurised 

with 2.9 MPa 5% H2/CO2 and cooled to 2 °C and the reaction was carried out for 30 min at 1200 

rpm stirring speed. After the reaction was complete the solvents were filtered from the catalyst 

and two ~0.04 g aliquots of the solvent were titrated against an acidified dilute Ce(SO4)2 solution 

using ferroin as an indicator. The hydrogenation activity was calculated as molH2O2 h
-1

 kgcat
-1 

along with the percentage of the initial H2O2 which was present at the end of the reaction. 

2.3.3 - Catalyst Re-use in a Batch System 

Catalyst reusability was tested by running a synthesis reaction as outlined above but increasing 

the amount of catalyst to 70 mg. After the reaction was complete the solvent was filtered from 

the catalyst, and the catalyst was allowed to dry overnight on the filter paper. Before being 

retested the catalyst was dried at 110 °C in an oven for 1 h to ensure the sample was completely 

dry. Following this procedure a synthesis reaction was run as previously described. 

2.3.4 - H2O2 Synthesis in a Flow System 

A reactor was designed to allow testing of catalysts for H2O2 synthesis in a continuous flow 

system, the schematic of which is shown in figure 2.1. The reactor was constructed using 

Swagelok which had an internal diameter of 1/8 inch. Gas flows were controlled using three 

Brooks mass flow controllers and the pressure maintained using a back pressure regulator at the 

end of the system. Solvent was pumped through the system using an Agilent HPLC pump. 
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Figure 2.1 - Schematic of the flow reactor designed to test H2O2 synthesis. 

P = pressure gauge, MFC = Mass flow controller, GLS = gas liquid separator, BPR = back 

pressure regulator. 

A gas liquid separator (GLS) and one way valves were placed before the reactor bed to prevent 

any liquid from flowing back and entering the mass flow controllers. A schematic of the GLS is 

shown in figure 2.2. Pressure gauges were placed before and after the catalyst bed to monitor 
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pressure drops through the bed and to indicate if a blockage had formed in the system. Liquid 

was collected downstream before the back pressure regulator by emptying a 150 ml GLS fitted 

with a valve which acted as a sample bomb. 

 

Figure 2.2– Schematic of a gas liquid separator used to sample from the flow system. 

 

The sampling system was designed to allow liquid sampling with minimal disruption to the gas 

flow through the catalyst bed and therefore residence time of the gas in the catalyst bed. To 

sample, the gas was routed through a bypass loop which isolated the sample bomb from the gas 

and liquid flow. Any pressure drop when taking a liquid sample was restricted to the sample loop 

and the lost pressure was restored using a makeup gas before the bypass loop was closed. The 

gas and liquid flow can then be restored through the sample bomb. A typical pressure drop 

during sampling was 2 bar, and using this bypass system the flow could be restored within 5 min 

of the sample being taken. 

Typically 30 – 120 mg of pelleted catalyst was packed into the microreactor between two pieces 

of glass wool to prevent any catalyst particles from blocking the filters after the reactor tube. The 

reactor was then cooled by the water bath to 2 ºC. The system was pressurised to the desired 

pressure using the ratio of H2 and O2 desired for the reaction. Typical total gas flows used varied 

between 6 – 45 ml min
-1

. Once the system was pressurised the solvent was pumped through the 

system at 0.2 ml min
-1

. Liquid samples were taken from the sample bomb every 60 minutes and 

the concentration of H2O2 was determined by titration against an acidified dilute Ce(SO4)2 

solution using ferroin as an indicator. 

H2O2 hydrogenation experiments were carried out in the flow reactor by replacing the 25% O2 / 

CO2 feed with 100 % CO2 to maintain the flow rate through the catalyst bed. As a solvent, 500 



                                                                                                                                               Chapter 2 

39 
 

ppm H2O2 solution was passed through the catalyst and by titrating the solution before and after 

passing through the catalyst bed it was possible to determine loss in H2O2 due to hydrogenation. 

H2O2 decomposition experiments were carried out by replacing both the H2 and O2 feeds with 

100% CO2 and passing a 500 ppm H2O2 solution through the catalyst and determining the loss in 

H2O2 by titration. 

 

2.3.4.1 - Calculation of Residence Time 

The residence time of the gas and liquid passing through the catalyst bed was calculated based 

on the total liquid and gas flow rate and the volume of the catalyst bed. The volume of the 

catalyst bed was calculated using the diameter of the reactor tube and the catalyst bed length 

obtained from the calibration plot shown in figure 2.3 based on various amount of 0.5% Au / 

0.5% Pd / TiO2 formed into pellets between 450 – 225 micron.  

 

 

 

Figure 2.3 - Calibration plot to determine catalyst bed length for various catalyst masses of 0.5% 

Au / 0.5% Pd / TiO2 formed into pellets between 450 – 225 micron. 
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The contact time of the system was calculated using following equations:  

                                   
                       

                            
   (2.6) 

                   
 

    
   (2.7) 

 

2.3.5 - Gas Chromatography 

2.3.5.1 - Introduction and Theory 

Chromatography is a technique used to separate a mixture of chemical substances. It relies on 

differences in partitioning behaviour between a flowing mobile phase and a stationary phase. 

Gas chromatography (GC) is one of the most common analytical techniques used to analyse 

mixtures of gases or compounds that can be easily vaporised. Gas chromatography can provide 

both qualitative and quantitative information about gaseous mixtures and also indentify 

impurities in the mixture.
4
 A GC system typically involves introducing a sample of the mixture 

to be analysed into a mobile phase, called the carrier gas. The carrier gas containing the mixture 

is passed through a sample loop and is injected into a column, which is the stationary phase and 

held at a specific temperature by an oven.  

Volatile samples are vaporised before entering the column for analysis. The separation of the 

mixture occurs as each component is carried through the column by the carrier gas at a different 

speed. If the component has a strong interaction with the column it will remain in the column for 

longer than a component that has a weak interaction. The components then leave the column at 

different times, known as the retention time, and enter the detector.  A schematic of a typical gas 

chromatography system is shown in figure 2.4. 

 

Figure 2.4 - Schematic of a typical gas chromatography system. 
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Many factors affect the separation of components, these include carrier gas flow rate, column 

temperature and column type which can all be optimised to give the most effective separation of 

components. Typical carrier gases used are helium, nitrogen and argon with the gas that is used 

depending on the detector and the components that are to be identified. The carrier gas should 

typically be inert and of high purity and a molecular sieve is usually used to filter any moisture 

before it enters the GC system. The carrier gas flow rate can significantly affect the analysis 

because it effects how long the components are retained by the column. The higher the flow rate 

the faster the analysis, but the lower the separation between analytes. Selecting the flow rate is 

therefore a compromise between the level of separation and length of analysis. Samples enter the 

column by passing through an injection port, which is held at a high enough temperature to 

vaporise the components of the mixture if they are not already in the gas phase.  

The column is the stationary phase that the components of the system interact with and leads to 

elution from the column at different times. There are two main types of separation column for 

gas chromatography, packed columns and capillary columns. Packed columns are typically 1-10 

m in length and have an internal diameter of 2-5 mm. The tube is usually made of glass or 

stainless steel and contains finely divided inert solid support material, which is coated with the 

stationary phase. This stationary phase can be varied to provide effective separation of 

components and many columns are readily available to separate the desired mixture of 

compounds. Capillary columns are usually made of flexible materials so column lengths can be 

very long, up to 50 m. The internal diameter of these columns is usually tenths of millimetres 

and the stationary phase is coated on to the internal walls of the column. The temperature that the 

column is held at is important; as a low column temperature produces the greatest level of 

separation, but can result in very long elution times, whereas a high temperature gives fast 

analysis times but shorter retention times and less product separation.  

A thermal conductivity detector (TCD) is the most commonly used detector for GC. The detector 

relies on the difference in thermal conductivity of the carrier gas and the component being eluted 

from the column. The detector contains two sample cells one has pure carrier gas passing 

through it and the other has the gas from the column which will contain the components of the 

mixture after a certain retention time has elapsed. When these components pass through the TCD 

a difference in heat conductivities is detected between the reference cell and the sample cell and 

this gives rise to the signal. 
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2.3.5.2 - GC setup for Analysis of Gas from H2O2 Flow Reactor 

A Varian 3800 GC fitted with a TCD was used to analyse the gas stream exiting from the H2O2 

flow reactor. The reactor was fitted with a 4 m molecular sieve 5 Å column and Ar used as a 

carrier gas at a flow rate of 30 ml min
-1

. As an internal standard 1% of the total gas flow was 

nitrogen, this provided an easy to separate peak to which the integrated area of H2 and O2 could 

be compared before and after the reaction. The column oven was held at 40 ºC for 6 min which 

allowed separation of H2, O2 and N2. The oven was then ramped at 25 ºC min
-1

 up to 200 ºC to 

ensure all CO2 and moisture was removed from the column. The retention times of the 

components analysed during a H2O2 synthesis reaction is shown in table 2.1. 

Component Retention time / min 

H2 1.4 

O2 2.7 

N2 4.5 

CO2 7.2 

 

Table 2.1 – Retention times of components analysed during flow reactor experiments to 

determine H2O2 synthesis activity.  

Hydrogen conversion was measured by calculating the difference between the H2 : N2 ratio 

before and after the reaction. H2 selectivity was calculated based on the rate of H2O2 produced 

per min and the rate of hydrogen converted per min. 

 

2.3.6 - CO Oxidation Testing 

2.3.6.1 - Cardiff University 

Au / Fe2O3 catalysts were tested for CO oxidation using a glass micro-reactor with i.d. 0.5 cm 

shown schematically in figure 2.5. Typically 10 mg of catalyst was packed between two small 

pieces of glass wool to prevent the catalyst from being carried out of the reactor by the gas flow. 

The reactor was fixed inside a thermostatic water bath which was held at 25 °C for the duration 

of the reaction. The gas feed, 5000 ppm CO in synthetic air, was passed through the catalyst bed 
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at various flow rates (25 – 100 ml min
-1

) controlled by a mass flow controller (MFC) giving a 

possible range of gas hourly space velocity (GHSV) of 150,000 – 600,000 h
-1

. The reaction 

products were analysed by on-line GC with a 1.5 m Carbosieve Column.  

 

Figure 2.5 - Schematic of the CO oxidation testing system 

A Varian 3800 GC was used to analyse the gas stream exiting from the CO oxidation reactions. 

He was used as a carrier gas at a flow rate of 30 ml min
-1

 and the GC was set up to inject a 

sample every 4 min into a carbosieve 1.5 m column which was held at 195 °C. This set up 

provided good separation of the CO2 from un-reacted CO and synthetic air, however it did not 

separate the CO from the synthetic air. The components were detected using a TCD detector.  

The retention times of the components are listed in table 2.2; 

 

Component Retention time / min 

CO + synthetic air 0.4 

CO2 1.4 

Moisture 3.0 

 

Table 2.2 – Retention times of the components analysed by GC during CO oxidation tests. 

GC

MFC

PC

Temperature Controlled
Water Bath
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Each reaction was allowed to continue for a minimum of 4 hours with a data point being 

collected every 4 min. Each catalyst test was repeated twice to confirm the result. The GC was 

calibrated with varying concentrations of CO2 in air, up to 5000 ppm CO2 which corresponds to 

100 % CO conversion. The conversion of CO was determined by the integrated area under the 

CO2 peaks which corresponds to the total amount of CO that has been oxidised. The percentage 

of CO conversion was determined using the following equation: 

            

           CO Conversion % =    Area under CO2 peak from reaction x 100         (2.8) 

                      Area under CO2 peak for 5000 ppm calibration 

 

2.3.6.2 - Tokyo Metropolitan University 

Catalytic CO oxidation experiments were also carried out at Tokyo Metropolitan University 

using a similar but more flexible experimental set up. Typically between 10-50 mg of catalyst 

was diluted with between 150 – 190 mg of α-alumina to give a total sample mass of 200 mg. 

This was packed between two pieces of glass wool in a 6 mm diameter u-shaped glass reactor.  

Using 3 flow controllers to mix gases it was possible to use 0.5 – 10 vol% CO and 1 – 20 % O2 

at flow rates 10-100 ml min
-1

 with the balance of the gas being made up by He. Using water and 

oil baths the reactions were able to be carried out between 10 – 120 °C.  

 

2.3.6.3 - Kinetic Measurements 

Experiments were carried out to determine reaction orders and activation energies of CO 

oxidation catalysts using Arrhenius plots. To determine reaction rates more accurately conditions 

were chosen to make it possible to model the reactor system as a differential plug flow reactor. 

These conditions used were: 

1. Small catalyst amounts – to allow the assumption that the reaction rate is constant 

throughout the bed. 

2. Slow reactions – low conversion was achieved by high flow rates which allows the 

assumption that there is no concentration gradients through the catalyst bed. 
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By modelling the reactor as a differential reactor it is possible to determine the reaction rate by 

using the equation: 

Reaction rate = CO Flow rate  x Conversion     (2.9) 

            Catalyst Bed Volume 

 

A derivation of the reaction rate equation for a differential reactor is shown in Appendix 1. 

2.4 - Catalyst Characterisation 

2.4.1 - Temperature Programmed Reduction 

Temperature programmed reduction (TPR) is a thermal analysis technique that allows H2 

consumption to be measured while the sample undergoes a heating profile therefore indicating 

the temperatures at which the sample consumes H2 and has been used extensively to study 

catalytic systems.
5
 During a temperature programmed reduction the sample is heated under a 

flow of H2 containing gas and H2 consumption by the sample can be monitored using a TCD to 

analyse the gas that has passed through the sample cell. A plot of TCD signal against 

temperature can indicate at which temperature the sample undergoes reduction. A positive peak 

in the TCD signal indicates H2 consumption. TPR can give an indication as to what temperature 

a sample needs to be reduced at to generate the desired species on a catalyst and can also give an 

indication of the initial species present on the catalyst. 

TPR profiles were recorded using a Thermo 1100 series TPDRO. 0.1 g of sample was packed 

into the sample tube between quartz wool. Argon (15 ml min
-1

) was then passed through the 

system while it was heated from room temperature to 110 °C at 5 °C min
-1

, where it was held for 

60 min. The sample was allowed to cool to room temperature and following this the gas was 

switched to 10% H2 / Ar (15 ml min
-1

) and the sample was heated at 5 °C min
-1 

up to 800 °C. 

The profile was recorded using a TCD with positive polarity. 

 

2.4.2 - BET Adsorption Isotherms 

The measurement of surface area by N2 adsorption using the BET equation has been used as a 

characterisation tool in catalysis for many years.
6
 The BET isotherm is an extension of the 

Langmuir isotherm that takes into account multiple layer adsorption, making a number of 
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assumptions, firstly gas layers physisorb onto a solid in layers infinitely, secondly there is no 

interaction between the layers and thirdly the Langmuir adsorption isotherm can be applied to 

each layer. This results in the BET equation shown below: 

 

       
  

   

    
 
 

  
  

 

   
      (2.10) 

p is the gas partial pressure, po is the saturation pressure, v is the volume of gas adsorbed at the 

relative pressure, vm is the monolayer volume and c is the BET constant defined as: 

       
      

  
      (2.11) 

where E1 and E2 are the heat of adsorption of the first and second layer respectively, R is the gas 

constant and T the temperature at which the adsorption is carried out.  

At low pressure the surface of the solid is only partially covered by the adsorbing gas, at higher 

pressures the monolayer is filled and the isotherm reaches a plateau. This part of the isotherm 

from zero pressure to the pressure of point B is equivalent to the Langmuir isotherm shown in 

figure 2.6. At higher pressures a second layer starts to form followed by multilayer formation as 

the pressure approaches the saturation pressure. 

 

 

Figure 2.6 – Plot to show the variation in volume of adsorbed gas with increasing partial 

pressure. 
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Surface area analysis was determined using a Micromeritics Gemini 2360 analyser. A known 

amount of sample, 100-200 mg, was placed into a straight walled tube and degassed for 1 h at 

120 °C under a flow of N2 to remove any physisorbed material before surface area analysis was 

carried out. The sample was re-weighed after degassing to account for the slight weight change 

caused by removing physisorbed material. The surface area was analysed using a single point 

analysis typically taking 5 points between P/P
o
 = 0.05 – 0.1 

  

2.4.3 - X-Ray Diffraction 

X-Ray diffraction (XRD) is a technique which can give information about the averaged bulk 

structure of crystallite phases present in the material and also to estimate crystallite sizes. XRD is 

a non-destructive technique which has a detection limit of around 5 wt% and can detect 

crystallite phases down to a size of around 5 nm.
7
 X-rays are generated by bombarding a copper 

target with high energy electrons. As the electrons are slowed by the target they produce a broad 

X-ray background which has superimposed onto it characteristic narrow energies, known as Kα 

and Kβ, which arise from energy released by electrons falling from high energy shells to fill gaps 

in core shells generated by bombardment with primary electrons. The X-rays generated are 

filtered to give a monochromatic source and as these X-rays hit the sample they are scattered by 

the atomic planes present in the crystalline materials. Figure 2.7 shows scattered X-rays exiting 

the sample where they can constructively interfere when the distance between the lattice planes 

is equal to an integer number of wavelengths or when AB + BC = nλ, 

 

 

Figure 2.7 - Diagram to show diffraction of X-rays from successive lattice planes of a crystallite 

where d is the lattice spacing and θ is the angle between incident and normal to the plane. 
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By maintaining a stationary X-ray source and using a movable detector to measure the angle at 

which constructive interference occurs (θ) it is possible to calculate the lattice spacing of the 

crystallite using the Bragg relationship shown as equation 2.12. Each different crystallite has 

reflections at a unique set of angles, θ. 

nλ = 2d sinθ  (2.12) 

n = an integer, λ = X-ray wavelength, d = lattice spacing, θ = angle between incident and normal 

to the plane. 

For small crystallites, for example supported metal nanoparticles, incomplete destructive 

interference gives rise to line broadening. This means that information about crystallite size can 

be extracted from the shape of the peaks. Smaller crystallites have fewer lattice planes giving 

rise to broader peaks, whereas large crystallites which have many lattice planes give rise to very 

narrow peaks. Using the Scherrer equation, shown as equation 2.13, is it possible to estimate the 

crystallite size of a supported metal particle: 

n = 
  

     
   (2.13) 

n = crystallite size, k = form factor, λ = X-ray wavelength β = full width half maximum of the 

peak, θ = diffraction angle. 

Investigation of the bulk structure of the catalytic materials was carried out using a (θ-θ) 

PANalytical X’pert Pro powder diffractometer using a Cu Kα radiation source operating at 40 

KeV and 40 mA. Standard analysis was performed using a 40 min scan between 2θ values of 10-

80° with the samples supported on an amorphous silicon wafer. Diffraction patterns of phases 

were identified using the ICDD data base. 

 

2.4.4 - In-Situ X-ray Diffraction  

An extension of standard XRD is in-situ XRD which allows the study of the bulk phase to be 

monitored continuously as the sample is heated, pressurised or exposed to reaction conditions or 

a pressure of gas. Investigation of the bulk properties of the catalysts was carried out while 

increasing the temperature of the sample to mimic calcination conditions. An X’pert Pro XRD 

fitted with an Anton-Parr XRK900 in-situ cell (internal volume of 0.5 L) was used with XRD 



                                                                                                                                               Chapter 2 

49 
 

patterns recorded between 10-55° 2θ at various temperatures as the sample was heated under 

static air.  Diffraction patterns of phases were identified using the ICDD data base. 

 

2.4.5 - X-ray Photoelectron Spectroscopy  

X-ray photoelectron spectroscopy (XPS) is a characterisation technique which can give 

information such as composition and oxidation state of species on the surface of the catalyst to a 

depth of around 10 nm.
8 

 XPS is based on the photoelectric effect, whereby an atom absorbs high 

energy X-ray radiation and as a consequence ejects a core electron with a characteristic amount 

of kinetic energy. The kinetic energy of the ejected electron depends on the energy of the 

incident X-rays, the binding energy of the core electron and the work function of the 

spectrometer being used. Each element has a specific binding energy for each of its core 

electrons, and this also depends on the oxidation state of the sample. The higher the oxidation 

state of the sample the higher the binding energy of its core electrons. To eject an electron from a 

core level the incident energy of the X-rays has to be greater than this binding energy. The work 

function of the spectrometer is the energy needed to eject an electron from the Fermi level into a 

vacuum and therefore to detect an electron the incident X-rays have to be higher in energy than 

the binding energy and the work function combined with the excess energy being measured as 

the kinetic energy of the electron. Based on the conservation of energy the equation below 

describes the process,
 

Ek = hν – Eb – φ   (2.14) 

Ek – kinetic energy of electron, hν – photon energy, Eb – binding energy, φ – work function 

By keeping the energy of the incident X-ray photons constant and with the binding energy and 

work function being characteristic and constant for each element it is possible to record XPS 

spectra as either intensity of detected photoelectrons vs kinetic energy or by only detecting 

electrons of a certain kinetic energy, intensity of photoelectrons detected vs binding energy.  The 

simplified energy level diagram of equation 2.14 is shown in figure 2.8. This shows that to eject 

an electron from a core level the photon energy of the incident x-ray beam is equal to the binding 

energy, work function and kinetic energy combined. 
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Figure 2.8 - Energy level diagram to illustrate the energy barriers associated with the 

photoelectric effect, where Eb is the binding energy of the core electron, φ is the work function 

and Ek is the residual kinetic energy associated with the electron.  

XPS was performed using a VG EscaLab 220i spectrometer, using a standard Al-Kα X-ray 

source (300 W) and an analyser pass energy of 20 eV. Samples were mounted using double-

sided adhesive tape, and binding energies were referenced to the C 1s binding energy of 

adventitious carbon contamination, which was taken to be 284.7 eV. 

 

2.4.6 - Scanning Transmission Electron Microscopy 

To image structures on the nm scale optical microscopy cannot be used because the wavelength 

of light is greater than the structures trying to be imaged. To image structures 10 nm and below, 

electron microscopy is used. Scanning transmission electron microscopy, STEM, is a technique 

that can give information about the morphology of catalyst particles at the atomic scale.
9
 

STEM employs a high energy electron beam which is focused onto a small area of the sample. 

Detectors positioned around the sample can produce a number of images, a bright field image is 

generated by detecting the electrons which pass straight through and are therefore unaffected by 

the sample. As the beam attenuation is related to the density and thickness of the sample along 

with diffraction of the electron beam, bright field imaging can give a 2 dimensional projection of 

where metal particles are located. Dark field images are created by the diffracted electron beam 

which is detected slightly off angle to the incident beam. The diffracted electrons can only be 

detected when the electron beam passes through a crystalline species such as an oxide support or 

supported metal particle. By detecting at even higher angles electrons scattered by the presence 
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of heavy elements such as supported metal particles can be detected, this is known as high angle 

annular dark field, HAADF imaging and the detection regions are shown in figure 2.9. 

 

Figure 2.9– Schematic of the detection regions of a STEM microscope 

STEM was carried out by Prof. Chris Kiley’s group at Lehigh University. Samples of each 

catalyst were prepared for examination by STEM by dispersing the catalyst powder in high-

purity ethanol. A drop of the suspension was then allowed to evaporate on a holey-carbon film 

supported by a 300-mesh copper TEM grid. Atomic-resolution, high-angle annular dark field 

(HAADF) scanning transmission electron microscopy was carried out using a JEOL 2200FS 

TEM/STEM and an FEI Titan 80-300 TEM/STEM, both equipped with CEOS spherical 

aberration correctors. All STEM-HAADF images were medium low-pass filtered using a 3x3 

kernel in order to reduce high-frequency noise. 

In addition to STEM electron microscopy electron energy-loss spectroscopy (EELS) was carried 

out. EELS involves analysing the energy distribution of electrons that have transmitted through 

the specimen. Compared to X-ray energy dispersive spectroscopy (XEDS), EELS not only 

provides elemental information from the specimen, it also gives information about the chemistry 

and the electronic structure of the specimen atoms, which in turn reveals details of their 

bonding/valence state, the nearest-neighbor atomic structure, and the specimen thickness. 

Aberration-corrected STEM imaging and EEL spectrum-imaging experiments were performed 

with a Nion UltraSTEM100 at Oak Ridge National Lab, equipped with a cold field emission 

electron source and a corrector of 3
rd

 and 5
th

 order aberrations. The microscope was operated at 

100 kV accelerating voltage. EEL spectra were collected using a Gatan Enfina spectrometer. 
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Chapter 3  

 

Direct Synthesis of H2O2 Using Supported 

Palladium Tin Catalysts 

 

3.1 - Introduction 

Many studies
1-19

 have been carried out in order to develop heterogeneous catalysts capable of 

producing H2O2 effectively from molecular H2 and O2. Supported monometallic Pd catalysts are 

the most widely studied catalysts in the literature for the direct synthesis of H2O2. However Pd 

catalysts which are active for H2O2 synthesis also tend to be active for the subsequent 

hydrogenation and decomposition of H2O2 resulting in lower overall yield and reduced H2O2 

selectivity. The addition of halides and acids, either added to the reaction solution or 

incorporated into the catalyst, have been used to suppress the competing hydrogenation and 

decomposition reactions leading to improved yields of H2O2.
5-9 

It has been previously shown that 

Au-Pd bimetallic catalysts are significantly more active and selective for the direct synthesis of 

H2O2 than monometallic palladium catalysts.
10-17

  Furthermore, no acid or halide additives are 

needed when using these more active catalysts.
18 

 

 



                                                                                                                                            Chapter 3 

54 
 

In order to scale up the direct process to an economically viable size, catalyst cost is an 

important factor that has to be taken into account and any reduction in the cost, while still 

maintaining the efficiency of the system, would be very advantageous. There are various ways to 

achieve this including decreasing the amount of the active precious metals present in the catalyst. 

Another way would be to develop alternative Pd-based bimetallic catalysts containing an 

inexpensive second metal as a replacement for Au. However, to date, there are no such 

bimetallic catalysts reported that can compete with the best Au-Pd bimetallic catalysts for the 

direct synthesis of H2O2. As one of the main problems with the Pd based catalyst systems is the 

over hydrogenation of O2 to form water a means of altering the hydrogenation activity of Pd 

might provide a route to a more effective catalyst for the direct synthesis of H2O2.  

Recently a number of papers have appeared in the literature investigating the effect of the 

addition of Sn to Pd in hydrogenation reactions. For example, a study of Pd and Pd-Sn catalysts 

for the hydrogenation of 1-3 butadiene has been reported by Pattamakomsan et al.
20

 They 

showed that for monometallic Pd catalysts, butane was formed and 1-butene was isomerised at 

high conversion of 1,3-butadiene. In contrast, the bimetallic Pd–Sn catalysts showed 100% 

butene selectivity at the relatively high 1,3-butadiene conversion (80%) without any loss of 1-

butene to butane (via hydrogenation) or 2-butene (via isomerisation). CO–IR experiments 

confirmed that Sn addition played an important role in modifying the nature of surface sites and 

the electronic properties of the Pd and hence changing the catalytic properties. 

Another similar study carried out by Sales et al. 
21 

on the liquid phase hydrogenation of hexa-1-

3-diene and hexa-1-5-diene using Pd and Sn-Pd catalysts. In the case of hexa-1,5-diene 

hydrogenation, monometallic palladium catalysts give mainly 1-hexene at conversions lower 

than 80% and hex-2-ene by isomerisation at higher conversions. The selectivity to 1-hexene at 

higher conversions is significantly improved by addition of Sn to Pd. In the hydrogenation of 

hexa-1,3-diene, hex-1-ene is preferentially formed on monometallic palladium catalysts with low  

metal dispersion; on bimetallic Pd–Sn the selectivity to hex-3-ene is enhanced and this isomer is 

even predominant up to 100% conversion using Pd–Sn catalysts. These results are explained by 

the geometric effect of the dilution of Pd atoms, which reduces the palladium double-bond 

isomerisation ability. Both of these studies show that the addition of Sn to Pd catalysts can alter 

the behaviour of the catalyst during hydrogenation reactions and in particular may have an effect 

on subsequent reactions of the products with the catalyst.  
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The only example in the literature of Sn-Pd based catalysts being used in the direct synthesis of 

H2O2 is a patent granted to the Mitsubisi Gas Company and was authored by Tomita et al..
22

 

They claimed that palladium catalysts supported on various oxide supports including SiO2, ZrO2, 

TiO2 and mixed oxides such as MoO3-ZrO2 and WO3-ZrO2 could be improved by impregnating a 

large amount of tin (II) acetate  (15 wt%) onto the oxide support prior to impregnating Pd at a 

much lower loading (0.5 wt%), however no explanation of the effect was given in the article. We 

have therefore concentrated on the possibility of using supported Pd-Sn, with much lower Sn 

quantities than previously reported as a potential catalyst for the direct synthesis of H2O2 because 

of the possible ability of Sn to alter the hydrogenation behaviour of Pd. This work explores the 

potential use of TiO2 and SiO2 based catalysts prepared by conventional impregnation methods 

in the direct synthesis of H2O2.  

3.2 - Results 

Supported Sn-Pd catalysts were prepared on SiO2 and TiO2 by the standard impregnation 

methods explained in chapter 2 using Pd(NO3)2 and SnCl4 as metal precursors because of their 

high solubility in water. All H2O2 synthesis and hydrogenation tests were carried out according 

to the testing procedures outlined in chapter 2 unless otherwise stated. A summary of the testing 

conditions is given below: 

 Rate of H2O2 production determined after reaction using the standard reaction conditions: 

5% H2/CO2 (2.9 MPa ) and 25% O2/CO2 (1.1 MPa) , 8.5 g solvent (5.6 g MeOH + 2.9 g 

H2O), 0.01 g catalyst, 2 
o
C , 1200 rpm, 30 mins. 

 Rate of hydrogenation of H2O2 calculated from the amount of H2O2 hydrogenated using 

standard reaction conditions: 2.9 MPa 5%H2/CO2, 8.5 g solvent (5.6 g MeOH, 2.22 g 

H2O and 0.68 g 50%H2O2), 0.01 g catalyst, 2 
o
C, 1200 rpm, 30 mins. 

3.2.1 - Catalyst Testing 

3.2.1.1 – H2O2 synthesis testing of monometallic and bimetallic Sn-Pd catalysts 

supported on TiO2 and SiO2 

Monometallic catalysts were prepared by impregnation containing 5 wt% Pd and 5 wt% Sn using 

both SiO2 and TiO2 as support materials and calcined at 500 °C for 3 h in static air. Table 3.1 

shows that the supported 5 wt% Pd catalyst was active, as expected, for the direct synthesis of 

H2O2 under our standard reaction conditions. Table 3.1 also shows that the monometallic 5 wt% 
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Sn catalysts were active for H2O2 synthesis however much less active than the monometallic Pd 

catalysts. Bimetallic catalysts were prepared containing 2.5 wt% Pd / 2.5 wt% Sn on both SiO2 

and TiO2, table 3.1 shows that these bimetallic catalysts had enhanced activity when compared to 

the monometallic Pd and Sn catalysts on both supports, indicating a synergistic effect between 

Pd and Sn for the synthesis of H2O2. In the case of SiO2 the bimetallic catalyst has an activity of 

40 mol kg cat
 −1 

h
-1 

compared to monometallic Pd which had an activity of 12 mol kg cat
 −1 

h
-1

. On 

TiO2 a smaller improvement was observed with the productivity increasing from 41 mol kg cat
 −1 

h
-1 

for the monometallic Pd catalyst to 62 mol kg cat
 −1 

h
-1

 for the bimetallic catalyst. 

Catalyst H2O2 productivity
 
/ 

 mol kg cat
 −1 

h
-1

 

H2O2 productivity
 
/ 

 mol kg cat
 −1 

h
-1

 

 TiO2 SiO2 

 

5 % Pd  

 

 

41 

 

12 

5 % Sn  
 

18 7 

2.5 % Pd / 2.5 % Sn  

 

62 40 

2.5 % Pd  

 

20 8 

2.5 % Sn 

 

6 5 

Table 3.1 - H2O2 productivity of monometallic and bimetallic Sn-Pd catalysts supported on SiO2 

and TiO2 showing synergy between Sn and Pd. All catalysts calcined in static air at 500 °C       

for 3 h.  

Comparing the sum of the H2O2 productivity of the supported monometallic 2.5 wt% Pd, 2.5 

wt% Sn with the bimetallic 2.5 wt% Pd / 2.5 wt% Sn catalysts, a clear synergistic effect between 

Pd and Sn when supported on both TiO2 and SiO2 is observed. This effect is similar to the 

synergistic effect previously reported for supported Au-Pd catalysts on identical support 

materials.
10-17

 

3.2.1.2 – H2O2 Synthesis and Hydrogenation Activity of Sn-Pd Catalysts with 

Various Metal Ratios 

To investigate the effect of Sn : Pd ratio on both the synthesis and hydrogenation activity of 

these materials a series of catalysts were prepared on SiO2 and TiO2 containing a total nominal 

metal content of 5 wt% with varying Sn and Pd contents. The H2O2 synthesis results of the 

catalysts containing various Sn : Pd are shown in figure 3.1. 
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Figure 3.1 - Effect of Pd-Sn composition on the synthesis of H2O2 using SiO2 (▲) and TiO2 (■) 

supported catalysts. All catalysts calcined in static air at 500 °C for 3 h.  

The results show that for both the SiO2 and TiO2 supported materials the Pd-Sn bimetallic 

catalysts, irrespective of the Pd : Sn ratio were considerably more active than their corresponding 

monometallic Pd or Sn counterparts containing the same total metal loading (5 wt %). The 

results also show that the Sn : Pd ratio had a significant effect on the activity of the catalyst.  For 

both supports it was found that 2.5 % Pd / 2.5 % Sn was not the optimum composition and 

interestingly the optimum ratio was different on SiO2 than on TiO2, with the optimum SiO2 

catalyst containing 1 wt% Pd / 4 wt % Sn which had a H2O2 synthesis activity of 65 mol kg cat
 −1 

h
-1

 , whereas when TiO2 was used as the support the optimum ratio was 3 wt% Pd / 2 wt% Sn 

which had a productivity of 68 mol kg cat
 −1 

h
-1

. With the exception of the 1% Pd / 4% Sn catalyst, 

all other TiO2-supported bimetallic Pd-Sn catalysts showed higher H2O2 synthesis activities than 

the corresponding SiO2 supported catalysts with the same Pd : Sn ratio. These observations 

suggest that the optimum metal ratio is support dependant for this system, with the SiO2 support 

appearing to utilise the Pd better than the TiO2 system. This is in contrast to the analogous Au-Pd 

system where 2.5% Au 2.5% Pd has been shown to be the most active catalysts on both 

supports.
12

  

Table 3.2 shows the results of the H2O2 hydrogenation tests carried out on the same catalysts 

with varying Sn : Pd ratios. The results show that irrespective of the Pd : Sn ratio, all Pd-Sn 
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bimetallic TiO2 or SiO2 supported catalysts were less active for H2O2 

hydrogenation/decomposition than the corresponding Pd monometallic catalysts. On both 

supports the monometallic Sn catalysts showed very low hydrogenation activity especially on 

SiO2 where no hydrogenation activity was measured.  It is interesting to note that on TiO2 the 

catalyst with the lowest hydrogenation activity,  2 % wt Pd / 3 wt % Sn, is not the most active for 

direct synthesis of H2O2. Similarly on SiO2 the sample with the lowest hydrogenation activity (3 

% wt Pd / 2 wt% Sn) is not the most active for the synthesis of H2O2. This indicates that the 

addition of Sn lowers the hydrogenation activity of Pd catalysts but at the cost of some synthesis 

activity, meaning that the hydrogenation reaction cannot be switched off independently of the 

synthesis reaction. 

Catalyst H2O2 hydrogenation 

rate / 

mol kg cat
 −1 

h
-1

 

H2O2 hydrogenation 

rate / 

mol kg cat
 −1 

h
-1

 

 
TiO2 SiO2 

5 % Pd 

 

126 113 

5 % Sn 

 

32 0 

4 % Pd / 1 % Sn 

 

83 75 

3 % Pd / 2% Sn 

 

65 50 

2.5 % Pd / 2.5 % Sn 

 

41 53 

2 % Pd / 3 % Sn 

 

12 60 

1 % Pd / 4 % Sn 

 

65 66 

Table 3.2- H2O2 hydrogenation over monometallic and bimetallic Sn-Pd catalysts supported on 

SiO2 and TiO2 containing various metal ratios. All catalysts calcined in static air at 500 °C       

for 3 h.  

 

These results indicate that Sn as a catalyst component may play an analogous role to that 

identified for Au in previous studies
10-17

, by helping to suppress the H2O2 

hydrogenation/decomposition which results in an enhancement of the H2O2 yield in the calcined 

catalysts compared to the monometallic samples. 
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3.2.1.3 – Effect of catalyst reduction on H2O2 synthesis and hydrogenation 

over Pd-Sn catalysts 

Having identified the optimum Pd : Sn ratios for the TiO2-supported (3% Pd / 2% Sn / TiO2) and 

SiO2-supported (1% Pd / 4% Sn / SiO2) bimetallic catalysts, the effect of reducing the catalysts 

to investigate if the catalysts could be made more active by generating metallic Pd species after 

calcination at 500 °C for 3 h was investigated. Reductions were carried out on the calcined 

samples using 5% H2 in Ar at a range of temperatures (100 – 500 
o
C, for 2 h) on H2O2 synthesis 

and hydrogenation.  

 

Figure 3.2 - Effect of reduction at varying temperatures of 3 % Pd / 2 % Sn / TiO2,  and 1 % 

Pd / 4 % Sn / SiO2, ▲, on their H2O2 synthesis activity. All catalysts calcined in static air at 500 

°C for 3h followed by a subsequent reduction at various temperatures for 2 h under a flow of 5% 

H2 / Ar.  

Figure 3.2 shows H2O2 productivity as a function of reduction temperature. Reduction of the 1% 

Pd / 4% Sn / SiO2 catalyst resulted in enhanced H2O2 productivities at lower reduction 

temperatures (100 – 200 
o
C) increasing from 65 mol kg cat

 −1 
h

-1
 to 93 mol kg cat

 −1 
h

-1 
after a 

reduction at 100 °C however this falls to 72 mol kg cat
 −1 

h
-1

 after reduction at 200 °C. The 

relationship between H2O2 productivity and the reduction temperature for the SiO2-based catalyst 

shows that the activity decreases dramatically if the reduction temperature is increased beyond 

300 °C, with the productivity decreasing to ~ 30 mol kg cat
 −1 

h
-1

 after reduction at these higher 
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temperatures. The H2O2 productivity of the optimum bimetallic Sn Pd catalyst supported on TiO2 

did not show any improvement on reduction at 100 °C but a slight decrease in activity from 68 

mol kg cat
 −1 

h
-1 

to 58 mol kg cat
 −1 

h
-1

. At temperatures from 100 – 300 °C the catalyst showed very 

little change in H2O2 productivity and similarly to the SiO2 samples at reduction temperatures 

higher than 300 °C the activity reduces dramatically  

Figure 3.3 shows the catalyst hydrogenation activity of the Pd-Sn catalysts as a function of 

reduction temperature. For the SiO2 catalyst (1 % Pd / 4 % Sn / SiO2) and TiO2 catalyst (3 % Pd / 

2 % Sn / TiO2) it can be seen that the low temperature reduction greatly enhances the catalysts 

H2O2 hydrogenation activity which is detrimental in terms of H2O2 selectivity. Figure 3.3 also 

shows that catalyst reduction at high temperatures increases the H2O2 hydrogenation activity for 

both the TiO2 and SiO2-based catalysts when compared to the calcined catalyst; however the 

increase was to a lesser extent than reduction at low temperatures. This observation suggests that 

the positive effect on the H2O2 productivity of reducing the SiO2-based Pd-Sn catalysts is related 

to the generation of species that promote the overall hydrogenation of both O2 and H2O2. For the 

bimetallic TiO2 supported catalyst to retain a similar observed synthesis activity (figure 3.2) 

while the hydrogenation activity increases dramatically after reduction at 100 °C  also suggests 

that the synthesis activity must also have increased after a low temperature reduction however 

was masked by the increase in the hydrogenation activity. 

 

Figure 3.3 - Effect of reduction temperature on H2O2 hydrogenation over 4 % Sn / 1 % Pd / SiO2 

and 3 % Pd / 2 % Sn / TiO2.   ■  Calcined 500 °C / 3 h in air,  ■ Calcined 500 °C / 3 h + Reduced 

100 °C 2 h in 5% H2/Ar,  ■ Calcined 500 °C / 3 h + reduced 300 °C 2 h in 5% H2/Ar. 
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Figure 3.4 compares the H2O2 synthesis activity of unreduced mono-metallic Pd / SiO2 and Sn / 

SiO2 and the optimum Pd-Sn / SiO2 catalyst, with the activity of the analogous catalysts which 

have been reduced at the optimum reduction temperature, 100 
o
C for 2 h. The Pd-only and Pd-Sn 

bimetallic catalysts both showed marked increases in H2O2 synthesis activity with catalyst 

reduction, while the Sn-only catalyst did not show any significant improvement upon reduction 

at 100 °C. While the reduced 1% Pd / 4% Sn / SiO2 bimetallic catalyst was the best H2O2 

synthesis catalyst amongst all catalysts investigated, reduction of the Pd-only catalyst led to the 

highest degree of enhancement, with H2O2 productivity increasing from 12 to 67 mol kgcat
-1

 h
-1

 

compared to an increase from 66 to 93 mol kgcat
-1

 h
-1

 for the 1% Pd / 4 % Sn / SiO2 bimetallic 

catalyst. Although normalised to the amount of Pd the bimetallic catalyst shows a higher 

improvement per weight % of Pd which could indicate an increased dispersion of Pd in the 

bimetallic sample. 

 

Figure 3.4 - Effect of optimum reduction temperature (at 100 
o
C) on the H2O2 synthesis activity 

of SiO2-based  Pd-only, Sn-only and 4 % Sn / 1% Pd catalysts. ■ Calcined 500 °C / 3 h in air, ■ 

calcined 500 °C / 3 h + reduced 100 °C 2 h in 5% H2/Ar. 

The synthesis enhancement due to catalyst reduction demonstrated by the Pd-only catalyst, 

coupled with the observation that the reduction of the Sn-only catalyst did not promote H2O2 

synthesis activity and the large increase in the hydrogenation activity after reduction, suggests 

that the promotional effect observed upon reduction of the SiO2-based bimetallic Pd-Sn catalysts 

is much more likely to be related to a reduction of Pd rather than Sn species. 
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3.2.1.4 – Effect of catalyst preparation method on the H2O2 synthesis activity 

of Sn-Pd catalysts. 

The effect of catalyst preparation route was investigated for the optimum catalyst composition on 

both SiO2 and TiO2. Variations in the preparation method were investigated including co-

impregnation or sequential impregnation and the number of heat treatments applied during these 

preparation was also investigated with the results being shown in table 3.3. The nomenclature 

used in the table relates to the order of the metal impregnation, for example 1 % Pd @ 4 % Sn / 

SiO2, catalysts are denoted metal 2 @ metal 1 / support, where metal 1 was impregnated onto the 

support first and then dried at 110 ºC for 16 h followed by either calcination at 500 ºC for 3 h 

before the impregnation of metal 2 followed by the same drying and calcination procedure, or a 

second drying step followed by one calcination. 

Catalyst Heat Tretments H2O2 productivity
 
/ 

 mol kg cat
 −1 

h
-1

 

1 % Pd / 4 % Sn / SiO2 500 °C / 3 h 65 

1 % Pd @ 4 % Sn / SiO2 500 °C / 3 h 32 

1 % Pd @ 4 % Sn / SiO2 500 °C / 3 h   x 2 7 

   

3% Pd / 2% Sn / TiO2 500 °C / 3 h 68 

3% Pd @ 2% Sn / TiO2 500 °C / 3 h 38 

3% Pd @ 2% Sn / TiO2 500 °C / 3 h   x 2 12 

Table 3.3 - Effect of catalyst preparation method on the H2O2 synthesis activity of 1 % Pd / 4 % 

Sn / SiO2 and 3% Pd / 2% Sn / TiO2. 

 

The results in table 3.3 show that a similar trend is followed by both SiO2 and TiO2 systems.  

Both co-impregnated catalysts showed the highest activity when compared to the catalysts 

prepared by sequential impregnation with a drying step in between metal impregnation before 

calcination. The lowest activity catalyst for both TiO2 and SiO2 supported materials were those 

prepared by sequential impregnation with a calcination between the impregnation of each metal. 

All further experiments were carried out on catalysts prepared by co-impregnation of Sn and Pd 

as this was shown to be the best impregnation method to provide high activity catalysts. 
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3.2.1.5 – Effect of various heat treatments on the H2O2 synthesis activity and 

stability of bimetallic Sn – Pd catalysts. 

The effect of a range of heat treatments on the H2O2 synthesis performance and stability of the 

best bimetallic Sn-Pd catalysts supported on SiO2 and TiO2 was investigated and is reported in 

tables 3.4 and 3.5. For any industrial catalytic process to be viable a stable catalyst is essential to 

prevent the constant need to replace the catalyst and maintain a high yield of the desired product 

over time. The optimum SiO2 based Sn-Pd bimetallic catalyst, 1% Pd / 4% Sn / SiO2, was shown 

to be unstable after calcination at 500 °C for 3 h with the H2O2 productivity dropping from 66 to 

22 mol kg cat
 −1 

h
-1

 on catalyst re-use. Increasing the calcination temperature to 600 °C for 3 h 

produced catalysts with much lower activity and it was shown to be similarly unstable on re-use.  

 

 

Heat Treatment 
1

st
 Use 

H2O2  

productivity / 

mol kg cat
 −1 

h
-1

 

2
nd

  Use 

H2O2  

productivity / 

mol kg cat
 −1 

h
-1

 

3
rd

  Use 

H2O2  

productivity / 

mol kg cat
 −1 

h
-1

 

500 °C / 3 h / air 

 

66 22 n.d. 

600 °C / 3 h / air 

 

25 12 n.d. 

500 °C / 3 h / air 

+ Reduced 100 °C / 2 h 

 

93 69 n.d. 

500 °C / 3 h / air 

+ Reduced 100 °C / 4 h 

 

53 42 40 

500 °C / 3 h / air 

+ Reduced 200 °C / 2 h 

 

76 76  74 

500 °C / 3 h / air 

+ Reduced 200 °C / 4 h 

 

32 28 28 

Table 3.4 – Table to show the effect of heat treatment on H2O2 productivity and stability over a 

1% Pd / 4% Sn / SiO2 catalyst. n.d. – not determined 

After reduction in 5% H2/Ar at 100 °C for 2 h, the H2O2 synthesis activity of the catalyst 

increased from 66 to 93 mol kgcat
-1

 h
-1 

as has been shown previously. The stability of the catalyst 

also improved after this reductive treatment, giving H2O2 productivity of 69 mol kgcat
-1

 h
-1

 on the 

second use, a much smaller drop than the catalysts which had been calcined only.  Increasing the 

reduction time from 2 to 4 h lowered the activity of the catalyst, but did increase is stability 
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relative to the calcined catalyst.  Increasing the reduction temperature from 100 to 200 °C for 2 h 

reduced the activity of the catalyst to 76 mol kgcat
-1

 h
-1

, but the catalyst then retained its activity 

on second and third reaction cycles. Increasing the reduction treatment time to 4 h at 200 °C 

significantly decreased the activity of the catalyst however the stability of the catalyst remained. 

These findings point to the heat treatment being crucial in developing a stable catalyst for H2O2 

synthesis and that a reduction temperature of 200 °C is necessary to impart stability onto the 

calcined  Sn-Pd / SiO2 system. However these stable catalysts have a much higher hydrogenation 

activity than the calcined only catalysts which is detrimental in achieving high H2O2 selectivity. 

Table 3.5 shows the effect of heat treatment on the optimum bimetallic Sn-Pd / TiO2 catalyst, 3% 

Pd / 2 % Sn / TiO2. Calcination in air at 600 and 700 °C produced catalysts which had a lower 

H2O2 synthesis activity than those calcined at 500 °C.  

 

 

    Heat Treatment 
1

st
 Use 

H2O2  

productivity
 
/ 

 mol kg cat
 −1 

h
-1

 

2
nd

  Use 

H2O2  

productivity / 

mol kg cat
 −1 

h
-1

 

3
rd

  Use 

H2O2  

productivity / 

mol kg cat
 −1 

h 

500 °C / 3 h / air 

 

68 14 n.d. 

600 °C / 3 h / air 

 

56 33 26 

700 °C / 3 h / air 

 

25 18 18 

500 °C / 3 h / air 

+ Reduced 200 °C / 2 h 

 

60 58 
 

60 

500°C / 3 h / air 

+ Reduced 300 °C / 2 h 

 

68 51  50 

Table 3.5 - Investigation of the effect of heat treatment on H2O2 productivity and stability of          

3 % Pd / 2 % Sn / TiO2.n.d. – not determined 

 

All catalysts calcined in air showed poor re-usability similar to the SiO2 samples, with their H2O2 

synthesis activity decreasing considerably on the second use.  Reduction of 3% Pd / 2 % Sn / 

TiO2 material in 5 % H2 / Ar at 200 °C for 2 h after calcination at 500 °C led to a catalyst that 

consistently maintains a H2O2 synthesis activity of 60 mol kgcat
-1

 h
-1 

which could be re-used at 

least three times without significant loss of activity. Reduction of the calcined catalyst in 5% 

H2/Ar at 300 °C for 2 h led to a catalyst that lost activity after first use, with its productivity 
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dropping from 68 to 50 mol kgcat
-1

 h
-1

, but on third use maintained an activity level of 50 mol 

kgcat
-1

 h
-1

. Again this set of results suggest that the heat treatment is crucial and the species 

present on the catalysts need to be reduced at a temperature of 200 °C or above to become stable 

to multiple reaction recycles. Again in the case of the TiO2 supported materials the reductive 

treatment caused an increase in hydrogenation activity. These results (table 3.4 and 3.5) support 

previous findings when working with Au-Pd systems
15

 in showing that optimising the catalyst 

heat treatment is a critical step in producing active stable catalysts.  

 

3.2.1.6 – Effect of subsequent heat treatments on stable Sn-Pd catalysts  

The observation that the catalyst hydrogenation and synthesis activity increases on reduction is 

consistent with the work of Choudhary and Samanta
23

 who observed that metallic Pd is a more 

active catalyst for the direct synthesis and hydrogenation of H2O2 than PdO. The Sn-Pd catalyst 

system appears to have an inherent compromise between hydrogenation activity and stability. A 

stable catalyst can be prepared however it has a relatively high hydrogenation activity imparted 

by the reduction step.  If by following this preparation method some of the Pd is not used in 

forming Sn-Pd alloys this would result in the formation of metallic Pd nanoparticles which will 

show a high hydrogenation activity or alternatively Sn-Pd alloy or mixed oxides formed in the 

preparation could be reduced to generate metallic Pd species. To try and lower the hydrogenation 

activity of the reduced catalysts a subsequent heat treatment in air was added to the preparation 

to try and re-oxidise these particles and lower the hydrogenation activity. The results are shown 

for the best SiO2 catalyst, 1% Pd  /  4% Sn / SiO2 in table 3.6 below.  

The results in table 3.6 show that after an initial calcination of 500 °C / 3 h / air gave an active 

catalyst with low hydrogenation activity however is unstable to re-use. After reduction at 200 °C 

/ 2 h using 5% H2 / Ar the catalyst produced was much more active and stable but showed a high 

hydrogenation activity, presumably due to the presence of metallic Pd either in the alloy particles 

or as isolated nanoparticles. The addition of a third heat treatment by way of calcination in air for 

various times firstly showed a decrease in activity at short calcination times of 1 h however the 

hydrogenation activity also reduced. On increasing the time of this third calcination the 

hydrogenation activity continued to decrease and the synthesis activity began to increase, 

presumably due to the reduction in hydrogenation activity of the catalyst on the re-oxidation of 

Pd to PdO. It may also be possible that this third calcination could generate a different 

distribution of Sn-Pd alloys. The optimum calcination treatment was to calcine the reduced 
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sample at 400 °C for 3 h in air, this gave an active stable catalyst that had no hydrogenation 

activity.  

Table 3.6 - Investigation of the effect of subsequent heat treatments on H2O2 productivity and 

stability over a 1% Pd / 4% Sn / SiO2 catalyst. 

The same calcination procedures were applied to the best TiO2 supported catalyst and showed 

similar effects and the results are shown in table 3.7. On calcination at 400 °C in air the 

hydrogenation activity of the catalyst reduced with increasing calcination time. The 

hydrogenation activity reduced from 292 to 15 mol kg cat
 −1 

h
-1 

after calcination for 4 h, while still 

maintaining the synthesis activity of the calcined and reduced catalyst. This sample shows 

optimum performance at a slightly longer time than the SiO2 catalyst which could be down to the 

higher Pd content in this catalyst requiring a longer time to re-oxidise the Pd or stronger 

interactions between the metal particles and the TiO2 support. The sample shows that the H2O2 

synthesis activity decreases slightly on subsequent calcinations for 1-4 h while the hydrogenation 

activity reduces more quickly to around 15 mol kg
-1

 h
-1

, this indicates a fine balance between the 

synthesis and hydrogenation activity of the reduced and re-oxidised catalysts. The catalyst 

Heat Treatment 1
st
 Use 

H2O2  

productivity / 

mol kg cat
 −1 

h
-1

 

2
nd

  Use 

H2O2  

productivity / 

mol kg cat
 −1 

h
-1

 

H2O2 

hydrogenated/ 

mol kg cat
 −1 

h
-1

 

500 °C / 3 h / air 

 

66 22 66 (2%) 

500 °C / 3 h / air 

+ Reduced 200 °C / 2 h 

 

500 °C / 3 h / air 

+ Reduced 200 °C / 2 h 

+ 400 °C / 1h / air 

 

76 

 

 

 

           27 

76 

 

 

 

28 

340 (10%) 

 

 

 

113 (3.5%) 

500 °C / 3 h / air 

+ Reduced 200 °C / 2 h 

+ 400 °C / 2h / air 

 

35 32 38 (1%) 

500 °C / 3 h / air 

+ Reduced 200 °C / 2 h 

+ 400 °C / 3h / air 

 

50 50 0 

500 °C / 3 h / air 

+ Reduced 200 °C / 2 h 

+ 400 °C / 4h / air 

 

22 20 0 
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subsequently calcined for 4 h at 400 ºC showed very low hydrogenation activity was stable to re-

use and showed comparable activity to the well-studied 2.5% Au / 2.5% Pd / TiO2 catalyst which 

has a H2O2 productivity of 64 mol kg cat
 −1 

h
1
. The Au containing catalyst has a much higher 

hydrogenation activity of 235 mol kg cat
 −1 

h
1
 and as thus the development of a catalyst with Au 

replaced by Sn which is stable and showed very little hydrogenation activity represents a big step 

forward in the development of catalysts for the direct synthesis of H2O2. 

 

 

Heat Treatment 1
st
 Use 

H2O2  

productivity / 

mol kg cat
 −1 

h
-1

 

2
nd

  Use 

H2O2  

productivity / 

mol kg cat
 −1 

h
-1

 

H2O2 

hydrogenated/ 

mol kg cat
 −1 

h
-1

 

500 °C / 3 h / air 

 

68 14 65 (2%) 

500 °C / 3 h / air 

+ Reduced 200 °C / 2 h 

 

           60        58 292 (8.5%) 

500 °C / 3 h / air 

+ Reduced 200 °C / 2 h 

+ 400 °C / 1h / air 

 

73 70 237 (7.5 %) 

500 °C / 3 h / air 

+ Reduced 200 °C / 2 h 

+ 400 °C / 2h / air 

 

65 63 159 (5%) 

500 °C / 3 h / air 

+ Reduced 200 °C / 2 h 

+ 400 °C / 3h / air 

 

59 60 34 (1%) 

500 °C / 3 h / air 

+ Reduced 200 °C / 2 h 

+ 400 °C / 4h / air 

 

61 60 15 (0.5%) 

Table 3.7 - Investigation of the effect of subsequent heat treatments on H2O2 productivity and 

stability over a 3% Pd / 2% Sn / TiO2 catalyst. 

 

 

 

 



                                                                                                                                            Chapter 3 

68 
 

3.2.2  – Catalyst Characterisation 

3.2.2.1 – Temperature Programmed Reduction 

As a reductive heat treatment has been shown to be crucial in obtaining stable Sn-Pd catalysts for 

the direct synthesis of H2O2 temperature programmed reduction (TPR) of the catalysts was 

carried out following calcination at 500 °C. This allowed the investigation of the reducibility of 

the catalysts and to try and identify the metal species present on the bimetallic samples that may 

be responsible for the enhanced H2O2 synthesis activity. Figure 3.5 shows the TPR profiles of the 

monometallic Sn and Pd catalysts supported on TiO2 and also the bare TiO2 support after an 

identical calcination treatment at 500 °C for 3 h. As expected, the TPR profile of the bare TiO2 

support after being calcined at 500 °C showed no major reduction peaks in the temperature range 

50-800 °C.  

 

Figure 3.5 -TPR profiles of monometallic Pd and Sn supported on TiO2 after calcination at       

500 °C for 3 h in static air. 

The monometallic 5% Pd / TiO2 catalyst TPR profile is also shown in figure 3.5. A large 

negative response at 90 °C can be attributed to the evolution of hydrogen from the sample 

resulting from the decomposition of palladium-β-hydride which is consistent with literature 

examples.
24

 The TPR profiles for Pd / TiO2 recorded at sub-ambient temperatures have been 

reported in the literature to show reduction of palladium oxide to Pd metal at temperatures as low 

as 5 °C; this would allow hydrogen to absorb into the metallic palladium particles and form the 
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palladium-β-hydride phase which is seen in this profile. The monometallic Pd catalyst also 

showed small reduction bands at 275 and 500 °C which may be attributed to strongly bound 

palladium nanoparticles.
24

 The TPR profile of the monometallic 5% Sn / TiO2 catalyst (figure 

3.5) showed a number of features between 200 and 800 °C. The onset of reduction is seen at   

200 °C with bulk reduction beginning at around 450 °C. The large signal present at 450 °C 

correspond to bulk reduction of Sn (IV) to Sn (II) and the features present at lower temperatures 

have been assigned to the reduction of small surface Sn species. A high temperature reduction 

peak is centred at 720°C, which can be attributed to the reduction of Sn (II) to metallic Sn.
25

 

The TPR profiles of the bimetallic catalysts, shown below in figure 3.6, show very different 

features compared to either of the monometallic Pd and Sn catalysts. All samples show a 

response at 90 °C attributed to the decomposition of palladium-β-hydride; however the intensity 

of this signal decreased considerably and non-linearly with increasing Sn content (i.e. decreasing 

Pd content). This could either suggest that the presence of Sn inhibits the formation of 

palladium-β-hydride or that the Pd is present in a different form, such as a Pd-Sn alloy, which 

prevents it from forming palladium-β-hydride. This observation is important as it indicates that 

the addition of Sn may decrease the hydrogenation activity of the bimetallic catalysts by 

stopping the formation of Pd-β-hydride.  

 

Figure 3.6 - TPR profiles of bimetallic Pd-Sn catalysts with various metal ratios supported on 

TiO2 after calcination at 500 °C for 3 h in static air. 
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The Pd-Sn bimetallic catalysts showed additional high temperature reduction peaks (above     

300 
o
C) which are related to Sn reduction. Interestingly the TPR profiles of the bimetallic 

catalysts show a new unique feature at ca. 150 °C. This feature is not present in the TPR profiles 

of either the monometallic Pd or Sn catalysts and may be related to a lowering of the reduction 

temperature for the Sn species which occurred at 450 °C in the monometallic Sn catalyst. 

However the position of the highest temperature Sn reduction peak (700 
o
C) is unaffected by the 

Pd content which may suggest that Sn reduction is independent of the presence of Pd. This new 

feature in the TPR profiles of the Pd-Sn bimetallic catalysts varies in intensity with varying Sn : 

Pd, with the 2.5 % Sn / 2.5 % Pd / TiO2 the most active of the three catalysts showing the largest 

intensity for this feature. If this reduction feature was solely associated with Sn reduction, then it 

would be expected to give the highest signal for the sample containing the most Sn, but this is 

not the case. Also, if this feature indicates a lowering of the reduction temperature of Sn, then the 

observed temperature of the reduction should decrease as more Pd is added to the catalyst.  

The presence of this feature also coincides with the decrease in the intensity of the palladium-β-

hydride signal, which may suggest that the some of the Pd surfaces are no longer readily 

available to form palladium-β-hydride. These observations suggest that this unique TPR feature 

at 150 
o
C present in the TiO2-based Pd-Sn bimetallic catalysts is likely to be related to a mixed 

Pd-Sn species, presumably a Pd-Sn alloy phase which may be active for the direct synthesis of 

H2O2. TPR profiles were also recorded for the equivalent monometallic Sn and Pd and bimetallic 

Sn-Pd catalysts supported on SiO2 and are shown in figure 3.7. The monometallic 5% Pd / SiO2 

catalyst also showed a significant response at 90 °C which can be assigned to the evolution of 

hydrogen from the sample resulting from the decomposition of palladium-β-hydride. The 

monometallic Sn catalyst showed a broad reduction feature beginning at 200 °C with the highest 

intensity signal at 450 °C, with no features above 600 °C. According to Mossbauer studies by 

Nava et al. with Sn / SiO2 systems 
24

 after reduction above 600 °C all the Sn is present as 

metallic Sn. 
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Figure 3.7 - TPR profiles of monometallic Pd and Sn supported on SiO2 after calcination at 500 

°C for 3 h in static air. 

The TPR profiles of the bimetallic catalysts supported on SiO2 are shown in figure 3.8. They 

show different features depending on the ratio of the two metals. The bimetallic 4 % Pd / 1 % Sn 

/ SiO2 catalyst shows a small negative peak due to palladium-β-hydride decomposition, which is 

much less intense than that expected when compared to the 5% Pd-only catalyst, which implies 

that the presence of Sn is limiting the formation of this hydrogen containing Pd phase. No other 

major features were seen in this TPR profile. In direct contrast, the 2.5 % Pd / 2.5 % Sn / SiO2 

material did not show this feature at 90°C. Instead a positive peak was seen at 100 °C, as was 

observed for the TiO2-supported samples with higher Sn loadings, but with no palladium-β-

hydride decomposition peak. This reduction feature was split into a doublet which might indicate 

either the presence of two mixed phases or two closely separated reduction steps of a single 

species. A broad but weak peak is also present between 300 and 400 °C which can be assigned to 

Sn reduction. The catalyst with a higher Sn content, i.e. 4 % Sn / 1 % Pd / SiO2, also showed a 

broad reduction feature between 300 and 400 °C, and the low temperature reduction peak which 

only consists of a single peak in this profile. In contrast to the reduction profiles of the TiO2-

supported catalysts, no palladium-β-hydride decomposition peak was observed for the catalysts 

containing 2.5 % and 4 % Sn. This could indicate that if Sn-Pd alloy species are the cause of the 

decrease in the formation of palladium-β-hydride, they may form more readily on the SiO2 

support. 
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Figure 3.8 - TPR profiles of bimetallic Pd-Sn catalysts with various metal ratios supported on 

SiO2 after calcination at 500 °C for 3 h in static air. 

From the TPR profiles of the monometallic Pd and Sn catalysts it can be seen that the reduction 

temperatures of the two profiles do not overlap, with all Pd features being present below 200 °C 

whereas all Sn reduction features are present between 200 - 600 °C. An obvious feature of the 

TPR containing both Sn and Pd is the lower area of the Sn reduction peaks above 200 °C when 

compared to the monometallic sample even when the differences in loading are taken into 

account.  Table 3.8 shows the integration values of the monometallic and bimetallic TPR profiles 

of the SiO2 supported catalysts between 200 and 600 °C after they have been normalised with 

regard to sample mass, then signal per weight percent of Sn in the catalyst was calculated for 

comparison between samples.  

% Pd 

Content 

% Sn 

Content 

Sample weight 

normalised signal 

area 

between           

200 – 600 °C 

Normalised 

Signal area 

between 200 – 

600 °C per % of 

Sn 

Normalised 

Signal with 

respect to 5% Sn 

Catalyst 

Productivity 

mol kg cat
 −1 

h  

5 0 0 0 - 12 

0 5 246446 49289 1 7 

1 4 66076 16519 0.33 68 

2.5 2.5 96411 38565 0.78 36 

4 1 46466 46466 0.94 24 

 

Table 3.8 - Table showing the integration values of the SiO2 supported catalyst TPR profiles. 
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As can be seen from the table above the monometallic Pd catalysts shows no signal above 200 

°C, whereas the monometallic Sn catalyst shows a large signal between 200 and 600 °C. When 

1% Pd is added to the catalyst, the Sn signal between 200 – 600 °C dramatically reduces and is 

accompanied by emergence of the positive TPR feature below 200 °C. When 1% of the Sn is 

replaced by Pd it would be expected to see a reduction of 20% of the Sn signal between 200 and 

600 °C if there was no interaction or alloying between the two metals. In fact the signal reduces 

by more than 65% with respect to the monometallic Sn catalyst which suggests that there is a 

strong interaction between the Sn and Pd in the bimetallic catalysts. On increasing the Pd content 

the Sn signal between 200 – 600 °C still indicates that the Sn and Pd are interacting by a lower 

than expected signal corresponding to Sn reduction. The catalysts containing 4% Pd and only 1% 

Sn shows only a small deviation from the expected value for the reduction of 1% Sn, and this 

catalyst only showed a small improvement when compared to the monometallic palladium 

catalyst which may indicate only a small interaction between the Pd and Sn. The normalised 

signal between 200 – 600 °C with respect to the monometallic Sn catalysts is a good indication 

of the amount of interaction between the two metals and it follows that the more interaction there 

is the higher the activity of the catalyst.  

Due to the higher reduction temperature of Sn on TiO2, as seen in figure 3.5, the same analysis 

cannot be carried out on the Sn-Pd / TiO2 TPR profiles although a similar effect can be seen on 

the addition of Pd to Sn. With the 2.5% Sn / 2.5% Pd catalysts showing almost no signal at high 

reduction temperatures where it is expected to see a Sn reduction peak with the area of half the 

monometallic sample. This indicates that nearly all the Sn is interacting with the Pd in either 

alloy formation of in close proximity to the Pd species. This ratio corresponds to the best catalyst 

formulation found on TiO2 after calcination at 500 °C with an activity of 68 mol kg cat
 −1 

h
-1

. This 

catalyst also shows the biggest positive signal between 100 - 200 °C which may represent the 

reduction of a Sn-Pd species, this sample also shows a small palladium-β-hydride which 

indicates that there is some small Pd only particles present in the sample which may be 

responsible for the high hydrogenation activity of the catalysts after reduction to make the 

catalyst stable. 

Figure 3.9 shows both the TPR profile and the H2O2 productivity of the 4 % Sn / 1 % Pd / SiO2 

catalyst. It can be clearly seen that as the reduction temperature is increased beyond the 

temperature needed to reduce the feature observed at 100 °C, the productivity increases to its 

maximum value of 93 mol kgcat
-1

 h
-1

. As the temperature is further increased beyond this point 

(i.e. 150 and 200 °C) the productivity decreases slightly to 76 and 72 mol kgcat
-1

 h
-1

, with the 
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200 °C reduction giving a stable catalyst. This indicates that complete reduction of this species 

may be needed to form stable catalysts. Increasing the reduction temperature even further to 300 

and 400 °C produced low activity catalysts based on the TPR results it is considered that 

reduction at these high temperatures results in Sn reduction which may be responsible for the 

lower catalytic activity. 

 

Figure 3.9 - Combined TPR profile and H2O2 productivity after various reduction temperatures 

of 4 % Sn / 1 % Pd /  SiO2. 

Figure 3.10 shows the TPR profiles of the 4 % Sn / 1 % Pd / SiO2 prepared by various 

impregnation methods, including co-impregnation methods and sequential impregnation 

methods. The TPR profiles show very different features depending on the preparation methods 

used. The 1 % Pd @ 4 % Sn / SiO2 catalyst which as has been calcined between the 

impregnation of Sn and Pd shows a TPR profile with a large negative peak at 80 °C which 

indicates a palladium-β-hydride phase which means that Pd is present in the catalyst which is not 

associated with Sn. This TPR profile looks most like a combination of the monometallic Pd and 

Sn catalyst TPR profiles and is the least active catalyst.  The catalysts prepared with one 

calcination but sequential impregnation of the metals showed a large positive reduction peak that 

was split into a doublet which might indicate either the presence of two Sn-Pd species indicating 

that the metals may not be as intimately mixed Sn-Pd species as the catalyst prepared by co-
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impregnation. There is also a large signal at higher reduction temperatures indicating a large 

amount of isolated Sn still present in the catalyst when compared to the catalyst prepared by co-

impregnation.  

 

Figure 3.10 – TPR profiles of 1% Pd / 4% Sn / SiO2 prepared by various impregnation methods. 

 

3.2.2.2 – X-Ray Diffraction 

X-ray diffraction patterns were obtained for selected Sn-Pd bimetallic catalysts supported on 

SiO2 and TiO2. Figure 3.11 shows XRD of the monometallic 5% Pd, 5% Sn and bimetallic 2.5% 

Pd 2.5% Sn supported on silica after calcination at 500 °C for 3 h. The 5% Pd and 5% Sn 

materials both show a broad reflection at 22° from the poorly crystalline silica support. The 

monometallic Pd and Sn catalysts both show reflections characteristic of the PdO and SnO2 

phases respectively. The bimetallic catalyst shows weak features of both PdO and SnO2 

indicating that while synergy is observed when adding Sn to Pd a small amount of PdO is 

retained in the bimetallic sample.  
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Figure 3.11 - XRD profiles of monometallic and bimetallic catalyst supported on SiO2 after 

calcination at 500 °C for 3 h. 

Figure 3.12 illustrates how the XRD pattern varies when the Sn : Pd ratio is changed. PdO 

features are indicated by the dashed line and as the Pd content is decreased from 5% the features 

become less intense as expected. The same can be seen with the SnO2 reflections indicated by 

the dotted lines. The reflection at 34° is a combination of both SnO2 and PdO reflections and the 

shape of this reflection does not change regularly with increasing Pd content. Interestingly the 

intensity of this reflection for the catalyst containing 1% Pd / 4% Sn is lower and broader than 

for 5% Sn. This could indicate an enhanced dispersion of the Pd or Sn when the metals are 

present at this composition. There are also no features visible which relate to PdO at higher 

angles in this catalyst.  

 

Figure 3.12 - XRD profiles of monometallic and bimetallic catalysts supported on SiO2 

containing varying ratios of Pd and Sn after calcination at 500 °C for 3 h. 
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To check that the absence of  PdO peaks in the XRD pattern was not due to the Pd being below 

the detection limits of the technique, standard samples were prepared with 1% Pd and calcined at 

500 °C for 3 h, identical to that employed for the catalyst containing 1% Pd / 4% Sn / SiO2. The 

XRD patterns are shown in figure 3.13. The catalysts containing 1% Pd with no Sn clearly show 

PdO reflections at 34°, with an average particle size of 9 nm. After reduction at 100 °C, the 

catalyst clearly showed reflections of Pd metal with similar particle sizes. These features are not 

present in the catalyst containing 1% Pd / 4% Sn either after calcination or calcination and 

subsequent reduction at 100-300 °C, implying that Sn enhances the dispersion of Pd in the 

bimetallic catalysts or the Pd is incorporated into the Sn as an alloy, especially in the lower Pd 

content catalysts.  After subsequent calcination after reduction of the catalyst no discernable 

features could be detected above the SiO2 diffraction patterns indicating that the metals are in a 

highly dispersed state. The observation of a reduction in the average particles size seen when Sn 

and Pd are both present in the catalyst is consistent with the observations from TEM performed 

by Vicente et al. who studied Sn-Pd catalysts for the hydrogenation of citral. 
26

 

 

Figure 3.13 - XRD profiles of 1% Pd 4% Sn / SiO2 after various calcination and reduction 

treatments. PdO indicated by the dotted lines and metallic Pd by the dashed line. 

XRD patterns were recorded for the equivalent TiO2 samples however no reflections 

corresponding to Sn or Pd could be seen over the intense anatase and rutile peaks of the TiO2 

used as the support material for the catalyst.  
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3.2.2.3 –Electron Microscopy  

The metal dispersion of several key catalysts was investigated using STEM and SEM analysis by 

Prof Kiely’s group at Lehigh University. Analysis combined the use of these two techniques to 

try and observe the very broad range of particle sizes typically encountered in samples prepared 

by impregnation methods. For comparison with the bimetallic catalyst STEM-HAADF images of 

the calcined  monometallic samples (i.e. 5% Pd / SiO2 calcined 500 
o
C for 3h in air and 5% Sn / 

SiO2 calcined for 500 
o
C in air) are shown in Figures 3.14 and 3.15, in both of these samples 

nanoparticles of Pd and Sn can be seen in the respective samlpes.  Figure 3.14 shows SEM data 

obtained from the 5% Sn / SiO2 sample in which µm-scale Sn-rich particles can be found along 

with nanoparticles of varying size.  

 

 

Figure 3.14 - STEM-HAADF images of the monometallic sample 5% Sn /  SiO2 calcined 500 

°C for 3 h in air. 
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Figure 3.15 - STEM-HAADF images of the monometallic sample 5% Pd / SiO2 calcined 500 °C 

for 3 h in air. 

Interestingly, SEM images of the 5% Pd / SiO2 sample, figure 3.15 did not show any µm-scale 

Pd particles, but instead exhibited extended thin film regions that were Pd-rich and showed 

characteristic cracking patterns along with Pd nanoparticles around 5-10 nm. This particle size 

corresponds to the particles size estimated using the Scherrer equation from XRD patterns of the 

calcined monometallic Pd catalyst. 

 

Representative high angle annular dark field (HAADF) STEM images of the fresh 1% Pd / 4% 

Sn / SiO2 catalyst after calcination for 3 h at 500 
o
C in air are presented in figure 3.16.  

Numerous finely dispersed nanoparticles in the 2-5 nm size range are present indicating a 

reduced average particle size on addition of Sn, although occasional larger scale (10-20 nm) 

particles can also be found. STEM-XEDS was used to probe the composition of individual 

particles.. The particles in the 2-5 nm size range were generally found to contain both Pd-Sn, 

although their compositions were very variable from particle-to-particle. Furthermore, there was 

no systematic correlation between the size of a particle and its composition. Indeed, very few of 

these particles actually exhibited a composition corresponding to the nominal loading (i.e. 1% 

Pd : 4 % Sn weight ratio). No comparable features to the monometallic Pd catalyst were found in 

the bimetallic 1% Pd / 4% Sn / SiO2 sample in terms of the cracking patterns observed during 

SEM analysis, probably because of the lower overall Pd loading. 
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Figure 3.16 - HAADF images of 1% Pd / 4% Sn / SiO2 catalyst after calcination  for 3 h at 500 

o
C in air and then subsequently reduced at 200 

o
C for 2 h in 5% H2 / Ar. 

Shown in figures 3.17 and 3.18 are representative HAADF images of both the optimum SiO2 and 

TiO2 catalysts after calcination and subsequent reduction to give stable catalysts with high 

hydrogenation activity. Also shown are images of the best catalysts which are stable and show 

no hydrogenation activity after the calcination-reduction-calcination cycle described earlier.  

The HAADF images of both catalysts show that there is a high density of nanoparticles between 

2-5 nm. The high dispersion retained after two high temperature heat treatments shows that these 

nanoparticles are particularly resistant to sintering at high temperatures. This is confirmed by 

observing that the samples that have undergone three heat treatments have retained a high 

density of small particles. EDX analysis of the samples shows that the small nanoparticles are 

composed of Sn-Pd alloys in the samples after calcination-reduction and calcination-reduction-

calcination. This may indicate that the change in hydrogenation activity and stability with heat 

treatments is likely due to a chemical change, e.g. oxidation states of Pd, rather than a change in 

particle size distribution of the particles observed.  All small particles were observed to contain 

both Sn and Pd although no uniform composition was observed in the particles and no 

dependence on the composition on the size was observed. Due to the many possible Sn-Pd alloys 

that could exist in these samples it is not possible to identify a specific alloy responsible for the 

activity. As Sn and Pd have similar atomics masses it is difficult to differentiate the metals in 

electron microscopy images due to similar observed contrast.  

 

(a)  (c) 
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a)  
 

b)  
Figure 3.17 - HAADF images of 1% Pd / 4% Sn / SiO2 after a) Calcination at 500 ºC 3 h + 

Reduction 200 ºC 2 h and b) Calcination 500 ºC 3 h + Reduction 200 ºC 2 h + Calcination 400 

ºC 3 h. 

a)             

  b)           

Figure 3.18- HAADF images of 3% Pd / 2% Sn / TiO2 after a) Calcination at 500 ºC 3 h + 

Reduction 200 ºC 2 h and b) Calcination 500 ºC 3 h + Reduction 200 ºC 2 h + Calcination 400 

ºC 3 h. 



                                                                                                                                            Chapter 3 

82 
 

The microscopy study confirms that co-impregnation is an efficient and simple method to 

produce bimetallic Pd-Sn alloy catalysts, but at present it provides limited control of the alloy 

particle composition and size distribution however similar trends were seen on both TiO2 and 

SiO2 supports. On incorporation of Sn a lower average particle size was observed in the 

bimetallic catalysts when compared to the monometallic samples. The particle size and density 

of particles remained during all three heat treatments indicating that these particles are more 

resistant to sintering than supported Au catalysts which are known to sinter easily during high 

temperature heat treatments.  

3.2.2.4 – X-ray Photoemission Spectroscopy 

XPS spectra were recorded for the best catalysts supported on SiO2 after various heat treatments 

and also for the monometallic catalysts, TiO2 samples were not investigated due to the presence 

of a higher concentration of isolated Pd as shown by the TPR profiles. Figure 3.19 shows the 

Pd(3d) XPS spectra of monometallic and bimetallic catalysts after calcination at 500 ºC for 3 h. 

The monometallic Pd sample shows peaks indicating the Pd is present in the 2+ oxidation state 

which agrees with the observation of PdO in the XRD analysis. The Pd(3d) XPS spectra of the 

bimetallic catalysts shows a shift to higher binding energy relative to the monometallic catalysts 

which indicates that the Pd is in a more oxidised state, possibly indicating electron transfer from 

Pd to Sn. 

 

Figure 3.19 – Pd(3d) XPS spectra of monometallic and bimetallic Pd and Sn catalysts after 

calcination at 500 ºC for 3 h. 
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Figure 3.20 – Sn(3d) XPS spectra of monometallic and bimetallic Pd and Sn catalysts after 

calcination at 500 ºC for 3 h. 

Figure 3.20 shows the Sn(3d) XPS spectra of monometallic and bimetallic catalysts after 

calcination at 500 ºC for 3 h. The monometallic catalyst shows peaks associated with the Sn(IV) 

oxidation state which again agrees with the XRD analysis. Again a shift is seen in the position of 

the peaks in the bimetallic catalysts but in this case the shift to lower binding energy indicating a 

more reduced Sn species. Following the observations from the STEM analysis observed particles 

that contained both Sn and Pd coupled with the observation that the binding energy of the Sn and 

Pd shift in opposite directions in the bimetallic catalysts relative to the monometallic samples 

indicates a strong possibility that the Sn and Pd have formed alloy particles with electron density 

moving from Pd to Sn in the particles. On inspection of the metal to Si ratios when compared to 

the monometallic samples both the Sn and Pd ratio to Si are much lower than expected; this 

could be consistent with sintering of the metal particles or the dilution of the metals indicating 

alloy formation. The fact that the XRD indicates better Pd dispersion when in a bimetallic 

catalyst and the shifts indicating electron transfer between the metals suggests that alloy particles 

have been formed.  The ratios also show that both metal to Si ratios decrease by roughly the 

same amount which is consistent with a homogeneous alloy has been formed between the Sn and 

Pd in contrast the core shell structures observed in Au-Pd analogues.
16

 The presence of Sn-Pd 

bond formation is also supported by the observation that the addition of Sn stops the formation 

of palladium-β-hydride. 



                                                                                                                                            Chapter 3 

84 
 

Figure 3.21 shows the Pd(3d) XPS spectra for the of  1% Pd / 4% Sn / SiO2  after calcination at 

500 ºC for 3 h and subsequent reduction at various temperautres for 2 h under 5% H2 / Ar. A 

clear shift from Pd(II) to metallic Pd can be seen after reduction at 100 °C and remains 

unchanged during reduction upto 400 °C. The Sn(3d) spectra show no indication of Sn reduction 

during reduciton upto 400 °C. The productivity of the catalyst increases after reduction up to 200 

°C then reduces after reduction at 400 °C with a increase in hydrogenation acitvity for all 

reduced catalysts which can be correlated with the presence of metallic Pd. 

 

Figure 3.21 - Pd(3d) XPS spectra of  1% Pd / 4% Sn / SiO2  after calcination at 500 ºC for 3 h 

and subsequent reduction at various temperautres for 2 h  under 5% H2 / Ar. 

After reduction at 400 °C the Sn : Si ratio was observed to increase by around three times while 

the Pd : Si ratio doubled which could indicate the re-dispersion of the metals and the segregation 

of the alloy into Pd and Sn particles which could account for the low productivity of the samples 

after reduction at this temperature.  

Figure 3.22 shows the Pd(3d) spectra of the reduced 1% Pd / 4% Sn / SiO2 after subsequent 

calcination at 400 °C in air for various times. The spectra show that on heating under air at high 

temperatures for various times the Pd returns to the Pd(II) oxidation state and the Pd(0) species 

begins to disappear, after 3 h the catalyst predominantly contains Pd(II), no change to the Sn 

species was seen in the XPS spectra meaning that Sn is still present as Sn(IV). The observation 

that after a reduction and oxidation following calcination switches off the hydrogenation activity 

must indicate a change in particle morphology or surface composition as the catalyst is returned 

to its starting state in terms of oxidation state. 
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Figure 3.22 - Pd(3d) XPS spectra of  1% Pd / 4% Sn / SiO2  after calcination at 500 ºC for 3 h 

and subsequent reduction at 200 °C for 2 h  under 5% H2 / Ar folowed by recalcination at 400 °C 

for various times. 

Inspection of the Pd : Si and Sn : Si on calcination at various times up to the point where the 

hydrogenation is switched off (400 °C for 3 h) indcates that both metal ratios increase realtive to 

the Si with the Sn : Si ratio increasing dramatically after 3 h at elevated temperatures, shown in 

table 3.9. As the Pd(II) state still shows a shift indicating electron transfer to the Sn it can be 

speculated that the particles still contain both Sn and Pd in close porximity (confirmed by the 

STEM analysis), the incease in Pd and Sn ratio to Si could be a result of the partial segregation 

of Pd and Sn on the reoxidation of Pd. 

Calcination time Atomic ratios 

 O/Si Pd/Sn Pd/Si Sn/Si 

     

1 h 2.7 0.20 0.011 0.054 

2 h 2.7 0.21 0.015 0.073 

3 h 2.8 0.15 0.018 0.12 

Table 3.9 – XPS-derived surface atomic ratios for a silica-supported 4% Sn-1% Pd catalyst 

calcined (500 
o
C, 3 h, air), reduced (200 

o
C 2 h) and then re-oxidised at 400 

o
C for the times 

indicated. 

After heat treatments for 4 h the ratios drop dramatically which could indicate the sintering of 

particles, this also coincides with a big drop in activity from 50 to 20 molH2O2 kg
-1

 h
-1

.  
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XPS spectra were recorded for the calcined only catalyst to investigate the reason for the 

deactivation on second use. From the XPS surface Si : Sn and Si : Pd no change was seen 

between the first and second use however the oxidation state of the Pd was seen to change from 

PdO to Pd on use as shown in figure 3.23. No change was seen in the Sn spectra. The observed 

stability after reduction suggests that metallic Pd is much more stable on SiO2 than PdO during 

the reaction and the reduction step forms a strong metal to support interaction as on re-oxidation 

the catalysts remain stable despite PdO being the predominant Pd species in the catalysts that do 

no hydrogenate H2O2.   

 

Figure 3.23 - Pd(3d) XPS spectra of  1% Pd / 4% Sn / SiO2  after calcination at 500 ºC for 3 h 

fresh and used once. 

 

3.3 - Discussion 

In order to scale up a direct synthesis process the cost of the catalyst components especially the 

active metals is very important. To date the most active catalysts for H2O2 synthesis contain Pd 

and Au which are far more expensive than base metals such as Sn. The results shown indicate 

that, similar to Au, there is a synergistic effect for the direct synthesis of H2O2 between Sn and 

Pd and this is the first time this has been seen in a co-impregnated catalyst with 5 wt% metal 

loading. This effect is observed when the metals are supported on both SiO2 and TiO2 which are 

two common catalyst supports that are already extensively used in industry. Bimetallic catalysts 
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containing 2.5% Sn and 2.5% Pd have been shown to be more active than the equivalent 

monometallic catalysts and also more active than monometallic catalysts containing 2.5% Pd or 

Sn confirming that the effect is a synergistic effect rather than an enhancement in dispersion 

achieved by having less metal in the catalyst.  

Unlike the analogous Au-Pd / TiO2
12

 system the 2.5% Sn 2.5% Pd metal ratio is not the optimum 

ratio for Sn-Pd and it is seen that the optimum ratio is dependent on the support with the 

optimum composition on the SiO2 support containing only 1% Pd. This support dependence on 

optimum Sn : Pd may come from the strength of interaction between the support surface and the 

metal particles. A strong particle surface interaction may inhibit the formation of catalytically 

active alloys or prevent certain alloys from forming. This may explain why more Pd is needed in 

the TiO2 system to achieve an active catalyst whereas on SiO2 the structures can form more 

readily. All of the catalysts that have been calcined once showed very low hydrogenation 

activity, this indicates that Sn as a catalyst component may play an analogous role to that 

identified for Au in our previous studies, by helping to suppress the H2O2 

hydrogenation/decomposition which results in an enhancement of the H2O2 yield in the calcined 

catalysts. More importantly, these Pd-Sn bimetallic catalysts showed considerably lower H2O2 

hydrogenation activities (1 - 4 wt% H2O2 hydrogenation) and comparable H2O2 synthesis 

activity to those previously reported
 
for the Au-Pd / TiO2 catalysts (H2O2 hydrogenation =        

12 wt%, H2O2 productivity = 64 mol kgcat
-1

 h
-1

). However after just one calcination the catalysts 

are unstable and show much lower activity for H2O2 synthesis on re-use.  

The TPR profiles of the catalysts show that a new feature is present in the bimetallic samples and 

the absence of a Pd-β-hydride decomposition feature indicates that there is a strong interaction 

between the Sn and Pd in these catalysts. STEM analysis confirms that both Sn and Pd are 

present in the particles and that the addition of Sn to Pd results in a high particle density of         

2-5 nm particles. XPS analysis also suggests the possibility of alloy formation with electron 

transfer occurring form Pd to Sn. 

 Both catalyst systems show the same trends with regard to subsequent reduction making the 

catalysts stable to re-use after reduction at temperatures of 200 ºC and above. After reduction 

both sets of catalysts show high hydrogenation activity, due to the higher Pd content of the TiO2 

samples the increase in hydrogenation results in a slightly lower observed H2O2 synthesis 

activity due to the increased hydrogenation. The SiO2 samples shows a slight increase because a 

higher percentage of the Pd may be involved in forming alloys and leaving less free Pd on the 
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surface of the catalyst. XPS analysis of the SiO2 samples show that the reduction treatment 

results in the formation of Pd(0) and at a reduction temperature of 200 ºC no reduction of the Sn 

species is observed, which is consistent with the TPR results. 

The possible presence of alloys in the SiO2 system is shown by the XRD analysis of the samples 

where only a small Pd or PdO reflection can be seen when compared to a catalyst containing 1 % 

Pd indicating that the Pd is no longer present as metallic or PdO nanoparticles of ~ 9 nm as in the 

monometallic samples that have been calcined and reduced. The possible alloys were also 

detected in the STEM analysis of the reduced samples which observed a range of compositions 

for the nanoparticles that contained both Sn-Pd although no correlation between size and 

composition could be found with XPS also suggesting the presence of Sn-Pd alloys in the 

reduced samples. 

 In order to reduce the hydrogenation activity of the stable catalysts after they have been reduced 

a third heat treatment was added to try and re-oxidise any metallic Pd that had been formed 

during the reduction step. It was found that a heat treatment at 400 °C for 3-4 h was suitable to 

substantially reduce the hydrogenation activity with XPS showing the reoxidation of Pd(0) to 

Pd(II) during this heat treatment. Using this methodology it was possible to generate catalysts 

that showed no hydrogenation activity on both SiO2 and TiO2. No differing features in particle 

size or morphology could be detected using STEM analysis after these heat treatments. However 

as the STEM analysis points towards the vast majority of the small catalytically interesting 

particles as being Pd-Sn alloys and these species show very low hydrogenation activity after the 

heat treatments developed it may be the dilution of the Pd particles with Sn that suppresses this 

subsequent reaction. Due to the many possible Sn-Pd alloys that could exist in these samples it is 

not possible to identify a specific alloy responsible for the activity. As Sn and Pd have similar 

atomic masses it is difficult to differentiate the metals in electron microscopy images due to 

similar observed contrast. XPS shows an increase in surface concentration of both Sn and Pd on 

re-oxidation which may suggest surface segregation as the Pd is reoxidised. 

Figure 3.24 shows a postulated evolution of the Sn-Pd particles through the various heat 

treatments based on the characterisation carried out of the SiO2 samples. STEM analysis shows 

that at each stage the 2 – 5 nm particles contain both Sn and Pd. After initial calcination XPS 

suggests a homogeneous alloy of Sn and Pd with electron transfer from Pd to Sn, however XRD 

still shows the presence a small amount of PdO. TPR shows the Sn – Pd are likely to be mixed as 

the addition of Sn hinders the formation of Pd-β-hydride. After the initial oxidative heat 
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treatment Sn is likely to be present as SnO2 so it is postulated that the particles are a mixed oxide 

at this point. STEM analysis was unable to detect oxygen in the structure of the particles because 

of its low contrast compared to the much heavier metals. On reduction the TPR shows a 

reduction feature at 150 °C, which may be the reduction of the PdO involved in the mixed oxide 

as no Sn reduction was seen until much higher temperature were reached. XPS shows a decrease 

in the amount of surface Pd which may suggest that the Pd is able to migrate into the SnO2 to 

generate a Pd-SnO2 particle. The generation of metallic Pd either in the alloy particles or isolated 

nanoparticles is thought to be responsible for the higher observed hydrogenation activity. 

 

Figure 3.24 – Postulated evolution of Sn-Pd particles through the oxidation – reduction – 

oxidation treatments to generate a stable low hydrogenation activity catalyst. ● Pd (II) ● Pd 

●Sn(IV) 

On re-calcination of the oxidised samples no features of sintering were observed in the XRD, 

with the STEM analysis confirming that there was no obvious change in particle size of the Sn-

Pd particles. Inspection of the Pd : Si and Sn : Si on calcination at various times up to the point 

where the hydrogenation is switched off (400 °C for 3 h) indcates that both metal ratios increase 

realtive to the Si with the Sn : Si ratio increasing dramatically after 3 h at elevated temperatures. 

As the Pd(II) state still shows a shift indicating electron transfer to the Sn it can be speculated 

that the particles still contain both Sn and Pd in close porximity (confirmed by the STEM 

analysis), the increase in Pd and Sn ratio to Si could be a result of the partial segregation of Pd 

and Sn on the reoxidation of Pd. One possible morphology that aggress with this is the surface 

segreagation of PdO from SnO2. This morphology would provide a palladium oxide surface that 

would be heavily influenced by the SnO2 below, increasing the binding energy of the Pd 

electrons and therefore reducing its ability to dissociate the O-O bond of both O2 and H2O2. 

It must be stressed that at this point the scheme is only postulated and more extensive structural 

characterisation of a wider range of samples is needed as the system seems to be highly 

responsive to small changes in the composition of the nanoparticle surface. 
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3.4 - Conclusions  

The methodology employed in the catalyst preparations of Sn-Pd outlined here show a big step 

forward in the development of catalysts for the direct synthesis of H2O2 and a number of key 

milestones have been achieved. Firstly the synthesis of catalysts that show activity of similar 

magnitude to analogue Au-Pd catalysts but have replaced Au with a cheap base metal like Sn 

makes the system much more attractive form an industrial perspective. Also the observation that 

Au is not unique in promoting the reaction could lead to extensive research into other metals that 

could show similar effects or even replace Pd as the hydrogenation component of the system to 

produce a catalyst made of only base metals. 

The use of Sn - Pd to prepare a catalyst on SiO2 which is stable to multiple uses represents an 

advantage over using the Au-Pd system which has been shown to lose Au during reaction 

meaning the catalyst is unstable to the reaction conditions. The heat treatment cycles developed 

during this research have been able generate Sn-Pd species that are stable on SiO2 to the reaction 

conditions and multiple cycles of the reaction conditions along with the most active TiO2 catalyst 

which is also stable. The preparation methods developed in the research have most importantly 

developed catalysts which show no hydrogenation activity towards H2O2 under our reaction 

conditions. These catalysts are only the second example of this to be reported and the first 

example on SiO2 and TiO2 supports to be reported. The fact that the catalysts do not include Au 

as the means of increasing the selectivity towards H2O2 which represents a big milestone in the 

process. This research shows that Au is not essential and may not be the most effective metal in 

switching off the subsequent hydrogenation of H2O2 and more work should be carried out into 

the effects of base metals in the H2O2 synthesis reaction.  
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Chapter 4  

 

Direct Synthesis of H2O2 in a Gas Liquid 

Flow System 

 

4.1 - Introduction 

As previously discussed in the first chapter, many different approaches have been explored in 

order to find suitable methods for producing H2O2 in a much greener way compared to the 

current industrially used anthraquinone process. These include membrane reactors
1,2

 

microreactors
3-4

 and fixed bed reactors
5-7

. 

Requirements for industrial scale direct synthesis plants, such as high H2O2 concentrations and 

high H2 selectivities are yet to be achieved. Although the direct synthesis from H2 and O2 seems 

to be a viable candidate to succeed, most of the catalysts active for H2O2 synthesis are also active 

for its subsequent decomposition/hydrogenation reactions leading to low H2 selectivities. A 

possible solution to this problem may lie in the use of continuous flow reactors for the direct 

synthesis of H2O2. The advantage of using these particular reactors is that it may be possible to 
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minimise the subsequent hydrogenation and decomposition reactions which are shown as k2 and 

k3 in the reaction scheme shown in figure 4.1. 

 

Figure 4.1 - Reaction Scheme for the Direct Synthesis of H2O2.  

k1 – Synthesis rate constant, k2 – Hydrogenation rate constant,  k3– Decomposition rate constant,                          

k4 – Combustion rate constant, H2O
a
 – water from hydrogenation reaction and H2O

b
 – water from 

decomposition and combustion reaction. 

Even though it is not possible to completely minimise the loss in H2 and increase in H2 

conversion due to the direct combustion of H2 and O2 to form H2O, subsequent hydrogenation / 

decomposition of H2O2 can be diminished by carefully choosing an appropriate reaction 

condition and catalyst.  

Lawal et al. have extensively studied the direct synthesis of H2O2 using a gas liquid flow reactor 

a 1 wt% solution of H2O2 was synthesised in a microreactor (i.d. 765 μm)
5-7

 using   deionised 

water as a solvent. Although the reaction medium contained 1 wt% H2SO4 and 10 ppm of NaBr 

as promoters using a 2% Pd / SiO2 catalyst at 20 bar pressure at 40- 50 ºC. Jaenicke et al. 

synthesised a 1.4 wt% solution of H2O2 using a Pd catalyst in a MeOH / HCl / KBr solvent 

system. Although these systems are capable of producing high concentrations of H2O2, they rely 

heavily on the presence of acid and halide promoters to suppress the subsequent hydrogenation 

and decomposition reactions and to increase selectivity. The addition of promoters and stabilisers 

is undesirable in a large scale process because it requires further product purification 

downstream. Also the addition of acid can lead to degradation of the reactor over extended 

periods of time.  

This study will look at the use of a Au-Pd catalyst to produce H2O2 using a flow reactor, in a 

reaction medium free from acid and halide promoters therefore in the presence of the subsequent 

non selective reactions (H2O2 hydrogenation and decomposition).  The aim is to investigate the 

H2 + O2 H2O2 2 H2O
a

H2

H2O
b + ½ O2

k2
k1

k4

k3
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reaction parameters for the direct synthesis of H2O2 under flow conditions and try to identify the 

conditions which suppress these subsequent reactions. 

 

4.1.1 - H2O2 Synthesis Reaction Profile 

As shown in figure 4.1 the direct synthesis of H2O2 from H2 and O2 is a challenging reaction with 

a number of competing side reactions which destroy the H2O2 that has been synthesised. Another 

complication is that catalysts which are active for the synthesis of H2O2 are also active for the 

hydrogenation and decomposition reactions. The balance between these reactions can be tailored 

by designing catalysts to give high selectivities to H2O2 whilst suppressing the decomposition 

and particularly the hydrogenation reaction. The aim of this study is to optimise the design of the 

reaction process through the use of a flow reactor to provide a system capable of producing H2O2 

at high selectivities whilst operating under conditions which minimise the non selective side 

reactions. 

An important reaction parameter to consider when dealing with a process which has subsequent 

and competing reactions is residence time (τ). By carefully controlling the time that the reactants 

are in contact with the catalyst it is possible to control and suppress the subsequent reactions. 

Figure 4.2 shows theoretically how the concentration of various reactants and products vary with 

residence time. As can be seen at short residence times H2 conversion is low, however at these 

residence times the main reaction is the synthesis of H2O2 leading to high H2 selectivity. A small 

amount of water is also made by the direct combustion of H2 at these residence times. This is 

because the synthesis and combustion reactions are independent of the concentration of H2O2 

and can be assumed to be first order with respect to H2 and O2 concentrations. Therefore at low 

residence times, where only a small amount of H2O2 is synthesised the contribution from the 

subsequent hydrogenation and decomposition is small.  
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Figure 4.2 - Theoretical reactant and product profiles at various residence times.  

H2O
a
 – water from hydrogenation reaction and H2O

b
 – water from decomposition and 

combustion reaction. 

At longer residence times the concentration of H2O2 begins to build and the contribution from 

the hydrogenation and decomposition reactions becomes more pronounced and causes an 

increase in H2 conversion and a decrease in selectivity. These reactions become more prominent 

at longer residence times because they can be assumed to be first order in H2O2, meaning that as 

the synthesis reaction produces H2O2 the rates of the subsequent hydrogenation and 

decomposition increase reducing the overall yield of H2O2. 

As can be seen in figure 4.2, the residence time is crucial in achieving high yields of H2O2. 

Ideally the residence time should be low enough to stop the subsequent hydrogenation and 

decomposition reactions as shown by the red area highlighted in figure 4.2. However at these 

very short residence times, which give high H2O2 selectivities, the H2 conversions will be low 

which industrially would not be very attractive without gas recycling being incorporated into the 

process.  

4.1.2 - Implications of Testing in a Batch System 

When testing a catalyst for H2O2 synthesis activity in a batch system it is difficult to achieve very 

short residence times, with the shortest feasible reaction being 1 min. By testing in a batch 

reactor the H2O2 productivity can only be measured as a “snap shot” sum of the reaction profiles 

of both the synthesis and the competing hydrogenation/decomposition reactions. This makes it 
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very difficult to measure the absolute rate of H2O2 synthesis due to the contribution of the 

subsequent reactions. Meaning that any measure of rate will only be an observed rate, kobs, which 

is made up of contributions from the synthesis, hydrogenation and decomposition reactions, as 

shown by equation 4.1. 

                                  kobs = ksynthesis – khydrogenation - kdecomposition                           (4.1) 

The batch system also does not allow for measurements of catalyst deactivation during the 

reaction as the reaction must be repeated multiple times with the same residence time to test for 

catalyst stability. A flow system is a possible solution to this problem because the catalyst can be 

held at a steady residence time continuously for a set period of time. The rates of reaction can 

then be measured over extended periods of time under various experimental reaction conditions. 

4.1.3 - Aims of the Study 

The aim of the study is to set-up and operate a new liquid gas flow system to investigate the 

reaction parameters for the direct synthesis of H2O2 under flow conditions. The conditions 

investigated include residence time, pressure, temperature, H2 : O2, solvent composition and 

solvent flow rate. Also included in this study is an investigation into whether the synthesis, 

decomposition and hydrogenation rate constants can be extracted and combined into a kinetic 

model for this catalyst system.  

4.2 - Reactor Setup 

4.2.1 - Safety 

In order to ensure the safety of the reactor when contacting a H2 / O2 mix, it is essential to ensure 

that the gas composition remains below the lower explosive limit of H2, 5 % in air at room 

temperature. This is ensured by using intrinsically safe gas mixtures of 5 % H2/CO2, 25 % 

O2/CO2. Although the reaction is exothermic heat spots in the reactor are minimised by cooling 

the reactor throughout the reaction in a water bath. Another safety issue is the potential rapid 

pressure increase due to a block in the system, which could cause a failure in one of the reactor 

joints. The risk of this is controlled by fitting pressure relief valves before and after the catalyst 

bed and also using MFC inlet pressures of 15 bar were used which means that once the pressure 

of the reactor has equalled the inlet pressure of the MFCs no more gas will flow into the system. 
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4.2.2 – Evaluation of Blank Reactions 

Before any synthesis experiments were carried out using the H2O2 flow reactor, it was important 

to check that the reactor itself did not catalyse the direct synthesis of H2O2 or the competing 

hydrogenation and decomposition reactions. These blank reactions were carried out by passing a 

H2O2 solution with a predetermined concentration through the system at various gas flows, liquid 

flows and pressures and measuring the concentration after it has passed through the reactor. 

 

4.2.2.1 – Blank Decomposition Experiments 

A 4.32 wt% H2O2 solution was pumped through the reactor at various flow rates to give various 

contact times with the reactor to check that the reactor did not catalyse the rapid decomposition 

of H2O2. The concentration at the end of the system was measured after giving 1 h to equilibrate 

between flow changes. The results are given in table 4.1; 

 

 

 

 

 

 

Table 4.1 - Table showing the measured concentration of H2O2 after passing through the reactor 

at various flow rates at atmospheric pressure. Initial H2O2 concentration = 4.32 wt%. 

The results show that the concentration of H2O2 measured after it has passed through the reactor 

is within experimental error of the initial concentration. This indicates that importantly the 

reactor itself does not catalyse the decomposition of H2O2.  

 

 

 

Liquid Flow Rate 

ml / min 

wt% H2O2 

0 4.32 

0.02 4.39 

0.2 4.37 

1 4.34 

5 4.33 
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4.2.2.2. – Blank Hydrogenation Experiments 

A 4 wt% H2O2 solution was pumped through the reactor at various flow rates in the presence of 

2% H2 / air to check that the reactor did not catalyse the hydrogenation of H2O2. The 

concentration at the end of the system was measured after giving 1 h to equilibrate between flow 

changes. The experiments were performed with and without filters in the system as it was 

thought that the 0.5 micron filters may act as a likely site for hydrogenation as the gas and H2O2 

pass through, the results are shown in table 4.2. 

Initial wt% H2O2 = 4.08 

 

 

 

 

 

 

Table 4.2 - Table showing the measured concentration of H2O2 after passing through the reactor 

at various flow rates at atmospheric pressure under a flow of 2% H2 / air. 

The hydrogenation experiments show that, within experimental error there is no loss of H2O2 as 

it passes through the reactor in the presence of H2 at various contact times with the alloy.  The 

same experiments were carried out using methanol as a solvent and 5 bar 5% H2 / CO2 to check 

for hydrogenation at conditions which should promote high H2 solubility and still no appreciable 

hydrogenation activity was seen. 

Experiments were also carried out under 10 bar pressure of an 1 : 1 H2 / O2 mix using 

H2O/MeOH as a solvent to check that the reactor did not catalyse the direct synthesis of H2O2. 

No H2O2 was detected during these blank experiments.  

 

 

 

 Gas Flow 

ml / min 

Liquid Flow Rate 

ml / min 

wt% H2O2 

With Filters 10 0.2 4.00 

 10 0.8 4.09 

 10 1.3 4.03 

Without Filters 10 0.2 4.05 

 10 0.8 4.04 
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4.2.3 - Flow Regime  

To help understand the kinetic and mass transfer limitations inside the flow reactor it is 

important to determine how the gas and liquid flow through the system and which flow regime 

operates during the reaction. Visualisation experiments were carried out at atmospheric pressure 

with typical reaction flows of gas and liquid using a glass tube of the same diameter as the 

reactor. Schematics of the flow regime through an empty tube and a tube packed with catalyst 

and glass wool are shown in figure 4.3. 

 

Figure 4.3 – Schematic representation of the flow regime at comparable gas and liquid flow 

rates to the reaction conditions. 

The flow regime commonly seen in channels with diameters in the order of the reactor used in 

this study (⅛ inch internal diameter) is called Taylor flow
6
, which was confirmed by the 

visualisation experiments. The flow consists of an alternating sequence of gas bubbles and liquid 

slugs where the length of the gas bubbles is larger than the diameter of the reactor. When a 

catalyst bed was placed into the tube, the flow exiting the bed still had distinct gas and liquid 

slugs but the flow was less regular after being broken up by the catalyst bed. The breaking of the 

gas and liquid slugs could be seen as the flow passed through the catalyst bed.  The rate of mass 

transfer of reactants to the catalyst under Taylor flow can be assumed to be high for two reasons; 

firstly the liquid layer between the gas and catalyst particles is so thin that it forms a very low 

barrier to mass transfer of reactants to the catalyst, secondly, the liquid slugs in the reactor can 

circulate internally eliminating any radial concentration gradients. This flow regime, combined 

with the fact the reactants are highly soluble in the reaction solvent lead to the assumption that 

the system would not be limited by mass transfer. 

 

Glass Wool
Catalyst

Gas Liquid
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4.3 - Initial Synthesis Experiments Using 0.5% Au / 0.5% Pd / TiO2 

Initial synthesis experiments were carried out using a 0.5% Au / 0.5% Pd / TiO2 prepared by 

impregnation and reduced at 400 °C / 4 h with a ramp rate of 10 °C min
-1

. This catalyst was 

developed using a modified impregnation procedure recently reported by Hutchings et al.
8
 This 

low metal containing catalyst was chosen to try and avoid any metal leaching during the 

extended flow testing runs, as well has having been studied extensively in the batch system 

under similar conditions to the flow system. The catalyst was found to be stable for a number of 

runs when tested under batch conditions. The initial experiments preformed in the flow system 

employed conditions that were as analogous to the batch reactor as possible.
9
 The typical 

conditions used for H2O2 synthesis in the batch and flow system are summarised in table 4.3. 

 

Conditions Batch Reactor Flow Reactor 

Catalyst Mass 10 mg 120 mg 

Pressure 40 bar 10 bar 

Temperature 2 ºC 2 ºC 

Solvent Composition 66% MeOH, 34% H2O 66% MeOH, 34% H2O 

Solvent Flow        (8.5 ml Total Volume)  0.2 ml / min 

Gas Composition H2 : O2 = 1 : 1 (3.5%) H2 : O2 = 1 : 1 (3.5%) 

Reaction / Residence Time 30 min 0.2-1 sec 

Table 4.3 – Table of typical reaction conditions for the batch and flow systems to test H2O2 

productivity. 

Initial reactions were carried out using a horizontal reactor tube with the catalyst packed between 

two pieces of glass wool. A flow of H2 and O2 diluted in CO2 with total flow rate 40 ml  min
-1

 

was passed over 120 mg of catalyst while at the same time flowing 0.2 ml min
-1

 of water / 

methanol solvent. This initial experiment was carried out to check the reproducibility of the 

results obtained and the average concentration of H2O2 is shown in table 4.4. 

The results show that H2O2 was made under these reaction conditions however the results were 

not reproducible when the reactor tube was in the horizontal position. When packing the catalyst 

into a horizontal tube two pieces of glass wool are pressed into the tube to hold the catalyst in 

place. If these pieces of glass wool are too tight this will restrict flow and increase the pressure 

drop though the catalyst bed. If these pieces were packed too loosely the catalyst bed will split 

during reaction leaving a void above the catalyst bed for reactants to bypass. In order to achieve 
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reproducible results with a horizontal bed both the catalyst and the glass wool have to be packed 

identically each time the reactor tube is filled. This is very difficult and may account for the 

irreproducible results observed in table 4.4. By switching to a vertical catalyst bed, supporting 

the catalysts only at one point with gas and liquid flowing from top to bottom the experimental 

results became much more reproducible as seen in table 4.4. Using a vertical catalyst bed has 

other advantages in that the catalyst particles are distributed and packed more uniformly and 

better radial liquid distribution can be achieved which could contribute to the higher amount of 

H2O2 observed.   

         

            Catalyst 

 

Test Number 

 

Tube Orientation 

 

ppm H2O2 

 

0.5% Au / 0.5% Pd / TiO2 

 

1 

 

Horizontal 

 

320 

 2 Horizontal 296 

 3 Horizontal 265 

0.5% Au / 0.5% Pd / TiO2 1 Vertical 756 

 2 Vertical 743 

 3 Vertical 751 

 

Table 4.4 - Results showing the effect of reactor orientation on the repeatability of H2O2 

synthesis results. Reaction Conditions – 10 bar, 2 ºC, 40 ml / min gas flow, H2 : O2 = 1:1 (3.6 %), 

solvent MeOH / H2O flow rate = 0.2 ml / min, 120 mg catalyst,   = 0.25s. 

 

 4.4 – Results 

4.4.1 - Effect of Gas Flow Rate on H2O2 Synthesis 

The effect of total gas flow rate was investigated whilst keeping all other reaction conditions 

constant to determine the optimum residence time at which to carry out further reactions. 

Experiments were carried out at increasing total gas flow rate while keeping the reactant 

concentrations constant along with the catalyst mass. The results are shown in figure 4.4. 
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Figure 4.4 – H2O2 concentration (♦) and production rate (■) at various residence times. Reaction 

Conditions – 10 bar, 2 ºC, 40 ml / min gas flow, H2 : O2 = 1:1 (3.6 %), solvent MeOH / H2O 

flow rate = 0.2 ml / min, 120 mg catalyst,   = 0.25 s. 

As the gas flow was increased so did the H2O2 concentration measured up to a maximum flow of 

around 40 ml min
-1

, after which no further increase in H2O2 was seen with increasing gas flow 

rate which corresponded to a H2O2 productivity rate of 2.2 mol kg
-1

 h
-1

. At higher flow rates the 

plateau may be attributed to gas bypassing the catalyst bed by flowing through the catalyst too 

quickly for a reaction to take place. Also at higher flow rates preferential routes through the 

catalyst bed, especially at the walls of the reactor tube, could also be responsible for no further 

increase in H2O2 being observed. The total flow rate used for all further experiments was 42 ml 

min
-1

 which corresponds to a residence time of 0.25 s.  

The highest H2O2 productivity achieved in the flow system is of the same order of magnitude to 

the equivalent test in a batch reactor. This indicates that there are no significant mass transfer 

limitations in the flow system and the results can be confidently compared to results taken from 

the batch system.  

The feed composition for the optimum condition identified above consists of equimolar 

hydrogen and oxygen (7 x 10
-5

 moles/min) and a liquid feed of equimolar H2O to MeOH                 

(4 x 10
-3 

 moles/min) which H2O2 at a rate of 4 x 10
-6

 moles / min.  
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4.4.2- Effect of Catalyst Mass on H2O2 Synthesis 

The effect of catalyst mass was investigated while holding other reaction variables constant, 

including residence time, pressure, temperature and H2 : O2 ratio. The results are shown in figure 

4.5 using various catalyst masses from 50 – 120 mg; 

 

Figure 4.5 - Results obtained at various catalyst masses, showing H2O2 concentration (♦) H2 

conversion (■), and H2O2 selectivity (▲). Reaction Conditions – 10 bar, 2 ºC, 20 - 40ml / min 

gas flow, solvent MeOH / H2O flow rate = 0.2 ml / min, 60 - 120 mg catalyst,   = 0.75 s,              

H2 : O2 = 1.  

The results show that as catalyst mass was increased at constant residence time the concentration 

of H2O2 increased linearly. The results also show that as catalyst mass increased, and therefore 

the length of the catalyst bed increased, H2 conversion also increases which accounts for the 

increased H2O2 concentration obtained.  As the catalyst mass was increased the gas flow was 

changed accordingly to hold the system at a constant residence time of 0.75 s, as the selectivity is 

determined by the residence time of the system. These experiments show that a constant 

selectivity can be achieved, regardless of the catalysts mass (and therefore the length of the 

catalyst bed), provided the residence time is adjusted accordingly by decreasing or increasing the 

flow of the reactant gases through the catalyst bed.  
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4.4.3  - Effect of Total Pressure on H2O2 Synthesis 

The effect of total reaction pressure was investigated in the flow system while holding all other 

reaction variables constant including H2 : O2 ratio, residence time and solvent composition. The 

results are shown in figure 4.6, 

 

Figure 4.6 – Results obtained at various total pressure, showing H2O2 concentration (♦) H2 

conversion (■), and H2O2 selectivity (▲). Reaction Conditions – various pressure, 2 ºC, 40 ml / 

min gas flow, solvent MeOH / H2O flow rate = 0.2 ml / min, 120 mg catalyst,   = 0.25 s,          

H2 : O2 = 1. 

As expected, an enhancement in the H2O2 concentration was observed with increasing pressure 

which would be expected due to higher gas solubility and smaller gas bubble size. As the 

pressure of the system increased the H2 conversion also increased while the selectivity of the 

system remained constant at around 25%. If the synthesis reaction was assumed to be described 

by the kinetic expression shown as equation (4.2) a quadratic dependency on pressure would be 

expected. 

                                       Synthesis Rate =                                          (4.2) 

The linear dependency can be explained by assuming a number of things about the key reaction 

steps in the synthesis reaction. It has been postulated that the activation sites for H2 and O2 are 
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different
9
, and if it is assumed that there is nearly full coverage of O2 at the O2 activation sites 

the rate of H2O2 synthesis will be proportional to the rate of H2 activation, which in turn will be 

proportional to the H2 partial pressure. By assuming this case to be true the linear dependence 

observed can be explained along with the linear increase in H2 conversion. The results show that 

pressure had no effect on H2O2 selectivity indicating that the rate of synthesis and hydrogenation 

increase in proportion as both reactions are related to the H2 partial pressure. 

 

4.4.4 - Effect of Solvent Composition on H2O2 Synthesis 

The effect of the solvent composition was investigated while keeping all the other reaction 

conditions constant including residence time, temperature, pressure, gas concentration and flow 

rate.  As the methanol content was increased the amount of H2O2 produced also increased, with a 

maximum concentration of 1541 ppm being produced in a pure methanol solvent. The results are 

shown figure 4.7, 

 

Figure 4.7 - H2O2 concentration obtained at various solvent compositions, showing H2O2 

concentration (♦) H2 conversion (■), and H2O2 selectivity (▲). Reaction Conditions – 10 bar, 2 - 

20 ºC, 40 ml / min gas flow, solvent MeOH / H2O flow rate = 0.2 ml / min, 120 mg catalyst,       

  = 0.25 s, H2 : O2 = 1. 
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The increase in H2O2 concentration can be explained by the increase in H2 and O2 solubility with 

increasing methanol content and this can also be seen with increasing H2 conversion with 

increasing methanol content. When increasing the methanol content selectivity rises slightly 

from about 22 % in water only to 32 % in methanol only. The rise in selectivity indicates that the 

rate of synthesis is higher than the rate of hydrogenation as the increase in solubility of both H2 

and O2 results in an enhancement in the amount of H2O2 produced. If the hydrogenation rate was 

faster than the synthesis reaction more H2 in the system would lead to a reduction in the amount 

of H2O2 observed. 

4.4.5 - Effect of Solvent Flow Rate on H2O2 Synthesis 

The effect of solvent flow rate was investigated in the flow system while holding all other 

reaction variables constant including, H2 : O2 ratio, residence time, pressure and solvent 

composition. The results of H2O2 concentration observed and moles of H2O2 formed are shown 

in figure 4.8, 

 

Figure 4.8 - H2O2 concentration obtained at various solvent flow rates, showing H2O2 

concentration (♦) and moles of H2O2 formed (■). Reaction Conditions – 10 bar, 2 ºC, 40 ml / min 

gas flow, solvent MeOH / H2O flow rate = 0.2 – 1.2 ml / min, 120 mg catalyst,   = 0.25 s,         

H2 : O2 = 1. 
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The results obtained show that as the solvent flow rate through the catalyst bed is increased the 

concentration of H2O2 measured decreased. As ppm is a measure of H2O2 concentration it is 

expected that this would decrease with increasing solvent flow because there is more solvent to 

dilute the H2O2 produced. When considering the results in terms of total moles of H2O2 formed 

per hour, this increases with solvent flow, with a maximum of 7 x 10
-4 

moles achieved at 1 ml 

min
-1

 of solvent. To investigate the reason for this increase in moles H2O2 formed H2 conversion 

and selectivity to H2O2 were measured and are shown in figure 4.9. 

 

 

Figure 4.9 - H2O2 concentration obtained at various solvent flow rates, showing moles of H2O2 

formed (♦), H2 conversion (■), and H2O2 selectivity (▲). Reaction Conditions – 10 bar, 2 ºC, 40 

ml / min gas flow, solvent MeOH / H2O flow rate = 0.2 – 1.2 ml / min, 120 mg catalyst,              

  = 0.25 s, H2 : O2 = 1. 

The results show that at various solvent flow rates while the moles of H2O2 formed increase up 

to 1 ml min
-1

, the H2 conversion remained constant at 20 % while the selectivity towards H2O2 

increased in a similar manner to the moles of H2O2 formed up to a selectivity of 80 %. This can 

be explained in terms of H2O2 concentration, as more solvent passes through the system the total 

concentration of H2O2 is reduced. As the rate of subsequent hydrogenation and decomposition 

reactions are proportional to the concentration of H2O2, the rate of these reactions will also 

reduce, increasing selectivity. These results show that hydrogenation and decomposition 
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reactions are responsible for reducing selectivity in the flow system despite short residence times, 

and the increased amount of solvent shields the synthesised H2O2 from the catalyst and prevents 

these subsequent reactions. This has implications in the challenge of making high concentrations 

of H2O2 using a catalyst that hydrogenates and decomposes H2O2.  

4.4.6 - Effect of Reaction Temperature on H2O2 Synthesis 

The effect of reaction temperature was investigated in the flow system while holding all other 

reaction variables constant including H2 : O2, residence time, pressure and solvent composition. 

The results are shown in figure 4.10, 

 

Figure 4.10 - H2O2 concentration obtained at various H2 : O2,  showing H2O2 concentration (♦) 

H2 conversion (■), and H2O2 selectivity (▲). Reaction Conditions – 10 bar, 2 - 20 ºC, 40 ml / 

min gas flow, solvent MeOH / H2O flow rate = 0.2 ml / min, 120 mg catalyst,   = 0.25 s,             

H2 : O2 = 1 

Increasing the reaction temperature at a constant residence time resulted in a decrease in H2O2 

concentration. The experiments show that as temperature increases the conversion of H2 

increases from 20% at 2 ºC to 30% at 30 ºC while the selectivity towards H2O2 decreased from 

30% at 2 °C to 9% at 30 °C indicating that while more H2 is consumed at higher temperature it is 

not being used to synthesise H2O2. When the temperature of the reaction is increased this 

changes the solubility of both reactant gases in the system. As the reaction temperature is 
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increased, O2 solubility reduces in both water and methanol which reduces the rate of synthesis 

of H2O2.  Conversely the solubility of H2 increases in methanol at higher temperatures, therefore 

the rate of hydrogenation is expected to increase at higher temperatures which will increase H2 

conversion, which in turn decreases H2O2 selectivity through non selective H2 utilisation. This 

means that lower H2O2 concentrations are obtained as seen in the results in figure 4.10, 

confirming that if a catalyst shows hydrogenation activity low temperatures are desirable to 

obtain higher H2O2 concentrations. 

 

4.4.7 - The Effect of H2 : O2 on H2O2 Concentration 

The impact of H2 : O2 molar ratio on H2O2 concentration was investigated in the flow system 

while all other reaction variables including temperature, residence time, pressure and solvent 

composition were held constant. Figure 4.11 shows that the stoichiometric 1 : 1 ratio was shown 

to be the optimum ratio to generate H2O2 with 758 ppm being observed at the end of the system. 

As expected the variation of this parameter was shown to have a major effect on the observed 

concentration of H2O2 with the optimum concentration being observed with equimolar gas 

concentration. 

 

Figure 4.11 –H2O2 concentration obtained at various H2 : O2. Reaction Conditions – 10 bar, 2 ºC, 

40 ml / min gas flow, solvent MeOH / H2O flow rate = 0.2 ml / min, 120 mg catalyst,   = 0.25 s. 
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The reaction gas contains CO2 as a diluent which has been shown to form carbonic acid in-situ 

by dissolving in the solvent, lowering the pH of the reaction solution and increasing H2O2 by 

making the solvent slightly acidic.
10,11

 However at a pressure of 10 bar the solvent solution can 

be assumed to be saturated with CO2 meaning that the pH of the solvent is constant throughout 

the experiments and therefore the results show the true dependence of H2O2 concentration on H2 : 

O2. The decrease in H2O2 concentration at a deviation away from 1 : 1 can be explained in terms 

of limiting reagent. Due to the available gas cylinders, and lower explosive limits for H2 the 1 : 1 

data point is the maximum concentration at which a 1 : 1 ratio can be achieved. The data was 

then generated by reducing the concentration of one of the gases, limiting the reaction by the 

lower reactant concentration.  

It might be expected that H2O2 concentration varies symmetrically around the 1 : 1 ratio and that 

decreasing H2 concentration would have the same effect as decreasing O2. In fact, as has already 

been seen in a similar study in a batch system
9
 there is an asymmetry, with H2O2 concentration 

decreasing more rapidly with decreasing O2 partial pressure than with decreasing H2 partial 

pressure. This can be seen more clearly when H2 : O2 and O2 : H2 are plotted together in figure 

4.12 . 

 

Figure 4.12 - H2O2 concentration obtained at various H2 : O2. Reaction Conditions – 10 bar, 2 ºC, 

40 ml / min gas flow, solvent MeOH / H2O flow rate = 0.2 ml / min, 120 mg catalyst,   = 0.25 s. 
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As can be seen in figure 4.12 even when there is 10 times more O2 than H2 this only gives rise to 

a decrease in H2O2 concentration from 750 ppm to 300 ppm whereas with 10 times more H2 than 

O2 only around 20 ppm is observed. These results are similar to the result seen in the batch 

system and can be explained in much the same way by considering the key reaction steps 

involved. As has been previously postulated
9
, all of the reactions steps share the same 

intermediate reaction species and H2O2 is formed by a 2-step hydrogenation of adsorbed O2. The 

key reaction steps for the synthesis of H2O2 are shown below, where * denotes a vacant site on 

the catalyst surface, 

H2  +  2* → 2H* 

O2  +  * → O2* 

H*  +  O2* → HO2* + * 

HO2* + H*  → H2O2* + *  

H2O2*  →  H2O2  +  * 

Competing with this reaction scheme are the reactions that lead to the undesired formation of 

water which involve the hydrogenation of dissociated surface O2 species 

O2  +  2* → 2O*  or H2O2*  +  *  →  H2O  +  O* 

H*  +  O* → HO* + * 

HO* + H*  → H2O* + *  

H2O*  →  H2O  +  * 

The asymmetry in figure 4.12 is predicted by this model, in that when H2 partial pressure is low 

compared to O2 (left side of figure 4.12) the concentration of H* will be low, meaning that less 

O* will be scavenged and therefore less hydrogenation will take place. In terms of kinetic 

equations, where the rate of hydrogenation is proportional to the H2 partial pressure a lower H2 

rate would also be predicted when O2 is in excess as well as a lower synthesis rate. If a catalyst 

was tested which showed no hydrogenation activity a much more symmetrical shape would be 

observed when investigating H2 : O2. 
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4.5 - Kinetic Analysis of Decomposition and Hydrogenation of H2O2 

When using a solvent system that does not contain any acid or halide additives to suppress the 

subsequent decomposition and hydrogenation reactions, the observed concentration of H2O2 is a 

result of the combination of the synthesis reaction and the two subsequent reactions. In order to 

put together a kinetic model for the synthesis of H2O2 the decomposition and hydrogenation rates 

must be included in the overall rate equations for the system. To do this the rate constants for this 

system must be determined for the decomposition and hydrogenation reactions. The rate 

constants were determined using the residence time that resulted in the most amount of H2O2 

being made,   = 0.25 s, and using similar concentrations of H2O2 and H2 than were used in the 

synthesis experiments. 

4.5.1 - Decomposition Reaction 

The decomposition rate constant was determined by pressurising the system to 10 bar with CO2 

and maintaining a flow of 42 ml min
-1 

through the system. A water-methanol solvent mixture 

containing various amounts of H2O2 was passed through the reactor with the catalyst in place and 

without the catalyst to determine the background activity of the reactor under reaction conditions. 

Assuming that the decomposition reaction is first order with H2O2 is can be described by the 

simple expression shown as equation (4.3) ; 

Decomposition Rate =                    (4.3) 

Based on this expression, the decomposition rate should increase linearly as the concentration of 

H2O2 increases and should be independent of the total pressure of the system. Figure 4.13 shows 

the decomposition rate as a function of H2O2 concentration for both the catalyst and the reactor. 

The results show that in accordance with the first order kinetic expression the decomposition rate 

increases linearly with increasing H2O2 concentration. From this data it is clear to see that the 

reactor contributes a small amount to the decomposition activity however this is minimal when 

compared to the decomposition activity of the catalyst. From this data it is possible to obtain the 

rate constant for the catalyst at the reaction condition investigated. The gradient of this line gives 

this rate constant for the decomposition reaction which equals 68 dm
3
 kg

-1
 h

-1
. To confirm that 

the decomposition reaction was independent of pressure the experiment was repeated at various 

pressures of CO2 in the presence of the catalyst. The results shown in figure 4.14 indicate that 

this is true, the decomposition rate remained constant at ~1.7 mol kg
-1

 h
-1 

over a pressure range 

of 0 -10 bar indicating that it is first order with respect to H2O2 only. 
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Figure 4.13 - Effect of H2O2 concentration on the decomposition rate of both the catalyst (♦) and 

the reactor (■). Reaction Conditions – 10 bar, 2 ºC, 40 ml / min gas flow, solvent MeOH / H2O 

flow rate = 0.2 ml / min, 120 mg catalyst,   = 0.25 s, [H2O2] = 0 – 2000 ppm. 

 

Figure 4.14 - Effect of reactor pressure on the decomposition rate at constant gas flow. 

Reaction Conditions – 0 - 10 bar, 2 ºC, 40 ml / min gas flow, solvent MeOH / H2O flow rate = 

0.2 ml / min, 120 mg catalyst,   = 0.25 s, [H2O2] = 1000 ppm. 
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Decomposition constants were obtained for the system containing the catalyst, the catalyst 

support and the empty reactor and the results are shown in figure 4.15. From these results it is 

clear that the metals in the catalyst are responsible for the decomposition activity with the 

catalyst having a decomposition constant 10 times higher than the support alone. It can be seen 

that both the catalyst support and the reactor have a small amount of decomposition activity and 

it is the Au-Pd on the catalyst that is responsible for the subsequent decomposition of H2O2. 

 

Figure 4.15 – Graph to show the decomposition rate constant of the catalyst, catalyst support 

and reactor. Reaction Conditions – 10 bar, 2 ºC, 40 ml / min gas flow, solvent MeOH / H2O flow 

rate = 0.2 ml / min, 120 mg catalyst,   = 0.25s, [H2O2] = 1000 ppm. 

4.5.2 - Hydrogenation Reaction 

The hydrogenation rate constant was determined by pressurising the reactor with H2 and CO2 at 

various concentrations while maintaining the gas flow rate and also by passing various 

concentrations of H2O2 through the system, at a constant H2 concentration and measuring the 

concentration of H2O2 exiting the reactor. The observed rate during these experiments is a 

combination of the hydrogenation and decomposition rates, so to extract the hydrogenation rate, 

the decomposition rate at the reaction condition also has to be determined and subtracted from 

the observed rate. All the hydrogenation rates presented have been deconvoluted from the 
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decomposition rates. Assuming that the hydrogenation reaction is first order with H2O2 and H2 it 

can be described by the simple expression shown in equation (4.4); 

Hydrogenation Rate =                       (4.4) 

By holding one of the reactants constant whilst varying the other it is possible to determine kh in 

two ways: by varying [H2O2] while maintaining [H2] and vice versa. Both variables should be 

directly proportional to the hydrogenation rate so increasing one reactant should result in a linear 

response of the hydrogenation rate if the other reactant is held constant. Figure 4.16 shows how 

the hydrogenation rate varies linearly with increasing [H2] at constant [H2O2] for the catalyst and 

an empty reactor tube. 

 

Figure 4.16 - Effect of H2 concentration on the hydrogenation rate of both the catalyst (♦) and 

the reactor (■). Reaction Conditions – 10 bar, 2 ºC, 40 ml / min gas flow, solvent MeOH / H2O 

flow rate = 0.2 ml / min, 120 mg catalyst,   = 0.25 s, [H2O2] = 1000 ppm. 

From this data an hydrogenation constant can be extracted from the gradient of the graph which 

is equal to kh[H2O2]  from this data a value of kh of  1133 dm
6
 kg

-1
 h

-1
 mol

-1
 can be obtained. 

From the results it is seen that the reactor has a small amount of hydrogenation activity but 

minimal when compared to the catalyst. To verify the results the same experiment was 

conducted but this time varying the H2O2 concentration, shown in figure 4.17. 
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Figure 4.17 - Effect of H2O2 concentration on the hydrogenation rate of both the catalyst (♦) and 

the reactor (■). Reaction Conditions – 10 bar, 2 ºC, 40 ml / min gas flow, solvent MeOH / H2O 

flow rate = 0.2 ml / min, 120 mg catalyst,   = 0.25 s, [H2] = 4 vol%. 

From this data an hydrogenation constant can be extracted from the gradient of the graph which 

is equal to kh[H2]  meaning a value of kh of  1079 dm
6
 kg

-1
 h

-1
 mol

-1
 can be obtained which is in 

good agreement with the value obtained previously by varying the concentration of H2. 

As for the decomposition reaction the hydrogenation constants can be determined for each of the 

components of the catalyst system at identical reaction conditions. Figure 4.18 shows that, 

similar to decomposition, it is the precious metals on the catalyst support that are responsible for 

most of the hydrogenation activity. The reactor shows some background hydrogenation activity 

but much lower than the catalyst, whereas the TiO2 support shows no hydrogenation activity at 

all.   
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Figure 4.18 - Graph to show the hydrogenation rate constant of the catalyst, catalyst support and 

reactor. Reaction Conditions – 10 bar, 2 ºC, 40 ml / min 5% H2 / CO2 flow, solvent MeOH / H2O 

flow rate = 0.2 ml / min, 120 mg catalyst,   = 0.25 s, [H2O2] = 1000 ppm. 

 

4.5.3 - Kinetic Analysis of Synthesis Reaction 

As was shown previously the concentration of H2O2 synthesised does not depend symmetrically 

on the H2 and O2 concentration. Due to the H2O2 hydrogenation rate being proportional to the 

concentration of hydrogen, increasing the H2 in the system decreases the observed H2O2 

concentration more rapidly than an increase in O2. Increasing the O2 concentration in the system 

may increase the synthesis rate without increasing the hydrogenation rate. Due to the available 

gas cylinders the O2 concentration could not be increased past the values used to obtain the 

maximum H2O2 concentration shown earlier, [O2] = 3.6 vol%.  

To model the synthesis reaction and to allow prediction of H2O2 concentration in O2 and H2 rich 

conditions a synthesis constant must be determined for both the O2 and H2 rich system. This was 

done by initially starting from H2 : O2 = 1 : 1 and gradually decreasing one of the reactants while 

maintaining the concentration of the other reactant.  Following on from the analysis of the 
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decomposition and hydrogenation reactions a similar kinetic expression can be used to estimate 

the H2O2 synthesis rate. A simple equation shown as equation (4.5) assumes that the reaction rate 

is proportional to the H2 and O2 concentration and is first order with each reactant.  

Synthesis Rate =                   (4.5) 

The effect of reducing the O2 content in the reaction, and therefore carrying out the reaction in a 

H2 rich atmosphere is shown in figure 4.19. It can be seen that the synthesis rate depends linearly 

on the O2 concentration and therefore it can be assumed to be first order with respect to O2 with 

observed rate constant = 81.6 dm
6
 kg

-1
 h

-1
 mol

-1
 = ks[H2]. Therefore ks = 4647 dm

6
 kg

-1
 h

-1
 mol

-1 

when H2 is in excess. 

 

Figure 4.19 - Effect of O2 concentration on synthesis rate at constant H2 concentration and 

residence time. Reaction Conditions – 10 bar, 2 ºC, 40 ml / min gas flow, solvent MeOH / H2O 

flow rate = 0.2 ml / min, 120 mg catalyst,   = 0.25 s, [H2] = 0.017 mol dm
-3

. 

The effect of reducing the H2 content in the reaction, and therefore carrying out the reaction in an 

O2 rich atmosphere is shown in figure 4.20. It can be seen that the synthesis rate depends linearly 

on the H2 concentration and therefore can be assumed to be first order with respect to H2 with the 

gradient of the graph = 120 dm
6
 kg

-1
 h

-1
 mol

-1
 = ks[O2]. Therefore ks = 7000 dm

6
 kg

-1
 h

-1
 mol

-1 

when O2 is in excess. 
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Figure 4.20 - Effect of H2 concentration on synthesis rate at constant O2 concentration and 

residence time. Reaction Conditions – 10 bar, 2 ºC, 40 ml / min gas flow, solvent MeOH / H2O 

flow rate = 0.2 ml / min, 120 mg catalyst,   = 0.25s , [O2] = 0.017 mol dm
-3

. 

The experiments carried out have allowed rate constants to be determined for all of the reactions 

that are taking place in the direct synthesis process and are summarised below. It is important to 

note that these rate constants are related to both the catalyst and the residence time of the 

experiments which were kept constant throughout. At higher residence times it would be 

expected that all of the rate constants would increase because of greater contact time with the 

catalyst and the reverse if the residence time was decreased.  

kd = 63.38 dm
3
 kg

-1
 h

-1
 

kh = 1133 dm
6
 kg

-1
 h

-1
 mol

-1
 

ks = 4647 dm
6
 kg

-1
 h

-1
 mol

-1 
 when H2 is in excess 

ks = 7000 dm
6
 kg

-1
 h

-1
 mol

-1 
 when O2 is in excess 

4.5.4 - Combining Experimental Results into a Kinetic Model 

From the experiments carried out so far it has been possible to establish rate constants for the 

H2O2 decomposition reaction, hydrogenation reaction and the synthesis reaction both in O2 rich 

and H2 rich conditions. Based on the simple kinetic equations that describe each reaction it is 
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possible to combine all of the rate constants into a single equation to predict the concentration of 

H2O2 that is expected to be produced, and then test this model containing the derived rate 

constants against the observed experimental results. Based on the assumption that all of the 

reaction rates are first order with respect to any one reactant the rates of reactions can be 

expressed as follows;  

Decomposition Rate =                 (4.6) 

Hydrogenation Rate =                     (4.7) 

Synthesis Rate =                   (4.8) 

The rates of reaction are also dependent on the amount of catalyst in the system however the 

catalyst mass has been constant throughout the experiments and because the rate is calculated as 

mol  kgcat
-1

  hr
-1

 the amount of catalyst is incorporated into the calculated rate constants so is not 

included in these rate equations. The rate at which H2O2 is formed can be defined as  the 

difference between the H2O2 forming rate and the H2O2 removal rate which can be described by 

equation (4.9) : 

       

  
                (4.9) 

And substituting the definitions of the rate equations for synthesis, hydrogenation and 

decomposition into the equation above results in the following equation (4. 10) that describes the 

rate of production of H2O2 

       

  
                                        (4.10) 

If the system is assumed to be at steady state with no catalyst deactivation, meaning that the rate 

constants remain unchanged during the reaction, the concentration of H2O2 being produced is 

constant and the reaction time is defined as the residence time which is constant at 0.25 s for all 

the kinetic experiments the equation  (4.11) can be written as 

                                              (4.11) 

The equation can be re-arranged into the form 

        
          

             
     (4.12) 
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All of the reaction constants that have been derived experimentally can now be substituted into 

the formula above to predict the concentration of H2O2 that is produced based on the H2 and O2 

concentrations that are used in the experiment, assuming that the liquid flow remains constant at 

0.2 ml min
-1

. This equation was tested by comparing the results of the experiment to investigate 

the effect of ratio H2 : O2 and also the effect of catalyst mass. When using the equation to model 

the results of the experiment two values of ks were used to reflect the asymmetry between the H2 

and O2 rich reactions observed in the experimental work. Concentration of H2O2 produced in an 

H2 rich reaction was predicted using ks = 4647 dm
6
 kg

-1
 h

-1
 mol

-1 
and when the reaction was 

carried out in an O2 rich environment the value used was ks = 7000 dm
6
 kg

-1
 h

-1
 mol

-1
. A 

selection of H2 and O2 concentrations that were in a similar range to the values used during the 

experimental study and the predicted results are shown in comparison to the experimental results 

in figure 4.21  

 

Figure 4.21 - Plot to compare experimental results to the values predicted by the derived kinetic 

model – dotted line shows predicted results and solid line shows experimental results. 

Reaction Conditions – 10 bar, 2 ºC, 40 ml / min gas flow, H2 : O2 = various, solvent MeOH / 

H2O flow rate = 0.2 ml / min, 120 mg catalyst,   = 0.25 s. 

The results in figure 4.21 show that the results predicted by the model agree well with the results 

obtained experimentally. The model containing the experimentally determined kinetic constants 
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predicts that the observed optimum H2 : O2 is 1 : 1 as was shown by experiment, it also shows 

that the predicted H2O2 concentration values are relatively close to the experimental 

concentration values, meaning that the kinetic constants obtained by experiment are reliable for 

this catalyst system at this residence time.  

Now that a basic model has been obtained it is possible to predict the results of the reactions at 

various conditions such as various H2 : O2 for catalysts that have different rate constants. This 

will also allow the prediction H2O2 concentration that could be produced without the destruction 

of H2O2 by the subsequent decomposition and hydrogenation reactions. By setting the rate 

constants in the model to the background reactor values for decomposition and hydrogenation 

while leaving the synthesis rate constants unchanged it is possible to see which of the side 

reactions is hindering the production of high concentrations of H2O2 the most. Figure 4.22 shows 

the effect of reducing the decomposition rate constant to the background level of the reactor, kd = 

4 dm
3
 kg

-1
 h

-1
, with the blue dashed line showing the values predicted by the model and the solid 

red line showing the previously obtained experimental results. 

The results show that decomposition plays a large part in limiting the concentration of H2O2 

produced. This would be expected from the rate equation for H2O2 decomposition because the 

decomposition rate is first order with respect to H2O2 and the use of the flow system to suppress 

decomposition seems not to have been effective. If decomposition was reduced to background 

levels the H2O2 concentration would increase four fold indicating that the decomposition 

reaction is still limiting this subsequent reaction. This may be to do with the reactor set-up in that 

to pass through the reactor H2O2 must pass through the tightly packed cylindrical catalyst bed 

meaning lots of contact with catalyst surface. As the reaction is only dependent on the 

concentration of H2O2 and therefore only on the diffusion of H2O2 to the catalyst surface a high 

decomposition rate for higher concentrations would be expected. This may be addressed in two 

ways, either through catalyst design to reduce the decomposition rate or through the design of 

the catalyst bed. Theoretically a disk shape catalyst bed instead of a cylindrical bed of the same 

volume would provide less subsequent chance for the H2O2 to decompose while still maintaining 

the residence time of the cylindrical bed which may lead to a lower decomposition rate and the 

possibility of producing higher concentrations. 
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Figure 4.22 - Prediction of H2O2 concentration at various H2 : O2 assuming no decomposition 

from the catalyst – blue dashed line shows predicted results red solid line shows previous 

experimental results. Reaction Conditions – 10 bar, 2 ºC, 40 ml / min gas flow, H2 : O2 = various, 

solvent MeOH / H2O flow rate = 0.2 ml / min, 120 mg catalyst,   = 0.25s 

The same process can be applied to investigate how the concentration of H2O2 would change if 

the hydrogenation rate constant was set to the background value for the reactor of 140 dm
6
 kg

-1
 

h
-1

 mol
-1

, which is shown in figure 4.23 by the blue dashed line showing the predicted results and 

the red line showing the experimental results obtained previously.  
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Figure 4.23 - Prediction of H2O2 concentration at various H2 : O2 assuming no hydrogenation 

from the catalyst – blue dashed line shows predicted results red solid line shows previous 

experimental results Reaction Conditions – 10 bar, 2 ºC, 40 ml / min gas flow, H2 : O2 = various, 

solvent MeOH / H2O flow rate = 0.2 ml / min, 120 mg catalyst,   = 0.25 s. 

The results show that while the concentration of H2O2 increases slightly with the removal of 

subsequent hydrogenation it does not have as big as effect as the removal of decomposition. The 

maximum concentration obtained is still for the H2 : O2 of 1 :1 but there is only a 300 ppm 

improvement in H2O2 yield compared to the improvement of around 2000 ppm by the removal of 

the decomposition reaction. This indicates that to make higher concentrations of H2O2 it is the 

decomposition reaction which has the greater limiting effect on the yield of H2O2 and this should 

be addressed either through catalyst design or engineering developments. 

 

4.5.5 - Predicted Effect of Catalyst Mass 

The model can also be used to predict the effect of changing the catalyst mass on the amount of 
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decomposition but by calculating the rate constants without including the catalyst mass the 

model can be expanded to equation (4.13) and various catalyst masses can be taken into account; 

        
               

                       
           

The predicted results are shown in the figure 4.24 as the concentration of H2O2 produced at 

various H2 : O2 while using different catalyst masses. The figure shows that when starting at low 

catalyst masses the H2O2 concentration increases quickly but as the catalyst mass increases the 

amount of H2O2 predicted does not continue to increase at the same rate. This is because the rate 

of the subsequent hydrogenation and decomposition reactions are also increased by the 

increasing catalyst concentration. The rates of these subsequent reactions also increase relative to 

the rate of H2O2 synthesis. This means that doubling the catalyst concentration does not result in 

twice as much H2O2 being formed beyond a certain catalyst mass and in fact the increase in H2O2 

when adding additional catalyst will plateau at a certain point. 

 

Figure 4.24 - Prediction of H2O2 concentration at various H2 : O2 at various catalyst masses. 

Reaction Conditions – 10 bar, 2 ºC, 40 ml / min gas flow, H2 : O2 = various, solvent MeOH / 

H2O flow rate = 0.2 ml / min,   = 0.25 s. 

The model can also be used to predict the H2O2 concentration if a catalyst was used with no 

decomposition or hydrogenation activity. By setting the rate constants for these two reactions to 
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the background reactor levels it is possible to see the effect of increasing catalyst mass without 

contributions from the catalyst to the subsequent reaction rates. Figure 4.25 shows the predicted 

data, when there is no contribution from hydrogenation the H2O2 concentration still plateaus with 

increasing catalyst mass indicating that it is the decomposition reaction that is limiting the 

concentration of H2O2 produced. The results with no contribution from decomposition rate 

included but still including the hydrogenation rate constant predict an almost linear increase in 

H2O2 concentration with catalyst mass. This emphasises the importance in designing catalysts 

that have low decomposition rates to make high concentrations of H2O2.   

 

Figure 4.25 - Prediction of H2O2 concentration at various H2 : O2 at various catalyst masses 

assuming no hydrogenation (♦) or decomposition from the catalyst (■) Reaction Conditions – 10 

bar, 2 ºC, 40 ml / min gas flow, H2 : O2 = various, solvent MeOH / H2O flow rate = 0.2 ml / min, 

  = 0.25 s. 

4.6 - Conclusions 

The direct synthesis of H2O2 is a challenging reaction with competing subsequent decomposition 

and hydrogenation reactions favouring the formation of water. When testing catalysts in a batch 

system only a snap shot of the reaction profiles can be determined. This makes it very difficult to 

measure the absolute rate of H2O2 synthesis due to the contribution of the subsequent reactions. 

The work described above firstly describes the construction and operation of a small scale flow 

reactor that could be used to for the direct synthesis of H2O2. It was observed that a vertical 
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reactor orientation was preferential in terms of H2O2 productivity and reproducibility of results. 

Reaction conditions were systematically studied with short residence times, low temperatures 

and high pressures being shown to be beneficial for H2O2 synthesis. H2O2 productivity showed 

an asymmetrical dependency on H2 : O2 as had been previously observed in the batch system as a 

result of the high hydrogenation activity of the catalyst at high H2 concentrations. It was shown 

that high selectivity, 80 %, could be achieved by increasing the solvent flow through the catalyst 

bed by reducing the concentration of H2O2 and hence reducing the decomposition and 

hydrogenation rates. The reactor set-up also allowed rate constants to be determined for the 

decomposition, hydrogenation and synthesis reactions and these values were combined into a 

basic kinetic model to predict the H2O2 concentration that would be obtained. The model was 

able to give a good prediction of the effect of H2 : O2 which matched closely the experimental 

results. The model was also able to show that under the testing regime used it was the 

decomposition reaction that limits the concentration of H2O2 that is able to be obtained with the 

hydrogenation having less of an effect.  
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Chapter 5  

 

Towards Identifying Active Gold            

Nano-clusters in FeOx supported CO 

Oxidation Catalysts 

 

5.1 - Introduction 

In 1982, nearly 30 years ago, while studying transition metal composite oxides as catalysts for 

combustion reactions Masatake Haruta discovered that Au containing catalysts showed 

exceptional activity towards CO oxidation at sub-ambient temperatures.
1
 Using the latest 

microscopy available at the time it was shown that the catalysts were in fact not composite 

oxides but highly dispersed Au species on the support material.
2
 Since this discovery, CO 

oxidation has become possibly the most studied reaction in heterogeneous catalysis. 

The preparation method of Au / FeOx catalysts has been shown to drastically affect the CO 

oxidation activity.
3
 Catalysts prepared by impregnation methods show very little activity 

whereas catalysts prepared by deposition precipitation and co-precipitation are much more active, 

with the preferred preparation method being co-precipitation.
3
 The gold particle size distribution 

with different preparation methods is thought to be the reason for this, with impregnation 
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producing mostly large Au particles with few small species. In contrast, co-precipitation has 

been shown to produce particles ranging from 2-4 nm clusters down to isolated Au atoms, and it 

has been reported by many groups that activity is highly dependent on particle size.
4
  

 

5.2 - Debate over the active site 

A common theory in the literature regarding CO oxidation is that small Au nano particles are 

needed for high catalytic activity; however, there is still debate on what the optimum size of the 

Au nanoparticles should be. The debate was initiated by Bond and Thompson
5
 who proposed a 

mechanism whereby Au atoms at the interface of the nanoparticle and the support are the active 

oxidation centres. This model predicted that the smaller the particles the higher proportion of 

atoms will be located at the periphery when compared to inactive Au in the bulk of the 

nanoparticle. Lopez et al.
4
 collated published data regarding Au catalysts on a variety of 

supports, and this showed the general trend that activity increased with decreasing particle size. 

The authors concluded that the most important factor controlling activity is particle size and 

hence the number of periphery atoms, and that the nature of the support and support interaction 

played a smaller role. They observed that the optimum average particle size when available data 

was compared from the open literature was between 1-2 nm. However, there is a considerable 

error associated with trying to estimate particle sizes at the lower end of the scale, and the fact 

that the particle sizes used are only averaged particle size must not be ignored. Model studies by 

Goodman et al.
6
 attempted to explain the role played by the periphery atoms by preparing model 

catalysts based on monolayers and bilayers of Au supported on a TiO2 surface with the results 

shown in figure 5.1. They showed that the bilayer structures were much more active than the 

monolayer structures and that the active species in these model catalysts closely resemble the 

structures present in an active Au / TiO2 catalyst.  
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Figure 5.1 - CO oxidation turn-over frequencies (TOF) for different model Au structures, taken 

from the work of Goodman et al.
6
 

Hutchings and co-workers reported a HAADF STEM study which undertook for the first time a 

statistical analysis of gold particle size and type, comparing an extremely active CO oxidation 

catalyst and an inactive CO oxidation catalyst at a range of calcination temperatures.
7
 They 

classified Au species into 4 main groups: isolated atoms, monolayer structures, bilayer structures 

and species above 1 nm. They found that on heat treatment, the number of isolated atoms 

decreased, the number of monolayers remained relatively constant and the number of bilayers 

decreased, whereas the number of species above 1 nm increased. This suggested that the active 

catalysts contained a higher number of bilayers and fewer nanoparticles above 1 nm. They 

concluded that these bilayer structures consisting of ~8-10 Au atoms were the source of the high 

activity in the dried sample. These results agree well with the predictions of Goodman
6
 and also 

with the observations of Arenz et al.
8
 which show that a minimum of 8 atoms is needed to show 

catalytic activity, as 8 atom Au clusters can form stable surface structures. This work challenged 

the previous hypothesis that 2-5 nm particles were the active sites; however during this work the 

particle size distribution above 1 nm was not compared. 

In a recent study by Schuth et al.
9
 it was demonstrated that catalysts prepared by colloidal 

methods to have very tight particle size distributions could show high CO oxidation activity with 

no STEM evidence of small clusters below 1 nm. These data combined with the study of 

Hutchings
7
 suggest that there may not be one active site for CO oxidation on Au nano particles 

and that in fact a large particle size range may be effective for the reaction; however different 
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particle morphologies may have vastly different activity. As there are a limited number of 

catalyst preparation methods that result in mono dispersed Au particles sizes, and due to 

equipment and time restraints, imaging the full range of particles is difficult. The full picture of 

the distribution of activity with Au particles size in real catalyst systems is thus hard to know. 

Catalytic activity results in the literature must be read with caution as they may represent a 

weighted average of activity due to different particle sizes and also average particle sizes may be 

quoted due to the large error in determining small particles below 1 nm with TEM imaging. 

Another area of uncertainty in the Au / FeOx system is the nature of the support. Many studies 

report that the nature of the support after a co-precipitation procedure is an amorphous iron 

oxyhydroxide phase.
10, 11

 These catalysts on calcination at higher temperatures, up to 400 °C, 

become more crystalline and lose Au dispersion by sintering processes and also Au can be 

become trapped within the support as it crystallises. This results in lower catalytic activity the 

higher the heat treatment prior to testing. This is in contrast to Haruta who reports that 

preparation of the catalyst by a slightly different co-precipitation method results in a crystalline 

iron oxide catalyst, which becomes more active with calcination up to 300 °C and then rapidly 

loses activity.
1
 This clear contrast in the support phase of the catalyst and behaviour on heat 

treatment between Au / FeOx samples prepared by slightly different methods illustrates one of 

many properties regarding Au / FeOx catalysts for CO oxidation that are yet to be fully 

understood, with a major challenge still being identification of the most likely active Au site. 

 

5.3 - Aims of the study 

The aim of this study is to carry out further investigation into the active site for CO oxidation 

using Au / FeOx catalysts. This will involve undertaking kinetic studies of catalytic activity along 

with extensive characterisation using STEM in an attempt to determine complete particle size 

distributions ranging from 10 nm particles down to single atomic species for a number of 

catalysts. This investigation forms collaboration between three universities: Cardiff University, 

Tokyo Metropolitan University and Lehigh University. Cardiff University carried out catalyst 

preparations and testing of catalysts supplied by Tokyo Metropolitan University. Under the 

guidance of Prof. Haruta I was able to carry out kinetic investigations of the catalysts systems 

during a 1 month stay at Tokyo Metropolitan University. Prof. Kiely at Lehigh University 

carried out extensive STEM analysis of the catalysts to establish particle size distributions of the 

different Au species.  
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5.4 – Investigation of Catalysts Prepared in Cardiff 

5.4.1 -Effect of Preparation Method on the Activity of CO Oxidation Catalysts 

Based on the catalyst preparation method reported by Hutchings et al.
7
 four catalyst samples of 5 

wt% Au / FeOx were prepared to investigate the effect of the preparation method on the catalytic 

activity and to further investigate structure property relationships of the materials. Catalysts were 

prepared by varying the order of addition of the acid and base and also the speed of addition, as 

previously outlined in chapter 2, with the results of CO conversion of the catalysts after drying at 

110 °C for 16 h catalysts shown in table 5.1.  

Catalyst Preparation Method CO Conversion / % 

Acid into base – slowly 66 

Acid into base – quickly 51 

Base into acid – slowly 99 

Base into acid - quickly 85 

 

Table 5.1- CO Conversion of 5% Au / FeOx prepared by various methods after drying at 110 °C 

for 16 h. Testing conditions - 50 ml min
-1

 0.5% CO / air, 10 mg catalyst, 25 ºC, GHSV =  

300,000 h
-1

. 

The results show that the preparation method drastically affects the activity of the catalysts with 

the method previously employed in the study by Hutchings et al.
7
 producing the most active 

catalyst. Both parameters investigated, the order of addition of acid and base and also the speed 

of addition, cause differences in activity of the catalysts. Catalysts that were prepared by adding 

base into acid were more active than catalysts prepared by adding acid into base and catalysts 

prepared by slow addition were more active than catalysts prepared by quick addition.  

5.4.2 -Effect of Calcination Temperature on Activity of CO Oxidation 

Catalyst 

The effect of calcination at various temperatures, ranging from 200 – 500 ºC, for 3 h were 

investigated for all of the preparation methods. The dependence of CO conversion on the 

calcination temperature for the catalysts prepared by adding base into acid is shown in figure 5.2.   
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Figure 5.2 – Variation of CO Conversion of 5% Au / FeOx prepared by two methods and after 

calcination at different temperatures. Testing conditions - 50 ml min
-1

 0.5% CO / air, 10 mg 

catalyst, 25 ºC GHSV =  300,000 h
-1

. 

It was observed that the activity of both catalysts decreased as the calcination temperature 

increased, with the activity reducing more dramatically for the catalyst prepared by adding base 

into acid quickly when compared to the catalyst prepared by the slow addition of base into acid. 

After calcination at 500 ºC for 3 h both catalysts showed no activity towards CO oxidation 

irrespective of the preparation method. The catalysts prepared by adding acid into base showed 

lower activity than the catalysts prepared by adding base into acid but showed an identical trend 

with increasing calcination temperature. 

5.4.3 - Catalyst Characterisation  

5.4.3.1 - Surface Area Measurement 

The surface area of the catalysts after various heat treatments were determined using nitrogen 

adsorption and the BET isotherm and the results are shown in table 5.2. The surface area analysis 

of the samples shows that the preparation method also affects the surface area of the material 

with base into acid preparation generating higher surface area materials than acid into base 

preparation. Quick addition of the reagents generates slightly higher surface area materials than 

the slow addition of the reagents. On calcination at increasing temperatures a dramatic loss in 

surface area was seen in the materials which could account for the loss in activity if the reduction 

in surface area either causes the encapsulation of Au during a change in the phase of support 

material or the promotion of Au sintering as the available surface area of the support reduces.  

99
93

37

28

0

85

40

7
3

0

10

20

30

40

50

60

70

80

90

100

100 200 300 400 500

%
 C

O
 C

o
n

v
er

si
o

n

Calcination Temperatrue / ºC

Base into Acid slowly

Base into Acid Quickly

Dried Only



                                                                                                                                           Chapter 5 

136 
 

 

5.4.3.2 – X-ray Diffraction 

The X-ray diffraction patterns for all of the dried catalysts are shown in figure 5.3. It was 

observed that the phase of the support material was dependent on the preparation method used. 

When catalysts were prepared by adding base in to acid either by fast or slow addition, an almost 

amorphous phase resulted which could be assigned to ferrihydrite (Fe2O3.0.5H2O) which is 

shown in more detail later in figure 5.9. However when acid was added into base either slowly or 

quickly the resulting catalyst consists of a much more crystalline α-haematite phase, (α-Fe2O3).   

 

Figure 5.3 - XRD diffraction patterns of 5% Au / FeOx prepared by various methods and after 

drying step of 100 ºC for 16 h. Haematite peaks are indicated by ■ 

The generation of a crystalline support from an acid into base method may arise from the 

Fe(NO3)3 being precipitated immediately on addition to a highly basic medium. The amorphous 

phase on the other hand will be precipitate gradually as the pH of the preparation is increased 
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Preparation Method Dried only 300 ºC / 3 h 500 ºC / 3 h 

  Acid into base – slowly 150 82 29 

Acid into base – quickly 183 99 22 

Base into acid – slowly 253 125 23 

Base into acid - quickly 273 109 26 

Table 5.2- BET surface areas of 5% Au / FeOx prepared by various methods and after different 

calcination temperatures. 

2θ 
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from a starting value of ~0.8 up to 8.2 by addition of the base.  From the surface area 

measurements it can be seen that the ferrihydrite phase generated by the base into acid 

preparation methods results in catalysts with higher surface areas than the acid into base methods 

which may be a reason for the higher activity seen towards CO oxidation if the Au can be more 

highly dispersed on this support material. 

5.4.3.3 - X-ray Photoelectron Spectroscopy 

XPS spectra of the catalysts after being calcined at a range of temperatures were carried out, and 

the spectra of the most active catalyst, base into acid slowly, are shown in figure 5.4. 

 

Figure 5.4 - XPS spectra of 5% Au / FeOx prepared by a base into acid drop-wise (slow 

addition) method followed by drying and various calcinations. 

The dried catalyst shows a similar trend to all of the other preparation methods in that the 

binding energy of Au is slightly shifted to higher binding energy than that expected for Au
0
, 

suggesting that a small amount of the Au is present in an oxidic state. After heating above 300 ºC 

the binding energy matches more closely with the binding energies expected for metallic Au and 

these features are present in all of the catalysts characterised. In addition the intensity of the Au 

signal increases as the calcination temperature increases especially after 300 ºC, which indicates 

that there is an increase in surface Au concentration. This increase is highly unlikely to come 

from a re-dispersion of surface Au species as elevated temperatures aid Au mobility and will 
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cause small Au particles to sinter.
12

 A more likely explanation is that subsurface Au can migrate 

to the surface at elevated temperatures; however, these elevated temperatures may also lead to 

sintering of the particles that were already on the surface leading to a lower catalyst activity.  

5.5 - Effect of Support Morphology on CO Oxidation Activity 

From the initial results obtained it was observed the preparation method used not only has a 

dramatic effect on catalytic activity but also on the nature of the iron oxide support. It was shown 

by XRD that the order of addition of the acid and the base determines the phase of the iron oxide 

support. The addition of acid into base gave rise to a crystalline haematite support material 

whereas the addition of base into acid gave a much more amorphous ferrihydrite support 

material. To investigate the effect of the nature of the support material on the catalytic activity of 

the samples, haematite and ferrihydrite were prepared as support materials by the appropriate 

preparation methods of varying the order of addition of acid and base. Onto these support 

materials Au was deposited by a deposition precipitation method described previously in Chapter 

2.  The XRD diffraction patterns of the catalysts shown in figure 5.5 confirm that samples of 

both haematite and ferrihydrite were prepared and that the catalysts show no reflections typical 

of Au, indicating that the Au deposited is in a highly dispersed state.  

 

 

Figure 5.5 - XRD diffraction patterns of 5% Au / FeOx prepared by a deposition precipitation 

method on two iron oxide supports, both dried and calcined at 300 ºC for 3 h. 

 

The dried and calcined catalysts were tested for CO oxidation at 50 and 100 ml min
-1

 flow of 

0.5% CO / air and the results are shown in table 5.3. The results show that the two catalysts have 

10 20 30 40 50 60 70 80

AB-Q

AB-D

BA-Q

BA-D

In
te

n
si

ty
 a

.u
.

2

Calcined 300°C

5% Au – Ferrihydrate - Dried

Calcined 300°C

5% Au – Heamatite - Dried

2θ 



                                                                                                                                           Chapter 5 

139 
 

almost identical activities at both flow rates used in these experiments. The catalysts show the 

same behaviour when dried or calcined which gives a strong indication that the nature of the iron 

oxide support is not crucial in determining the catalytic activity when prepared by deposition 

precipitation. Based on these results the various catalyst activities seen in the previous section 

with different preparation methods now seem to be more related to the nature of the Au species 

present rather than the support that is synthesised by the preparation conditions. 

 

Catalyst Dried 120 °C / 16 h    Calcined 300 °C / 3 h 

 

 

 

50 ml min
-1

 

 

100 ml min
-1

 

 

50 ml min
-1

 

 

100 ml min
-1

 

 

5% Au / Haematite 

 

99 % 

 

92 % 

 

75 % 

 

49 % 

5% Au / Ferrihydrite 99 % 89 % 74 % 47 % 

Table 5.3 – CO Conversion for the 5% Au / FeOx catalysts characterised in Figure 5.5. Testing 

conditions – various flows of  0.5% CO / air, 10 mg catalyst, 25 ºC GHSV =  300,000 –     

600,000 h
-1

. 

5.6 – Comparison of Catalysts from Cardiff and Tokyo Metropolitan 

Universities 

5.6.1 - Comparison of Preparation Methods between Tokyo Metropolitan 

University (TMU) and Cardiff University 

 

It has been shown that the activity of Au / FeOx towards CO oxidation is very sensitive to the 

preparation method employed especially when preparing catalysts by co-precipitation. The 

method previously reported by Hutchings et al.
7
 was shown to produce highly active catalysts for 

CO oxidation and this has been confirmed in the initial work carried out in this study. However 

when this preparation method was compared with the optimum reported by Prof. Haruta
1
 it was 

found to be very different. The most active catalyst prepared in Cardiff was prepared by adding 

base into acid slowly (drop-wise) and then drying the sample; the catalyst then lost activity on 

calcination in air at elevated temperatures. In contrast, Haruta et al. 
1, 2

 report that adding acid 

into base quickly is the best method with the catalyst becoming more active after calcination at 

300 °C.  A summary of the preparation conditions of the best catalysts is shown in table 5.4 
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The activity of catalysts prepared by these two methods, shown in table 5.5, show how sensitive 

the catalyst activity is to differing preparation methods, It was decided to use this set of catalysts, 

prepared in Cardiff and Tokyo Metropolitan University (TMU) both dried and calcined, to study 

the similarities and differences by detailed STEM and characterisation studies and to attempt to 

correlate them with the observed catalytic activities. 

 

5.6.2 - Origins of Differences Between Cardiff and TMU Catalysts 

Attempts were made to reproduce the TMU catalyst preparation in Cardiff. Although we 

managed to prepare a relatively active catalyst, in contrast to the TMU sample, it lost activity on 

calcination. To eliminate the chance that the difference was related to the different sources of the 

starting materials, an attempt was made in Tokyo to prepare a catalyst using starting materials 

taken from the supplies used in Cardiff. This resulted in a catalyst that matched the activity of 

the catalyst prepared in TMU, hence eliminating the starting materials as a possible source of 

difference in the catalyst preparation. A detailed procedure written by Prof. Haruta was followed 

in Cardiff, including the scale of the preparation and the concentration of starting solutions, and 

this resulted in a catalyst that was much less active than the catalyst prepared in TMU. The only 

difference in the preparations that could not be replicated between Cardiff and TMU is the 

washing of the catalyst sample. The washing by centrifuge in TMU is a much more thorough 

washing procedure than the Buckner funnel filtration used in Cardiff and it is speculated that this 

step is crucial in explaining the different behaviours of the two catalysts. Residual impurities 

such as Cl
-
 or Na can affect the behaviour of the catalyst particularly during calcinations where 

Cl
- 
is known so accelerate the sintering of Au particles

13, 14
 which may explain the differences in 

activity after calcination of the two samples. Higher concentrations of Cl
-
 and Na were observed 

 Cardiff TMU 

Preparation Base into acid slowly Acid into base quickly 

Aging Time / Temp 1 h / 80 °C 1 h / 80 °C 

pH 8.5 8.5 

Washing 2 L hot water – Buckner funnel Centrifuge with hot water 

Most Active Catalyst After drying 110 °C / 16 h After calcination 300 °C / 3 h 

Table 5.4 – Details of the preparation methods used by Cardiff University and Tokyo 

Metropolitan University. 
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by ICP in the Cardiff samples (Cardiff Catalysts – 412 ppm of Cl and 668 ppm of Na, Tokyo 

Catalyst 141 ppm Cl and 100 ppm Na) 

 

5.6.3 - Testing of Cardiff and TMU Catalysts  

Samples of both dried and calcined catalysts prepared in Cardiff and Tokyo were tested at both 

institutions under the testing regimes previously described in Chapter 2. The results of the testing 

in Cardiff are shown in table 5.5 where it can be seen that the dried catalysts show similar 

activity towards, however it is should be taken into account that at conversion above ~90 % mass 

transfer must be considered and it is not possible to confidently compare the performance of high 

activity catalysts, but after calcination the Cardiff catalysts loses activity whereas the TMU 

catalyst retains its observed activity.  One way to avoid mass transfer is to operate in a 

conversion regime well below 100 % by manipulating reaction conditions such as catalyst mass 

and flow rate of reactant.  

 

Catalyst Dried 110 °C / 16 h Calcined 300 °C / 3h 

Au / FeOx – Cardiff University                 99 %             37 % 

Au / FeOx – Tokyo Metropolitan University                 97 %             92 % 

Table 5.5 - CO Conversion of 5% Au / FeOx catalysts prepared by co-precipitation methods in 

Cardiff and Tokyo, both dried and calcined at 300 ºC for 3 h. Testing conditions – 50 ml min
-1

  

0.5% CO / air, 10 mg catalyst, 25 ºC, GHSV =  300,000 h
-1

. 

 

Experiments were carried out into the stability of the Cardiff and Tokyo catalysts over a reaction 

period of 5 hours, the results are shown in figure. A flow rate of 100 ml min
-1 

was used to limit 

the effects of mass transfer. Using this high gas flow rate all of the catalyst samples were shown 

to be stable over the reaction period. As previously seen the TMU catalyst is highly active and 

retains its activity after calcinations whereas the Cardiff catalysts loses a substantial amount of 

activity  
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Figure 5.6 - CO Conversion of 5% Au / FeOx catalysts prepared by co-precipitation methods in 

Cardiff and Tokyo, both  dried and calcined at 300 ºC for 3 h. Testing conditions – 100 ml min
-1

 

of  0.5 % CO / air, 10 mg catalyst, various temperatures. GHSV =  600,000 h
-1

 

 

Testing the catalysts at TMU allows for much more flexible experiments where parameters such 

as temperature and concentration of reactants can be varied over a much greater range. 

Experiments were carried out with the dried and calcined catalysts over a large temperature 

range while keeping the reactant concentration constant; the results are shown in figure 5.7. The 

testing results from TMU confirm the results for the dried catalysts seen in Cardiff in that the 

catalysts showing the same activity at ambient temperature with the temperature for 50% 

conversion being 10 °C. The results also show that the dried catalysts exhibit the same activity 

over the whole temperature range investigated, down to -60 °C, and reach 100 % conversion at 

around 25 °C in agreement with the Cardiff tests. The activity of the calcined catalysts at 

ambient temperature also confirms the observations made in Cardiff that the TMU calcined 

sample has high activity whereas the Cardiff samples loses a substantial amount of activity. 

Interestingly, while the Cardiff samples becomes less active over the whole temperature range 

(temperature of 50 % conversion = 55 °C) the TMU sample becomes more active (temperature 

of 50% conversion = -40 °C) at sub ambient temperature, a feature that was unable to be tested 

in Cardiff where it appeared that the activity was retained on calcination and not increased with 

calcination. These results indicate that the heat treatment causes an evolution in either the 
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support material or the Au distribution that produces more highly active sites in the TMU 

catalyst which are capable of catalysing CO oxidation at sub-ambient temperatures  

 

Figure 5.7 - CO Conversion of 5% Au / FeOx catalysts prepared by co-precipitation methods in 

Cardiff and Tokyo, both  dried and calcined at 300 ºC for 3 h. Testing conditions – 50 ml min
-1

 

of  1 % CO / air, 50 mg catalyst, various temperatures. GHSV =  60,000 h
-1

 

5.6.4 - Kinetic Analysis of Cardiff and TMU Catalysts 

To investigate the kinetics of the reaction over the different catalysts and determine the 

activation energy of the reaction, studies were made using the testing equipment at TMU. To 

allow the determination of kinetic parameters and accurate determination of the activation 

energy the reactor was modelled as a differential plug flow reactor and the following 

experimental conditions were used; 

1. Small catalyst amounts – to allow the assumption that the reaction rate is constant 

throughout the bed. 

2. Slow reactions – low conversion was achieved by high flow rates which allows the 

assumption that there are no concentration gradients through the catalyst bed. 

 

By modelling the reactor as a differential reactor it is possible to determine the reaction rate by 

using equation 5.1 
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Reaction rate = CO Flow rate x Conversion       (5.1) 

            Catalyst Bed Volume 

Following the determination of the reaction rate the rate constant can be determined and an 

Arrhenius plot can be constructed by measuring the rate constant at various temperatures and 

using the Arrhenius equation shown as equation 5.2 to plot ln k vs 1/T. 

        
   
      (5.2) 

5.6.5 - Arrhenius Plots 

The Arrhenius plot constructed to compare the two dried catalysts sample is shown in figure 5.8. 

As seen in the experiments previously carried out, the two dried samples show very similar 

activity although differing behaviour was seen as the temperature was increased. Below 60 °C 

both catalysts show very similar activity with activation energies of 30 kJ mol
-1

 being measured 

for the Cardiff sample and 27 kJ mol
-1

 for the TMU sample; above 60 °C differing behaviour 

was seen. No change in activation energy was seen in the TMU sample, with an activation 

energy of 27 kJ mol
-1

 being
 
measured over the whole temperature range, whereas the Cardiff 

dried sample shows a change in activation energy at around 60 °C, from 30 to 15 kJ mol
-1

 which 

indicates a change in reaction mechanism as the reaction passes through this temperature; a 

similar feature has been reported for Au / TiO2 catalysts.
15

   

 

Figure 5.8 – Arrhenius plot of 5% Au / FeOx catalysts prepared by co-precipitation in Cardiff 

and Tokyo and dried for 16 h at 110 ºC. Temperature range of Arrhenius plots 10 – 120 ºC. 
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Arrhenius plots were also constructed for the two calcined samples over the same temperature 

range as the dried samples and are shown in figure 5.9. The calcined samples behave similarly 

below 60 °C and exhibit apparent activation energy of around 30 kJ mol
-1

, similar to the dried 

catalysts. Above 60 °C an interesting change in behaviour was observed, both calcined samples 

underwent a change in activation energy but unlike the Cardiff dried sample which showed a 

decrease in activation energy the calcined samples showed an increase in activation energy. 

Above 60 °C the rate of reaction increased dramatically with a high activation energy observed 

of 95 kJ mol
-1 

for the TMU catalyst and 120 kJ mol
-1 

for the Cardiff calcined sample.  

 

 

Figure 5.9 - Arrhenius plot of 5% Au / FeOx catalysts prepared by co-precipitation methods in 

Cardiff and Tokyo and calcined for 3 h at 300 ºC. Temperature range of Arrhenius plots             

10 – 120 ºC. 

These activation energies are very large compared to the activation energies reported in the 

literature for Au / TiO2 systems above 60 °C 
15

 and resemble more the activation energies of 

model Pt group metal catalysts. No previous literature measurements of Au / FeOx catalysts 

could be found above 60 °C. This increase in activation energy may be the result of a different 

active species taking part in the reaction when the temperature is above 60 °C this active site 

may have a larger barrier to reaction which could come from either less favourable adsorption of 

the reactants or through its ability to activate the reactants to allow a reaction. The potential for 
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more than one active species should not be ignored and it should be remembered that the 

activation energies observed are only empirical activation energies and are a weighted average of 

the activation energies of all the active species present. This may be the origin of the difference 

between the values of 95 and 120 kJ mol
-1

, indicating the TMU calcined sample may contain 

more species with lower activation energy than the Cardiff calcined sample. 

 

5.6.6 - CO and O2 Reaction Orders at Various Temperatures 

Experiments were carried out at 25 ºC and 70 ºC to determine the order of reaction with respect 

to O2 and CO above and below the observed change in activation energy. Experiments were 

conducted over a large range of reactant concentrations (O2 5 – 20 vol% and CO 1 – 10 %) by 

varying one reactant concentration while holding the other constant while measuring the reaction 

rate. All of the catalysts showed a first order dependence on the concentration of CO both above 

and below 60 °C at all reactant concentrations. Between 1 – 10 vol % the reaction rate had a first 

order dependence with respect to O2 which then became independent of O2 concentration 

between 10 and 20 vol %, with the exception of the Cardiff dried catalysts which remained first 

order up to 20 vol % O2. The reaction orders at concentrations used in the Arrhenius plots, 20 

vol % O2 and 1 % CO, are summarised below in table 5.6. 

 

Below 60 °C all of the catalysts have the same order of reaction with respect to O2 and CO. This 

indicates that below 60 °C the rate determining step of the reaction involves a CO molecule 

Catalyst Reaction Order 

Below 60 °C 

Activation 

Energy / 

Reaction Order 

Above 60 °C 

Activation 

Energy / 

 CO O2 kJ mol
-1

 CO O2 kJ mol
-1

 

Cardiff Dried 1 0 30 1 1 15 

Cardiff Calcined 1 0 30 1 0 120 

TMU Dried 1 0 27 1 0 27 

TMU Calcined 1 0 27 1 0 95 

Table 5.6 – Table summarising the experimentally measured reaction orders with                

constant catalyst mass, 10 mg, and various concentrations of CO ( 1 – 10%) and O2 ( 1 – 10%) 

with a constant gas flow of 50 ml min
-1

. 
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possibly indicating that the adsorption of CO is rate determining as the reaction rate increases 

with the concentrating of CO. The zero order dependence on O2 indicates that the slowest step of 

the mechanism does not involve O2, indicating that the catalyst has a high concentration of 

activated O2 which can react with small activation barrier. Above 60 °C the Cardiff dried catalyst 

shows a dependence on the concentration of O2 which indicates that the rate determining step of 

the mechanism on this catalyst now involves a molecule of both CO and O2; however the barrier 

to reaction has reduced. The TMU dried catalyst showed no change in reaction order or 

activation energy above or below 60 °C indicating that the mechanism is likely to be the same 

for this catalyst at high and low temperatures. 

The calcined samples show the same dependence on CO and O2 above and below 60 °C, 

indicating that the rate determining step of the mechanism still involves a CO molecule again 

possibly involving the adsorption of CO onto the active site of the catalyst. However the 

observed activation energy increased dramatically above 60 °C, which could indicate that above 

60 °C a different active site is able to carry out the reaction either instead of or along with the 

sites that are already active below 60 °C. The high activation energy indicates that the barrier to 

reaction is much higher on this site, which could indicate that the adsorption of the reactants is 

not as favourable but the energy imparted into the system by heating allows the reaction to 

proceed on this site above 60 °C. 

This feature has been previously observed by Haruta for Au / TiO2
15, 16

 where a change in 

activation energy was observed as the reaction temperature was increased above 60 °C.  

However, in contrast to the TiO2 system, where the activation energy reduced to 2-3 kJ mol
-1

, an 

increase in activation energy in the calcined FeOx supported catalyst was observed. The change 

in mechanism at this temperature is thought to correspond to a change in active site. Below 

60 °C in the study by Haruta
15

 a correlation with the number of periphery atoms is seen and 

water is essential to achieve high reaction rates. Above 60 °C no correlation was observed and 

the reaction became independent of moisture concentration, and it is postulated that the reaction 

happens completely on the surface of the Au particles above this temperature. The high 

activation energy for this process on FeOx catalysts could possibly be a result of different particle 

morphologies or support particle interactions increasing the barrier to reaction when compared to 

the Au /  TiO2 system. 
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5.6.7 - Characterisation of Cardiff and TMU Catalysts  

5.6.7.1 - X-Ray Diffraction of Cardiff and TMU Catalysts 

Samples of the Cardiff and TMU catalysts were characterised by XRD to determine the bulk 

structure of the iron oxide support material; the diffraction patterns of the dried and calcined 

samples are shown in figure 5.10. The diffraction patterns show that the phase of the support 

materials of the two catalysts is different, with the dried Cardiff sample appearing to be much 

more amorphous than the TMU sample. The Cardiff sample appears to be mainly ferrihydrite 

(Fe2O3.0.5H2O), which is generated by the base into acid preparation method as previously 

shown in section 5.4.3.2, whereas the TMU sample was shown to be haematite which is the iron 

oxide phase generated by the acid into base methodology. On calcination the TMU sample 

becomes much more crystalline, as indicated by the more intense reflections detected, whereas 

the Cardiff sample, while still showing ferrihydrite reflections also begins to show weak 

haematite reflections at 24°. No Au reflections were observed in any of the XRD patterns, 

suggesting that the Au is highly dispersed in both the dried and calcined catalysts.  The same 

features of haematite and ferrihydrite were also seen using electron diffraction carried out during 

the STEM analysis which is reported later in this chapter.  

 

Figure 5.10 – X-ray diffraction patterns of dried and calcined catalysts prepared by co-

precipitation in both Cardiff University and Tokyo University, after drying and calcination at 

300 °C for 3h.  Haematite peaks are indicated by ■ and ferrihydrite peaks by ●. 

TMU 300 °C 3 h 

TMU 110 °C 16 h 

Cardiff 300 °C 3 h 

Cardiff 110 °C 16 h 

10               20                30                40               50                60                 70               80 

2θ 
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To monitor the evolution of the support phase through the calcination procedure, in-situ XRD 

was carried out on the samples. A heating program was carried out to mimic the calcination 

procedure: the sample was heated from room temperature to 300 °C at a ramp rate of 20 °C min
-1

, 

and when the sample reached 300 °C it was held there for 5 h to investigate the evolution of the 

material. It was then heated up to 600 °C at the same ramp rate, 20 °C min
-1

, XRD patterns being 

recorded between 20 -55° using a 10 min scan time. The in-situ XRD of the Cardiff sample is 

shown in figures 5.11a and 5.11b. 

 

 

  

 

Figure 5.11 - a) In-situ XRD patterns of Cardiff dried catalyst during heating to 300 °C and 

holding at 300°C for 5 h. Haematite peaks are indicated by ■  
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Figure 5.11 - b) XRD patterns of Cardiff dried catalyst during heating from 300 -   600 °C. 

Haematite peaks are indicated by ■  

The Cardiff catalyst is very poorly crystalline initially and remains poorly crystalline after 

heating up to 200 °C. The catalyst was held at 300 °C for 5 h and haematite reflections can be 

seen towards the end of this heat treatment, but they remain broad and not well defined during 

the first 3 h, as was seen for the calcined catalyst. After 5 h at 300 °C the hematite reflections can 

be seen but they are broad and have low intensity. When the temperature is increased further to 

400 °C the emerging haematite reflections become much more defined and intense and this trend 

continues after heating to 500 and 600 °C, with a faint gold reflection present at 38° after 

treatment at this high temperature, indicating the sintering of the Au particles. 

In contrast the TMU sample shows different behavior and is shown in figures 5.12a and 5.12b. 

The haematite reflections already present in the dried sample begin to become more defined and 

more intense even after heating at 200 °C. The phase appears to become more crystalline 

throughout the 300 °C hold and during heating in the temperature range 400 - 600 °C.  

It is clear that the ferrihydrite phase of the Cardiff catalyst cannot be transformed to the 

haematite phase under the heat treatments used in the preparation by the Cardiff route - even 

with extended heat treatments at 300 °C only weak haematite reflections can be seen after 5 h. 

The catalyst prepared by the TMU method shows a dominant haematite phase in the dried 

sample and begins to become more crystalline from 200 °C as the temperature is increased. The 
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results of the in-situ experiments confirm that the phase of the support is not a result of possible 

differences in the heat treatments carried out in Cardiff and Tokyo Metropolitan Universities but 

from differences in the preparation methods, in particular the order of addition of the acid and 

base.     

 

Figure 5.12 - a) In-situ XRD patterns of TMU dried catalyst during heating to 300 °C and 

holding at 300 °C for 5 h b) XRD patterns of TMU dried catalyst during heating from 300 - 600 

°C. Haematite peaks are indicated by ■ 

20 25 30 35 40 45 50 55

 I
nt

en
si

ty

300°C 280min

300°C 240min

300°C 200min

300°C 160min

300°C 120min

300°C 80min

300°C

300°C 40min

200°C

2

25°C

20 25 30 35 40 45 50

 I
nt

en
si

ty

300°C 300 min

400°C

500°C

2

600°C

Figure 5.12a 

Figure 5.12b 

        20             25             30             35             40             45             50             55  

2θ 

        20              25             30            35              40             45             50         

2θ 



                                                                                                                                           Chapter 5 

152 
 

5.6.7.2 - BET Surface Area of Cardiff and TMU Catalysts 

The surface area of the catalysts after various heat treatments was determined using nitrogen 

adsorption and the BET isotherm and the results are shown in table 5.7. The BET analysis of the 

samples shows that they have very similar surface areas both after drying and after calcination at 

300 °C for 3h, indicating that a large difference in surface area is not the origin of the difference 

in activity between the two catalysts.  

 

 

 

 

 

 

5.6.7.3 - ICP Analysis of Cardiff and TMU Catalysts 

To determine the total Au loading of the two catalysts ICP analysis was carried out on the 

calcined samples (it was assumed that the dried samples have the same Au content as the 

calcined samples), and the results are shown in table 5.8.  

 

Preparation Method wt % Au 

  Cardiff – Base into acid slowly           3.5 

TMU – Acid into base quickly   6.0 

 

Table 5.8 – Au content determined by ICP of 5% Au / FeOx calcined catalysts prepared by 

Cardiff and TMU methods. 

The Cardiff sample was shown to contain only 3.5 wt % Au in total, meaning a loss of 1.5 wt% 

Au during the catalyst preparation which is typical of precipitation methods. Surprisingly the 

catalyst supplied by TMU contained 6 wt % Au, which indicates that the preparation method 

employed in TMU is much more effective in preserving Au content in the catalyst.  The higher 

 Surface area / m
2
 g

-1 

Preparation Method Dried only 300 ºC / 3 h 

 

Cardiff – Base into acid slowly 

 

253 

 

125 

TMU – Acid into base quickly 255 138 

Table 5.7 - BET surface areas of 5% Au / FeOx catalysts prepared by Cardiff and TMU methods 

after drying and calcination at 300 °C for 3 h. 
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weight loading of the TMU catalyst could also be caused by incomplete precipitation of the iron 

nitrate used in the preparation when a predetermined amount of base is used to precipitate the 

catalyst. 

5.6.7.4 - XPS of Cardiff and TMU Catalysts 

XPS of the Cardiff and TMU dried and calcined catalyst was carried out and the spectra are 

shown below in figure 5.13. 

 

Figure 5.13 – Au (4f) XPS spectra of 5% Au / FeOx catalysts prepared by Cardiff and TMU 

methods after drying and calcination at 300 °C for 3 h. 

The XPS data clearly confirms that the TMU sample contains a higher Au atomic % at the 

surface than the Cardiff catalysts. The surface Au : Fe ratio of the TMU catalysts is c.a. four 

times higher than the Cardiff catalyst although from this data alone it is not possible to determine 

the number of Au sites present on the surface of the catalyst. As XPS has a sampling depth of 5 - 

10 nm the TMU catalyst may have many more sub surface Au species than the Cardiff catalyst 

which would give rise to a stronger Au signal when in fact the number of surface Au sites, which 

are able to carry out catalysis, may be responsible for the differences in activity. Comparing the 

Au : Fe ratio of the TMU calcined catalyst and dried catalysts the calcined catalyst has less 

surface Au detected by XPS, which could indicate sintering of the Au particles to sizes larger 

than the sampling depth of XPS meaning a loss of signal from the centre of these particles. The 
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identical binding energies of the Cardiff and TMU samples indicate that, as far as can be 

detected by XPS, the Au present is the same in both catalysts with a slight shift to higher binding 

energy indicating a small amount of oxidic Au. 

 

5.7 - Detailed STEM Analysis of Cardiff and TMU Catalysts 

5.7.1 - Particle Size Distributions 

A detailed STEM analysis of the Cardiff and TMU samples was carried out at Lehigh University, 

under the supervision of Prof. Kiely. For each sample 50 low magnification images and 100 high 

magnification images were taken which allowed all particles sizes to be observed from “large” 

10 nm Au nanoparticles to atomic Au species. Representative high and low magnification 

images are shown in figure 5.14.  

 

 

Figure 5.14 – Representative high and low magnification STEM images used to determine 

populations of nanoparticles, sub nanometer clusters and atomic Au species. 

 

From the collection of images 2000 large particles and 3000 small particles were counted to 

generate the particle size distributions. An artificial cut-off value of 1.15 nm was used to avoid 

any particles being counted twice. Particles larger than this cut-off value were counted using the 

low magnification images and particles smaller than this value were counted in the high 

magnification images. A number of methods were considered to represent the absolute number 

of Au sites in the catalyst materials and each method needs a number of assumptions to be made 

which are summarised in table 5.9 
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Particle Size 

Distribution Method 

Assumptions Made Suitability 

Compare Number Fraction Catalysts have similar 

amounts of particles 

Not suitable for large particle 

size variation seen in these 

samples 

Compare Number Density Catalysts have the 

same/similar projected area 

Suitable for the current case 

because larger particles can 

simply be excluded 

Compare the Mass Fraction Catalysts have known Au 

loading 

Including large particles can 

result in large errors 

Table 5.9 - Table to summarise possible methods to determine the particle size distributions of 

the catalysts by STEM. 

 

Simply comparing the number fraction of species is not suitable for this case as the catalysts are 

known from ICP to contain different amounts of Au. As the catalysts have been shown to have 

similar surface areas, calculating the number density of Au species is a more suitable 

approximation of the particle size distribution. Using this method it is possible to generate a 

particle size distribution where large catalytically inactive particles, > 20 nm, can be ignored to 

avoid large errors in the data. From this distribution the mass fraction of each species can be 

generated without the inclusion of large Au particles. The number density particle distribution is 

shown in figure 5.15. 
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Figure 5.15 - Number density of Au species determined by STEM for catalysts prepared by 

Cardiff and TMU methods and after drying and calcination at 300 °C for 3 h. 

Based on inspection of the kinetic measurements previously carried out in this investigation two 

distinct behaviours were observed for the catalysts. This may be because there are multiple 

active species with different specific activity at certain temperatures; the overall CO oxidation 

activity will therefore be a convolution of an activity distribution with the particle size 

distribution. 

All catalysts behaved similarly at low temperatures; below 60 °C the activation energy of the 

reaction was measured to be around 30 kJ mol
-1

 whereas above 60 °C the calcined samples 

showed increased activation energy of  95 – 120  kJ mol
-1

. Using the particle size distributions 

we can aim to identify two active species, one of which is active at low temperatures with an 

activation energy of 30 kJ mol
-1 

whose population should follow the activity of the catalysts at 

low temperature, TMU calcined > TMU dried > Cardiff dried > Cardiff calcined. The other is 

active at temperatures above 60 
o
C with an activation energy around 100 kJ mol

-1
 whose 

population should follow TMU calcined > Cardiff calcined > Cardiff dried ~ TMU dried. 

From inspection of the population density of the Au species on the most active catalyst, TMU 

calcined, there is not one particle size that dominates the distribution that is obviously 

responsible for the activity of the catalyst when compared to the other catalysts. To correlate the 

kinetic observations to the particle size distribution for the behavior above 60 °C the particle 

density distribution at particle size of around 5 nm follows the expected trend for this behaviour 

(TMU calcined > Cardiff calcined > Cardiff dried ~ TMU calcined). This may indicate the 
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nanoparticles around 5 nm are responsible for the behaviour seen above 60 °C; a higher 

population of nanoparticles would be expected in the calcined samples because of sintering of 

small Au particles into larger nanoparticles. 

The particle size distribution suggests that 1-5 nm Au particles cannot be the dominant species 

for low temperature CO oxidation as the Cardiff calcined sample would be more active than the 

Cardiff dried only sample. At high temperatures the behaviour of the calcined catalysts can be 

correlated to the populations of particles around 5 nm. It was observed that the TMU catalysts 

always have more sub nm clusters than the Cardiff samples; however it is not possible to 

correlate the activity with the populations of these particles as it is possible that these species 

could be located beneath the surface of the catalyst.  The observation that catalysts prepared by 

deposition precipitation, which is known to produce catalysts with more nanoparticles rather than 

sub nanometer clusters, are less active than the CP (co-precipitation) catalysts agrees with the 

assumption that sub-nm clusters are important in co-precipitated catalysts. 

Also observed during the STEM analysis of the TMU catalyst was the growth of the catalyst 

particles after heat treatment, with the particles growing from around 5 nm to 40 nm after 

calcination at 300 °C for 3 h. During the heating process the Cardiff sample showed much 

smaller growth than the TMU sample with catalyst particles growing to 15 – 20 nm. The TMU 

catalyst also showed different morphology changes during the calcination procedure - on heating, 

internal pores were observed to develop in the catalyst, whereas these pores were not observed in 

the Cardiff sample.  

 

5.7.2 - Investigation of atomic and sub-nm Au species in Au / FeOx catalysts 

The STEM investigation carried out had sufficient resolution to identify atomic Au and sub 

nanometer clusters on the catalysts. To further refine the particle size distributions to include the 

structure of the sub nanometer clusters and classify the amount of monolayers and bilayers, a 

single atom has to be used as a reference and the brightness of the nearby cluster can then be 

identified as either a monolayer or bilayer. During this process it was noticed that the brightness 

of the single atoms varied greatly along with the brightness of the clusters. This indicated that 

not all of the atomic Au was equivalent and what was thought to be surface atomic Au and 

clusters may in fact be sub surface or even embedded into the lattice. It has been observed 

previously that when preparing catalysts by co-precipitation methods Au can become trapped in 
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the support structure.
11

 To investigate the morphology of the bulk of the catalyst particles STEM 

was carried out by focusing through catalyst particles. It had been previously shown that on 

calcination the TMU samples formed some internal pores and it was thought that these pores 

could be where the sub surface Au was located. A number of STEM images were recorded by 

focusing the beam at different depths through the catalyst particles as shown by the schematic 

and images in figure 5.16.  

As the electron beam is focused through the sample Au species can be seen throughout the 

sample, indicating that a large amount of Au is trapped in the support material including sub 

surface atomic Au and also sub surface Au clusters. As the beam is focused into the pore in the 

centre of the particle it is possible to clearly see the outline of the pore because of the high 

number of Au species. As the beam is focused through the sample to the underside of the particle 

Au species on the underside of the particle come into focus. These images indicate that there was 

a large amount of sub surface Au present in all of the catalysts, much more than was previously 

thought. The presence of these sub surface Au species makes the identification of monolayers 

and bilayers challenging as overlap of surface and subsurface Au makes the identification by 

brightness difficult. The same features were seen across all catalyst samples which indicates that 

the populations measured for atomic and cluster features are likely to be greatly affected by sub 

surface species being counted. 

From the small number of clusters that could be confidently identified, it was seen that the 

majority were monolayer structures, agreeing with the work of Han
17

 and Olson
18

 who showed 

that the preferred structure of small Au clusters of around 8 atoms is to form planar structures, 

although not enough clusters could be assigned as monolayer or bilayer to confidently state that 

monolayers were the most abundant species for Au clusters.  
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Figure 5.16 - STEM through focus images corresponding to the schematics above of the TMU 

calcined catalyst showing the distribution of atomic Au through a catalyst particle including an 

internal pore. 

 

A more detailed analysis of the catalyst surface revealed a number of other Au environments. 

Along with surface clusters and sub-surface clusters, Au atoms were also observed to be 

positioned on the Fe sites of the inner support meaning that some atomic Au was substituting the 

Fe in the lattice, as shown by the red arrows in figure 5.17. These features will also complicate 

the statistics of the very small particles in the particle size distribution. For example, in terms of 

atomic Au there are: species trapped in pores which cannot do catalysis and are not counted in 

the statistics, species substituting Fe in the lattice which cannot do catalysis but which are 

counted in the statistics, and atomic species on the surface which may be catalytically important. 

A similar limitation applies to the sub nm clusters, as sub surface clusters either in pores or on 

the surface may both be counted in the statistics but only the clusters exposed on the surface will 

Focus +10 nm Focus  0 nm Focus  -10 nm 
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be catalytically active. As nano particles are much less likely to be trapped in the support the 

particle size distributions for the particles > 1 nm are more reliable. 

 

Figure 5.17 – STEM images of the TMU calcined catalyst showing the different atomic Au 

environments: arrow 1 indicates Au substituted into the lattice, arrow 2 indicates a surface 

cluster, arrow 3 indicates Au species in an amorphous surface layer and arrow 4 indicates a 

subsurface cluster.  

5.7.3 - Investigation of the surface of Au / FeOx catalysts 

Following the observations that Au species could be observed either on the surface, sub surface 

or substituted into the surface of the iron oxide support of the catalysts, a more detailed 

investigation of the catalyst surface was undertaken. The aim was to identify the morphology of 

the catalyst surface and in particular to identify if a different support morphology was 

responsible for the identification of apparent Au particles sitting slightly above the observed 

crystalline phase, as indicated by the white arrow in figure 5.17. Initially XPS analysis was 

carried out on all four samples to investigate the oxidation state of the Fe in the uppermost 

surface of the support. The Fe (2p) XPS spectra are shown in figure 5.18 and show that they 

mainly consist of Fe
3+

 as indicated by the peaks at binding energy 711 and 725 eV. However the 

main peak at 725 eV shows an asymmetry in all of the samples as indicated by the dashed line at 

lower binding energy which indicates that there is a small Fe
2+

 component in the surface of the 

catalyst support. There is little evidence of the development of a satellite for Fe
2+

 expected at 715 

eV although this would be very weak and could easily be masked by the Fe
3+

 peak tail. No 

1 

1 

3 2 

4 

1 



                                                                                                                                           Chapter 5 

161 
 

evidence has been found in the literature that X-rays can induce the reduction Fe
3+

 to Fe
2+

 in 

haematite during XPS measurements.  

 

Figure 5.18 - Fe (2p) XPS spectra of 5% Au / FeOx catalysts prepared by Cardiff and TMU 

methods after drying and calcination at 300 °C for 3 h. 

 

To confirm the presence of a more reduced Fe species in the surface of the catalyst electron 

energy loss spectroscopy (EELS) was carried out at Oak Ridge National Laboratory by Dr Wu 

Zhou. By comparing the ratio of the Fe L3 : L2 peaks it is possible to identify if a more reduced 

surface is present in the catalysts. The EELS spectra of the TMU calcined sample are shown in 

figures 5.19 - 5.21. The spectra shown in figure 5.19 indicate that the surface spectrum is indeed 

different from the bulk spectrum. A lower L3 : L2 ratio for the surface when compared to the bulk 

indicates that the surface is likely to contain some Fe
2+

. The image that the EELS spectra were 

taken from in fact shows the presence of the surface layer which contains a more reduced form 

of Fe, as indicated in the white box, and seems to be much more amorphous than the Fe2O3 layer 

identified as the bulk phase by XRD analysis. 
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Figure 5.19 – EELS spectra comparing the nature of the surface of the FeOx support to the bulk 

for the TMU calcined catalyst. The blue line shows the bulk spectrum and the red line shows the 

surface spectrum. 

To investigate if the bulk structure was effected by the presence of a Au particle on the surface, 

EELS spectra were recorded of the bulk material both next to and away from an Au nano particle 

and compared with the surface spectrum of the support. As shown in figure 5.20, the bulk 

structure was identical both near to and away from the Au nanoparticles and indicated that the 

material consisted of Fe
3+

which corresponds to the Fe2O3 observed in the bulk techniques such as 

XRD. The surface was again observed to contain some Fe
2+

 which was an amorphous phase. The 

layer was measured to be 2-3 nm thick and likely to be FeO – OH when the O2 fine structure is 

compared to the literature. 
19

 

 

Surface 
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Figure 5.20 - EELS spectra comparing the nature of the surface FeOx to the bulk either near to or 

away from a Au nanoparticles of the TMU calcined catalyst. The blue line shows the bulk 

spectrum near a nanoparticle, the red line shows the bulk spectrum away from a nanoparticle and 

the green line shows the surface spectrum. 

To investigate if the Au particles induced the surface reduction of the FeOx, EELS spectra were 

recorded of the surface of the catalyst both near to and away from a Au particle and compared to 

the bulk; the spectra are shown in figure 5.21. It can be seen that the catalyst surface is uniform 

and contains Fe
2+

 irrespective of its proximity to the Au nanoparticles.  There have been no 

published reports to indicate the electron beam could be responsible for the surface reduction of 

the Fe support, and the fact that a shoulder is seen in the XPS spectra of all four samples shows 

agreement with the EELS spectra and suggests that the surface reduction is not an artefact of the 

characterisation techniques. These spectral features were seen in all of the catalyst samples 

investigated, indicating that it was not preparation method dependent. The presence of reduced Fe 

centres in the surface of the support could be the reason for the high activity of the FeOx supported 

catalysts. It has been widely reported in the literature that Au on reducible supports such as TiO2, 

CeO2 and FeOx are the best CO oxidation catalysts because the catalyst is capable of reversibly 

activating O2 using the slightly reduced Fe layer at the surface. The catalytic rate of CO oxidation 

may be enhanced by the presence of this activated O2 near the Au nano particles. As has been 

shown earlier in the kinetic data, the rate determining step in the reaction seems to be the 

activation of CO, as indicated by the reaction being first order with respect to CO concentration; 

this indicates that activation of O2 is fast as the reaction rate does not depend on O2 concentration. 

This may be because of the ability of the observed amorphous layers to activate O2 easily and 

supply the Au particles with O2 to carry out the reaction. 

Surface 
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Figure 5.21 - EELS spectra comparing the nature of the surface FeOx either near to or away from 

Au nanoparticles with the bulk structure. The blue line shows the bulk spectrum , the red line 

shows the surface spectrum near a nanoparticle and the green line shows the surface spectrum 

away from a nanoparticle. 

The origin of the reduced layer is uncertain at this point, although it has been shown not to affect 

the catalytic activity in the catalysts studied.  A very active catalyst was calcined for an extended 

period of time at 300 °C to induce very low activity. EELS measurements were carried out on this 

sample and the presence of the 2-3 nm amorphous layer was still seen. 

 

5.8 - Discussion and Proposed Explanation  

The four catalysts tested were shown to have very different activity for the low temperature 

oxidation of CO; below 60 °C it has been shown that they all have the same activation energy of 

around 30 kJ mol
-1

 and the rate of reaction depends linearly on CO concentration and is 

independent of O2 concentration. This observation suggests that at low temperatures all of the 

catalyst samples share the same active site and the populations of the active sites are responsible 

for the difference in activities. Particle size distributions suggest that above 60 °C it is possible to 

correlate the populations of nanoparticles of size ~ 5 nm to the CO oxidation activity. No 

correlation between nanoparticles population could be made for the activity below 60 °C, which 

suggests that smaller sub nanometer cluster may be the dominant active species at low 

temperatures. 

The problem with correlating the PSDs for the sub nanometer clusters is that some of the sub 

nanometer clusters and isolated atoms were found trapped in the support lattice but were still 

Surface 1 

Surface 2 

bulk 
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counted in the PSD as is difficult to distinguish surface from sub surface atomic and sub 

nanometer clusters. However due to the lack of internal pores in the catalysts apart from the 

calcined TMU catalyst, nanoparticles should be all on the outer surface of the support meaning 

that the nanoparticle PSDs will not be effected by this problem as it is unlikely that they can form 

inside internal pores. 

It was reported by Allard et al.
20

 that for Au / FeOx systems prepared by co-precipitation the 

evolution of Au particles during heat treatments could play a key role in the catalysis. By 

studying a leached Au / FeOx catalyst using an in-situ STEM fitted with a sample heater, they 

firstly observed many sub-surface Au clusters buried in the support and mainly associated with 

internal pores similar to those observed in the calcined TMU catalyst. Also, many small Au 

species were also identified without significant sign of internal pores, indicating that they were 

trapped in the haematite lattice of the support. During heat treatment at 500 °C for various times 

between 2 – 15 mins, the Au species were seen to migrate toward the surface and re-form small 

Au nanoparticles on the surface. This explained the observed reactivation of the leached 

catalysts in this study after heat treatment and also agreed with XPS result showing an increase of 

Au surface content after heat treatment. 
20, 21

  

Based on the characterisation and testing data obtained it is possible to suggest a mechanism based 

on the evolution of sub-surface Au during heat treatment. Due to the different preparation methods 

employed, the TMU dried catalyst consists of a haematite support with lots of atomically 

dispersed species; however, as was shown earlier using STEM, by focusing through the catalyst 

particle many of these are sub surface and therefore do not contribute to the catalysis. Due to a 

high number of species being sub surface, even though the PSD shows that the TMU dried 

catalyst has a higher number of clusters than the Cardiff dried sample not all of them may be 

involved in the catalysis. The Cardiff dried sample in contrast consists of ferrihydrite and has 

fewer atomic and sub nanometer Au species, meaning that there are less sub surface Au species. 

The identical activity of the dried samples could arise from having similar numbers of sub 

nanometer Au species on the surface despite the PSDs showing the TMU sample had a greater 

number as this included a large number of sub surface species. 

On calcination the haematite particles in the TMU dried catalyst start to sinter to form bigger 

particles with internal pores. Also during heat treatment, atomically dispersed Au species that are 

buried sub surface in the lattice will diffuse out to the surface of the catalyst particle while a 

competing sintering process occurs on the surface. Small particles on the surface will start to grow 
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through agglomeration with other surface particles to generate larger nanoparticles. Some atoms 

will also diffuse into the internal pores, where they seem to be stabilised, which is the reason for 

the high particle density inside the pore as seen previously in the through-focus images. The 

overall result is the presence of more sub nanometer clusters on the surface of the TMU calcined 

catalyst by migration from the sub surface, and it is these species that are dominant for the 

oxidation of CO below 0 °C. A schematic is shown in figure 5.22.  

 

Figure 5.22 - Schematic representation of the evolution of Au species in the TMU catalyst 

during calcination.  - Subsurface Au species,  - Surface Au species,  - bulk haematite phase 

and  - surface amorphous Fe phase. 

 

In contrast, the support particle for the Cardiff dried samples does not undergo significant 

sintering with the formation of no internal pores during heat treatment. As was seen in the PSD 

the number of atoms and sub nanometer particles is much lower than the TMU catalyst and 

because of the competing agglomeration during the calcination process the overall number of 

exposed sub nanometer clusters is much less than in the dried state, with an increase in the 

number of nano particles > 1 nm. The rate of agglomeration may also be increased by the smaller 

grain size of the Cardiff catalyst because the sub surface particles will have a shorter distance to 

migrate to the surface meaning more time to agglomerate into bigger particles when they reach 

the surface. The hypothesis is illustrated in figure 5.23. This hypothesis fits well with the 

observed catalytic and characterisation data as well as observations in the literature about the 

migration of Au and reactivation of catalysts in the literature that have undergone leaching.
20, 21
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Figure 5.23 - Schematic representation of the evolution of Au in the Cardiff catalyst during 

calcination.  - Subsurface Au species,  - Surface Au species,  - bulk haematite phase and  

- surface amorphous Fe phase. 

 

 5.9 – Conclusions 

Since the discovery that Au catalysts showed exceptional rates for CO oxidation it has become 

one of the most studied reactions in heterogeneous catalysis. There has been much debate in the 

literature about the nature of the active site and this study brought together three leading groups in 

Au catalysis to try and improve the understanding of CO oxidation in Au / FeOx systems. This was 

carried out by undertaking kinetic studies of catalysts prepared in both Cardiff and Tokyo 

Metropolitan Universities to try and identify similarities and differences. Extensive 

characterisation using STEM in an attempt to determine complete particle size distributions 

ranging from 10 nm particles down to single atomic species for a number of catalysts was carried 

out. Despite numerous attempts the preparation method of Au/FeOx from Tokyo which results in 

a catalyst that improves on calcination could not be repeated in Cardiff. The only difference in the 

preparation that could not be repeated is the washing by centrifuge, catalysts prepared in Cardiff 

were observed by ICP to contain a higher level of chloride and sodium which could be the reason 

for the deactivation of the Cardiff catalysts due to the promotion of sintering of Au particles. 

Through a detailed analysis of catalysts prepared in Cardiff and Tokyo using STEM, XPS and 

EELS a number of new interesting features were observed including the presence of an amorphous 

slightly reduced iron oxide layer which is present on the outer 2-3 nm of the catalyst particle. A 

correlation between particles size distributions and activity suggested that the activity above 60 ºC 

could be correlated with Au particles around 5 nm in size. No correlation between these particles 

and the activity at sub ambient temperatures could be made which suggests that nanoparticles are 

not the active species in this temperature regime and questions the published literature which 

300 °C 3 h 
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suggests that nanoparticles ~2-3 nm are the active site. It is speculated that sub nanometer clusters 

may be the most active species below ambient temperature although in this study sub surface Au 

made the quantification of these species difficult. 

 The presence of a high proportion of sub surface Au was observed in the catalysts along with Au 

species substituting Fe in the lattice. The higher than expected sub surface clusters was proposed 

as the reason why TMU catalysts become more active as the Au particles migrate to the surface on 

calcination whereas the Cardiff catalysts, which has many fewer sub surface Au species, lose 

activity through sintering of Au particles. These results require further experiments to be designed 

to prove the hypothesis that sub nanometer clusters are the most active species at sub ambient 

temperatures. These include detailed STEM analysis after catalysts have had their nanoparticles 

removed by methods such as cyanide leaching. Alternatively preparation methods need to be 

carefully designed to produce even tighter particle size distributions to deconvolute the activity 

distribution from the particle size distribution. Another area which should be investigated 

methodically using STEM is the morphology of the Au particles to try and identify the most stable 

Au particle shape and also identify any Au particles shape dependency on the reaction rate. 
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Chapter 6 

 

Conclusions and Future Work  

 

As already discussed in Chapter 1, the current method for the industrial production of H2O2 is the 

anthraquinone process. Although this process displays many advantages such as high H2 

selectivity the required continual replacement of organic solvents and the fact that is uneconomic 

at small scales is driving the development of a catalytic direct synthesis process. The synthesis of 

H2O2 from molecular H2 and O2 represents a challenging catalytic reaction as the subsequent 

hydrogenation of the synthesised H2O2 needs to be avoided to achieve the high selectivities        

(+ 95%) required for an industrial process. Also the subsequent decomposition of H2O2 which 

may be again catalysed by the same catalysts used to synthesise H2O2 needs to be avoided. These 

problems can be addressed either by catalyst design through careful control of reaction 

conditions. Both approaches have been investigated in this work through the investigation of 

alternatives to the best Au-Pd catalysts using Pd – Sn as an alternative (Chapter 3) and the design 

and construction of a fixed bed reactor to allow the study of reaction conditions independently 

(Chapter 4). The results obtained in these chapters investigating the direct synthesis of H2O2 

show very promising results and the conclusions reached in these chapters show that the direct 

synthesis process is an exciting prospect that has a significant chance of being a successful 

process in the future as well as providing an interesting and challenging reaction to learn about 

catalysis.  

Chapter 3 reports an investigation into an alternative to the current Au-Pd catalyst system. The 

methodology developed in this work concerning the catalyst preparation of Sn-Pd catalyst 
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systems show a big step forward in the development of catalysts for the direct synthesis of H2O2 

and a number of key milestones in the field were achieved. Firstly the synthesis of catalysts that 

show activity of similar magnitude to analogue Au-Pd catalysts but have replaced Au with a 

cheap base metal like Sn, makes the system much more attractive form an industrial perspective 

in terms of cost. Also the observation that Au is not unique in promoting the reaction could lead 

to extensive research into other metals that could show similar effects in reducing the 

hydrogenation activity of Pd catalysts. The use of Sn - Pd to prepare a catalyst on SiO2 which is 

stable to multiple uses represents an advantage over using the Au-Pd system which has been 

shown to lose Au during the reaction and is therefore unstable. The heat treatment cycles 

developed during this research have been able to generate Sn-Pd species that are stable on SiO2 

to the reaction conditions and multiple cycles of the reaction conditions along with TiO2 catalysts 

which are also stable.  

Most importantly the catalysts developed in chapter 3 show no hydrogenation/decomposition 

activity towards H2O2 under our reaction conditions. These catalysts are only the second 

example of this to be reported and the first example on commercially available SiO2 and TiO2 

supports without prior modification. The fact that the catalysts do not include Au as the means of 

increasing the selectivity towards H2O2 represents a big milestone in the process. As it has now 

been shown that Au can be replaced in the catalysts future work should be undertaken to identify 

possible alternatives to Pd, and the approach should be taken to reduce the hydrogenation 

activity of a catalyst rather than start from materials with low hydrogenation activity. The future 

possible development of a base metal only catalyst makes the process even more attractive.  

The work described in chapter 4 concerns the synthesis of H2O2 in a fixed bed flow reactor 

capable of carrying out synthesis reactions at low pressure (10 bar). During the construction and 

design of the reactor it was observed that a vertical reactor orientation was preferential in terms 

of H2O2 productivity and reproducibility of results. Reaction conditions were systematically 

studied with short residence times, low temperatures and high pressures being shown to be 

beneficial for H2O2 synthesis. H2O2 productivity showed an asymmetrical dependency on H2 : O2 

as had been previously observed in the batch system as a result of the high hydrogenation 

activity of the catalyst at high H2 concentrations. It was shown that it was possible to achieve 

high selectivity (80 %) by increasing the flow of solvent through the catalyst bed although this 

reduced the concentration that could be achieved. The reactor set-up also allowed rate constants 

to be determined for the decomposition, hydrogenation and synthesis reactions and these values 

were combined into a basic kinetic model to predict the H2O2 concentration that would be 
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obtained. The model was able to give a good prediction of the effect of H2 : O2 which matched 

closely the experimental results and also showed that the decomposition reaction had a 

dramatically limiting effect on the concentration of H2O2 that can be synthesised.  

Following the construction and operation of the fixed bed reactor a number of further kinetic 

studies can now be undertaken, including determination of activation energies, isotopic effects in 

the feed gases and this equipment can be further extended to the study of in-situ oxidation of 

organic spices using the –OOH species generated during reaction. The next phase in the 

development of the process should focus on the development of a high pressure system to focus 

on the synthesis of higher concentrations of H2O2. 

The oxidation of CO using Au catalysts is possibly the most studied reactions in heterogeneous 

catalysis. Chapter 5 aimed to further investigate the active site for CO oxidation using Au / FeOx 

catalysts. This was carried out by undertaking kinetic studies of catalytic activity along with 

extensive characterisation using STEM in an attempt to determine complete particle size 

distributions ranging from 10 nm particles down to single atomic species for a number of 

catalysts. This work was carried out in collaboration with Prof. Haruta of Tokyo Metropolitan 

University and Prof. Kiely of Lehigh University. Through a detailed analysis of catalysts 

prepared in Cardiff and Tokyo a number of new interesting features were observed including the 

presence of an amorphous slightly reduced iron oxide layer which is present on the outer 2-3 nm 

of the catalyst particle. The presence of a high proportion of sub surface Au was observed in the 

catalysts along with Au species substituting Fe in the lattice. The higher than expected sub 

surface clusters was proposed as the reason why TMU catalysts become more active on 

calcination where as the Cardiff catalysts lose activity through sintering of Au particles. Through 

a detailed particle size analysis it was possible to correlate activity above 60 °C with the 

presence of nanoparticles around 5 nm in diameter but not low temperature activity which 

challenges the theory that nanoparticles are the most active species below ambient temperatures. 

These results require further experiments to be designed to prove the hypothesis that sub 

nanometer clusters are the most active species at sub ambient temperatures. These include 

detailed STEM analysis after catalysts have had their nanoparticles removed by methods such as 

cyanide leaching. Alternatively preparation methods need to be carefully designed to produce 

even tighter particle size distributions to deconvolute the activity distribution from the particle 

size distribution.  
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Appendix 1 – Determination of Reaction Rate from Flow Reactors 

 

Fundamental Equations for Plug Flow Reactor 

 

 

Definitions 

F = Flow Rate of Reactant   r = Reaction Rate 

C = Concentration of Reactant  V = Volume of Catalyst Bed 

X = Conversion of Reactant                            0 = initial f = final 

 

Flow at inlet = Flow at outlet + rate of conversion 

F = (F + dF) +  r dV 

F = F0 (1-X) 

Therefore dF = d[F0 (1-X)] = -F0dX 

Substituting equation (3) into (1) gives   

F0dX = rdV  

Integrating the equation  
  

  
   

  

 

  

 

 

 
  (5) considering that V and F0 are constant gives 

 

 
   

  

 

  

 
    

where  
 

 
 is equal to the reactant catalyst contact time 

Assuming a differential reactor model where reaction rate is constant thorough the catalyst 

bed means that r in equation (6) is constant. Reaction rate may then be determined by 

integrating equation (6) to give 
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