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ABSTRACT 

CD8
+
 T-cells are essential for the immune control of pathogens and the natural eradication of 

cancer. CD8
+
 T-cells also play a major role in the pathogenesis of autoimmunity and 

alloreactivity. CD8
+
 T-cells recognize short peptide fragments (8-13 amino acids) presented 

at the target cell surface bound to Major Histocompatability Class I (MHCI) molecules. T-

cell antigen recognition is unique in nature because it involves the binding of a single ligand 

(peptide–MHC [pMHC]) by two receptors (TCR and CD8). The CD8 glycoprotein, which 

serves as the coreceptor on MHCI-restricted T-cells, acts to enhance the antigen sensitivity of 

T-cells by binding to a largely invariant region of MHCI at a site distinct from the TCR 

docking platform. CD8 has been shown to have multiple roles including enhancing effects on 

early T-cell activation events and also in controlling the level of T-cell cross-reactivity. The 

pMHCI/CD8 interaction is classified as having a very weak binding affinity and very fast 

kinetics. I discovered that this low solution binding affinity is essential in maintaining 

homeostasis as dramatically increasing the strength of this interaction resulted in total loss of 

T-cell specificity and activation independent of TCR engagement. This led me to examine the 

possibility that anti-CD8 antibodies could also bypass the normal requirements for T-cell 

activation. I identified one specific clonotype of antibody capable of this phenomenon but 

simultaneously discovered multiple effector phenotypes of other anti-CD8 antibodies. These 

included both enhancing and inhibitory effects on pMHCI tetramer binding and CD8
+
 T-cell 

activation. Subsequently, I explored the possibility of using these inhibitory anti-CD8 

antibodies to block T-cell function in systems which are highly dependent on CD8 such as 

autoreactive CD8
+
 T-cells. I demonstrated that targeting CD8 can be used as a strategy to 

block autoreactive CD8
+
 T-cell activation in the absence of any effect on pathogen specific 

immunity. This highlights a novel therapeutic strategy that warrants further investigation. 

Finally, I demonstrated that CD8 can alter the functional avidity of a CD8
+ 

T-cell for its 

agonists and act to re-arrange the relative potencies of each of its potential agonists, a novel 

“focussing mechanism” for CD8 in T cell activation. These results provide new insight to the 

biological role of CD8 in T-cells and even predict a novel mechanism for CD8 in controlling 

T-cell function. My results also highlight the potential of targeting CD8 for 

immunotherapeutic design in autoimmune disorders. 
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1. Introduction 

1.1 Overview of the Immune system 

The primary role of the immune system is the eradication of pathogens and tumours to 

protect against disease. The immune system is a diverse network of cell types, lymphoid 

organs and many other factors involved in immune control. The immune system can be 

divided into two arms, determined by the speed and specificity of the response to pathogen 

attack: (i) innate (natural) immunity, which provides the first line of anti-microbial defence 

(Tosi 2005), and; (ii) acquired (adaptive) immunity, which acts in concert with innate 

immunity in order to eliminate the invading pathogen.  

 

1.1.1 Innate Immunity 

The innate immune system provides the first line of defence. If pathogens breach physical 

barriers such as skin, mucosal surfaces and the respiratory tract then the innate immune 

response is activated and recognizes pathogens through ‘pattern recognition receptors’ (PRR) 

(Medzhitov 2007). PRRs concentrate on the recognition of highly conserved structures 

expressed by large groups of micro-organisms (Suzuki, Kurihara et al. 1997; Fraser, Koziel et 

al. 1998; Thomas, Li et al. 2000). The major cellular effectors of the innate immune system 

are dendritic cells (DC), neutrophils, monocytes and macrophages (which are all involved 

with phagocytosis) (Janeway and Medzhitov 2002), and natural killer cells (NK) (which are 

involved with removal of virally infected and transformed cells) (Smyth, Cretney et al. 2005). 

In addition, mast cells, eosinophils and basophils are involved in the release of inflammatory 

mediators and molecular components. Another important cellular effector of the innate 

immune system is the complement system. The activated complement system recognizes and 

http://en.wikipedia.org/wiki/Eosinophils
http://en.wikipedia.org/wiki/Basophils
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eliminates invading microorganisms. In addition, complement facilitates the elimination of 

dead or modified self cells, such as apoptotic particles and cellular debris. The alternative 

pathway of complement forms a spontaneously and constantly activated immune surveillance 

system as reviewed in (Zipfel and Skerka 2009). Effector function of the innate immune 

system is activated immediately on exposure to antigen and occurs to the same extent even on 

repeated exposure to the same antigen (Medzhitov and Janeway 2000).  

 

1.1.2 Acquired Immunity 

Aquired or ‘Adaptive’ immunity can be separated into either humoral or cell-mediated 

responses. Humoral immunity is mediated by the secretion of antibodies by B-cells. 

Antibodies bind to antigens present at the surface of invading pathogens (such as viruses or 

bacteria), which identifies them for removal via cell-mediated immunity. Cell-mediated 

immunity does not involve antibodies or complement but involves the activation of T-cells 

(Delves and Roitt 2000; Delves and Roitt 2000). Both B-cells and T-cells are derived from 

progenitor hematopoietic stem cells in the bone marrow (Janeway, Murphy et al. 2008). B 

and T-cells express receptors that are generated by somatic re-arrangement during T-cell 

development, as a result approximately 10
14

 B-cell receptors (BCRs) and 10
18

 T-cell 

receptors (TCRs) can be generated. B and T-cells express only one clonal antigen receptor 

and on recognition of specific antigen proliferate by a process called ‘clonal expansion’ 

which can take 3-5 days (Pancer and Cooper 2006). The adaptive response improves on 

repeated antigen exposure, a property called ‘immunological memory’.  

 

http://en.wikipedia.org/wiki/Antigen
http://en.wikipedia.org/wiki/Antibodies
http://en.wikipedia.org/wiki/Complement_system
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1.2 T-cell antigen recognition, processing and activation  

1.2.1 T-cell activation and antigen recognition 

T-cells are characterized by the surface expression of the lymphocyte marker CD45 and more 

specifically by the expression of the T-cell marker CD3. Approximately 95% of circulating 

T-cells will express a unique αβ T-Cell Receptor (TCR) at their cell surface (Lefranc and 

Lefranc 2001). These αβ T-cells are able to recognize short peptide fragments presented at 

the cell surface of an antigen presenting cell (APC) in association with the Major 

Histocompatability complex molecule (MHC) known as Human Leukocyte antigen (HLA) in 

humans (Engelhard 1994) (Rudensky, Preston-Hurlburt et al. 1991) (Davis, Boniface et al. 

1998). T-cells can also exclusively express a γδ TCR. These cells are far less in number than 

αβ T-cells, i.e. <5% circulating T-cells will express a γδ TCR (Kabelitz, Wesch et al. 2007) 

(Lefranc and Lefranc 2001). The γδ T-cells role is less well understood in immunity than the 

αβ T-cells. It is believed that they can recognize specific microbial and viral antigens, and 

may play a role in tumor immunology (Kabelitz, Wesch et al. 2007).  

 

MHC Class I (MHCI), molecules in complex with short peptides (8-13 amino acids) are 

expressed at the surface of all nucleated cells as peptide-MHCI (pMHCI). These presented 

peptides are mostly derived from endogenously processed intracellular proteins. In a healthy 

cell the peptides that are presented are host-derived. Intracellular infection or tumourigenesis 

results in presentation of foreign pMHCI at the cell surface. Foreign pMHCI molecules are 

recognised by CD8
+
 T-cells which eradicate the target cell. Therefore, CD8

+
 T-cells are 

important mediators of immunity to intracellular pathogens such as viruses, protozoa and 
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parasites, and play an important role in the elimination of tumour transformed cells (Harty, 

Tvinnereim et al. 2000). 

 

MHC Class II (MHCII), molecules are expressed by ‘professional’ or ‘bone marrow derived’ 

APCs (dendritic cells, macrophages, B-cells and in the human T-cells) and present small 

peptide fragments (13-25 amino acids) processed from extracellular pathogens. Foreign 

peptide-MHCII is recognised by CD4
+
 helper T-cells (Th). Activated CD4

+
 helper T-cells 

exist as three types: (i) Type 1 (Th1) helper T-cells secrete cytokines that facilitate cell-

mediated immunity such as macrophage activation and T-cell mediated cytotoxicity; (ii) 

Type 2 (Th2) helper T-cells secrete cytokines that help B-cells produce antibodies (Delves 

and Roitt 2000; Delves and Roitt 2000); and,  (iii) Th17 T-cells which produce IL-17 and are 

involved with autoimmune disorders but their precise role is still unknown (Veldhoen and 

Seddon 2010). There are also regulatory forms of CD4
+
 T-cells (Treg) that are important in 

immune regulation. My work focused on CD8
+
 T-cells so these Th cell types will not be 

discussed further here. 

 

1.2.2 Antigen processing and presentation 

In the cytosol, proteins become polyubiquitinated which targets them for proteasomal 

degradation (Ciechanover 1994).  The proteasome is a central cytoplasmic processing unit 

and is required for the generation of the majority of MHCI-associated peptides (Rock, 

Gramm et al. 1994). Peptide fragments generated by the proteasome are translocated into the 

Endoplasmic Reticulum (ER) via the transporter associated with antigen processing complex 

(TAP), where they bind to newly synthesised MHCI molecules (Pamer and Cresswell 1998).  

These new pMHCI molecules associate with a number of chaperone proteins, including 
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tapasin, calnexin, calreticulin and ERp57 to form the peptide-loading complex. This complex 

then facilitates the loading of peptides into the MHCI peptide binding groove  (Capps and 

Zuniga 1994; Sadasivan, Lehner et al. 1996; Peaper and Cresswell 2008; Purcell and Elliott 

2008; Sadegh-Nasseri, Chen et al. 2008). The pMHCI complex then traverses the ER and 

Golgi apparatus, before transport to the plasma membrane and expression on the APC surface 

(Figure 1.1). The co-factor tapasin additionally edits the peptide repertoire that is loaded onto 

MHCI molecules in favour of those with slow dissociation kinetics (Howarth, Williams et al. 

2004; Thirdborough, Roddick et al. 2008). Recognition of pMHCI is mediated by the αβ 

TCR which is expressed by CD8
+ 

T-cells (Antoniou, Powis et al. 2003). Alternatively, 

specialised professional antigen-presenting cells (including dendritic cells, B-cells, and 

macrophages) might have taken up exogenous antigen by endocytosis. Exogenous antigen is 

processed via a different pathway to endogenous antigen, and presented at the cell surface in 

complex with MHCII molecules (Figure 1.2). Briefly antigens are derived from extracellular 

pathogens and proteins internalised by phagocytosis or endocytosis. Internalised protein 

antigens are degraded in acidic endosomes. MHCII molecules in the endoplasmic reticulum 

are exported in vesicles. Vesicles fuse in cell cytoplasm so that MHCII molecules can bind 

antigen peptides. Antigenic peptides presented at the cell surface by MHCII molecules are 

recognised by CD4
+
 T-cells (Parkin and Cohen 2001). 

 

1.3 Structural and Molecular features of MHC and the TCR 

1.3.1 MHC class I and II structure 

MHCI and MHCII are cell surface glycoproteins with distinct subunit structures. The MHCI 

molecule is a membrane bound heterodimer consisting of two polypeptide chains, i.e. an α  
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Figure 1.1: MHCI processing and presentation pathway. Peptides fragments are generated 

via proteasome digestion of bacterial, viral and tumour associated proteins, then transported 

into the endoplasmic reticulum (ER) where they associate with MHC molecules using TAP, 

peptide loading complex, and other chaperone proteins. Upon release from the ER, the 

pMHCI complex is transported to the cell surface by the Golgi apparatus where it is 

expressed, figure reprinted from The Lancet, 357(9270): 1777-89, Parkin and Cohen, An 

overview of the immune system, © 2001, with permission from Elsevier. 
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Figure 1.2: MHCII processing and presentation pathway. Antigens are internalised by 

phagocytosis or endocytosis where they are degraded in increasing acidic conditions and 

subsequently fuse to MHCII molecules preformed in the ER. Once released from the ER 

pMHCII molecules are presented on the cell surface and are recognised by CD4
+
 T-cells, 

figure reprinted from The Lancet, 357(9270): 1777-89, Parkin and Cohen, An overview of 

the immune system, © 2001, with permission from Elsevier. 
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chain, which is non-covalently associated with the smaller β2-microglobulin light chain 

(Figure 1.3 A). The α chain contains three globular domains, α1, α2 and α3 and it is only this 

chain that spans the cell membrane. The α3 domain and β2-microglobulin are membrane 

proximal whereas the α1 and α2 domains form the peptide binding groove. The MHCII 

molecule consists of two non-covalently associated chains, α and β chain (Figure 1.3 B). Both 

these chains span the cell membrane, and consist of a transmembrane domain and 

cytoplasmic tail. The α2 and β2 domains are membrane proximal domain whereas the α1 and 

β1 domains form the peptide binding groove. These subtle yet important differences between 

the MHC molecules do not deter from the fact that they both have similar structures and 

functions. The walls of the peptide binding groove are formed by 2 α-helices, whilst the base 

of the groove consists of 8 anti-parallel -pleated sheets (Wolf and Ploegh 1995). 

 

MHC molecules are unstable in the absence of peptide. Polymorphic amino acids in MHC 

molecules are mainly found and clustered in the peptide binding groove. These amino acids 

contribute to the formation of peptide binding pockets and side chains that project from 

certain amino acid residues into these binding pockets can stabilise the MHC molecule. The 

amino acid residues of the peptide epitope that sit in the pockets of the binding groove are 

known as the MHC anchor residues. These peptide binding pockets differ between MHC 

allelic variants in their spatial and chemical characteristics (Nielsen, Lundegaard et al. 2004). 

MHC molecules are known to be highly polymorphic at the peptide binding site and 

subsequently different MHC alleles will be able to bind different peptides. 
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Figure 1.3: Structure of MHCI and MHCII molecules. (A) The MHCI molecule consists 

of an α domain (α1, α2 and α3) and β2-microglobulin. The α1 and α2 domain form the 

peptide binding groove. The α chain also contains a transmembrane domain and a short 

cytoplasmic tail. (B)  The MHCII molecule consists of non-covalently linked α and  chains. 

The α2 and β2 chains form the membrane proximal domain whereas the α1 and β1 chain 

form the peptide binding groove. Both α and β chains contain a transmembrane domain and a 

cytoplasmic tail.  
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MHCI restricted peptides are normally 8-13 amino acids in length (Rammensee 1995), where 

residues at position 2 and the C- terminus act as MHCI anchor residues (Rammensee, 

Bachmann et al. 1999). The ends of the peptide binding groove are closed (Bjorkman, Saper 

et al. 1987) restricting the length of the peptide that can be accommodated, therefore the 

longer peptides must adopt a bulged conformation. MHCII molecules can bind peptides that 

range from 13-25 amino acids in length (Rammensee 1995) although the most commonly 

found length ranges from 13-17 amino acids (Rudensky, Preston-Hurlburt et al. 1991). In 

contrast to the MHCI molecules, the peptide binding groove is open. As a consequence, 

anchor residue positions can vary (Brown, Jardetzky et al. 1993) and the peptide sits in a 

universally flat conformation. 

 

The MHC encoding region is located on chromosome 6 and extends to over four million base 

pairs of DNA (Marsh 2000). It is divided into different gene encoding regions, i.e. (i) MHCI -

A, -B, -C, -E, -F and -G genes. (ii) MHC class II -DP, -DQ and -DR genes, as well as -DM. 

MHC genes can be highly polymorphic allowing the presentation of a large range of potential 

peptide epitopes. In humans, there are over 5518 MHCI alleles and 1612 MHCII alleles 

known to exist to date (EMBL-EBI 2012). 

 

1.3.2 TCR structure and pMHC recognition 

Recognition of peptide-MHC (pMHC) molecules is mediated by T-cells bearing an αβ TCR 

(Unanue 1984; Townsend and Bodmer 1989). The TCR α and β chain are covalently linked 

by disulphide bonds (van der Merwe and Davis 2003). Each TCR chain consists of a 

membrane distal variable region (Vα or Vβ) and a membrane proximal immunoglobulin like 
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constant region (Cα or Cβ). The chains also contain a transmembrane region and a 

cytoplasmic tail (Bentley and Mariuzza 1996). The TCR chains are glycoproteins, with the α 

chain containing between four and five N-linked oligosaccharides and the  chain containing 

up to two N-linked glycans (Lefranc and Lefranc 2001) (Figure 1.4). The Vα and Vβ domains 

each contain three hypervariable regions known as the complementarity determining loops 

(CDR1, CDR2 and CDR3) which are involved in the recognition of the pMHC complex 

(Lefranc and Lefranc 2001). The CDR3 loops of the Vα and Vβ chains interact with the 

peptide-binding region of the MHC whereas the CDR1 and CDR2 loops make contacts with 

the MHC molecule (Figure 1.5). Data suggests that the CDR1 loop may also be making 

contact with the peptide (Tynan, Burrows et al. 2005; Cole, Yuan et al. 2009). Approximately 

28 human class I and class II TCR/pMHC co-crystal structures have been solved to date. This 

comprises of 21 TCR/pMHCI and 7 TCR/pMHCII structures, whereas as of 2006 only 10 

structures had been solved (Bulek, Madura et al. 2012; Rudolph, Stanfield et al. 2006). Data 

suggests that the TCR binds in a diagonal conformation to pMHC with the Vα domain of the 

TCR positioned over the N-terminus of the peptide and the Vβ domain over the C-terminus 

(Hennecke and Wiley 2001; Rudolph and Wilson 2002). A docking angle of approximately 

35° is most often observed and classed as within the normal range of binding when referring 

to other classified TCR/pMHC complexes previously solved. There are extremes which are 

known including A6 TCR-A2-Tax complex which binds with an angle of 32° (Garboczi, 

Ghosh et al. 1996) and 1G4 TCR-A2-NY-ESO complex which binds with an angle of 62° 

(Chen, Stewart-Jones et al. 2005), highlighting the variation that can occur between different 

complexes. 
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Figure 1.4: Structure of αβ TCR chains. The TCR α and β chain are covalently linked by 

disulphide bonds. Each TCR chain consists of an N-terminal region which consists of a 

membrane distal variable region (Vα or Vβ) and a membrane proximal immunoglobulin like 

constant region (Cα or Cβ). Each chain also contains a transmembrane region and a 

cytoplasmic tail. 
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Figure 1.5: Crystal structure of TCR binding to pMHCI molecule. (A) The co-crystal 

structure of MEL5 (α chain shown as a yellow schematic diagram, β chain shown as a salmon 

schematic diagram) bound to the HLA-A*0201 (shown as green and blue schematic 

diagrams) molecule complexed with the ELAGIGILTV peptide (shown as blue sticks).  (B) 

Expanded view of the interface between the MEL5 variable domain bound to the A2-ELA 

surface (colours as in A). The overall conformation of the ELAGIGILTV peptide (N to C 

terminus, left to right), including the central peptide bulge, is displayed. (C) View from above 

of the MEL5 CDR loops bound to the A2-ELA surface (colors as in A; MEL5 CDR loops 

shown as spheres). The MEL5 TCR binds toward the N terminus of the peptide, making 

contacts with the peptide via its CDR1 and CDR3 loops and contacts with the MHC surface 

via its CDR1 and CDR2 loops. This figure was originally published in The Journal of 

Biological Chemistry, (Cole, Yuan et al. 2009), © The American Society for Biochemistry 

and Molecular Biology. 
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1.3.3 T-cell generation and thymic selection 

The initial stages of T-cell development involves the migration of bone marrow progenitor 

stem cells to the thymus where they undergo a selection process before maturing into 

different T-cell subsets. During thymocyte development the TCR α and β chains undergo a 

sequence of ordered somatic recombination events giving rise to T-cells with functional 

TCRs. These recombination events of the Variable (V), Diversity (D), and Joining (J), gene 

segments, known as VDJ recombination are mediated by VDJ recombinase enzymes such as 

Recombinase activating genes 1 and 2 (RAG1 and RAG2) (Schatz, Oettinger et al. 1992; 

Agrawal and Schatz 1997). These enzymes associate with each other and bring the V, D and J 

segments together cleaving the DNA at specific sites. DNA repair has to occur after RAG1 

and RAG2 activity, which is achieved using DNA repair enzymes such as the DNA-

dependent protein kinase complex (DNA-PK) that repairs double stranded DNA. (Ma, 

Pannicke et al. 2002). DNA-PK, among other enzymes, aligns the two DNA ends together 

and then recruits another enzyme, terminal deoxynucleotidyl transferase (TdT), which adds 

nucleotides randomly to the DNA ends. This process provides junctional diversity which can 

subsequently lead to TCR diversity. The process of VDJ recombination leads to an extremely 

diverse TCR repertoire and determines the antigen binding specificity of individual TCRs. 

 

Double positive (DP) thymocytes, i.e. thymocytes that express both the CD4 and CD8 co-

receptors are the first cells in the T-cell developmental pathway to express fully assembled 

successfully genetically rearranged αβ TCR on their cell surface. These DP thymocytes will 

then undergo positive selection, which is a process during which TCRs with minimal 

affinities for self-pMHC convey survival signals that permit continued thymocyte 

development (Huesmann, Scott et al. 1991). At the DP and single positive (SP) stages, cells 

http://en.wikipedia.org/wiki/Terminal_deoxynucleotidyl_transferase
http://en.wikipedia.org/wiki/Junctional_diversity
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that express TCRs with high affinities for self-pMHC are deleted by the process of negative 

selection (Kappler, Roehm et al. 1987). The T-cell clonotypes that exist in the periphery post-

thymic development therefore express TCRs with weak/intermediate affinities to self pMHC 

whilst ensuring a strong affinity for foreign pMHCI antigen. This reduces the potential for 

autoreactivity (Werlen, Hausmann et al. 2003). During the final stages in thymocyte 

development, immature DP thymocytes shut off expression of either one of their co-

receptors. This gives rise to single positive mature CD8
+
 and CD4

+
 thymocytes as reviewed 

in (Basson and Zamoyska 2000). Van Laetham and colleagues showed that the MHC 

specificity of αβ TCRs is ultimately controlled by the CD4 and CD8 co-receptors during 

thymic development. Co-receptor deficient thymocytes can differentiate into mature αβ T-

cells that can recognise antigenic ligands independently of MHC. The co-receptors can 

therefore control MHC specificity of αβ T-cells by preventing thymocytes from being 

signalled by non-MHC ligands. This data is consistent with the sequestration of intra-cellular 

Lck by CD4 and CD8, which would ensure that co-engagement of MHCI or MHCII by both 

the TCR and CD8 or CD4, respectively, is required to trigger the signals that elicit positive or 

negative selection in the thymus (Van Laethem, Sarafova et al. 2007). 

 

Multiple models for CD4/CD8 lineage choice have been proposed (as reviewed in (Singer, 

Adoro et al. 2008). These include classical models such as stochastic or instructive, whereby 

termination of co-receptor transcription is either random or instructed, respectively. In 

addition, Singer et al suggest that lineage choice can be best described using a kinetic 

signalling model, which is a non-classical model. This postulates that the CD4/CD8 lineage 

choice is determined by TCR-signal duration and that cytokines such as IL-7 serve as sensors 

that detect the duration of the TCR signal. Singer et al suggest that CD8 gene expression is 
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terminated to create a CD4
+
CD8

-
 intermediate thymocyte in which lineage choice is made. 

Persistence of TCR signalling blocks IL-7R signal transduction and thymocytes differentiate 

into CD4
+
 T-cells. Cessation or disruption to the TCR signalling allows IL-7R mediated 

signalling enabling the CD4
+
CD8

-
 intermediate thymocytes to undergo co-receptor reversal 

and differentiate into CD8
+
 T-cells (Singer, Adoro et al. 2008). Indeed, CD8 lineage choice 

has recently been shown to be controlled by the intrathymic signalling by IL-7 and other γ-

chain cytokines (Park, Adoro et al. 2007).  

 

1.3.4 Kinetics of TCR/pMHCI interaction 

The flexibility of antigenic peptide (ligand) recognition is essential for the function and 

development of T-cells (Kersh and Allen 1996). Some peptide ligands can partially activate 

the cell (partial agonists), others can inhibit activation (antagonists) and others will fully 

activate the cell to send a complete signal to the T-cell (agonists) (Sloan-Lancaster and Allen 

1996). The affinity and kinetics of the TCR/pMHCI interaction can be studied using a 

technique known as Surface Plasmon Resonance (SPR). Typical antibody-antigen 

interactions have fast association rates of 10
5
-10

6 
M

-1
 x s

-1
 with dissociation rates of 10

-5
-10

-3 

s
-1

 (Mason and Williams 1980). However, compared with conventional cell-cell recognition 

molecules the TCR has a relatively low affinity for peptide-MHC ligand (values range KD= 

0.13-278 μM, with typical values from 1-50 μM) (Mason and Williams 1980; Gao and 

Jakobsen 2000; Bridgeman, Sewell et al. 2011) (Figure 1.6). In contrast to other cell-cell 

recognition molecules the low affinity of the TCR/pMHC interaction is due to slow 

association rate constants (10
-2

-10
-4

 M
-1

 x s
-1

) rather than as a consequence of fast 

dissociation rates. The slow TCR/pMHC association rates are a consequence of the flexibility 

at the TCR/pMHC interface (Willcox, Gao et al. 1999). TCR/pMHC off rates fall into a  
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Figure 1.6: Typical wild-type affinity constants measured for TCR/pMHCI and 

pMHCI/CD8 interactions as measured via SPR. TCR/pMHCI interaction kinetics have 

been characterised using SPR and are typically of low affinity, i.e. typical wild-type values 

from 1-50 μM. Biophysical analysis has revealed that the pMHCI/CD8 interaction is much 

weaker than the TCR/pMHCI, i.e. typical wild-type values ~146 μM. 
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relatively narrow window (Koff = 0.63-0.01 s
-1

 with a mean of 0.24 s
-1

) or a t1/2 of 12-30 secs 

at 25
°
C (Davis, Boniface et al. 1998; Bridgeman, Sewell et al. 2011). In its simplest 

reversible form, the interaction of the TCR and pMHC can be described by the reaction; 

 kon 

TCR + pMHC ⇌ TCR:pMHC 

koff 

 

involving an association rate (kon) and a dissociation rate (koff). The half-life of the interaction 

(t1/2) is derived from the dissociation rate. At equilibrium, a binding constant (KD = 1/KA) can 

activate the cell to send a complete signal to the T-cell (agonists) (Sloan-Lancaster and Allen 

1996). This binding constant can be determined for the interaction using standard Scatchard 

approaches (or the kinetic parameters, KD = koff/kon), KD = [TCR][pMHC]/[TCR:pMHC] 

(Rudolph, Stanfield et al. 2006). 

 

1.4 T-cell activation 

1.4.1 TCR/CD3 interaction 

The αβ TCR transmembrane domains are non-covalently associated with the CD3 invariant 

polypeptide complex (-γ, -δ, -ε, and –ζ) (Kersh, Shaw et al. 1998). The transmembrane 

domains of the αβ TCR chains contain charged residues that maintain ionic interactions with 

the CD3 chains. Each TCR is associated with CD3-δε, CD3-γε heterodimeric and CD3-ζζ 

homodimeric signalling chains (Weiss and Littman 1994). Recent data also suggest that 

extracellular loops of the TCR α and β constant domains can interact with CD3-δε and CD3-

γε heterodimers (Kuhns and Davis 2007). An additional CD3-η domain has also been 

identified. The CD3-η chain is a splice variant of CD3-ζ lacking the C-terminal signalling 
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motif and is believed to be involved in thymic selection (Blumberg, Alarcon et al. 1990; 

Love, Shores et al. 1994; Yamamoto, Isobe et al. 2005). The TCR-CD3 complex is 

assembled in the ER in a series of defined steps that begins with a CD3 core of CD3-δεγ 

(Alarcon, Berkhout et al. 1988). The CD3 chains contain signalling motifs called immune 

receptor tyrosine based activation motifs (ITAMs) which contains the consensus sequence 

YXX(L/I)X6-8YXXL/I. The γ, δ and ε chains each contain 1 ITAM and the CD3ζ chain 

contains 3 ITAMs. Phosphorylation of these multiple ITAMs is sufficient to transduce and 

amplify signals from the TCR (Samelson, Harford et al. 1985; Reth 1989; Chan and Shaw 

1996; Wange and Samelson 1996). The CD3-ζ subunits are important in stable accumulation 

of the TCR/CD3 complex at the immunological synapse. The CD3ζ chain contains clusters of 

arginine and lysine residues enabling the chain to complex to phosphoinositides. Elimination 

of the phosphoinositide binding function of CD3-ζ impaired the CD3-ζ to stabilise at the 

immunological synapse during T-cell/pMHC interaction (DeFord-Watts, Dougall et al. 2011). 

 

After the TCR binds to pMHC antigen, one of the first intracellular events observed is the 

phosphorylation of the CD3-ζζ homodimer (Samelson, Patel et al. 1986; Koyasu, McConkey 

et al. 1992). This phosphorylation is induced by p56
lck 

(a member of the Src tyrosine kinase 

family) (Barber, Dasgupta et al. 1989). The CD3-ζ polypeptide contains three ITAM motifs 

with a total of six tyrosines. CD3-ζ is phosphorylated in resting T-cells in the 21 kD isoform 

and upon full phosphorylation gives rise to the 23 kD isoform (Kersh, Shaw et al. 1998). The 

CD3-ζ ITAMs become phosphorylated in an ordered manner after recognition of a strong 

agonist ligand (Kersh, Kersh et al. 1998). Recognition of a less potent ligand leads to 

phosphorylation of a partial subset of tyrosines and non-complete ITAM phosphorylation 

(Kersh, Kersh et al. 1998). 
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The complete phosphorylation events are therefore controlled by the potency of the 

TCR/pMHC interaction. It is these phosphorylation events that determine the thresholds that 

are required for T-cell activation (Kersh, Kersh et al. 1998). A recent study has provided new 

data on the events that lead to CD3- phosphorylation on TCR ligation. Using optical 

tweezer experiments Kim et al suggest that the TCR is an anisotropic mechanosensor which 

upon specific pMHCI ligation, converts mechanical energy into biochemical signals. In this 

study a tangential force is applied to the TCR complex post-ligation which exerts a torque 

effect on CD3 as a consequence of the cell surface molecular movements. This change is 

thought to convert ectodomain ligation into the earliest intracellular signalling events (Kim, 

Shin et al. 2012). 

 

1.4.2 Protein tyrosine kinases 

The immediate result of specific TCR/pMHC engagement is the phosphorylation and 

subsequent activation of protein tyrosine kinases (PTKs). At the early stages of signal 

transduction two families of PTKs exist: (i) Src PTK and, (ii) Syk PTK (Chan, Iwashima et 

al. 1992; Chan, Desai et al. 1994; Iwashima, Irving et al. 1994). These PTKs are able to 

phosphorylate a range of substrates which signal multiple downstream targets. Upon 

phosphorylation of these targets, combined with appropriate signals from the T-cell co-

receptors, T-cell activation will then commence (Iwashima, Irving et al. 1994). The Src 

family of kinases includes the family members p56
lck

 (Lck) and Fyn (Wange and Samelson 

1996). Both of these PTKs are co-localised to membranes as a result of myristoylation and 

palmitoylation modifications (Resh and Ling 1990; Kabouridis, Magee et al. 1997). Lck 

contains a di-cysteine motif which mediates association to the CD4 and CD8 co-receptors 



Chapter 1 

51 

 

(Turner, Brodsky et al. 1990; Kim, Sun et al. 2003). The Lck molecule contains single Src 

homology domains, (SH1, SH2 and SH3).  The SH1 domain is a kinase domain which 

contains an ATP binding site and an autophosphorylation site at position Tyr394 (Abraham 

and Veillette 1990; Luo and Sefton 1990). Both SH2 and SH3 domains mediate intra and 

inter molecular protein to protein interactions via recognition of polyproline and 

phosphotyrosine motifs, respectively (Fantl, Escobedo et al. 1992; Zamoyska, Basson et al. 

2003) (reviewed in (Salmond, Filby et al. 2009). The C-terminus of Lck contains a regulatory 

tyrosine residue at position Tyr505 which is specifically targeted by the Src C-terminal 

kinase (Csk) which will inhibit Lck function (Bergman, Mustelin et al. 1992). This is caused 

when Tyr505 becomes phosphorylated by the kinase Csk, resulting in a molecular association 

with the SH2 domain rendering Lck inactivated and non-functional (Weiss and Littman 1994; 

Sicheri and Kuriyan 1997), highlighting the importance of Tyr505 in T-cell activation and its 

requirement for full Lck activation (Caron, Abraham et al. 1992). Lck Tyr394 is another 

tyrosine residue required for T-cell activation which is also involved in enzymatic activity 

and is commonly referred to as the activating Tyr residue (reviewed in (Salmond, Filby et al. 

2009). This Tyr residue is located in the activating loop (A-loop) of the kinase (Xu, Doshi et 

al. 1999). Upon activation of the Src family kinases via interactions through their SH2 and 

SH3 domains, the A-loop becomes exposed due to displacement by the now open kinase 

domains which contain the activating Tyr
394

 promoting enzymatic activity (Veillette and 

Fournel 1990). 

 

Activated Lck phosphorylates the CD3-ζ ITAMs resulting in the recruitment of the ζ chain-

associated protein ZAP-70 kinase via its SH2 domain (van Oers, Killeen et al. 1994; van 

Oers, Killeen et al. 1996; Wange and Samelson 1996). ZAP-70 is a member of the Syk 
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family of kinases which contain two tandemly arranged SH2 domains (Chan, Iwashima et al. 

1992; Weiss and Littman 1994). It is believed the ZAP-70 only associates with 

diphosphorylated ITAMS (Mustelin and Tasken 2003) and once associated, ZAP-70 is 

phosphorylated at Tyr493 by Lck resulting in activation (Chan, Dalton et al. 1995). Studies 

have shown that point mutations in the ZAP-70 molecule can lead to autoimmune disorders 

such as rheumatoid arthritis and IgE-hyper autoimmune syndrome highlighting the impact 

that these defects can have on TCR driven T-cell signalling (Sakaguchi, Takahashi et al. 

2003; Siggs, Miosge et al. 2007). 

 

1.4.3 Role of CD45 in T-cell activation 

CD45 is one of the most abundant cell surface glycoproteins comprising up to 10% of the cell 

surface (Thomas 1989). CD45 has a constant domain consisting of two tyrosine-specific 

phosphatase domains in tandem. In resting cells CD45 has been shown to associate with Lck
 

(Guttinger, Gassmann et al. 1992). It is thought that CD45 activates Lck
 
by its ability to 

selectively dephosphorylate the negative regulatory tyrosine at position 505 (Ostergaard, 

Shackelford et al. 1989; Ostergaard and Trowbridge 1990). Indeed, studies of CD45 deficient 

cell lines demonstrate that CD45 is required for the induction of PTK activity and TCR signal 

transduction. Csk, a cytoplasmic PTK acts to phosphorylate the inhibitory carboxyl-terminal 

tyrosine of Lck and is therefore a potent inhibitor of TCR signalling (Chow and Veillette 

1995). Therefore Lck
 
activity is thought to be regulated by the opposing phosphorylation 

effects of CD45 and Csk on the inhibitory Tyr505. Csk phosphorylates Tyr505 therefore 

inactivating Lck whereas CD45 de-phosphorylates Lck
 
at this site thus priming PTK activity. 

CD45 is also thought to have an inhibitory effect which is mediated by the dephosphorylation 

of the activatory Tyr394 residue of Lck which subsequently suppresses kinase activity and T-
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cell activation (D'Oro and Ashwell 1999; Palacios and Weiss 2004; Zhao, Yang et al. 2004) . 

It is known that other phosphatases act at the same site as CD45 such as PEST-domain 

enriched tyrosine phosphatase (PEP) which is also referred to as protein tyrosine phosphatase 

non-receptor type 22 (PTPN22) (Hasegawa, Martin et al. 2004; McNeill, Salmond et al. 

2007), and Src homology region 2 domain-containing phosphatase-1 (SHP-1) (Chiang and 

Sefton 2001) thereby exerting an inhibitory effect. This inhibition leads to a severe block in 

T-cell differentiation and profound impairment of activation in mature T-cells (Ashwell and 

D'Oro 1999; Hermiston, Xu et al. 2003; Zamoyska, Basson et al. 2003). Therefore, CD45 has 

a role as both a positive and negative regulator of T-cell signalling and acts as a ‘rheostat’ 

which regulates the threshold of activation of T-cells (McNeill, Salmond et al. 2007; 

Zamoyska 2007). 

 

1.4.4 T-cell transduction signalling 

As previously mentioned activated Lck phosphorylates the CD3-ζ ITAMs resulting in the 

recruitment of the CD3ζ chain associated protein ZAP-70 kinase (Chan, Dalton et al. 1995). 

ZAP-70 becomes phosphorylated and recruits adaptor proteins which will propagate the 

signal transduction pathway (Zhang, Sloan-Lancaster et al. 1998). One of the substrates of 

phosphorylated ZAP-70 is the adaptor molecule LAT (linker for activation in T-cells). LAT 

consists of a short extracellular domain, a transmembrane region and a long cytoplasmic tail. 

When the cytoplasmic tail becomes phosphorylated at conserved tyrosine residues by 

activated ZAP-70, this then recruits various signalling molecules to the plasma membrane 

including PLC-γ1, Grb2, Grap, Gads, SLP-76, Vav-1, Cbl and the regulatory subunit of PI3K 

forming a multi-protein complex known as the “LAT signalasome” (Malissen, Aguado et al. 

2005; Brownlie and Zamoyska 2009). Gads uses the LAT adaptor protein to form a complex 
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with SLP-76, Vav-1 and Itk which will mediate the phosphorylation of PLC-γ1 (Beach, 

Gonen et al. 2007; Bogin, Ainey et al. 2007; Seet, Berry et al. 2007) (Figure 1.7). LAT is an 

important adaptor protein in linking the TCR to downstream signalling events including 

activation of the transcription factor NFAT and ultimately proliferation and expression of 

cytokine genes (Brownlie and Zamoyska 2009). Subsequent tyrosine kinase phosphorylation 

activates downstream secondary messenger pathways through the cytoplasm directly into the 

cell nucleus activating multiple transcription factors. These include Activator protein 1 (AP-

1), Nuclear factor of activated T-cells (NFAT) and Nuclear factor Kappa B (NFκB) which are 

three transcription factors important for the regulation of cytokine production including IL-2. 

The activation of the Ras/MAPK pathway by Grb2 is another important pathway that plays 

an important role in T-cell development and activation by activating the Extracellular signal-

regulated kinase (ERK) (Salojin, Zhang et al. 2000; Werlen and Palmer 2002). Sustained 

signalling required for complete T-cell activation is thought to be achieved by a positive 

feedback loop activating ERK. ERK will phosphorylate serine residues in Lck barring the 

recruitment of the SHP-1 (a phosphatase used to dephosphorylate Lck and inhibit activation). 

Lck is no longer de-phosphorylated and the T-cell signalling cascade can continue 

(Stefanova, Hemmer et al. 2003). 
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Figure 1.7: A model of T-cell activation. TCR stimulation via pMHCI results in 

phosphorylation of CD3 chain ITAMs by kinases such as Lck. Diphosphorylated ITAMs 

recruit ZAP-70 which is in turn phosphorylated by Lck. ZAP-70 then phosphorylates LAT. 

LAT recruits various adaptor molecules which in turn activates multiple protein cascades and 

transcription factors. 
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1.4.5 Cytoskeletal rearrangement 

The Vav-1 protein which interacts with ZAP-70 contains a domain known to be involved in 

binding to the actin cytoskeleton. TCR/pMHC engagement leads to recruitment of Vav-1 and 

adaptor proteins that stimulate the polymerisation of filamentous actin. Once actin is 

polymerised, cytoskeletal movement takes place that facilitates the coalescence of membrane 

rafts, TCR clustering and Supramolecular activation clusters (SMAC) formation providing a 

dynamic scaffold for TCR signalling (Mak and Saunders 2005). Actin polymerisation 

promotes the assembly of signalling microclusters at the periphery of the immunological 

synapse and drives their centripetal flow toward the central-supramolecular activation cluster 

(c-SMAC) (see section 1.6) (Burkhardt, Carrizosa et al. 2008). 

 

1.5 Plamsa membrance lipid rafts 

The plasma membrane of T-cells is made up of a combination of phospholipids and proteins 

organised as glycolipoprotein microdomains termed lipid rafts. These phospholipids are rich 

in glycosphingolipids and protein receptors (Thomas, Kumar et al. 2004). These lipid rafts 

are specialised membrane microdomains which have important roles in T-cell signalling 

events. The post-translational addition of lipids by myristylation, palmitoylation or 

farnesylation can target proteins to lipid rafts within the plasma membrane (Viola 2001). It 

has been suggested that one way to consider a lipid raft is that they form concentrating 

platforms for individual receptors activated by ligand binding (Simons and Toomre 2000). 

Evidence from several studies have suggested that lipid rafts will cluster upon T-cell 

activation and that this is an essential feature in the formation of an immunological synapse 

(Janes, Ley et al. 2000; Langlet, Bernard et al. 2000). Several kinase molecules are recruited 
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to lipid rafts which are essential for T-cell activation. These include Lck and Csk (Resh 

1994). Upon T-cell activation Csk is dephosphorylated and is removed from the lipid rafts 

(Cary and Cooper 2000; Latour and Veillette 2001). Also removed from lipid rafts on T-cell 

activation is CD45 molecule which would otherwise be inhibitory to full T-cell activation 

(Hermiston, Xu et al. 2003). Cytoplasmic proteins including ZAP-70, Vav-1, PLC-γ1, Grb2, 

PI3K and also LAT are also associated with lipid rafts upon T-cell activation (Xavier, 

Brennan et al. 1998; Harder and Kuhn 2000; Simons and Toomre 2000). Therefore raft 

binding recruits proteins to a new microenvironment where the phosphorylation state can be 

modified by local kinases and phosphatases and thus are acting as specialised membrane 

microdomains which are preferential sites for T-cell signalling. 

 

1.6 Formation of the immunological synapse 

The interface or contact zone between the T-cell and the APC where membrane protein re-

organisation occurs is referred to as the immunological synapse (IS), a site which favours T-

cell signalling (Lee, Holdorf et al. 2002). Rapid polarisation of molecules by the 

accumulation of stabilised lipid rafts and triggered TCR/pMHC complexes to the centre of 

the contact zone is observed (as reviewed in (Delon and Germain 2000; Bromley, Burack et 

al. 2001). This structure is also referred to as being the SMAC. This structure becomes highly 

stable which can explain the long TCR/pMHC contact time (Monks, Freiberg et al. 1998). 

SMACs have two discrete zones. The innermost ring, known as the central zone (c-SMAC) 

contains the TCR, MHC and co-receptors (CD4 or CD8) and also accessory molecules such 

as CD28 and CD2. The c-SMAC also contains the lipid rafts, which include additional 

enzymes and molecules required for signal transduction and co-stimulation (section 1.5). 

There are multiple changes to the actin cytoskeleton that are established by adhesive contacts 
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and extended by co-stimulatory molecules. Surrounding the central zone is a second zone, the 

peripheral-SMAC (p-SMAC) which is enriched for the integrin LFA-1 (Monks, Freiberg et 

al. 1998; Grakoui, Bromley et al. 1999). The p-SMAC contains outer and inner p-SMAC 

layers and it is these layers that ensure the T-cell and APC remain in prolonged contact 

sufficient to complete signal transduction.  

 

The full and precise role of the IS is still unclear. Freiberg and colleagues suggested that pre-

SMAC signals are sufficient to activate cell adhesion but not productive T-cell responses 

which require orchestrated signalling in SMACs (Freiberg, Kupfer et al. 2002). However data 

suggests that T-cells can still activate intracellular kinase signalling prior to the formation of 

the IS suggesting that many hours of T-cell signalling are not required for T-cell activation 

(Davis and van der Merwe 2001; Lee, Holdorf et al. 2002). This is further supported by data 

suggesting that immediately after pMHC recognition and prior to formation of the c-SMAC, 

hundreds of T-cell receptor microclusters (TCR-MC), containing the TCR and signalling 

molecules (kinases and adaptor proteins) are generated and function as a signalasome to 

transduce the initial signals for T-cell activation (Bunnell, Hong et al. 2002; Campi, Varma et 

al. 2005; Yokosuka, Kobayashi et al. 2008). After their generation, TCR-MCs move toward 

the centre of the IS and generate the c-SMAC. TCRs are internalised at the c-SMAC and 

TCR signalling is terminated. TCR-MCs are generated continuously at the periphery resulting 

in a sustained activation signal. Therefore the translocation of TCR-MCs from the periphery 

maintains the balance between the generation of new TCR-MCs and their degradation at the 

c-SMAC and is critical in sustaining T-cell activation (Varma, Campi et al. 2006; Yokosuka, 

Kobayashi et al. 2008).  
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1.7 T-cell co-stimulation 

Accessory signals generated during TCR/pMHCI engagement leads to enhanced survival and 

proliferation signals. The signal generated through the TCR/CD3 complex is termed signal 1 

whereas the signal generated through co-stimulatory molecules is termed signal 2 (Baxter and 

Hodgkin 2002). There is also evidence of a signal 3 which is provided by IL-12 cytokine 

stimulation in CD8
+
 T-cells and by the cytokine IL-1 in CD4

+
 T-cells (Curtsinger, Schmidt et 

al. 1999). The absence of necessary accessory signals upon T-cell activation results in T-cell 

death and apoptosis (Kabelitz and Janssen 1997). Multiple co-stimulatory molecules are 

associated with full T-cell activation including CD28 (Thompson, Lindsten et al. 1989) and 

CD2 (Howard, Moingeon et al. 1992). Other co-stimulatory molecules do exist but are less 

well studied such as the TNF receptor superfamily and CD27. 

 

1.8 Co-receptors CD8 and CD4 

The CD4 and CD8 molecules were initially identified as phenotypic markers on T 

lymphocytes restricted by MHCII and MHCI proteins, respectively. Treatment of T-cells 

with anti-CD4 or anti-CD8 antibodies resulted in the blockade of Th-cell and CD8
+
 T-cell 

activation, respectively (MacDonald, Glasebrook et al. 1982). Subsequent data suggested that 

CD4 and CD8 were functional components of the T-cell antigen recognition machinery.  CD4 

and CD8 physically engage the same ligand as the TCR and thereby “co-receive” this ligand  

(Meuer, Schlossman et al. 1982). This unique role resulted in these glycoproteins being called 

“co-receptors” (Janeway 1992). CD4 or CD8 binding to MHC facilitates downstream 

proximal signalling events triggered by TCR ligation through interaction with the Lck (Rudd, 

Trevillyan et al. 1988; Veillette, Bookman et al. 1988). Both CD4 and CD8 are involved in 
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thymic development and selection of either CD4
+
 or CD8

+ 
T-cells by their association with 

Lck (Fung-Leung, Schilham et al. 1991; Rahemtulla, Fung-Leung et al. 1991).  

 

1.8.1 CD8 and CD4 structure 

CD4 and CD8 both interact with structurally homologous sites on their respective MHC 

ligands using basic immunoglobulin domains. These domains are arranged quite differently 

in the two molecules (Zamoyska 1998). CD8 is a transmembrane, disulfide-linked 

glycoprotein that exists on the cell surface in either αα homodimeric or αβ heterodimeric 

form (Ledbetter, Seaman et al. 1981; Norment and Littman 1988; Terry, DiSanto et al. 1990). 

Each chain consists of a short cytoplasmic region, a single transmembrane domain, a long 

glycosylated stalk region and a globular variable Immunoglobulin-like domain. The αβ 

isoform of CD8 is exclusively expressed by conventional MHCI-restricted αβ T-cells. In 

contrast, the CD8αα homodimer has a more promiscuous expression pattern in both humans 

and rodents; distinct lymphoid cells, such as intra-epithelial lymphocytes (IELs),  T-cells 

and NK cells, and also certain myeloid cell types, all express the αα isoform of CD8 

(Zamoyska 1994; Gangadharan and Cheroutre 2004; Gibbings and Befus 2009). The CD8 α 

and β chains are encoded by distinct genes that are physically linked and are predicted to 

show conserved overall structural topology although they share only approximately 20% 

residue identity (Parnes 1989). Both chains have an immunoglobulin like amino terminal 

domain. This domain is linked by an extended polypeptide region which contains a number 

of O-linked sugars to the transmembrane domain (Zamoyska 1998). Crystal structures 

currently solved reveal that the amino-terminal immunoglobulin like domains fold very 

similarly to an Fv-like homodimer (Zamoyska 1998). CD4 however is a single polypeptide 
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which consists of four external immunoglobulin-related domains D1 to D4 (Wang, Yan et al. 

1990; Lange, Lewis et al. 1994; Brady and Barclay 1996; Wu, Kwong et al. 1997). There is a 

unique strand topology between domains 1 and 2 (D1 and D2) and between domains 3 and 4 

(D3 and D4) (Zamoyska 1998) and due to interactions between adjacent D4 domains, this 

may allow for CD4 to dimerise on the cell surface (Wu, Kwong et al. 1997). There is also a 

hydrophobic transmembrane domain, and a highly basic cytoplasmic tail which contains three 

serine residues which can be phosphorylated (Mak and Saunders 2005). 

 

1.8.2 pMHCI/CD8 interaction 

The involvement of CD8 in the recognition of target cells by CD8
+
 T-cells was appreciated 

prior to the identification of the TCR. Early reports showed that antibodies recognizing either 

the α or β sub-unit of CD8 were able to block the killing of target cells by CD8
+
 T-cells in-

vitro (Nakayama, Shiku et al. 1979; Ledbetter, Seaman et al. 1981). This hinted that CD8 was 

involved in the molecular process of antigen recognition. CD8 binds MHCI molecules via 

interactions with largely non-polymorphic amino acid residues situated in the α3 and to a 

lesser extent the α2 domain of the heavy chain and β2-microglobulin (Salter, Norment et al. 

1989; Salter, Benjamin et al. 1990). Gao and colleagues solved the co-crystal structure of the 

human pMHCI/CD8αα interaction confirming the binding interactions that had been 

classified previously (Figure 1.8). Similarly to the TCR, CD8 contains a number of flexible 

complementarity determining loops (CDR) that are involved in MHCI binding. Gao et al 

showed that the interaction between the CDR3 loops of human CD8αα (residues 51-55) and a 

finger-like loop in the α3-domain of HLA-A*0201 (residues 223-229) form the main contact 

zone of the complex by clamping asymmetrically, with each dimer contributing differently to 

the overall binding (Gao, Tormo et al. 1997). Although murine CD8αα binds to H2-K
b
 in a  
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Figure 1.8: Overview of the molecular interactions between human CD8αα and MHCI 

molecule. CD8αα is shown in red (α1) and purple (α2), binding mainly to the α3 domain of 

MHCI (green). The CDR like loops of the CD8 molecule binds the MHCI α3 domain at 

residues 223–227 forming the main binding interface. When enlarging this interface between 

CD8 and MHCI the two CDR like loops of the CD8 molecule form a "clamp" - like topology 

around the MHCI loop encompassing residues 223–227 of the α3 domain. The most 

important contacts are made between the CD8 α1 chain Thr31/Ser100 and the MHCI α chain 

Gln226/Asp227 and between the CD8 α2 chain Ser34/Tyr51 and the MHCI α chain 

Thr225/Gln226. Figure taken from (Laugel et al 2011). © 2013 by the Society for Leukocyte 

Biology.  
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similar overall fashion compared to human CD8αα/HLA-A*0201 interaction (Kern, Teng et 

al. 1998), there are some key differences in the fine specificity of the two interactions. For 

example, in the murine system; more contacts are made between CD8 and the MHCI α3-

domain, at the interface between CD8 and the MHCI α2-domain a number of unique bonds 

are formed between the interface between CD8 and β2m. These differences may explain the 

higher binding affinity of murine CD8 compared human CD8 for their species specific MHCI 

(Purbhoo, Boulter et al. 2001). 

 

Gao et al predicted, based on electrostatic surface analysis of the human pMHCI/CD8αα, that 

the CD8β chain would replace the CD8α2 subunit (Gao, Tormo et al. 1997). This was also 

supported by data suggesting that mutating the CD8α chain severely impaired binding  

whereas a similar mutation in the CD8β chain did not (Devine, Sun et al. 1999). The 

orientation of the human CD8αβ heterodimer in complex remained speculative until Wang 

and colleagues solved the co-crystal structure of the murine CD8αβ in complex with H-2D
d 

(Wang, Natarajan et al. 2009). This study demonstrated that the binding mode of the CD8αβ 

heterodimer was largely homologous with CD8αα (Wang, Natarajan et al. 2009). The CDR-

like loops of the CD8αβ predominantly bound to the conserved H-2D
d 

α3 domain 

Importantly, the H-2D
d
/CD8αβ co-complex also revealed that CD8αβ adopted a single 

orientation, with the β chain in the equivalent position of the CD8α1-chain proximal to the T-

cell membrane, and the CD8α chain in the equivalent position of the CD8α2 chain in the T-

cell distal position (Wang, Natarajan et al. 2009), in contrast to the prediction made by Gao et 

al. However, it is important to note that Gao et al had made that hypothesis based on the 

human pMHCI/CD8αα interaction. Key differences exist between the murine pMHCI/CD8αα 

and pMHCI/CD8αβ complexes. For example, CD8αβ does not make contact with the α2 and 
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β2m domains of H-2D
d
 which reduces the buried surface area of this complex compared to 

murine pMHCI/CD8αα (Wang, Natarajan et al. 2009).  

 

1.8.3 Low solution binding affinity of the pMHCI/CD8 interaction  

The average human pMHCI/CD8αα interaction exhibits very low solution binding affinities 

(KD ~146 µM) (Table 1.1) and is characterised by extremely rapid kinetics (Koff ~18 s
-1

) 

(Wyer, Willcox et al. 1999; Gao, Willcox et al. 2000; Cole, Dunn et al. 2008). Despite these 

seemingly unfavourable binding characteristics, the engagement of MHCI molecules by CD8 

at the cell surface both enhances the association rate of pMHCI complexes with TCRs and 

increases the half-life of cognate TCR/pMHCI interactions (Gakamsky, Luescher et al. 2005; 

Wooldridge, van den Berg et al. 2005; Laugel, van den Berg et al. 2007). It seems unlikely 

that the striking biophysical characteristics of the pMHCI/CD8 interaction have occurred by 

accident and it has been hypothesised that the kinetics are essential for maintaining antigen 

specificity. However, to date there has been no study to probe the significance of the low 

solution binding affinity that characterises the pMHCI/CD8 interaction. This will be 

addressed in chapter 3. 

 

It is interesting to note that the average murine pMHCI/CD8 interaction is significantly 

stronger (KD ~ 30µM) (Table 1.2 A&B) than the equivalent human interaction (KD ~ 146µM) 

(Purbhoo, Boulter et al. 2001). Murine studies have concluded that CD8αα and CD8αβ bind 

murine pMHCI with similar affinity (Sun and Kavathas 1997) (Arcaro, Gregoire et al. 2001; 

Wang, Natarajan et al. 2009). 
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1.8.4 MHCII/CD4 interaction 

The N-terminal immunoglobulin-like domains of CD4 interact with the non-polymorphic α2 

and β2 domains of MHCII. This interaction mediates both recognition and adhesive functions 

of the CD4 Th-cell. The cytoplasmic tail of the CD4 has sites that facilitate the physical 

association with Lck (Mak and Saunders 2005). 

 

1.8.5 CD8/CD4 T-cell activation profiles 

On recognition of specific pMHCI, CD8
+
 T-cells become activated, as outlined above, then 

subsequently kill the target cell. The principal mechanism of killing is through the release of 

pre-formed cytotoxic granules which contain perforin and granzyme  

 

Table 1.1: Binding affinities of human CD8αα to pMHCI using surface plasmon 

resonance.  
#
 values are averages from cited studies 

Human pMHCI/human CD8αα KD (µM) 

HLA-A*0201-GILGFVFTL 

(Wyer, Willcox et al. 1999; Cole, Dunn et al. 2008) 
166

#
 

HLA-A*0201-FIDSYICQV 

(Wyer, Willcox et al. 1999) 
173 

HLA-A*0201-VLHDDLLEA 

(Wyer, Willcox et al. 1999) 
107 

HLA-A*0201-ILKEPVHGV 

(Wyer, Willcox et al. 1999) 
126 

HLA-A*0201-ILAKFLHWL 

(Cole, Dunn et al. 2008) 
183 

HLA-A*0201-SLLMWITQC 

(Cole, Dunn et al. 2008) 
125 
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HLA-A*0201-YLEPGPVTV 

(Cole, Dunn et al. 2008) 
144 

HLA-A*0201-LLFGYPVYV 

(Cole, Rizkallah et al. 2007; Cole, Dunn et al. 2008) 
149

#
 

HLA-A*1101-AIFQSSMTK 

(Gao, Willcox et al. 2000) 
100 

HLA-A*2402-PYLFWLAAI 

(Cole, Rizkallah et al. 2007; Cole, Dunn et al. 2008) 
154

#
 

HLA-B*0801-FLRGRAYGL 

(Cole, Dunn et al. 2008) 
135 

HLA-B*3501-TPEGIIPTL 

(Gao, Willcox et al. 2000) 
130 

HLA-C*0702-KYFDEHYEY 

(Gao, Willcox et al. 2000) 
220 

Average CD8αα KD (µM) 146 

 

Table 1.2 A: Binding affinities of murine CD8αα to pMHCI using surface plasmon 

resonance. 
#
 values are averages from cited studies. 

Murine pMHCI/murine CD8αα KD (µM) 

H-2K
b
-SIINFEKL 

(Leishman, Naidenko et al. 2001) 
91.6 

H-2K
b
-IFSK8 

(Wang, Natarajan et al. 2009) 
34.7 

H-2K
b
-VSV8 

(Kern, Hussey et al. 1999) 
64

#
 

H-2K
b
-RGYVYQGL 

(Garcia, Scott et al. 1996) 
39.3 

H-2K
b
-OVA 

(Garcia, Scott et al. 1996) 
30.4 

H-2K
d
-P18I10 

(Wang, Natarajan et al. 2009) 
6.7 
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Average CD8αα KD (µM) 44 

 

Table 1.2 B: Binding affinities of murine CD8αβ to pMHCI using surface plasmon 

resonance. 
#
 values are averages from cited studies. 

Murine pMHCI/murine CD8αβ KD (µM) 

H-2K
b
-SIINFEKL 

(Leishman, Naidenko et al. 2001) 
135 

H-2K
b
-IFSK8 

(Wang, Natarajan et al. 2009) 
38.4 

H-2K
b
-VSV8 

(Kern, Hussey et al. 1999) 
40

#
 

H-2K
b
-RGYVYQGL 

(Garcia, Scott et al. 1996) 
11.8 

H-2D
b
-FAGHNLDLI 

(Garcia, Scott et al. 1996) 
14.1 

H-2K
b
-OVA 

(Garcia, Scott et al. 1996) 
14 

H-2K
d
-SYIPSAEK 

(Arcaro, Gregoire et al. 2001) 
99 

H-2K
d
-P18I10 

(Wang, Natarajan et al. 2009) 
8.2 

H-2L
d
-p2Ca 

(Garcia, Scott et al. 1996) 
11.2 

Average CD8αβ KD 41 
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(Podack, Konigsberg et al. 1985). Perforin creates pores in the membrane of the target cell 

which can allow the transition of granzymes into the target cell inducing apoptosis (Heusel, 

Wesselschmidt et al. 1994). A new model of killing was suggested by Pipkin et al. Here 

perforin creates pores in the membrane of the target cell which allow an influx of Ca
2+

, then 

granzymes are endocytosed by the target cell and induce apoptosis (Pipkin and Lieberman 

2007). CD8
+
 T-cells can also induce killing through the interaction between the Fas-death 

receptor on the target cell (CD95), and its counterpart on the T-cell surface FasL (CD95L) 

(Bossi and Griffiths 1999). The Fas-FasL interaction allows for dimerisation of procaspases 

which induce apoptosis (Thorburn 2004). Activated CD8
+
 T-cells can differentiate into two 

effector phenotypes (Tc1 and Tc2) each with different cytokine profiles and both of which 

are cytotoxic. The cytokine profile expressed by CD8
+
 effector Tc1 cells is similar to that 

seen of the Th1 subset of CD4
+
 T-cells (Kelso and Glasebrook 1984; Fong and Mosmann 

1990). These include IFN-γ, TNF-α and IL-2 (Mosmann, Li et al. 1997). CD8
+
 T-cells also 

release a broad profile of chemokines, including Macrophage Inflammatory Protein-1α (MIP-

1α), Macrophage Inflammatory Protein-1β (MIP-1β) and Regulated on Activation, Normal T 

Expressed and Secreted (RANTES) among others. Data does suggest the some CD8
+
 T-cells, 

Tc2 cells, have been shown to release IL-4, IL-5 and IL-10, common Th2 response cytokines, 

when patients are infected with leprosy (Salgame, Abrams et al. 1991; Mosmann, Li et al. 

1997). 

 

CD4
+
 Th-cells play an important role in the activation and co-ordination of CD8

+
 T-cell and 

B-cell responses. CD4
+
 Th-cells can be classified into different subsets which have different 

roles and are characterised by different cytokine and chemokine profiles. Th1 responses are 

characterised by the secretion of IL-2, IFN- and lymphotoxin.  IL-2 is a T-cell growth factor 
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and is important for the proliferation of activated CD8
+
 T-cells (Morgan, Ruscetti et al. 

1976).  IFN-γ release by a Th1 response is believed to activate the anti-microbial activity of 

macrophages (Taylor, Martinez-Pomares et al. 2005). Th2 responses are characterised by the 

production of IL-4, IL-5, IL-6 and IL-13 which results in the activation of the B-cell antibody 

response (Salgame, Abrams et al. 1991) and influences the isotype switching of antibodies 

(Tangye, Ferguson et al. 2002). Another Th subset known as Th17 are characterised by the 

production of IL-17, IL-21 and IL-23 which result in the activation and migration of 

neutrophils (Weaver, Harrington et al. 2006). This thesis is concerned with the role of CD8 in 

CD8
+
 T-cell activation and the introduction from this point will concentrate on aspects of 

CD8 roles and functions. 

 

1.8.6 The co-receptor model of CD8 function 

It was initially suggested that CD8 binds to MHCI independently of the TCR/pMHCI 

interaction subsequently increasing the binding affinity of the T-cell for the target cell and 

allowing T-cells to respond to lower numbers of antigen. This was also known as the 

accessory molecule hypothesis (Marrack, Endres et al. 1983; Gay, Coeshott et al. 1986; 

Bierer, Sleckman et al. 1989). The accessory molecule theory was replaced by Janeway et al 

who proposed the co-receptor model for CD8 function. The co-receptor model suggested that 

CD8 is a physical component of the TCR complex contributing directly to signal transduction 

on T-cell activation, and for optimal T-cell activation both CD8 and the TCR must bind to the 

same pMHCI molecule at the APC surface. Hence, Janeway suggested that it would be more 

appropriate to describe CD8 as a co-receptor rather than accessory molecule (Janeway 1988; 

Janeway 1989). The existence of a physical association between the TCR and CD8 on the T-

cell surface was first suggested by studies using co-modulation (Takada and Engleman 1987), 
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co-precipitation (Beyers, Spruyt et al. 1992; Suzuki, Kupsch et al. 1992) and affinity 

chromatography (Gallagher, Fazekas de St Groth et al. 1989). One study actually suggests 

that the majority of TCRs are associated with CD8 (~90%) even in non-activated cells 

(Suzuki, Kupsch et al. 1992). Data also suggested that the TCR and CD8 can engage a single 

pMHCI molecule simultaneously because both bind at distant non-overlapping sites. In 

addition, studies demonstrated that when peptide is presented by targets bearing point 

mutations in the MHC Class I α3 domain loop mutations that knock out the pMHCI/CD8 

interaction in a CD8-dependent setting, CD8
+
 T-cell activation is lost (Potter, Rajan et al. 

1989; Purbhoo, Boulter et al. 2001). CD8
+
 T-cell antigen responsiveness is not restored by 

the presence of non-cognate pMHCI with intact CD8 binding sites in both human (Salter, 

Benjamin et al. 1990) or murine systems (Potter, Rajan et al. 1989; Connolly, Hansen et al. 

1990; Schott and Ploegh 2002). Furthermore, the conserved α-chain connecting peptide motif 

(α-CPM), located on the membrane proximal domain of the TCR α-chain, facilitates the 

recruitment of CD8 in close proximity to the TCR/CD3 complex (Naeher, Luescher et al. 

2002; Mallaun, Naeher et al. 2008) (Figure 1.9). All of this data highlighted that CD8 can 

form a physical part of the TCR complex and that CD8 and TCR could engage the same 

pMHCI complex at the same time which is critical for optimal T-cell activation. 

 

1.8.7 Roles of CD8 in T-cell activation 

Multiple roles for CD8 in T-cell activation have been highlighted. It was originally proposed 

that CD8 played the role of an adhesion molecule ensuring that the CD8
+
 T-cell and the APC 

would bind together (Norment and Littman 1988). However, the weak solution binding 

affinity of the pMHCI/CD8 interaction excludes the possibility that CD8 plays a major role in 

T-cell/target cell adhesion. 
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Figure 1.9: Schematic representation of CD8 co-receptor functions in early T-cell 

activation events. (A) The classical view of T-cell activation is that CD8 is recruited to the 

TCR complex before phosphorylation takes place and that Lck bound to the CD8α 

cytoplasmic tail catalyses the initial CD3-ζ ITAM phosphorylation events which then allow 
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for the recruitment of additional Lck molecules and signal amplification. (B) Alternatively 

recent experimental data favour a model whereby free Lck is responsible for the initial 

phosphorylation events. Phosphorylated CD3-ζ ITAMs then allow for the recruitment of Lck 

bound to CD8α in close proximity to CD3. In this scenario, the interaction between the TCR 

and CD8 occurs after the initial phosphorylation events and is driven intra-cellularly by 

interactions between CD3 and CD8α bound Lck. Figure taken from (Laugel, Cole et al. 

2011). © 2013 by the Society for Leukocyte Biology. 
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Subsequently, it was suggested that CD8 plays a major role in stabilising the TCR/pMHCI 

interaction. Initial data suggested that the TCR/pMHCI off rate was significantly reduced in 

the presence of CD8 which led the authors to posit that CD8 may induce conformational 

changes to favour the TCR/pMHCI interaction (Garcia, Scott et al. 1996). However crystal 

structures of pMHCI/CD8αα revealed that there is no change in the TCR/pMHCI binding 

platform (Gao, Tormo et al. 1997) and also the presence of CD8 does not affect the TCR 

binding to the same pMHCI when analysed via SPR (Wyer, Willcox et al. 1999). More recent 

data using mutated pMHCI tetramers with altered CD8 binding have shown that CD8 has a 

role in altering TCR/pMHCI avidity at the T-cell surface (Wooldridge, Hutchinson et al. 

2003; Wooldridge, van den Berg et al. 2005; Wooldridge, Scriba et al. 2006; Laugel, van den 

Berg et al. 2007). By abrogating the pMHCI/CD8 interaction both the tetramer association  

rate and the half-life of binding decreased compared to wild-type tetramers (Laugel, van den 

Berg et al. 2007). This study also showed that the intensity of steady-state tetramer binding 

was substantially reduced using CD8 null tetramers compared to wild-type reagents. These 

data highlight that, despite the weak pMHCI/CD8 interaction, pMHCI/CD8 binding has an 

important role in stabilizing the TCR/pMHCI complex at the cell surface. In support of this 

notion, a recent investigation by Jiang et al, using a novel approach for measuring the 2D 

binding affinity between TCR, pMHCI and CD8, demonstrates that the TCR and CD8 bind 

cooperatively to pMHCI which modulates antigen discrimination (Jiang, Huang et al. 2010). 

 

CD8 has also been shown to play an extremely important role in T-cell signalling. The 

binding of CD8 to pMHCI drives the recruitment of CD8-associated Lck to the vicinity of an 

engaged TCR/CD3 signalling complex, resulting in phosphorylation of the CD3ζ ITAMs 

(Purbhoo, Boulter et al. 2001). This role is achieved through the association of the CD8 α 
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chain with Lck, via two vicinal cysteines, that interact through a zinc chelate complex to 

produce a co-activation signal (Veillette, Bookman et al. 1988; Turner, Brodsky et al. 1990). 

This interaction leads to a signalling cascade, which recruits ZAP-70 to the CD3/TCR 

complex leading to the amplification or enhancement of T-cell activation signals. Further 

studies into the nature of the TCR/CD8 interaction were revealed by the finding that the 

signalling role of the CD8 α chain can be enhanced by palmitoylation of the CD8 β chain at a 

membrane-proximal cysteine. This enables the co-receptor to interact directly with CD3δ and 

recruit TCR/CD3 complexes to membrane microdomains that promote signalling through the 

exclusion of inhibitory phosphatase proteins (Arcaro, Gregoire et al. 2000; Arcaro, Gregoire 

et al. 2001; Doucey, Goffin et al. 2003).  

 

These lipid rafts are made up of ordered microdomains, enriched with sphingolipids and 

cholesterol which exclude molecules such as phosphatases (CD45), but recruit Lck and LAT; 

molecules vital to T-cell activation. Lipid raft formation is thought to allow Lck 

phosphorylation, mobilization of intracellular calcium and ZAP-70/CD3 activation to occur 

more efficiently, leading to a stronger co-activation signal (Zhang, Trible et al. 1998; 

Bosselut, Zhang et al. 1999; Bosselut, Kubo et al. 2000). Thus, the tripartite interaction 

between the TCR and CD8 with the same pMHCI molecule (Figure 1.9) allows the 

intracellular signalling domains of CD8 and the TCR/CD3 complex to interact, leading to T-

cell activation (Grakoui, Bromley et al. 1999).  

 

A recent study demonstrated a new role for CD8 in controlling levels of crossreactive peptide 

recognition by CD8
+
 T-cells by examining recognition of combinatorial peptide libraries in 

the presence of altered MHC/CD8 interaction. This study made use of APCs that express 
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HLA-A2*0201 molecules mutated to interact with CD8 at slightly enhanced (KD = 85 µM) 

(Wooldridge, Lissina et al. 2007), decreased (KD = 500 µM) (Hutchinson, Wooldridge et al. 

2003), normal (KD = ~146 µM) or abrogated interaction with CD8 (KD < 10,000 µM). A 

direct positive correlation between the pMHCI/CD8 binding affinity and the number of 

ligands eliciting T-cell activation was identified (Wooldridge, Laugel et al. 2010). These 

findings revealed that CD8 extends the range of pMHCI ligands that can be recognised by an 

individual cell surface-bound TCR, a feature that is essential for effective immune coverage.  

 

In a recent study, Chervin et al found that activation of CD8
+
 T-cells that expressed high and 

intermediate affinity TCRs (KD 14 nM and 1.5 μM respectively) to pMHCI that lacked the 

ability to bind CD8 was greatly reduced compared to CD8-negative T-cells. The authors 

proposed that mechanism of CD8 inhibition is likely due to the sequestration of Lck. Even 

though the TCR has high-affinity for the pMHCI, engagement of the TCR alone without 

colocalisation of CD8 and associated Lck leads to impairment of T-cell activation (Chervin, 

Stone et al. 2009). This identifies a novel role for CD8 in T-cell activation where the ability 

of CD8 to sequester Lck maintains appropriate TCR-mediated MHC restriction in peripheral 

T-cell activity. 

 

Despite recent advances in understanding CD8 biology, there are still aspects of CD8 

function that we do not understand. For example, it is possible that CD8 can exert a novel 

focussing mechanism on T-cell recognition of antigen which has never been tested 

experimentally before (van den Berg and Rand 2007). A combination of all the described 

roles above are all important for T-cell activation, however which precise role dominates for 

successful T-cell activation is still unclear. In addition, we have failed to harness the potent 
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ability of CD8 to tune the antigen specific CD8 T-cell response which has immense 

therapeutic benefit. This thesis aims to address some of the remaining gaps in our knowledge. 

 

1.8.8 Distinct functions of CD8αα versus CD8αβ 

CD8αβ is exclusively expressed on Cytotoxic T-Lymphocytes (CTLs). The binding of the co-

receptor to the pMHCI molecule drives the recruitment of CD8α cytoplasmic tail associated 

Lck (Veillette, Bookman et al. 1988). As a result of this association early hybridoma studies 

demonstrated that CD8αα was enough to restore co-receptor function leading Gabert et al. 

(Gabert, Langlet et al. 1987) to question the role of the CD8 chain. However subsequent 

studies demonstrated that CD8αβ functions as a more efficient co-receptor than CD8αα 

(Wheeler, von Hoegen et al. 1992; Renard, Delon et al. 1996; Holler and Kranz 2003) and 

can actually broaden the range of T-cell antigen recognition (Karaki, Tanabe et al. 1992). At 

first the exact mechanism by which CD8 endows CD8 with efficient co-receptor function 

was unclear. Initially, it was thought that the CD8 chain contributed this increased function 

by increasing the strength of the pMHCI/CD8 interaction however cell-cell adhesion assays 

and SPR studies found that MHCI molecules interact with CD8αα and CD8αβ with similar 

affinities (Garcia, Scott et al. 1996; Sun and Kavathas 1997). It was then posited that the 

CD8 chain increased co-receptor function by increasing TCR/pMHCI binding which would 

enhance the association of the CD8α chain with essential signalling molecules such as Lck 

and LAT (Irie, Ravichandran et al. 1995; Renard, Romero et al. 1996; Bosselut, Zhang et al. 

1999). Arcaro et al then provided key data showing that these effects are mediated by 

palmitoylation of the CD8 chain which allows association with membrane microdomains 

called lipid rafts. Interaction between CD3 and CD8 ensures that palmitoylation of the 

CD8 also enriches TCR in these domains. Lipid rafts act as privileged sites T-cell signal 
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transduction because they are enriched in signalling machinery and exclude negative 

phosphatases such as CD45. Thus, CD8-mediated enrichment of TCR in lipid rafts has an 

important positive effect on TCR-mediated signal transduction (Arcaro, Gregoire et al. 2000; 

Arcaro, Gregoire et al. 2001; Doucey, Goffin et al. 2003). 

 

In contrast, CD8αα is expressed on a specialised subset of IELs associated with the gut,  T-

cells, NK cells (Gangadharan and Cheroutre 2004) or memory αβ T-cells (Madakamutil, 

Christen et al. 2004). CD8αα has also been shown to possess a strong preference to interact 

with the thymic leukaemia antigen (TL), a 2M independent non-classical MHCI expressed 

by epithelial cells of the small intestine. This interaction modifies signalling via the TCR 

which results in reduced proliferation and cytotoxicity but enhanced IEL cytokine production. 

As a result CD8αα T-cells can provide protection without destroying the epithelial cell layer. 

This suggests that CD8αα may play more of an immunomodulatory role (Leishman, 

Naidenko et al. 2001; Liu, Xiong et al. 2003).  CD8αα has also been shown to be up-

regulated when a subset of conventional CD8αβ T-cells are activated and survive and 

differentiate into memory precursor cells (Madakamutil, Christen et al. 2004). Therefore 

CD8αα and CD8αβ have distinct functions. CD8αβ functions as a more efficient co-receptor 

than CD8αα (Holler and Kranz 2003), allowing for a wider range of agonists available for 

recognition by the TCR (Karaki, Tanabe et al. 1992). In contrast, CD8αα has been suggested 

to play a more immunomodulatory role. (Leishman, Naidenko et al. 2001) (Liu, Xiong et al. 

2003). 
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1.8.9 Models of co-receptor function 

The timing of the co-receptor activity during pMHCI recognition is crucial for a full 

understanding of the mechanics involved in this process. CD8 and TCR have been shown to 

be constitutively associated on resting primary CD8
+
 T-cells suggesting that pre-existing bi-

specific receptors might engage pMHCI agonist ligands in a co-ordinate manner (Beyers, 

Spruyt et al. 1992; Suzuki, Kupsch et al. 1992; Doucey, Goffin et al. 2003; Demotte, 

Stroobant et al. 2008). Studies of the interaction between CD8 and TCR/CD3 using forster 

resonance energy transfer (FRET) technique suggest a chronological binding event. It was 

shown that the TCR binds to the pMHCI molecule first followed by the recruitment of the 

CD8 molecule subsequently (Yachi, Ampudia et al. 2005; Yachi, Ampudia et al. 2006). This 

data suggests that the TCR will perform an antigen-specific proof reading event. This will 

then ensure that signalling cascades activated by the CD8 co-receptor will only occur when 

the TCR will bind the pMHCI with suitable affinity and kinetics. This serves to discriminate 

between agonist and non-agonist pMHCI complexes with the recruitment of the CD8 only 

being enabled on encounter of TCR with agonist pMHCI. 

 

1.9 T-cell receptor triggering 

The process by which TCR binding to pMHCI molecules leads to phosphorylation events in 

the cytoplasmic tail of the TCR/CD3 complex is referred to as TCR triggering. Considerable 

controversy about the mechanisms of TCR triggering still exist with multiple mechanisms 

proposed to explain the process (van der Merwe and Dushek 2011). To evaluate possible 

models of TCR triggering, it is important to consider some unique features that distinguish it 

from other cell-surface receptor recognition events. First, TCR triggering is highly sensitive 
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allowing T-cells to sense a single pMHCI (Sykulev, Joo et al. 1996; Irvine, Purbhoo et al. 

2002; Purbhoo, Irvine et al. 2004). Second, the TCR is able to discriminate between very 

similar ligands and binds to self peptide-MHC molecules or altered peptides with a range of 

affinities to produce different responses. Third, the TCR differs from other receptors due to 

the enormous structural diversity that exists between the interface of a TCR and pMHCI 

complex (van der Merwe and Dushek 2011). Several mechanisms to explain TCR triggering 

have been proposed: 

 

1.9.1 Aggregation model  

This model can be separated into two models that account for aggregation of the TCR/CD3 

complex following TCR engagement: (i) The co-receptor heterodimerisation model suggests 

that CD4 and CD8 co-receptor can bind to the same agonist pMHCI complex as the TCR 

which will recruit co-receptor associated Lck into close proximity with the CD3 associated 

ITAMs to mediate phosphorylation as reviewed in (Trautmann and Randriamampita 2003). 

(ii) The pseudodimer model suggests a role for self pMHCI molecules in TCR triggering 

(Irvine, Purbhoo et al. 2002; Krogsgaard, Li et al. 2005). According to this model, one TCR 

can bind an agonist pMHCI molecule and a second TCR binds a self pMHCI molecule. 

Dimerisation is enhanced when the co-receptor associated with the TCR that is complexed 

with self pMHC binds to the agonist pMHCI molecule. A pseudodimer is then formed by the 

dual interaction of a second TCR with the self pMHC and its co-receptor with the agonist. 

This model then predicts that self pMHCI molecules would enhance TCR triggering as 

reviewed in (van der Merwe and Dushek 2011). 
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1.9.2 Conformational change model  

Several models have been proposed which suggest conformational change as a mechanism 

for TCR triggering. Conformational change models describe the changes in the CD3 

cytoplasmic domains upon TCR/pMHCI interaction. Recent data suggests that differences in 

mechanical effects of the TCR/pMHCI interaction such as a pulling or shearing forces can 

induce TCR triggering (Li, Chen et al. 2010; Sun, Kim et al. 2001; Choudhuri and van der 

Merwe 2007). This could be generated as a result of the small size of the TCR/pMHCI 

complex which would generate a force as large molecules are either compressed or removed 

from the contact area (van der Merwe 2001). It has been proposed that TCR/pMHCI binding 

could push and/or twist the TCR (Davis 2002; Kuhns, Davis et al. 2006). Mechanical pulling 

is suggested when TCR/pMHCI binding leads to a piston like movement of the CD3 

cytoplasmic tails, relative to the plasma membrane that could alter the conformation. Also the 

pulling could induce a conformational change in the structure of the CD3 ecto-domains 

and/or transmembrane domains that leads to clustering of the engaged TCR/CD3 complex 

with other TCR/CD3 complexes (van der Merwe and Dushek 2011) which in turn would 

enhance kinase activity. The conformational change in the cytoplasmic region of the 

TCR/CD3 complex is determined by the dissociation of ITAMs from phospholipids in the 

cell membrane exposing them to phosphorylation (reviewed in (van der Merwe and Dushek 

2011). 

 

1.9.3 Segregation and redistribution model  

The kinetic segregation model predicts that upon TCR/pMHCI recognition TCR/CD3 

complexes are trapped in close contact zones, which exclude larger inhibitory tyrosine 
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phosphatases such as CD45, leading to stable phosphorylation of TCR/CD3 ITAMs by Lck. 

The lipid raft model predicts that TCR/pMHCI recognition leads to an association of 

TCR/CD3 complex with lipid rafts which are privileged sites for phosphorylation. 

 

Van der Merwe and Dushek suggest that TCR triggering can be induced by any mechanism 

that aids the complex in favour of phosphorylation. They suggest that, aggregation, 

segregation, conformational change and clustering of TCR are all involved in the TCR 

triggering event (van der Merwe and Dushek 2011). A recent study by Manz and colleagues 

provide new data on TCR triggering. They show that T-cell triggering thresholds are 

modulated by the number of activating ligands available to individual TCR clusters, not by 

the total amount encountered by the cell. They also demonstrated that the minimal triggering 

unit is at least four pMHC in a single cluster when measuring activity by Ca
2+

 (Manz, 

Jackson et al. 2011). Overall, the precise mechanism of this initial triggering event still 

remains elusive. 

 

1.9.4 TCR triggering/kinetics and co-receptor dependency 

To achieve efficient T-cell signalling then the TCR/pMHCI interaction must be of long 

enough duration to allow for a series of ordered phosphorylation events of the CD3-ζ chains 

(McKeithan 1995; Rabinowitz, Beeson et al. 1996; Kersh, Shaw et al. 1998). It has been 

postulated previously that the TCR is a T-cell signalling unit which can trigger T-cell 

activation in the complete absence of CD8 suggesting that the co-receptor is not required for 

TCR triggering to occur (Janeway 1992). Recent work by Van der Merwe and Dushek, 

support this theory by demonstrating that TCR triggering can occur in the complete absence 
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of co-receptors and agonist pMHCI monomers cannot induce TCR triggering. As a result 

they state that the co-receptor heterodimerisation model is not sufficient for TCR triggering 

(Locksley, Reiner et al. 1993; Schilham, Fung-Leung et al. 1993; van der Merwe and Dushek 

2011). Kinetic models of TCR triggering such as kinetic segregation model also suggest that 

the co-receptor only plays a role in amplifying signals from already triggered TCRs and not 

in the primary initial signalling event (van der Merwe and Davis 2003).  

 

Data does suggest however that CD8 may indeed be playing a role in the TCR triggering 

event. The off-rate (koff) of the TCR/pMHCI interaction and hence its half life, is the principal 

kinetic feature that determines the feature of biological outcome. CD8 has been shown to 

generate a stabilising factor that preferentially increases the predicted TCR triggering rate 

suggesting an important role for CD8 in T-cell triggering and controlling T-cell 

crossreactivity (Wooldridge, van den Berg et al. 2005). When further studying the kinetics of 

the CD8 molecule, Gakamsky et al found that the CD8 molecule kinetically promotes ligand 

binding to the TCR (Gakamsky, Luescher et al. 2005). It is important that we undertake 

further studies to define the role of CD8 in TCR triggering (discussed in chapter 6). 

 

1.10 The physiological importance of CD8 in CD8
+
 T-cell biology 

The biochemical mechanisms involved during CD8
+
 T-cell responses and activation to 

antigens have been extensively studied and provide a wealth of data. However the only firmly 

proven physiological role for CD8 is with regards to the events that transpire during thymic 

development and T-cell selection in the thymus (see section 1.3.3).  
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Evidence however does suggest that CD8 helps in driving the priming and expansion of 

CD8
+
 T-cell clonotypes with low functional avidities for cognate antigen which will enhance 

the clonotypic diversity of CD8
+
 T-cell responses to microbial and potentially against self 

determinants in an autoimmune system. This was supported by Price et al where they showed 

that ex-vivo activation of sub-dominant CD8
+
 T-cell clonotypes specific for epitopes derived 

from Epstein-Barr virus and human cytomegalovirus relied more heavily on CD8 

engagement compared to numerically dominant clonotypes with the same antigen specificity. 

This suggests that CD8 is augmenting clonotypic diversity within the antigen-specific CD8
+
 

T-cell pool during chronic viral infections (Price, Brenchley et al. 2005). Surh and Sprent 

demonstrated that sub-optimal TCR engagement by self-ligands, resulted in low level 

signalling without associated activation, and is required for the survival of naïve CD8
+
 T-

cells in the periphery (Surh and Sprent 2008). However memory CD8
+
 T-cell persistence 

only requires the presence of homeostatic cytokines and does not rely on sub-optimal TCR 

stimuli which suggest that CD8 is required for the survival of naïve, but not memory, CD8
+
 

T-cells. It is clear that more studies are required in the future to define the role that CD8 plays 

in-vivo. 

 

1.11 Research Aims 

Despite major advances in terms of understanding the multiple roles of CD8 in T-cell 

activation, important questions still remain unanswered. Overall, the aim of this thesis was to 

further our understanding of the role that CD8 plays in T-cell activation and also the 

therapeutic potential of targeting CD8 for the treatment of CD8
+
 T-cell mediated diseases 

such as autoimmunity. 
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My specific aims were to:  

1. Probe the biological significance of the low solution binding affinity of the pMHCI/CD8 

interaction for the first time. 

2. Examine the possibility that anti-CD8 antibodies can trigger CD8
+
 T-cell effector function 

in the absence of TCR engagement. In addition, the aim of this study was to phenotype a 

panel of anti-CD8 antibodies and classify antibodies that have either an activatory or 

inhibitory function. 

3. Examine the possibility that anti-CD8 antibodies with an inhibitory phenotype can be used 

to block T-cell activation that is highly dependent on CD8. This could be potentially useful 

for blocking autoreactive CD8
+
 T-cells which are characterized by low affinity TCR/pMHCI 

interactions and are highly dependent on CD8. 

4. Finally, examine the possibility that CD8 can alter the functional avidity of a CD8
+ 

T-cell 

for its agonists and act to re-arrange the relative potencies of each of its potential agonists. If 

so this would suggest a novel “focussing mechanism” for CD8 in T-cell activation. 
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2.1 Reagents and consumables 

2.1.2 Mammalian Cell culture and reagents 

The following media were used to culture the cells required for this thesis: 

R10: Roswell Park Memorial Institute medium-1640 (RPMI-1640) supplemented with 10% 

heat inactivated foetal calf serum (FCS), 2 mM L-glutamine, 100 units/ml penicillin and 100 

μg/ml streptomycin.  

PSG: RPMI-1640 medium supplemented with 2 mM L-glutamine, 100 units/ml penicillin 

and 100 μg/ml streptomycin.  

R2: RPMI-1640 medium supplemented with 2% heat inactivated foetal calf serum (FCS), 2 

mM L-glutamine, 100 units/ml penicillin and 100 μg/ml streptomycin.  

CK media: R10 supplemented with 2.5% Cellkines (Helvetica Healthcare, Geneva), 200 

IU/ml IL-2 and 25 ng/ml IL-15 (PeproTech, London, U.K.).  

D10: 293T cell culture media, Dulbecco modified Eagle’s medium (DMEM), supplemented 

with 2 mM L-glutamine, 100 units/ml penicillin, 100 μg/ml streptomycin, 1% sodium 

pyruvate and 10% heat inactivated FCS.  

I10: Iscove`s Modified Dulbecco medium (IMDM), supplemented with 2 mM L-glutamine, 

100 units/ml penicillin, 100 μg/ml streptomycin, 1% sodium pyruvate and 10% heat 

inactivated IgG low FCS. 

I0: IMDM media supplemented with 2 mM L-glutamine, 100 units/ml penicillin, 100 μg/ml 

streptomycin and 1% sodium pyruvate. 

Freezer mix: FCS supplemented with 10% sterile dimethyl sulfoxide (DMSO; Sigma-

Aldrich, Poole, U.K.).  
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RPMI-1640, DMEM, IMDM, FCS, L-glutamine, penicillin, streptomycin, and sodium 

pyruvate were purchased from Gibco, Life Technologies (Paisley, U.K.).  

 

2.2 Mammalian Cell culture 

2.2.1. Preparation of peripheral blood mononuclear cells (PBMC) 

Typically 50 ml of peripheral blood, obtained from the Welsh Blood Transfusion Service or 

healthy donors, was collected into a sterile 50 ml Falcon tube (BD Biosciences) containing 

the anti-coagulant heparin (Unihep Leo) at 1000 units/ml. PBMC were generated by Ficoll-

Hypaque density gradient centrifugation. Peripheral blood was gently layered onto an equal 

volume of Ficoll-Hypaque solution (Lymphoprep, Nycomed) and centrifuged for 20 minutes 

at 693 x g (Heraeus megafuge 1.0 R, Bucks, UK) with the break off. The buffy coat layer was 

gently removed from the gradient interface using a sterile Pasteur pipette. Cells were washed 

twice in PSG by centrifugation at 561 x g for 10 minutes followed by 561 x g for 6 minutes 

with maximum break. After the final wash, cells were re-suspended in R10 and kept in the 

incubator at 37°C/5% CO2 prior to use for the generation of human CD8 T-cell lines/clones 

or kept at 4°C prior to use as human γ-irradiated (30Gy) allogeneic feeders. 

 

2.2.2 Counting cells with Trypan blue 

Cells were counted and analysed for viability by combining 10 μl of cell suspension with an 

equal volume of 0.1% Trypan blue in PBS (w/v) (Sigma-Aldrich) and loaded on to an 

improved Neubauer haemocytometer (Weber Scientific International Limited, Lancing, 

U.K.). Viable cells remain colourless, whilst non-viable cells appear blue at 100 times 
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magnification on a light microscope (Nikon Eclipse TS100). The percentage of total cells 

counted that remained white equates to the viability of the cell culture. 

 

2.2.3 Generation of Human CD8
+
 T-cell peptide specific lines 

Blood from HLA A*0201 (HLA A2 from hereon) positive donors was used to generate CD8
+
 

T-cell lines. CD8
+
 T-cells specific for (i) Melan-A derived epitope ELAGIGILTV (residues 

26-35) (Laugel, van den Berg et al. 2007; Purbhoo, Li et al. 2007); and (ii) EBV BMLF1-

derived epitope GLCTLVAML (residues 259-267) (Lissina, Ladell et al. 2009) were 

generated by pulsing 6 x 10
6
 PBMC from a HLA A2 individual with cognate peptide at 

concentrations of 1 μM, 10 μM or 100 μM for 1 hour at 37°C. Cells were subsequently 

washed and resuspended in R10 only. After 3 days, increasing amounts of Interleukin-2 (IL-

2) (Peprotech) were gradually added to the media, reaching a maximum concentration of 20 

IU/ml by day 14. Expansion of antigen specific CD8
+
 T-cells was assessed by FACS staining 

with cognate HLA A2/peptide tetramers and anti-CD8 antibody conjugated to a fluorochrome 

(see section 2.7.8). 

 

2.2.4 Generation of human T-cell clones by limiting dilution 

Clones were all generated by limiting dilution culture from peptide-specific T-cell lines. 

Cloning mix consisting of 2 x 10
6
 PBMCs and 2 x 10

5
 peptide-pulsed allogeneic B cells 

(optional) per ml of R10 supplemented with T-STIM (BD Biosciences) and 200 IU/ml IL-2 

was made then γ-irradiated (30 Gy). Cells to be cloned were added to the cloning mix at a 

concentration of 1 cell per 600 µl mix, then plated out at 200 μl per well of a round-bottomed 

96 well plate (i.e. 1 cell per 3 wells). Control wells at 10 and 100 cells per well were 
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included. Plates were cultured at 37°C/5% CO2 and after 14-21 days examined for clones. 

Clones were re-stimulated as necessary, transferring them first to a 48 well plate, then at a 

second re-stimulation to a 24 well plate. Since the discontinuation of T-STIM in 2007, all 

clones and lines were subsequently cultured in CK media (ZeptoMatrix, NY, USA). 

 

2.2.5 Human CD8
+
 and CD4

+
 T-cell clones used in this thesis 

The following HLA A2 restricted CD8
+
 T-cell clones were used in this study (Table 2.2.6); 

(i) ILA1, specific for the human telomerase reverse transcriptase (hTERT)-derived epitope 

ILAKFLHWL (residues 540-548) (Laugel, van den Berg et al. 2007; Purbhoo, Li et al. 2007); 

(ii) ALF3, specific for the influenza A matrix protein (M1)-derived epitope GILGFVFTL 

(residues 58-66) (Cole, Edwards et al. 2010); (iii) MEL5 and MEL187.c5, specific for the 

Melan-A-derived epitope ELAGIGILTV (residues 26-35) (Laugel, van den Berg et al. 2007; 

Purbhoo, Li et al. 2007); (iv) 003 specific for the HIV-1 p17 Gag-derived epitope 

SLYNTVATL (residues 77–85) (Sewell, Harcourt et al. 1997; Choi, Chen et al. 2003; 

Gostick, Cole et al. 2007); (v) 1E6 and 3F2 specific for the restricted autoantigen 

preproinsulin peptide ALWGPDPAAA (PPI15–24) (Skowera, Ellis et al. 2008); and (vi) NLV2 

specific for the CMV-pp65 derived epitope NLVPMVATV (residues 495-503). In addition, 

the following non-HLA A2–restricted CD8
+
 T-cell clones were used: (i) HLA A*6801-

restricted clone c23, specific for the HIV-1 Tat-derived epitope ITKGLGISYGR (residues 

38–48) (Gostick, Cole et al. 2007); (ii) HLA B*0702-restricted clone KD4, specific for the 

EBV EBNA3A-derived epitope RPPIFIRRL (residues 379–387) (Burrows, Silins et al. 1995; 

Kjer-Nielsen, Clements et al. 2003); (iii) HLA B*0801-restricted clone LC13, specific for the 

EBV EBNA3A-derived epitope FLRGRAYGL (residues 339–347); (iv) HLA B*3508-

restricted clones SB27, SBS1 specific for the EBV BZLF1-derived epitope 
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LPEPLPQGQLTAY (residues 52–64) and SB10 specific for the EBV BZLF1-derived 

epitope CPSQEPMSIYVY (Green, Miles et al. 2004; Tynan, Borg et al. 2005; Tynan, 

Burrows et al. 2005; Wynn, Fulton et al. 2008); (v) HLA A*2402-restricted clone 4C6, 

specific for the restricted autoantigen preproinsulin peptide LWMRLLPLL (PPI3-11) (Knight, 

Kronenberg et al. 2012),; and (vi) The HLA DR*0101-restricted CD4
+
 T-cell clone C6 

recognizes the influenza A hemagglutinin (HA)-derived epitope PKYVKQNTLKLAT 

(residues 307-319) was generated as described previously (Lissina, Ladell et al. 2009). 

 

Table 2.2.6 Human CD8
+
 and CD4

+
 T-cell clones 

Clone name MHCI restriction Epitope Residue 

number 

Origin 

ILA1 HLA*0201 ILAKFLHWL 540-548 hTERT 

ALF3 HLA*0201 GILGFVFTL 58-66 Influenza 

ALF8 HLA*0201 GILGFVFTL 58-66 Influenza 

MEL5 HLA*0201 ELAGIGILTV 26-35 Melan-A 

MEL187.c5 HLA*0201 ELAGIGILTV 26-35 Melan-A 

1E6 HLA*0201 ALWGPDPAAA 15–24 Type-1 diabetes 

3F2 HLA*0201 ALWGPDPAAA 15–24 Type-1 diabetes 

4C6 HLA*2402 LWMRLLPLL 3-11 Type-1 diabetes 

003 HLA*0201 SLYNTVATL 77–85 HIV-1 Gag p17-18 

NLV2 HLA*0201 NLVPMVATV 495-503 CMV 

c23 HLA A*6801 ITKGLGISYGR 38–48 HIV-1 Tat 

KD4 HLA B*0702 RPPIFIRRL 379–387 EBV 

LC13 HLA B*0801 FLRGRAYGL 339–347 EBV 

SB27 HLA B*3508 LPEPLPQGQLTAY 52–64 EBV 

SBS1 HLA B*3508 LPEPLPQGQLTAY 52–64 EBV 

SB10 HLA B*3508 CPSQEPMSIYVY 103-111 EBV 

C6 HLA DR*0101 PKYVKQNTLKLAT 307-319 Influenza 
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Table 2.2.7 Human CD8
+
 and CD4

+
 T-cell lines 

Name MHCI restriction Epitope Residue 

number 

Origin 

MEL5 HLA*A0201 ELAGIGILTV 26-35 Melan-A 

EBV HLA*A0201 GLCTLVAML 259-267 EBV 

 

Table 2.2.8 Murine CD8
+
 transgenic T-cell lines 

Name MHCI restriction Epitope Residue 

number 

Origin 

F5 H2-D
b
 ASNENMDAM Influenza H17 Influenza 

 

 

2.2.9 Culture of human CD8
+
 T-cell lines and clones 

CD8
+
 T-cells were grown from cryopreserved stocks in 24-well tissue culture plates in 2.5% 

CK media following re-stimulation using 1 µg/ml PHA with 5 x 10
6
 irradiated allogeneic 

PBMC from 2-3 different individuals in 2 ml of media per well of a 24 well tissue culture 

plate. Following this, the cells were maintained in 2.5% CK media for several months 

without the need for re-stimulation with antigen and/or irradiated autologous PBMC feeders.  

 

2.2.10 Generation of Murine CD8
+
 T-cell peptide specific lines 

Naïve mouse CD8
+
 T-cells were obtained by harvesting splenocytes from transgenic F5 mice. 

A significant percentage of CD8
+
 T-cells within the splenic population of these mice express 

the F5 TCR, which recognizes the H-2D
b
-restricted influenza H17 nucleoprotein-derived 

epitope ASNENMDAM.(Table 2.2.8) (Mamalaki, Elliott et al. 1993). Naïve mouse CD8
+
 T-
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cells were obtained by harvesting splenocytes from Balbc mice (Mosier 1974). Cells were 

also stimulated with 10 μg/ml anti-mouse CD3 (clone 500A2, eBioscience) and 0.5 μg/ml 

anti-mouse CD28 antibodies (clone 37.51, eBioscience) and cultured in D10 media for 7 

days. 

 

2.2.11 Cryopreservation storage of cells 

2 – 10 x 10
6
 lymphocytes were centrifuged at 389 x g for 5 minutes then re-suspended in 1 ml 

freezer mix and transferred to a cryovial (Nunc). Cryovials were stored in 100% Propan-2-ol 

(Mr.Frosty™, ThermoScientific, UK) storage containers at -80°C for 48 hours before being 

transferred to liquid nitrogen containers for long term storage. When required, cell stocks 

were rapidly thawed at 37°C to minimize cell death, washed once in PSG to remove the 

DMSO and resuspended in appropriate culture media.  

 

2.2.12 Generation and culture of C1R B cell clones expressing HLA A*0201 

Endotoxin free pcDNA3.1 mammalian expression vectors (Life Technologies) with inserts 

encoding either full length HLA A2 or one of the following mutants: HLA A2 DT227/8KA 

(Purbhoo, Boulter et al. 2001), HLA A2 Q115E (Wooldridge, Lissina et al. 2007), HLA A2 

K
b
/245V and chimeric HLA A2/K

b
 were generated then linearised before transfection into the 

C1R B cell line by electroporation. The C1R B cell line is a Class I A and B allele negative, 

Epstein-Barr
 
virus (EBV) transformed B cell line (Storkus, Howell et al. 1987) that can be 

cultured in R10. C1R cells were split and fed 24 hours before transfection as transfection 

efficiency is increased if C1R B cells are actively dividing and the population is >90% viable. 

For each transfection 10 x 10
6
 C1R B cells were washed twice in PSG (ensuring all absence 



Chapter 2 

 

96 

 

of serum), by centrifuging at 292 x g for 6-7 minutes at room temperature, and subsequently 

resuspended in 500 μl of PSG then transferred to a sterile 0.4 cm electroporation cuvette 

(Bio-Rad, Herts, UK) with 10 μg endotoxin free linearalised DNA (10 μl of 1 μg/μl). After 

gently mixing the cell suspension and DNA using a pasteur pipette the cuvette was placed on 

ice for 5 minutes. Electroporation was performed using the following conditions for each 

DNA construct; Voltage = 250 V, Capacitance = 400 μF. 

 

Electroporation was performed using a GenePulser Xcell electroporator (Bio-Rad). The 

electroporated cells were then rested at room temperature for 10 minutes. After the addition 

of 500 μl warm R10, the suspension was gently transferred into a T25 flask with a further 12 

ml R10 and subsequently cultured at 37°C/5% CO2. Stable transfectants were selected by 

adding 0.5 mg/ml G418 (Sigma-Aldrich) 72 hours after transfection. Significant cell death 

occurred within the first 5 days (>90% death) following G418 addition but cell viability 

began to recover at 10 days. The transfected C1R cell lines were cloned by limited dilution. 

The clones were then regularly tested for HLA A2 expression by staining with Fluorescein 

Isothiocyanate (FITC) conjugated anti-human HLA A2 conformation specific antibody clone 

BB7.2 (Serotec; Oxford, U.K.) and analysed by flow cytometry. All clones showed 100% 

HLA A2 expression, with equal Mean Fluorescence Intensities (MFI`s) in the FL1 channel.   

 

2.2.13 293T (HEK 293) lentiviral packaging cell line 

The 293T cell line was originally derived from human embryonic kidney (HEK) cells by 

transformation of cultured cells with sheared adenovirus-5 DNA (Graham, Smiley et al. 

1977). Cultures reaching 100% confluency were removed from the tissue culture plastic by 
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incubation with 0.5% trypsin in HBSS (Life Technologies) due to the fact that 293T cells are 

an adherent cell line then washed with 293T culture media to remove the trypsin and split. 

Cells were cultured in DMEM supplemented with 20% FCS, 1 mM sodium pyruvate, 100 

units/ml penicillin, 100 mg/ml streptomycin and 2 mM L-glutamine. The 293T CD8α 

transfected cells used in this study (a kind gift from Dr Reno Debets) were manufactured by 

introducing pBullet-human CD8α into 293T cells using vesicular stomatitis virus-

pseudotyped Moloney murine leukaemia virus particles (Willemsen, Ronteltap et al. 2005; 

Willemsen, Sebestyen et al. 2006). 

 

2.2.14 Generation of whole antibody IgG from hybridomas 

The following hybridomas were used in this study: anti-human CD8 antibody clone OKT8 

IgG2a (MRC cooperative facility, ATCC), anti-human CD3 antibody clone OKT3 IgG2a 

(MRC cooperative facility ATCC) and anti-mouse CD8 antibody clone KT112 IgG2a (a kind 

gift provided by Professor Rose Zamoyska). OKT8 hybridoma was originally generated by 

three separate fusions between CAF mice which were immunised intraperitoneally at 2 to 3 

week intervals with either 2 x 10
7
 thymocytes, ConA activated sheep red blood cell rosetting 

(E
+
) cells or ConA activated E

+
 cells depleted of OKT4

+
 cells by OKT4 and rabbit 

complement. Four days after the third injection splenocytes were fused with P3 x 63 Ag8U1 

myeloma cells (Kung, Goldstein et al. 1979; Biddison, Rao et al. 1984). KT112 hybridomas 

were originally generated from a fusion between NSO myeloma cells and spleen from a 

Spraque-Dawley rat hyperimmunised with cells from the T-cell clone AK1 (specific for the 

non H2 antigen plus D
k
) (Tomonari and Spencer 1990). OKT3 hybridomas were originally 

generated by female mice of strain BALBcJ or CAF mice were immunised intraperitoneally 

with 2 x 10
7
 E rosette-purified peripheral T cells in PBS at 14-day intervals. Four days after 
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the third immunization the spleens were removed and a suspension of single cells was 

prepared. For each fusion, 1 x 10
8
 splenocytes were fused in 35% PEG in 5% DMSO and 

RPMI 1640 with 2 x 10
7
 P3 x 63 Ag8U, myeloma cells. After cell fusion, the cells were 

distributed into 100 to 400 wells and cultured in selective medium. The wells were observed 

regularly under an inverted phase microscope and as cells grew up supernatants from those 

wells were harvested and tested for binding to human peripheral lymphocytes separated into 

E rosette-positive (E
+
) and E rosette-negative (E

-
) populations. Binding was detected both by 

radioimmunosassay and indirect immunofluorescence techniques (Kung, Goldstein et al. 

1979). 

 

Hybridomas were cultured in I10 media (FCS IgG low) within the main compartment of a 

two compartment Celline flask (Integra, NH, USA). In the large body of the flask I0 media 

was used. Every 7-10 days the hybridoma was harvested for antibody and both compartments 

of the flasks were cultured in fresh media, i.e. in the main compartment of the flask, 

approximately 20 mls of hybridoma supernatant was harvested and fresh I10 media was 

added. This 20 mls was then centrifuged at 693 x g for 10 minutes at 4°C. The subsequent 

antibody in the supernatant was removed and stored at -20°C prior to purification. To the 

large body compartment, fresh I0 media was added. 

 

2.2.15 Purification of whole antibody IgG from hybridomas 

Whole IgG antibody was purified by first filtering whole antibody generated as above 

through a 0.4 μM filter. Antibody was then loaded to a protein G column (GE healthcare) 

with the use of a peristaltic pump. Once this had been completed the antibody was eluted 
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with the use of Elution buffer (0.1 M Glycine/HCl pH 2.5 (both Fisher Scientific, 

Loughborough, UK) and neutralised immediately with Neutralising buffer (1 M Tris pH 10.5 

Fisher Scientific). Antibody purity was then checked by SDS-PAGE electrophoresis (section 

2.5.6). 

 

2.2.16 Generation of OKT8 and OKT3 Fab, F(ab´)2 and Fc´ fragments 

250 µg of the anti-human CD8 antibody OKT8 or anti-human CD3 antibody OKT3 (IgG) 

was digested to yield Fab and Fc´ fragments using a Pierce Fab micro preparation kit 

(Thermo scientific, Rockford IL, USA) or digested to yield F(ab´)2 fragments using a Pierce 

F(ab´)2 micro preparation kit (Thermo scientific). IgG fragmentation was performed 

according to the manufacturer’s instructions and purity was checked via SDS-PAGE 

electrophoresis. 

 

2.3 Bacterial Cell culture 

2.3.1 Bacterial culture media 

Agar plates: 15 g Bacto-agar in 1 litre milliQ d.H20 (Fisher Scientific) supplemented with 

100 µg/ml ampicillin/carbenicillin or Kanamycin (Fisher Scientific).  

LB low salt media: 1% Bacto-tryptone (Difco), 0.5% NaCl (Sigma-Aldrich), 0.5% yeast 

extract (Difco).  

TYP media: 1.6% yeast extract (Difco), 1.6% Bacto-tryptone (Difco), 0.5% NaCl, 0.25% K2 

HPO4 (Sigma-Aldrich). 
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(All media was autoclaved on a liquid cycle at 121°C for 60 minutes and supplemented with 

100 µg/ml ampicillin/carbenicillin (Fisher Scientific) prior to use). 

 

Table 2.3.2 Bacterial strains 

Strain Description/Application Antibiotic Resistance Supplier 

Top10 

Plasmid amplification for 

transformation, sequencing 

or transfection. 

Ampicillin/Carbenicillin 
Life 

Technologies 

XL10-Gold 

Plasmid amplification for 

transformation, sequencing 

or transfection. 

Ampicillin/Carbenicillin 
Agilent 

Technologies 

BL21 (DE3) 

pLysS 

High stringency expression 

in bacterial cell culture under 

the control of the T7 

promoter. 

Ampicillin/Carbenicillin 
Life 

Technologies 

 

 

2.3.3 Transformation of competent bacterial cells by heat shock method 

Aliquots of competent bacteria were thawed slowly on ice. 50 - 100 ng of plasmid DNA 

(quantified by absorbance at 260 nm) was added to 50 µl thawed competent bacteria, kept on 

ice for 5 minutes, before being transferred to 42°C for 90 seconds then replaced on ice for 2 

minutes. Following this heat shock procedure, 100 μl of SOC media (Life Technologies) was 

added to the bacteria, and the mixture placed in an orbital incubator (Sanyo, Leics, UK) at 

37°C for 60 minutes. Cells were then streaked out on LB agar plates supplemented with 100 

µg/ml ampicillin/carbenicillin or kanamycin (Fisher Scientific) and incubated overnight at 

37°C. A negative control tube containing bacteria alone was plated out for every 

transformation.  
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2.3.4 Target gene expression in bacterial cell culture 

A single colony from a plate of freshly transformed BL21 bacteria was used to inoculate 30 

ml of TYP media supplemented with 100 µg/ml ampicillin/carbenicillin and agitated 

overnight in an orbital incubator at 37°C. The following morning 1 litre of TYP media 

(supplemented with 100 µg/ml ampicillin/carbenicillin) was inoculated with 2 - 5 ml of the 

starter culture and agitated at 37°C until the OD600 reaches between 0.4 and 1 (ideally 0.6) as 

measured by a spectrophotometer (Biochrom, Cambridge, UK). A 1 ml pre-induction sample 

was collected, microfuged at 17,900 x g (Eppendorf 5417 R, Cambridge, UK) for 1 minute 

and 1 ml of glycerol added then the pellet stored at -80°C. Protein expression was induced by 

adding 0.5 mM dioxin free isopropyl-1-thio-β-D-galactopyranoside (IPTG; Melford 

Laboratories). Flasks were agitated for a further 4 - 6 hours post induction. A 1 ml post-

induction sample was taken and stored as for the pre-induction sample. The remaining culture 

was centrifuged at 2122 x g for 20 minutes at 4°C (Heraeus) and the supernatant discarded. 

The bacterial pellet was either resuspended in lysis buffer for immediate preparation of 

inclusion bodies (section 2.5.1), or in 10 - 15 ml d.H2O and stored at -20°C.  

 

2.4 Molecular  Biology 

2.4.1 Plasmid DNA miniprep 

A single transformed bacterial colony was placed in 5 ml LB media supplemented with 100 

μg/ml ampicillin/carbenicillin or 100 μg/ml kanamycin and incubated overnight in an orbital 

incubator at 37°C. Bacterial cells were pelleted by centrifugation at 2772 x g for 15 minutes 

at room temperature and the supernatant discarded. Plasmid DNA was extracted using a 

commercially available miniprep kit (Miniprep 250 kit; Qiagen or Zyppy plasmid miniprep 
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kit; Zymo Research, CA, USA) based on the alkaline lysis method. Extracted DNA was 

resuspended in milliQ d.H2O or elution buffer and stored a -20°C.  

 

2.4.2 Plasmid DNA maxiprep (Endotoxin free) 

A single bacterial colony previously transformed with plasmid DNA was used to inoculate a 

starter culture of 5 ml LB media (supplemented with 100 μg/ml ampicillin/carbenicillin) and 

shaken for 8 hours in an orbital incubator at 37°C.  0.5 - 2 ml of starter culture was used to 

inoculate between 100 and 500 ml of LB media (dependent on DNA yield output) which was 

subsequently shaken overnight in an orbital incubator at 37°C. The cultures were centrifuged 

at 2772 x g for 20 minutes at 4°C and the supernatant discarded. The bacterial pellet was 

treated using a commercial endotoxin-free maxi-prep kit (Qiagen, UK) to extract the plasmid 

DNA. Ethanol precipitated and dried DNA pellets were resuspended in 200 - 500 μl TE 

buffer or endotoxin free water and the concentration of eluted DNA quantified as outlined 

below. A maxi-prep typically yielded 700 μg of plasmid DNA. 

 

2.4.3 DNA quantification 

2 μl of eluted DNA following either a mini or maxiprep procedure was diluted in 198 μl 

milliQ d.H2O. The absorbency of this solution was then measured using a spectrophotometer 

(Biomate, Thermo Scientific, MA, USA) or 1 μl of DNA was measured using a nano-drop 

(Thermo Scientific) set to record at 260 nm wavelength. MilliQ d.H2O was used as a blank 

reference. An absorbency of 1 at 260 nm was assumed to indicate a DNA concentration of 50 

ng/μl (after the extinction coefficient for DNA and the dilution factor were taken into 

account). 
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2.4.4 DNA sequencing 

After each step of cloning strategy, the construct (500 ng total) was sent for sequencing by 

the DNA sequencing facility, Central Biotechnology Services, Cardiff University. For all 

samples, forward and reverse primers were also sent (MWG 50 pmol/μl). DNA was 

sequenced using ABI PRISM 3100-Avant Genetic Analyser (Applied Biosystems, UK) using 

silver sequencing and analysed using CLG Genomics workbench (Swansea, UK). 

 

2.4.5 Linearisation of DNA 

For the generation of stable cell transfectants, plasmid DNA that had been generated via the 

methods outlined above must be linearised in order for it to successfully integrate with C1R 

cell DNA. 25 μl of plasmid DNA (of 50 μg @ 2 μg/μl) was digested with 10 μl BglII (New 

England Biolabs), 20 μl of 10 x NEB buffer and 145 μl RNAse/DNAse free water (200 μl 

total). Plasmid DNA was digested for 18 hours at 37°C and digestion efficiency was 

measured by running the sample on a 1% agarose gel (see section 2.4.7). 

 

2.4.6 Ethanol precipitation 

200 µl of the linearised plasmid DNA was precipitated using ethanol to allow the removal of 

any remaining restriction enzymes that remained post overnight digestion. 400 µl of 100% 

ethanol (Sigma-Aldrich) was added, and the mixture incubated at room temperature for 10 

minutes. The reaction was centrifuged at 292 x g for 10 minutes and the supernatant carefully 

aspirated then discarded. 500 µl of 70% ethanol was used to resuspend the DNA pellet for 

washing. The same centrifugation step was repeated and the supernatant again discarded. The 

pellet was allowed to dry before being resuspended in 50 μl of endotoxin free water. 
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2.4.7 Agarose gel electrophoresis and extraction 

Agarose gels were generated by the addition of 1% agarose (W/V) with 50 ml of 1 x TAE 

buffer (10 x buffer: 48.4 g Tris base, 10.9 g glacial acetic acid, 2.92 g EDTA, 1.0 Litre 

d.H2O, pH 8.2). This was heated to dissolve all agarose and once cool either 5 μl of 10,000 x 

SYBR® Safe DNA gel stain or 10 ng/ml Ethidium Bromide (Life Technologies) were added 

and the gel was cast. Samples were mixed with 5 x loading buffer (Bioline, London, UK) 

before being loaded then run on the gel alongside gel loading marker (Bioline) at 75 V, 200 

mA for 40 minutes. Subsequently gels were analysed using a UV transilluminator (UVP, 

Cambridge, UK). For extraction, DNA bands were excised from agarose gels using an UV 

transilluminator and the DNA subsequently extracted from the gel fragment using a 

QIAquick gel extraction kit (Qiagen), according to the manufacturer’s instructions. 

 

2.4.8 Plasmid restriction digestion 

Restriction digestion enzymes were used to specifically target a restriction site of choice: 2 μl 

of miniprep was added to 1 μl of restriction enzyme of choice (New England Biolabs) and 2 

μl of the appropriate enzyme buffer (New England Biolabs) then made up to a final volume 

of 20 μl DNAse free water (adding BSA if required for buffer (New England Biolabs)). 

 

2.4.9 Vector/insert ligation 

Vectors and inserts were ligated by mixing insert and vector at different ratios with 1U DNA 

ligase (T4 DNA ligase Promega, Southampton, UK) and 3 μl DNA ligase buffer (Promega) 

and made to a final volume of 30 μl DNAse free water. Ligation reactions were left overnight 

at 16°C. 
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2.5 Protein Chemistry 

2.5.1 Inclusion body preparation 

Biotin-tagged MHCI heavy chains (wild type and mutant HLA A2), α and β TCR chains, 

human CD8α and β2m were all expressed under the control of the T7 promoter as insoluble 

inclusion bodies in the Escherichia coli strain BL21 (DE3) pLys (Life Technologies) (section 

2.3.2). To prepare inclusion bodies from IPTG-induced E. Coli the bacterial pellet from 1 

litre culture was re-suspended in 20 ml of lysis buffer (10 mM Tris pH8.1 (Sigma-Aldrich), 

10 mM MgCl2 (Sigma-Aldrich), 150 mM NaCl (Sigma-Aldrich) and 10% Glycerol (Fisher 

Scientific)). The bacterial suspension was then transferred to a 50 ml centrifuge tube (Falcon) 

and lysed by sonication to release the inclusion bodies. Inclusion bodies were purified by 

adding 5 volumes of Triton wash buffer (0.5% Triton X-100 (Sigma-Aldrich), 50 mM Tris 

pH8.1 (Sigma-Aldrich), 100 mM NaCl (Sigma-Aldrich), 10 mM EDTA (Sigma-Aldrich) and 

2 mM DTT (Sigma-Aldrich), pelleted by centrifugation at 2772 x g for 20 minutes at 4°C and 

the supernatant containing the bacterial cell debris discarded. This step was repeated 2 - 3 

times (a homogenizer was used each time to resolubilise the pellet in the Triton buffer). To 

check purity of the inclusion body preparation, a small sample was analysed via SDS-PAGE 

electrophoresis. Once purity had been achieved, the inclusion body pellet was denatured into 

8 M guanidine buffer (8 M guanidine (Sigma-Aldrich), 50 mM Tris pH8.1 (Sigma-Aldrich), 

100 mM NaCl (Sigma-Aldrich), 10 mM EDTA pH8 (Sigma-Aldrich) and 10 mM DTT 

(Sigma-Aldrich)). The concentration of the inclusion body preparation was determined using 

spectrophotometry (Biomate, Thermo Scientific) then stored in 1 ml aliquots at -80°C.  
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2.5.2 Production of soluble human biotinylated peptide-MHCI monomers 

For the manufacture of pMHCI monomers, 30 mg of HLA A2 heavy chain with a biotin tag 

and 30 mg of β2m inclusion body preparations were denatured separately in 10 ml 8 M urea 

buffer (8 M urea (Sigma-Aldrich), 50 mM Tris pH8.1 (Sigma-Aldrich), 100 mM NaCl 

(Sigma-Aldrich), 10 mM EDTA pH8 (Sigma-Aldrich) and 10 mM DTT (Sigma-Aldrich)) for 

30 minutes at 37°C. Refolding was initiated by adding (in the order described) 1 ml peptide 

(4 mg/ml in DMSO), 30 mg denatured β2m, 30 mg denatured heavy chain in 1 litre of a pre-

chilled cysteamine/cystamine redox buffer (100 mM Tris pH8.1 (Sigma-Aldrich), 400 mM L-

arginine HCL (Sigma-Aldrich), 2 mM EDTA (Sigma-Aldrich), 2.3 mM cysteamine and 3.7 

mM cystamine (Sigma-Aldrich) at 4°C while stirring vigorously. After stirring for 4 hours at 

4°C the refold was transferred into 12 KD cut-off dialysis tubing (Sigma-Aldrich), dialysed 

against 12 litres of d.H2O overnight then against 12 litres 10 mM Tris pH8.1 for 8 hours 

followed by another overnight dialysis in fresh 10 mM Tris pH8.1. Following equilibration of 

a 5 ml anion exchange column (Hi Trap Q HP; GE healthcare) with 10 mM Tris pH8.1, the 

refold was loaded onto the column and the protein eluted with a salt gradient (0 - 500 mM 

NaCl in 10 minutes/10 mM Tris pH8.1) (Figure 2.1 A). The eluted fractions were collected 

and 1 x protease inhibitors (500 μM AEBSF, 1 μg/ml Aprotinin, 1 μM E-64, 500 μM EDTA 

and 1 μM Leupeptin; Calbiochem, UK) added to prevent biotin tag cleavage, stored at 4°C 

and analysed by SDS-PAGE. If fractions contain correctly refolded pMHCI then SDS-PAGE 

shows two main bands: a band at ~35 KD (pMHCI heavy chain) and a band at ~12 KD 

(β2m). The pMHCI band is typically more prominent than the β2m (Figure 2.1 B). After 

analysis of the collected fractions by SDS-PAGE, the fractions containing the two correctly 

folded proteins were pooled, concentrated down to 500 μl using 10 KD cut off Ultrafree 

centrifugal filter (Millipore) and desalted using a 5 ml Hi Trap desalting column (GE 
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healthcare) equilibrated with 10 mM Tris pH8.1 (Sigma-Aldrich). Desalted pMHCI monomer 

fractions were collected, pooled and biotinylated in a 1 ml biotinylation reaction ~700 μl 

pooled protein, 100 μl BioMix A, 100 μl BioMix B and 1 μl (2.5 μg), Bir A enzyme (Avidity, 

Denver, USA) overnight at room temperature. The removal of excess biotin and buffer 

exchange into PBS or HBS-EP BIAcore buffer (BIAcore AB, UK) was performed by gel 

filtration (size exclusion) chromatography using either a Superdex HR 75 10/30 column or a 

Superdex HR 200 column (Amersham Pharmacia) equilibrated in PBS or HBS-EP BIAcore 

buffer (Figure 2.2). Fractions were collected, pooled and 1 x protease inhibitors added 

(Calbiochem). The final concentration of the pMHCI monomer was determined by 

spectrophotometry (Biomate, Thermo Scientific), aliquoted and stored at -80°C.  

 

2.5.3 Manufacture of soluble human T-cell receptor (TCR) 

For a 1 litre refold: 30 mg TCR chain and 30 mg TCR were denatured separately by 

incubating at 37°C for 30 minutes in 10 mls of 6 M guanidine buffer (6 M guanidine, 50 mM 

Tris pH 8.1, 100 mM NaCl, 10 mM EDTA pH 8 and 10 mM DTT) (Sigma-Aldrich). 

Refolding was initiated by simultaneously adding denatured TCR and  chains to 1 litre of 

refold buffer (5 M urea, 100 mM Tris pH8.1, 400 mM L-arginine HCL, 2.3 mM cysteamine 

and 3.7 mM cystamine) (Sigma-Aldrich) previously chilled to 4°C whilst stirring vigorously. 

After 3 - 4 hours the refold mixture was transferred to dialysis tubing (12 KD cut off; Sigma-

Aldrich) and dialysed overnight against 12 litres of d.H2O which had been pre-chilled (4C). 

The refold was then dialysed twice against 12 litres pre-chilled 10 mM Tris pH8.1 (4C) for 8 

hours. After equilibrating a HiTrapQ HP column (GE healthcare) in 10 mM Tris pH8.1 the 

TCR refold was loaded at a flow rate of 5 ml/minute. Protein was then eluted using a salt  
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A 

 

B 

 

 

Figure 2.1: (A) Typical anion exchange trace for pMHCI monomer refold eluted from 

column using a salt gradient. (B) Protein quality measured by loading 1μg of refold protein 

from eluted fractions (A) using SDS-PAGE (section 2.5.6) and visualised using Coomassie 

brilliant blue stain (section 2.5.6). 
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Figure 2.2: A typical gel filtration trace. Post anion exchange, correctly folded pMHCI 

protein is biotinylated. Post-biotinylation, using a size exclusion chromatography column, 

biotinylated protein (peak 1) is separated from excess biotin (peak 2). Correctly folded 

biotinylated pMHCI monomer is pooled, the concentration of protein determined and stored 

@ -80 °C. 
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                      A 

 

                       B 

 

Figure 2.3: (A) Typical anion exchange trace for TCR refold eluted from column using a salt 

gradient (section 2.5.3). (B) Protein quality measured by loading 1μg of refold protein from 

eluted fractions (A) using SDS-PAGE (section 2.5.6) and visualised using Coomassie 

brilliant blue stain (section 2.5.6). 
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gradient (0 - 500 mM NaCl in 10 minutes/10 mM Tris pH 8.1) (Figure 2.3 A) and fractions 

containing correctly folded TCR were identified by SDS-PAGE (Figure 2.4 B), pooled and 

stored at 4°C. 

 

2.5.4 Manufacture of soluble human CD8. 

4 litres of redox refolding buffer (0.2 M Tris pH8.1 (Sigma-Aldrich), 0.5 M L-arginine 

hydrochloride (Sigma-Aldrich), 10 mM EDTA pH8 (Sigma-Aldrich), 2.3 mM cysteamine, 

3.7 mM cystamine (both Sigma-Aldrich) was pre-chilled to 4°C. 240 mg of human sCD8α 

inclusion bodies were denatured in 60 ml 6 M Guanidine buffer (6 M guanidine (Sigma-

Aldrich), 50 mM Tris pH8.1 (Sigma-Aldrich), 100 mM NaCl (Sigma-Aldrich), 10 mM 

EDTA pH 8 (Sigma-Aldrich) and 10 mM DTT (Sigma-Aldrich)) at 37°C for 30 minutes. 

Refolding was initiated by adding 20 ml of the denatured sCD8α solution to pre-chilled redox 

buffer whilst stirring at 4°C. At 10 minutes intervals the second and third 20 ml volume of 

denatured sCD8α was added. After stirring for 1 - 3 hours in the cold room the refold mixture 

was concentrated to 200 ml with a MasterFlex L/S  (Cole/Palmer, London, UK) concentrator 

using a VivaFlow 200 filter (Sartorius, Goettingen, Germany) using a 10 KD cut off filter and 

placed in 12 KD cut off dialysis tubing. The 200 ml refold was first dialysed against 8 litres 

of d.H2O overnight, then for 6 hours against 8 litres of 10 mM MES (2-[N-

Morpholino]ethanesulfonic acid) pH 6 (Sigma-Aldrich) and finally against 8 litres of 10 mM 

MES pH 6 (Sigma-Aldrich) overnight. After dialysis the refold was filtered through a 0.45 

μM filter, diluted to a final volume of 1 litre with 10 mM MES pH6 (Sigma-Aldrich) and 

loaded onto a 5 ml Hi Trap SP cation exchange column (GE healthcare) pre-equilibrated in 

10 mM MES pH6 (Sigma-Aldrich). Protein was eluted from the column with a salt gradient 
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(0 – 500 mM NaCl in 10 minutes/10 mM Mes pH6) (Figure 2.4 A). The correctly folded 

sCD8αα was identified by SDS-PAGE (Figure 2.4 B), fractions collected, pooled, 1 x 

cocktail of protease inhibitors added (Calbiochem) then concentrated using an ultrafree 10 

KD cut off centrifugal filter (Millipore). Buffer exchange into PBS or HBS-EP BIAcore 

buffer and removal of aggregates was achieved by size exclusion using a Superdex HR 200 

column (Amersham Pharmacia). 

 

Table 2.5.5 FPLC (Fast protein liquid chromatography) 

The table outlines some of the properties of the Amersham Pharmacia columns used in this 

thesis. All the columns were used by attaching them to an automated FPLC system 

(Amersham Pharmacia). 

 

Column Description Use Column 

volume 

(mls) 

Flow 

rate 

(ml/min) 

Volume 

of 

sample 

added 

(mls) 

Volume 

of 

collected 

fractions 

(mls) 

HiTrap Q 

HP 

Anion 

exchange 

Purification of 

pMHCI 

monomers or 

TCR 

5 5 
500 - 

1000 
1 

HiTrap 

SP 

Cation 

exchange 

Purification of 

sCD8αα 
5 5 

500 - 

1000 
1 

HiTrap 

desalting 

Gel 

filtration 

Salt removal 

prior to 

biotinylation 

5 5 1 1 

Superdex 

HR 75 

Gel 

filtration 

Removal of 

excess biotin 

after 

biotinylation 

23 0.5 1 0.5 

Superdex 

HR 200 

Gel 

filtration 

Removal of 

excess biotin 

after 

biotinylation 

23 0.5 1 0.5 
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                    A 

 

                     B 

 

 

Figure 2.4: (A) Typical cation exchange trace for human CD8αα refold eluted from column 

using a salt gradient (section 2.5.4). (B) Protein quality measured by loading 1μg of refold 

protein from eluted fractions (A) using SDS-PAGE (section 2.5.6) and visualised using 

Coomassie brilliant blue stain (section 2.5.6). 
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2.5.6 Sodium dodecyl sulphate-polyacrylamide gel elecrophoresis (SDS-PAGE) 

Proteins were separated by SDS-PAGE using the Life Technologies X-Cell SureLock™ 

system. Pre-cast gels, 4-12% Bis/Tris gels were removed from storage packaging and 

cleaned. The gel was locked in place using the XCell SureLock™ running chamber. The 

chamber was filled using 1 x NuPage® MES SDS running buffer (Life Technologies). 

Samples were prepared by diluting 1:4 in 5 x non reducing sample buffer (125 mM Tris 

pH6.8, 4% SDS, 20% glycerol, 20 μg/ml bromothenol blue) or 5 x reducing buffer with the 

addition of 10% DTT then incubated at 95°C for 5 minutes. The samples and the molecular 

weight marker (Seeblue Plus2 marker, Life Technologies) were loaded into separate lanes on 

the gel. Gels were run at 180 V for 45 minutes at 200 mA and stained by agitating them for 1 

hour with Coomassie Blue staining solution (40% methanol (BDH), 7% acetic acid (BDH), 

0.025% Brilliant Blue G) (Life Technologies). The gels were destained by further agitation 

for a minimum of 1 hour with miliQ d.H2O for visualisation. 

 

2.5.7 Estimating protein concentration by spectrophotometry 

To determine the concentration of pMHCI, samples were diluted 1/100 in PBS or HBS-EP 

BIAcore buffer. Inclusion bodies were diluted 1 in 100 in 6 M guanidine buffer. Using a 

spectrophotometer (Biomate, Thermo Scientific) the machine was blank referenced using the 

buffers that the protein had been made in, i.e. guanidine buffer for inclusion bodies and either 

PBS or HBS-EP BIAcore buffer for refolded protein by FPLC. Readings at 280 nm 

wavelength were recorded and the protein concentration was calculated using the dilution 

factor and extinction co-efficient for each protein previously calculated from the amino acid 
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sequence. For example the extinction co-efficient for monomeric pMHCI is approximately 

0.46 (with some variation between different pMHCI).  

 

2.5.8 Surface Plasmon Resonance 

Prior to surface plasmon resonance, proteins to be flowed over the sensor chip surface were 

gel filtrated through a Superdex 75 or 200 column to remove any aggregates and to buffer 

exchange into HBS-EP buffer (BIAcore AB, UK) containing 10 mM HEPES pH 7.4, 150 nM 

NaCl, 3.4 mM EDTA and 0.005% Surfactant P20. Proteins were then concentrated to an 

absorbency of at least 10 (measured @ 280 nm) using a 10 KD cut off Ultrafree centrifugal 

filter (Millipore). A standard amine coupling kit (BIAcore AB) was used to activate the 

surface of a research grade CM5 sensor chip (BIAcore AB). Streptavidin was covalently 

coupled to the chip surface by injecting a 0.2 mg/ml streptavidin solution (Sigma-Aldrich) 

diluted in 10 mM sodium acetate pH 4.5 over the surface. Biotinylated pMHCI monomers 

diluted in HBS-EP buffer (BIAcore AB) were immobilized onto the chip surface at 

approximately 1000 response units (RU) in each flow cell. Serial dilutions of either sCD8αα 

or soluble TCR were flowed over the chip to generate kinetic data. Data was analysed using 

BIAeval, Excel and Origin version 6.1 (Microcal software). KD values were calculated both 

by linear Scatchard plots and non-linear analysis assuming 1:1 Langmuir binding (A + B  

AB) using non-linear curve fitting to the equation: AB = BABmax/(KD + B).  
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2.6 Tetramer technology 

2.6.1 Manufacture of pMHCI tetramers 

Streptavidin has four binding sites for biotin therefore pMHCI tetramers can be constructed 

by adding streptavidin to a solution of biotinylated pMHCI monomers in a 1:4 molar ratio. 

Tetramers were conjugated to R-phycoerythrin (PE) (Life Technologies), Allophycocyanin 

(APC) (Prozyme, CA, USA), Quantum Dot Q605 or Quantom Dot Q800 (Life 

Technologies), Brilliant Violet 421 (BV421) (Biolegend, San Diego, CA, USA) or 

unconjugated Streptavidin alone for use in flow cytometry. The volume of conjugated 

streptavidin required for each tetramer preparation was calculated and added in 5 aliquots of 

equal volume at 20 minutes intervals at 4°C, mixing the contents well each time. By adding 

streptavidin in aliquots as described the complete saturation of all four biotin binding sites for 

streptavidin is ensured with each addition. The tetramers were stored at 4°C for a period of up 

to four weeks or until the tetramer showed signs of degradation.  

 

2.6.2 pMHCI Tetramer decay experiments 

HLA A*0201 pMHCI tetramers and 1 x 10
6
 CD8

+
 T-cells were stained in 100 μl azide buffer 

(PBS, 0.1% NaN3/0.5% FCS (Sigma-Aldrich)) for 20 minutes on ice with a concentration of 

tetramer, previously determined by titration, that gave a starting mean fluorescence intensity 

(MFI) of 200; 5 μl of 7-Amino-actinomycin D (7-AAD, Viaprobe; BD Biosciences) was 

included so that dead cells could be gated out of the analysis. After washing twice in ice cold 

azide buffer, CD8
+
 T-cells were resuspended in azide buffer, split into 2 separate aliquots, 

and placed at room temperature. To one sample, an excess of unconjugated anti-HLA A2 

mAb (clone BB7.2, Serotec, UK) at 100 μg/ml was added to block tetramer rebinding. 10 μl 
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of cells were then taken at time points 0, 2, 5, 8, 10, 15, 20, and 30 minutes, resuspended in 

PBS and analysed using a FACSCalibur flow cytometer. The remaining sample was left 

without BB7.2 and used as a control. Decays were repeated for all tetramers on the same day 

and data analysed with FlowJo software (TreeStar, Ashland, OR). 

 

2.6.3 pMHCI tetramer association experiments 

1 x 10
6
 CD8

+
 T-cells were washed twice in PSG and resuspended in 200 μl PBS with or 

without unconjugated anti-human CD8 antibody. 5 μg/ml of pMHCI tetramer was applied to 

the cell suspension, and at indicated time points 10 μl aliquots were taken out and placed in 

individual FACS tubes containing 100 μl PBS. The aliquots were removed from the master 

mix at the following time points; 0, 1, 2, 4, 6, 8, 10, 12, 15, 18, 20, 25, 28, and 30 minutes. 

Data was acquired using a FACSCalibur flow cytometer (BD) and analysed with FlowJo 

software (TreeStar). 

 

2.7 Flow cytometry 

2.7.1 Antibodies 

2.7.2 Activating antibodies 

Anti-human CD3 antibodies (clone OKT3 or UCHT1) were purchased from Pharmingen, BD 

Biosciences (San Jose, CA). The following anti-human CD8 antibodies were used in this 

study; 
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Table 2.7.3. Unconjugated anti-human CD8 antibodies 

Antibody clone CD8 α or β Purchased from 

OKT8 α eBioscience, Hatfield, UK 

SK1 α BD Biosciences, New Jersey, 

USA 

MCD8 α IqProducts, Groningen, The 

Netherlands 

32/M4 α Santa Cruz Biotechnology 

Inc., Heidelberg, Germany 

C8/144B α Santa Cruz Biotechnology 

Inc. 

DK25 α DAKO, Stockport, UK 

2ST8.5H7 β Abcam, Cambridge, UK 

 

 

For experiments with mouse cells, the following anti-mouse CD8 antibodies were used in this 

study; 

Table 2.7.4. Unconjugated anti-mouse CD8 antibodies 

Antibody clone CD8 α or β Purchased from 

CT-CD8a α Caltag-Medsystems, 

Buckingham, UK 

53.6.7 α 
Biolegend, Cambridge, UK 

CT-CD8b β 
Caltag-Medsystems 

KT112 β hybridoma kindly provided 

by Prof. Rose Zamoyska 
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2.7.5 Fluorescent conjugated anti-human antibodies for detection of cell surface protein 

expression 

Anti-CD3
FITC, PerCP, PE-Cy7, H7APC

, anti-CD4
PE, PE-Cy-5.5, APC

, anti-CD8α
FITC, PE, PerCP, PE-Cy7, APC

, 

anti-CD8β
PE

, anti-TCRαβ
FITC

, pan-TCRγδ
FITC,

 
PE

, anti-CD19
Pacific Blue

, anti-CD14
Pacific Blue

, 

anti-CD56
FITC, APC

, anti-CD107a
FITC

, Violet Live/Dead stain ViViD
Pacific Blue

, Aqua Live/Dead 

stain
AmCyan

, Anti-HLA-A2 BB7.2
FITC

, Violet Live/Dead stain
PacificBlue

 and Viaprobe
TM

. All 

antibodies were purchased from either BD Pharmingen, BD Biosciences (Oxford, UK), 

Caltag-Medsystems (CA, USA), AbD Serotec (Oxford, UK), Beckman Coulter (High 

Wycombe, UK), eBioscience (Hatfield, UK), DakoCytomation (Stockport, UK) or Miltenyi 

Biotec (Surrey, UK). For full antibody source, see below methods. 

 

2.7.6 Fluorescent conjugated anti-mouse antibodies for detection of cell surface protein 

expression 

Anti-CD4
Pacific Blue

, anti-CD45R/B220
FITC

, anti-CD3
PerCP-Cy5.5

.were purchased from BD 

Pharmingen, and BD Biosciences.  

 

2.7.7 Fluorescent conjugated anti-human antibodies for detection of intracellular 

protein expression 

Anti-IFN-γ
PE-Cy7

, anti-TNF-α
APC

, anti-MIP-1β
PE

 were purchased from BD Pharmingen and 

BD Biosciences.  
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2.7.8 pMHCI tetramer staining of CD8
+
 T-cells clones and PBMC 

5 x 10
4
 CD8

+
 T-cells clones (unless otherwise stated) were re-suspended in 40 μl PBS and 

stained with 1 μg PE, BV421, QDot605 or QDot800-conjugated pMHCI tetramer (final 

concentration of 25 μg/ml) for 15 minutes at 37°C. Cells were then stained with either 3 μl 

Peridinin-Cholorophyll proteins (PerCP)-conjugated anti-human CD3 (clone SK7, BD 

Biosciences), 3 μl APC-conjugated anti-human CD8 (clone SK1, BD Biosciences) and 5 μl 

7-AAD for 20 minutes on ice or stained with 3 μl PE-Cy7 anti-human CD3 (clone SK7, BD 

Pharmingen), 3 μl FITC-conjugated anti-human CD8 (clone SK1, BD Biosciences) and 3 μl 

APC-conjugated anti-human CD4 (clone RPA-T4, BD Biosciences) and with LIVE/DEAD 

fixable violet for 20 minutes on ice. After washing twice in PBS, cells were resuspended in 

200 μl of PBS. Data was acquired using either a FACSCalibur, FACSCanto II or a modified 

FACSAria II flow cytometer (all BD Biosciences) and analysed with FlowJo software 

(TreeStar). 

 

2.5 x 10
5
 PBMC`s from an HLA A2 donor (unless otherwise stated) were re-suspended in 40 

μl PBS and stained with 0.5 μg PE-conjugated pMHCI tetramer (final concentration of 10 

μg/ml) for 15 minutes at 37°C. Cells were then stained with 3 μl Fluorescein Isothiocyanate 

(FITC)-conjugated anti-human γδ-TCR (clone YB5.B8; BD Biosciences) or 3 μl FITC-

conjugated anti-human CD56 (clone MEM188; Caltag-Medsystems, CA, USA) and 5 μl 7-

AAD for 20 minutes on ice. In parallel experiments, cells were also stained with 3 μl PerCP-

conjugated anti-human CD3 (clone SK7; BD Biosciences), 3 μl APC-conjugated anti-human 

CD8 (clone SK1; BD Biosciences) and 3 μl FITC-conjugated αβ-TCR (clone BMA 031; 

Serotec). After washing twice in PBS, cells were resuspended in 200 μl of PBS. Data was 
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acquired using a FACSCalibur flow Cytometer and analysed with FlowJo software 

(TreeStar). 

 

2.7.9 Anti-CD8 antibodies and pMHCI tetramer staining of CD8
+
 T-cells clones, lines 

and PBMC 

5 x 10
4
 CD8

+
 T-cell clones were resuspended in 20 μl PBS and pre-incubated with or without 

unconjugated anti-human CD8 antibodies at a final concentration of 100 μg/ml of clone 

OKT8, 32/M4, C8/144B and 2ST8.5H7, 50 μg/ml of clone MCD8, 6.25 μg/ml SK1 or 25 

μg/ml DK25 on ice for 20-25 minutes. Cells were also pre-incubated with 12.5, 6.25, 3.125 

and 1 μg/ml DK25 and 6.25, 3.125 and 1 μg/ml SK1 on ice for 20-25 minutes. Following 

antibody pre-incubation, PE, APC, or BV421 conjugated pMHCI tetramers folded around 

peptides specific for each CD8
+
 T-cell clone were added at a final concentration of 25 μg/ml 

and incubated at 37°C for 15 minutes prior to staining with 5 μl 7-AAD at 4°C for 30 

minutes. Data was acquired using either a FACSCalibur or FACSCantoII flow cytometer and 

analysed with FlowJo software (TreeStar). 

 

For human CD8
+
 T-cell lines, 5 x 10

4
 cells were pre-incubated with unconjugated anti-human 

CD8 antibodies at concentrations indicated above for 25 minutes on ice and then stained with 

cognate PE-conjugated tetramer (25 μg/ml) at 37°C for 15 minutes prior to staining with 5 μl 

amine-reactive fluorescent dye LIVE/DEAD Fixable Aqua (Life Technologies), 1 μl Pacific 

Blue-conjugated anti-human CD14 (clone Tuk4; Caltag-Medsystems), 1 μl Pacific Blue-

conjugated anti-human CD19 (clone SJ25-C1; Caltag-Medsystems), 3 μl PE-Cy5.5–

conjugated anti-human CD4 (clone S3.5; Caltag-Medsystems) and 3 μl FITC-conjugated 

anti-human CD8 (clone SK1; BD Biosciences) at 4°C for 20 minutes. 
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 For human PBMCs directly ex-vivo, 1 x 10
5
 cells were pre-incubated with anti-human CD8 

antibodies at concentrations as indicated above for 25 minutes on ice and then stained with 1 

μg HLA A2 APC-conjugated tetramer (25 μg/ml) at 37°C for 15 minutes prior to staining 

with 5 μl LIVE/DEAD Fixable Aqua (Life Technologies), 1 μl Pacific Blue-conjugated anti-

human CD14 (clone Tuk4, Caltag-Medsystems), 1 μl Pacific Blue-conjugated anti-human 

CD19 (clone SJ25-C1, Caltag-Medsystems), 3 μl FITC-conjugated anti-human CD3 (clone 

HIT3a, BD Biosciences), 3 μl PE-Cy5.5-conjugated anti-human CD4 (clone S3.5 Caltag-

Medsystems) and 3 μl PE-Cy7-conjugated anti-human CD8 (clone RPA-T8, BD Biosciences) 

at 4°C for 20 minutes. Data was acquired using either a FACSCanto II (BD Biosciences) and 

analyzed with FlowJo software (TreeStar). 

  

2.7.10 pMHCI tetramer staining of murine F5 transgenic T-cells 

5 x 10
4
 cells were pre-incubated with 100 μg/ml anti-mouse CD8 antibody (clone CT-CD8a; 

Caltag-Medsystems, clone 53.6.7; BioLegend, clone KT112; in-house, or clone CT-CD8b; 

Caltag-Medsystems) for 20-25 minutes on ice and then stained with cognate PE-conjugated 

H-2D
b
 tetramer (25 μg/ml) at 37°C for 15 minutes prior to staining with 5 μl LIVE/DEAD 

FixableAqua (Life Technologies), 1 μl Pacific Blue-conjugated anti-mouse CD4 (clone RM4-

5; BD Biosciences), 1 μl FITC-conjugated anti-mouse CD45R/B220 (clone RA3-6B2; BD 

Biosciences), and 1 μl PerCP-Cy5.5–conjugated anti-mouse CD3 (clone 17A2; BD 

Biosciences) at 4°C for 20 minutes. Data was acquired using either a FACSCanto II or a 

modified FACSAria II flow cytometer (both BD Biosciences) and analyzed with FlowJo 

software (TreeStar). 
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2.7.11 pMHCI tetramer staining of 293T CD8α 

2 x 10
5
 transfected 293T CD8α T-cells were incubated with 10 μg/ml of PE-conjugated 

tetramers for 15 minutes at 37°C, then stained with 5 μl 7-AAD and either 3 μl FITC-

conjugated anti-human CD8 (clone SK1; BD Biosciences) or 3 μl PE-conjugated anti-CD8β 

(clone 2ST8.5H7; Beckman-Coulter, High Wycombe, UK) for 30 minutes on ice, washed 

twice, and resuspended in PBS. Data was acquired using a FACSCalibur flow cytometer (BD 

Biosciences) and analyzed with FlowJo software (TreeStar). 

 

2.7.12 Antibody staining of PBMC 

2.5 x 10
5
 PBMC`s were stained with 3 μl PerCP-conjugated anti-human CD8 (clone SK1; 

BD Biosciences), 5 μl 7-AAD and either 3 μl FITC-conjugated anti-human αβ-TCR (clone 

BMA031; Serotec, UK), APC-conjugated anti-human CD56 (clone AF12-7H3; Miltenyi, 

CA, USA) or PE-conjugated anti-human γδ-TCR (clone YB5.B8; BD Biosciences) for 30 

minutes on ice, washed twice, and resuspended in PBS. Data was acquired using a 

FACSCalibur flow cytometer (BD Biosciences) and analyzed with FlowJo software 

(TreeStar). 

 

2.8 CD8
+
 T-cell effector function assays 

2.8.1 Intracellular Cytokine staining (ICS) 

PBMCs were harvested from a healthy donor and cultured with or without 1 mg/ml 

Phytohemagglutinin (PHA) (Alere, Cheshire, U.K.) and 25 ng/ml IL-15 (Promega, 

Hampshire, U.K.) for 7 days then washed and cultured overnight in R2 medium. A total of 5 

x 10
4
 PBMCs (un-stimulated or stimulated with PHA/IL-15) were resuspended in the 
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presence of 1 μl/ml brefeldin A (GolgiPlug; Sigma-Aldrich), 0.7 μl/ml monensin (GolgiStop; 

BD Biosciences) and 5 μl/ml FITC-conjugated anti-human CD107a (clone H4A3; BD 

Biosciences) then incubated with unconjugated anti-human CD8 antibodies at previously 

indicated concentrations for 18 hours at 37°C in a 5% CO2 atmosphere. After washing with 

PBS, cells were stained with 5 μl LIVE/DEAD Fixable Violet (ViViD; LifeTechnologies) at 

room temperature for 15 minutes. Subsequently, cells were washed and stained with 1 μl 

Pacific Blue-conjugated anti-human CD14 (clone Tuk4; Caltag-Medsystems), 1 μl Pacific 

Blue-conjugated anti-human CD19 (clone SJ25-C1; Caltag-Medsystems), 4 μl H7-APC-

conjugated anti-human CD3 (clone SK7; BD Biosciences) and 3 μl PE-Cy5.5-conjugated 

anti-human CD4 (clone S3.5; Caltag-Medsystems) at 4°C for 20 minutes. Cells were then 

washed an additional three times, resuspended in 200 μl BD Cytofix/Cytoperm and incubated 

at 4°C for 20 minutes. After three additional washes in 1 x Perm/Wash (BD Biosciences; 

diluted with d.H2O) cells were stained with 3 μl PE-Cy7-conjugated anti-human IFN-γ (clone 

B27; BD Biosciences), 3 μl APC-conjugated anti-human TNF-α (clone MAb11; BD 

Biosciences) and 3 μl PE-conjugated anti-human MIP-1β (clone D21-1351; BD Biosciences) 

at 4°C for 20 minutes. Cells were washed again three more times and resuspended in 200 μl 

Perm/Wash. Data was acquired using a modified FACSAria II flow cytometer (BD 

Biosciences) and analyzed with FlowJo software (Tree Star). 

 

2.8.2 Peptide activation assays 

3 x 10
4
 rested CD8

+
 T-cells were mixed with either HLA A*0201 wild-type, HLA A*0201 

227/8, HLA A*0201 QE, HLA A*0201 K
b
 expressing C1R B cells which have been 

previously pulsed with or without cognate peptide titrated from 10
-5 

M to 10
-11

 M for 1 hour 

or with unconjugated anti-CD8 antibodies as stated. Cells were either washed twice prior to 
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the addition of CD8
+
 T-cells to remove excess peptide or remained unwashed and incubated 

with or without secondary crosslinking by the addition of 5 μl anti-mouse IgG antibody 

(Beckman-Coulter) in a total volume of 100 μl in duplicate. Cells were then and incubated for 

4 hours for antibody blocking assays where stated or for 18 hours at 37°C in a 5% CO2 

atmosphere. Positive controls included: (i) target cells pulsed with 10
-7 

M cognate peptide; 

(ii) 10 μg/ml unconjugated anti-human CD3 antibody (UCHT1; BD Biosciences); (iii) 1 

μg/μl PHA (Alere-technologies, UK); or when using F5 transgenic mice (iv) 50 ng/ml 

phorbol myristate acetate (PMA) and 1 μg/ml ionomycin (Sigma-Aldrich). Negative controls 

included rested CD8
+
 T-cells alone and CD8

+
 T-cells incubated with target cells. 

Supernatants were harvested and assayed for MIP-1α, MIP-1β and RANTES using a 

Quantikine duoset ELISA kit (R&D Systems, Abingdon, UK). 

 

2.8.3 ELISA (Enzyme-linked immunosorbent assay for MIP-1α, MIP-1, IFN-, and 

RANTES 

All ELISAs were performed according to the manufacturer’s instructions using the advised 

reagents (Wash buffer, Regent diluents, Streptavidin HRP, Chromogen, Peroxide and Stop 

solution (all R&D systems)). Briefly 96 well ELISA microplates (R&D systems) were coated 

with 50 – 100 μl diluted capture antibody. Plates were incubated overnight at room 

temperature and washed three times using an AquaMax 2000 microplate washer (MDS 

analytical technologies, Sunnyvale, USA). Plates were then blocked for a minimum of 60 

minutes using reagent diluent. Plates were washed again and 50 – 100 μl of cell supernatant 

was added including 50 – 100 μl of serially diluted standard solution. Plated were incubated 

for 75 minutes and washed again and 100 μl of diluted detection antibody was added to each 



Chapter 2 

 

126 

 

well. Plates were incubated as recommended and washed prior to the addition of diluted 

Streptavidin-horseradish peroxidise. After a further incubation, plates were washed and 50 – 

100 μl of 1:1 solution of chromogen and peroxide added. Plates were incubated for 20 

minutes avoiding exposure to the light. 50 μl of stop solution (sulphuric acid) was then added 

and plates were read at 450 nm with a reference filter set at 570 nm (Bio-rad iMark 

microplate reader, Bio-rad, UK). 

 

2.8.4 Tetramer activation assays 

2.5 x 10
4
 CD8

+
 T-cell clones were incubated with HLA A2 or HLA A2

 
variant tetramers 

conjugated to QDot605 or QDot800, at 1 μg/ml overnight at 37°C. Supernatant was then 

harvested and assayed for MIP-1 production by ELISA (R&D). 2.5 x 10
4
 CD8

+
 T-cell 

clones were incubated with HLA A2 or HLA A2
 
variant tetramers conjugated to PE at 1 and 

5 μg/ml for 4 hours at 37°C. CD8
+
 T-cell clones were also incubated with 5 μl/ml FITC-

conjugated anti-human CD107a (clone H4A3, BD Biosciences) and 0.7 μl/ml monensin 

(Golgi-Stop BD Biosciences) (Betts, Brenchley et al. 2003). Cells were then stained with 

APC-conjugated anti-human CD8 (Clone SK1, BD Biosciences) for 20 mins on ice. Data was 

acquired using a FACSCalibur flow cytometer and analyzed with FlowJo software (Tree 

Star). 

 

2.8.5 Chromium Release Assay 

2 x 10
3
 CD8

+ 
T-cell clones were treated with unconjugated anti-human CD8 antibodies at 

varying concentrations in 100 μl R2 medium. 2 x 10
3
 C1R-HLA A2 target cells (100 μl), 

labelled with 30 µCi of 
51

Cr (PerkinElmer, Cambridge, UK) per 10
6
 cells for 1 hour 
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previously, were subsequently added. Targets were also cultured alone (target spontaneous 

release) and with TritonX-100 (Sigma-Aldrich) at a final concentration of 5% (target total 

release). Cells were incubated at 37°C for 18 hours in a 5% CO2 atmosphere. For each 

sample, 20 µl supernatant was harvested and mixed with 150 μl OptiPhase Supermix 

Scintillation Cocktail (PerkinElmer). Plates were analyzed using a liquid scintillator and 

luminescence counter (MicroBeta TriLux; PerkinElmer) with Microbeta Windows 

Workstation software (PerkinElmer). Specific lysis was calculated according to the following 

formula: (experimental release - target spontaneous release/target total release - target 

spontaneous release) x 100. Each value was calculated as the average of triplicates and shown 

with SEM. 

 

2.8.6 CBA (Cytometric bead array) 

The supernatants that were generated from the experiments referred to in section 2.8.3, were 

assayed using the human Th1/Th2 Cytokine kit specific for IL-2, IL-4, IL-5, IL-10, TNF-α 

and IFN-γ (BD Biosciences) according to the manufacturer’s instructions. Briefly, 25 μl of 

cell supernatant was incubated with diluted R-phycoerythrin (PE)-conjugated detection 

antibodies and beads coated with the relevant capture antibodies at room temperature for 

three hours, after which the beads were washed twice with wash buffer (BD), and 

resuspended in PBS (Oxoid). The samples were acquired using a FACSCalibur (BD 

Biosciences) flow cytometer and the results analysed using the CBA 6 Bead analysis 

software (BD Biosciences). 
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3 

 

THE LOW SOLUTION BINDING AFFINITY OF THE pMHCI/CD8 INTERACTION 

IS ESSENTIAL FOR THE MAINTENANCE OF CD8
+
 T-CELL ANTIGEN 

SPECIFICITY  

(Clement et al 2010 & Appendix 1) 
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3.1 Introduction 

CD8 has the potential to engage all pMHCI complexes, both self and foreign, because it 

binds to largely non-polymorphic regions of the MHCI molecule. Recent publications suggest 

that the ability of CD8 to interact with non-stimulatory pMHCI complexes lowers T-cell 

activation thresholds and enables CD8
+
 T-cells to respond to low copy numbers of specific 

pMHCI (Yachi, Ampudia et al. 2005; Anikeeva, Lebedeva et al. 2006). It therefore remains 

unclear how the specificity of TCR recognition is maintained despite the potential for 

multiple pMHCI/CD8 interactions at the cell surface. One possibility resides in the fact that 

the binding of CD8 to MHCI is characterized by very low affinities and extremely rapid 

kinetics. In this chapter, I intend to probe the functional significance of the low solution 

affinity pMHCI/CD8 interaction using pMHCI molecules with super-enhanced CD8 binding 

properties.  

 

3.1.1 T-cell recognition of antigen involves the binding of two receptors (TCR and CD8) 

to a single ligand (pMHCI): implications for CD8
+
 T-cell activation 

The exquisite specificity of the TCR/pMHCI interaction is the critical factor in permitting 

specific T-cell activation. The TCR must be able to recognise a large number of different 

peptides presented at the cell surface whilst ensuring that it does not recognise self peptides. 

Whilst stimulation of the TCR is required for T-cell activation, stimulation through this 

receptor alone is inadequate for full and sustained T-cell activation. Signals provided by the 

co-receptor and other accessory molecules provide an extra stimulus that leads to activation 

of anti-apoptotic proteins and supporting cytokines (Watts and DeBenedette 1999). As 

previously discussed, the MHCI binding site for CD8 is physically distinct from the peptide-
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binding domains that are recognized by the TCR (Rudolph and Wilson 2002) and this spatial 

segregation allows both TCR and CD8 to bind a single MHCI molecule simultaneously (Gao, 

Tormo et al. 1997). Thus, T-cell recognition of antigen could involve the binding of two 

receptors (TCR and CD8) to a single ligand (pMHCI), a modus operandi that is unique to αβ 

T-cell biology. Indeed, a large proportion of CD8 and TCR molecules are constitutively 

associated on CD8
+ 

T-cells in the absence of TCR engagement by agonist ligands suggesting 

that the TCR and CD8 pre-exist as bi-specific receptors that can engage pMHCI agonist 

ligands in an ordered manner (Beyers, Spruyt et al. 1992; Suzuki, Kupsch et al. 1992; 

Doucey, Goffin et al. 2003; Demotte, Stroobant et al. 2008).  

 

Fluroesence Energy Resonance Transfer techniques (FRET) studies investigating the 

interaction of CD8 and TCR/CD3 with specific pMHCI suggest that TCR binding to pMHCI 

occurs first, thereby satisfying the antigen-specific component of the interaction, and that the 

recruitment of CD8 occurs subsequently (Yachi, Ampudia et al. 2005; Yachi, Ampudia et al. 

2006). Using T-cell hybridomas, this data pointed to a chronological sequence according to 

which the pivotal antigen specific proofreading event provided by the TCR occurs prior to the 

association of CD8 with the TCR/CD3 complex. This is often referred to as the 'sequential 

engagement model'. This mechanism would ensure that CD8 recruitment only results in the 

amplification of downstream signalling cascades for ligands that engage the TCR with 

favourable kinetics. In this scenario, the TCR could also discriminate between agonist and 

non-agonist pMHCI complexes, with CD8 recruitment being enabled only in the context of 

agonist-ligand interactions with the TCR. Indeed data by Yachi et al demonstrated that the 

kinetics of CD8 recruitment to the TCR ensures that the TCR can specifically distinguish 

between structurally similar peptides (Yachi, Ampudia et al. 2006). This was further 
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supported by Jiang et al who proposed that the induced recruitment of CD8 following 

TCR/pMHCI engagement serves to stabilize molecular contact between the CD8
+
 T-cell and 

the antigen presenting cell, thereby unveiling another potential role for CD8 (Jiang, Huang et 

al. 2010).  This data further supports the importance of CD8 in allowing the TCR to 

specifically distinguish between self and non-self peptides, thus highlighting the importance 

of CD8 in controlling T-cell specificity. 

 

3.1.2 Biophysical measurements of the TCR/pMHCI and pMHCI/CD8 interaction 

Surface plasmon resonance (SPR) has provided a reliable way of measuring very weak 

receptor-ligand interactions in real time. SPR uses soluble molecules therefore the technique 

can be used to measure the affinity and kinetics of the TCR/pMHCI interaction and 

pMHCI/CD8 interaction in the absence of cell surface effects. The results of these SPR 

studies are quite striking. The pMHCI/CD8 interaction is characterized by very low solution 

binding affinities (KD ~146 μM) (Table 1.1) and rapid kinetics (Koff ~18 s
-1

) (Wyer, Willcox 

et al. 1999; Gao, Willcox et al. 2000). Indeed, the affinity of the pMHCI/CD8 interaction is 

even lower than the corresponding values measured for conventional molecular binding 

events involved in cell-cell recognition, such as the CD2/CD48 interaction (KD = 60-90 μM) 

(Dustin, Golan et al. 1997; Wyer, Willcox et al. 1999).  

 

In stark contrast, the TCR/pMHCI interaction can be more than 1000-fold stronger than the 

pMHCI/CD8 interaction (KD range for agonists from 0.14 μM, the strongest natural 

TCR/pMHCI interaction measured to date) (Table 3.1) and exhibits considerably slower 

kinetics (Koff range for agonists from 0.01 to 1 s
-1

) (Davis, Boniface et al. 1998; Cole, 
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Pumphrey et al. 2007; Laugel, van den Berg et al. 2007; Varela-Rohena, Molloy et al. 2008; 

Stone, Chervin et al. 2009). Typical TCR/pMHCI interaction are characterised by KDs of 

between 0.1 and 50 µM (Table 3.1) as measured using surface plasmon resonance (SPR) 

(Bridgeman, Sewell et al. 2011). Although, recent data suggests that alloreactive and 

autoreactive TCR/pMHCI interactions may be outliers and can be characterised by a much 

weaker affinity (KD > 180 µM). It seems extremely unlikely that the striking biophysical 

characteristics of the pMHCI/CD8 interaction have occurred by accident. Indeed, this 

conclusion is strengthened by the finding that the pMHCI/CD8 interaction is capable of 

exerting the vast majority of its biological function when weakened even further (Hutchinson, 

Wooldridge et al. 2003), which suggests that CD8 has specifically evolved to operate at very 

low solution affinities. 

 

Table 3.1: Binding affinities of human TCR to pMHCI using SPR (Bridgeman, Sewell et 

al. 2011) 

Autoreactive, alloreactive, anti-cancer and anti-pathogen TCR/pMHC binding affinity 

measurements are shown in blue, green, red and black, respectively. 

 

TCR/pMHCI KD (μM)  

PP1 TCR/A*0201-ALW (Cole, Edwards et al. 2010) 270 ± 40 

LC13 TCR/B*4402-allo (Macdonald, Chen et al. 2009) 189 ± 7 

LC13 TCR/B*4405-allo (Macdonald, Chen et al. 2009) 49 ± 0.2 

A6 TCR/A*0201-HuD (Borbulevych, Piepenbrink et al. 2009) 48 ± 4 

MEL187.c5/A*0201-EAA (Cole, Edwards et al. 2010) 42 ± 0.3 

TEL TCR/A*0201-ILA (Cole, Pumphrey et al. 2007) 34 ± 2 

MEL187.c5/A*0201-ELA (Cole, Edwards et al. 2010) 18 ± 0.3 

MEL5 TCR/A*0201-ELA (Cole, Pumphrey et al. 2007; Cole, Edwards et al. 2010) 18 ± 1 

IG4 TCR/A*0201-NYESO (Chen, Stewart-Jones et al. 2005) 13.3 ± 0.4 
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gp100 TCR/A*0201-YLE (Cole, Pumphrey et al. 2007) 11 ± 0.5 

MEL5 TCR/A*0201-EAA (Cole, Edwards et al. 2010) 6.4 ± 0.04 

A6 TCR/A*0201-Tel1p (Laugel, Boulter et al. 2005; Borbulevych, Piepenbrink et al. 

2009) 41 ± 2 

RA14 TCR/A*0201-NLV (Gras, Saulquin et al. 2009) 27.7 ± 2.3 

AM3 TCR/A*2402-EBV (Cole, Pumphrey et al. 2007) 21 ± 0.8 

DM1 TCR/B*4403-EENL (Archbold, Macdonald et al. 2009) 9.4 ± 0.2 

LC13 TCR/B*0801-EBNA (Borg, Ely et al. 2005; Cole, Pumphrey et al. 2007) 9 ± 0.4 

CF34 TCR/B*0801-EBNA (Gras, Burrows et al. 2009) 8.9 ± 1.3 

AS01 TCR/A*0201-GLC (Miles, Bulek et al. 2010) 8.1 ± 1 

TCRCMV/A*0201-pp65 (Gakamsky, Lewitzki et al. 2007) 6.3 ± 1 

DM1 TCR/B*4402-EENL (Archbold, Macdonald et al. 2009) 6.3 ± 0.3 

GRB TCR/B*2702-Flu (Cole, Pumphrey et al. 2007) 6 ± 0.1 

JM22 TCR/A*0201-GIL (Willcox, Gao et al. 1999; Cole, Pumphrey et al. 2007) 5 ± 0.2 

TK3 TCR/B*3501-HPVG (Gras, Chen et al. 2010) 2.2 ± 0.2 

G10 TCR/A*0201-SL9 (Lee, Stewart-Jones et al. 2004) 2.2 ± 0.5 

A6 TCR/A*0201-Tax (Ding, Baker et al. 1999; Cole, Pumphrey et al. 2007) 2 ± 0.7 

B7 TCR/A2-Tax (Davis-Harrison, Armstrong et al. 2005) 1.35 ± 0.04 

DM1 TCR/B4405-EENL (Archbold, Macdonald et al. 2009) 0.3 ± 0.1 

868 TCR/A*0201-SL9 (Varela-Rohena, Molloy et al. 2008) 0.13 ± 0.01 

 

 

3.1.3 Summary and Aims 

It has been proposed that the stronger TCR/pMHCI interaction dominates thereby 

maintaining CD8
+
 T-cell specificity and that CD8 can only initiate its effects on signal 

transduction if the TCR/pMHCI interaction is of sufficient duration. This is consistent with 

the sequential engagement model of co-receptor function which proposes that the co-receptor 

is only recruited to the TCR once a stable TCR/pMHCI interaction has been established 

(Hampl, Chien et al. 1997; Madrenas, Chau et al. 1997). This led me to hypothesise that the 
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pMHCI/CD8 interaction must remain substantially weaker than the TCR/pMHCI interaction 

in order to maintain CD8
+
 T-cell specificity and efficient co-receptor function.  

 

Here I intend to probe the functional significance of the low solution binding affinity of the 

pMHCI/CD8 interaction in maintaining the specificity of TCR/pMHCI binding at the T-cell 

surface and pMHCI induced T-cell activation. In order to do this, I will use chimeric pMHCI 

molecules with super-enhanced affinities for CD8 that lie within the typical range for agonist 

TCR/pMHCI interactions (KD ~10 M). 

 

3.2 Results 

3.2.1 Generation of MHCI molecules with super-enhanced CD8 binding affinity 

Tetrameric fusion molecules comprising the α1/α2 peptide binding platform of HLA A*0201 

(A2 from hereon) and the α3 domain of H2-K
b
 (A2/K

b
 from hereon) enable the monitoring of 

CD8
+
 T-cell responses in A2 transgenic mice (Choi, Palmowski et al. 2002). This reflects a 

requirement for the murine MHCI α3 domain to engage murine CD8 (Purbhoo, Boulter et al. 

2001), thus enabling A2/K
b
 reagents to stain murine CD8

+
 T-cells with lower affinity 

TCR/pMHCI interactions (so-called ‘low avidity’ CD8
+
 T-cells) (Choi, Chen et al. 2003). 

The A2/K
b
 heavy chain folded with human β2m interacts strongly with human CD8 (KD ~10 

μM; compared to HLA A2 which binds to CD8 with a KD ~ 146 μM) but exhibits faithful 

HLA A2-restricted TCR binding properties (Choi, Chen et al. 2003; Wooldridge, van den 

Berg et al. 2005). Thus, fusing the murine α3 domain with A2 α1/α2 domains increases the 

strength of the pMHCI/CD8 interaction by approximately 15-fold without affecting the 

TCR/pMHCI interaction (Figure 3.1). 
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Figure 3.1: Wild-type and super enhanced pMHCI/CD8 binding affinity. A2/ K
b
 binding 

affinity to CD8 is increased to approximately 15 times the normal A2/CD8 binding when 

analysed by Surface Plasma Resonance. 
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3.2.2 Super-enhanced CD8 binding results in non-specific TCR/pMHCI interactions 

Monomeric pMHCI complexes cannot be used to examine TCR/pMHCI binding at the cell 

surface due to the extremely short half-life of such interactions. Increasing the valency of 

these molecules by avidin/biotin-based tetramerization overcomes this limitation and 

produces reagents that are invaluable for the identification and characterization of antigen-

specific CD8
+
 T-cells (Altman, Moss et al. 1996; Wooldridge, Lissina et al. 2009). Indeed, it 

is well established that wild-type tetrameric pMHCI reagents bind to cell surface TCR with 

exquisite specificity (Altman, Moss et al. 1996; Burrows, Kienzle et al. 2000). Thus, I 

generated A2/K
b
 tetrameric reagents to study the effect of super enhanced CD8 binding on 

the specificity of pMHCI ligand interactions at the cell surface.  

 

Wild-type pMHCI tetrameric reagents bearing cognate peptide stained an HLA A2 restricted 

CD8
+
 T-cell clone (MEL5) specific for the Melan-A-derived epitope ELAGIGILTV (residues 

26-35) (Figure 3.2 A). Non-cognate A2 tetramers folded around the human telomerase 

reverse transcriptase (hTERT)-derived epitope ILAKFHWL (residues 540-548) failed to stain 

the MEL5 CD8
+
 T-cell clone. However, A2/K

b
 ILAKFLHWL tetramers stained all 

ELAGIGILTV specific CD8
+
 T-cells.  To examine this effect in more detail, I stained fresh 

human PBMC with HLA A2 and A2/K
b
 tetramers.  Antigen-specific CD8

+
 T-cell populations 

were not identified in PBMC from healthy donors with either the A2 ELAGIGILTV or A2 

ILAKFLHWL tetramers (Figure 3.2 B). In contrast, both the A2/K
b
 ELAGIGILTV and 

A2/K
b
 ILAKFLHWL tetramers stained >85% of CD8

+
 T-cells in PBMC (Figure 3.2 B). 

Taken together, these data indicate that the exquisite specificity of tetrameric pMHCI 

reagents is lost when the strength of the pMHCI/CD8 interaction is increased by ~15-fold.  
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Figure 3.2: The exquisite specificity of pMHCI tetramer staining is lost when the 

strength of the pMHCI/CD8 interaction is increased by ~15-fold. (A) 5 x 10
4
 of the 

MEL5 CD8
+
 T-cell clone specific for the Melan-A-derived epitope ELAGIGILTV (residues 

26-35) was stained with 1 μg of the PE-conjugated tetramers A2 ELAGIGILTV, A2/K
b
 

ELAGIGILTV, A2 ILAKFLHWL or A2/K
b
 ILAKFLHWL in 40 μl PBS for 15 minutes at 

37°C. Cells were then stained with either FITC-conjugated anti-human CD8, and 7-AAD for 

30 minutes on ice, washed twice and resuspended in PBS. Data were acquired using a 

FACSCalibur flow cytometer and analyzed with FlowJo software. (B) 2.5 x 10
5
 PBMC were 

resuspended in 40 μl PBS, then stained with 1 μg of either PE-conjugated tetramers A2 

ILAKFLHWL, A2/K
b
 ILAKFLHWL, or BV421-conjugated tetramers A2 ELAGIGILTV, or 

A2/K
b
 ELAGIGILTV for 15 minutes at 37°C. Each sample was subsequently stained with 

FITC-conjugated anti-human CD8, PerCP or PE-Cy7-conjugated anti-human CD3, APC-

conjugated anti-human CD4 and 7-AAD or LIVE/DEAD fixable Aqua for 30 minutes on ice, 

washed twice and resuspended in PBS. Data were acquired using a FACSCanto II flow 

cytometer and analysed with FlowJo software by gating on the live CD3
+
 population. 
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Therefore, the low solution affinities of the wild-type pMHCI/CD8 interaction are essential in 

maintaining pMHCI binding specificity at the cell surface. 

 

3.2.3 A2/K
b
 tetramers bind the majority of CD8

+
 T-cells in peripheral blood 

Non-cognate A2/K
b
 tetramers bind ~80% of the CD8α

+
 population in peripheral blood 

(Figure 3.2 B). Although CD8α is predominantly found on the surface of αβ TCR
+
 CD8

+
 T-

cells, it is also found on the surface of other lymphocytes, most notably some γδ T-cells and 

natural killer (NK) cells. Therefore, it was necessary to determine the identity of the CD8α
+
 

cells that stained with A2/K
b
 tetramers. Staining of fresh ex-vivo PBMC isolated from healthy 

HLA A2
+
 donors revealed that CD8α was expressed on approximately 39%, 54% and 32% of 

the αβ TCR
+
, NK cell and γδ TCR

+
 populations respectively, with some variation between 

donors (Figure 3.3 A). The majority of γδ TCR
+
 (~93.6%) and NK cells (~77%) failed to 

stain with the A2/K
b
 ILAKFLHWL tetramer and no significant binding was observed with 

the corresponding HLA A2 tetramer (Figure 3.3 B). However, the vast majority of αβ 

TCR
+
/CD8

+
 cells within the lymphocyte population stained non-specifically with the A2/K

b
 

ILAKFLHWL tetramer (Figure 3.3 C). I hypothesised that most γδ TCR
+
 cells and NK cells 

might fail to bind A2/K
b
 tetramers because they express the CD8αα homodimer rather than 

the CD8αβ heterodimer, which is expressed exclusively on the surface of αβ TCR
+
/CD8

+
 T-

cells. Thus, a 293T cell line that expressed CD8αα was generated (Figure 3.4 A) to examine 

the ability of A2/K
b
 tetramers to bind this homodimeric form of the CD8 co-receptor on the 

cell surface. In contrast to both HLA A2 and HLA A2 D227K/T228A tetramers, which 

exhibit normal and abrogated interactions with CD8 respectively, A2/K
b
 tetramers bound to 

most (74.3%) of the CD8αα
+
 293T cell transfectants (Figures 3.4 A&B); no binding was 
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Figure 3.3: A2/K
b
 tetramers bind the majority of αβ TCR

+
/CD8

+
 T-cells in peripheral 

blood. (A) 2.5 x 10
5
 PBMC from an A2

+
 donor were stained with PerCP-conjugated anti-

human CD8, 7-AAD and either FITC-conjugated anti-human αβ TCR, APC-conjugated anti-

human CD56 or PE-conjugated anti-human γδ TCR for 30 minutes on ice, washed twice and 

resuspended in PBS. (B) 2.5 x 10
5
 A2

+
 PBMC were stained with 10 μg/ml of the PE-

conjugated tetramers A2 ILAKFLHWL or A2/K
b
 ILAKFLHWL for 20 minutes at 37°C. 

After washing, cells were subsequently stained with 7-AAD and either FITC-conjugated anti-

human γδ TCR or FITC-conjugated anti-human CD56 for 30 minutes on ice, washed twice 

and resuspended in PBS. (C) 2.5 x 10
5
 A2

+
 PBMC were stained with 10 μg/ml of the PE-

conjugated tetramers A2 ILAKFLHWL or A2/K
b
 ILAKFLHWL for 20 minutes at 37°C. 

After washing, cells were stained with APC-conjugated anti-human CD8, FITC-conjugated 

anti-human αβ TCR and 7-AAD for 30 minutes on ice, washed twice and resuspended in 

PBS. In A, B and C, data were acquired using a FACSCalibur flow cytometer and analyzed 

with FlowJo software.  
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Figure 3.4: Non-specific A2/K
b
 tetramer binding is influenced by CD8 cell surface 

density. (A&B) 2 x 10
5
 non-transfected or CD8αα transfected 293T cells were incubated +/- 

10 μg/ml of the PE-conjugated tetramers A2 D227K/T228A ILAKFLHWL, A2 

ILAKFLHWL or A2/K
b
 ILAKFLHWL for 20 minutes at 37°C, then stained with 7-AAD and 

either FITC-conjugated anti-human CD8 or PE-conjugated anti-human CD8β for 30 minutes 

on ice, washed twice and resuspended in PBS. (C) 2.5 x 10
5
 PBMC were stained with PerCP-

conjugated anti-human CD8, 7-AAD and either FITC-conjugated anti-human αβ TCR, APC-

conjugated anti-human CD56 or PE-conjugated anti-human γδ TCR for 30 minutes on ice, 

washed twice and resuspended in PBS. In A, B and C, data were acquired using a 

FACSCalibur flow cytometer and analyzed with FlowJo software. 
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observed in the absence of CD8αα surface expression (Figure 3.4 A). Thus, A2/K
b
 tetramers 

are capable of binding to cell surface CD8αα. The question still remained as to why A2/K
b
 

tetramers bind predominantly to the αβ TCR
+
/CD8

+
 T-cell population in peripheral blood and 

not to other cells that express CD8. Figure 3.4 B shows that A2/K
b
 tetramer staining is 

directly proportional to the level of CD8αα expression, such that only cells with a higher 

level of CD8αα expression stain with this reagent. Examination of PBMC from healthy 

donors revealed that αβ TCR
+
/CD8

+
 T-cells express high levels of CD8, whereas NK and γδ 

TCR
+
 cells express substantially lower levels (Figure 3.4 C). Therefore, increasing the 

strength of the pMHCI/CD8 interaction allows pMHCI ligand binding at the cell surface that 

can be mediated through the engagement of either CD8αα or CD8αβ. However, this result 

suggests that binding is only observed when cells express CD8 at levels above a certain 

threshold. Importantly, these data demonstrate that TCR expression is not required for cell 

surface binding of A2/K
b
 tetramers. 

 

3.2.4 A2/K
b
 tetramers activate CD8

+
 T-cell clones irrespective of TCR specificity 

It is well established that pMHCI tetramers can activate CD8
+
 T-cell clones bearing cognate 

TCR (as reviewed in (Wooldridge, Lissina et al. 2009). However, previous studies have 

shown that pMHCI tetrameric binding at the cell surface does not necessarily equate with 

activation by cell surface antigen (Purbhoo, Boulter et al. 2001; Schott and Ploegh 2002). To 

determine whether non-specific A2/K
b
 tetramer binding at the cell surface (Figures 3.2 - 3.4) 

could activate human CD8
+
 T-cell clones, ALF3 A2 restricted CD8

+
 T-cell clone specific for 

the Influenza A virus MP158-66 epitope GILGFVFTL was used (Cole, Edwards et al. 2010). 

Consistent with the findings above, when staining the ALF3 CD8
+
 T-cell clone with 

tetramers A2 ILAKFLHWL or A2/K
b
 ILAKFLHWL conjugated with either streptavidin-
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QDot605 or streptavidin-QDot800, no staining was observed with the A2 ILAKFLHWL 

whereas non–specific staining was observed with the A2/K
b
 ILAKFLHWL (Figure 3.5 A). 

On ligation, it is known that TCRs are down-regulated from the cell surface (Valitutti, Muller 

et al. 1995). This TCR down-regulation correlated with various functional readouts typical of 

CD8
+
 T-cell effector activity where both QDot 605 and QDot 800 A2/K

b
 ILAKFLHWL 

tetramers induced the release of MIP-1β non-specifically (Figure 3.5 B). Results similar to 

Figure 3.5 A&B were also obtained with tetramers conjugated to fluorochromes other than 

QDots (Appendix 1 Figure 4 A-F). This then eliminated the possibility of the tetramer 

fluorochrome being the cause for the non-specific activation by fluorochrome aggregation. 

Similar results were observed with SLYNTVATL-specific CD8
+
 T-cell clones 003 and 868 

bearing alternative cognate TCRs where non-cognate A2/K
b
 tetramers can induce release of 

IFN-γ, RANTES and CD107a (Appendix 1 Figure 4 D-F). Consistent with the staining 

patterns, the activation of CD8
+
 T-cells by non-cognate A2/K

b
 tetramers was less efficient 

than that induced by tetramers bearing the agonist peptide (Appendix 1 Figure 4 C-E). Thus, 

at least to some extent, the strong interaction between A2/K
b
 and CD8 can bypass the 

requirement for a specific TCR/pMHCI interaction and non-specifically activate human 

CD8
+
 T-cells. 

 

3.2.5 Cell surface-expressed A2/K
b
 activates CD8

+
 T-cells in the absence of cognate 

antigen 

To extend the investigation to the more natural situation of cell surface pMHCI presentation, 

C1R B-cells transfected with either HLA A2 or A2/K
b
 at similar cell surface MHCI densities 

were selected as targets for further experiments. Target cells expressing either HLA A2 or  



Chapter 3 

 

145 

 

 

Figure 3.5: Non-cognate A2/K
b
 tetramer induced activation is not influenced by 

flurochrome aggregation. (A) 5 x 10
4
 A2 restricted CD8

+
 T-cell clone ALF3 specific for the 

Influenza A virus MP158-66 epitope GILGFVFTL were stained with 10 μg/ml HLA A2 

ILAKFLHWL or A2/K
b
 ILAKFLHWL tetramer conjugated with either streptavidin-QDot605 

or streptavidin-QDot800 for 30 minutes at 37°C. After 2 washes with PBS, data were 

acquired using a modified FACSAria II and analysed with FlowJo software. (B) 2.5 x 10
4
 

ALF3 CD8
+
 T-cell clone were incubated with either HLA A2 ILAKFLHWL-Q605, A2/K

b 

ILAKFLHWL-Q605, HLA A2 ILAKFLHWL-Q800 or A2/K
b 

ILAKFLHWL-Q800 tetramer 

at 1 μg/ml overnight at 37°C. Supernatant was then harvested and assayed for MIP-1 

production by ELISA (R&D). The mean ± SD of two replicate assays is shown. 
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A2/K
b
 were incubated overnight with three HLA A2-restricted CD8

+
 T-cell clones (MEL5, 

003 and ILA1) with different peptide specificities (ELAGIGILTV, SLYNTVATL and 

ILAKFLHWL respectively). Targets that expressed HLA A2 failed to activate any of the 

CD8
+
 T-cell clones significantly above background (Figure 3.6 A). Remarkably, however, 

the A2/K
b
 targets stimulated MEL5, 003 and ILA1 CD8

+
 T-cell clones to produce significant 

amounts of MIP-1β in the absence of specific peptide (Figure 3.6 A). A2/K
b
 targets also 

elicited substantial levels of TNF-α and IFN-γ at titratable E:T ratios (Figure 3.6 B) and 

induced degranulation (Figure 3.6 C) in the absence of specific TCR/pMHCI interactions. 

 

3.2.6 Cell surface-expressed A2/K
b
 primes non-cognate CD8

+
 T-cell expansions 

Thymic output in healthy HLA A2
+
 individuals is known to generate a high frequency of 

naïve CD8
+
 T-cells that can recognize the self-antigen Melan-A26-35 (Zippelius, Pittet et al. 

2002); this system can be used to examine the priming of CD8
+
 T-cells directly ex-vivo 

(Salio, Palmowski et al. 2004). These observations were exploited to investigate the effect of 

super-enhanced pMHCI/CD8 binding on CD8
+
 T-cell priming. In priming experiments 

conducted with C1R target cells, the percentages of CD8
+
 T-cells specific for Melan-A26-35 

that were present after 10 days in culture were related to the context of the pMHCI/CD8 

interaction in which the cognate ELAGIGILTV peptide was presented. Thus, in the absence 

of a pMHCI/CD8 interaction (HLA A2 D227K/T228A C1R targets), only 1.5% of the CD8
+
 

T-cell population was specific for Melan-A26-35; in contrast, 5.6% and 5.7% of the CD8
+
 

population bound the HLA A2 ELAGIGILTV tetramer in the same experiment when priming 

was conducted with HLA A2 and A2/K
b
 C1R targets, respectively (Figure 3.7). Exposure to 

A2/K
b
 C1R targets also resulted in substantial expansions of the total CD8

+
 population 

(Figure 3.7). Similar results were obtained with multiple donors. Thus, target cells that 
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Figure 3.6: Cell surface-expressed A2/K
b
 activates CD8

+
 T-cell clones in the absence of 

cognate antigen. (A) 2.5 x 10
4
 MEL5, 003 or ILA1 CD8

+
 T-cell clones were incubated for 

12 hours at 37°C with 1 x 10
5
 C1R cells stably transfected to express equal levels of either 

A2 or A2/K
b
 at the cell surface. Supernatant was subsequently assayed for MIP-1β content by 

ELISA. The mean ± SD of two replicate assays is shown. (B) 2.5 x 10
4
 MEL5 were incubated 

for 12 hours at 37°C with 1 x 10
5
 C1R cells stably transfected to express either A2 or A2/K

b
 

at the cell surface. Supernatant was assayed for IFN-γ and TNF-α content by cytokine bead 

array. (C) CD107a expression by ILA1 and MEL5 following a 12 hour incubation at 37°C 

with C1R cells stably transfected to express either A2 or A2/K
b
 on the cell surface. For (A-

C), C1R cells were not previously pulsed with peptide. The mean ± SD of two replicate 

assays is shown. 
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Figure 3.7: Cell surface-expressed A2/K
b
 primes non-specific expansion of CD8

+
 cells. 1 

x 10
6
 A2

+
 PBMC were incubated with 2 x 10

5
 irradiated HLA A2 D227K/T228A, HLA A2 

or A2/K
b
 C1R cells that had previously been pulsed with 1 μM ELAGIGILTV (Melan-A26-35) 

peptide in R10. From day 3, IL-2 was added in increments to reach a maximum concentration 

of 200 IU/ml by day 10. Lines were subsequently stained with PE-conjugated HLA A2 

ELAGIGILTV tetramer followed by APC-conjugated anti-human CD8 and 7-AAD. Data 

were acquired using a FACSCalibur flow cytometer and analyzed with FlowJo software. 
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express MHCI molecules with super-enhanced CD8 binding properties can induce non-

specific expansions of CD8
+
 cells in the absence of cognate antigen. 

 

3.2.7 Non-specific A2/K
b
-mediated CD8

+
 T-cell activation and tetramer staining are not 

dependent on TCR restriction 

In earlier experiments, I demonstrated that A2/K
b
 tetramers bound to the majority of αβ 

TCR
+
CD8

+
 cells in PBMC derived from HLA A2

+
 donors (Figure 3.3). To exclude the 

possibility that this phenomenon was dependent on the presence of HLA A2-restricted TCRs, 

I performed staining experiments with HLA A2
-
 PBMC. As previously described, the A2/K

b
 

ILAKFLHWL tetramer bound non-specifically to the majority of CD8
+
 cells (Figure 3.8 A). 

Furthermore, A2/K
b
 tetramer binding favoured CD8

high
 cells and was abrogated by pre-

treatment with the anti-human CD8 mAb (clone DK25) (Figure 3.8 A). Thus, consistent with 

the data shown in Figure 3.4, non-specific A2/K
b
 tetramer binding is a CD8-mediated effect 

that is not dependent on the presence of HLA A2-restricted TCRs. In addition, I demonstrated 

in earlier experiments that A2/K
b
, both in soluble and cell-associated form, non-specifically 

activated HLA A2-restricted CD8
+
 T-cell clones (Figures 3.5 & 3.6). To confirm that these 

functional correlates of non-specific binding were similarly independent of HLA A2-

restricted TCR expression, the study was extended to test CD8
+
 T-cell clones restricted by 

other HLA molecules. Cell surface expressed A2/K
b
 activated all CD8

+
 T-cell clones 

regardless of restriction element (Figure 3.8 B). 
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Figure 3.8: Non-cognate A2/K
b
-mediated CD8

+
 T-cell clone activation and tetramer 

binding is not influenced by MHCI restriction. (A) 2.5 x 10
5
 PBMC were suspended in 

250 μl FACS buffer (2% FCS/PBS) and stained with FITC-conjugated anti-human A2 and 7-

AAD for 30 minutes on ice, then washed twice and resuspended in PBS. For pMHCI tetramer 

staining experiments, 2.5 x 10
5
 PBMC were suspended in 50 μl FACS buffer (2% FCS/PBS) 

and incubated +/- 10 μg/ml unconjugated anti-human CD8 for 20 minutes on ice, then stained 

with 10 μg/ml of the PE-conjugated tetramers HLA A2 ILAKFLHWL or A2/K
b
 

ILAKFLHWL for 45 minutes on ice. After washing, cells were subsequently stained with 

APC-conjugated anti-human CD8 and 7-AAD, washed again and resuspended in PBS. Data 

were acquired using a FACSCalibur flow cytometer and analyzed with FlowJo software. (B) 

2.5 x 10
4
 CD8

+
 T-cell clones were incubated for 12 hours at 37°C with 1 x 10

5
 unpulsed C1R 

cells expressing either HLA A2 or A2/K
b
 on the cell surface. The following CD8

+
 T-cell 

clones were used: (i) the HLA A*6801-restricted clone c23, specific for the HIV-1 Tat-

derived epitope ITKGLGISYGR (residues 38-48); (ii) the HLA B*0702-restricted clone 

KD4, specific for the Epstein-Barr virus (EBV) EBNA3A-derived epitope RPPIFIRRL 
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(residues 379-387); (iii) the HLA B*0801-restricted clone LC13, specific for the EBV 

EBNA3A-derived epitope FLRGRAYGL (residues 339-347); and, (iv) the HLA B*3508-

restricted clone SB27, specific for the EBV BZLF1-derived epitope LPEPLPQGQLTAY 

(residues 52-64). Supernatant was subsequently assayed for MIP-1β content by ELISA. The 

mean ± SD of two replicate assays is shown. 
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3.3 Discussion 

CD8
+
 T-cells must be able to discriminate between very small numbers of foreign pMHCI 

within a sea of structurally related self peptide-MHCI molecules presented at the cell surface. 

CD8 binds to the non-polymorphic regions of the MHCI molecule (Gao, Tormo et al. 1997) 

and as a result has the potential to interact with any pMHCI molecule regardless of the 

peptide it presents. If the pMHCI/CD8 interaction was capable of independently initiating 

cell-cell recognition then the high density of pMHCI molecules on the nucleated cell surface 

would constantly initiate T-cell recognition. This is clearly not the case and it has been 

suggested that it is the low solution affinity of the pMHCI/CD8 interaction that prevents such 

non-specific activation (Wyer, Willcox et al. 1999). This led me to hypothesise that the 

pMHCI/CD8 interaction must remain substantially weaker than the TCR/pMHCI interaction 

in order to maintain CD8
+
 T-cell specificity and efficient co-receptor function.  

 

Here, I generated chimeric A2/K
b
 MHCI tetramers that increase the strength of the 

pMHCI/CD8 interaction by ~15-fold to probe the biophysical and functional significance of 

the low solution binding affinities observed for the pMHCI/CD8 interaction. Initially, I 

examined the effect of super-enhanced CD8 binding on pMHCI tetramer binding at the cell 

surface. Increasing the strength of the pMHCI/CD8 interaction by ~15-fold resulted in the 

total loss of pMHCI tetramer binding specificity. Thus, irrespective of restriction element and 

the presented peptide, A2/K
b
 tetramers bound to the surface of all CD8

+
 T-cell clones 

examined in this study and to the majority of CD8
+
 T-cells present within PBMC (Figures 

3.2, 3.3 & 3.8 A). In addition, A2/K
b
 tetramers bound to the cell surface in the absence of 

TCR expression (Figure 3.4) and non-specific binding was abrogated by pre-treatment with 

an anti-human CD8 antibody (Figure 3.8 A), thereby demonstrating that the observed loss of 
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pMHCI tetramer binding specificity was CD8-mediated and TCR-independent. These 

findings indicate that the low solution binding affinities observed for the pMHCI/CD8 

interaction are essential for the preservation of pMHCI ligand binding specificity at the cell 

surface.  

 

It has previously been documented that pMHCI tetramers are efficient activators of cognate 

CD8
+
 T-cell clones (reviewed in (Wooldridge, Lissina et al. 2009). However, pMHCI 

tetramer staining does not necessarily equate with cellular activation. Therefore, I examined 

the ability of A2/K
b
 to activate CD8

+
 T-cell clones. Notably, A2/K

b
 tetramers activated CD8

+
 

T-cell clones in a non-specific manner (Figure 3.5). Activation resulted in a full range of 

effector functions, including cytokine/chemokine release, degranulation and killing. Flow 

cytometric assessment of degranulation by analysis of CD107a mobilization revealed that 

CD8
+
 T-cell clones with higher surface expression of CD8 were the cells most likely to 

activate in response to A2/K
b
 molecules. These findings led me to examine the effects of cell-

surface presented antigen. Strikingly, exposure of PBMC to C1R target cells bearing A2/K
b
 

molecules caused a general non-specific expansion of CD8
+
 cells during the course of the 

experiment (Figure 3.7). Furthermore, A2/K
b
 C1R cells, unlike their wild-type HLA A2 

counterparts, were capable of stimulating effector function in all CD8
+
 T-cell clones tested 

regardless of specificity and MHCI restriction (Figure 3.6 & 3.8 B).  These findings cannot 

exclude the possibility that inclusion of the murine α3 domain induces conformational 

changes at the T-cell surface on binding to CD8 that favour non-cognate activation. However 

this seems unlikely as the TCR binding site is shown to be unaltered (Choi, Chen et al. 2003; 

Wooldridge, van den Berg et al. 2005). In addition, murine and human pMHCI/CD8αα co-

crystals exhibit similar binding orientations (Gao, Tormo et al. 1997; Kern, Teng et al. 1998). 
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These results are consistent with the observation that thymus leukaemia antigen (TL), which 

interacts strongly (KD = 12 μM) with cell surface CD8αα expressed by intraepithelial 

lymphocytes (IELs), can modulate T-cell responses independently of the TCR (Kern, Teng et 

al. 1998; Leishman, Naidenko et al. 2001; Tsujimura, Obata et al. 2003).  

 

The question still remained as to how does a super-enhanced pMHCI/CD8 interaction result 

in non-specific CD8
+
 T-cell activation? It has previously been demonstrated that an 

incremental increase in the pMHCI/CD8 interaction (HLA A2 Q115E) results in enhanced 

immunogenicity of cognate antigens and that this effect is mediated by enhanced early 

intracellular signal transduction (Cole and Gao 2004; Wooldridge, van den Berg et al. 2005). 

In contrast, the stimulatory properties of A2/K
b
 molecules exhibited no peptide specificity 

requirements whatsoever; indeed, cell surface-expressed A2/K
b
 was shown to activate even 

non-HLA A2-restricted CD8
+
 T-cell clones (Figure 3.8 B), thereby confirming that cognate 

TCR/pMHCI interactions are not required. Combined with the ability of A2/K
b
 to engage 

multiple CD8 molecules at the cell surface, these results suggest that A2/K
b
 cross-links CD8 

and induces activation in an ‘antibody-like’ manner. Indeed, this is consistent with previous 

studies demonstrating that antibody-induced CD8 cross-linking can induce T-cell signalling 

(Grebe, Clarke et al. 2004; Wooldridge, Lissina et al. 2007) and elicit downstream effector 

functions such as chemokine release (Wooldridge, Hutchinson et al. 2003); such effects are 

predictable given that the CD8α tail is coupled to p56
lck

, an essential component of the early 

intracellular signalling pathway (Veillette, Bookman et al. 1988). It is interesting to note that 

the murine pMHCI/CD8 interaction is significantly stronger (KD ~ 30 μM) than the 

equivalent human interaction (KD ~ 150μM) (Purbhoo, Boulter et al. 2001) but does not result 

in non-cognate CD8
+
 T-cell activation. It is therefore likely that a pMHCI/CD8 interaction 
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affinity threshold exists for the maintenance of CD8
+
 T-cell activation specificity. The 

strength of the murine pMHCI/CD8 interaction is 3-fold weaker than the strength of the 

interaction measured between A2/K
b
 and human CD8, thereby still operates at a level below 

this threshold.  

 

In summary, I have utilized chimeric MHCI molecules that exhibit a super-enhanced 

interaction with CD8 to probe the physical and functional significance of the low solution 

binding affinities previously described for the pMHCI/CD8 interaction. I found that 

increasing the strength of the pMHCI/CD8 interaction by ~15-fold resulted in: (i) total loss of 

pMHCI binding specificity at the cell surface; (ii) non-cognate pMHCI tetramer mediated 

activation; and, (iii) non-specific activation and proliferation triggered by cell surface-

expressed pMHCI molecules. Thus, the low solution binding affinity of the pMHCI/CD8 

interaction is essential for the preservation of pMHCI ligand binding specificity at the cell 

surface. Notably, my work highlights that pMHCI molecules with affinities for CD8 that lie 

within the typical range for agonist TCR/pMHCI interactions (KD ~10 μM) are able to 

activate CD8
+
 T-cells in the absence of a specific TCR/pMHCI interaction. Thus, the 

biophysical characteristics of the pMHCI/CD8 interaction are essential for the maintenance 

of CD8
+
 T-cell antigen specificity and T-cell homeostasis. 
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4 

 

ANTI-CD8 ANTIBODIES CAN TRIGGER T-CELL EFFECTOR FUNCTIONS IN 

THE ABSENCE OF TCR ENGAGEMENT AND IMPROVE pMHCI  

TETRAMER STAINING 

 (Clement et al 2011 & Appendix 2) 
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4.1 Introduction 

As previously discussed in Chapter 3, it is possible to induce CD8
+
 T-cell activation in the 

absence of a cognate TCR/pMHCI interaction using chimeric A2/K
b
 that exhibits a super-

enhanced affinity for CD8. The results presented in chapter 3 suggest that A2/K
b
 cross-links 

CD8 and induces activation in an “antibody-like” manner. As such I hypothesized that it 

would be possible to induce CD8
+
 T-cell activation independently of the TCR/pMHCI 

interaction using anti-CD8 antibodies. Anti-CD8 antibodies have been used extensively to 

examine the role of CD8 in CD8
+ 

T cell activation. However, as previous studies have 

yielded conflicting results, it is unclear from the literature whether anti-CD8 antibodies per se 

are capable of inducing effector function. Here I intend to examine the effects of multiple 

anti-CD8 antibodies on a panel of CD8
+
 T-cell clones with different specificities to address 

the apparent incongruity in the literature.  

 

4.1.1 Use of anti-CD8 antibodies to study the role of CD8 in T-cell activation 

Monoclonal antibodies recognise and bind to defined ‘epitopes’ with high affinity (KD < 10
-9

 

M) and specificity. In early studies, examining the behaviour of cells after the binding of 

specific antibody became a widely accepted method of studying the function of T cell surface 

antigens. Early studies showed that pre-incubation with anti-CD8 antibodies can block 

conjugate formation between effector and target cells (Norment and Littman 1988) and 

inhibit CD8
+
 T-cell activation in response to cognate pMHCI presented on the target cell 

surface (Nakayama, Shiku et al. 1979; Shinohara and Sachs 1979; Janeway 1992; Miceli and 

Parnes 1993). By cross-linking anti-CD8 antibodies using a secondary anti-IgG antibody, this 

resulted in the rapid phosphorylation of p56
lck

 thereby suggesting that cross-linking CD8 may 
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contribute directly to TCR triggering (Veillette, Bolen et al. 1989; Veillette, Zuniga-Pflucker 

et al. 1989; Luo and Sefton 1990). These findings provided key evidence that CD8 was 

important in the process of CD8
+
 T-cell activation. However, considerable heterogeneity 

between different CD8
+
 T-cells was apparent in terms of their ability to activate in the 

presence of anti-CD8 antibodies and, as a result, these reagents were used as tools to classify 

CD8
+
 T-cells as either CD8-dependent or CD8-independent (MacDonald, Glasebrook et al. 

1982). MacDonald et al suggested that the variations they observed were related to 

TCR/pMHCI affinity (as discussed in Chapter 5). In summary, anti-CD8 antibodies have 

been used to demonstrate that CD8 plays an important role in CD8
+
 T-cell activation and as 

tools to describe CD8
+
 T-cells as either ‘CD8-dependent’ or ‘CD8-independent’.  

 

4.1.2 Caveats of using anti-CD8 antibodies in the study of CD8 

Many studies have been performed using anti-CD8 antibodies and different tetrameric 

pMHCI complexes to study the role of CD8 in stabilising the TCR/pMHCI complex. These 

studies demonstrated that anti-CD8 antibodies can block the stable binding of tetrameric 

reagents to the cell surface (Daniels and Jameson 2000; Denkberg, Cohen et al. 2001; 

Campanelli, Palermo et al. 2002). However studies have been performed in the human and 

murine system that also highlight an enhancing effect of anti-CD8 antibodies on pMHCI 

tetramer binding (Murali-Krishna, Altman et al. 1998; Busch and Pamer 1999; Daniels and 

Jameson 2000; Devine, Hodsdon et al. 2004). To date, the precise mechanism of how anti-

CD8 antibodies may elicit varying effects when studying T-cells is not known. Anti-CD8 

antibodies are a rather blunt tool for dissecting the role of CD8 as these reagents are likely to 

affect all roles of the molecule. My laboratory has preferred to use point mutated MHCI with 

altered CD8 binding as these reagents specifically target the MHCI/CD8 interaction. Indeed 
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systems involving the use point mutated MHCI molecules were developed that fail to interact 

with CD8 (Potter, Rajan et al. 1989; Purbhoo, Boulter et al. 2001) and have allowed in-depth 

investigations into the role of CD8 in CD8
+
 T-cell activation.  

 

4.1.3 Can anti-CD8 antibodies induce CD8
+
 T-cell effector function? 

Antibody-mediated ligation of T-cell surface molecules, such as CD2, CD3 and CD28 (Clark, 

Law et al. 1988; Luhder, Huang et al. 2003), can result in effector function. In contrast, 

studies of antibody-mediated CD8 ligation in the absence of TCR engagement have yielded 

conflicting results. As previously discussed, early studies demonstrated that the induction of 

CD8 cross-linking at the cell surface can result in p56
lck

 phosphorylation similar to that seen 

with anti-CD3 antibodies (Veillette, Zuniga-Pflucker et al. 1989) and further studies showed 

that this cross-linking could elicit downstream effector functions, such as chemokine release 

(Wooldridge, Hutchinson et al. 2003) ERK1/2 phosphorylation and cytokine function  (Kim, 

Billard et al. 2010) and potent cytotoxicity (Tomonari and Spencer 1990). However, in 

conflict with these data, more recent studies suggest that CD8 ligation alone may actually 

deliver a negative signal (Grebe, Clarke et al. 2004; Abidi, Dong et al. 2008). Indeed Abidi et 

al studied specific serial analysis of gene expression (SAGE) genotypic analysis and 

highlighted that an anti-CD8 antibody can induce transcription in a CD8
+
 T-cell clone which 

is ultimately inhibitory to T-cell activation as it fails to induce NFAT-dependent 

transcription. However, the major caveat of this study was that the authors only studied a 

single CD8
+
 T-cell clone using a single anti-CD8 antibody (Abidi, Dong et al. 2008). These 

heterogeneous effects question the suitability of anti-CD8 antibodies for use in the 

characterisation of CD8 function (Jonsson, Boyce et al. 1989) and it is important that we 

understand these observations in more detail.  
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4.1.4 Summary and Aims 

To date, a cohesive explanation for these widely disparate findings with anti-CD8 antibodies 

has remained elusive. Furthermore, there has been no systematic study of the effects of 

multiple different anti-human CD8 antibodies on CD8
+
 T-cells with different TCR/pMHCI 

specificities. The aim of this study was to investigate the effect of cross-linking CD8 using 

anti-CD8 antibodies on T-cell function and the TCR/pMHCI interaction. I aimed to undertake 

a thorough study of the effects of anti-CD8 antibodies using multiple antibody clones and 

many different CD8
+ 

T-cells. I hoped that a comprehensive study might explain the wide 

variation in the results from other groups that have used these tools. 

 

4.2 Results 

4.2.1 Anti-CD8 antibodies can trigger T-cell effector function in the absence of TCR 

engagement 

Several studies suggest that antibody-mediated ligation of CD8 in the absence of TCR 

engagement can elicit downstream effector function (Veillette, Zuniga-Pflucker et al. 1989; 

Tomonari and Spencer 1990; Wooldridge, Hutchinson et al. 2003); however, others have 

reported the delivery of negative signals with this manipulation (Grebe, Clarke et al. 2004; 

Abidi, Dong et al. 2008). To reconcile these apparently disparate findings, I conducted a 

systematic study of the effects of multiple different anti-human CD8 antibodies on CD8
+
 T-

cells with several different specificities. For this purpose, I assembled a panel of anti-human 

CD8 antibodies that comprised six anti-CD8α antibodies (OKT8, SK1, MCD8, 32/M4, 

C8/144B and DK25) and one anti-CD8 antibody (2ST8.5H7). Six out of seven anti-human 

CD8 antibodies from the panel (SK1, MCD8, 32/M4, C8/144B, DK25 and 2ST8.5H7) did 
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not elicit any chemokine production when incubated with four different HLA A2-restricted 

CD8
+
 T-cell clones (ILA1, ALF3, MEL5 and MEL187.c5) with a total of three different 

specificities in the absence of specific pMHCI antigen (Figure 4.1 A-D). However, the anti-

CD8α antibody OKT8 induced MIP-1α, MIP-1 and RANTES release from all four HLA 

A2-restricted CD8
+
 T-cell clones (Figure 4.1 A-D) even when titrated down to a low 

concentration (1-100 µg/ml) (Figure 4.2 A&B). 

 

I extended my studies by measuring chemokine release by two non-HLA A2-restricted CD8
+
 

T-cell clones following incubation with each anti-human CD8 antibody. Both of these non-

HLA A2-restricted CD8
+
 T-cell clones produced MIP-1α, MIP-1 and RANTES in response 

to OKT8 but did not activate in the presence of the other antibodies tested (Figure 4.3). 

Remarkably, the highly antigen sensitive HLA B*3508-restricted EBV BZLF1-specific CD8
+
 

T-cell clone SB10 released >2000 pg/ml of each chemokine in response to OKT8 (Figure 4.3 

B). OKT8 was also incapable of staining the HLA DR*0101-restricted CD4
+
 T-cell clone C6 

(Figure 4.4 A) and failed to induce chemokine release from this clone (Figure 4.4 B-D). 

Thus, the stimulatory effects of OKT8 appear to be CD8
+
 T-cell-specific. 

 

The panel of seven anti-human CD8 antibodies was further tested in cytotoxicity assays with 

4 different CD8
+
 T-cell clones (MEL187.c5, ALF3, LC13 and SB10). Anti-human CD8 

antibodies incapable of inducing chemokine release failed to elicit cytotoxic activity in any of 

these four CD8
+
 T-cell clones (Figure 4.5). In contrast, SB10 CD8

+
 T-cell exhibited  
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Figure 4.1: Antibody-mediated CD8 ligation can trigger chemokine release from HLA 

A2-restricted CD8
+
 T-cells. 3 x 10

4
 ILA1 CD8

+
 T-cells (A), ALF3 CD8

+
 T-cells (B), MEL5 

CD8
+
 T-cells (C) or MEL187.c5 CD8

+
 T-cells (D) were incubated for 18 hours with each of 

the following individual anti-human CD8 antibodies in parallel: 100 g/ml OKT8, 6.25 

g/ml SK1, 50 g/ml MCD8, 100 g/ml 32/M4, 100 g/ml C8/144B, 25 g/ml DK25 and 

100 g/ml 2ST8.5H7 (CD8). The maximum possible antibody concentrations were used, 

determined by the concentration of the commercially available preparation in each case. For 

each CD8
+
 T-cell clone, 3 x 10

4
 C1R-A2 B-cells pulsed with cognate peptide at 10

-7 
M were 

used as positive controls. Supernatant was harvested and assayed for MIP-1α, MIP-1 and 

RANTES by ELISA. The mean ± SD of two replicate assays is shown. 



Chapter 4 

 

164 

 

 

Figure 4.2: OKT8 activity is still detectable at low antibody concentrations. 3 x 10
4
 (A) 

ALF3 or (B) MEL187.c5 were incubated with various concentrations of anti-human CD8 

antibody OKT8 (0-100 µg/ml) for 18 hours @ 37°C. For each CD8
+
 T-cell clone, 3 x 10

4
 

C1R-A2 B-cells pulsed with cognate peptide at 10
-7 

M were used as positive controls. 

Supernatant was harvested and assayed for MIP-1α, MIP-1 and RANTES by ELISA. 

Similar data was obtained for ILA1 and MEL5. The mean ± SD of two replicate assays is 

shown. 
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Figure 4.3: Antibody-mediated CD8 ligation can trigger chemokine release from non-

HLA A2-restricted CD8
+
 T-cells. 3 x 10

4
 LC13 CD8

+
 T-cells (A) or SB10 CD8

+
 T-cells (B) 

were incubated for 18 hours @ 37°C with each of the following individual anti-human CD8 

antibodies in parallel: 100 μg/ml OKT8, 6.25 μg/ml SK1, 50 μg/ml MCD8, 100 μg/ml 

32/M4, 100 μg/ml C8/144B, 25 μg/ml DK25 and 100 μg/ml 2ST8.5H7 (CD8). For each 

CD8
+
 T-cell clone, 3 x 10

4
 HLA-matched B-cells pulsed with cognate peptide at 10

-7 
M were 

used as positive controls. Supernatant was harvested and assayed for MIP-1α, MIP-1 and 

RANTES by ELISA. The mean ± SD of two replicate assays is shown. 
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Figure 4.4: OKT8 activity is specific for CD8
+
 T-cells. (A) 5 x 10

4
 MEL5 CD8

+ 
T-cells or 

C6 CD4
+
 T-cells were stained with PE-conjugated anti-human CD4 (clone L200) at 4°C for 

25 minutes or incubated with 100 μg/ml unconjugated OKT8 at 4°C for 25 minutes, washed 

twice and incubated with FITC-conjugated anti-mouse IgG (serum IgG) at 4°C for a further 

25 minutes. Data were acquired using a FACSCalibur flow cytometer and analyzed using 

FlowJo software. (B-D) 3 x 10
4 

CD4
+ 

C6 T-cells were incubated for 18 hours @ 37°C with 

each of the following individual anti-human CD8 antibodies in parallel: 100 μg/ml OKT8, 

6.25 μg/ml SK1, 50 μg/ml MCD8, 100 μg/ml 32/M4, 100 μg/ml C8/144B (144B), 25 μg/ml 

DK25 and 100 μg/ml 2ST8.5H7 (CD8). The maximum possible antibody concentrations 

were used, determined by the concentration of the commercially available preparation in each 

case; the anti-human CD3 antibody UCHT1 (10 μg/ml) served as a positive control. 

Supernatant was harvested and assayed for MIP-1α (B), MIP-1 (C) and RANTES (D) by 

ELISA. The mean ± SD of two replicate assays is shown. 
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Figure 4.5: Cytotoxic activity triggered by the anti-human CD8 antibody OKT8.  2 x 10
3
 

LC13 CD8
+
 T-cells (A) or SB10 CD8

+
 T-cells (B) were incubated with each of the following 

individual anti-human CD8 antibodies in parallel: 100 μg/ml OKT8, 6.25 μg/ml SK1, 50 

μg/ml MCD8, 100 μg/ml 32/M4, 100 μg/ml C8/144B, 25 μg/ml DK25 and 100 μg/ml 

2ST8.5H7 (CD8). The anti-human CD3 antibody UCHT1 (10 μg/ml) was used as a positive 

control. Cytotoxicity assays were then performed over a period of 18 hours @ 37°C as 

described in the Materials & Methods using 
51

Cr-labelled C1R-A2 B-cells as targets. The 

mean ± SD of three replicate assays is shown. 
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substantial cytotoxicity in response to stimulation with OKT8; lower levels of specific lysis 

were also induced in CD8
+
 T-cell clones LC13 (3.18%), ALF3 (5.1%) and MEL187.c5 

(3.8%) (Figure 4.5). These results are consistent with a previous study that describes an anti-

mouse CD8 antibody, KT112, capable of inducing cytotoxicity (Tomonari and Spencer 

1990). Collectively, these data indicate that considerable heterogeneity exists in the ability of 

anti-CD8 antibodies to activate CD8
+
 T-cells.  

 

4.2.2 OKT8 induces chemokine secretion in the absence of cytokine secretion 

Next, I examined the ability of antibody-mediated CD8 ligation to elicit cytokine release by 

CD8
+
 T-cells in the absence of TCR engagement. As expected, the anti-human CD8 

antibodies that did not elicit chemokine release or cytotoxic activity (SK1, MCD8, 32/M4, 

C8/144B, DK25 and 2ST8.5H7) also failed to induce IFN-, TNF-α or IL2 release (Figure 

4.6). Interestingly, OKT8 similarly failed to elicit cytokine production from the majority of 

CD8
+
 T-cell clones tested (Figure 4.6). Importantly, chemokine and cytokine assays were 

performed using the same supernatant, thereby confirming that OKT8 stimulated CD8
+
 T-

cells to secrete chemokines in the absence of cytokine production; one exception to this 

dichotomy occurred with CD8
+
 T-cell clone SB10, which released IFN- in response to 

treatment with OKT8. These data suggest that OKT8-mediated CD8 ligation delivers a signal 

that falls below the threshold required for cytokine production in most CD8
+
 T-cells.   

 

4.2.3 Neither secondary antibody cross-linking nor PHA/IL-15 treatment alters the 

functional phenotype of anti-human CD8 antibodies 

To probe the possibility that the degree of cross-linking mediated by each of the anti-human  
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Figure 4.6: Antibody-mediated chemokine release occurs in the absence of cytokine 

release. 3 x 10
4
 ILA1, ALF3, MEL5, MEL187.c5, LC13 or SB10 CD8

+
 T-cells were 

incubated for 18 hours @ 37°C with each of the following individual anti-human CD8 

antibodies in parallel: 100 μg/ml OKT8, 6.25 μg/ml SK1, 50 μg/ml MCD8, 100 μg/ml 

32/M4, 100 μg/ml C8/144B, 25 μg/ml DK25 and 100 μg/ml 2ST8.5H7 (CD8). The anti-

human CD3 antibody UCHT1 (10 μg/ml) was used as a positive control. Supernatant was 

harvested and assayed for IFN- (A), TNF-α (B) and IL2 (C) by CBA. The mean ± SD of two 

replicate assays is shown. 
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CD8 antibodies tested could explain the functional heterogeneity observed between these 

reagents, I performed activation experiments with the addition of secondary antibodies. 

Secondary cross-linking of OKT8 increased the level of MIP-1α, MIP-1 and RANTES 

release by ILA1, ALF3, MEL187.c5, MEL5, LC13 and SB10 CD8
+
 T-cells above that 

observed with OKT8 alone (Figure 4.7 and data not shown). However, secondary antibody-

mediated cross-linking did not reverse the phenotype of the non-activating anti-human CD8 

antibodies (Figure 4.7). 

 

I also examined the effect of PHA/IL-15 treatment on the ability of anti-human CD8 

antibodies to elicit effector function from CD8
+
 T-cells in healthy donor PBMCs. PHA is 

capable of cross-linking glycosylated proteins at the T-cell surface. The seven anti-human 

CD8 antibodies tested did not elicit significant levels of effector function from CD8
+
 T-cells 

in untreated PBMCs (Figure 4.8 A). The six non-activating anti-human CD8 antibodies also 

failed to induce significant levels of CD8
+
 T-cell activation in PBMCs cultured for 7 days in 

PHA/IL-15 (Figure 4.8 B). In contrast, OKT8 activated CD8
+
 T-cells in PHA/IL-15-

stimulated PBMCs to release MIP-1 and degranulate as measured by surface mobilization of 

CD107a. Interestingly, OKT8 also induced IFN- and TNF-α production by CD8
+
 T-cells in 

PHA/IL-15-stimulated PBMCs, thereby suggesting that this treatment regimen synergistically 

lowered the activation threshold of the responding cells. OKT8 failed to activate CD4
+ 

T-

cells in PHA/IL-15-stimulated PBMCs (Figure 4.8 C) consistent with previously discussed 

data (Figure 4.4).  
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Figure 4.7: Secondary cross-linking does not alter the functional phenotype of anti-

human CD8 antibodies. 3 x 10
4
 ILA1 CD8

+
 T-cell clone were incubated with each of the 

following individual anti-human CD8 antibodies in parallel: 100 μg/ml OKT8, 6.25 μg/ml 

SK1, 50 μg/ml MCD8, 100 μg/ml 32/M4, 100 μg/ml C8/144B, 25 μg/ml DK25 and 100 

μg/ml 2ST8.5H7 (CD8). The positive control comprised 3 x 10
4
 C1R-A2 B-cells pulsed 

with cognate peptide at 10
-7 

M. Antibodies were then crosslinked with the addition of 5 μl 

anti-mouse IgG antibody (serum IgG) and incubated for 18 hours at 37°C in a 5 % CO2 

atmosphere. Supernatant was harvested and assayed for MIP-1α (A), MIP-1 (B) and 

RANTES (C) by ELISA. Secondary cross-linking of OKT8 increased the levels of all 

analytes measured and also increased the levels of anti-CD3 antibody induced chemokine 

release. Similar results were obtained with all other CD8
+
 T-cell clones examined: ALF3, 

MEL5, MEL187.c5, LC13 and SB10. The mean ± SD of two replicate assays is shown. 
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4.2.4 OKT8 enhances pMHCI tetramer staining 

I next tested the effects of anti-human CD8 antibodies on the staining of ILA1, ALF3, 

MEL187.c5 and MEL5 CD8
+
 T-cells with cognate pMHCI tetramers. Three anti-human CD8 

antibody clones (SK1, DK25 and 2ST8.5H7) inhibited tetramer staining; clones MCD8, 

32/M4 and C4/144B had little or no effect on staining. In contrast, pre-incubation with OKT8 

enhanced cognate pMHCI tetramer staining of all four CD8
+
 T-cell clones (Figure 4.9). Thus, 

OKT8 can enhance the binding of pMHCI tetramers in a range of systems. These findings 

suggested that OKT8 might facilitate the identification of antigen-specific CD8
+
 T-cells 

within mixed cell populations. To test this idea, I examined pMHCI tetramer staining of 

CD8
+
 T-cell lines raised against the HLA A2-restricted EBV BMLF1-derived epitope 

GLCTLVAML (residues 259-267). OKT8 enhanced the staining intensity of cognate CD8
+
 

T-cells with HLA A2 tetramer folded around the GLCTLVAML peptide without concomitant 

increases in non-cognate tetramer binding (Figure 4.10 A&B). No increase in the percentage 

of tetramer
+
 cells was observed in this viral system (Figure 4.10 A&B) which was thought to 

reflect the high affinity interaction with pMHCI which is typical of anti-viral TCRs (Cole, 

Pumphrey et al. 2007). 
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Figure 4.8: Functional phenotype of antibodies not affected by PHA/IL-15 treatment of 

cells. PBMCs were harvested from healthy donors and cultured either without (A) or with 

(B&C) 1 μg/ml PHA and 25 ng/ml IL-15 for 7 days, then washed and cultured overnight in 

R2 medium. 5 x 10
4
 PBMCs were then incubated for 18 hours @ 37°C with each of the 
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following individual anti-human CD8 antibodies in parallel: 100 μg/ml OKT8, 6.25 μg/ml 

SK1, 50 μg/ml MCD8, 100 μg/ml 32/M4, 100 μg/ml C8/144B, 25 μg/ml DK25 and 100 

μg/ml 2ST8.5H7 (CD8). The anti-human CD3 antibody UCHT1 (10 μg/ml) was used as a 

positive control. CD8
+
 T-cell effector functions were measured by intracellular cytokine 

staining and surface CD107a mobilization as described in the Materials & Methods. Data 

were acquired using a modified FACSAriaII™ flow cytometer and analyzed with FlowJo 

software. Results obtained by gating on either the CD8
+ 

(A&B) or CD4
+
 (C) population are 

shown and are representative of two separate experiments. Differences in the background 

levels of CD8
+
 T-cell activation were observed with the different anti-human CD8 antibodies 

tested in A&B which may reflect heterogeneity in CD8
+
 PBMC population. 
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Figure 4.9: Anti-human CD8 antibodies can either enhance or inhibit the binding of 

pMHCI tetramers. 5 x 10
4
 ILA1 (A), ALF3 (B), MEL5 (C) or MEL187.c5 (D) CD8

+
 T-cell 

clones were preincubated at 4°C for 25 minutes with each of the following individual anti-

human CD8 antibodies in parallel: 100 μg/ml OKT8, 6.25 μg/ml SK1, 50 μg/ml MCD8, 100 

μg/ml 32/M4, 100 μg/ml C8/144B, 25 μg/ml DK25 and 100 μg/ml 2ST8.5H7 (CD8). CD8
+
 

T-cells were subsequently stained with cognate PE-conjugated HLA A2 tetramers (25 μg/ml) 

and 5 μl 7-AAD at 37°C for 15 minutes, washed twice and resuspended in PBS. Data were 

acquired using a FACSCalibur flow cytometer and analyzed with FlowJo software. Relative 

MFI values with respect to pMHCI tetramer staining in the absence of pre-incubation with 

anti-CD8 antibody are shown. Fluorescence in the absence of added cognate tetramer (con) is 

shown in each case. Results shown are representative of four separate experiments using 

ILA1 and ALF3, and six separate experiments using MEL5 and MEL187.c5. 
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Figure 4.10: OKT8 enhances pMHCI tetramer staining in a mixed population. (A&B) 5 

x 10
4
 cells from a CD8

+
 T-cell line primed with the EBV BMLF1-derived epitope 

GLCTLVAML (residues 259-267) were either mock treated or incubated with 100 μg/ml 

OKT8 at 4°C for 25 minutes, then stained with either (A) HLA A2-ELAGIGILTV (non-

cognate) or (B) HLA A2-GLCTLVAML (cognate) APC-conjugated tetramer (25 μg/ml each) 

at 37°C for 15 minutes. (C&D)  5 x 10
4
 cells from a CD8

+
 T-cell line primed with the Melan-

A/MART-1-derived epitope ELAGIGILTV (residues 26-35) were either mock treated or 

incubated with 100 μg/ml OKT8 at 4°C for 25 minutes, then stained with either (C) HLA A2-
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FLAGIGILTV or (D) HLA A2-ELTGIGILTV PE-conjugated tetramer (25 μg/ml each) at 

37°C for 15 minutes. Cells were then stained with 5 μl amine-reactive fluorescent dye 

LIVE/DEAD Fixable Aqua. 1 μl Pacific Blue-conjugated anti-human CD14, 1 μl Pacific 

Blue-conjugated anti-human CD19, 3 μl PE-Cy5.5–conjugated anti-human CD4 and 3 μl 

FITC-conjugated anti-human CD8 at 4°C for 20 minutes. Data were acquired using a 

FACSCantoII flow cytometer and analyzed with FlowJo software. 
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Next, I hypothesized that OKT8-mediated enhancement of TCR/pMHCI binding at the cell 

surface might have beneficial effects on pMHCI tetramer staining with low affinity ligands, 

an effect that could prove very useful for the detection of T-cells with TCRs that bind weakly 

to cognate antigen, such as those that appear to predominate in anti-cancer and autoimmune 

responses (Cole, Pumphrey et al. 2007; Cole, Edwards et al. 2010). To test this hypothesis, I 

used two monoclonal CD8
+
 T-cell systems and a series of altered peptide ligands that vary in 

their affinity for cognate TCR by over 5-fold (Table 4.1 & Figure 4.11). Pre-incubation with 

OKT8 enhanced staining efficiency with all variant pMHCI tetramers, including low affinity 

variants (Table 4.1 & Figure 4.12). Consistent with this finding I also observed that OKT8 

increased both the staining intensity and percentage of antigen specific CD8
+
 T-cells detected 

when CD8
+
 T-cell lines raised against the HLA A2-restricted Melan-A/MART-1-derived 

epitope ELAGIGILTV (residues 26-35) were stained with HLA A2 tetramers folded around 

the low affinity peptide variants FLAGIGILTV or ELTGIGILTV (Figure 4.10 C&D).  

 

4.2.5 OKT8 enhances TCR/pMHCI on-rates at the cell surface 

To examine how OKT8 enhances antigen binding at the CD8
+
 T-cell surface in more detail, I 

examined the effects of this antibody on TCR/pMHCI kinetics using pMHCI tetramers. 

Differences in tetramer off-rates were minimal. However, pretreatment of CD8
+
 T-cells with 

OKT8 resulted in a significant increase in the TCR/pMHCI on-rate at the cell surface in each 

CD8
+
 T-cell clone tested (Figure 4.13). In contrast, DK25 inhibited pMHCI tetramer binding 

at the cell surface (Figure 4.13 B). OKT8 antibody-induced enhancement of pMHCI tetramer 

on-rates was also apparent with CD8-null tetramers (Figure 4.13 C). Collectively, these data  
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Figure 4.11: Surface plasmon resonance measurements of MEL5 and MEL187.c5 TCR 

binding to peptide variants complexed with HLA A2. (A-E) SPR equilibrium binding of 

soluble MEL5 TCR to HLA A2-ELAGIGILTV (A), HLA A2-FLAGIGILTV (B), HLA A2-

ELTGIGILTV (C), HLA A2-ELAGIGIITV (D) and HLA A2-FLAGIGIITV (E). (F-J) SPR 

equilibrium binding of soluble MEL187.c5 to HLA A2-ELAGIGILTV (F), HLA A2-

FLAGIGILTV (G), HLA A2-ELTGIGILTV (H), HLA A2-ELAGIGIITV (I) and HLA A2-

FLAGIGIITV (J). The mean response for each concentration is plotted (n = 3). The 

equilibrium dissociation constant (KD) values were calculated assuming 1:1 Langmuir 

binding and plotted using a nonlinear curve fit (y = (P1x)/(P2 + x)). 
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 MEL5 MEL5 MEL5 MEL187.c5 MEL187.c5 MEL187.c5 

Peptide KD  

(µM) 

 

Tetramer 

only (MFI) 

OKT8 + 

Tetramer 

(MFI) 

KD  (µM) 

 

Tetramer 

only (MFI) 

OKT8 + 

Tetramer 

(MFI) 

ELAGIGILTV 17 ± 1 855 917 18 ± 1 353 418 

FLAGIGILTV 92 ± 1 194 227 30 ± 2 300 373 

ELTGIGILTV 82 ± 4 36 87 37 ± 1 128 181 

ELAGIGIITV 77 ± 3 123 236 36 ± 3 195 257 

FLAGIGIITV 75 ± 3 367 426 47 ± 2 246 311 

 

Table 4.1: OKT8 increases tetramer staining of MEL5 and MEL187.c5 CD8
+
 T-cells 

with low affinity pMHCI variants. Summary of equilibrium binding analysis of MEL5 and 

MEL187.c5 TCRs with pMHCI variants, and the effect of OKT8 on HLA A2 tetramer 

staining. Raw SPR data are shown in Figure 4.11; flow cytometry data are shown in Figure 

4.12. 
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Figure 4.12: OKT8 increases tetramer staining with low affinity pMHCI variants. 5 x 

10
4
 MEL5 (A-E) or MEL187.c5 (F-J) CD8

+
 T-cells were either mock treated or incubated 

with 100 μg/ml OKT8 at 4°C for 25 minutes, then stained with cognate or variant PE-

conjugated HLA A2 tetramers (25 μg/ml) as indicated and 5 μl 7-AAD (BD Biosciences) at 

37°C for 15 minutes. Data were acquired using a FACSCalibur flow cytometer and analyzed 

with FlowJo software. 
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Figure 4.13: OKT8 increases TCR/pMHCI on-rates at the cell surface. 5 x 10
5
/ml ILA1 

(A) or ALF3 (B&C) CD8
+
 T-cells were removed from culture, washed twice and 

resuspended in 100 μl PBS with or without 100 μg/ml OKT8 or 25 μg/ml DK25, then 

incubated at 4°C for 25 minutes. Cognate PE-conjugated HLA A2 tetramer was added in 

each case at 5 μg/ml; at various time points as indicated, 12 μl of cell suspension was 

removed and analyzed using a FACSCalibur flow cytometer with FlowJo software. In panel 

(C), the CD8-null (D227K/T228A) cognate HLA A2 tetramer was used (Purbhoo, Boulter et 

al. 2001). 
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indicate that OKT8 enhances pMHCI tetramer pMHCI tetramer staining by increasing the on-

rate Furthermore, OKT8 antibody-mediated augmentation of antigen binding at the cell 

surface occurs independently of the pMHCI/CD8 interaction. 

 

4.2.6 Stimulatory and Inhibitory anti-CD8 antibodies bind to different CD8 epitopes 

I have thus far demonstrated that there is considerable heterogeneity in the ability of anti-

CD8 antibodies to induce activation in the absence of TCR engagement, and in influencing 

subsequent pMHCI tetramer binding and CD8
+
 T-cell sensitivity to pMHCI antigen. 

Monoclonal antibodies bind to ‘defined’ epitopes with high affinity (KD <10
-9 

M). Thus, I 

hypothesized that anti-CD8 antibodies might exert differential effects because they bind to 

distinct CD8 epitopes. To address this, I performed a series of antibody-blocking 

experiments. Pre-incubation with OKT8 was shown to block the binding of further OKT8 

antibody demonstrating that the system can be used effectively to judge antibody binding 

sites (Figure 4.14) 

 

Pre-incubation with OKT8 did not block the subsequent binding of SK1, DK25 or anti-CD8 

antibody suggesting that OKT8 binds to a site that is distinct from the binding sites of these 

antibodies. Conversely, DK25, SK1 and anti-CD8 antibody did not significantly block the 

binding of OKT8 to the T-cell surface. Anti-CD8 antibodies that block pMHCI tetramer 

binding would appear to bind similar epitopes on CD8. This result is consistent with a 

previous report using a murine system (Devine, Hodsdon et al. 2004). Thus, antibody-

blocking experiments suggest that the unique enhancing properties of OKT8 are a result of  
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Figure 4.14: OKT8 binds to a distinct epitope compared to other CD8 antibodies. 5 x 

10
4
 ALF3 CD8+ T-cells were removed from culture, washed twice and resuspended in 40 μl 

PBS with or without 100 μg/ml OKT8, 6.25 μg/ml SK1, 25 μg/ml DK25 or 100 μg/ml 

2ST8.5H7 (CD8) then incubated at 4°C for 25 minutes. 3 μl of fluorochrome conjugated 

anti-human CD8 antibodies, APC-conjugated OKT8, PE-conjugated SK1, APC-conjugated 

DK25 or PE-conjugated CD8β, were then added and incubated at 4°C for 25 minutes along 

with LIVE/DEAD fixable violet, washed with PBS. Data were acquired using a 

FACSCantoII flow cytometer and analyzed with FlowJo software. 

 

 

 

 

 



Chapter 4 

 

185 

 

binding to a specific site on CD8, which is distinct from the site bound by blocking CD8 

antibodies (Figure 4.15). 

4.2.7 OKT8 F(ab´)2 fragments can enhance tetramer staining and elicit T-cell effector 

function 

Antibodies can be digested by papain or pepsin to produce Fab or F(ab´)2 fragments, 

respectively. These enzymatically generated fragments have been used extensively in the past 

to study the structure and function of antibodies. I examined the ability of OKT8 Fab and 

F(ab´)2 fragments to induce chemokine release in the absence of TCR engagement and 

enhance pMHCI tetramer staining. Fab fragments of OKT8 do not retain any ability to 

activate CD8
+
 T-cells or have any significant effect on pMHCI tetramer staining (Figure 4.16 

A&B). Interestingly, OKT8 F(ab´)2 fragments do retain some ability to enhance pMHCI 

tetramer activation and elicit chemokine release (Figure 4.16 A&B). OKT8 mediated effects 

are diminished by pepsin digestion but this is consistent with similar observations when anti-

human CD3 antibodies are digested by this enzyme (Figure 4.16 C) (Woodle, Thistlethwaite 

et al. 1991; Herold, Burton et al. 2003; Chatenoud and Bluestone 2007). Overall, it appears 

that whole OKT8 antibody is more efficient at exerting effects on pMHCI tetramer binding 

and CD8
+
 T cell activation. However, the data suggests that F(ab´)2 fragments are capable of 

cross-linking CD8 at the cell surface to some degree and that the ability of OKT8 to exert its 

effects are not entirely Fc´ dependant.  
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Figure 4.15: A schematic displaying binding sites of the enhancing anti-CD8 antibody 

OKT8. Mutational analysis of a single CD8 α chain reveals distinct distal binding site of 

OKT8 (red box) compared to other anti-CD8 antibodies (blue box) proximal to pMHCI 

(figure taken from © (Sanders, Fox et al. 1991)), originally published in the Journal of 

Experimental Medicine, 174(2): 371-9. 
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Figure 4.16: OKT8 F(ab´)2 fragments can enhance tetramer staining and elicit T-cell 

effector function. (A) 5 x 10
4
 MEL5 were either mock treated or incubated with 100 μg/ml 

OKT8, 100 μg/ml OKT8 Fab or 100 μg/ml OKT8 F(ab´)2 then subsequently stained with PE-

conjugated HLA A2 ELAGIGILTV tetramer (25 μg/ml) and stained with LIVE/DEAD® 

Fixable Aqua. Data were acquired using a FACSCantoII flow cytometer and analyzed with 

FlowJo software. (B) 3 x 10
4
 MEL5 or ALF3 were incubated with either 100 μg/ml OKT8, 

100 μg/ml Fab OKT8, 100 μg/ml F(ab´)2 OKT8 or 100 μg/ml OKT8 Fc´ for 18 hours @ 

37°C. Supernatant was harvested and assayed for MIP-1α, MIP-1 and RANTES by ELISA. 

(C) 3 x 10
4
 MEL5 or ALF3 were incubated with either 10 μg/ml OKT3 or 10 μg/ml F(ab´)2 

OKT3 for 18 hours @ 37°C. Supernatant was harvested and assayed for MIP-1α, MIP-1 and 

RANTES by ELISA. The mean ± SD of three replicate assays is shown and only MIP-1β is 

shown. 
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4.2.8 Anti-mouse CD8 antibodies can trigger T-cell effector function in the absence of 

TCR engagement 

To extend these findings beyond human systems, I examined the effect of the anti-mouse 

CD8α antibody CT-CD8a and the anti-mouse CD8 antibody CT-CD8b on pMHCI tetramer 

staining and CD8
+
 T-cell activation in the absence of TCR engagement. I observed that CT-

CD8a inhibited tetramer staining of mouse transgenic F5 CD8
+
 T-cells, whereas CT-CD8b 

enhanced tetramer staining of the same antigen-specific population (Figure 4.17 A). These 

results are consistent with previous findings (Wooldridge, Hutchinson et al. 2003). 

Interestingly, despite exerting opposite effects on pMHCI tetramer staining, both of these 

anti-mouse CD8 antibodies were capable of inducing MIP-1 production in the absence of 

TCR engagement from both naïve and antigen-exposed F5 CD8
+
 T-cells (Figure 4.17 B). 

This effect was shown to be CD8-specific and occurred in the absence of any concomitant 

IL2 release. The anti-mouse CD8 antibodies, 53.6.7 and KT112, were both shown to enhance 

pMHCI tetramer staining and induced small amounts of MIP-1β production (Figure 4.17 

A&B). Therefore, I identified three different phenotypes (Table 4.2) within a panel of four 

different anti-mouse CD8 antibodies which further underscores the considerable 

heterogeneity in this group of reagents.  
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Figure 4.17: Anti-mouse CD8 antibodies can exhibit the same phenotype as OKT8. (A) 5 

x 10
4
 naïve mouse transgenic F5 T-cells were either mock treated or incubated with 100 

μg/ml CT-CD8a, 100 μg/ml 53.6.7, 100 μg/ml CT-CD8b or 100 μg/ml KT112 at 4°C for 25 

minutes, then stained with 25 μg/ml PE-conjugated H-2D
b
 tetramer folded around 

ASNENMDAM (cognate peptide) or KAVYNFATC (non-cognate peptide corresponding to 

the lymphocytic choriomeningitis virus GP1-derived epitope spanning residues 33-41) at 

37°C for 15 minutes. Additional stains were conducted as described in the Materials and 

Methods. Data were acquired using a modified FACSAriaII flow cytometer and analyzed 

with FlowJo software. (B) 3 x 10
4
 naïve mouse transgenic F5 T-cells were incubated at 37°C 

for 18 hours with either 100 μg/ml CT-CD8a, 100 μg/ml 53.6.7, 100 μg/ml CT-CD8b or 100 

μg/ml KT112, or with PMA (50 ng/ml) and ionomycin (1 μg/ml). Supernatants were 

harvested and assayed for MIP-1 by ELISA. The mean ± SD of two replicate assays is 

shown. 
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Antibody 

Clone 

α or β Tetramer 

binding 

MIP-1β IFN-γ IL-2 

CT-CD8a α Inhibit Yes No No 

53.6.7 α Enhance Weak
* 

No No 

CT-CD8b β Enhance Yes No No 

KT112 β Enhance Weak NT NT 

 

Table 4.2: The heterogeneity of anti-mouse CD8 antibodies. The effects exerted by anti-

mouse CD8 antibodies on pMHCI tetramer binding and CD8
+
 T-cell activation in the absence 

of TCR engagement. 
*
53.6.7 elicited low levels of MIP-1β production from F5 naive CD8

+
 

T-cells, F5 CD8
+
 T-cell lines and blasted BALB/c CD8

+
 cells, but not from naive BALB/c 

CD8
+
 cells. NT = Not Tested. 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 4 

 

191 

 

Antibody 

Clone 

α or 

β 

Tetramer 

binding 

MIP-1β MIP-1α RANTE

S 

IFN-γ TNF-α IL-2 Cyto- 

toxicity 

OKT8 α Enhance Yes Yes Yes No 

(Y*) 

No 

(Y*) 

No Yes 

SK1 α Inhibit No No No No No No No 

MCD8 α Neutral No No No No No No No 

32/M4 α Neutral No No No No No No No 

C8/144B α Neutral No No No No No No No 

DK25 α Inhibit No No No No No No No 

2ST8.5H7 β Inhibit No No No No No No No 

 

Table 4.3: The heterogeneity of anti-human CD8 antibodies. The effects exerted by anti-

human CD8 antibodies on pMHCI tetramer binding and CD8
+
 T-cell activation in the 

absence of TCR engagement. 
*
OKT8 was shown to elicit IFN-γ and TNF-α release by SB10 

and PHA/IL-15 stimulated PBMC. 
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4.3 Discussion 

Anti-CD8 antibodies are integral to the flow cytometric detection of pMHCI-restricted T-

cells and have been used extensively in the past to identify an important role for CD8 in 

CD8
+
 T-cell activation (Nakayama, Shiku et al. 1979; Shinohara and Sachs 1979; Norment, 

Salter et al. 1988; Miceli and Parnes 1993). Most studies have concluded that anti-CD8 

antibodies inhibit the recognition of cognate antigen (MacDonald, Glasebrook et al. 1982; 

Janeway 1992). Furthermore, a recent study provided evidence that a single anti-CD8 

antibody could deliver a negative signal to a CD8
+
 T-cell clone in the absence of cognate 

antigen (Abidi, Dong et al. 2008). In contrast, however, earlier studies concluded that anti-

CD8 antibodies could activate CD8
+
 T-cells (Veillette, Zuniga-Pflucker et al. 1989; 

Tomonari and Spencer 1990). Thus, contradictory effects of antibody-mediated CD8 ligation 

have been reported and the overall picture remains unclear. To clarify this issue, I examined 

the ability of seven different monoclonal anti-human CD8 antibodies to activate six different 

human CD8
+
 T-cell clones specific for a total of five different pMHCI antigens.  

 

In the absence of cognate antigen, the anti-human CD8 antibody OKT8 induced chemokine 

release from all six human CD8
+
 T-cell clones tested and cytotoxic activity in all four human 

CD8
+
 T-cell clones tested (Figures 4.1-4.3 & 4.5). Interestingly, this activation appeared to 

occur in the absence of any detectable cytokine release, with the exception of CD8
+
 T-cell 

clone SB10, which released IFN- (Figure 4.6). It is well established that a hierarchy of CD8
+
 

T-cell effector functions exists with respect to antigen sensitivity (Valitutti, Muller et al. 

1996; Price, Sewell et al. 1998); thus, each function exhibits a distinct activation threshold 

that must be exceeded for triggering to occur. These findings suggest that OKT8 delivers a 
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positive signal to CD8
+
 T-cells that is generally sufficient to exceed the activation threshold 

required for chemokine release and cytotoxic activity, but is not sufficient to trigger cytokine 

release in the majority of CD8
+
 T-cells. In contrast to OKT8, the anti-human CD8α antibody 

clones SK1, MCD8, C8/144B, 32/M4 and DK25, and the anti-human CD8 antibody clone 

2ST8.5H7, did not induce any measurable T-cell effector functions in the absence of cognate 

antigen. It was not possible to reverse the phenotype of the non-activating anti-human CD8 

antibodies by secondary antibody-mediated cross-linking or PHA/IL-15 treatment (Figures 

4.7 & 4.8). Thus, I conclude that anti-CD8 antibodies can exert differential effects on CD8
+
 

T-cells. These findings help to reconcile previous disparate observations and suggest that 

previous reports in the literature may not be intrinsically contradictory, but rather reflective of 

the considerable heterogeneity that characterizes the ability of anti-CD8 antibodies to induce 

CD8
+
 T-cell effector function.  

 

To examine the effects of OKT8 on antigen binding at the T-cell surface, I used soluble 

pMHCI tetramer technology. Pre-incubation with OKT8 enhanced the capture of cognate 

pMHCI tetramers from solution and produced higher intensity staining (Figure 4.9 & 4.10). 

Accordingly, OKT8 enhanced the identification of CD8
+
 T-cells with low and high affinity 

TCR/pMHCI interactions (Figure 4.10 & 4.12 & Table 4.1), such as those that typically 

predominate in tumour-specific and autoimmune responses (Cole, Pumphrey et al. 2007). The 

other anti-CD8 antibodies in the panel either exerted inhibitory effects on pMHCI tetramer 

binding (SK1, DK25 and 2ST8.5H7) or displayed no biologically significant activity in this 

regard (MCD8, 32/M4 and C8/144B). Thus, OKT8 can be used as a tool to improve pMHCI 

tetramer staining; this property may be especially useful in the context of low avidity antigen-

specific CD8
+
 T-cell populations.  
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The findings described above suggest that OKT8 has properties that are distinct from other 

anti-human CD8 antibodies. To extend these results, I conducted additional experiments with 

the anti-mouse CD8α antibody CT-CD8a and the anti-mouse CD8 antibody CT-CD8b. CT-

CD8a was shown to inhibit pMHCI tetramer staining, whereas CT-CD8b enhanced pMHCI 

tetramer binding, consistent with a previous report (Wooldridge, Hutchinson et al. 2003). 

Despite their differential effects on pMHCI tetramer binding, both of these anti-mouse CD8 

antibodies activated CD8
+
 T-cells efficiently (Figure 4.17). These results demonstrate that the 

ability of anti-CD8 antibodies to elicit CD8
+
 T-cell effector function does not always 

correlate with their effect on pMHCI tetramer staining. In addition, a third phenotype was 

identified in the mouse system; the anti-mouse CD8α antibody 53.6.7 and the anti-mouse 

CD8β antibody KT112 both enhanced pMHCI tetramer staining but only induced the release 

of MIP-1β (Figure 4.17 & Table 4.2). Taken together, these data further underline the 

heterogeneity that exists within this group of reagents. 

 

The mechanism by which anti-CD8 antibodies exert either inhibitory or stimulatory effects 

on pMHCI recognition remains elusive. Previous studies have shown that anti-CD8 

antibodies retain their effects in the absence of a pMHCI/CD8 interaction (Van Seventer, Van 

Lier et al. 1986; Hoo and Kranz 1993; Campanelli, Palermo et al. 2002; Wooldridge, 

Hutchinson et al. 2003). Here, I confirmed that the enhancing effects of OKT8 on HLA A2 

tetramer on-rate at the cell surface are still apparent in the context of CD8-null MHCI 

molecules (Figure 4.13); thus, these effects are independent of any interaction between 

pMHCI and CD8. Subtle local re-arrangements of the TCR relative to CD8 on pMHCI 

engagement are required for optimal CD8
+
 T-cell activation (Block, Johnson et al. 2001; Lee 

and Kranz 2003). By extension, it seems likely that anti-CD8 antibodies exert their effects by 
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interfering with, or enhancing, this surface receptor topology. The observation that anti-CD4 

antibodies can block cell surface intermolecular interactions essential for calcium flux and 

inhibit subsequent synapse formation is consistent with this hypothesis (Krummel, Sjaastad et 

al. 2000). Furthermore, it has been previously demonstrated that anti-CD4 antibodies can 

interfere with pMHCII tetramer binding despite the fact that the pMHCII/CD4 interaction 

does not stabilize TCR/pMHCII interactions (Wooldridge, Scriba et al. 2006). I have also 

shown that OKT8 binds to a site which is distinct from all of the other anti-human CD8 

antibodies tested within this panel (Figure 4.14) which may provide an explanation for its 

unique phenotype. 

 

In summary, I have shown that: (i) heterogeneity exists in the ability of anti-CD8 antibodies 

to activate CD8
+
 T-cells; (ii) antibody-mediated ligation of CD8 in the absence of TCR 

engagement can induce chemokine release and cytotoxic activity, largely in the absence of 

cytokine release; (iii) the anti-human CD8 antibody OKT8 can enhance pMHCI tetramer 

staining; and, (iv) anti-murine CD8 antibodies (CT-CD8a and CT-CD8b) can activate CD8
+
 

T-cells in the absence of TCR engagement despite differential effects on pMHCI tetramer 

staining (Table 4.2 & 4.3). Thus, anti-CD8 antibodies can have potent effects on 

TCR/pMHCI binding kinetics and activation. These effects vary according to the antibody 

clone under investigation and should be taken into account when interpreting studies using 

these reagents. Furthermore, the ability of antibody-mediated CD8 engagement to activate 

CD8
+
 T-cells underscores the importance of co-receptor function in CD8

+
 T-cell signalling. 
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5.1 Introduction 

As a result of my findings in chapters 3 & 4, it is clear that CD8 has a potent ability to tune 

the antigen specific CD8
+
 T-cell response. In chapter 4, I demonstrated that antibodies that 

target CD8 can have dramatic effects on pMHCI tetramer binding and CD8
+
 T-cell 

activation. I was able to characterize anti-CD8 antibodies capable of blocking pMHCI 

tetramer binding and subsequent pMHCI-induced CD8
+
 T-cell activation, suggesting that 

targeting CD8 may be useful in situations where blocking unwanted CD8
+
 T-cell activation 

may be beneficial. It is beginning to emerge that CD8
+
 T-cells play an important role in the 

pathogenesis of common autoimmune diseases such as type-1 diabetes (T1D from heron) and 

Multiple Sclerosis (MS from hereon). As such, therapies that target autoreactive CD8
+
 T-cell 

attack are highly desirable.  

 

5.1.1 Role of CD8
+
 T-cells in the pathogenesis of common autoimmune diseases 

It has been traditionally theorised that autoimmune disorders such as T1D, MS, and 

Rheumatoid Arthritis are attributed to CD4
+
 T-cells. However there is growing evidence to 

suggest that CD8
+
 T-cells also contribute to the disease processes, most notably in MS, T1D 

and also Psoriasis. MS is the most common neurological disorder of young adults affecting 

over 1 million adults worldwide. MS is an inflammatory disease of the central nervous 

system (CNS) which destroys oligodendrocytes, neurons and axons. MS patients harbour 

CD8
+
 T-cells specific for multiple central nervous system antigens and CD8

+
 T-cells have 

been shown to be enriched in MS plaques (Huseby, Huseby et al. 2012; Friese and Fugger 

2009). T1D results in a total loss of self-tolerance and the destruction of insulin-producing β-

cells in the islets of langerhans of the pancreas. This destruction is dominated by 



Chapter 5 

 

199 

 

lymphocytes, many of which are CD8
+
 T-cells that specifically target epitopes derived from 

β-cell proteins (Roep and Peakman 2011; Coppieters, Dotta et al. 2012). Currently there is no 

known cure for T1D and the condition results in life-long insulin dependence, which is an 

expensive course of treatment. As of 2011 the incidence of T1D in the UK was ~0.3 million 

people at a cost of ~£0.3 billion to the NHS (www.diabetes.nhs.uk). It is of no doubt that 

there is a need for new treatments for autoimmune disorders. Therefore the timing of this 

study is very important as it may aid in the development of potential new treatments for these 

diseases. 

 

5.1.2 Autoreactive TCR/pMHCI interactions are characterized by low affinity 

Advances in understanding the molecular mechanisms which govern recognition of pMHCI 

antigen reveal key intrinsic differences between pathogen and autoreactive CD8
+
 T-cells that 

could be exploited for therapeutic benefit. Extensive biophysical studies have revealed that 

pathogen specific CD8
+
 T-cells display a high affinity for foreign pMHCI (range KD 1 - 50 

M) (Bridgeman, Sewell et al. 2011). In contrast, TCRs with a high affinity for tissue 

specific antigens (TSAs) are eliminated from the repertoire during thymic selection. 

Autoreactive TCRs that escape negative selection are characterized by structural defects that 

reduce the overall stability of the complex and result in KD values >100 M (Yin, Li et al. 

2012) Biophysical measurements of a further four diabetogenic MHCI restricted TCRs 

suggest that the average TCR/pMHCI affinity in this disease context may actually be 

characterised by KDs >200 M (unpublished data). This then suggests that this activation 

pathway would be highly dependent on CD8 for activation. I decided to test the hypothesis 

http://www.diabetes.nhs.uk/
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that targeting CD8 could be used to block autoreactive CD8
+ 

T-cell activation in the absence 

of any affect on pathogen specific CD8
+
 T-cell immunity. 

 

5.1.3 Low affinity TCR/pMHCI interactions are highly CD8 dependent  

Previous studies using CD8
+ 

T-cell clones and hybridomas have demonstrated that the degree 

of CD8 dependency for efficient antigen recognition roughly correlates with the potency of 

the peptide ligand as defined by the concentration of peptide required to elicit half maximum 

activation in dose dependent titrations (as reviewed in (Laugel, Cole et al. 2011)). Indeed 

Holler et al showed that using the murine 2C TCR system, T-cell hybridomas were not fully 

activated in the absence of CD8 expression by agonist ligands with KD > 100 nM (Holler, 

Holman et al. 2000; Holler and Kranz 2003). The same group also showed that with a 

TCR/pMHCI KD > 3 μM antigen recognition became strictly dependent on the presence of 

the co-receptor. They posited that the majority of CD8
+
 T-cells that express TCRs specific to 

antigen in a natural setting were likely to demonstrate a degree of dependence on the co-

receptor. This theory was then further supported by studies showing that dependency on CD8 

for CD8
+
 T-cell activation by altered peptide ligands correlated well with the EC50 (Laugel, 

van den Berg et al. 2007; Wooldridge, Laugel et al. 2010). Ligands with a KD > 35-40 μM 

displayed some degree of CD8 dependency in peptide titration assays (Laugel, van den Berg 

et al. 2007; Wooldridge, Laugel et al. 2010). It was also shown in these studies that 

recognition of TCR ligands with very low affinities (KD values > 100-200 μM) are entirely 

CD8-dependent. It is important to note that the quantitative differences observed between the 

Holler and Laugel studies are likely due to the different systems being used in each study. 

The Holler study used the murine 2C TCR system which has a stronger TCR/pMHCI 

interaction than the human CD8
+ 

T-cell clones used in the Laugel study. It would therefore be 
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of interest to determine the range of TCR/pMHCI and their reliance on CD8 to respond 

adequately to cognate ligands in different systems. Overall there is a direct relationship 

between CD8 dependency of the CD8
+
 T-cell for activation and the affinity of the 

TCR/pMHCI interaction, where very weak TCR/pMHCI affinity interactions are entirely 

CD8 dependent. Interestingly, the level of CD8 dependency exhibited by the CD8
+
 T-cell has 

also been shown to be affected by the ligand density on the target cell. When using anti-CD8 

antibodies to block CD8
+
 T-cell activation, increasing levels of pMHCI density can bypass 

antibody blockade (Alexander, Damico et al. 1991; Hoo and Kranz 1993; Viola, Salio et al. 

1997).  

 

5.1.4 Exploiting CD8 dependency in pathological settings 

On the basis of published literature, I predict that stronger pathogen specific TCR/pMHCI 

interactions will show little dependence on CD8 for activation. In stark contrast, autoreactive 

TCR/pMHCI interactions are very weak and likely to be highly CD8 dependent. As such, I 

hypothesise that the stark differences between typical pathogen specific and autoreactive 

TCR/pMHCI interactions can be exploited in order to preferentially target CD8
+ 

T-cell 

mediated autoimmune attack without interfering with pathogen specific immunity. Thus CD8 

may be a desirable target in pathological scenarios where the TCR/pMHCI binding affinity is 

CD8 dependent, i.e. KDs > 100 μM such as autoimmune disorders. 

 

I decided to study the effects of CD8 dependency and the effect of using inhibitory anti-CD8 

antibodies where this weak interaction applies. The 1E6 CD8
+
 T-cell clone specific for the 

autoantigen preproinsulin peptide ALWGPDPAAA (PPI15–24) (Skowera, Ellis et al. 2008), 
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which has recently been measured biophysically using surface plasmon resonance, shows that 

this TCR binds to the cognate ligand ALWGPDPAAA with a KD ~278 μM (Bulek, Cole et 

al. 2012). This provided an excellent candidate to examine the CD8 dependency of T-cell 

activation from a clinically relevant setting. In the human autoimmune disease type-1 

diabetes, CD8
+
 T-cells are focussed on the islets of Langerhans and destroy β cells via the 

recognition of β cell–specific peptides presented by HLA class I molecules, leading to a 

lifelong dependence on insulin (Skowera, Ellis et al. 2008). To date no study has been 

conducted to examine the possibility that targeting CD8 using anti-CD8 antibodies can 

preferentially block highly dependent autoreactive CD8
+
 T-cells that recognise a defined 

epitope on the surface of pancreatic β cells. 

 

5.1.5 Use of antibodies to inhibit CD8
+
 T-cell activation 

It has long been known that anti-CD8 antibodies can be used to block the activation of some 

CD8
+
 T-cells (MacDonald, Glasebrook et al. 1982). MacDonald et al used a murine system 

to highlight the heterogeneity in the functional output of multiple anti-CD8 antibodies where 

some antibodies could inhibit T-cell activation whereas others were shown to have no effect. 

These heterogeneous effects have been further supported and observed in multiple 

subsequent studies including our own (see chapter 4). Importantly, it was suggested that 

heterogeneity in the ability of CD8
+
 T-cells to activate in the presence of inhibitory anti-CD8 

antibodies was thought to correlate with the strength of the TCR/pMHCI interaction. I will 

test this theory in this chapter and also investigate the possibility that this can be exploited for 

therapeutic benefit.  
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5.1.6 Summary and Aims 

The aim of this chapter was to examine the potential use of anti-CD8 antibodies to 

preferentially block autoreactive CD8
+
 T-cell activation.  

Using multiple CD8
+
 T-cell clones which vary in TCR/pMHCI binding affinities I aim: 

 

 To investigate the relationship between TCR/pMHCI affinity and CD8 dependence. 

 To investigate the possibility that targeting the CD8 co-receptor can be used to block 

autoreactive CD8
+
 T-cell activation in the absence of any effect on pathogen specific 

CD8
+
 T-cell responses. 

 

5.2 Results 

5.2.1 CD8 dependency is governed by TCR/pMHCI binding affinity 

I examined how CD8 dependency is governed by the strength of the TCR/pMHCI interaction. 

Stable C1R B-cell (Storkus, Howell et al. 1987) transfectants expressing A2 wild-type and 

HLA A2 DT227/8KA (Purbhoo, Boulter et al. 2001) were used to study the effect of wild-

type and abrogated pMHCI/CD8 interaction, respectively whilst not effecting the 

TCR/pMHCI interaction. When C1R wild-type and 227/8 B-cells were pulsed with cognate 

ligands for multiple HLA A2 restricted CD8
+
 T-cell clones, each with varying TCR/pMHCI 

binding affinities, differences in levels of T-cell activation can be seen (Figure 5.1 A-H).  

CD8
+
 T-cell clones which have a high TCR/pMHCI binding affinity are less dependent on 

CD8. The CD8
+
 T-cell clone ALF8, specific for the Influenza A virus MP158-66 epitope 

GILGFVFTL, elicits a very sensitive and high level of T-cell activation. ALF8 is relatively 
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unaffected by the abrogation of CD8 using C1R 227/8 B-cells (Figure 5.1 A&B) which is not 

surprising given the relatively strong binding affinity of the TCR/pMHCI interaction KD of 

2.6 μM (Table 5.1 & Appendix 3).  

 

I then examined more CD8
+
 T-cell clones with varying TCR/pMHCI affinities (Table 5.1), 

i.e. MEL5, specific for the Melan-A-derived epitope ELAGIGILTV (residues 26-35) (KD = 

18 μM) (Cole, Pumphrey et al. 2007; Cole, Edwards et al. 2010), ILA1 specific for the 

human telomerase reverse transcriptase (hTERT)-derived epitope ILAKFLHWL (residues 

540-548) (KD = 36 μM) (Cole, Pumphrey et al. 2007) and 1E6, specific for the restricted 

autoantigen preproinsulin peptide ALWGPDPAAA (PPI15–24) (KD = 278 μM) (Cole, Edwards 

et al. 2010; Bulek, Cole et al. 2012). Decreasing the strength of the TCR/pMHCI interaction 

was accompanied by an increase in CD8-dependency and revealed an extremely high level of 

CD8-dependency in the autoimmune 1E6 CD8
+
 T-cell clone (Figure 5.1 G&H). Activation of 

the 1E6 CD8
+
 T-cell clone in the absence of CD8 engagement resulted in almost 100% 

impairment of MIP-1β release and no detectable production of IFN-γ (Figure 5.1 G&H). In 

summary, this data demonstrates that CD8 dependency is governed by the TCR/pMHCI 

binding affinity. 

 

5.2.2 Anti-CD8 antibodies can efficiently block pMHCI tetramer binding when the 

TCR/pMHCI interaction is extremely weak 

As previously discussed in chapter 4, there are multiple anti-CD8 antibody phenotypes 

including those that are capable of blocking tetramer binding at the cell surface. The two  
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Figure 5.1: The level of CD8 dependency of CD8
+
 T-cells increases as the TCR/pMHCI 

interaction decreases. (A-H) 6 x 10
4
 C1R-A*0201 (CD8 wild-type) or C1R-A*0201 227/8 

(CD8 abrogated) B-cells were pulsed with cognate peptide from 10
-11 

to 10
-5 

M in duplicate 

for 1 hour @ 37°C. Excess peptide was washed off twice with PSG. 3 x 10
4
 ALF3, MEL5, 

ILA1 or 1E6 CD8
+
 T-cell clones were incubated with pulsed C1R B-cells for 4 hours @ 

37°C. Supernatant was harvested and assayed for MIP-1 and IFN-γ by ELISA. The mean ± 

SD of two replicate assays is shown. 
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CD8
+
 T-cell 

clone 
1E6 ILA1 MEL5 ALF3 ALF8 

Epitope ALWGPDPAAA ILAKFLHWL ELAGIGILTV GILGFVFTL GILGFVFTL 

TCR/pMHCI 

KD μM 
278 36 18 5.4

1
 2.6

1
 

 

Table 5.1: TCR/pMHCI binding affinities of different target restricted CD8
+
 T-cell 

clones. Summary of the TCR/pMHCI binding affinities of different CD8
+
 T-cell clones used. 

1
 See Appendix 3 for SPR Biophysical data. 
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Figure 5.2: Weak TCR/pMHCI interactions are extremely susceptible to blockade with 

anti-CD8 antibodies. 5 x 10
4 

(A) ALF3 (KD 5.4 μM), (B) MEL5 (KD 18 μM), (C) ILA1 (KD 

36 μM), and (D) 1E6 (KD 278 μM), CD8
+
 T-cells were removed from culture, washed twice 

and resuspended in 40 μl PBS with or without anti-human CD8 antibody at SK1 6.25 μg/ml 

or DK25 12.5 μg/ml, then incubated at 4°C for 25 minutes. Cognate PE or BV421-conjugated 

HLA A*0201 tetramer was added in each case at 25 μg/ml at 37°C for 15 minutes. Data were 

acquired using a FACSCantoII flow cytometer and analyzed with FlowJo software. 
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most effective blocking antibodies were clones SK1 and DK25. Pre-incubation with SK1 and 

DK25 resulted in reduced levels of pMHCI tetramer binding to all CD8
+
 T-cell clones tested 

(Figure 5.2 A-D) albeit to a differing extent. As TCR/pMHCI interaction strength is reduced 

then the effect of CD8 blocking antibody on pMHCI tetramer binding becomes more 

dramatic (Figure 5.2 B-D). In fact, the most dramatic effect was observed (>95% blockade) 

on pMHCI tetramer staining of 1E6 CD8
+
 T-cell clones with both blocking antibodies 

(Figure 5.2 D). Therefore, pMHCI binding at the cell surface is extremely susceptible to anti-

CD8 antibody mediated blockade if the TCR/pMHCI interaction is weak. 

 

5.2.3 Titration of antibody reveals concentration for efficient blockade of autoreactive 

TCR/pMHCI interactions 

Next, I wanted to assess whether it is possible to identify a concentration of blocking anti-

CD8 antibody that can efficiently block tetramer binding to autoreactive CD8
+
 T-cells (1E6) 

in the absence of any significant effect on higher affinity TCR/pMHCI interactions (typical of 

pathogen specific CD8
+
 T-cells). I therefore proceeded to titrate the concentration of the most 

inhibitory antibody DK25 to identify a threshold concentration (Figure 5.3 A-H). The 

inhibitory effect of the antibody was titrated to a level where a decrease in the concentration 

resulted in an increase in tetramer binding (Figure 5.3 A-H). Use of DK25 at a concentration 

of 1 μg/ml resulted in ~80% inhibition of tetramer binding to the autoreactive 1E6 CD8
+
 T-

cell clone (Figure 5.3 H). This concentration had little or no effect on the tetramer binding to 

MEL5 and ALF8 where the TCR/pMHCI interaction is much stronger (Figure 5.3 A-D) 

(Table 5.1). Therefore at a concentration of 1 μg/ml, DK25 can be used to block autoreactive 

TCR/pMHCI interactions at the cell surface whilst not affecting the stronger TCR/pMHCI 

interactions of anti-viral and some anti-tumour responses.  
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Figure 5.3: Antibody blocking of tetramer binding can be titrated to a low level in the 

context of weak TCR/pMHCI interactions whilst not affecting stronger TCR/pMHCI 

interactions. 5 x 10
4 

(A) ALF8, (B) MEL5 and (C) 1E6 CD8
+
 T-cells were removed from 

culture, washed twice and resuspended in 40 μl PBS with or without anti-human CD8 

antibody DK25 at 12.5 μg/ml, 6.25 μg/ml, 3.125 μg/ml or 1 μg/ml then incubated at 4°C for 

25 minutes. Cognate PE-conjugated HLA A*0201 tetramer was added in each case at 25 

μg/ml at 37°C for 15 minutes. Data were acquired using a FACSCantoII flow cytometer and 

analyzed with FlowJo software. Data is presented in the left column as percentage of 

maximal tetramer staining whereas data in the right column represents percentage of 

inhibition of tetramer staining. 
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5.2.4 CD8 antibodies efficiently block activation when the TCR/pMHCI affinity is weak 

The results from my pMHCI tetramer blocking experiments suggest that blocking anti-CD8 

antibodies can be used to preferentially target T-cells with weak affinity TCR/pMHCI 

interactions (Figure 5.3). This observation is important because it suggests that targeting CD8  

could be a desirable strategy for blocking the activation of CD8
+
 T-cells characterised by low 

affinity TCR/pMHCI interactions such as the autoreactive CD8
+
 T-cell clone 1E6 which can 

directly target and kill islet β-cells. In order to test this hypothesis I decided to test the ability 

of DK25 to block 1E6 recognition of its cognate ligand ALWGPDPAAA (KD ~278 μM) and 

an altered peptide ligand YQFGPDPAAA, identified in a previous study which is capable of 

binding to the 1E6 TCR with high affinity (KD ~9 μM) (Table 5.2) (Wooldridge, Ekeruche-

Makinde et al. 2012). This falls within the typical affinity range observed for pathogen 

specific TCR/pMHCI interactions (Table 5.1 & 5.2 & Appendix 3). This provides a 

monoclonal T cell system to examine the effect of DK25 on T-cell activation where the only 

parameter that is varied is the affinity of the TCR/pMHCI interaction.  

 

In the absence of anti-CD8 antibody, the 1E6 CD8
+
 T-cell clone can be seen to be killing 

targets presenting ALW and YQF, the level of killing is directly proportional to the binding 

affinity of the TCR/pMHCI interaction (Figure 5.4 A). However in the presence of anti-CD8 

antibody DK25, at both concentrations tested the killing of targets presenting cognate ALW 

antigen as measured by chromium release is inhibited by 100% (Figure 5.4 B). At the higher 

concentration of DK25 used (1 μg/ml) some effect on the killing of targets presenting the 

high affinity ligand YQF was observed (Figure 5.4 C). However, no inhibition of YQF was 

observed when this concentration was lowered to 0.5 μg/ml. Therefore targeting CD8 can be  
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CD8
+
 T-cell clone 1E6 

Epitope ALWGPDPAAA YQFGPDPAAA 

TCR/pMHCI 

KD μM 
278 9

1
 

 

Table 5.2: TCR/pMHCI binding affinities of different ligands recognized by the 1E6 

CD8
+
 T-cell clone. Summary of the TCR/pMHCI binding affinities of wild-type and 

enhanced peptide ligand specific for the 1E6 CD8
+
 T-cell clones used.

 1
 See Appendix 3 for 

SPR Biophysical data. 
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Figure 5.4: Targeting CD8 can be used to block autoreactive CD8
+ 

T-cell killing. 2x10
3
 

C1R A2 wt target cells were labelled with 30 µCi of 
51

Cr (Perkin Elmer, Cambridge, UK) per 

10
6
 cells for 1 hour at 37°C. Targets were also cultured alone (target spontaneous release) and 

with TritonX-100 (Sigma-Aldrich) at a final concentration of 5% (target total release). 

Targets were pulsed with either (A&B) ALWGPDPAAA, or (A&C) YQFGPDPAAA for 1 

hour at 37˚C. 1x10
4 

HLA-A*0201-restricted 1E6  ALWGPDPAAA (PPI15–24) CD8
+
 T-cell 

clone were then plated out to a final volume of 60 l R10 at an E:T ratio of 5:1 with or 

without purified anti-human CD8 antibody (DK25) @ 1 μg/ml and 0.5 μg/ml. Cells were 

incubated at 37˚C for 4 hours in a 5% CO2 atmosphere. For each sample, 10 µl supernatant 

was harvested and mixed with 150 l OptiPhase Supermix Scintillation Cocktail (Perkin 

Elmer). Plates were analyzed using a liquid scintillator and luminescence counter (MicroBeta 

TriLux; Perkin Elmer) with Microbeta Windows Workstation software (Perkin Elmer). 

Specific lysis was calculated according to the following formula: (experimental release - 

target spontaneous release/target total release - target spontaneous release) x 100. The mean ± 

SD of three replicate assays is shown. 
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used to inhibit 1E6 CD8
+
 T-cell clone recognition of cognate antigen by 100% whilst 

retaining the ability to kill antigens characterised by higher affinity TCR/pMHCI interactions.  

 

5.2.5 Blocking CD8 antibodies can be used to achieve complete inhibition of 

autoreactive CD8
+
 T-cell activation whilst retaining anti-viral CD8

+
 T-cell activation 

I decided to examine the ability of the blocking anti-CD8 antibody (DK25) to inhibit 

activation of the autoreactive CD8
+
 T-cell clone 1E6 compared to its ability to inhibit 

pathogen specific CD8
+
 T-cell activation. Using the CD8 independent anti-viral ALF8 CD8

+
 

T-cell clone and the ‘highly’ CD8 dependent autoreactive 1E6 CD8
+
 T-cell clone, a similar 

effect was seen to that of the tetramer binding. I observed 100% blockade of 1E6 T-cell 

activation when DK25 was used at a concentration of 1 μg/ml (Figure 5.5 A). In stark 

contrast, the same concentration of DK25 had a very minimal effect on activation of the 

relatively CD8 independent ALF8 CD8
+ 

T-cell clone (Figure 5.5 B). This highlighted a 

concentration of blocking anti-CD8 antibody where complete inhibition of autoreactive CD8
+
 

T-cells activation is observed whilst anti-viral CD8
+
 T-cell activation remains intact.  

 

Next, I decided to test the efficacy of DK25 on more CD8
+
 T-cell clones including those that 

are restricted by different HLA class molecules. Here, I used the autoreactive CD8
+
 T-cell 

clones 1E6 (HLA A2 restricted), 3F2 (HLA A2 restricted) and 4C6 (HLA A*2402 restricted) 

which have all been previously shown to kill pancreatic islet β-cells (Knight, Kronenberg et 

al. 2012; Skowera, Ellis et al. 2008). I also compared these autoreactive clones to the CD8 

independent anti-viral CD8
+
 T-cell clones ALF3 (HLA A2 restricted), NLV2 (HLA A2 

restricted) and SBS1 (HLA B*3508 restricted). The result obtained was the same as the effect  
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Figure 5.5: Titration of anti-CD8 antibody reveals concentration for optimal inhibition 

of autoreactive CD8
+
 T-cell activation. (A&B) 6.0 x 10

4
 HLA A2*0201 C1R with wild-

type pMHCI/CD8 interaction where pre-incubated with titrated cognate peptides @ 10
-5

M to 

10
-11

M (A) ALWGPDPAAA, (B) GILGFVFTL for 1 hour @ 37°C. Cells were then washed 

twice using 100 μl of PSG @ 561 x g for 5 minutes. 3 x 10
4
 1E6  ALWGPDPAAA (PPI15–24) 

CD8
+
 T-cell clone or ALF8 GILGFVFTL (MP158-66) epitope which had been pre-incubated 

for 60 minutes @ 37°C with purified anti-human CD8 antibody (DK25) @ 1 μg/ml where 

then added to each sample and incubated for 4 hours @ 37°C. Supernatants were harvested 

and assayed for MIP-1β production by ELISA (RandD Medsystems) and performed 

according to the manufacturer’s instructions. The mean ± SD of two replicate assays is 

shown. 
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Figure 5.6: Titration of anti-CD8 antibody reveals concentration for optimal inhibition 

of autoreactive CD8
+
 T-cell activation. 6.0 x 10

4
 HLA A2*0201 C1R were pre-incubated 

with titrated cognate peptides @ 10
-5

M to 10
-11

M (A) ALWGPDPAAA, (B) 

ALWGPDPAAA, (D) GILGFVFTL, (E) NLVPMVATV or (C) A*2402 K562 with 

LWMRLLPLL or (F) HLA B*3508 C1R with LPEPLPQGQLTAY for 1 hour @ 37°C. Cells 

were then washed twice using 100 μl of PSG @ 1500 rpm for 5 minutes. 3 x 10
4
 (A) 1E6 

(PPI15–24), (B) 3F2 (PPI15–24), (C) 4C6 (PPI3-11), (D)  ALF3 (M158-66), (E) NLV2 (CMV-

pp65495-503), or (F) SBS1 (EBV-BZLF152-64) CD8
+
 T-cell clone pre-incubated for 60 minutes 

@ 37°C with purified anti-human CD8 antibody (DK25) @ 1, 0.5 and 0.25 μg/ml where then 

added to each sample and incubated for 4 hours @ 37°C. Supernatants were harvested and 

assayed for MIP-1β production by ELISA (RandD Medsystems) and performed according to 

the manufacturer’s instructions. The mean ± SD of two replicate assays is shown. 
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described above. Thus, regardless of the MHCI restriction CD8
+
 T-cell clones with lower 

affinity TCR/pMHC interactions, as typified by autoimmune T-cells, are more CD8-

dependent (Figure 5.6 A-C). In contrast, the DK25 antibody was seen to have minimal effect 

on the activation of all anti-viral CD8
+
 T-cell clones tested regardless of the MHCI restriction 

(Figure 5.6 D-F). 

 

5.3 Discussion 

Over the last decade there has been a substantial amount of evidence accumulating in the 

literature to suggest that CD8
+
 T-cells play a significant role in the pathogenesis of common 

autoimmune diseases such as T1D (Roep and Peakman 2011; Coppieters, Dotta et al. 2012), 

MS (Huseby, Huseby et al. 2012; Friese and Fugger 2009) and Psoriasis (Prinz 2003). 

Strategies that specifically target this important cell type are therefore highly desirable. 

However, it would be dangerous to use treatments that mediate a non-specific inhibition of 

CD8
+
 T-cell activation because CD8

+
 T-cells play an essential role in defending our bodies 

against pathogen attack. Therefore, strategies that specifically target autoreactive T-cells 

whilst leaving pathogen specific CD8
+
 T-cells untouched could have a role in treating these 

diseases. It is emerging that autoreactive TCR/pMHCI interactions are characterised by low 

affinity compared to typical pathogen specific TCR/pMHCI interactions. Based on previous 

studies I predicted that this would make self reactive CD8
+
 T-cells highly dependent on CD8 

for activation. If autoreactive CD8
+
 T-cells are characterized by high levels of CD8-

dependency then CD8 would represent a desirable target to block unwanted autoreactive 

CD8
+
 T-cell activation. I decided to conduct a study in order to test this hypothesis. 
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I examined how CD8-dependency is influenced by the strength of the TCR/pMHCI 

interaction. Previous data supports the theory that CD8-dependency is directly linked to the 

affinity of the TCR/pMHCI interaction where a weak TCR/pMHCI interaction is highly CD8 

dependent and the reverse is also true (Holler, Lim et al. 2001; Holler and Kranz 2003; 

Laugel, van den Berg et al. 2007). A panel of four CD8
+
 T-cell clones were shown to be 

either highly CD8 independent, ALF8 CD8
+
 T-cell clone (Figure 5.1 A&B), moderately CD8 

dependent, MEL5 CD8
+
 T-cell clone and ILA1 CD8

+
 T-cell clone (Figure 5.1 C-F), or highly 

CD8 dependent, 1E6 CD8
+
 T-cell clone (Figure 5.1 G&H) for CD8

+
 T-cell activation. The 

level of CD8 dependency by this panel of CD8
+
 T-cell clones each with varying TCR/pMHCI 

affinities (Table 5.1) demonstrated a direct correlation between the TCR/pMHCI binding 

affinity and the requirement of CD8 for efficient CD8
+
 T-cell activation. 

 

One approach to target the CD8 co-receptor is the use of anti-CD8 antibodies. In a previous 

chapter (chapter 4), I characterized a panel of anti-CD8 antibodies which allowed me to 

select two antibodies with a blocking phenotype for further study. I examined the ability of 

these antibodies to disrupt TCR/pMHCI interactions at the cell surface. The effect of the 

blocking antibodies was shown to be most dramatic for the highly CD8-dependent 1E6 CD8
+
 

T-cell clone, a clinically relevant in-vivo T1D specific CD8
+
 T-cell clone, where tetramer 

staining could be inhibited by >95% (Figure 5.2 D & 5.3 G&H). Overall, targeting CD8 is a 

very efficient way of blocking pMHCI staining to the cell surface when the TCR/pMHCI 

interaction is extremely weak, with little or no effect observed with higher affinity 

TCR/pMHCI interactions typical of pathogen specific CD8
+
 T-cells.  
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To examine the effect of the blocking antibody in directly inhibiting epitope specific killing 

by the 1E6 CD8
+
 T-cell clone, killing assays were performed using targets bearing the 

cognate ligand (ALWGPDPAAA) and high affinity ligand (YQFGPDPAAA) representative 

of antigens that CD8
+
 T-cells may be exposed to in the periphery (Figure 5.4 A-C) (Table 

5.2). As expected the levels of killing observed correlated with the TCR/pMHCI affinity of 

the ligand tested (Figure 5.4 A). Killing on recognition of cognate ligand was inhibited in the 

presence of anti-CD8 antibody, whereas no effect was observed on the recognition of the 

high affinity ligand (Figure 5.4 B&C). In addition, the same concentration of antibody had a 

very minimal effect on the inhibition of the anti-viral ALF8 CD8
+
 T-cell clone rendering 

these pathogen specific CD8
+
 T-cells intact (Figure 5.5 B). Further investigation 

demonstrated that all autoimmune CD8
+
 T-cells tested within this study, 1E6, 3F2 and 4C6, 

restricted by different HLA class molecules, can be completely blocked using anti-CD8 

antibodies (Figure 5.6 A-C). Simultaneously, a very minimal effect and in one case no 

blocking effect was seen on all anti-viral CD8
+
 T-cell clones tested (Figure 5.6 D-F). This 

data supports the theory that targeting CD8 has the strong potential to inhibit autoreactive 

CD8
+
 T-cell activation and killing whilst ensuring that pathogen specific CD8

+
 T-cells can 

remain able to identify and kill their targets. 

 

There have been many studies highlighting the potential use of antibodies in autoreactive 

settings however none have examined the potential of anti-CD8 antibody mediated blockade. 

There has been extensive data highlighting the use of anti-CD3 antibodies in the study of 

T1D. Interestingly anti-CD3 antibodies have been shown to reverse diabetes onset in Non-

obese diabetic (NOD) mice which was the initial basis for the use of this antibody in human 

clinical trials (Chatenoud, Thervet et al. 1994; Herold, Hagopian et al. 2002; Keymeulen, 
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Vandemeulebroucke et al. 2005). Indeed in human studies the use of anti-CD3 antibodies 

have been shown to preserve islet β cell function by up to two years and can increase insulin 

production (Herold, Gitelman et al. 2009). The mechanism by which the anti-CD3 antibodies 

is thought to be having its effect has been shown to be as a result of an induction of 

regulatory T cells, which may play a key role in maintaining tolerance and has been reported 

to be TGFβ-dependent (Cobbold, Castejon et al. 2004; You, Leforban et al. 2007). However 

data does suggest that the anti-CD3 antibody, despite undergoing Fc modification results in 

side effects relating to cytokine release and a transient EBV viral reactivation (Keymeulen, 

Vandemeulebroucke et al. 2005; Chatenoud and Bluestone 2007). Interestingly none of the 

anti-CD8 antibodies tested in chapter 4 induced any cytokine release which may make them 

desirable.  

 

Previous studies have also examined the use of both anti-CD4 and anti-CD8 antibodies in 

therapeutic design for T1D. These studies have pointed to the use of these antibodies to 

induce tolerance and halt diabetes onset (Phillips, Parish et al. 2009; Yi, Diz et al. 2012). 

Similarly to the use of anti-CD3 antibodies, non-depleting anti-CD4 antibodies have been 

shown to induce regulatory T-cells. Whereas the tolerance which is induced by the use of 

non-depleting anti-CD8 antibodies is dependent on IL-10 (Parish, Bowie et al. 1998; Parish 

and Cooke 2005; Phillips, Parish et al. 2009). In contrast to previous studies which have 

alluded to a role for anti-CD8 antibodies in the induction of tolerance, it is important to note 

that the study described in this chapter is aimed at examining the ability of anti-CD8 

antibodies to preferentially block autoreactive CD8
+
 T-cell activation which could be a more 

targeted means of controlling disease symptoms. 
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There are currently treatments that are available and approved for the treatment of 

autoimmune and inflammatory diseases, or those in the later stages of development. These 

agents usually rely on the induction of profound and/or long-lasting immunosuppression and 

their effect can be achieved by global depletion of entire cell types or lineages in the 

periphery. These agents can also induce immunosuppression by preventing peripheral 

leukocyte trafficking and transport in and out of lymphoid organs and also target the systemic 

activity of cytokines involved in disease pathogenesis (Dinarello 2010; Rammohan and 

Shoemaker 2010; Steward-Tharp, Song et al. 2010). These drugs have been shown to possess 

good efficacy, however the side effects can be quite adverse. Anti-CD3 treatment in T1D is 

an example where the side effects of the drug could potentially outweigh the benefits of the 

drug where severe reactivation of latent viral infections would be clinically deleterious. 

 

The data provided here has highlighted that targeting CD8 can preferentially inhibit 

pathogenic CD8
+
 T-cell responses directed against clinically relevant autoreactive self-

determinants and leave cellular immunity to anti-viral and microbial pathogens largely intact. 

This could also be explored further using agents that target the CD8 binding site on MHCI 

such as soluble versions of the inhibitory Immunoglobulin like transcript (ILT2) receptor. 

High affinity forms of the soluble ILT2 receptor have been manufactured by phage display 

and have been shown to interact with MHCI with extremely high affinities at nanomolar 

levels and have been shown to inhibit CD8
+
 T-cell activation (Moysey, Li et al. 2010). It 

would be of interest to study the effect that this molecule has in the context of both 

autoreactive and anti-viral CD8
+
 T-cells used in this study as this may overcome any issues 

of having to generate an antibody molecule for use in-vivo (Moysey, Li et al. 2010).  To fully 

examine this strategy of using engineered molecules as previously described, the effect these 
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molecules pose on cancer immune-surveillance, thymic selection and also on naive T-cells in 

the periphery would have to be fully examined.  

 

It would also be useful to study the effect of anti-CD8 antibodies in the NOD mouse system 

examining the effect of both blocking and enhancing phenotypes of anti-CD8 antibodies in-

vivo. Interestingly, the distinct epitope required for binding for anti-CD8 antibodies may 

potentially underlie future directed therapy targets. Blocking antibodies appear to bind to a 

site which is distant and distinct from the activatory antibody binding site in both the murine 

and human systems (Figure 4.15) (Sanders, Fox et al. 1991, Devine, Hodsdon et al. 2004). 

Further studies of both epitope regions may allow for design of therapies aimed at either 

enhancing or inhibiting CD8
+
 T-cell function and may uncover further heterogeneity of these 

regions, similarly to those seen in the murine system (chapter 4). 

 

In summary, I have shown that: (i) as the TCR/pMHCI affinity increases, the level of CD8 

dependency exhibited by the CD8
+
 T-cell clone decreases; (ii) anti-CD8 antibodies can be 

used to block the binding of cognate tetramer to CD8
+
 T-cells and the inhibition is more 

dramatic when the CD8
+
 T-cell clone becomes increasingly CD8 dependent; (iii) inhibition of 

tetramer staining using anti-CD8 antibodies can be titrated to low levels ensuring highly CD8 

dependent CD8
+
 T-cells are inhibited whilst highly CD8 independent CD8

+
 T-cells are not 

impaired; and, (iv) an optimal concentration of blocking anti-CD8 antibody can completely 

inhibit the activation and epitope specific killing of the highly CD8-dependent 1E6 CD8
+
 T-

cell clone, an autoreactive T1D specific CD8
+
 T-cell. This concentration of antibody was 

shown to have a no effect on highly CD8-independent pathogen specific CD8
+
 T-cell clones. 
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My results show that CD8-blockade can specifically inhibit activation of autoimmune CD8
+
 

T-cells. This approach therefore warrants further investigation as a potential therapeutic tool. 
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CD8 CAN RE-ARRANGE THE RELATIVE POTENCIES OF EACH POTENTIAL 
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6.1 Introduction 

6.1.1 CD8 focussing: a novel role for CD8 in T-cell activation? 

Previous results chapters have underlined the potent ability of CD8 to modulate the antigen 

specific CD8
+
 T-cell response, especially chapter 3 where a super-enhanced interaction with 

CD8 was shown to result in non-specific activation. Multiple roles for CD8 in CD8
+ 

T-cell 

activation have been demonstrated. CD8 has been shown to modify the affinity of the 

TCR/pMHCI interaction, in addition to modulating the triggering threshold of the TCR 

(Gakamsky, Luescher et al. 2005). A previous mathematical analysis of these modulatory 

effects predicted that CD8 could alter the functional avidity of a CD8
+ 

T-cell for its agonists 

and act to re-arrange the relative potencies of each of its potential agonists (van den Berg, 

Wooldridge et al. 2007). If true then this would allow CD8
+ 

T-cells to increase their 

functional sensitivity for one agonist, while decreasing their functional sensitivity for other 

potential agonists. This potential “focussing mechanism” could be extremely important 

because it would allow each CD8
+ 

T-cell to centre recognition on a particular subset of 

potential agonist ligands.  

 

6.1.2 CD8
+ 

T-cells are inherently crossreactive 

Early studies suggested that individual TCRs only recognize a single pMHCI. However, 

studies published in the 1990s demonstrated that T-cells can recognize several peptides 

(Wraith, Bruun et al. 1992; Bhardwaj, Kumar et al. 1993; Reay, Kantor et al. 1994; Evavold, 

Sloan-Lancaster et al. 1995; Wucherpfennig and Strominger 1995; Hemmer, Fleckenstein et 

al. 1997; Kersh, Shaw et al. 1998). Since then, observations of TCR degeneracy have 

continued to accumulate in the literature (Hausmann, Martin et al. 1999; Kissler, Anderton et 
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al. 2002; Crawford, Huseby et al. 2004; Lee, Stewart-Jones et al. 2004; Nino-Vasquez, 

Allicotti et al. 2004; Kan-Mitchell, Bajcz et al. 2006; Dai, Huseby et al. 2008; Ishizuka, 

Grebe et al. 2009). The majority of previous studies of TCR degeneracy utilized small 

peptide sets (2-200) or estimates based on peptide library screening where it is necessary to 

make assumptions about individual peptide concentrations. A recent study examined ~4000 

peptides, although this number still only represents an extremely small portion of the entire 

peptide universe. Despite the caveats of previous studies, two independent studies suggested 

that individual MHCII-restricted TCRs can recognize ~10
6
 peptides (Hiemstra, van Veelen et 

al. 1999; Maynard, Petersson et al. 2005). Wilson et al suggested that MHCI-restricted TCRs 

might exhibit lower levels of degeneracy (Wilson, Wilson et al. 2004), although, no attempt 

had been made to quantify this. In an attempt to rectify this, a recent study performed a 

comprehensive analysis and demonstrated that a single autoimmune TCR (1E6) can 

recognize over one million different peptide sequences in the context of a single MHCI 

(Wooldridge, Ekeruche-Makinde et al. 2012). Recent data from the laboratory suggests that 

not all MHCI-restricted TCRs recognize one million peptides but for most the number is still 

quite large. This remarkable promiscuity explains how a limited TCR repertoire (~25 million) 

can recognize the multitude of peptides that can be presented by MHCI (~8x10
14

) and is 

therefore essential for the provision of effective CD8
+
 T-cell immunity. 

 

6.1.3 CD8 controls levels of T-cell crossreactivity 

Recent data suggests that CD8
+ 

T-cell crossreactivity is controlled by CD8. Data by 

Wooldridge et al showed that CD8 extends the range of pMHCI ligands that can be seen by 

an individual cell surface bound TCR, thereby ensuring that the peripheral CD8
+ 

T-cell 

repertoire is optimally poised to negotiate the competing demands of responsiveness in the 



Chapter 6 

 

226 

 

face of danger and quiescence in the presence of self (Wooldridge, Laugel et al. 2010). The 

authors used combinatorial peptide library (CPL) screens to assess the levels of 

crossreactivity exhibited by a CD8
+ 

T-cell. In the absence of a pMHCI/CD8 interaction, the 

level of CD8
+ 

T-cell activation by the CPL screens was very minimal. However, on 

increasing the strength of the pMHCI/CD8 interaction, the range of ligands (i.e. number of 

peptides) recognized by an individual TCR was increased. In addition, increasing the strength 

of the pMHCI/CD8 interaction resulted in a change in the pattern of the ligands recognised 

by an individual TCR (Wooldridge, Laugel et al. 2010). This data suggests that CD8 is 

exerting a focussing effect and I intend to examine this effect in more detail during this 

chapter.  

 

6.1.4 Summary and Aims 

TCRs are inherently degenerate recognizing a large number of different peptides. 

Mathematical analysis suggests that CD8 is a key regulator of TCR degeneracy allowing a 

single T-cell to focus on different ligands by adjusting its fine sensitivity to potential 

agonists. This would manifest in the ability of CD8 to re-arrange the relative potencies of 

each of its potential agonists (van den Berg, Wooldridge et al. 2007). I intend to test whether 

such a mechanism exists, using multiple CD8
+
 T-cell clones and multiple altered peptide 

ligands (APLs). I will examine how the strength of the pMHCI/CD8 interaction influences 

the potency of multiple ligands in three different monoclonal systems.  
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6.2 Results 

6.2.1 MHCI mutations that alter the strength of the pMHCI/CD8 interaction 

To study the effect of varying the strength of the pMHCI/CD8 interaction at the cell surface 

on the potency of multiple ligands for an individual TCR, I used a panel of C1R B-cell lines 

stably transfected with mutant MHCI. Each C1R had been previously transfected with MHCI 

molecules that bear mutations in the CD8 binding domain which either abrogate (HLA A2 

227/8KA), retain wild-type properties (HLA A2) (Purbhoo, Boulter et al. 2001), increase 

CD8 binding (HLA A2 Q115E) (Wooldridge, Lissina et al. 2007) or greatly increase CD8 

binding (HLA A2 K
b
) (Wooldridge, Clement et al. 2010) (Figure 6.1). A previous study used 

SPR to demonstrate that these mutations do not affect the strength of the TCR/pMHCI 

interaction (Wooldridge, van den Berg et al. 2005). 

 

6.2.2 Examining the effect that pMHCI/CD8 affinity exerts on functional sensitivity of 

the TCR/pMHCI interaction 

In order to perform a comprehensive study to examine the effect that the strength of the 

pMHCI/CD8 interaction exerts on the functional sensitivity of the TCR/pMHCI interaction, I 

decided to examine three different CD8
+
 T-cell clones: ILA1, MEL5 and 1E6. For each of 

these TCR clonotypes, I selected a panel of peptide ligands which included superagonists, 

cognate ligands and weak agonists for all three monoclonal CD8
+
 T-cell systems (Table 6.1). 

The majority of these agonists were designed using combinatorial peptide library technology 

(Ekeruche-Makinde, Clement et al. 2012). TCR/pMHCI biophysical data was already 

available for some of the peptide ligands and I performed surface plasmon resonance to 

measure the strength of some of the other TCR/pMHCI interactions. It was not possible to  
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Figure 6.1: Mutant MHCI stably transfected into C1R B-cells can be used to alter the 

strength of the pMHCI/CD8 interaction without any affect on TCR/pMHCI binding. 
SPR was used to measure the strength of the pMHCI/CD8 interaction following mutation of 

the CD8 binding site. MHCI mutants were then stably transfected into C1R-B-cells using a 

pcDNA3.1 vector 
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Name MHCI restriction Epitope KD  

(μM) 

ILA1 HLA*A0201 ILAKFLHWL 36
1
 

ILA1 HLA*A0201 ILAKYLHWL 242
1
 

ILA1 HLA*A0201 ILGKFLHRL 16.5 
+ 

2.5
6
 

ILA1 HLA*A0201 ILGKFLHWL 3.7
1
 

MEL5 HLA*A0201 ELAGIGILTV 17 
+
 1

1
 

MEL5 HLA*A0201 ELTGIGILTV 82 
+
 4

2
 

MEL5 HLA*A0201 FATGIGIITV 3 
+
 1

3
 

MEL5 HLA*A0201 ILAGIGILTV nm 

1E6 HLA*A0201 ALWGPDPAAA 278
4
 

1E6 HLA*A0201 AQWGPDFAAV nm
1
 

1E6 HLA*A0201 WQYWPDSMSA nm
1
 

1E6 HLA*A0201 RQWGPDPAAV 14
5
 

1E6 HLA*A0201 YQFGPDFPIA 9
6
 

 

Table 6.1: Biophysical measurements of multiple different TCR/pMHCI interactions in 

three different monoclonal CD8
+
 T-cell systems. Superagonists are shown in red, cognate 

ligands in black and weak agonists in green. 1 - (Laugel, van den Berg et al. 2007), 2 - 

(Clement, Ladell et al. 2011), 3 - (Ekeruche-Makinde, Clement et al. 2012), 4 - (Bulek, Cole 

et al. 2012), 5 - (Knight, Kronenberg et al. 2012), 6 – see Appendix 4, nm = not measured, 

nm
1
 = non-measurable 
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obtain biophysical data for the weak agonists in the 1E6 system because their affinity for the 

TCR is below the level that can be measured by SPR. 

 

I examined the recognition of all peptides in the context of an abrogated, wild type, slightly 

enhanced and greatly enhanced pMHCI/CD8 interaction by ILA1 (Figure 6.2), MEL5 (Figure 

6.3) and 1E6 (Figure 6.4). Activation was measured by both IFN- and MIP-1 ELISA. Dose 

response curves were fitted (with the assistance of Dr Hugo van den Berg, Warwick 

University) to all peptide titration results and pEC50s calculated. The data was then used to 

examine the way in which the pMHCI/CD8 interaction modulates the TCR/pMHCI 

interaction for multiple agonists. 

 

6.2.3 Differential modulation of TCR/pMHCI functional sensitivity by CD8  

Using the curves fitted in Figures 6.2, 6.3 and 6.4, it was possible to calculate the pEC50 for 

all ligands examined. pEC50 is defined as minus 1 x the base 10 logarithm (p) of the 50% 

efficacy concentration (EC50). Therefore a greater functional sensitivity is indicated by a 

larger pEC50 value. Abrogating the pMHCI/CD8 interaction had a significant impact on the 

recognition of all peptide ligands in all three monoclonal CD8
+ 

T-cell systems (ILA1, MEL5 

and 1E6). This is consistent with a previous study which showed that CD8 has a major 

impact on the number of peptide ligands that can be recognized by the TCR (Wooldridge, 

Laugel et al. 2010). When the strength of the pMHCI/CD8 interaction is increased then two 

different effects could be observed. In general, for weak agonists, increasing the strength of 

the pMHCI/CD8 interaction resulted in a steady improvement in functional sensitivity 

(monotone) (Figure 6.5). 
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Figure 6.2: The influence that CD8 exerts on recognition of multiple ligands. (A-P) 6 x 

10
4
 HLA A2 C1R with varying pMHCI/CD8 interactions were pre-incubated with titrated 

APL peptides @ 10
-5

M to 10
-12

M ILAKFLWHWL, ILAKYLWHWL, ILGKLFWRWL and 

ILGKFLWHWL for 1 hour @ 37°C. Excess peptide was removed by washing twice with 

PSG. 3 x 10
4
 ILA1 (hTERT) (residues 540-548) CD8

+
 T-cell clone where then added to each 

sample and incubated for 4 hours @ 37°C. Supernatants were harvested and assayed for MIP-

1β and IFN-γ production by ELISA (RandD Medsystems) and performed according to the 

manufacturer’s instructions. Data is displayed as scaled dose response curves, ●: read-out is 

MIP-1β; ○: read-out is IFN-γ. Assays were performed in duplicate. 
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Figure 6.3: The influence that CD8 exerts on recognition of multiple ligands. (A-P) 6 x 

10
4
 HLA A2 C1R with varying pMHCI/CD8 interactions were pre-incubated with titrated 

APL peptides @ 10
-5

M to 10
-12

M ELAGIGILTV, ELTGIGILTV, FATGIGIITV and 

ILAGIGILTV for 1 hour @ 37°C. Excess peptide was removed by washing twice with PSG. 

3 x 10
4
 MEL5 (Melan-A-residues 26-35) CD8

+
 T-cell clone where then added to each sample 

and incubated for 4 hours @ 37°C. Supernatants were harvested and assayed for MIP-1β and 

IFN-γ production by ELISA (RandD Medsystems) and performed according to the 

manufacturer’s instructions. Data is displayed as scaled dose response curves, ●: read-out is 

MIP-1β; ○: read-out is IFN-γ. Assays were performed in duplicate. 
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Figure 6.4: The influence that CD8 exerts on recognition of multiple ligands.  (A-T) 6 x 

10
4
 HLA A2 C1R with varying pMHCI/CD8 interactions were pre-incubated with titrated 

APL peptides @ 10
-5

M to 10
-12

M ALWGPDPAAA, AQWGPDFAAV, WQYWPDSMSA, 

RQWGPDPAAV, YQFGPDFPIA for 1 hour @ 37°C. Excess peptide was removed by 

washing twice with PSG. 3 x 10
4
 1E6 (PPI15–24) CD8

+
 T-cell clone where then added to each 

sample and incubated for 4 hours @ 37°C. Supernatants were harvested and assayed for MIP-

1β and IFN-γ production by ELISA (RandD Medsystems) and performed according to the 

manufacturer’s instructions. Data is displayed as scaled dose response curves, ●: read-out is 

MIP-1β; ○: read-out is IFN-γ. Assays were performed in duplicate. 
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In contrast, for superagonists, increasing the strength of the pMHCI/CD8 interaction resulted 

in an increase followed by a decrease in functional sensitivity (non-monotone) (Figure 6.5). 

These trends indicate that the relative distances between the pEC50 values for the various 

ligands to a given CD8
+
 T-cell clone can be modulated through CD8 (Figure 6.6). This was 

particularly pronounced in the MEL5 system where CD8 was able to mediate a complete 

change in the order of ligand potency. In the context of a wild-type pMHCI/CD8 interaction, 

the order of ligand potency was ILAGIGILTV > FATGIGIITV > ELAGIGILTV > 

ELTGIGILTV (Figure 6.5). However, in the context of a super-enhanced interaction with 

CD8 the order of ligand potency was ELAGIGILTV > ILAGIGILTV > ELTGIGILTV > 

FATGIGIITV, which is entirely different (Figure 6.5). The data indicate that CD8 has a 

differential effect on the recognition of peptide ligands and is capable of re-arranging the 

relative potencies of each potential agonist.  
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Figure 6.5: Differential modulation of TCR/pMHCI functional sensitivity by CD8. (A-

C) Using data generated from Figures 6.2, 6.3 & 6.4, pEC50 values of each ligand used in 

(A) ILA1, (B) MEL5 and (C) 1E6 CD8+ T-cell clone were plotted against each stably 

transfected C1R A2 B-cells each with varying pMHCI/CD8 affinities. 
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Figure 6.6: Curve representing the dependence of functional sensitivity on the 

TCR/pMHCI off-rate. The stabilising effect of the pMHCI/CD8 interaction may render a 

weak agonist (A) into a suboptimal (B) or even optimal agonist (C). A suboptimal agonist (B) 

may become optimal (C) and subsequently suboptimal again (D) as the strength of the 

pMHCI/CD8 interaction further increases. A ligand that is already optimal in the absence of 

the pMHCI/CD8 interaction (C) may become suboptimal (D) or weaker (E). 
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6.3 Discussion 

CD8
+
 T-cells are inherently crossreactive recognizing a large range of different peptide 

ligands. It is well established that CD8 can enhance the sensitivity of antigen recognition by a 

range of different mechanisms and it is assumed that CD8 would enhance the recognition of 

all potential ligands for an individual TCR to the same extent. However a recent 

mathematical analysis predicted that CD8 may exert a differential effect on the functional 

sensitivity of individual ligands. This is expected to manifest as a "focussing effect" whereby 

CD8 could act to re-arrange the relative potencies of the ligands recognized by an individual 

TCR. In this chapter I examined the effect that altering the strength of the pMHCI/CD8 

interaction exerts on the recognition of multiple ligands in three different monoclonal CD8
+
 

T-cell systems. I demonstrated that in all three systems, CD8 acts to differentially modulate 

the functional sensitivity of the TCR/pMHCI interaction. The data presented here highlights a 

novel role for CD8 in T-cell activation.  

 

My findings suggest that although the TCR can recognize multiple different ligands, CD8 

acts to focus the TCR onto a range of ligands which might be an important mechanism for 

avoiding autoreactivity. This focus is likely to be dynamic i.e. CD8 can alter the range of 

ligands that are seen at high functional sensitivity at any one time. Understanding this could 

be useful therapeutically in order to refocus the CD8
+
 T-cell response away from targeting 

self pMHCI. Here I have only examined the effect of increasing the strength of the 

pMHCI/CD8 interaction but other mechanisms, such as alterations in the expression level of 

CD8 at the cell surface, may have a similar effect. This CD8 focussing effect may control and 

optimize the degree of crossreactivity and antigen sensitivity of CD8
+
 T-cells at various 

stages of T-cell development. Mechanisms that regulate CD8, both during thymic education 
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and in the periphery, include transcriptional inhibition of CD8 expression in double-positive 

thymocytes (Bosselut, Guinter et al. 2003), selective co-receptor internalization following 

antigenic stimulation (Maile, Siler et al. 2005), switching to the expression of the CD8aa 

isoform (reviewed in (Gangadharan and Cheroutre 2004)), changes in the pattern of 

glycosylation (Daniels, Devine et al. 2001; Moody, Chui et al. 2001; Daniels, Hogquist et al. 

2002), and cytokine signals that transcriptionally tailor CD8 co-receptor expression (Park, 

Adoro et al. 2007). It is likely that these mechanisms work together to fine-tune the degree of 

functional crossreactivity at particular stages of development, facilitating selection of the 

TCR repertoire in the thymus while restraining deleterious activation in the periphery. 

 

In addition, I observed that CD8 can limit the functional sensitivity of the TCR/pMHCI 

interaction, i.e. CD8 can control the kinetic window of TCR/pMHCI activation where 

optimal ligands can become sub-optimal ligands. When the pMHCI/CD8 interaction is 

greatly increased in conjunction with strong TCR/pMHCI agonists, CD8
+
 T-cell activation 

decreases (Figures 6.2, 6.3 and 6.4). This decrease in CD8
+
 T-cell activation is only observed 

when both the pMHCI/CD8 and TCR/pMHCI interactions are increased above wild-type 

levels. This suggests that CD8 can limit the kinetic window of T-cell activation which may be 

important in preventing unwanted T-cell activation. This effect was seen in all CD8
+
 T-cell 

systems restricted by different epitopes (Figure 6.5). 

 

The precise mechanism to explain how CD8 focussing is controlling CD8
+
 T-cell sensitivity 

is unknown. Interestingly, increasing the pMHCI/CD8 interaction by >10 fold has been 

previously shown to maximally stabilise the TCR/pMHCI interaction (Wooldridge, van den 

Berg et al. 2005) This >10 fold increase may interfere with the rapid TCR/pMHCI 
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dissociation required to allow serial engagement of the TCR, which is thought to be critical 

for CD8
+
 T-cell activation (Valitutti, Muller et al. 1995). Alternatively, alterations in the 

kinetics of the pMHCI/CD8 interaction may have significant affects on CD8
+
 T-cell 

activation. Data suggests that recruitment of CD8 to the same pMHCI as the TCR can 

enhance synergistic adhesion which amplifies ligand discrimination (Jiang, Huang et al. 

2010). Yachi et al used FRET to show that in the presence of CD8, the TCR can specifically 

distinguish between structurally similar peptides via the kinetics of CD8 recruitment to the 

TCR (Yachi, Ampudia et al. 2006). The kinetics of the pMHCI/CD8 interaction (Koff 18s
-1

) 

are considerably faster than that measured for agonist TCR/pMHCI interactions (Koff = 0.01-

0.63s
-1

). As a result there is the potential for many pMHCI/CD8 interactions to take place 

during a single TCR/pMHCI interaction. This may be critical for optimal CD8
+
 T-cell 

activation. Extreme increases in the strength of the pMHCI/CD8 interaction may interfere 

with the rapid association/dissociation of CD8 with pMHCI engaged by the TCR therefore 

compromising the serial recruitment of signalling molecules to the TCR/CD3 complex and 

prevent the TCR from recognising self-reactive peptides. 

 

In summary, I have shown that CD8 can exert a differential effect on TCR/pMHCI functional 

sensitivity. This can result in a re-arrangement of the relative potencies of the ligands for an 

individual TCR and can also limit the functional sensitivity of the TCR/pMHCI interaction 

where optimal ligands can become sub-optimal ligands. This study highlights the significance 

of CD8 in ensuring that a CD8
+
 T-cell cannot become hyper-activated by focussing the CD8

+
 

T-cell on ligands that bind within specific kinetic window. The data presented here supports 

the theory that CD8 is playing a significant role in the TCR triggering event and influences 

the kinetic parameters of CD8
+
 T-cell activation, which has important implications and 
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potential disease relevance. It would be very interesting to study the effect of CD8 focussing 

in models where natural polymorphisms in the MHCI binding domain exist that may enhance 

or even abrogate pMHCI/CD8 affinity. The phenomenon described here could also be further 

studied by altering the levels of both CD8αα and CD8αβ expression at the cell surface and 

analysing the effect that exerts on the recognition of a range of APL. This is discussed further 

in chapter 7. 
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7 Discussion 

In this thesis, I have furthered our knowledge of the role that CD8 plays in T-cell activation 

and identified CD8 as a potential target for therapy during autoimmune disease. I have also 

highlighted a novel "focussing" role for CD8 in controlling CD8
+
 T-cell recognition of 

pMHCI antigen.  

 

7.1 Increased knowledge of the role that CD8 plays in T-cell activation  

7.1.1 The role of the low solution binding affinity of pMHCI/CD8 

To date no study has investigated the biological significance of the low solution binding 

affinity of the pMHCI/CD8 interaction. In Chapter 3 I investigated the effect of increasing 

the strength of pMHCI/CD8 interaction by 15 fold. The pMHCI/CD8 interaction is 

characterized by very low solution binding affinities (KD ~146 μM) and rapid kinetics (Wyer, 

Willcox et al. 1999; Gao, Willcox et al. 2000). In stark contrast, the TCR/pMHCI interaction 

can be more than 100-fold stronger than the pMHCI/CD8 interaction (KD range for agonists 

from 0.13 μM, the strongest natural TCR/pMHCI interaction measured to date) and exhibits 

considerably slower kinetics (Davis, Boniface et al. 1998; Cole, Pumphrey et al. 2007; 

Laugel, van den Berg et al. 2007; Varela-Rohena, Molloy et al. 2008; Stone, Chervin et al. 

2009). It seems extremely unlikely that the striking biophysical characteristics of the 

pMHCI/CD8 interaction have occurred by accident. In Chapter 3 I demonstrated that there is 

a complete loss of T-cell specificity when the pMHCI/CD8 interaction is increased by 15 

fold. This data suggests that CD8 has specifically evolved to operate at very low solution 

affinities and the low solution binding affinity is essential for the maintenance of CD8
+
 T-cell 

antigen specificity and T-cell homeostasis. It has been previously shown that the pMHC/CD8 
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interaction retained the majority of its ability to augment antigen recognition by CD8
+
 T-cells 

even when this interaction was reduced to an extremely low affinity (KD <500 μM). This 

result is relevant to the pMHCII/CD4 interaction which still augments antigen recognition 

despite being extremely weak (KD <1000 μM) (Hutchinson, Wooldridge et al. 2003). My 

results suggest that T-cell co-receptors have evolved to function at uniquely low affinities in 

order to ensure that the TCR/pMHC interaction dominates TCR/pMHCI/CD8 or 

TCR/pMHCII/CD4 interactions at the cell surface thereby upholding antigen specificity. 

 

7.1.2 The use of anti-CD8 antibodies to activate CD8
+
 T-cells 

Data from Chapter 3 indicated that an increase in pMHCI/CD8 interaction by 15 fold results 

in a complete loss of T-cell specificity. This result suggested that it might be possible to 

induce T-cell activation by cross-linking CD8 and the TCR using anti-CD8 antibodies. In 

Chapter 4 I examined the potential for anti-CD8 antibodies to induce T-cell activation. Anti-

CD8 antibodies have been used widely to investigate the role of CD8 in CD8
+
 T-cell 

activation. Many studies have concluded that anti-CD8 antibodies can inhibit the 

TCR/pMHCI interaction (MacDonald, Glasebrook et al. 1982; Janeway 1992), whereas 

contrasting studies have concluded that anti-CD8 antibodies can enhance TCR/pMHCI 

interaction and can even activate CD8
+
 T-cells (Veillette, Zuniga-Pflucker et al. 1989; 

Tomonari and Spencer 1990). I decided that it was important to address these contradictory 

findings because of the widespread use of anti-CD8 antibodies in CD8 biology. Therefore, I 

assembled a panel of seven different monoclonal anti-human CD8 antibodies and four anti-

mouse human CD8 antibodies. This is the first time that a comprehensive panel of anti-CD8 

antibodies have been compared in the same study. Interestingly, the data showed that 

multiple functional phenotypes exist within the anti-CD8 antibodies and that it is possible to 
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induce CD8
+
 T-cell activation independently of the TCR/pMHCI interaction. This correlated 

with the ability of one antibody (OKT8) to enhance TCR/pMHCI tetramer binding. 

Conversely anti-CD8 antibodies can also block TCR/pMHCI binding suggesting that both the 

enhancing and inhibitory effects of these antibodies are by the same mechanism. Interestingly 

the enhancing antibody OKT8 induces CD8 mediated ligation with release of chemokines 

and cytotoxicity in the absence of cytokine release. This may further highlight the importance 

of the function of CD8 in CD8
+
 T-cell signalling. 

 

In summary, multiple phenotypes exist across anti-CD8 antibodies. The effects observed 

using these antibodies may highlight the potential for targeting different binding sites on CD8 

to design therapeutic agents that either block or enhance T-cell activation. My study has 

identified and classified multiple phenotypes across a panel of anti-CD8 antibodies. The 

differing effects varied according to the antibody clone under investigation and suggest that 

caution should be taken when interpreting studies using these reagents.  

 

7.1.3 Identification of a novel CD8 “focussing” mechanism 

CD8 has been shown to play a major role in controlling the activation threshold of individual 

T-cells. The data I have shown in Chapter 6 reveals a novel mechanism termed “CD8 

focussing” where CD8 controls the levels of activation of individual TCRs by identifying a 

specific kinetic window which ensures that a CD8
+ 

T-cell cannot become over activated and 

therefore restricts subsequent non-specific activation. Here I used multiple CD8
+
 T-cell 

clones with APLs, each with different binding affinities to the TCR, in conjunction with C1R 
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B-cell lines which had been stably transfected with mutant MHCI that enhance or abrogate 

pMHCI/CD8 binding.  

 

I found that CD8 can exert a differential effect on TCR/pMHCI functional sensitivity i.e. 

CD8 can act to re-arrange the relative potencies of the ligands for an individual TCR. This is 

the first time this has been presented and also supports mathematical modelling by van den 

Berg et al (van den Berg, Wooldridge et al. 2007) who predicted that a T-cell can alter its 

functional avidity for its agonists and rearrange the relative potencies of each of its potential 

agonists. I have demonstrated that this is indeed the case and showed that a T-cell can 

specifically increase its sensitivity for one agonist while decreasing its sensitivity for other 

potential ligands. This focussing mechanism means that TCR degeneracy would be inherently 

dynamic, allowing each TCR to have a wide range of agonists while avoiding 

autorecognition. The precise mechanism to explain CD8 focussing is still unknown and 

would require further study. One potential mechanism may be due to an increase in the 

optimal dwell-time of ligands to serially trigger TCRs. CD8 can increase the dwell-time by 

approximately 2.2 fold. Thus CD8 may be increasing the dwell-time of a weak ligand and 

increase it to optimal dwell-time levels. If ligands that are already near optimal, then an 

increase in dwell-time may inhibit the ability of these ligands to serially trigger TCRs. This 

study moves to highlight the importance of CD8 in the T-cell triggering event and disease 

relevance which may lead to improved therapy design. 

 

Taken together, the data provided here highlights the importance of CD8 in homeostatic 

CD8
+
 T-cell activation. I have demonstrated that the low solution binding affinity of the 
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pMHCI/CD8 interaction is essential for the maintenance of T-cell specificity. CD8
+
 T-cells 

can become non-specifically activated independently of the TCR/pMHCI interaction by 

super-enhancing the pMHCI/CD8 and also by the use of anti-CD8 antibodies. In addition, I 

have identified a novel function termed "CD8 focussing" where CD8 can act to re-arrange the 

relative potencies of the ligands recognized by an individual TCR.  

 

7.2 The therapeutic potential of targeting CD8   

The design of efficient and safe therapies that target T-cell activity faces major challenges. 

On the one hand, targeting the entire T-cell compartment threatens harmful 

immunosuppression. On the other hand, specific T-cell targeting approaches require detailed 

knowledge of the putative self-antigens that drive autoimmune pathogenesis, which is 

presently an unrealistic goal considering the tremendous diversity of potential T-cell antigens 

and the vast allelic variability within the human MHC locus.  

 

Recent advances have significantly improved the understanding of the role that CD8 plays 

during antigen recognition. Previously, it was thought that CD8 involvement was critical in 

the majority of CD8
+
 T-cell responses. Because of this, a number of studies have been 

performed to examine the effect of blocking the pMHCI/CD8 interaction using soluble CD8 

variants (Sewell, Gerth et al. 1999; Cole, Rizkallah et al. 2007), antibodies (Wooldridge, 

Scriba et al. 2006) and other small molecules (Choksi, Jameson et al. 1998; Kern, Hussey et 

al. 1999), However, it is now appreciated that CD8 does not contribute equally in all CD8
+
 T-

cell responses in that the degree of CD8-dependence is inversely related to the strength of the 

TCR/pMHCI interaction (Holler, Holman et al. 2000; Holler and Kranz 2003; Laugel, van 
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den Berg et al. 2007; Wooldridge, Laugel et al. 2010). In fact, detailed biochemical and 

cellular investigations have established that the CD8 co-receptor is essential for the 

recognition of weak, low affinity ligands but dispensable for potent, high affinity ligands 

(Holler, Holman et al. 2000; Holler and Kranz 2003). This knowledge holds translational 

promise, especially in the setting of autoimmunity where TCR/pMHCI interactions are 

generally very weak (Bridgeman, Sewell et al. 2011; Bulek, Cole et al. 2012).  

 

I hypothesised that CD8 blockade should enable the selective targeting of weak TCR/pMHCI 

interactions without affecting high affinity cognate TCRs. In support of this idea, 

accumulated evidence, suggests that self-reactive (autoimmune) CD8
+
 T-cells, bear weaker 

binding TCRs to cognate ligand compared to non-self and alloreactive CD8
+
 T-cells (van der 

Merwe and Davis 2003; Laugel, Boulter et al. 2005; Cole, Pumphrey et al. 2007; Macdonald, 

Chen et al. 2009; Cole, Edwards et al. 2010; Bulek, Cole et al. 2012). Therefore, therapeutic 

targeting of CD8 may be useful in the setting of autoimmune diseases including type-1 

diabetes (Skowera, Ellis et al. 2008; Wong, Siew et al. 2008; Faustman and Davis 2009), 

multiple sclerosis (Friese and Fugger 2009), vitiligo (van den Boorn, Konijnenberg et al. 

2009), neurodegenerative diseases such as certain paraneoplastic syndromes (Darnell and 

Posner 2003), Hashimotos throiditis, autoimmune myocarditis and autoimmune hepatitis 

(Walter and Santamaria 2005).  

 

7.3 Blockade of CD8
+
 T-cell function using anti-CD8 antibodies 

The results in Chapter 4 demonstrate that it is possible to use anti-CD8 antibodies to block 

pMHCI tetramer binding at the cell surface. Importantly it has long been known that anti-
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CD8 antibodies could be used to block the activation of multiple CD8
+
 T-cells (MacDonald, 

Glasebrook et al. 1982). However no study incorporated the use of these blocking antibodies 

in a setting where high levels of CD8-dependency are important. Indeed it has been shown 

that very low TCR/pMHCI binding affinities characterised by KD values >100-200 μM are 

entirely CD8-dependent. These KD values are found to be characteristic of autoreactive 

TCRs. In this thesis, I demonstrated that anti-CD8 antibodies efficiently block the activation 

of CD8
+
 T-cells characterised by low affinity TCR/pMHCI interactions. I then went on to 

show that anti-CD8 antibodies can be used to inhibit the activation of a diabetogenic CD8
+
 T-

cell clone. The effect of the anti-CD8 antibodies is less profound if TCR/pMHCI binding 

affinities are <30 μM. This suggests that anti-CD8 antibodies could be used as a direct 

therapeutic agent in autoimmune disorders without compromising CD8
+
 T-cells that 

recognize viral or tumour targets. 

 

In this thesis I have studied a strategy to block autoreactive T-cell activation using antibodies. 

This is in contrast to the use of antibodies to induce tolerance which has been studied in a 

type-1 diabetes setting. Diabetes onset has been shown to be halted in the NOD mouse using 

non-depletive anti-CD4 and anti-CD8 antibodies (Phillips, Parish et al. 2009). There has also 

been extensive data highlighting the use of anti-CD3 antibodies in the study of type-1 

diabetes. Interestingly anti-CD3 antibodies have been shown to reverse diabetes onset in 

NOD mice and was the initial basis for the use of this antibody in human clinical trials 

(Chatenoud, Thervet et al. 1994; Herold, Hagopian et al. 2002; Keymeulen, 

Vandemeulebroucke et al. 2005). Indeed in human studies, the use of anti-CD3 antibodies has 

been shown to increase islet β cell function by up to two years and can increase insulin 

production (Herold, Gitelman et al. 2009). It is thought that this is due to the induction of 
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regulatory T-cells, which may play a key role in maintaining tolerance and have been 

reported to be TGFβ-dependent (Cobbold, Castejon et al. 2004; You, Leforban et al. 2007). It 

will be interesting to examine the pros and cons of blocking versus tolerance strategies in 

future studies. 

 

7.4 Future prospective studies 

7.4.1 Identification of a pMHCI/CD8 KD threshold for non-specific activation 

In Chapter 3 I demonstrated that increasing the strength of the pMHCI/CD8 interaction by 

approximately 15 fold (KD 9.4 μM) results in the T-cell becoming activated independently of 

the TCR/pMHCI interaction and subsequently a loss in CD8
+
 T-cell specificity. Therefore 

between a KD of 9.4 and 98 μM there may exist a threshold of pMHCI/CD8 affinity where 

the increase in this interaction switches from being advantageous to being detrimental in 

terms of CD8
+
 T-cell specificity. It would be of great importance to identify this threshold 

level in further study of CD8 in CD8
+
 T-cell activation. This may allow for a further 

understanding of the kinetics of the pMHCI/CD8 interaction and its potential implications in 

TCR/pMHCI specificity and activation. 

 

7.4.2 Identifying the precise mechanism by which anti-CD8 antibodies elicit CD8
+
 T-cell 

effector function 

As discussed in Chapter 4, multiple phenotypes exist in anti-CD8 antibodies (both human and 

mice). The precise mechanism by which each phenotype is exerted is still conjecture. To 

definitively assess the molecular interaction of the anti-CD8 antibodies at the cell surface, 

both fluorescence resonance energy transfer FRET and also bioluminescence resonance 
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energy transfer BRET techniques can be used. FRET can be performed by microscopy to 

quantify the extent and kinetics of molecular interactions between fluorophore-tagged 

proteins within  sub-cellular regions such as the immunological synapse (Zal, Zal et al. 2002). 

Therefore FRET can be used to visualise differences in the TCR/pMHCI/CD8 interaction. 

The introduction of anti-CD8 antibodies into this system would help to understand the 

mechanism of action for each anti-CD8 antibody tested in this thesis, most notably those that 

both enhance and inhibit the TCR/pMHCI interaction. Another way to study this interaction 

is using BRET which works on the similar premise to FRET however uses bioluminescent 

markers instead of fluorescence, increasing the stability of the interaction which becomes 

more suitable for protein-protein interactions (Pfleger, Seeber et al. 2006). 

 

7.4.3 Altering CD8 expression levels at the cell surface 

Data from Chapter 6 highlighted a potential new role for CD8 in controlling the window of 

ligands that are available to a TCR. However, these experiments were conducted using MHCI 

mutations with a varied interaction with CD8. It is more likely that in-vivo this focussing 

effect is achieved by altering the cell surface levels of CD8. It has been shown that CD8 

levels at the cell surface are very dynamic and change during the course of an immune 

response. It will be important to construct a system where levels of CD8 can be altered in 

order to repeat the study of APL recognition.  

 

7.4.4 Solving the human CD8αβ heterodimer crystal structure 

To date, a soluble human CD8αβ heterodimer has yet to be assembled. This is mainly due to 

the preference of human CD8α to homodimerise during manufacture. If this problem was 
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addressed and solved then this would allow for biophysical data for the human heterodimer to 

be determined for the first time. Murine studies concluded that CD8αα and CD8αβ bind 

murine pMHCI with similar affinity (Sun and Kavathas 1997) (Arcaro, Gregoire et al. 2001; 

Wang, Natarajan et al. 2009). However observations made by Chang and colleagues after 

studying the crystal structures of murine CD8αα and CD8αβ highlighted important 

differences that could lead to subtle binding differences to MHCI (Chang, Tan et al. 2005). 

Jiang and colleagues confirmed that the murine CD8αα and CD8αβ do bind to MHCI with 

similar affinity, though indeed subtle differences were noted in the affinity of the interaction 

(Wang, Natarajan et al. 2009).  

 

It is possible that the binding of CD8αα and CD8αβ to the MHCI may be different in the 

human system. The average murine pMHCI/CD8 interaction is approximately 5 times as 

strong as the human pMHCI/CD8 interaction, i.e. murine pMHCI/CD8 KD ~ 30µM, whereas 

human pMHCI/CD8 KD ~ 146µM as measured by SPR (Purbhoo, Boulter et al. 2001). These 

differences observed in the murine CD8αα and CD8αβ binding affinity to pMHCI may 

translate into the human system. It would also be of interest to study the differences in 

binding interactions using the newly developed 2D micropipette adhesion frequency assays 

(Jiang, Huang et al. 2010).  

 

Another advantage in successfully manufacturing soluble CD8αβ would allow for crystal 

structures and co-crytsal structures of CD8αβ with varying allelic pMHCI, which would 

provide an interesting insight as to the exact orientation of binding. This could potentially 

allow for designed therapies based on structural information. It would also be of interest to 
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solve the co-crystal structure of both enhancing and inhibitory anti-CD8 antibodies to 

pMHCI/CD8αα/αβ. This would help to visualise direct molecular interactions between the 

antibody and CD8; thereby facilitating the design of immune based therapies (Shore, Issafras 

et al. 2008). 

 

7.4.5 Developing novel therapeutics that inhibit the pMHCI/CD8 interaction 

My preliminary experiments suggest that the phenotype of CD8 antibodies might be 

determined by the binding site of the epitope. Therefore it may be possible to design 

therapeutics that target specific sites on CD8 in order to achieve either inhibitory or 

activatory effects. The enhancing effects that are seen by the antibody clone OKT8 may be 

due to the position that this antibody binds. Indeed Sanders et al identified that OKT8 binds 

to a distinct site compared to anti-CD8 antibodies with an inhibitory phenotype (Figure 4.15) 

(Sanders, Fox et al. 1991). Further studies may allow for design of therapies aimed at either 

enhancing or inhibiting CD8
+
 T-cell function and may uncover further heterogeneity of these 

regions as seen in the murine system (Chapter 4). 

 

The use of antibodies in therapy is dramatically on the rise, therefore the timing of this study 

is very significant. By the late 1990s many monoclonal antibodies were in advanced clinical 

development and as of 2004, there were 15 monoclonal antibodies licensed for clinical use 

and only one licensed for use in an infectious disease (Rous sarcoma virus (RSV) infection) 

as reviewed in (Casadevall, Dadachova et al. 2004). However as of 2010 more than 30 mAbs 

are licensed for therapy covering a large range of pathologies including oncogenic and 

inflammatory disorders with many more antibodies in clinical trials including 26 at Phase III 
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as reviewed in (Beck, Wurch et al. 2010) indicating a dramatic increase in the use of 

antibodies as therapeutic agents. 

 

7.5 Concluding Remarks 

To date there are studies that suggest that CD8 is not essential for CD8
+
 T-cell activation (as 

reviewed in (van der Merwe and Dushek 2011). Recent studies have suggested that CD8 has 

important implications in controlling T-cell homeostasis and is essential in controlling 

TCR/pMHCI stability and T-cell crossreactivity (Wooldridge, van den Berg et al. 2005; 

Wooldridge, Laugel et al. 2010). This thesis has further demonstrated the need for CD8 in 

controlling T-cell specificity, identified CD8 as a potential target for immune based therapies 

and identified a novel potential role for CD8 in controlling the specificity of ligands that a T-

cell can recognise. Taking all of these findings together, it is clear that CD8 is playing a 

critical role in T-cell activation and the findings of this thesis would definitely warrant further 

study of CD8. This would allow for the potential modulation of CD8 as a therapeutic target in 

T-cell responses. 
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MHC Class I Molecules with Superenhanced CD8 Binding
Properties Bypass the Requirement for Cognate TCR
Recognition and Nonspecifically Activate CTLs

Linda Wooldridge,*,1 Mathew Clement,*,1 Anna Lissina,* Emily S. J. Edwards,*

Kristin Ladell,* Julia Ekeruche,* Rachel E. Hewitt,† Bruno Laugel,* Emma Gostick,*

David K. Cole,* Reno Debets,‡ Cor Berrevoets,‡ John J. Miles,*,x Scott R. Burrows,x

David A. Price,* and Andrew K. Sewell*

CD8+ CTLs are essential for effective immune defense against intracellular microbes and neoplasia. CTLs recognize short peptide

fragments presented in association with MHC class I (MHCI) molecules on the surface of infected or dysregulated cells. Ag

recognition involves the binding of both TCR and CD8 coreceptor to a single ligand (peptide MHCI [pMHCI]). The TCR/pMHCI

interaction confers Ag specificity, whereas the pMHCI/CD8 interaction mediates enhanced sensitivity to Ag. Striking biophysical

differences exist between the TCR/pMHCI and pMHCI/CD8 interactions; indeed, the pMHCI/CD8 interaction can be >100-fold

weaker than the cognate TCR/pMHCI interaction. In this study, we show that increasing the strength of the pMHCI/CD8

interaction by ∼15-fold results in nonspecific, cognate Ag-independent pMHCI tetramer binding at the cell surface. Furthermore,

pMHCI molecules with superenhanced affinity for CD8 activate CTLs in the absence of a specific TCR/pMHCI interaction to

elicit a full range of effector functions, including cytokine/chemokine release, degranulation and proliferation. Thus, the low

solution binding affinity of the pMHCI/CD8 interaction is essential for the maintenance of CTL Ag specificity. The Journal of

Immunology, 2010, 184: 000–000.

C
D8+ CTLs recognize antigenic determinants in the form of
short peptides derived from endogenous proteins bound to
MHC class I (MHCI) molecules on the surface of target cells

and play a critical role in immune defense against intracellular
pathogens and tumors. Ag specificity is conferred by the TCR, which
interacts with the peptide-binding platform formed by the a1 and a2
domains of MHCI (1, 2). In contrast, the surface gp CD8 binds to in-
variant regions of MHCI and is capable of enhancing cellular sensi-
tivity to Ag by up to six orders of magnitude (3, 4). CD8 mediates this
profound enhancement of Ag sensitivity through a number of distinct
mechanisms: 1) enhancement of the TCR/peptide MHCI (pMHCI)
association rate (5–7); 2) stabilization of the TCR/pMHCI interaction
(8, 9); 3) recruitment of essential kinases to the intracellular side of the

TCR/CD3/z complex (10, 11); and 4) localization of TCR/pMHCI
complexes within specialized membrane microdomains that are en-
riched for early intracellular signal transduction molecules and are
thought to act as privileged sites for TCR-mediated cascade initiation
(12, 13).
TheMHCIbinding site forCD8 is separate from thepeptide-binding

domains that are recognizedby theTCR (2) and this spatial segregation
allows both TCR and CD8 to bind a single MHCI molecule simulta-
neously (14). Thus, CTL recognition ofAg involves the binding of two
receptors (TCR and CD8) to a single ligand (pMHCI), a modus oper-
andi that is unique toabTcell biology. The pMHCI/CD8 interaction is
characterized by very low solution affinities (KD ∼150 mM) and rapid
kinetics (Koff∼18 s21) (15, 16). Indeed, the affinity of the pMHCI/CD8
interaction is even lower than the corresponding values measured for
conventional molecular binding events involved in cell-cell recogni-
tion, such as the CD2/CD48 interaction (KD = 60–90 mM) (15, 17). In
stark contrast, the TCR/pMHCI interaction can be more than 100-fold
stronger than the pMHCI/CD8 interaction (KD range for agonists from
0.14 mM, the strongest natural TCR/pMHCI interaction measured to
date) and exhibits considerably slower kinetics (Koff range for agonists
0.01–1 s21) (1, 6, 18–20). It seems extremely unlikely that the striking
biophysical characteristics of the pMHCI/CD8 interaction have oc-
curred by accident. Indeed, this conclusion is strengthened by the
finding that the pMHCI/CD8 interaction is capable of exerting the vast
majority of its biological function when weakened even further (21),
which suggests thatCD8has specifically evolved to operate at very low
solution affinities.
In this study,we probe the functional significance of the low solution

affinity pMHCI/CD8 interaction using pMHCI molecules with super-
enhanced CD8 binding properties. Notably, we find that pMHCI mol-
eculeswith affinities forCD8 that liewithin the typical range for agonist
TCR/pMHCI interactions (KD∼10mM) are able to activateCTL in the
absence of a specific TCR/pMHCI interaction. Thus, the biophysical
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characteristics of the pMHCI/CD8 interaction are essential for the
maintenance of CTL Ag specificity.

Materials and Methods
Cells

TheCTLclones 003 andNT1and theCTL line 868 are all specific for theHIV-1
p17 Gag-derived epitope SLYNTVATL (residues 77–85) restricted by HLA
Ap0201 (A2 from this point forward) (22, 23). The followingA2-restrictedCTL
clones were also used in this study: 1)Mel13, specific for theMelan-A–derived
epitope ELAGIGILTV (residues 26–35); and 2) ILA1, specific for the human
telomerase reverse transcriptase (hTERT)-derived epitope ILAKFLHWL
(residues 540–548) (6, 24). In addition, the following non-A2–restricted CTL
cloneswere used: 1) theHLAAp6801-restrictedCTLclone c23, specific for the
HIV-1 Tat-derived epitope ITKGLGISYGR (residues 38–48) (25); 2) the HLA
Bp0702-restricted CTL clone KD4, specific for the EBV EBNA3A-derived
epitope RPPIFIRRL (residues 379–387); 3) the HLA Bp0801-restricted CTL
clone LC13, specific for the EBV EBNA3A-derived epitope FLRGRAYGL
(residues 339–347) (26, 27); and 4) the HLA Bp3508-restricted CTL clone
SB27, specific for the EBV BZLF1-derived epitope LPEPLPQGQLTAY (res-
idues 52–64) (28, 29). All CTLs were maintained in RPMI 1640 (Life Tech-
nologies, Rockville, MD) containing 100 U/ml penicillin (Life Technologies),
100 mg/ml streptomycin (Life Technologies), 2 mM L-glutamine (Life Tech-
nologies), and 10% heat inactivated FCS (Life Technologies) (R10) supple-
mented with 2.5% Cellkines (Helvetica Healthcare, Geneva, Switzerland), 200
IU/ml IL-2 (PeproTech, Rocky Hill, NJ) and 25 ng/ml IL-15 (PeproTech).
PBMCs were isolated by standard Ficoll-Hypaque density gradient centrifu-
gation from healthy donor blood. The 293T-CD8a cells were manufactured by
introducing pBullet-human CD8a (30, 31) into 293T cells using vesicular
stomatitis virus-pseudotyped Moloney murine leukemia virus particles. The
293T-CD8a cells were cultured in DMEM (Life Technologies) supplemented
with 20% FCS (Life Technologies), 1 mM sodium pyruvate (Life Technolo-
gies), 100 U/ml penicillin (Life Technologies), 100 mg/ml streptomycin (Life
Technologies), and 2 mM L-glutamine (Life Technologies). Hmy.2 C1R B
(C1R) cells expressing full-length A2 and variants thereof were generated as
described previously (21).

pMHCI tetramers

Tetrameric complexes of wild-type pMHCI molecules and mutants thereof
were produced, stored and used as described previously (9, 21). The following
A2-restricted peptide epitopes were used to refold the pMHCI molecules used
in this study: SLYNTVATL (HIV-1 p17 Gag, residues 77–85), LLFGYPVYV
(HTLV-1 Tax, residues 11–19), GLCTLVAML (EBV BMLF1, residues 259–
267),NLVPMVATV(CMVpp65, residues495–503),ELAGIGILTV(Melan-A,
residues 26–35), and ILAKFLHWL (hTERT, residues 540–548). Tetrameric or
multimeric pMHCI reagents were constructed by the addition of streptavidin
conjugated to PE, quantum dot 605 or quantum dot 800 (Life Technologies) at
the appropriate molar ratios.

Abs

The following mAbs were used in this study: purified anti-human CD8 (clone
DK-25;Dako,Carpinteria,CA),allophycocyanin-conjugatedanti-humanCD8
(cloneRPA-T8;BDBiosciences, San Jose, CA), FITC-conjugated anti-human
CD8 (cloneSK1;BDBiosciences), PerCP-conjugated anti-humanCD8 (clone
SK1; BD Biosciences), PE-conjugated anti-human CD8b (clone 2ST8.5H7;
Beckman Coulter, Fullerton, CA), PerCP-conjugated anti-human CD3 (clone
SK7; BD Biosciences), FITC-conjugated anti-human ab-TCR (clone BMA
031; Serotec, Oxford, U.K.), FITC-conjugated or PE-conjugated anti-human
gd-TCR (clone YB5.B8; BD Pharmingen, San Diego, CA), allophycocyanin-
conjugated anti-human CD56 (clone AF12-7H3; Miltenyi Biotec, Auburn,
CA), FITC-conjugated anti-human CD56 (clone MEM188; Caltag Labora-
tories, Burlingame, CA ), FITC-conjugated anti-A2 (clone BB7.2; Serotec),
and FITC-conjugated anti-human CD107a (clone H4A3; BD Biosciences).
Unless specified, the anti-human CD8 mAbs used in this study target the
a-chain of the coreceptor dimer. Dead cells were excluded from flow cyto-
metric analyses with 7-amino-actinomycin D (7-AAD; BD Biosciences).

Flow cytometry

For pMHCI tetramer staining, 2.5 3 106 PBMC, 5 3 104 CTLs or 2 3 105

293T cells (untransfected or CD8a-transfected) were resuspended in PBS or
FACS buffer (2% FCS/PBS) and stained with pMHCI tetramer at the con-
centrations indicated for 20–30 min at 37˚C. Cells were subsequently stained
with combinations of themAbsdescribed previously for 30min on ice. Prior to
staining, 293T cells were treated with Versene (Life Technologies) for 10 min
at 37˚C. For anti-CD8 mAb blocking experiments: 2.5 3 106 PBMCs were
pretreated with 10 mg/ml unconjugated anti-CD8 mAb (clone DK-25; Dako)

for 20minon ice prior to stainingwith 10mg/mlpMHCI tetramer for 45minon
ice. For A2 typing: 2.53 106 PBMCswere stainedwith 5ml FITC-conjugated
anti-A2 mAb (clone BB7.2; Serotec) for 30 min on ice. Samples were then
washed twice and resuspended in PBS. Data were acquired using a FACSCa-
libur or FACSAria II flow cytometer (BD Biosciences) and analyzed with ei-
therCellQuest (BDBiosciences) or FlowJo (Tree Star, Ashland,OR) software.

TCR downregulation assay

The105 003CTLsperwellwere resuspended in a 96-well round-bottomedplate
with various concentrations of the indicated PE-conjugated tetramers (A2
SLYNTVATL, A2/Kb SLYNTVATL, A2 LLFGYPVYV, or A2/Kb LLFGY-
PVYV) diluted in 40 ml RPMI 1640 containing 2% FCS plus penicillin,
streptomycin, and glutamine as described previously (R2) for 30 min at 37˚C.
Cells were then washed, resuspended in ice-cold azide buffer (0.1% azide/2%
FCS/PBS), and subsequently stained with FITC-conjugated anti–ab-TCR
(clone BMA 031; Serotec), 7-AAD (BD Biosciences), and allophycocyanin-
conjugated anti-CD8 (clone RPA-T8; BDBiosciences) for 30 min on ice. After
two additional washes, cells were resuspended in ice-cold azide buffer. Data
were acquired using a FACSCalibur flow cytometer and analyzed with Cell-
Quest software (BD Biosciences).

Cytokine/chemokine assays: ELISA, cytometric bead array,
and ELISPOT

CTLswere incubated with C1RA2 cells, C1RA2/Kb cells, or medium alone at
different E:Tratios overnight at 37˚C. Subsequent to incubation, the supernatant
was harvested and assayed for MIP-1b, IFN-g, or RANTES by ELISA (R&D
Systems, Minneapolis, MN). Remaining supernatant was assayed with the
humanTh1/Th2 cytokine kit (BDBiosciences) according to themanufacturer’s
instructions; data were acquired using a FACSCalibur flow cytometer and an-
alyzed with CBA software (BD Biosciences). For tetramer-based ELISPOT
assays, 23 103 CTL6 pMHCI tetramer at 1 mg/ml were applied to duplicate
wells of PVDF-backed plates (Millipore, Bedford, MA) precoated with IFN-g
captureAb1-DIK(Mabtech,Nacka,Sweden) in a total volumeof200mlR2and
incubated for 4 h at 37˚C. To exclude activation by cognate peptide represen-
tation or fluorochrome-mediated aggregation, cognate A2 D227K/T228A tet-
ramers were included as controls; these tetramers do not bind CD8 and did not
activate 003 or 868 CTLs, despite efficient staining in both cases (data not
shown). Plates were developed according to the manufacturer’s instructions
(Mabtech) and spots were counted using an automated ELISpot Reader System
ELR02 (Autoimmun Diagnostika GmbH, Strassberg, Germany).

Degranulation assay

Surface CD107a mobilization was used to assess degranulation as described
previously (32).Briefly,CTLswere incubated for 4hat 37˚Cwith eitherC1RA2
cells, C1R A2/Kb cells or medium alone at different E:T ratios; alternatively,
CTLs were incubated with various pMHCI tetramers. Both FITC-conjugated
anti-CD107a (clone H4A3; BD Biosciences) and 0.7 ml/ml monensin (Golgi-
Stop;BDBiosciences)wereaddedprior to incubation.Subsequent to incubation,
the cells were washed twice and resuspended in PBS. Data were acquired using
a FACSCalibur flow cytometer and analyzed with FlowJo software (Tree Star).

CTL priming assay

TransfectedC1Rcellswerepulsedwith1mMELAGIGILTV(Melan-A26–35)
peptide for 90 min, irradiated, and washed once in RPMI 1640 medium.
Pulsed, irradiated C1R cells (2 3 105) were incubated with 106 fresh A2+

human PBMCs in R10; 200 IU/ml IL-2 was added on day 3. CD8+ cells
specific for Melan-A26–35 were quantified on day 10 with wild-type A2
ELAGIGILTV tetramer.

Results
Generation of MHCI molecules with superenhanced CD8
binding affinity

Tetrameric fusion molecules comprising the a1/a2 peptide binding
platform of A2 and the a3 domain of H2-Kb (A2/Kb from this point
forward) enable the monitoring of CD8+ T cell responses in A2
transgenic mice (33). This reflects a requirement for the murine
MHCI a3 domain to engage murine CD8 (11), thus enabling A2/Kb

reagents to stain murine CTL with lower affinity TCR/pMHCI in-
teractions (so-called “low avidity” CTLs) (22). The A2/Kb H chain
foldedwith humanb2m interacts strongly with humanCD8 (KD∼10
mM, compared with A2 that binds to CD8 with a KD ∼150 mM) but
exhibits unaltered A2-restricted TCR binding properties (9, 22).
Thus, fusing themurinea3 domainwithA2a1/a2 domains increases
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the strength of the pMHCI/CD8 interaction by ∼15-fold without af-
fecting the TCR/pMHCI interaction.

Superenhanced CD8 binding results in nonspecific pMHCI
ligand interactions

MonomericpMHCIcomplexescannotbeusedtoexamineTCR/pMHCI
bindingat thecell surfacebecauseof theextremelyshorthalf-lifeofsuch
interactions. Increasing thevalencyof thesemolecules byavidin/biotin-
based tetramerization overcomes this limitation and produces reagents
that are invaluable for the identification and characterization of Ag-
specific CTLs (34, 35). Indeed, it is well established that wild-type
tetrameric pMHCI reagents bind to cell surface TCR with exquisite
specificity (34, 36). Thus, A2/Kb tetrameric reagents were generated to
study the effect of superenhanced CD8 binding on the specificity of
pMHCI ligand interactions at the cell surface.
Wild-type pMHCI tetrameric reagents bearing cognate peptide

stained three distinct A2-restricted CTLs specific for SLYNTVATL

(HIV-1 p17 Gag77–85), each expressing a different TCR (19, 22, 23)
(Fig. 1A). Noncognate A2 LLFGYPVYV (HILV-1 Tax11–19) tet-
ramers failed to stain any of these in vitro expanded CTL populations
to any notable extent. However, A2/Kb LLFGYPVYV tetramers
stained all SLYNTVATL-specific CTLs; in addition, both the A2/Kb

SLYNTVATL and A2/Kb LLFGYPVYV tetramers stained the non-
cognate CD8+ cell population in the 868 CTL line (Fig. 1A). To ex-
amine this effect in more detail, we used A2 and A2/Kb tetramers to
stain fresh human PBMCs. Ag-specific CD8+ cell populations were
not identified in PBMCs from healthy donors with either the A2
SLYNTVATL or A2 LLFGYPVYV tetramers (Fig. 1B). In contrast,
both the A2/Kb SLYNTVATL and A2/Kb LLFGYPVYV tetramers
stained.85% of CD8+ cells in PBMCs (Fig. 1B); similar data were
obtainedwithA2/KbGLCTLVAML(EBVBMLF1259–267) andA2/K

b

NLVPMVATV (CMVpp65495–503) tetramers (data not shown). Taken
together, these data indicate that the exquisite specificity of tetra-
meric pMHCI reagents is lost when the strength of the pMHCI/CD8

FIGURE 1. The exquisite specificity

of pMHCI tetramer staining is lost

when the strength of the pMHCI/CD8

interaction is increased by ∼15-fold. A,
The 003orNT1CTLclones (105 cells) or

the 868 CTL line (2.5 3 105 cells), all

specific for HIV-1 p17 Gag77–85, were

stained with 1 mg of the PE-conjugated

tetramers A2 SLYNTVATL, A2/Kb

SLYNTVATL,A2LLFGYPVYV, orA2/

Kb LLFGYPVYV in 20 ml PBS for 20

min at 37˚C. Cells were then stainedwith

allophycocyanin-conjugated anti-CD8

and 7-AAD for 30 min on ice, washed

twice, and resuspended inPBS.Datawere

acquired using a FACSCalibur flow cy-

tometer and analyzed with CellQuest

software. B, 2.5 3 105 PBMCs were

suspended in 250 ml FACS buffer (2%

FCS/PBS), then stained with 1 mg of the

PE-conjugated tetramers A2 SLYNT-

VATL, A2/Kb SLYNTVATL, A2 LLFG-

YPVYV, or A2/Kb LLFGYPVYV for 20

min at 37˚C. Each sample was sub-

sequently stained with allophycocyanin-

conjugated anti-CD8, PerCP-conjugated

anti-CD3, and 7-AAD for 30 min on ice,

washed twice, and resuspended in FACS

buffer. Data were acquired using

a FACSCalibur flow cytometer and ana-

lyzed with CellQuest software by gating

on the live CD3+ population. The values

shown represent the percent of CD3+

CD8+ cells that stain with the indicated

tetramer.
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interaction is increased by ∼15-fold. Thus, the low solution affinities
of the wild-type pMHCI/CD8 interaction are required to maintain
pMHCI binding specificity at the cell surface.

A2/Kb tetramers bind the majority of CTLs in peripheral blood

Noncognate A2/Kb tetramers were observed to bind ∼80% of the
CD8a+ population in peripheral blood (Fig.1B). Although CD8a is
predominantly found on the surface of ab-TCR+ CTLs, it is also
found on the surface of other lymphocytes, most notably some gd

T cells and NK cells.We therefore sought to determine the identity of
the CD8a+ cells that stain with A2/Kb tetramers. Staining of fresh ex
vivo PBMCs isolated from healthy A2+ donors revealed that CD8a
was expressed on ∼39%, 54%, and 32% of the ab-TCR+, NK cells,
and gd-TCR+ populations, respectively, with some variation between
donors (Fig. 2A). The majority of gd-TCR+ (∼93.6%) and NK cells
(∼77%) failed to stainwith theA2/Kb ILAKFLHWL (hTERT540–548)
tetramer and no significant binding was observed with the corre-
sponding A2 tetramer (Fig. 2B). However, the vast majority of

ab-TCR+/CD8+ cells within the lymphocyte population stained
nonspecifically with the A2/Kb ILAKFLHWL tetramer (Fig. 2C).
Wehypothesized thatmostgd-TCR+ cells andNKcellsmight fail

to bind A2/Kb tetramers because they express the CD8aa homo-
dimer rather than theCD8ab heterodimer, which is expressed on the
surface of CTLs. Thus, we generated a 293T cell line that expressed
CD8aa (Fig. 3A) to examine the ability of A2/Kb tetramers to bind
this homodimeric form of the CD8 coreceptor on the cell surface. In
contrast to both A2 and A2 D227K/T228A tetramers, which exhibit
normal and abrogated interactions with CD8, respectively, A2/Kb

tetramers bound to most (74.3%) of the CD8aa+ 293 T cell trans-
fectants (Fig. 3A, 3B); no binding was observed in the absence of
CD8aa surface expression (Fig. 3A). Thus, A2/Kb tetramers are
capable of binding to cell surface CD8aa.
Why do A2/Kb tetramers bind predominantly to the CTL pop-

ulation in peripheral blood and not to other cells that express CD8?
Fig. 3B shows that A2/Kb tetramer staining is directly proportional to
the level ofCD8aa expression, such that only cellswith a higher level

FIGURE 2. A2/Kb tetramers bind the

majority of CTLs in peripheral blood. A,

2.53 105 PBMCs from an A2+ donor were

stained with PerCP-conjugated anti-CD8,

7-AAD, and either FITC-conjugated anti–-

ab-TCR, allophycocyanin-conjugated anti-

CD56 or PE-conjugated anti–gd-TCR for

30 min on ice, washed twice, and re-

suspended in PBS.B, 2.53105A2+ PBMCs

were stained with 10 mg/ml of the PE-

conjugated tetramers A2 ILAKFLHWL or

A2/Kb ILAKFLHWL for 20 min at 37˚C.

After washing, cells were subsequently

stained with 7-AAD and either FITC-con-

jugated anti–gd-TCR or FITC-conjugated

anti-CD56 for 30 min on ice, washed twice,

and resuspended in PBS. C, 2.5 3 105 A2+

PBMCs were stained with 10 mg/ml of the

PE-conjugated tetramers A2 ILAKFLHWL

or A2/Kb ILAKFLHWL for 20 min at

37˚C. After washing, cells were stained

with allophycocyanin-conjugated anti-CD8,

FITC-conjugated anti–ab-TCR and 7-AAD

for 30 min on ice, washed twice, and re-

suspended in PBS. In A, B, and C, data were

acquired using a FACSCalibur flow cy-

tometer and analyzed with FlowJo software.
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ofCD8aa expression stainwith this reagent. Examination of PBMCs
from healthy donors revealed that CD8+ab-TCR+ cells express high
levels of CD8, whereas NK and gd-TCR+ cells express substantially
lower levels (Fig. 3C). Therefore, increasing the strength of the
pMHCI/CD8 interaction allows pMHCI ligand binding at the cell
surface that can be mediated through the engagement of either
CD8aa or CD8ab. However, our results suggest that binding is only
observed when cells express CD8 at levels above a certain threshold.
Importantly, these data demonstrate that TCR expression is not re-
quired for cell surface binding of A2/Kb tetramers.

A2/Kb tetramers activate CTLs irrespective of TCR specificity

It is well established that pMHCI tetramers can activate CTLs bearing
cognate TCR [reviewed in (35)]. However, previous studies have
shown that pMHCI tetrameric binding at the cell surface does not
necessarily equate with activation (11, 37). Thus, we next examined
whether nonspecific A2/Kb tetramer binding at the cell surface
(Figs. 1–3) could activate human CTLs. Initially, we studied the A2-
restricted SLYNTVATL-specific CTL clone 003 (23). Consistent with
our findings previously stated, both A2 SLYNTVATL and A2/Kb

SLYNTVATL tetramers stained 003 CTLs efficiently, as did the
noncognate A2/Kb LLFGYPVYV tetramer; no staining was observed
with theA2LLFGYPVYV tetramer (Fig. 4A). On ligation, it is known
that TCRs are downregulated from the cell surface (38). The cognate

A2 tetramer was able to induce significant TCR downregulation, even
at tetramer concentrations well below the limits of detection by flow
cytometry; no TCR downregulation was observed with the non-
cognate A2 LLFGYPVYV tetramer (Fig. 4B). In contrast, however,
both the A2/Kb SLYNTVATL and A2/Kb LLFGYPVYV tetramers
inducedTCRdownregulation, although this occurred to a lesser extent
with the noncognate form compared with either of the cognate tet-
ramers (Fig. 4B). This TCR downregulation correlated with various
functional readouts typical of CTL effector activity, including the
production of RANTES (Fig. 4C), IFN-g, and MIP-1b (data not
shown). Similar results were observed with SLYNTVATL-specific
CTLs bearing an alternative cognate TCR (Fig. 4D, 4E). Consistent
with the staining patterns (Fig. 4A), the activation of CTLs by non-
cognate A2/Kb tetramers was less efficient than that induced by tet-
ramers bearing the agonist peptide (Fig. 4C–E).
To dissect this effect further at the single-cell level within a clonal

CTL population, we used a flow cytometric assay for degranulation
based on the detection of CD107a mobilized on to the cell surface
(32). The noncognate A2/Kb tetramer, in this case folded around the
GLCTLVAML peptide, induced degranulation in 15% of 003 CTLs
at a concentration of 5 mg/ml (Fig. 4F); the cognate A2 SLYNT-
VATL and A2/Kb SLYNTVATL tetramers induced almost 40%
degranulation (data not shown). Notably, the cells that degranulated
in response to the A2/Kb GLCTLVAML tetramer were contained

FIGURE 3. Nonspecific A2/Kb tetramer binding is influenced byCD8 cell surface density. A and B, 23 105 293T cells were incubated6 10mg/ml of the PE-

conjugated tetramers A2 D227K/T228A ILAKFLHWL, A2 ILAKFLHWL, or A2/Kb ILAKFLHWL for 20 min at 37˚C, then stained with 7-AAD and either

FITC-conjugated anti-CD8or PE-conjugated anti-CD8b for 30min on ice,washed twice, and resuspended in PBS.C, 2.53105 PBMCswere stainedwith PerCP-

conjugated anti-CD8, 7-AAD, and either FITC-conjugated anti–ab-TCR, allophycocyanin-conjugated anti-CD56, or PE-conjugated anti–gd-TCR for 30min on

ice, washed twice, and resuspended in PBS. In A, B, and C, data were acquired using a FACSCalibur flow cytometer and analyzed with FlowJo software.
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almost exclusively within the tetramerhighCD8high population (Fig.
4F). Thus, at least to some extent, the strong interaction between
A2/Kb and CD8 can bypass the requirement for a specific TCR/
pMHCI interaction and nonspecifically activate human CTLs.

Cell surface-expressed A2/Kb activates CTLs in the absence of
cognate Ag

To extend our investigation to the effects of cell surface pMHCI pre-
sentation, C1R cells were transfected with either A2 or A2/Kb; stable
transfectants expressing similar cell surface MHCI densities were se-
lected as targets for further experiments. Target cells expressing either
A2 or A2/Kb were incubated overnight with three A2-restricted CTL
clones with different peptide specificities (Mel13, 003, and ILA1).
Targets that expressed A2 failed to activate any of the CTL clones
significantly above background (Fig. 5A). Remarkably, however, the
A2/Kb targets stimulated Mel13, 003, and ILA1 CTLs to produce

significant amounts of MIP-1b in the absence of specific peptide (Fig.
5A).A2/Kb targets also elicited substantial levels ofTNFa and IFN-g at
titratable E:T ratios (Fig. 5B), induced degranulation (Fig. 5C), and
induced significant levels of killing (data not shown) in the absence of
specific TCR/pMHCI interactions.

Cell surface-expressedA2/Kb primes noncognateCTL expansions

Thymic output in healthyA2+ individuals is known to generate a high
frequency of naı̈ve CD8+ T cells that can recognize the self-Ag
Melan-A26–35 (39); this system can be used to examine the priming of
CTLs directly ex vivo (40). We exploited these observations to in-
vestigate the effect of superenhanced pMHCI/CD8 binding on CTL
priming. In priming experiments conductedwithC1R target cells, the
percentages of CTLs specific forMelan-A26–35 thatwere present after
10 d in culture were related to the context of the pMHCI/CD8 in-
teraction in which the cognate ELAGIGILTV peptidewas presented.

FIGURE 4. A2/Kb tetramers can activate CTLs in the absence of a specific TCR/pMHCI interaction.A, 105 003CTLswere suspended in 20ml PBS and stained

with the PE-conjugated tetramersA2 SLYNTVATL,A2/Kb SLYNTVATL,A2 LLFGYPVYV, or A2/Kb LLFGYPVYVat the indicated concentrations and 7-AAD

for 20min at 37˚C. Cells were then washed twice and resuspended in PBS. Data were acquired using a FACSCalibur flow cytometer and analyzed with CellQuest

software. B, 105 003 CTLs were suspended in 40 ml R2 with the PE-conjugated tetramers A2 SLYNTVATL, A2/Kb SLYNTVATL, A2 LLFGYPVYV, or A2/Kb

LLFGYPVYVat the indicated concentrations for 30 min at 37˚C. Cells were subsequently stained with FITC-conjugated anti–ab-TCR, 7-AAD, and allophy-

cocyanin-conjugated anti-CD8 for 30 min on ice in azide buffer (0.1% azide/2% FCS/PBS). After two washes, data were acquired using a FACSCalibur flow

cytometer and analyzedwith CellQuest software.C, 53 105 003CTLs were incubatedwith the PE-conjugated tetramers A2 SLYNTVATL,A2/Kb SLYNTVATL,

A2 LLFGYPVYV, or A2/Kb LLFGYPVYVat the indicated concentrations. After 4 h at 37˚C, supernatants were harvested and assayed for RANTES, IFN-g and

MIP-1b content by ELISA (only RANTES shown). D, 2 3 103 868 CTLs were incubated for 4 h at 37˚C with 1 mg/ml of the PE-conjugated tetramers A2

SLYNTVATL,A2/KbSLYNTVATL,A2LLFGYPVYV, orA2/KbLLFGYPVYVin an IFN-gELISpot assay.E, 1.253105 868CTLswere incubatedwith 1mg/ml

of the PE-conjugated tetramers A2 SLYNTVATL, A2/Kb SLYNTVATL, A2 LLFGYPVYV, or A2/Kb LLFGYPVYV for 4 h at 37˚C. The supernatant was sub-

sequently assayed for MIP-1b content by ELISA. Panels (C–E) show the mean6 SD of two replicate assays. Results similar to (A–E) were also obtained with

tetramers conjugated to fluorochromes other than PE (data not shown). F, 003 CTLs were incubated with the PE-conjugated tetramers A2 SLYNTVATL, A2/Kb

SLYNTVATL,A2GLCTLVAML,orA2/KbGLCTLVAMLat the indicated concentrations for 4 h at 37˚C, then stainedwith allophycocyanin-conjugated anti-CD8

for 20min on ice and assayed for CD107amobilization as described inMaterials andMethods. The inset plot shows staining for allophycocyanin-conjugated anti-

CD8 on the x-axis and PE-conjugatedA2/KbGLCTLVAML tetramer (5mg/ml) on the y-axis. Backgated tetramer+CD107a+ cells are shown in black and tetramer+

CD107a2 cells are shown in gray. TetramerhighCD8high cells are preferentially activated by the A2/Kb tetramer.
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Thus, in the absenceof a pMHCI/CD8 interaction (A2D227K/T228A
C1R targets), only 1.5% of the CD8+ cell population was specific for
Melan-A26–35; in contrast, 5.6% and 5.7% of the CD8+ population
bound the A2 ELAGIGILTV tetramer in the same experiment when
priming was conducted with A2 and A2/Kb C1R targets, respectively
(Fig. 6). Exposure to A2/Kb C1R targets also resulted in substantial
expansions of the total CD8+ population (Fig. 6). Similar results
were obtained with multiple donors (data not shown). Thus, target
cells that expressMHCImolecules with superenhancedCD8-binding
properties can induce nonspecific expansions of CD8+ cells in the
absence of cognate Ag.

Nonspecific A2/Kb-mediated CTL activation and tetramer
staining are not dependent on TCR expression

In earlier experiments, we observed that A2/Kb tetramers bound to
the majority of ab-TCR+CD8+ cells in PBMCs derived from A2+

donors (Fig. 2). To exclude the possibility that this phenomenon was

dependent on the presence of A2-restricted TCRs, we conducted
staining experiments with A22 PBMCs. As previously, the A2/Kb

ILAKFLHWL tetramer bound nonspecifically to the majority of
CD8+ cells (Fig. 7A). Furthermore, A2/Kb tetramer binding favored
CD8high cells and was abrogated by pretreatment with the anti-CD8
mAbDK25 (Fig. 7A). Thus, consistent with the data shown in Fig. 3,
nonspecific A2/Kb tetramer binding is a CD8-mediated effect that is
not dependent on the presence ofA2-restrictedTCRs. In addition, we
demonstrated in earlier experiments that A2/Kb, both in soluble and
cell-associated form, nonspecifically activated A2-restricted CTL
(Figs. 4, 5). To confirm that these functional correlates of nonspecific
binding were similarly independent of A2-restricted TCR expres-
sion, we extended our studies to CTL clones restricted by non-A2
MHCI molecules. In all cases, cell surface-expressed A2/Kb acti-
vated CTL clones regardless of restriction element (Fig. 7B).

Discussion
CD8 has the potential to engage all pMHCI complexes, both self
and foreign, because it binds to largely nonpolymorphic regions of
the MHCI molecule. Indeed, recent publications suggest that the
ability of CD8 to interact with nonstimulatory pMHCI complexes
lowers T cell activation thresholds and enables CTLs to respond to
low copy numbers of specific pMHCI (41, 42). It therefore remains
unclear how the specificity of TCR recognition is maintained,
despite the potential for multiple pMHCI/CD8 interactions at the
cell surface. One possibility resides in the fact that the binding of
CD8 to MHCI is characterized by very low affinities and ex-
tremely rapid kinetics. In this study, we have generated chimeric
A2/Kb MHCI molecules that increase the strength of the pMHCI/
CD8 interaction by ∼15-fold to probe the biophysical and func-
tional significance of the low solution binding affinities observed
for the pMHCI/CD8 interaction.
Initially, we examined the effect of superenhanced CD8 binding on

pMHCItetramerbindingat thecell surface. Increasingthestrengthof the
pMHCI/CD8interactionby∼15-fold resulted in the total lossofpMHCI

FIGURE 5. Cell surface-expressed A2/Kb activates

CTLs in the absence of cognate Ag. A, 2.5 3 104

Mel13, 003, or ILA1 CTLs were incubated for 12 h at

37˚C with 105 C1R cells stably transfected to express

equal levels of either A2 or A2/Kb at the cell surface.

Supernatant was subsequently assayed for MIP-1b

content by ELISA. The mean 6 SD of two replicate

assays is shown. B, 2.5 3 104 Mel13 CTLs were in-

cubated for 12 h at 37˚C with 105 C1R cells stably

transfected to express either A2 or A2/Kb at the cell

surface. Supernatant was assayed for IFN-g and TNFa

content by cytokine bead array. C, CD107a expression

by ILA1 and Mel13 CTLs after a 12-h incubation at

37˚CwithC1Rcells stably transfected to express either

A2 or A2/Kb on the cell surface. For (A–C), C1R cells

were not previously pulsed with peptide.

FIGURE 6. Cell surface-expressed A2/Kb primes nonspecific expansion

of CD8+ cells. 106 A2+ PBMCs were incubated with 2 3 105 irradiated A2

D227K/T228A,A2, or A2/Kb C1R cells that had previously been pulsedwith

1 mM ELAGIGILTV (Melan-A26–35) peptide in R10. From day 3, IL-2 was

added in increments to reach a maximum concentration of 200 IU/ml by day

10. Lines were subsequently stained with PE-conjugated A2 ELAGIGILTV

tetramer, followed by allophycocyanin-conjugated anti-CD8 and 7-AAD.

Data were acquired using a FACSCalibur flow cytometer and analyzed with

FlowJo software.
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tetramer binding specificity. Thus, irrespective of restriction element
and the presented peptide, A2/Kb tetramers bound to the surface of all
CTL clones examined in this study and to the majority of CTLs present
within PBMCs (Figs. 1, 2, 7A). In addition, A2/Kb tetramers bound to
the cell surface in the absence of TCR expression (Fig. 3) and non-
specific binding was abrogated by pretreatment with an anti-CD8 Ab
(Fig. 7A), thereby demonstrating that the observed loss of pMHCI tet-
ramer binding specificity was CD8 mediated and TCR independent.
These findings indicate that the low solution binding affinities observed
for the pMHCI/CD8 interaction are essential for the preservation of
pMHCI ligand binding specificity at the cell surface.
IthaspreviouslybeendocumentedthatpMHCItetramersareefficient

activators of cognate CTLs [reviewed in (35)]. However, pMHCI tet-
ramer staining does not necessarily equate with cellular activation.
Therefore, we proceeded to examine the ability of A2/Kb tetramers to
activate CTL clones. Notably, we found that A2/Kb tetramers activated
CTL clones in a nonspecific manner (Fig. 4). Activation resulted in
a full range of effector functions, including cytokine/chemokine re-
lease, degranulation, and killing. Flow cytometric assessment of de-
granulation by analysis of CD107a mobilization revealed that CTLs
with higher surface expression of CD8 were the cells most likely to
activate in response toA2/Kbmolecules. This finding led us to examine
the effects of cell-surface presentedAg. Strikingly, exposure of PBMCs
to C1R target cells bearing A2/Kb molecules caused a general non-
specific expansion of CD8+ cells during the course of the experiment
(Fig. 6). Furthermore, A2/Kb C1R cells, unlike their wild-type A2
counterparts, were capable of stimulating effector function in all CTL

clones tested regardless of specificity and MHCI restriction (Figs. 5,
7B). Although we cannot exclude the possibility that inclusion of the
murinea3domain induces conformational changes at theTcell surface
onbinding toCD8 that favor noncognate activation, this seemsunlikely
given that: 1) theTCRbindingsite remainsunaltered (9, 22); 2) adegree
of noncognate activation can be observed in long-term assays with
nonchimeric human MHCI molecules that exhibit incrementally en-
hanced CD8 binding (data not shown); and 3) murine and human
pMHCI/CD8aa cocrystals exhibit similar binding orientations (14,
43). Furthermore, these results are consistent with the observation that
thymus leukemia Ag, which interacts strongly (KD∼12 mM) with cell
surface CD8aa expressed by intraepithelial lymphocytes, can modu-
late T cell responses independently of the TCR (44–46).
How does a superenhanced pMHCI/CD8 interaction result in

nonspecific CTL activation?We have previously demonstrated that
an incremental increase in the pMHCI/CD8 interaction (A2Q115E)
results in enhanced immunogenicity of cognate Ags and that this
effect is mediated by enhanced early intracellular signal trans-
duction (9, 47). In contrast, the stimulatory properties of A2/Kb

molecules exhibited no peptide specificity requirements whatso-
ever; indeed, cell surface-expressed A2/Kb was shown to activate
even non-A2–restricted CTL clones (Fig. 7B), thereby confirming
that cognate TCR/pMHCI interactions are not required. Combined
with the ability of A2/Kb to engage multiple CD8 molecules at the
cell surface, these results suggest that A2/Kb cross-links CD8 and
induces activation in an “Ab-like” manner. Indeed, this is con-
sistent with previous studies demonstrating that Ab-induced CD8

FIGURE 7. Noncognate A2/Kb-mediated CTL activation and tetramer binding is not influenced byMHCI restriction.A, 2.53 105 PBMCswere suspended

in 250ml FACSbuffer (2%FCS/PBS) and stainedwith FITC-conjugated anti-A2 and 7-AAD for 30min on ice, thenwashed twice, and resuspended in PBS. For

pMHCI tetramer staining experiments, 2.53 105 PBMCs were suspended in 50ml FACS buffer (2% FCS/PBS) and incubated6 10mg/ml unconjugated anti-

CD8 for 20min on ice, then stainedwith 10mg/ml of the PE-conjugated tetramers A2 ILAKFLHWLorA2/Kb ILAKFLHWL for 45min on ice. After washing,

cells were subsequently stained with allophycocyanin-conjugated anti-CD8 and 7-AAD, washed again, and resuspended in PBS. Data were acquired using

a FACSCalibur flow cytometer and analyzed with FlowJo software.B, 2.53 104 CTLs were incubated for 12 h at 37˚Cwith 105 unpulsed C1R cells expressing

either A2 or A2/Kb on the cell surface. The following CTL clones were used: 1) the HLAAp6801-restricted CTL clone c23, specific for the HIV-1 Tat-derived

epitope ITKGLGISYGR (residues 38–48); 2) the HLA Bp0702-restricted CTL clone KD4, specific for the EBV EBNA3A-derived epitope RPPIFIRRL

(residues 379–387); 3) theHLABp0801-restricted CTL cloneLC13, specific for the EBVEBNA3A-derived epitope FLRGRAYGL (residues 339–347); and 4)

the HLA Bp3508-restricted CTL clone SB27, specific for the EBV BZLF1-derived epitope LPEPLPQGQLTAY (residues 52–64). Supernatant was sub-

sequently assayed for MIP-1b content by ELISA. The mean6 SD of two replicate assays is shown.
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cross-linking can induce T cell signaling (48, 49) and elicit
downstream effector functions, such as chemokine release (50);
such effects are predictable given that the CD8a tail is coupled to
p56lck, an essential component of the early intracellular signaling
pathway (10). It is interesting to note that the murine pMHCI/CD8
interaction is significantly stronger (KD ∼30 mM) than the
equivalent human interaction (KD ∼150 mM) (11), but does not
result in noncognate CTL activation. It is therefore likely that
a pMHCI/CD8 interaction affinity threshold exists for the main-
tenance of CTL activation specificity. The strength of the murine
pMHCI/CD8 interaction is 3-fold weaker than the strength of the
interaction measured between A2/Kb and human CD8, thereby
still operating at a level below this threshold.
In summary, we used chimeric MHCI molecules that exhibit

a superenhanced interaction with CD8 to probe the physical and
functionalsignificanceof the lowsolutionbindingaffinitiespreviously
described for the pMHCI/CD8 interaction. We found that increasing
the strengthof the pMHCI/CD8 interactionby∼15-fold resulted in: 1)
total loss of pMHCI binding specificity at the cell surface; 2) non-
cognate pMHCI tetramer-mediated activation; and 3) nonspecific
activation and proliferation triggered by cell surface-expressed
pMHCI molecules. Thus, the low solution binding affinity of the
pMHCI/CD8 interaction is essential for the preservation of pMHCI
ligand binding specificity at the cell surface and its attendant func-
tional repercussions.
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The Journal of Immunology

Anti-CD8 Antibodies Can Trigger CD8+ T Cell Effector
Function in the Absence of TCR Engagement and Improve
Peptide–MHCI Tetramer Staining

Mathew Clement,* Kristin Ladell,* Julia Ekeruche-Makinde,* John J. Miles,*

Emily S. J. Edwards,* Garry Dolton,* Tamsin Williams,* Andrea J. A. Schauenburg,*

David K. Cole,* Sarah N. Lauder,* Awen M. Gallimore,* Andrew J. Godkin,*

Scott R. Burrows,† David A. Price,* Andrew K. Sewell,*,1 and Linda Wooldridge*,1

CD8+ T cells recognize immunogenic peptides presented at the cell surface bound to MHCI molecules. Ag recognition involves the

binding of both TCR and CD8 coreceptor to the same peptide–MHCI (pMHCI) ligand. Specificity is determined by the TCR,

whereas CD8 mediates effects on Ag sensitivity. Anti-CD8 Abs have been used extensively to examine the role of CD8 in CD8+

T cell activation. However, as previous studies have yielded conflicting results, it is unclear from the literature whether anti-CD8

Abs per se are capable of inducing effector function. In this article, we report on the ability of seven monoclonal anti-human CD8

Abs to activate six human CD8+ T cell clones with a total of five different specificities. Six of seven anti-human CD8 Abs tested did

not activate CD8+ T cells. In contrast, one anti-human CD8 Ab, OKT8, induced effector function in all CD8+ T cells examined.

Moreover, OKT8 was found to enhance TCR/pMHCI on-rates and, as a consequence, could be used to improve pMHCI tetramer

staining and the visualization of Ag-specific CD8+ T cells. The anti-mouse CD8 Abs, CT-CD8a and CT-CD8b, also activated CD8+

T cells despite opposing effects on pMHCI tetramer staining. The observed heterogeneity in the ability of anti-CD8 Abs to trigger

T cell effector function provides an explanation for the apparent incongruity observed in previous studies and should be taken into

consideration when interpreting results generated with these reagents. Furthermore, the ability of Ab-mediated CD8 engagement

to deliver an activation signal underscores the importance of CD8 in CD8+ T cell signaling. The Journal of Immunology, 2011,

187: 000–000.

C
D8+ T cells are essential for the control of viral infection
and the natural eradication of cancer. CD8+ T cells rec-
ognize short peptides, 8–13 aa in length, presented at the

target cell surface bound to MHCI molecules. T cell Ag recog-
nition is unique in nature because it involves the binding of
a single ligand (peptide–MHC [pMHC]) by two receptors (TCR
and coreceptor) (1, 2). The CD8 glycoprotein, which serves as the
coreceptor on MHCI-restricted T cells, acts to enhance the Ag
sensitivity of CD8+ T cells by binding to a largely invariant region
of MHCI at a site distinct from the TCR docking platform. CD8

has multiple enhancing effects on early T cell activation events,
which include the following: 1) promotion and stabilization of
TCR/pMHCI binding at the cell surface (3–5); 2) recruitment of
essential signaling molecules to the intracellular side of the TCR/
CD3/z complex (6–11); and 3) localization of TCR/pMHCI com-
plexes within specialized membrane microdomains that act as
potentially privileged sites for initiation of the TCR-mediated
signaling cascade (12, 13). CD8 binding also controls the level of
T cell cross-reactivity (14) and can differentially affect the de-
ployment of CD8+ T cell effector functions (15).
Anti-CD8 Abs have been used widely to investigate the role of

CD8 in CD8+ T cell activation. Early studies showed that pre-
incubation with anti-CD8 Abs can block conjugate formation
between effector and target cells (16) and inhibit CD8+ T cell
activation in response to cognate pMHCI presented on the target
cell surface (17–20). These findings provided key evidence that
CD8 was important in the process of CD8+ T cell activation.
However, considerable heterogeneity between different CD8+

T cells was apparent in terms of their ability to activate in the
presence of anti-CD8 Abs, and as a result, these reagents were
used as tools to classify CD8+ T cells as either CD8 dependent or
CD8 independent (21, 22). Ab-mediated ligation of T cell surface
molecules, such as CD2, CD3, and CD28 (23, 24), can result in
effector function. In contrast, studies of Ab-mediated CD8 liga-
tion in the absence of TCR engagement have yielded conflicting
results. Early studies demonstrated that induction of CD8 cross-
linking at the cell surface can result in p56lck phosphorylation
similar to that seen with anti-CD3 Abs (25) and elicit downstream
effector functions, such as chemokine release (26) and potent
cytotoxicity (27). However, in conflict with these data, more re-
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cent studies suggest that CD8 ligation alone may actually deliver
a negative signal (28, 29).
To date, a cohesive explanation for these widely disparate

findings with anti-CD8 Abs has remained elusive. Furthermore,
there has been no systematic study of the effects of multiple dif-
ferent anti-human CD8 Abs on CD8+ T cells with different spe-
cificities. In this article, we report on the ability of a panel of
seven monoclonal anti-human CD8 Abs to induce chemokine/
cytokine release and cytotoxicity by six different human CD8+

T cell clones specific for a total of five different pMHCI Ags. The
data, supported by parallel observations in a mouse system, reveal
that considerable heterogeneity exists in the ability of anti-CD8
Abs to activate CD8+ T cells. These results elucidate the apparent
incongruity that has been observed in previous studies and man-
date that the disparate effects of anti-CD8 Abs are considered in
the interpretation of results generated with these reagents.

Materials and Methods
Cells

The following HLA A*0201-restricted CD8+ T cell clones were used in
this study: 1) ILA1, specific for the human telomerase reverse tran-
scriptase-derived epitope ILAKFLHWL (residues 540–548) (30, 31); 2)
ALF3, specific for the influenza A matrix protein (M1)-derived epitope
GILGFVFTL (residues 58–66); and 3) MEL5 and MEL187.c5, specific for
the Melan-A–derived epitope ELAGIGILTV (residues 26–35) (32). The
HLA B*0801-restricted CD8+ T cell clone LC13 is specific for the EBV
EBNA3A-derived epitope FLRGRAYGL (residues 339–347) (33), and the
HLA B*3508-restricted CD8+ T cell clone SB10 is specific for the EBV
BZLF1-derived epitope LPEPLPQGQLTAY (residues 52–64) (34). The
HLA DR*0101-restricted CD4+ T cell clone C6 recognizes the influenza A
hemagglutinin-derived epitope PKYVKQNTLKLAT (residues 307–319).
CD8+ T cell lines specific for the EBV BMLF1-derived epitope
GLCTLVAML (residues 280–288), restricted by HLA A*0201, were gen-
erated as described previously (35). Naive mouse CD8+ T cells were ob-
tained by harvesting splenocytes from transgenic F5 mice. A significant
percentage of CD8+ T cells within the splenic population of these mice
express the F5 TCR, which recognizes the H-2Db–restricted influenza H17
nucleoprotein-derived epitope ASNENMDAM (36). C1R-A*0201 target
cells were generated as described previously (37).

Anti-CD8 Abs

The following anti-human CD8a Ab clones were used in this study: 1)
unconjugated or allophycocyanin-conjugated OKT8 (eBioscience, Hat-
field, U.K.); 2) unconjugated, FITC-conjugated, or R-PE–conjugated SK1
(BD Biosciences, Oxford, U.K.); 3) unconjugated MCD8 (IqProducts,
Groningen, The Netherlands); 4) unconjugated 32/M4 (Santa Cruz Bio-
technology, Heidelberg, Germany); 5) unconjugated C8/144B (Santa Cruz
Biotechnology); and 6) allophycocyanin-conjugated DK25 (DakoCyto-
mation, Stockport, U.K.). The anti-human CD8b Ab clone 2ST8.5H7 was
also used, either in unconjugated or in PE-conjugated form (Abcam,
Cambridge, U.K.). In functional assays, the maximum possible Ab con-
centrations were used, determined by the concentration of the commer-
cially available preparation in each case. For experiments with mouse
cells, the following unconjugated anti-mouse CD8 Abs were used: 1) anti-
CD8a clone CT-CD8a (Caltag-Medsystems, Buckingham, U.K.); 2) anti-
CD8a clone 53.6.7 (BioLegend, Cambridge, U.K.); 3) anti-CD8b clone
KT112 (hybridoma provided by Prof. R. Zamoyska, School of Biological
Sciences, University of Edinburgh); and 4) anti-CD8b clone CT-CD8b
(Caltag-Medsystems).

Generation of OKT8 Fab, F(ab9)2 and Fc9 fragments

A total of 250 mg of the anti-human CD8 Ab OKT8 or the anti-human CD3
Ab OKT3 were digested to yield Fab and Fc9 fragments using a Pierce Fab
micropreparation kit (ThermoScientific, Rockford, IL); F(ab9)2 fragments
were produced similarly using a Pierce F(ab9)2 micropreparation kit (Thermo-
Scientific). IgG fragmentation was performed according to the manufac-
turer’s instructions.

CD8+ T cell effector function assays

T cells (3 3 104) were mixed with anti-CD8 Abs at the indicated con-
centrations, either with or without secondary cross-linking by the addition

of 5 ml anti-mouse IgG Ab (Beckman Coulter, High Wycombe, U.K.), and
incubated overnight at 37˚C in a 5% CO2 atmosphere. Positive controls
included the following: 1) target cells pulsed with 1027 M cognate peptide;
2) 10 mg/ml anti-human CD3 Ab (UCHT1; BD Biosciences); or 3) 50 ng/
ml PMA and 1 mg/ml ionomycin (Sigma-Aldrich, Dorset, U.K.). Super-
natants were harvested and assayed for MIP1a, MIP1b, and RANTES by
ELISA (R&D Systems, Abingdon, U.K.) and for IFN-g, TNF-a, and IL-2
by cytometric bead array (Th1/Th2 kit; BD Biosciences), according to the
manufacturer’s instructions in each case; mouse MIP1b and IL-2 assays
were performed by ELISA (R&D Systems). Cytometric bead array (CBA)
data were acquired using a FACSCalibur flow cytometer and analyzed with
CBA 6 Bead analysis software (BD Biosciences). CD107a mobilization
was used to measure T cell degranulation by flow cytometry as described
previously (38). For chromium release assays, 23 103 T cells were treated
with anti-CD8 Abs at the indicated concentrations in 100 ml RPMI 1640
medium (Life Technologies, Paisley, U.K.) supplemented with 100 U/ml
penicillin (Life Technologies), 100 mg/ml streptomycin (Life Technolo-
gies), 2 mM L-glutamine (Life Technologies), and 2% heat-inactivated
FCS (Life Technologies) (R2 medium). C1R-A*0201 target cells (2 3
103), labeled with 30 mCi 51Cr (Perkin Elmer, Cambridge, U.K.) per 106

cells for 1 h previously, were subsequently added. Targets were also cul-
tured alone (target spontaneous release) and with Triton X-100 (Sigma-
Aldrich) at a final concentration of 5% (target total release). Cells were
incubated at 37˚C for 18 h in a 5% CO2 atmosphere. For each sample, 20
ml supernatant was harvested and mixed with 150 ml OptiPhase Supermix
Scintillation Cocktail (Perkin Elmer). Plates were analyzed using a liquid
scintillator and luminescence counter (MicroBeta TriLux; Perkin Elmer)
with Microbeta Windows Workstation software (Perkin Elmer). Specific
lysis was calculated according to the following formula: (experimental
release 2 target spontaneous release/target total release 2 target sponta-
neous release) 3 100.

pMHCI tetramer staining and flow cytometry

Soluble biotinylated pMHCI monomers were produced as described pre-
viously (3). Tetrameric pMHCI reagents (tetramers) were constructed by
the addition of either PE-conjugated streptavidin (Life Technologies) or
allophycocyanin-conjugated streptavidin (Prozyme, Hayward, CA) at a
pMHCI:streptavidin molar ratio of 4:1. For human CD8+ T cell clones,
5 3 104 cells were preincubated with anti-CD8 Ab as indicated for 25 min
on ice and then stained with cognate PE-conjugated tetramer (25 mg/ml) at
37˚C for 15 min (reviewed in Ref. 39) prior to staining with 5 ml 7-ami-
noactinomycin D (Viaprobe; BD Biosciences) at 4˚C for 30 min. For hu-
man CD8+ T cell lines, 5 3 104 cells were preincubated with anti-CD8 Ab
as indicated for 25 min on ice and then stained with cognate PE-conjugated
HLA A*0201 tetramer (25 mg/ml) at 37˚C for 15 min prior to staining with
the amine-reactive fluorescent dye LIVE/DEAD Fixable Aqua (Life
Technologies), Pacific Blue-conjugated anti-human CD14 (clone Tuk4;
Caltag-Medsystems), Pacific Blue-conjugated anti-human CD19 (clone
SJ25-C1; Caltag-Medsystems), PE-Cy5.5–conjugated anti-human CD4
(clone S3.5; Caltag-Medsystems), and FITC-conjugated anti-human CD8
(clone SK1; BD Biosciences) at 4˚C for 20 min. For human PBMCs di-
rectly ex vivo, 1 3 105 cells were preincubated with anti-CD8 Ab as in-
dicated for 25 min on ice and then stained with allophycocyanin-
conjugated HLA A*0201 tetramer (25 mg/ml) at 37˚C for 15 min prior
to staining with LIVE/DEAD Fixable Aqua (Life Technologies), Pacific
Blue-conjugated anti-human CD14 (clone Tuk4; Caltag-Medsystems),
Pacific Blue-conjugated anti-human CD19 (clone SJ25-C1; Caltag-
Medsystems), FITC-conjugated anti-human CD3 (clone HIT3a; BD Bio-
sciences), PE-Cy5.5–conjugated anti-human CD4 (clone S3.5; Caltag-
Medsystems), and PE-Cy7–conjugated anti-human CD8 (clone RPA-T8;
BD Biosciences) at 4˚C for 20 min. For mouse experiments, 5 3 104 cells
were preincubated with 100 mg/ml CT-CD8a (Caltag-Medsystems), 53.6.7
(BioLegend), KT112 (in-house), or CT-CD8b (Caltag-Medsystems) for 25
min on ice and then stained with cognate PE-conjugated H-2Db tetramer
(25 mg/ml) at 37˚C for 15 min prior to staining with LIVE/DEAD Fixable
Aqua (Life Technologies), Pacific Blue-conjugated anti-mouse CD4 (clone
RM4-5; BD Biosciences), FITC-conjugated anti-mouse CD45R/B220
(clone RA3-6B2; BD Biosciences), and PerCP-Cy5.5–conjugated anti-
mouse CD3 (clone 17A2; BD Biosciences) at 4˚C for 20 min. Data were
acquired using either a FACSCantoII or a modified FACSAriaII flow cy-
tometer (both BD Biosciences) and analyzed with FlowJo software (Tree
Star, Ashland, OR).

Intracellular cytokine staining

PBMCs were harvested from a healthy donor and cultured with or without
1 mg/ml PHA (Alere, Cheshire, U.K.) and 25 ng/ml IL-15 (Promega,
Hampshire, U.K.) for 7 d and then washed and cultured overnight in R2
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medium. A total of 5 3 104 PBMCs (unstimulated or stimulated with
PHA/IL-15) were resuspended in the presence of 1 ml/ml brefeldin A
(GolgiPlug; Sigma-Aldrich), 0.7 ml/ml monensin (GolgiStop; BD Bio-
sciences), and 5 ml/ml anti-CD107a-FITC (clone H4A3; BD Biosciences)
and then incubated with anti-human CD8 Abs at the indicated concen-
trations for 18 h at 37˚C in a 5% CO2 atmosphere. After washing with
PBS, cells were stained with LIVE/DEAD Fixable Violet (ViViD; Life
Technologies), Pacific Blue-conjugated anti-human CD14 (clone Tuk4;
Caltag-Medsystems), and Pacific Blue-conjugated anti-human CD19
(clone SJ25-C1; Caltag-Medsystems) at room temperature for 15 min.
Subsequently, cells were washed and stained with H7-allophycocyanin–
conjugated anti-human CD3 (clone SK7; BD Biosciences) and PE-Cy5.5–
conjugated anti-human CD4 (clone S3.5; Caltag-Medsystems) at 4˚C for
20 min, then washed an additional three times, resuspended in 200 ml BD
Cytofix/Cytoperm, and incubated at 4˚C for 20 min. After three additional
washes in Perm/Wash (BD Biosciences), cells were stained with PE-Cy7–
conjugated anti-human IFN-g (clone B27; BD Biosciences), allophyco-
cyanin-conjugated anti-human TNF-a (clone MAb11; BD Biosciences),
and PE-conjugated anti-human MIP1b (clone D21-1351; BD Biosciences)
at 4˚C for 20 min, washed again three more times, and resuspended in
200 ml Perm/Wash. Data were acquired using a modified FACSAriaII
flow cytometer (BD Biosciences) and analyzed with FlowJo software
(Tree Star).

Tetramer kinetics experiments

For tetramer association assays, 5 3 105 CD8+ T cells were washed twice
and resuspended in 200 ml PBS with or without anti-human CD8 Ab and
then incubated with cognate tetramer (5 mg/ml). At indicated time points,
12 ml of the cell suspension was removed and acquired using a FACSCa-
libur flow cytometer (BD Biosciences). Data were analyzed using FlowJo
software (Tree Star). Tetramer decay analysis was performed as described
previously (3).

Surface plasmon resonance analysis

Soluble TCRs derived from the MEL5 and MEL187.c5 CD8+ T cell clones
were manufactured as described previously (40–42). Binding analysis was
performed using a BIAcore 3000 equipped with a CM5 sensor chip (43).
Between 200 and 400 response units of biotinylated pMHCI was immo-
bilized to streptavidin, which was chemically linked to the chip surface.
The pMHCI was injected at a slow flow rate (10 ml/min) to ensure uniform
distribution on the chip surface. Combined with the small amount of
pMHCI bound to the chip surface, this reduced the likelihood of off-rate
limiting mass transfer effects. The MEL5 TCR and MEL187.c5 TCRs
were purified and concentrated to ∼100 mM on the day of surface plasmon
resonance analysis to reduce the likelihood of TCR aggregation affecting
the results. For equilibrium analysis, eight serial dilutions were carefully
prepared in triplicate for each sample and injected over the relevant sensor
chips at 25˚C. The TCRs were injected over the chip surface at a flow rate
of 45 ml/min. Results were analyzed using BIAevaluation 3.1, Microsoft
Excel, and Origin 6.1. The equilibrium binding constant (KD) values were
calculated using a nonlinear curve fit (y = [P1x]/[P2 + x]).

Results
Anti-CD8 Abs can trigger T cell effector function in the
absence of TCR engagement

Several studies suggest that Ab-mediated ligation of CD8 in the
absence of TCR engagement can elicit downstream effector
function (25–27); however, others have reported the delivery of
negative signals with this manipulation (28, 29). To reconcile
these apparently disparate findings, we conducted a systematic
study of the effects of multiple different anti-human CD8 Abs on
CD8+ T cells with several different specificities. For this purpose,
we used a panel of anti-human CD8 Abs that comprised six anti-
CD8a Abs (OKT8, SK1, MCD8, 32/M4, C8/144B, and DK25)
and one anti-CD8b Ab (2ST8.5H7). Six of seven anti-human CD8
Abs from the panel (SK1, MCD8, 32/M4, C8/144B, DK25, and
2ST8.5H7) did not elicit any chemokine production when in-
cubated with four different HLA A*0201-restricted CD8+ T cell
clones (ILA1, ALF3, MEL5, and MEL187.c5) with a total of three
different specificities in the absence of specific pMHCI Ag (Fig.
1). However, the anti-CD8a Ab OKT8 induced MIP1a, MIP1b,

and RANTES release from all four HLA A*0201-restricted CD8+

T cell clones (Fig. 1). Chemokine secretion was apparent over
a range of OKT8 concentrations (Supplemental Fig. 1).
In addition, we measured chemokine release by two non-HLA

A*0201-restricted CD8+ T cell clones following incubation with
each anti-human CD8 Ab from the panel. Both of these non-HLA
A*0201-restricted CD8+ T cell clones produced MIP1a, MIP1b,
and RANTES in response to OKT8 but did not activate in the
presence of the other Abs tested (Fig. 2). Remarkably, the highly
Ag-sensitive HLA B*3508-restricted EBV BZLF1-specific CD8+

T cell clone SB10 released .2000 pg/ml of each chemokine in
response to OKT8 (Fig. 2B). OKT8 was incapable of staining the
HLA DR*0101-restricted CD4+ T cell clone C6 (Supplemental
Fig. 2A) and failed to induce chemokine release from this clone
(Supplemental Fig. 2B–D). Thus, the stimulatory effects of OKT8
appear to be CD8+ T cell specific.
The panel of seven anti-human CD8 Abs was further tested

in cytotoxicity assays with four different CD8+ T cell clones
(MEL187.c5, ALF3, LC13, and SB10). Anti-human CD8 Abs that
were incapable of inducing chemokine release failed to elicit cy-
totoxic activity in any of these four CD8+ T cell clones (Fig. 3). In
contrast, SB10 CD8+ T cells exhibited substantial cytotoxicity in
response to stimulation with OKT8; lower levels of specific lysis

FIGURE 1. Ab-mediated CD8 ligation can trigger chemokine release

from HLA A*0201-restricted CD8+ T cells. A total of 3 3 104 ILA1 CD8+

T cells (A), ALF3 CD8+ T cells (B), MEL5 CD8+ T cells (C), or MEL187.

c5 CD8+ T cells (D) were incubated for 18 h with each of the following

individual anti-human CD8 Abs in parallel: 100 mg/ml OKT8, 6.25 mg/ml

SK1, 50 mg/ml MCD8, 100 mg/ml 32/M4, 100 mg/ml C8/144B, 25 mg/ml

DK25, and 100 mg/ml 2ST8.5H7 (CD8b). The maximum possible Ab

concentrations were used, determined by the concentration of the com-

mercially available preparation in each case. For each CD8+ T cell clone,

3 3 104 C1R-A*0201 B cells pulsed with cognate peptide at 1027 M were

used as positive controls. 0 represents T cells only. Supernatant was har-

vested and assayed for MIP1a, MIP1b, and RANTES by ELISA. Error

bars represent SDs.
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were also induced in the CD8+ T cell clones LC13 (3.18%), ALF3
(5.1%), and MEL187.c5 (3.8%) (Fig. 3; data not shown). These
results are consistent with a previous study that described a mouse
anti-CD8 Ab, KT112, capable of inducing cytotoxicity (27). Col-
lectively, these data indicate that considerable heterogeneity exists
in the ability of anti-CD8 Abs to activate CD8+ T cells.

OKT8 induces chemokine secretion in the absence of cytokine
secretion

Next, we examined the ability of Ab-mediated CD8 ligation to elicit
cytokine release by CD8+ T cells in the absence of TCR engage-
ment. As expected, the anti-human CD8 Abs that did not elicit
chemokine release or cytotoxic activity (SK1, MCD8, 32/M4, C8/
144B, DK25, and 2ST8.5H7) also failed to induce IFN-g, TNF-a,
or IL-2 release (Fig. 4). Interestingly, OKT8 similarly failed to
elicit cytokine production from the majority of CD8+ T cell clones

tested (Fig. 4). Importantly, chemokine and cytokine assays were
performed using the same supernatant, thereby confirming that
OKT8 stimulated CD8+ T cells to secrete chemokines in the ab-
sence of cytokine production; one exception to this dichotomy
occurred with the CD8+ T cell clone SB10, which released IFN-g
in response to treatment with OKT8. These data suggest that
OKT8-mediated CD8 ligation delivers a signal that falls below the
threshold required for cytokine production in most CD8+ T cells.

Neither secondary Ab cross-linking nor PHA/IL-15 treatment
alter the functional phenotype of anti-human CD8 Abs

To probe the possibility that the degree of cross-linking mediated
by each of the anti-human CD8 Abs tested could explain the
functional heterogeneity observed between these reagents, we
performed activation experiments with the addition of secondary
Abs. Secondary cross-linking of OKT8 increased the level of
MIP1a, MIP1b, and RANTES release by ILA1, ALF3, MEL5,
MEL187.c5, LC13, and SB10 CD8+ T cells above that observed
with OKT8 alone (Fig. 5; data not shown). However, secondary
Ab-mediated cross-linking did not reverse the phenotype of the
nonactivating anti-human CD8 Abs (Fig. 5).
We also examined the effect of PHA/IL-15 treatment on the

ability of anti-human CD8 Abs to elicit effector function from
CD8+ T cells in healthy donor PBMCs. PHA is capable of cross-
linking glycosylated proteins at the T cell surface. The seven anti-
human CD8 Abs tested did not substantially activate CD8+ T cells
in untreated PBMCs (Fig. 6A). The six nonactivating anti-human
CD8 Abs also failed to induce substantial levels of CD8+ T cell
activation in PBMCs cultured for 7 d in PHA/IL-15 (Fig. 6B). In
contrast, OKT8 activated CD8+ T cells in PHA/IL-15–stimulated
PBMCs to release MIP1b and degranulate as measured by surface
mobilization of CD107a. Interestingly, OKT8 also induced IFN-g

FIGURE 3. The anti-human CD8 Ab OKT8 can trigger cytotoxic ac-

tivity. A total of 23 103 LC13 CD8+ T cells (A) or SB10 CD8+ T cells (B)

were incubated with each of the following individual anti-human CD8 Abs

in parallel: 100 mg/ml OKT8, 6.25 mg/ml SK1, 50 mg/ml MCD8, 100 mg/

ml 32/M4, 100 mg/ml C8/144B, 25 mg/ml DK25, and 100 mg/ml

2ST8.5H7 (CD8b). The anti-human CD3 Ab UCHT1 (10 mg/ml) served as

a positive control. Cytotoxicity assays were then performed over a period

of 18 h as described in Materials and Methods using 51Cr-labeled C1R-

A*0201 B cells as targets. Error bars represent SDs.

FIGURE 4. Anti-CD8 Ab-mediated chemokine release occurs in the

absence of cytokine release. A total of 3 3 104 ILA1, ALF3, MEL5,

MEL187.c5, LC13, or SB10 CD8+ T cells were incubated for 18 h with

each of the following individual anti-human CD8 Abs in parallel: 100 mg/

ml OKT8, 6.25 mg/ml SK1, 50 mg/ml MCD8, 100 mg/ml 32/M4, 100 mg/

ml C8/144B, 25 mg/ml DK25, and 100 mg/ml 2ST8.5H7 (CD8b). The

anti-human CD3 Ab UCHT1 (10 mg/ml) served as a positive control. Su-

pernatant was harvested and assayed for IFN-g (A), TNF-a (B), and IL-2

(C) by CBA.

FIGURE 2. Ab-mediated CD8 ligation can trigger chemokine release

from non-HLA A*0201-restricted CD8+ T cells. A total of 3 3 104 LC13

CD8+ T cells (A) or SB10 CD8+ T cells (B) were incubated for 18 h with

each of the following individual anti-human CD8 Abs in parallel: 100 mg/

ml OKT8, 6.25 mg/ml SK1, 50 mg/ml MCD8, 100 mg/ml 32/M4, 100 mg/

ml C8/144B, 25 mg/ml DK25, and 100 mg/ml 2ST8.5H7 (CD8b). For each

CD8+ T cell clone, 3 3 104 HLA-matched B cells pulsed with cognate

peptide at 1027 M were used as positive controls. Supernatant was har-

vested and assayed for MIP1a, MIP1b, and RANTES by ELISA. Error

bars represent SDs.
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and TNF-a production by CD8+ T cells in PHA/IL-15–stimulated
PBMCs, thereby suggesting that this treatment regimen syner-
gistically lowered the activation threshold of the responding cells.
OKT8 failed to activate CD4+ T cells in PHA/IL-15–stimulated

FIGURE 7. Anti-human CD8 Abs can either enhance or in-

hibit the binding of pMHCI tetramers. A total of 5 3 104 ILA1

(A), ALF3 (B), MEL5 (C), or MEL187.c5 (D) CD8+ T cells

were preincubated at 4˚C for 25 min with each of the following

individual anti-human CD8 Abs in parallel: 100 mg/ml OKT8,

6.25 mg/ml SK1, 50 mg/ml MCD8, 100 mg/ml 32/M4, 100 mg/

ml C8/144B (144B), 25 mg/ml DK25, and 100 mg/ml

2ST8.5H7 (CD8b). CD8+ T cells were subsequently stained

with cognate PE-conjugated HLA A*0201 tetramers (25 mg/

ml) and 7-aminoactinomycin D as described in Materials and

Methods. Data were acquired using a FACSCalibur flow

cytometer and analyzed with FlowJo software. Relative median

fluorescence intensity (MFI) values with respect to pMHCI

tetramer staining in the absence of preincubation with anti-

CD8 Ab are shown. Fluorescence in the absence of added

cognate tetramer (con) is shown in each case. Data are repre-

sentative of four separate experiments using ILA1 and ALF3

CD8+ T cells, and six separate experiments using MEL5 and

MEL187.c5 CD8+ T cells.

FIGURE 6. PHA/IL-15 treatment does not alter the functional pheno-

type of anti-human CD8 Abs. PBMCs were harvested from healthy donors

and cultured either without (A) or with (B, C) 1 mg/ml PHA and 25 ng/ml

IL-15 for 7 d and then washed and cultured overnight in R2 medium. A

total of 5 3 104 PBMCs were then incubated for 18 h with each of the

following individual anti-human CD8 Abs in parallel: 100 mg/ml OKT8,

6.25 mg/ml SK1, 50 mg/ml MCD8, 100 mg/ml 32/M4, 100 mg/ml C8/

144B, 25 mg/ml DK25, and 100 mg/ml 2ST8.5H7 (CD8b). The anti-hu-

man CD3 Ab UCHT1 (10 mg/ml) served as a positive control. CD8+ T cell

effector functions were measured by intracellular cytokine staining and

surface CD107a mobilization as described in Materials and Methods. Data

were acquired using a modified FACSAriaII flow cytometer and analyzed

with FlowJo software. Results obtained by gating on either the CD3+CD42

(A, B) or CD4+ (C) population are shown for a representative experiment

(n = 2). Minor differences in background levels of CD8+ T cell activation

were observed with the non-OKT8 anti-human CD8 Abs (A, B); this may

reflect heterogeneity within the CD8+ PBMC population.

FIGURE 5. Secondary crosslinking does not alter the functional phe-

notype of anti-human CD8 Abs. A total of 3 3 104 ILA1 CD8+ T cells

were incubated with each of the following individual anti-human CD8 Abs

in parallel: 100 mg/ml OKT8, 6.25 mg/ml SK1, 50 mg/ml MCD8, 100 mg/

ml 32/M4, 100 mg/ml C8/144B, 25 mg/ml DK25, and 100 mg/ml

2ST8.5H7 (CD8b). The positive control comprised 3 3 104 C1R-A*0201

B cells pulsed with cognate peptide at 1027 M. Abs were then cross-linked

with the addition of 5 ml anti-mouse IgG Ab (serum IgG) and incubated for

18 h at 37˚C in a 5% CO2 atmosphere. Supernatant was harvested and

assayed for MIP1a (A), MIP1b (B), and RANTES (C) by ELISA. Sec-

ondary cross-linking of OKT8 increased the levels of all analytes mea-

sured; this also applied to anti-CD3 Ab-induced chemokine release (data

not shown). Similar results were obtained with all other CD8+ T cell clones

tested: ALF3, MEL5, MEL187.c5, LC13, and SB10 (data not shown).

Error bars represent SDs.
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PBMCs (Fig. 6C), consistent with previously discussed data
(Supplemental Fig. 2).

OKT8 enhances pMHCI tetramer staining

Next, we tested the effects of anti-human CD8 Abs on the stain-
ing of ILA1, ALF3, MEL5, and MEL187.c5 CD8+ T cells with
cognate pMHCI tetramers. Three anti-human CD8 Ab clones
(SK1, DK25, and 2ST8.5H7) inhibited tetramer staining; clones
MCD8, 32/M4, and C8/144B had little or no effect on staining.
However, preincubation with OKT8 enhanced cognate pMHCI
tetramer staining of all four CD8+ T cell clones (Fig. 7). Thus,
OKT8 can enhance the binding of pMHCI tetramers in a range of
systems. These findings suggested that OKT8 might facilitate
the identification of Ag-specific CD8+ T cells within mixed cell
populations. To test this idea, we examined pMHCI tetramer
staining of CD8+ T cell lines raised against the HLA A*0201-
restricted EBV BMLF1-derived epitope GLCTLVAML (residues
280–288). OKT8 enhanced the staining intensity of cognate CD8+

T cells with the relevant pMHCI tetramer without concomitant
increases in noncognate HLA A*0201 tetramer binding (Fig. 8A,
8B). No increase in the percentage of tetramer+CD8+ cells was
observed in the presence of OKT8 (Fig. 8A, 8B), which likely
reflects the high-affinity TCR/pMHCI interactions that character-
ize antiviral CD8+ T cell populations (41).

We hypothesized that OKT8-mediated enhancement of TCR/
pMHCI binding at the cell surface might have beneficial effects
on pMHCI tetramer staining with low-affinity ligands, an effect that
could prove very useful for the detection of CD8+ T cells with
TCRs that bind weakly to cognate Ag, such as those that appear to
predominate in anticancer and autoimmune responses (32, 41). To
test this hypothesis, we used two monoclonal CD8+ T cell systems
and a series of altered peptide ligands that vary in their affinity for
cognate TCR by .5-fold (Table I, Supplemental Fig. 3). Pre-
incubation with OKT8 enhanced staining efficiency with all var-
iant pMHCI tetramers, including low-affinity variants (Table I,
Supplemental Fig. 4). Consistent with this finding, OKT8 in-
creased both the staining intensity and the percentage of Ag-
specific events detected when CD8+ T cell lines raised against
the HLA A*0201-restricted Melan-A–derived epitope ELAGI-
GILTV (residues 26–35) were stained with HLA A*0201
tetramers folded around the low-affinity peptide variants
FLAGIGILTV or ELTGIGILTV (Fig. 8C, 8D).

OKT8 enhances TCR/pMHCI on-rates at the cell surface

To examine how OKT8 enhances Ag binding at the CD8+ T cell
surface in more detail, we examined the effects of this Ab on
TCR/pMHCI kinetics using pMHCI tetramers. Differences in
tetramer off-rates were minimal (data not shown). However, pre-
treatment of CD8+ T cells with OKT8 resulted in a significant
increase in the TCR/pMHCI on-rate at the cell surface in each
CD8+ T cell clone tested (Fig. 9). In contrast, DK25 inhibited
pMHCI tetramer binding at the cell surface (Fig. 9B). OKT8 Ab-

FIGURE 8. OKT8 enhances pMHCI tetramer staining in mixed cell

populations.A andB, A total of 53 104 cells from a CD8+ T cell line primed

with the EBV BMLF1-derived epitope GLCTLVAML (residues 280–288)

were either mock treated or incubated with 100 mg/ml OKT8 at 4˚C for 25

min and then stained with either noncognate HLA A*0201-ELAGIGILTV

(A) or cognate HLA A*0201-GLCTLVAML (B) APC-conjugated tetramer

(25 mg/ml each) at 37˚C for 15 min. C and D, A total of 53 104 cells from

a CD8+ T cell line primed with theMelan-A–derived epitope ELAGIGILTV

(residues 26–35) were either mock treated or incubated with 100 mg/ml

OKT8 at 4˚C for 25 min and then stained with either HLA A*0201-FLA-

GIGILTV (C) or HLA A*0201-ELTGIGILTV (D) PE-conjugated tetramer

(25mg/ml each) at 37˚C for 15 min. Additional stains were performed as

detailed in Materials and Methods. Data were acquired using a FACSCan-

toII flow cytometer and analyzed with FlowJo software.

Table I. OKT8 increases tetramer staining of MEL5 and MEL187.c5 CD8+ T-cells with low-affinity pMHCI ligands

Peptidea
MEL5

KD (mM)

MEL5
Tetramer Only

(MFI)

MEL5
OKT8 +

Tetramer (MFI)
MEL187
KD (mM)

MEL187
Tetramer Only

(MFI)

MEL187
OKT8 +

Tetramer (MFI)

ELAGIGILTV 17 6 1 855 917 18 6 1 353 418
FLAGIGILTV 92 6 1 194 227 30 6 2 300 373
ELTGIGILTV 82 6 4 36 87 37 6 1 128 181
ELAGIGIITV 77 6 3 123 236 36 6 3 195 257
FLAGIGIITV 75 6 3 367 426 47 6 2 246 311

Summary of equilibrium binding analysis of MEL5 and MEL187.c5 TCRs with pMHCI variants and the effect of OKT8 on HLA A*0201 tetramer
staining. Raw surface plasmon resonance data are shown in Supplemental Fig. 3; flow cytometry data are shown in Supplemental Fig. 4.

aAmino acid residues marked in bold and underlined indicate substitutions made in the ELAGIGILTV peptide backbone.
MFI, median fluorescence intensity.
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induced enhancement of pMHCI tetramer on-rates was also ap-
parent with CD8-null tetramers (Fig. 9C). Collectively, these data
indicate that OKT8 enhances pMHCI tetramer staining by in-
creasing the on-rate. Furthermore, OKT8 Ab-mediated augmen-
tation of Ag binding at the cell surface occurs independently of the
pMHCI/CD8 interaction.

OKT8 F(ab9)2 fragments can enhance tetramer staining and
elicit CD8+ T cell effector function

Abs can be digested by papain or pepsin to produce Fab or F(ab9)2
fragments, respectively. These enzymatically generated fragments
have been used extensively in the past to study the structure and
function of Abs. We examined the ability of OKT8 Fab and
F(ab9)2 fragments to enhance pMHCI tetramer staining and to
induce chemokine release in the absence of TCR engagement.
Not surprisingly, Fab fragments of OKT8 failed to activate CD8+

T cells or enhance pMHCI tetramer staining (Fig. 10A, 10B).
Interestingly, however, OKT8 F(ab9)2 fragments retained some
ability to enhance pMHCI tetramer staining and elicit chemokine
release (Fig. 10A, 10B). OKT8-mediated effects were diminished
by pepsin digestion, but anti-human CD3 Abs were similarly im-
paired functionally after digestion with this enzyme (Fig. 10C);
this latter effect has been described previously (44–46). Thus, it

appears that intact OKT8 exerts effects on pMHCI tetramer
binding and CD8+ T cell activation more efficiently than derived
F(ab9)2 fragments. However, cellular activation by OKT8 F(ab9)2
fragments confirms that this effect is not entirely Fc9 dependent.

Anti-mouse CD8 Abs can trigger CD8+ T cell effector function
in the absence of TCR engagement

To extend these findings beyond human systems (summarized in
Table II), we examined the effects of the anti-mouse CD8a Ab
CT-CD8a and the anti-mouse CD8b Ab CT-CD8b on pMHCI
tetramer staining and CD8+ T cell activation in the absence of
TCR engagement. We observed that CT-CD8a inhibited tetramer
staining of mouse transgenic F5 CD8+ T cells, whereas CT-CD8b
enhanced tetramer staining of the same Ag-specific population
(Fig. 11A). These results are consistent with our previous findings
(26). Interestingly, despite opposing effects on pMHCI tetramer
staining, both of these anti-mouse CD8 Abs induced MIP1b
production in the absence of TCR engagement from both naive
and Ag-exposed F5 CD8+ T cells (Fig. 11B; data not shown).
These effects were shown to be CD8-specific and occurred in the
absence of any concomitant IL-2 release (data not shown). The
anti-mouse CD8 Abs 53.6.7 and KT112 both enhanced pMHCI
tetramer staining and induced small amounts of MIP1b production

FIGURE 10. OKT8 F(ab9)2 fragments can enhance pMHCI tetramer staining and elicit CD8+ T cell effector function. A, A total of 5 3 104 MEL5 CD8+

T cells were either mock treated or incubated with 100 mg/ml OKT8, 100 mg/ml OKT8 Fab, or 100 mg/ml OKT8 F(ab9)2 and then stained with PE-

conjugated HLA A*0201-ELAGIGILTV tetramer (25 mg/ml) as described in Materials and Methods. Data were acquired using a FACSCantoII flow

cytometer and analyzed with FlowJo software. B, A total of 33 104 MEL5 or ALF3 CD8+ T cells were incubated with 100 mg/ml OKT8, 100 mg/ml OKT8

Fab, 100 mg/ml OKT8 F(ab9)2, or 100 mg/ml OKT8 Fc9 for 18 h. Supernatant was harvested and assayed for MIP1a, MIP1b, and RANTES by ELISA. C, A

total of 3 3 104 MEL5 or ALF3 CD8+ T cells were incubated with either 10 mg/ml OKT3 or 10 mg/ml OKT3 F(ab9)2 for 18 h. Supernatant was harvested

and assayed for MIP1a, MIP1b, and RANTES by ELISA (only MIP1b is shown). Data in A–C are representative of three separate experiments. Error bars

represent SDs.

FIGURE 9. OKT8 increases TCR/pMHCI on-rates at the cell surface. A total of 5 3 105 ILA1 (A) or ALF3 (B, C) CD8+ T cells were removed from

culture, washed twice, and resuspended in 100 ml PBS with or without 100 mg/ml OKT8 or 25 mg/ml DK25 and then incubated at 4˚C for 25 min. Cognate

PE-conjugated HLA A*0201 tetramer was added in each case at 5 mg/ml. At various time points as indicated, 12 ml cell suspension was removed and

acquired using a FACSCalibur flow cytometer and analyzed with FlowJo software. In C, the CD8-null (D227K/T228A) cognate HLA A*0201 tetramer was

used (10).
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(Fig. 11A, 11B). Thus, three different phenotypes were identified
within a panel of four different anti-mouse CD8 Abs (Table III),
which further underscores the considerable heterogeneity that
exists within this group of reagents.

Discussion
Anti-CD8 Abs are integral to the flow cytometric detection of
pMHCI-restricted T cells and have been used extensively in the
past to identify an important role for CD8 in CD8+ T cell activa-
tion (16–18, 20). Most studies have concluded that anti-CD8 Abs
inhibit the recognition of cognate Ag (19, 21, 22). Furthermore,
a recent study provided evidence that a single anti-CD8 Ab could
deliver a negative signal to a CD8+ T cell clone in the absence of
cognate Ag (29). In contrast, however, earlier studies concluded
that anti-CD8 Abs could activate CD8+ T cells (25, 27). Thus,
contradictory effects of Ab-mediated CD8 ligation have been
reported and the overall picture remains unclear. To clarify this
issue, we examined the ability of seven different monoclonal anti-
human CD8 Abs to activate six different human CD8+ T cell
clones specific for a total of five different pMHCI Ags.
In the absence of cognate Ag, the anti-human CD8 Ab OKT8

induced chemokine release from all six human CD8+ T cell clones
tested and cytotoxic activity in all four human CD8+ T cell clones
tested (Figs. 1–3). Interestingly, this activation appeared to occur

in the absence of any detectable cytokine release, with the ex-
ception of CD8+ T cell clone SB10, which released IFN-g (Fig. 4).
It is well established that a hierarchy of CD8+ T cell effector
functions exists with respect to Ag sensitivity (47, 48); thus, each
function exhibits a distinct activation threshold that must be
exceeded for triggering to occur. Our findings suggest that OKT8
delivers a positive signal to CD8+ T cells that is generally suffi-
cient to exceed the activation threshold required for chemokine
release and cytotoxic activity but is not sufficient to trigger cy-
tokine release in the majority of CD8+ T cells. In contrast to
OKT8, the anti-human CD8a Ab clones SK1, MCD8, C8/144B,
32/M4, and DK25 as well as the anti-human CD8b Ab clone
2ST8.5H7 did not induce any measurable T cell effector functions
in the absence of cognate Ag. It was not possible to reverse the
phenotype of the nonactivating anti-human CD8 Abs by secondary
Ab-mediated cross-linking or PHA/IL-15 treatment (Figs. 5, 6).
Thus, we conclude that anti-CD8 Abs can exert differential ef-
fects on CD8+ T cells. These findings help to reconcile disparate
observations and suggest that previous reports in the literature
may not be intrinsically contradictory but rather reflective of the
considerable heterogeneity that characterizes the ability of anti-
CD8 Abs to induce CD8+ T cell effector function.
Anti-CD8 Ab-mediated activation of CD8+ T cells is consis-

tent with a recent report, in which we demonstrated that MHCI
molecules with superenhanced CD8 binding properties can also
activate CD8+ T cells in the absence of a specific TCR/pMHCI
interaction (49). Furthermore, thymus leukemia Ag interacts
strongly (KD = 12 mM) with cell surface CD8aa expressed by
intraepithelial lymphocytes and can modulate T cell responses
independently of the TCR (50–52). These studies all demonstrate
that the engagement of CD8 in the absence of cognate Ag bind-
ing to the TCR can activate CD8+ T cells and, collectively, un-
derscore the importance of CD8 in T cell signaling.
To examine the effects of OKT8 on Ag binding at the CD8+

T cell surface, we used soluble pMHCI tetramer technology,
which has transformed the study of Ag-specific CD8+ T cells by

FIGURE 11. Anti-mouse CD8 Abs can exhibit the same phenotype as

OKT8. A, A total of 53 104 naive mouse transgenic F5 T cells were either

mock treated or incubated with 100 mg/ml CT-CD8a, 100 mg/ml 53.6.7,

100 mg/ml CT-CD8b, or 100 mg/ml KT112 at 4˚C for 25 min and then

stained with cognate PE-conjugated H-2Db tetramer (25mg/ml) as de-

scribed in Materials and Methods. No staining was observed under any of

the conditions shown with a control H-2Db tetramer folded around the

lymphocytic choriomeningitis virus GP1-derived epitope KAVYNFATC

(residues 33–41). Data were acquired using a modified FACSAriaII flow

cytometer and analyzed with FlowJo software. Results were obtained by

gating on the CD3+CD42 population. B, A total of 3 3 104 naive mouse

transgenic F5 T cells were incubated at 37˚C for 18 h with 100 mg/ml CT-

CD8a, 100 mg/ml 53.6.7, 100 mg/ml CT-CD8b, 100 mg/ml KT112, or 50

ng/ml PMA and 1 mg/ml ionomycin. Supernatants were harvested and

assayed for MIP1b by ELISA. Error bars represent SDs.

Table II. The heterogeneity of anti-human CD8 Abs

Ab Clone a or b
Tetramer
Binding MIP1b MIP1a RANTES IFN-g TNF-a IL-2 Cytoxicity

OKT8 a Enhance Yes Yes Yes Noa Noa No Yes
SK1 a Inhibit No No No No No No No
MCD8 a Neutral No No No No No No No
32/M4 a Neutral No No No No No No No
C8/144B a Neutral No No No No No No No
DK25 a Inhibit No No No No No No No
2ST8.5H7 b Inhibit No No No No No No No

Summary of the effects exerted by anti-human CD8 Abs on pMHCI tetramer binding and CD8+ T cell activation in the
absence of TCR engagement.

aOKT8 was shown to elicit IFN-g and TNF-a release by SB10 and PHA/IL-15–stimulated PBMC.

Table III. The heterogeneity of anti-mouse CD8 Abs

Ab Clone a or b
Tetramer
Binding MIP1b IFN-g IL-2

CT-CD8a a Inhibit Yes No No
53.6.7 a Enhance Weaka No No
CT-CD8b b Enhance Yes No No
KT112 b Enhance Weak NT NT

Summary of the effects exerted by anti-mouse CD8 Abs on pMHCI tetramer
binding and CD8+ T cell activation in the absence of TCR engagement.

a53.6.7 elicited low levels of MIP1b production from naive F5 CD8+ T cells, F5
CD8+ T cell lines, and blasted BALB/c CD8+ cells but not from naive BALB/c CD8+

cells (data not shown).
NT, not tested.
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enabling their visualization, enumeration, phenotypic character-
ization, and isolation from ex vivo samples. Preincubation with
OKT8 enhanced the capture of cognate pMHCI tetramers from
solution and produced higher intensity staining (Figs. 7–9). Ac-
cordingly, OKT8 enhanced the identification of CD8+ T cells with
low-affinity TCR/pMHCI interactions (Fig. 8, Table I), such as
those that typically predominate in tumor-specific and autoim-
mune responses (41). The other anti-CD8 Abs examined in this
study either exerted inhibitory effects on pMHCI tetramer binding
(SK1, DK25, and 2ST8.5H7) or displayed no biologically sig-
nificant activity in this regard (MCD8, 32/M4, and C8/144B).
Thus, OKT8 can be used as a tool to improve pMHCI tetramer
staining; this property may be especially useful in the context of
low-avidity Ag-specific CD8+ T cell populations.
The findings described above suggest that OKT8 has properties

that are distinct from other anti-human CD8 Abs. Furthermore,
these properties are not entirely Fc9 dependent (Fig. 10). To extend
these results, we conducted additional experiments with the anti-
mouse CD8a Ab CT-CD8a and the anti-mouse CD8b Ab CT-
CD8b. CT-CD8a was shown to inhibit pMHCI tetramer staining,
whereas CT-CD8b enhanced pMHCI tetramer binding, consistent
with a previous report (26). Despite their differential effects on
pMHCI tetramer binding, both of these anti-mouse CD8 Abs ac-
tivated CD8+ T cells efficiently (Fig. 11). These results demon-
strate that the ability of anti-CD8 Abs to elicit CD8+ T cell
effector function does not always correlate with their effect on
pMHCI tetramer staining. This lack of correspondence was fur-
ther supported by the identification of a third phenotype in the
mouse system. The anti-mouse CD8a Ab 53.6.7 and the anti-
mouse CD8b Ab KT112 both enhanced pMHCI tetramer stain-
ing but only activated CD8+ T cells weakly (Table III). Taken to-
gether, these data further underline the heterogeneity that exists
within this group of reagents.
The mechanism by which anti-CD8 Abs exert either inhibitory

or stimulatory effects on pMHCI recognition remains elusive. Pre-
vious studies have shown that anti-CD8 Abs retain their effects in
the absence of a pMHCI/CD8 interaction (26, 53–55). In this study,
we confirm that the enhancing effects of OKT8 on HLA A*0201
tetramer on-rate at the cell surface are still apparent in the context
of CD8-null MHCI molecules (Fig. 9); thus, these effects are in-
dependent of any interaction between pMHCI and CD8. Subtle
local rearrangements of the TCR relative to CD8 on pMHCI en-
gagement are required for optimal CD8+ T cell activation (56, 57).
By extension, it seems likely that anti-CD8 Abs exert their effects
by interfering with, or enhancing, this surface receptor topology.
The observation that anti-CD4 Abs can block cell surface in-
termolecular interactions essential for calcium flux and inhibit
subsequent synapse formation is consistent with this hypothesis
(58). Furthermore, we have previously demonstrated that anti-
CD4 Abs can interfere with pMHCII tetramer binding even
though the pMHCII/CD4 interaction does not stabilize TCR/
pMHCII interactions (59).
In summary, we have shown the following: 1) heterogeneity

exists in the ability of anti-CD8 Abs to activate CD8+ T cells; 2)
Ab-mediated ligation of CD8 in the absence of TCR engagement
can induce chemokine release and cytotoxic activity, largely in the
absence of cytokine release; 3) the anti-human CD8 Ab OKT8 can
enhance pMHCI tetramer staining; and 4) anti-mouse CD8 Abs
(CT-CD8a and CT-CD8b) can activate CD8+ T cells in the ab-
sence of TCR engagement despite differential effects on pMHCI
tetramer staining. Thus, anti-CD8 Abs can have potent effects on
TCR/pMHCI binding kinetics and activation. These effects vary
according to the Ab clone under investigation and should be taken
into account when interpreting studies using these reagents. Fur-

thermore, the ability of Ab-mediated CD8 engagement to activate
CD8+ T cells underscores the importance of coreceptor function in
CD8+ T cell signaling.
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Appendices 

 

 

Appendix 3. Surface plasmon resonance measurements of 1E6, ALF8, and 1LA TCR 

binding to peptide variants complexed with HLA A*0201. SPR equilibrium binding of 

soluble of (A) 1E6 TCR to HLA A*0201-YQFGPDFPIA, (B) ALF3 TCR to HLA A*0201-

GILGFVFTL, (C) ALF8 TCR to HLA A*0201-GILGFVFTL and (D) ILA1 TCR to HLA 

A*0201-ILGKFLHRL. The mean response for each concentration is plotted (n = 3). The 

equilibrium dissociation constant (KD) values were calculated assuming 1:1 Langmuir 

binding and plotted using a nonlinear curve fit (y = (P1x)/(P2 + x)). 


