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Abstract. We present a simple model of binary star formation based on the assumption that rotating prestellar cores collapse
to form rings and these rings then fragment into protostars. We assume that each ring spawns a small number (N ≤ 6) of
protostars, and that the condensation of the protostars is sufficiently rapid that they can subsequently be treated as point masses.
The first part of the model is therefore to simulate the dynamical evolution of a ring of N stars and record the properties of the
single stars, binaries and higher multiples that form as a result of the dissolution of the ring. The masses of the individual stars
in a ring are drawn from a log-normal distribution with dispersion σlog M . This part of the model is perfomed for many different
realizations of the ring, to obtain good statistics. It can be formulated using dimensionless variables and immediately yields the
overall multiplicity.
The second part of the model is to convolve the results of these dimensionless simulations, first with the distribution of core
masses, which yields the distributions of multiplicity, mass ratio and eccentricity, as a function of primary mass; and second
with the distribution of core angular momenta, which yields the distributions of semi-major axis and period, again as a function
of primary mass.
Using the observed distribution of core masses, and a distribution of core angular momenta which is consistent with the ob-
servations, our model is able to reproduce the observed IMF, the observed high multiplicity frequency of pre-Main Sequence
stars, the observed distribution of separations, and – for long-period systems – the observed distributions of eccentricity and
mass-ratio, provided we invoke N = 4 or 5 and σlog M = 0.6.
We presume that for short-period systems the distributions of eccentricity and mass-ratio are modified by the dissipative effects
of subsequent tidal interaction and competitive accretion; and that the reduced multiplicity frequency in the field, compared with
young clusters, is the result of dynamical interactions between stars formed in different cores but the same cluster, following
ring dissolution. Further numerical experiments are required to explore the consequences of such interactions.
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1. Introduction

One of the main problems in star formation is to explain the
wide range of scales over which multiple systems form. The
observed distribution of binary separations (e.g. Duquennoy &
Mayor 1991, hereafter DM91; Fischer & Marcy 1992, here-
after FM92) extends from 10−2 AU to 105 AU. The explana-
tion for this large range of separations must lie in the details
of the star formation process. In the field, the multiplicity of
mature solar-mass stars is around 60% (DM91); and in some
star formation regions, the multiplicity of young solar-mass ob-
jects is at least 80%, and possibly higher (Ghez et al. 1993;
Reipurth & Zinnecker 1993; Simon et al. 1992; Patience et al.
2002; Duchêne et al. 2004). This implies that the genesis of
multiple systems is an intrinsic part of the star formation pro-
cess. A prestellar core is presumed to collapse and fragment to
produce a dense ensemble of protostars. Interactions between
these protostars and the ambient gas then determine their fi-
nal masses, which ones end up in multiple systems, and their
orbital parameters.

Understanding how cores fragment and how many ob-
jects are produced requires 3-D hydrodynamical simulations,
which are (a) very computer intensive, and (b) highly depen-
dent on the input physics and initial conditions of the cores
(e.g. Tohline 2002). Few simulations can be performed, and
the statistical properties of the resulting protostars are there-
fore poorly constrained. Also, such simulations are not able
to follow star formation to completion, so the final fate of a
star-forming core and the stars it produces is not completely
resolved. In particular, the orbital parameters of the resulting
multiple systems are unlikely to have reached their final values
when a 3-D hydrodynamic simulation is terminated.

1.1. Previous N-body work

A complementary approach to hydrodynamic simulations is
to use an N-body code to follow the ballistic evolution of
a system of protostars, treating them as point masses, and
thereby ignoring complicated gas-dynamical processes like
fragmentation, merger and accretion. This approach has been
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pioneered by Kroupa and co-workers (Kroupa 1995a,b; Kroupa
& Bouvier 2003a,b; Kroupa et al. 2003), and by Sterzik &
Durisen (1998, 2003), with a view to explaining the observed
statistics of binary stars. The work of Sterzik & Durisen is sim-
ilar to the present study, in that it is mainly concerned with the
origin of the primordial binary properties in small-N clusters
(or subclusters) of protostars. In Kroupa’s work the emphasis is
more on how these primordial binary properties are altered by
subsequent dynamical interactions with other multiple systems
and single stars in a wider cluster environment.

Sterzik & Durisen (1998) investigate the binary statistics
resulting from the dynamical dissolution of small-N clusters.
They pick cluster masses from a power-law core mass spec-
trum, and calculate cluster radii from a scaling law of the form
RCLUTER ∝ Mξ

CLUSTER
(ξ = 0, 1 or 2). Each cluster contains

N stars (N = 3, 4 or 5) with masses picked from a pre-
scribed stellar mass spectrum. Initially the stars are positioned
randomly in the cluster volume, with zero velocity. Their bal-
listic evolution is then followed for many crossing times, using
an N-body code, and the properties of the resulting multiple
systems are recorded. However, this model is unable to repro-
duce the broad distribution of binary semi-major axes observed
by DM91.

In a second paper Sterzik & Durisen (2003) repeat these
experiments, but now with clusters which initially are oblate
and have some rotation about their short axis (specifically, β =
0.1, where β is the ratio of rotational to gravitational energy). In
addition, they relax the assumption of constantN . Instead stars
are chosen from a prescribed mass distribution until their total
mass adds up to the preordained mass of the cluster, and this
then determines N for that cluster. They are able to reproduce
the dependence of multiplicity frequency on primary mass, but
the distribution of semi-major axes is still much narrower than
that observed by DM91.

Delgado-Donate et al. (2003) adopt a somewhat dif-
ferent approach, designed to capture hydrodynamic effects.
They model a uniform-density core of isothermal gas using
Smoothed Particle Hydrodynamics, and place 5 sink particles
(representing protostellar embryos) at random positions within
the core. Initially each sink contains only 2% of the total mass,
but subsequently the sinks grow by competitive accretion and
interact dynamically with one another, to generate a mass func-
tion which is a good fit to the observed Initial Mass Function.
The resulting binary systems also have the right distribution of
eccentricities. However, the distribution of semi-major axes is
again much narrower than that observed by DM91, and is more
similar to that observed in open clusters (Patience et al. 2002).

Kroupa (1995a) explores the evolution of a cluster of bi-
nary systems, and concludes that the properties of G-dwarf
binaries in the field can be reproduced by dynamical interac-
tions between binaries in a young cluster. Specifically he iden-
tifies a dominant mode cluster, which starts off with 200 bina-
ries formed by random pairings from the field IMF, and with
periods drawn randomly from a distribution covering 1 day
to 109 days and having no correlation with primary mass.
Interactions amongst the binaries (termed stimulated evolution)
reduces the binary fraction to ∼60%, by selectively remov-
ing low-mass companions (i.e. dynamical biasing), and thereby

reproduces the distributions of period and mass ratio observed
in field G-dwarf binaries by DM91.

In Kroupa (1995b), this model is extended to include the
eigenevolution of short-period systems (for example, their tidal
circularization). He shows that stimulated evolution does not
change the distribution of orbital eccentricities significantly
(so the observed distribution must be essentially primordial).
In addition, stimulated evolution does not generate sufficient
higher multiples by capture to match the observed numbers of
triples and quadruples. However, it does produce a distribution
of mass ratios for G-dwarf primaries which is in good agree-
ment with the observations of DM91. Kroupa (1995b) also
suggests that long-period binaries with large eccentricities are
somewhat more likely to be disrupted tidally than long-period
binaries with low eccentricities.

Kroupa & Burkert (2001) investigate the ballistic evolution
of clusters comprising 100 or 1000 primordial binaries, with
a narrow range of initial separations. They find that even un-
der the most favourable conditions, dynamical interactions be-
tween binaries cannot produce a distribution of separations as
broad as that observed by DM91. The observed separation dis-
tribution must therefore be set principally by the properties of
primordial binaries.

Kroupa et al. (2001) show that the Pleiades may have
evolved from a cluster like the Orion Nebula Cluster (ONC),
following loss of residual gas and simultaneous stimulated
evolution. They point out that the primordial binary popula-
tion in the ONC could have been very similar to the pre-
Main Sequence binary population that is currently observed in
Taurus-Auriga. Subsequent dynamical interactions in the dense
cluster environment then changed it into what we see today.

Kroupa & Bouvier (2003a) show that the basic model de-
veloped in Kroupa (1995a) can not only explain the high multi-
plicity fraction for pre-Main Sequence stars in Taurus-Auriga,
but also the apparent paucity of brown dwarfs (relative to the
ONC). However, the basic model is seemingly unable to ex-
plain the binary properties of brown dwarfs: it produces too
many stars with brown dwarf companions, and too many wide
star-BD and BD-BD systems (Kroupa et al. 2003). It is also
unable to reproduce the number of brown dwarfs per star, un-
less brown dwarfs have different formation mechanisms from
stars, and possibly even different formation mechanisms in dif-
ferent environments (e.g. embryo ejection, photoevaporation,
etc.; Kroupa & Bouvier 2003b).

1.2. Motivation for a new model

In simulations of core collapse which include rotation (e.g.
Bonnell & Bate 1994; Cha & Whitworth 2003; Hennebelle
et al. 2004), in particular those where instability against col-
lapse is triggered impulsively, the core may overshoot centrifu-
gal balance and then bounce to form a dense ring, which sub-
sequently fragments into multiple protostars. In this paper, we
investigate the consequences of assuming that this is the dom-
inant mechanism by which a core breaks up into individual
protostars. Specifically, we use an N-body code to follow the
ballistic evolution of protostars which are initially distributed
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on a ring, and record their final binary statistics. We scale the
mass and radius of the ring to match the observed distributions
of core mass, core radius, and core rotation; and we compare
the resulting binary statistics with observation. Our approach is
similar to that adopted by Sterzik & Durisen (1998, 2003). The
main difference – and the reason that we obtain a broader dis-
tribution of separations, comparable with what is observed – is
that we consider clusters having a distribution of β-values (i.e. a
range of rotation rates), whereas Sterzik & Durisen (1998) con-
sidered clusters with no rotation, and Sterzik & Durisen (2003)
considered clusters with a universal β (= 0.1).

In Sect. 2, we review the observations of cores which pro-
vide the input parameters for our model. In Sect. 3 we review
the observations of stars and binary systems which our model
seeks to explain. In Sect. 4 we sketch the sequence of stages
through which the model is developed. In Sect. 5, we present
the results of dimensionless simulations of ring dissolution. In
Sect. 6, we scale the dimensionless results by convolving them
with the core mass spectrum and obtain the distributions of
multiplicity, eccentricity and mass ratio as a function of pri-
mary mass. In Sect. 7, we scale the results, by convolving them
with the distribution of core angular momenta, and obtain the
distribution of semi-major axes, as a function of primary mass.
In Sect. 8, we summarize our main conclusions.

2. Observations of cores

In this section we review briefly the observations of cores
which provide the input parameters for our model, namely the
distribution of core masses (Sect. 2.1), the mass-radius relation
for cores (Sect. 2.2), and the distribution of core rotation rates
(Sect. 2.3).

2.1. Core masses

Motte et al. (2001) have measured the core-mass spectrum in
Orion B and fitted it with a two part power law:

dNCORE

dMCORE

=





k1 M−1.5
CORE
, MMIN ≤ MCORE ≤ MKNEE ;

k2 M−2.5
CORE
, MKNEE ≤ MCORE ≤ MMAX ,

(1)

where MMIN = 0.5 M�, MKNEE = 1.0 M� and MMAX = 10.0 M�.
Similar results have been reported by Johnstone et al. (2001)
for Orion B, by Motte et al. (1998) and Johnstone et al. (2000)
for ρ Ophiuchus, and by Testi & Sargent (1998) for Serpens.
We shall use Eq. (1) in our model but we extend the core mass
spectrum up to MMAX = 20.0 M�.

2.2. Core radii

We shall assume that the initial core radii are given by the scal-
ing relations

RCORE(MCORE) =





0.1 pc
(
MCORE/M�

)
, MCORE < M�;

0.1 pc
(
MCORE/M�

)1/2 , MCORE > M�,
(2)

(cf. Larson 1981; Myers 1983). Here, the low-mass regime ap-
plies to cores whose support is dominated by thermal pressure,

Fig. 1. The histogram and the dotted curve represent the distribution
of observed β-values from Goodman et al. (1993), scaled to 56%
(since they only measured rotation for 24 out of 43 cores). The dashed
line represents the log-normal distributions of Case A (log β = −2.0,
σlogβ = 1.2) and the dash-dot line represents the log-normal distribu-
tion of Case B (log β = −2.2, σlog β = 1.7).

and the high-mass regime applies to cores whose support is
primarily from turbulence. Strictly speaking there is a range
of core radii at any given core mass, but since we are trying to
keep the number of free parameters in the model to a minimum,
we neglect this.

2.3. Core rotation

Goodman et al. (1993, hereafter G93) have measured the veloc-
ity profiles across a sample of 43 pre-stellar cores. They find
statistically significant velocity gradients across many of the
cores, and from these velocity gradients they calculate the ratio
of rotational to gravitational potential energy, β, on the asump-
tion of uniform global rotation, for 24 of the cores they observe.
The distribution of these β-values, normalized to 24/43 � 56%,
is represented by the histogram in Fig. 1, and also by the dotted
line. The dotted line is obtained by smoothing the individual
β values with a Gaussian kernel having σlog β = 0.5,

dNCORE

d logβ

∣
∣
∣
∣
∣
∣
OBS

=
∑

i





1
(2π)1/2σlog β

exp




− (logβi − log β)2

2σ2
log β







, (3)

and is intended to mitigate the effects of arbitrarily binning a
very small number of data points. However, due to low number
statistics and the fact that only large projected velocity gradi-
ents can be measured, the full distribution of β-values is not
well constrained by the observations of G93.

Burkert & Bodenheimer (2000) have pointed out that the
velocity gradients observed by G93 can also be explained by
turbulent motions in cores, rather than uniform global rota-
tion. By modelling the turbulence as a Gaussian random ve-
locity field with power spectrum P(k) ∝ k−n with 3 ≤ n ≤ 4,
they show that the resulting distribution of β-values fits the
G93 observations well, and is approximately log-normal (see
their Fig. 3, lower left panel).
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Fig. 2. a) The model IMF for N = 3 with σlog M = 0.2 (thin solid line), 0.4 (dashed line) and 0.6 (dotted line); b) as a) but for N = 4; c) as a)
but for N = 5; d) as a) but for N = 6. The observed IMF (Kroupa 2001) is shown as a heavy solid line on each panel.

Therefore we assume a log-normal distribution of β-values:

dNCORE

d logβ
∝ exp




−(logβ − log β)2

2σ2
log β


 · (4)

Since G93 only determined β for 24 of the 43 prestellar cores
they observed, the observed β distribution in Fig. 1 represents
only 56% of all the cores, and we therefore have some freedom
in choosing the parameters log β and σlog β for the full distribu-
tion in Eq. (4). We presume that some of the cores for which β
could not be determined were observed with inadequate reso-
lution and/or from an unhelpful viewing direction (i.e. close to
the angular momentum vector). However, this cannot account
for all the non-determinations, and we assume that the major-
ity of the non-determinations have β values lower than those
that are determined. Therefore we must invoke an overall dis-
tribution which contains the observed distribution, but extends
to lower β values. We consider two possibilities.

In Case A we adopt log β = −2.0 and σlog β = 1.2 (dashed
curve in Fig. 1). This is the less extreme possibility, in the sense
that (a) it is easily compatible with the constraint of containing
the observed distribution, and (b) it has most of the remaining
44% of β values below, but only just below, the observed ones.
It is therefore also our preferred possibility. In Sect. 7 we show
that it yields a distribution of separations similar to that of the
pre-Main Sequence binaries collated by Patience et al. (2002).

In Case B we adopt log β = −2.2 and σlog β = 1.7 (dot-dash
curve in Fig. 1). This is the more extreme possibility, in the
sense that (a) it is only just compatible with the constraint of
containing the observed distribution and (b) it has most of the
remaining 44% of β values not just below, but well below, the

observed ones. In Sect. 7 we show that it yields a distribution
of separations similar to that of the Main Sequence G-dwarf
binaries in the field.

We assume that β is not correlated with core mass, as indi-
cated by G93 (their Fig. 13b).

3. Observations of stars and binary systems

In this section we review briefly the observations of stars and
multiple systems which our model seeks to explain, namely
the stellar Initial Mass Function (Sect. 3.1), stellar multiplicity
(Sect. 3.2), the binary separation distribution (3.3), the binary
eccentricity distribution (3.4) and the binary mass-ratio distri-
bution (3.5). We stress that none of these distributions is used
as input to the model. They are used solely for comparison with
the predictions of the model.

3.1. The Initial Mass Function (IMF)

We will adopt the IMF determined by Kroupa (2001), i.e.

dN
�

dM
�

∝ M−α
�

dM
�
, (5)

where

α0 = +0.3 ± 0.7, 0.01 M� ≤ M
�
< 0.08 M�;

α1 = +1.3 ± 0.5, 0.08 M� ≤ M
�
< 0.50 M�;

α2 = +2.3 ± 0.3, 0.50 M� ≤ M
�
< 1.00 M�; and

α3 = +2.3 ± 0.7, 1.00 M� ≤ M
�
.

(6)

This IMF is plotted on all four panels of Fig. 2 (heavy solid
lines).
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Fig. 3. The multiplicty frequency as a function of primary mass for a) N = 3, b) N = 4, c) N = 5, and d) N = 6, all with σlog M =

0.2, 0.4 and 0.6. The four plotted points with error bars are observational values taken from Martín et al. (2000), FM92, DM91 and Shatsky &
Tokovinin (2002). The hashed box represents the extrapolated multiplicty of PMS stars (Patience et al. 2002).

3.2. Stellar multiplicity

There are many different measures of multiplicity in use (e.g.
Reipurth & Zinnecker 1993; Goodwin et al. 2004b), but we will
limit our discussion to the multiplicity frequency, mf . If the
total number of singles is S , the total number of binaries is B,
the total number of triples is T , the total number of quadruples
is Q, etc., then

mf =
B + T + Q + ...

S + B + T + Q + ...
(7)

and gives the fraction of systems which is multiple. mf is more
stable than the other measures, in the sense that it does not need
to be revised if a multiple system is found to have additional
components, only if a single has to be reclassified as a multiple.

Furthermore mf can be defined as a function of primary
mass,

mf (M1 ) =
B(M1) + T (M1 ) + Q(M1 ) + ...

S (M1 ) + B(M1) + T (M1 ) + Q(M1 ) + ...
, (8)

where S (M1) is now the number of single stars of mass M1 ,
B(M1) is the number of binaries having a primary of mass M1 ,
and so on.

For Main Sequence stars, the observed values of mf (M1 )
are 0.10 ± 0.10 for primaries in the mass range (0.01 M� ≤
M1 ≤ 0.08 M�) (Martín et al. 2000), 0.42 ± 0.09 for pri-
maries in the mass range (0.08 M� ≤ M1 ≤ 0.47 M�) (FM92),
0.58 ± 0.10 for primaries in the mass range (0.84 M� ≤ M1 ≤
1.20 M�) (DM91) and 0.91 ± 0.12 for primaries in the mass

range (4.0 M� ≤ M1 ≤ 10.0 M�) (Shatsky & Tokovinin 2002).
These observational points are plotted with error bars in Fig. 3.

For pre-Main Sequence (PMS) stars the situation is less
clear, because observations of PMS binaries only cover a
limited range of separations. However, in those separation
ranges where PMS binaries can be observed, the multiplic-
ity frequency appears to be significantly higher than for Main
Sequence field stars in the same separation ranges. The compi-
lation of Patience et al. (2002) suggests that for PMS primaries
in the mass range 0.5 M� < M1 < 5 M� the multipilicity fre-
quency is in the range 0.83 < mf < 1.00. This is shown as a
hatched region in Fig. 3.

3.3. The binary period and separation distributions

DM91 have measured the binary properties of a complete sam-
ple of multiple systems in the solar neighbourhood having
Main Sequence G-dwarf primaries. They find the distribution
of periods to be approximately log-normal, i.e.

dN
�

d log Pd
∝ exp




−

(

log Pd − log Pd

)2

2σ2
log P




, (9)

where Pd is the period in days and “log” is to the base 10,
log Pd = 4.8, and σlog P = 2.3. The corresponding distribu-
tion of separations for multiple systems having Main Sequence
G-dwarf primaries is then also log-normal (e.g. Ghez et al.
1993) with log aAU = 1.44 and σlog a = 1.53; Fig. 4b illustrates
this distribution.
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Fig. 4. a) The histogram shows the observed distribution of semi-major axes for pre-Main Sequence binaries in Taurus, as collated by Patience
et al. (2002), and the dashed line is their best fit to this distribution. The dotted line shows the predictions of our model for Case A (log β = −2.0
and σlog β = 1.2) with parametersN = 5 and σlog M = 0.6. The peak and width of the model predictions are fairly close to the observations, with
a similarly high overall multiplicity. b) The histogram shows the observed distribution of semi-major axes for binaries with G-dwarf primaries
in the field from DM91, and the dashed line is their log-normal fit to this distribution. The dotted line shows the predictions of our model for
Case B (log β = −2.2 and σlogβ = 1.7) with parameters N = 5 and σlog M = 0.6. The peak and width of the model predictions are similar to the
observations, but the overall multiplicty is higher.

FM92 find a similar log-normal distribution of periods and
separations for multiple systems in the solar neighbourhood
having Main Sequence M-dwarf primaries.

Pre-Main Sequence binaries (Simon et al. 1992; Ghez et al.
1993; Reipurth & Zinnecker 1993; Patience et al. 2002) have
a distribution of separations that can again be approximated as
log-normal over a limited range of separations, but it is different
from that for Main-Sequence binaries in being shifted to larger
separations, and somewhat narrower, with log aAU = 1.8 ± 0.2
and σlog a ∼ 1.36 (Patience et al. 2002), as illustrated in Fig. 4a.

3.4. The binary eccentricity distribution

DM91 find that for binaries with Main Sequence G-dwarf pri-
maries, the eccentricity distribution depends on the period. For
long-period systems (P > 104 days, a > 10 AU), the eccen-
tricty distribution is approximately thermal (i.e. dN

�
/de = 2e,

Valtonen & Mikkola 1991); the DM91 results for long-period
binaries are shown in Fig. 8a. For short-period binaries with
Main Sequence G-dwarf primaries (P < 104 days), the ec-
centricities tend to be significantly lower, with a distribution
peaked around e � 0.2. In addition, there appears to be an up-
per limit on the eccentricity, eMAX (P), which decreases with de-
creasing P and approaches zero for P <∼ 10 days.

The data available for binaries with Main Sequence pri-
maries of other spectral types (i.e. M dwarfs and K dwarfs)
are limited, particularly for systems with long periods, but
the overall distribution of eccentricity with period appears to
be broadly similar to that for binaries with G-dwarf Main
Sequence primaries. In particular, the upper limit on the eccen-
tricity, eMAX (P), decreasing with decreasing P and approaching
zero for P <∼ 10 days, appears to apply to all Main Sequence
binaries. This upper limit on e is normally attributed to tidal
circularization of close orbits.

For Pre-Main Sequence binaries the data on eccentricity is
limited to short-period systems (P < 104 days). Again there

appears to be an upper limit on the eccentricity, eMAX (P), which
decreases with decreasing P (Mathieu 1994). However, this
limit is somewhat larger than that for binaries with G-dwarf
Main Sequence primaries, and it only approaches zero for
P <∼ 3 days. Again, this is consistent with a picture in which
close systems are circularized tidally; in pre-Main Sequence
systems there has been less time for the process to work.

3.5. The binary mass-ratio distribution

The binary mass ratio, q, is defined by q = M2/M1 , where M1

is the primary mass, so necessarily q ≤ 1.

DM91 find that for binaries having Main Sequence
G-dwarf primaries, the distribution of q-values is dependent
on the period. For long-period systems (P > 104 days), the
q-distribution has a significant peak at around q = 0.3 (see
Fig. 8b). For short-period systems, a much flatter distribution
is observed, gently rising towards q = 1 (Mazeh et al. 1992).

Mass ratios have also been determined for binaries having
Main Sequence M-dwarf primaries by FM92. However, there
are too few systems to reveal any clear dependence on period,
and the sample is incomplete for q < 0.4. For the whole sam-
ple, the distribution of mass ratios is consistent with being flat
in the range q >∼ 0.5, but there is the suggestion of a decrease
for lower q-values. We note that for M-dwarf primaries these
low q-values (q <∼ 0.5) usually correspond to brown dwarf
companions.

Woitas et al. (2001) have determined mass ratios for pre-
Main Sequence binaries with primary masses corresponding
roughly to G- and M-dwarf Main Sequence stars. The mass
ratios depend somewhat on whose evolutionary tracks are used
to determine individual masses, but again the results are con-
sistent with a flat distribution at large mass ratios (q >∼ 0.5).
There appears to be a decrease for q <∼ 0.3, but this is probably
due to incompleteness.
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4. Outline of model

4.1. Assumptions and aims

Our model of binary star formation is based on the assump-
tion that all cores are rotating, that they collapse and fragment
via ring formation, and that the resulting protostars then inter-
act ballistically to form multiple systems. The aim of the pa-
per is to investigate whether this simple model can explain the
observed multiplicity of stars and their distributions of period,
separation, eccentricity and mass-ratio.

4.2. The model

Consider a rotating prestellar core of mass MCORE which initially
has radius RCORE and ratio of rotational to gravitational energy

β =
R3

CORE
Ω2

CORE

3 G MCORE

=
25 H2

0

12 G M3
CORE

RCORE

� 1. (10)

If the core collapses conserving its angular momentum, H0 , and
then bounces to form a centrifugally supported ring, the ring
has radius

RRING � βRCORE . (11)

Suppose further that the ring is formed with approximately uni-
form line-density, but then fragments into N protostars (where
we expect N to be small). Assume (i) that the N protostars
formed from a single core have masses Mn (n = 1, 2, ...,N)
drawn from a log-normal distribution with standard devia-
tion σlog M, and normalized so that

n=N∑

n=1

{Mn} = f MCORE , (12)

where f is the fraction of the core mass which is converted
into stars (for simplicity we set f = 1 here); (ii) that the pro-
tostars are initially distributed round the ring so that each pro-
tostar occupies a fraction of the circumference proportional to
the protostar’s mass; and (iii) that the protostars condense out
sufficiently fast that we can follow their subsequent dynamics
using pureN-body methods.

For fixed N and σlog M , we first formulate the dynamical
evolution in dimensionless form and simulate a large number
of cases to obtain statistically robust distributions of (a) mul-
tiplicity, (b) orbital eccentricity, e, (c) component mass-ratio,
q ≡ M2/M1, and (d) ratio of orbital separation to ring radius,
a/RRING.

Then we convolve, first with the distribution of core
masses, to obtain the overall stellar initial mass function (IMF)
and the distributions of multiplicity, eccentricity and mass-ratio
as a function of primary mass; and second with the distribution
of core β-values to obtain the distribution of separations as a
function of primary mass M1.

The core mass spectrum is fairly tightly constrained by ob-
servation (Motte et al. 1998; Testi & Sargent 1998; Johnstone
et al. 2000; Motte et al. 2001; Johnstone et al. 2001), and there-
fore we do not adjust it (Sect. 2.1). Likewise the relation be-
tween core mass and core initial radius is constrained by ob-
servations, and we do not adjust it (Sect. 2.2). However, the

distribution of β-values is less well constrained, and we con-
sider two possible distributions (Sect. 2.3). N and σlog M are
treated as free parameters.

5. Dimensionless simulations

The first stage in constructing the model is to perform dimen-
sionless simulations of low-N star clusters. The results of these
simulations can later be scaled up to any mass and size depend-
ing on the given parameters of the core, i.e. MCORE and β.

5.1. Initial conditions

We assume that a collapsing core forms a centifugally sup-
ported ring having radius RRING given by Eq. (11). However, for
the dimensionless simulations we set RRING = 1. There are then
two free parameters which must be explored in the dimension-
less simulations. First, we must specify the number of stars in
the ring, N . Second, as posited in Sect. 4.2, the stellar masses
must be drawn at random from a log-normal distribution having
standard deviation σlog M,

dN
�

d log M
=

N
(2π)

1
2σlog M

exp




− (
log M

)2

2σ2
log M


 , (13)

and therefore we must specify σlog M . Strictly the mass distri-
bution extends from −∞ to +∞ but for computational conve-
nience we choose to curtail it at ±3σlog M. Once the N stellar
masses Mn (n = 1 to N) have been drawn randomally from this
distribution, they are re-scaled by a factor g, Mn → µn = gMn,
so that the total system mass is equal to unity, i.e.

n=N∑

n=1

{µn} = 1. (14)

(We note that scaling the stellar masses in this way skews the
overall distribution of masses slightly; it is no longer precisely
log-normal. This is not a critical element of the model. The
explanation is given in the Appendix.)

Next, we must specify the initial positions and velocities
of the stars on the ring. If a ring having uniform line-density
fragments intoN stars, then each star n forms from material in
an “angular segment”, ∆θn, proportional to it’s mass, i.e.

∆θn = 2 π µn. (15)

Thus in circular polar co-ordinates, we put θ1 = 0 and

θn = θn−1 +
1
2 (∆θn−1 + ∆θn) , n = 2, 3, .,N . (16)

In order to ensure conservation of linear momentum, each star n
must be placed at the centre of mass of the material from which
it forms, i.e. at radius

rn =
sin(µn π)
µn π

; (17)

and then it must be given a circular speed

vn = V
sin(µn π)
µn π

, (18)
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where V must be chosen so that the system is virialized. Only
part of the angular momentum of the initial ring goes into the
orbital motion of the stars in the cluster. The remaining angular
momentum must go into spin of the individual stars and their
attendant discs, which are not modelled here.

5.2. Numerical method

The ring is then evolved balistically using an adapted version
of NBODY3, supplied by Sverre Aarseth (e.g. Aarseth 1999).
NBODY3 uses a fourth-order integrator, plus special regulari-
sation routines, which are required for close encounters. 2-body
regularisation is used to treat binaries and close encounters by
transforming the co-ordinates of the binary components and
calculating the motion separately from the rest of the system
(e.g. Aarseth 2001). This technique reduces the error gener-
ated during close encounters and eliminates the need for ex-
tra terms such as gravity softening. Close interactions between
three bodies or more can be treated using 3-body, 4-body and
chain regularisation. Wider binaries and higher order multiple
systems such as hierarchical triples and quadruples are iden-
tified by calculating the 2-body energies of all the pairs and
selecting the most bound pair.

5.3. Parameters

Simulations are performed for all possible combinations of
N = 3, 4, 5 and 6, and σlog M = 0.2, 0.4 and 0.6, and the dis-
tributions of multiplicity, semi-major axis (as a fraction of the
radius of the ring), eccentricity, and mass-ratio are recorded.

For each set of parameters (i.e. each pair of N and
σlog M values), a large number of runs is required to obtain
statistically significant distributions. Each set of runs treats
105 stars in total (e.g. forN = 4, 2.5 × 104 runs are performed).
Small-N systems usually dissolve in a few tens of crossing
times (e.g. Van Albada 1968; Sterzik & Durisen 1998), so, to
ensure that the majority of systems have dissolved at the end
of a simulation, each realisation is run for about 1000 cross-
ing times. We choose a conservative tolerance parameter for
the time step, to ensure accurate integration. Specifically we
require that energy is conserved to 1 part in 105 over the entire
integration.

5.4. Dissolution timescale

Typically a cluster dissolves after a few tens of dynamical times
(e.g. Van Albada 1968) leaving ejected singles and a variety
of multiple systems, i.e. binaries, triples and quadruples. In the
present context, we define the dynamical timescale of the initial

ring to be TRING = 2π
(

R3
RING
/GMCORE

)1/2
; this is roughly equiv-

alent to the crossing time for a cluster with isotropic velocity
dispersion. Figure 7a shows the dissolution times, TDISS , as a
function of TRING , for the case N = 5 and σlogM = 0.6. About
half of the rings have dissolved after 20 TRING, in agreement
with previous numerical work.

Table 1. The numbers of different multiple systems produced in the
dimensionless simulations.

N = 3 N = 4 N = 5 N = 6
σlog m = 0.2 S 33 253 39 711 43 873 46 567

B 33 241 22 506 20 207 19 306
T 88 5091 5014 4394
Q 0 1 168 409

mf 0.5001 0.4100 0.3666 0.3411
σlog m = 0.4 S 33 231 41 883 45 534 48 053

B 33 228 22 073 18 033 16 670
T 104 4657 5764 5389
Q 0 0 277 609

mf 0.5008 0.3896 0.3459 0.3205
σlog m = 0.6 S 33 161 40 950 41 598 47 707

B 33 155 23 098 16 955 16 378
T 176 4282 5645 5726
Q 0 1 333 589

mf 0.5013 0.4007 0.3554 0.3223

5.5. Multiplicity

Table 1 shows the total numbers of singles, binaries, triples
and quadruples produced and the multiplicity frequencies for
different values of N and σlog M . As N is increased, mf de-
creases. The reason for this is that a small cluster relaxes by dy-
namically ejecting stars, leaving a stable multiple system. For
higher N , more stars need to be ejected as singles before the
cluster stabilizes, and this increases S , thereby reducing mf .
We do not consider systems with very largeN , since such sys-
tems are found to produce too many singles to match the ob-
servations. Also hydrodynamical simulations suggest that ring
fragmentation produces only a small numbers of fragments
(e.g. Cha & Whitworth 2003). The effect of changing σlog M is
quite small compared with changingN , and is not monotonic.

5.6. The dimensionless separation distribution

In Figs. 6a and b, we see that the separation distribution has
an approximately log-normal form, but for high-N there is an
asymmetric tail stretching to large-separations.

If we fix σlog M and increase N (Fig. 6a), the peak sep-
aration shifts to smaller values and the overall distribution
becomes broader. Increasing N tends to increase the num-
ber of 3-body interactions which must occur before a stable
multiple is formed, and therefore it tends to increase the bind-
ing energy of the surviving multiple, i.e. to decrease its semi-
major axis. The greater number of 3-body interactions also pro-
duces a wider logarithmic range of final separations because it
is a stochastic process (i.e. one binary system may be stabi-
lized by just two mild interactions and another by four violent
interactions).

If we now fix N and increase σlog M (Fig. 6b), the separa-
tion distibution shifts to larger separations and becomes some-
what broader. This is because the number of 3-body interac-
tions which occur before a stable multiple is formed is fixed
by N and is therefore the same. However, for large σlog M , the
two most massive stars which form the final binary contain
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Fig. 5. The distributions of a) eccentricity and b) mass-ratio resulting from the dimensionless simulations. The parameters used are N = 5 and
σlog M = 0.2 (solid line), 0.4 (dashed line) and 0.6 (dotted line).

Fig. 6. The dimensionless separation distribution for clusters with a) N = 3, 4 and 5 and σlog M = 0.2, and b) N = 6 and σlog M =

0.2, 0.4 and 0.6.

Fig. 7. a) Dimensionless lifetimes of small-N rings for N = 5 and σlog M = 0.6. b) Lifetimes of all clusters with N = 5 and σlog M = 0.6 when
convolved over the core mass spectrum and the β distribution in Myr.

almost all the mass, and the remaining stars are so lightweight,
that their ejection does not harden the binary much. Conversely,
for small σlog M the two stars which form the final binary are of
comparable mass to those which get ejected, and so their ejec-
tion hardens the remaining binary considerably.

5.7. Eccentricities

The distribution of eccentricities depends strongly on the value
ofσlog M , and much less on the value ofN . For lowσlog M , there
are few low-eccentricity binaries, and the numbers increase
monotonically with increasing eccentricity, rising rapidly for

very high eccentricities (e > 0.9). The rise at high eccentricities
is characteristic of the dissolution of 2D planar systems; in con-
trast, the dissolution of 3D systems results in a thermal distri-
bution of eccentricities (dN/de = 2e, e.g. Valtonen & Mikkola
1991). As we increase σlog M, the number of high eccentricity
binaries decreases and the distribution becomes flatter (but not
flat, see Fig. 5a).

5.8. Mass-ratios

The distribution of mass-ratio, q = M2/M1, is found to be
strongly dependent on σlog M , and only lightly dependent onN .
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σlog M controls the range of masses possible in a single core and
thus the possible masses of components in a binary. If there is
a low range of masses available, q cannot differ greatly from
unity. Figure 5b shows that for low σlog M = 0.2, most of the
binaries have mass-ratios greater than 0.5 with a peak at around
q = 0.8. As σlog M is increased, there are more binaries with
lower mass-ratios and the peak moves to a lower value of q.

6. Convolving with the core-mass spectrum

We can now convolve the dimensionless simulations with the
core mass spectrum to produce an overall distribution of stel-
lar masses (i.e. an IMF), the multiplicity as a function of pri-
mary mass M1 , and the distributions of eccentricity e and mass-
ratio q, as functions of M1 .

6.1. The resultant IMF

First, we look at the IMFs generated by our model, and
compare them with the observed IMF. The model IMFs,
dN

�
/dM

�
, are given by folding together the core mass func-

tion, dNCORE/dMCORE (Eq. (1)), and the dimensionless stellar
mass spectrum, dNµ/dµ, as defined in Sect. 5.1,

dN
�

dM
�

=

∫ MCORE,MAX

MCORE,MIN

dNµ
dµ

(

µ =
M
�

MCORE

)
dNCORE

dMCORE

dMCORE

MCORE

· (19)

Figure 2 shows the IMFs for all combination of N =

3, 4, 5 and 6 and σlog M = 0.2, 0.4 and 0.6. The shape of
the IMF is highly dependent on σlog M . If we were to choose
equal-mass stars (i.e. effectively σlog M = 0.0), the IMF would
exactly mimic the shape of the core mass spectrum. As we in-
crease σlog M , the IMF becomes broader. The lowest mass core
has mass 0.5 M�, so a large value of σlog M is required to pro-
duce the large observed numbers of low-mass stars and brown
dwarfs. N has little effect on the shape of the IMF, but affects
the position of the peak. If we keepσlog M constant and increase
N , the overall shape of the IMF is roughly constant, but the
peak moves to smaller mass. We can fit the Kroupa IMF well
with N = 5 and σlog M ∼ 0.6; the ratio of brown dwarfs to stars
is then ∼0.5.

6.2. Multiplicity

Figure 3 shows the multiplicity frequency as a function of stel-
lar mass, mf (M1 ), for all combination of N = 3, 4, 5 and 6
and σlog M = 0.2, 0.4 and 0.6. Overall, the model results have a
similar trend to the observations, with mf increasing from near
zero at the lowest masses to near unity at the highest masses.

As σlog M is increased, mf increases at all masses above the
peak in the initial mass function. This is because, as σlog M is
increased, these masses are increasingly likely to be the most
massive star in the ring, and hence increasingly likely to form
part of a multiple system due to dynamical biasing (McDonald
& Clarke 1993).

As N is increased, mf decreases at all masses. This is be-
cause a small cluster evolves to a stable state (i.e. a binary), or
a quasi-stable configuration (i.e. an hierarchical multiple), by

ejecting stars. For higher N , it is necessary to eject more stars
before stability, or quasi-stability, is reached, and this decreases
the overall multiplicity. If there is a range of masses, the lower
mass stars are ejected preferentially.

Figure 3 shows that for intermediate stellar masses
(0.4 M� <∼ M∗ <∼ 4 M�) mf is almost independent of primary
mass M1. This is a direct consequence of using a simple power-
law core mass function and convolving with a dimensionless
distribution. For stars of given mass M

�
in the range 0.4 M�

to 4 M�, there is an approximately constant ratio between the
number of stars which have formed in a relatively low-mass
core (and are therefore probably the most massive stars in that
core and likely to end up as the primary in a multiple system)
and the number of stars which have formed in a relatively high-
mass core (and are therefore probably one of the less massive
stars in that core and unlikely to end up as a primary). This
approximately constant ratio translates into an approximately
constant mf .

For low masses (M <∼ 0.2 M�), mf decreases rapidly with
decreasing M. Low mass stars and brown dwarfs are therefore
seldom found as primaries in binary systems, in agreement with
observations. This decrease of mf below ∼0.2 M� would be
less severe if the core mass spectrum were not cut off abruptly
below MMIN = 0.5 M� (see Eq. (1)).

If we consider the multiplicity of pre-Main Sequence stars,
a high multiplicity (>0.8) in the mass range 0.5 M� ≤ M1 <
5.0 M� can only be realised in our model if σlog M is large
(∼0.6). To obtain a good fit to the IMF, we require N = 5
and σlog M = 0.6 (see Sect. 6.1). Therefore we can obtain a
good fit to both the observed IMF, and the observed high mf
for PMS stars, with N = 5 and σlog M = 0.6.

However, there exists no parameter set that results in a sat-
isfactory fit to the observed IMF, and reproduces the mf of
mature field stars. For example, to obtain a mf of about 0.6
for G-dwarf primaries requires a low σlog M � 0.2, but this
produces a poor IMF which has too few brown dwarfs. This
inconsistency can be resolved, if we retain σlog M = 0.6 and the
mf for G-dwarf primaries is reduced, after ring dissolution, by
the interactions which occur between binary systems formed in
different rings. This is essentially what Kroupa (1995a) calls
stimulated evolution.

6.3. Eccentricity

The eccentricity distribution of G dwarfs in our model is
consistent with the observed eccentricity distribution for long-
period systems (DM91; Fig. 8a). We expect that the eccentric-
ities of short-period systems are modified by tidal forces be-
tween the two components and/or mass equalization by accre-
tion (e.g. Whitworth et al. 1995; Bate 2000), neither of which
processes is modelled in this work. Therefore we only compare
our model to the observed eccentricity distribution for long-
period systems. The observations are fitted best byN = 4 or 5
and σlog M = 0.4 or 0.6 (see Fig. 8a).

For all cases, there is an excess of binaries with very high
eccentricity (e > 0.9) compared to the observations. The sim-
ulations of Delgado et al. (2003) show that these systems
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Fig. 8. The distributions of a) eccentricity and b) mass-ratio for the long-period G-dwarf binaries observed by DM91 (dot-dashed histogram, are
compared with our model results. The model parameters used are N = 5 and σlog M = 0.2 (solid line), 0.4 (dashed line) and 0.6 (dotted line).

would migrate to lower eccentricities if proper account were
taken of gas dynamical processes at periastron during the pro-
tostellar stage (tidal interactions, mass exchange, etc.). High-
eccentricity systems may also be more susceptible to tidal dis-
ruption, as noted by Kroupa (1995b).

6.4. Mass-ratio

The mass-ratio distribution from our model, with N = 4 or 5
and σlog M = 0.4 or 0.6, is very similar to the mass-ratio dis-
tribution for G dwarfs observed by DM91 (as illustrated in
Fig. 8b), but somewhat different from the mass ratio distribu-
tion observed in Taurus by Woitas et al. (2001). This differ-
ence may be attributable to Taurus having an unusual IMF, and
in particular a paucity of brown dwarfs (Briceño et al. 2002;
Luhman et al. 2003). However, the evidence for an unusual
IMF in Taurus has recently been called into question (Luhman
2004; Kroupa et al. 2003), and it may be necessary to seek an-
other explanation for this difference.

7. Convolving with the distribution of core rotation
rates

7.1. The binary separation distribution

In order to obtain the distribution of separations, we must con-
volve the dimensionless results with both the distribution of
core masses MCORE , and the distribution of core β-values. MCORE

gives the core radius RCORE through Eq. (2), and β gives the ring
radius RRING through Eq. (11). Knowing MCORE and RRING , the di-
mensionless simulations can be scaled to give the distributions
of a and P, as a function of primary mass M1 . As explained in
Sect. 2.3 we consider two different β distributions.

Using Case A (logβ = −2.0, σlog β = 1.2), our model
gives the distribution of semi-major axes illustrated in Fig. 4a
(dotted line), where it is compared with the observations of
pre-Main Sequence binaries having primary mass in the range
0.5 M� ≤ M1 < 5.0 M� collated by Patience et al. (2002;
dashed line and histogram). We see that there is close correson-
dence between these two distributions. The implication is that,
if cores have a distribution of rotation rates similar to the one
adopted in Case A, then the dynamical dissolution of small

rings of protostars is able to reproduce the distribution of bi-
nary periods observed for pre-Main Sequence stars like those
in Taurus and Ophiuchus.

Using Case B (log β = −2.2, σlog β = 1.7), our model gives
the distribution of semi-major axes illustrated in Fig. 4b (dotted
line), where it is compared with the observations of G Dwarf
binaries in the field by DM91 (dashed line and histogram).
We see that there is a very close correspondence between the
two distributions. The implication is that, if cores have a dis-
tribution of rotation rates similar to the one adopted in Case B,
then the dynamical dissolution of small rings of protostars is
able to reproduce the distribution of binary periods observed
for G-Dwarf binaries in the field by DM91. The problem is
that if we persist with the parameters N = 5 and σlog M = 0.6,
the resulting multiplicity fraction for G-dwarf binaries is much
higher than observed, as noted in Sect. 6.2.

However, if most of the stars in the field are formed in pop-
ulous clusters, we must allow that their binary statistics con-
tinue to evolve dynamically after the dissolution of the rings
in which they are formed. The cause of further dynamical evo-
lution is that, following dissolution of the individual rings, the
stars and binary systems formed in one ring interact with the
stars and binary systems formed in other neighbouring rings.
In other words, the individual rings are just subclusters within
the larger cluster, and interactions on the scale of the cluster
also influence the final binary statistics. Kroupa (1995a) has
shown that interactions between binaries in clusters can widen
the distribution of binary separations somewhat, and reduce the
multiplicity from near unity to that observed in the field.

7.2. Dissolution timescales

The dimensionless ring dissolution times, TDISS/TRING, derived
in Sect. 5.4, can be converted into physical times by combining
Eqs. (2) and (11) with TRING (Sect. 5.4) to obtain

(
TDISS

Myr

)

=





2.8
(

TDISS
TRING

) (
MCORE

M�

)

β3/2, MCORE ≤ M�;

2.8
(

TDISS

TRING

) (
MCORE

M�

)1/4
β3/2, MCORE ≥ M�.

(20)

Hence by convolving the distribution of TDISS/TRING (Fig. 7)
with the core mass spectrum (Eq. (1)) and the β-distribution
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(Eq. (4)), we obtain the overall distribution of dissolution times
for the ring-clusters invoked in our model (Fig. 7b). The distri-
bution peaks at around∼0.2 Myr, the majority of the ring- clus-
ters has dissolved by 1 Myr, and only a handful (<3%) remains
after 100 Myr.

8. Conclusions

We have developed a model of binary star formation in which
cores collapse and bounce to produce rings, and the rings then
fragment into protostars. The dynamical evolution of the pro-
tostars is followed using Aarseth’s NBODY3 code, for many
different realizations, and the properties of the resulting multi-
ple systems are recorded.

We adopt (i) the observed distribution of core masses;
(ii) the observed scaling relation between core mass and core
radius; and (iii) two possible log-normal distribution of core ro-
tation (Case A and Case B), which are consistent with the lim-
ited observations of core rotation, but attempt to take account
of the selection effects which make the rotation of some cores
unmeasurable (see Fig. 1). Case A (logβ = −2.0, σlog β = 1.2),
which is our preferred option, assumes that the tendency to de-
tect higher rotation rates is small, i.e. most of the undetected
rotation rates are not much smaller than the detected ones. In
contrast, Case B (logβ = −2.2, σlog β = 1.7) assumes that the
tendency to detect higher rotation rates is large, i.e. the unde-
tected rotation rates are usually much smaller than the detected
ones. We stress that this dichotomy of model rotation rates is
unavoidable, because of the incompleteness of the observed ro-
tation rates, but it only affects the distribution of binary separa-
tions and the time-scale on which ring dissolution takes place.

Irrespective of the distribution of core rotation rates, our
model reproduces the observed IMF (Fig. 2), and the distri-
butions of eccentricity and mass ratio in long-period binary
systems (Fig. 8), provided only that (a) each ring spawns
N ∼ 5 protostars, and (b) the protostars have a log-normal
mass-distribution with standard deviation σlog M ∼ 0.6. Thus
N ∼ 5 and σlog M ∼ 0.6 are our preferred choices for these free
parameters. The distributions of eccentricity and mass ratio for
short-period binary systems are not reproduced by our model,
but we presume that this is because our model does not include
tidal circularization or mass equalization by accretion.

The model also reproduces the observed variation of mul-
tiplicity with primary mass for mature field stars (Fig. 3), but
only if σlog M ∼ 0.2. With our preferred values, N ∼ 5 and
σlog M ∼ 0.6, the model produces multiplicities which are
higher than those observed for mature field stars, but are very
similar to those observed for pre-Main Sequence stars, in the
mass range 0.5 to 5 M� (this is the only mass range for which
reliable pre-main Sequence multiplicities are available). We
conclude that the multiplicities resulting from ring dissolution
represent the observed pre-main Sequence population well, and
that the pre-main Sequence population then evolves into the
observed Main Sequence population through interactions be-
tween stars and binary systems from different rings in the same
cluster.

In a somewhat different context, Kroupa (1995a) has
shown that such interactions can reduce the overall multiplicity

from ∼1.0 to ∼0.6. Our model only requires such interactions
to destroy ∼25% of pre-Main Sequence binaries, but a concern
with the model is then that binaries with low mass-ratio will
be destroyed preferentially (although not exclussively). This
will skew the distribution of mass-ratios somewhat, and may
thereby degrade the agreement with observations of mature
G-dwarfs in the field. We are currently conducting numerical
experiments to explore the effect of interactions between bi-
nary systems from different rings, in the cluster environment.

In order to predict the distribution of semi-major axes, we
have to consider the distribution of core rotation rates. If we
adopt Case A, our results match closely the distribution of
semi-major axes obtained by Patience et al. (2002) for pre-
Main Sequence stars (Fig. 4a), and we conclude that further
dynamical evolution takes place – presumably involving inter-
actions with protostars from other neighbouring rings – to con-
vert this distribution into the one observed in the field.

Conversely, if we adopt Case B, our results match closely
the peak and width of the separation distribution obtained by
DM91 for field G Dwarfs (Fig. 4b). However, our results do not
match the observed multiplicity frequency for field G-dwarfs,
in the sense that our predicted mf -value is too high. It is un-
likely that further dynamical evolution, following ring dissolu-
tion, can rectify this, since to preserve the peak and width of
the separation distribution would require dynamical processes
which destroy, with equal efficiency, binary systems having
widely different separations. Therefore Case A is our preferred
option.

Most rings have dissolved after 1 Myr and fewer than 3%
remain after 100 Myr.
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Appendix A: Skewing the log-normal distribution
of stellar masses

Stellar masses, Mn (n = 1,N) are initially picked randomly
from a log-normal distribution which is symmetric in log M
(Eq. (13)). These masses are then re-scaled by a factor g,
Mn → µn = gMn, so that the total mass is unity (Eq. (14)).
After this re-scaling, the minimum possible mass is 0, corre-
sponding to log M = −∞, and the maximum possible mass
is 1, corresponding to log M = 0. It follows that the distribu-
tion can now only be symmetric in log M if its median lies at
log M = −∞, but this is clearly non-sensical. In fact the dis-
tribution is skewed, in the sense of having a tail to low values
of µ, and the median is of order − log(N).

The asymmetry arises because we are invoking a finite – in-
deed small – number of stars. For simplicity consider the case
N = 2, and assume that the two stars do not have equal mass. If
the more massive star is initially (pre re-scaling) exceptionally
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massive, it has to be reduced to achieve
∑{µn} = 1, and this

inevitably decreases the mass of the lower mass star, even if it
was already quite small. Conversely, if the less massive star is
initially of exceptionally low-mass, this has little or no influ-
ence on the re-scaling, which is mainly influenced by the more
massive star. It is this asymmetry between the effects of ex-
ceptionally high-mass and exceptionally low-mass stars on the
re-scaling that causes the re-scaled distribution to be skewed,
particularly for small N . The effect disappears asN → ∞.
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