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Preface 

 

 

I 

Abstract 

 
The research presented in this thesis describes the direct synthesis of hydrogen peroxide 

from H2 and O2 using supported gold-palladium based catalysts. The direct synthesis process 

offers a green and sustainable approach compared to the anthraquinone autoxidation (AO) 

process, which is currently used on an industrial scale to produce >95% H2O2 worldwide.       

The work presented in this thesis is an attempt to examine the direct synthesis process in terms  

of determining optimum catalyst compositions for potential scale-up in the near-future. The 

primary aim of this investigation is centred on catalyst design and characterisation. 

 

The first part of this work is a catalyst optimisation study for 2.5 wt% Au-2.5 wt% 

Pd/TiO2, and involved changing the amount of water used in the catalyst preparation, in this  

case wet impregnation. It was found that the addition of small amounts of water resulted in 

approximately 100% enhancement in activity for TiO2-supported catalysts but not for carbon-

supported Au-Pd catalysts. The rate of Au/Pd uptake was contrasted and it was determined that 

the isoelectric point of the support was highly influential. While the activity can be enhanced for 

TiO2-supported catalysts, both catalyst nanostructure and stability were detrimentally affected by 

the addition of water during the impregnation step. 

 

The second part of this work is focussed on understanding the precise nature of the     

acid pre-treatment effect, where treatment of a carbon support in dilute nitric acid prior to the 

impregnation of Au and Pd precursors can result in the complete switching-off of sequential 

H2O2 hydrogenation activity over the catalyst. Characterisation and heat treatment studies gave 

an improved understanding of the relationship between Au/Pd and the carbon support. 

 

The next part of the study addresses the use of a colloidal immobilisation method to    

pre-fabricate Au-Pd ‘designer’ nanoparticles onto supports and is accompanied by extensive 

advanced aberration corrected electron microscopy studies. The effect of acid pre-treating silica 

based supports is then considered for catalysts prepared by wet-impregnation, specifically the 

fact that acid pre-treatment of silica is required to induce synergy between Au and Pd metals for 

the direct synthesis of hydrogen peroxide. The final part of this work considers the effect of 

introducing a third metal into the catalyst design, specifically the addition of Pt to Au/Pd 

compositions. An extensive catalyst screening study is undertaken for Au-Pd-Pt/CeO2 catalysts. 
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1 

  Chapter 1 

1.1 Introduction 

 

 The term catalyst was first derived by Jons Jakob Berzelius in 1836 and describes a 

substance that can be added to a chemical reaction to accelerate its rate without itself being 

consumed
1, 2

. Berzelius commented: 

 

 “Many bodies have the property of exerting on other bodies an action that is very 

different from chemical affinity. By means of this action they produce decomposition in bodies, 

and form new compounds into the composition of which they do not enter. This new power, 

hitherto unknown, I shall call it catalytic power. I shall also call catalysis the decomposition of 

bodies by this force.” 

 

 Some of the earliest studies were reported by Davy
3
, Faraday

4
 and Phillips

5
, and    

concerned the application of Pt sponge as a combustion catalyst. An early application of   

catalysis was in the mining industry where the Davy lamp was used to warn miners of   

hazardous areas, leading to a reduction in the number of underground explosions and saving 

countless lives. The lamp comprised of Pt gauze casing, which would glow in the presence of     

a flammable gas such as methane, due to catalytic combustion processes taking place on the 

surface of the gauze.  

 

 In modern times, catalysts are used extensively with approximately 90% of chemicals 

produced today requiring a catalyst during one or more stages of their production. The fuel 

industry is powered by catalysts used for the ‘cracking’ and ‘reforming’ of oil into petrol         

and diesel. The synthesis of ammonia for use in the production of fertilisers along with 

polymerisation processes used to manufacture key chemicals and plastics are all facilitated       

by a catalyst and consequently, catalysis represents a vital component in everyday living and   

the world economy. 
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Catalysts work by providing an alternative reaction mechanism comprising a different 

transition state characterized by lower activation energy (Ea). As a result, more molecules 

possess sufficient energy to reach the transition state and overcome the energy activation     

barrier (corresponding to the peak maximum Gibbs free energy (∆G) as shown in Figure 1.1).  

On entering the transition state, reactants experience such a degree of closeness and distortion 

that a small, further distortion will lead to the formation of products
6
. 

 

Figure 1.1 Reaction potential energy profile for both an uncatalysed (black line) and catalysed         

(black dash) reaction, showing a decrease in the activation energy barrier of the latter. The highest   

energy peak represents the transition state (T.S) for a given reaction. 

 

 

The rate constant, k, which quantifies the speed of such a chemical reaction can be 

expressed using the Arrhenius rate law: 

 

k = Ae
(-Ea/RT)

               (Equation 1.1) 

      

where Ea is the activation energy, R is the molar gas constant, T is the absolute temperature,     

A is the pre-exponential factor, and k is the rate constant. Specifically, the activation energy       

is defined as the minimum kinetic energy that reactants must possess in order to from products, 

while the fraction of collisions with a kinetic energy in excess of an energy, Ea, is given by        

the Boltzmann distribution as e
(-Ea/RT)

. The pre-exponential factor, A, is a measure of the rate     

at which collisions occur irrespective of their energy, and therefore the product of A and the 

exponential factor, e
(-Ea/RT)

, gives the rate of successful collisions. 
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 There are three distinct types of catalysts: heterogeneous, homogeneous and enzymatic, 

which depend on the number of different phases present on the addition of a catalyst. For 

heterogenous catalysis, the catalyst is in a different phase to the reactants. For homogeneous 

catalysis, both the catalyst and reatants are in the same phase, whereas enzymatic catalysis exists 

between homogeneous and heterogeneous catalysts and is specific to biochemical reactions. 

 

 The majority of heterogeneous catalysts are solids, with the reactants in the gas or liquid 

phases. The reaction takes place on the surface of the catalyst material, with the performance      

of a heterogeneous catalyst typically measured in terms of: activity, selectivity and lifetime.   

The surface of catalyst provides free bonding states which are respnosible for observed catalysis 

by facilitating adsortion of reactants, transformation of reactants into products, and desorption   

of products via bond breaking/making and re-arrangment steps. An important example of a 

heterogenously catalysed process is the oxidation of carbon monoxide to carbon dioxide, which 

is described using a simple diagram in Figure 1.2.  

 

 

Figure 1.2 Schematic of molecular and atomic events taking place during a catalytic reaction
2
. 
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Firstly, carbon dioxide molecules diffuse through the gas phase to the catalyst surface 

where molecules are molecularly adsorbed. This is followed by the possible surface diffusion 

and dissociation of molecules into atoms. For this reaction and based on the higher bond    

strength of the CO molecule with respect to O2, only the oxygen molecule dissociates on             

the surface. As a result, oxygen atoms react with CO molecules to form carbon dioxide,        

CO2, on the catalyst surface. The product then undergoes desorption from the surface to        

enter the gas phase. The specific sites on the catalyst surface responsbile for adsorption and 

reaction are referred to as ‘active sites’.  

 
Figure 1.3 Lennard-Jones potential energy diagram describing the dissociation of a molecule as it 

approaches a surface. The molecule initially experiences an attractive energy minimum referred to as 

physisorption (∆Hp), but can dissociate from that state. If the molecule possesses energy higher            

than the activation energy barrier, it can dissociate directly from the gas phase. For incoming atoms    

from the gas phase, there is only attraction until they are very close to the surface atoms, and a deep 

energy minimum for adsorption (∆Ha)
6
. 

 

 

The performance of a catalyst is determined by the strength of the interactions exisiting 

between reactants and the solid surface. Specifically, Chemisorption is a term used to describe 

strong adsorption (of enthalpy >40 kJ mol
-1

) and involves the breaking of bonds in reactants and   

the formation of bonds to the surface. It is the surface that stabilises reaction intermediates by 

bonding, satisfying valances and providing relatively stable configurations. For molecules that 

can undergo dissociaton, two states of adsorption are described in Figure 1.3. 



Chapter 1 

Introduction 

 

5 

Referring to Figure 1.3, as a molecule approaches the surface it begins to experience an 

attractive force due to Van der Waals and electrostatic polarisation effects between the molecule 

and the solid surface. On closer approach, the molecule begins to experience repulsion due to  

the increasing proximity of the outer electronic orbitals of the solid surface and the molecule, 

leading to an increase in potential energy. As a result, there is a minimum energy into which    

the molecule can be accomodated, known as the physisorbed state (physisorption) and 

characterised as a weak adsorption of low enthalhpy (20-40 kJ mol
-1

). The average lifetime of     

a molecule adsorbed in this state on the surface can be estimeted using the Frenkel equation: 

 

    τ = τoe
(∆Ha/RT)

               (Equation 1.2) 

      

where τ is the surface lifetime, τo is the lifetime of a surface vibration (10
-13 

s), and ∆Ha is       

the heat of adsorption. If a diatomic molecule is dissociated in the gas phase, it will be in a 

highly excited state and therefore bonding to a surface will lower its energy. In this instance       

its energy is lowered to the extent that it adsorbs into a stable, dissociatively adsorbed state,    

with a net exothermic reaction. As the atom is pushed closer than its equilibrium position to the 

surface, it experiences repulsion between electrons from the solid surface and its own non-

bonding electrons due to Pauli exclusion. This bonding state is referred to as chemisorption     

and has a broad range of range of energies, ranging from 40 kJ mol
-1

 for weak, molecular 

chemisorption to 600 kJ mol
-1

 for the strongest binding atomic species. The overlap of the 

chemisorption and physisorption curves affords the possiblity of curve crossing (referred to as 

heterogeneous dissoication) of a molecule on close approach to the solid surface from the 

molecular to the dissociated state, providing that the molecule possesses sufficient energy to 

overcome the energy activation barrier.  

 

For the adsorption of oxygen onto a metal surface, two barriers to adsorption from         

the gas phase exist. The first barrier is situated between physisorbed, O2(p), and molecularly 

chemisorbed states, O2(a), while the second barrier is between the latter and the dissociated     

state, 2O(a). The probability for such a dissociative adsorption is strongly dependendent on       

the structure of the surface
2
. For heterogeneous catalysts, the nature of the top layer of atoms 

determines how fast a catalytic reaction may proceed. Different surface site morphologies can 

potentially be exposed, including kink, step and terrace sites and flat planes of atoms. These 

exposed morphologies have different co-ordination numbers, which in turn determines their 
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ability to bind and react with molecules. The surface is an abrupt termination of the bulk 

structure in which atoms are exposed in an asymetric environment, leaving free bonds at          

the surface that can interact with incoming molecules. In thermodynamic terms, the ability of      

such free bonding states to facilitate a catalytic reaction is represented by the surface Gibbs    

free energy, Gs.   

 

For catalysts composed of highly dispersed, metal particles, very small particles (less  

than 3 nm in diameter) can significantly affect the reactivity and activation energies at each 

individual stage of a catalysed process. This is due to the splitting of the conduction band       

into discrete energy levels, at which point particles behave less like the bulk metal and more   

like individual atoms. If the metallic particles are dispersed over a support material, charge 

transfer between the catalyst particle and the support can take place depending on the size, 

stucture and nature of both the metal and the support
7
.  

 

Reactions on the catalyst surface may proceed either between adsorbed molecules   

(Langmuir-Hinshelwood mechanism), or directly between an absorbed molecule and molecules 

present in the gas or liquid phase (Eley-Rideal mechanism). If an oxide material is used as the 

catalyst, then lattice oxygen may participate in the reaction (Mars-van Krevelen mechanism). 

With regard to the adsorption step, the number of surface sites occupied by adsorbate molecules 

at equilibrium at a given temperature will depend on the gas pressure, P. An adsorption isotherm 

can be used to understand the dependence of the fractional coverage, θ, of adsorbate molecules 

on the gas pressure, P, at constant temperature
8
. The langmuir isotherm is the most common 

model used to interpret the equilibrium adsorption behaviour of a system and to determine the 

total surface area, SA, of solid surfaces. The model assumes that: 

 

(1) The solid surface is uniform and contains a number of equivalent sites, each of which 

may only be occupied by one molecule of adsorbate.  

(2)  A dynamic equilibrium exists between the gas (at pressure, P) and the adsorbed layer     

at constant temperature. 

(3) Adsorbed molecules from the gas phase are continuously colliding with the surface. If 

they impact a vacant adsorption site, they form a bond with the surface and stick. If they 

strike a filled site, they are reflected back into the gas phase. 
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(4) Once adsorbed, the molecules are localized and the enthalpy of adsorption per site 

remains constant irrespect of coverage. 

 

 

According to the second assumption, the associative adsorption of a molecule, M, in the gas 

phase onto a surface site, S, is described as: 

 

                        (Equation 1.3) 

 

where ka and kd are the rate constants for the adsorption and desorption steps. If P is the pressure 

and θ is the fractional monolayer coverage of the surface by adsorbate molecules, then: 

 

Rate of Adsorption  =  kaP(1-θ)              (Equation 1.4) 

 

where (1-θ) is the fractional monolayer coverage of sites that are not occupied by adsorbate 

molecules. Equation 1.4 suggests that the rate of adsorption will be fast if Ka and P are large   

and θ is small. The rate of desorption is described as: 

 

Rate of Desorption  =  kdθ                 (Equation 1.5) 

 

and at equilibrium, both the rate of adsorption and desorption are equal: 

 

kaP(1-θ)  =  kdθ                         (Equation 1.6) 

 

Rearrangement of Equation 1.6 gives: 

         

θ  =      KP                                                    (Equation 1.7) 

         1 + KP 

 

which is the Langmuir adsorption isotherm for assoicative adsorption (where K = ka/kd) and 

predicts how the fractional monolayer coverage, θ, of adsorbate changes with P.  
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Using the same isotherm model, the dissociative adsorption of a molecule, M2, in the   

gas phase onto a surface site, S, may be described as: 

 

                        (Equation 1.8) 

 

Rate of Adsorption  =  kaP(1-θ)
2
              (Equation 1.9) 

 

Rate of Desorption  =  kdθ
2
               (Equation 1.10) 

 

At equilibrium, both the rate of adsorption and desorption are equal: 

 

kaP(1-θ)
2
  =  kdθ

2
                       (Equation 1.11) 

 

Rearrangement of Equation 1.11 gives: 

         

θ  =        (KP)
1/2

                                      (Equation 1.12) 

          1 + (KP)
1/2

 

 

which is the Langmuir adsorption isotherm for dissociative adsorption (where K = ka/kd) and 

predicts how the fractional monolayer coverage, θ, of adsorbate changes with P.  
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During the twentieth century, the number and diversity of heterogeneously catalysed 

processes increased enormously to meet the demands of a rapidly growing population. Today, 

industrial catalytic processes are widespread and produce millions of tonnes of products per 

annum. Several important processes are listed in Table 1.1.  

 

 Reaction Heterogeneous Catalyst 

1 Cracking of crude oil Zeolites 

2 Ammonia synthesis Fe 

3 Polymerisation of alkenes Cr, TiClx/MgCl2 

4 Water-gas shift (WGS) Fe (oxide), Cu-ZnO 

5 Carbon Monoxide  →  Carbon Dioxide CuMnO4, Au/MOX 

6 

Hydrocarbons, carbon monoxide and 

nitrogen oxides  →  carbon dioxide,        

water and nitrogen 

Three way car exhaust 

catalyst  Pt, Pd 

7 Ethene  →  Ethylene Oxide Ag 

8 Methanol  →  Formaldehyde Iron Molybdate, Ag 

Table 1.1 Examples of important processes based on heterogeneous catalysts
9
. MOx denotes the             

use of a metal oxide support, e.g. TiO2, CeO2. 

 

The Haber process was first discovered in 1908 and to this day remains important for   

the production of ammonia from nitrogen and hydrogen gases, using a finely divided iron 

catalyst. A vast majority of the fuels and plastics available today are derived from the cracking 

and reforming of crude oil using zeolites, which are microporous, crystalline solids with well-

defined structures. The cracking of long chain hydrocarbons into short chain length fuels      

takes place within the pores of zeolites, which allows for a greater degree of product control.   

The polymerization of alkenes, such as ethene and propene to form polyethene and polypropene, 

respectively, is important for the production of packaging and textile materials. 
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The water-gas shift (WGS) involves the reaction of carbon monoxide with water vapor  

to form carbon dioxide and hydrogen gases, and in industry is operated in conjunction with      

the steam reforming of hydrocarbons to produce high-purity hydrogen for the Haber process. 

Catalysis has also been used to address environmental problems such as the elimination of toxic 

gases from the atmosphere. The catalytic converter is an important material found in automobiles 

that is responsible for the vehicle emission control, converting three harmful compounds present 

in car exhaust emissions into less harmful compounds. The design of the catalyst (Pd and Pt 

metals dispersed on a metal oxide (e.g. Al2O3, SiO2) support that is embedded into a ceramic 

monolith (CeO2)) facilitates the oxidation of carbon monoxide and unburned hydrocarbons to 

carbon dioxide and water, and the simultaneous reduction of nitrogen oxides (NOx) to nitrogen. 

 

Reactions 7 and 8 in Table 1.1 are examples of selective oxidation processes, where     

the formation of other products in addition to the primary, desired product is possible. These 

could be in the form of side products, intermediates or the result of total oxidation to carbon 

dioxide and water. The choice of catalyst and its manufacturing process play an important role  

in determining both the conversion and the selectivity toward a desired product. The reaction 

conditions and the use of promoters are also very important factors. For the oxidation of ethene 

to ethylene oxide (7), the addition of chloride ions to the reaction can improve the selectivity to 

ethylene oxide by poisoning surface sites on the Ag catalyst
10

 responsible for the non-selective 

combustion of ethene to carbon dioxide and water. 

 

 For the commercial production of formaldehyde via the oxidative dehydrogenation        

of methanol (8), an iron-molybdate catalyst is used, affording a 99% methanol conversion   

based on 92% selectivity to formaldehyde
11

. However, the iron-molybdate catalyst undergoes 

deactivation through the loss of molybdenum during the reaction. Consequently, the reaction 

must be stopped at intervals to allow recovery and either re-activation or replacement of the 

catalyst in order to maintain high performance.  

 

 The activity, selectivity and structural properties of a catalyst are the subject of  

continued research efforts aimed at improving the efficiency and viability of current, large    

scale processes, and in the development of new processes. The impact of catalysis on the 

environment has also been considered so that harmful products and waste are minimised, and    

to ensure that better, atom efficient reagents are used in catalysis, such as hydrogen peroxide. 
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1.2 Hydrogen Peroxide 

 

Since its discovery in 1818 by Thennard
12

, hydrogen peroxide has found extensive use     

in both the fine chemicals industry and environmental protection as a benign oxidant. This is  

due to the strong ability of hydrogen peroxide (50% active atomic oxygen content) in oxidising  

a large range of inorganic and organic compounds under mild conditions in the liquid phase, 

producing water as the sole by-product. Demand has steadily increased with 2005 worldwide 

production reaching approximately 4x10
6
 tonnes

13
,
14

. The pulp and paper bleaching industry 

accounts for approximately 40% of all manufactured hydrogen peroxide, with other uses 

including disinfectants and detergents, the high purity etching of silicon wafers for electronic 

applications and wastewater treatment
15

. The potential of utilising hydrogen peroxide in large 

volume chemical synthesises has been recognised with the advent of Titanium Silicate, TS-1 -    

a ZSM-5 type material
16

 that is capable of effectively catalysing several different selective 

oxidation reactions including the epoxidation of propylene to propylene oxide (PO) and the 

ammoxidation of cyclohexanone to its corresponding oxime. In 2008, Dow Chemical and   

BASF opened a joint-venture pilot plant in Antwerp
17

, based around the direct synthesis of 

hydrogen peroxide and its application as an oxidant for propylene epoxidation, referred to as   

the Hydrogen Peroxide Propylene Oxide (HPPO) process
 
(Figure 1.4). 

 

 
Figure 1.4 A selection of reactions performed using TS-1 catalysts and H2O2 as the oxidant

18
. 
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Few stoichiometric processes are operated using molecular oxygen and instead are    

reliant on bulky non-atom efficient oxygen donors, for example, sodium percarbonate. One    

reason for this is because O2 possesses a triplet ground state and so therefore does not        

require activation in comparison to singlet-state substrates, including molecular hydrogen,   

which must be activated via chemisorption on a catalyst surface in order to undergo reaction  

with a substrate. In addition, H2 cannot be activated via radical pathways at relatively low 

temperatures, which are generally used for hydrogenation reactions. Consequently, significant 

demand exists for green, atom-efficient, singlet-state oxygen donors
19-21

 (such as hydrogen 

peroxide) that are produced using economically viable synthesis routes to enable affordable    

and widespread applications. 

 

 

1.2.1 Production of hydrogen peroxide 

 

To date, three main industrial processes have been used to manufacture hydrogen 

peroxide. Both wet chemical and electrochemical processes
12, 22, 23

 have been employed prior      

to the development of the auto-oxidation process at the beginning on World War II, which      

still accounts for >95% hydrogen peroxide production worldwide
24

. Hydrogen peroxide was   

first isolated by reaction of barium peroxide with nitric acid
12

. The yield of hydrogen        

peroxide was subsequently increased on addition of hydrochloric acid, with removal of      

barium chloride by precipitation with sulphuric acid (Scheme 1.1). 

 

1.  BaO2  +  2HCl   →  BaCl2  +  H2O2 

2.  BaCl2  +  H2SO4  →  BaSO4  +  2 HCl 

Overall BaO2  +  H2SO4    →  BaSO4  +  H2O2 

 

Scheme 1.1 The production of H2O2 from reaction of BaO2 with HCl (1). BaCl2 is then removed from 

solution by reaction with H2SO4 to form a BaSO4 precipitate (2). 
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 An industrial process based on scheme 1.1 came online by around 1880 and remained 

operational until the middle of the 20
th

 century, producing 2,000 tonnes of H2O2 per annum
25

. 

Although 3 wt% aqueous solutions of hydrogen peroxide were routinely produced, the process 

was expensive and resulted in a high end cost product that also contained impurities from the 

reaction, known to negatively affect hydrogen peroxide stability.  

 

An electrolytic process was developed by Meidinger in 1853 based on the electrolysis of 

an aqueous sulphuric acid solution to produce hydrogen peroxide
22

. The reaction mechanism for 

this process was later established by Berthelot, who concluded that hydrogen peroxide was 

produced via formation of a peroxydisulphuric acid intermediate
23

 (Scheme 1.2).  

 

1.  2 H2SO4   →  H2S2O8  +  H2 

2.  H2S2O8  +  H2O  →  H2SO5  +  H2SO4 

3.  H2SO5  +  H2O  →  H2SO4  +  H2O2 

Overall 2H2O      →  H2O2  +  H2 

 

Scheme 1.2 The electrochemical production of aqueous hydrogen peroxide. 

 

The electrochemical production of hydrogen peroxide was commercialised in 1908 and 

represented an improvement over the wet chemical process in terms of cost and efficiency
26

.      

The process was later upgraded to utilize ammonium sulphate instead of sulphuric acid, to    

produce ammonium peroxodisuphate, which is subsequently hydrolysed to H2O2. Using this     

approach, hydrogen peroxide production increased steadily, with the production level in 1950    

standing at 35,000 tonnes H2O2 per annum
26

. 

 

Another industrial process was developed by Hans-Joachim Riedl and Georg Pfliederer 

in 1939 to meet the increasing demand for hydrogen peroxide (based on observations previously 

reported by Manchot
27

 in 1901), known as the Riedl-Ffleiderer auto-oxidation (AO) process
24

. 

The process involves the sequential hydrogenation and oxidation of an R-alkyl anthraquinone 

(AQ) dissolved in an organic working solution.  
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A nickel or palladium based catalyst is used to hydrogenate a 2-alkylanthaquinone,           

(usually 2-ethyl, 2-tert-buyl or 2-amylanthraquinone) which is dissolved in a mixture of          

non-polar (C9-C11 alkylbenzyl) and polar (usually trioctyl phosphate, tetrabutyl urea or   

diisobutyl carbinol) solvents to form the ‘working solution’ 
28

. The hydrogenation is performed 

using a three-phase reactor (e.g. trickle bed/bubble column) at moderate temperature and 

pressure to form the anthrahydroquinone (AHQ). The AHQ is separated from the catalyst and 

oxidised in O2/air to form the original anthraquinone and hydrogen peroxide (Figure 1.5).  

 

 

Figure 1.5 Reaction mechanism for the anthaqunione auto-oxidation (AO) process
29

. 

 

 Hydrogen peroxide is subsequently extracted from the working solution by water to     

give approximately 30 wt% aqueous H2O2 solution, which can be concentrated to 70 wt% by 

distillation processes. As will be discussed later in chapter 1, high concentrations of hydrogen 

peroxide in particular are unstable with respect to temperature and the presence of base metal 

ions, and therefore storage at low temperatures and the addition of acid stabilizers (ppm level) 

are required. 

 

Although the AO process has been employed for the last 60-70 years to manufacture                 

>70 wt% aqueous H2O2 after distillation, it is only commercially viable on a large scale and 

entails many drawbacks including: high utility costs throughout the auto-oxidation process,    

side reactions and over-hydrogenation of AQ/AHQ compounds, necessitating the extraction    

and regeneration of very expensive compounds in the ‘working solution’.  
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The selectivity of the hydrogenation catalyst toward the anthrahydroquinone product in 

some instances is limited, in particular for nickel catalysts, leading to formation of side   

products, some of which are presented in Figure 1.6. In addition, the stability of hydrogen 

peroxide in the presence of nickel represents a potential safety hazard, and therefore strict 

handling measures must be followed. The preferred choice of hydrogenation catalyst is 

palladium black, which is non-pyrophoric, affords improved anthrahydroquinone selectivity 

relative to nickel and can be easily recovered and re-activated. Because the anthraquinone is 

sequentially hydrogenated and oxidised, the auto-oxidation process overcomes the safety 

problems associated with mixing of hydrogen and oxygen gases. 

 

 
 

Figure 1.6 Side reactions taking place in the presence of 2-alkylanthraquinones
29

.  
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Most importantly there are safety concerns associated with the transportation of an 

unstable product from a central site to point of use (therefore an acid stabilizer is therefore 

mandatory, e.g. H3PO4). The fact that an environmentally friendly oxidant is manufactured        

in a non-environmentally friendly manner when general applications require 3-8 wt% H2O2     

has prompted research and development into small-scale and widespread synthesis routes with 

improved efficiency to manufacture hydrogen peroxide at a lower market value. As such, there 

exists considerable interest in the development of a direct synthesis process to produce H2O2 

from H2 and O2 gases and catalysed using palladium based materials. 
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1.2.2 The direct synthesis of hydrogen peroxide from H2 and O2 using palladium based 

catalysts 

 

Henkel and Weber were awarded the first patent
30

 based on the direct synthesis of 

hydrogen peroxide from its elements using a palladium based catalyst in 1914. The reason     

why such a catalytic process has yet to be implemented on an industrial scale is primarily        

due to two factors. The first is that H2/O2 gas mixtures are explosive over a wide range of 

concentrations (5-95 vol% H2 in O2) and consequently for improved safety, hydrogen and 

oxygen can be diluted in “inert” gases, including CO2 and N2 in order to operate below the   

lower explosive limit
31, 32

. The second reason presents a direct challenge to scientists in that 

catalysts used to activate molecular hydrogen (reported as the rate limiting step)
33, 34

 for the 

direct synthesis reaction also favour the parallel combustion and subsequent hydrogenation and 

decomposition pathways (all thermodynamically favoured) to form water, and therefore 

improvement in H2 utilisation toward H2O2 and minimisation of subsequent hydrogenation/ 

decomposition pathways must be addressed in heterogeneous catalyst design (Figure 1.7) 

 

 
Figure 1.7 Reaction pathways involved in the direct synthesis of hydrogen peroxide. 
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In the literature it has been recognised that kinetic control is required to address           

this problem, with continued interest in developing a direct H2O2 synthesis process
16

. From a 

heterogeneous catalysis perspective, it is generally appreciated in theoretical and experimental 

studies that different active sites on a metal surface can be responsible for different chemical 

reactions
35, 36

. A three-phase (gas-liquid-solid) continuously stirred reactor system is normally 

used to study the direct synthesis reaction due to the minimisation/elimination of mass transport 

barriers
36

, and while conditions vary between research groups with respect to catalyst synthesis 

and reaction setup, limiting the extent of true comparison, many general features of the reaction    

can still be seen throughout.  

 

For catalysts prepared by impregnation and deposition precipitation routes, a heat 

treatment step (e.g. calcination or reduction) is determined as standard protocol in forming 

defined active sites on the catalyst surface in addition to influencing the oxidation state and 

stability of the metal surface (typically 0.5-5.0 wt% Pd loaded onto a support material and 

stabilized via metal-support interactions). Catalytic performance for direct H2O2 synthesis is 

measured by methods including volumetric titration and gas chromatography in order to 

determine the amount of reactant gases consumed/products formed.  

 

Seminal studies by Pospelova et al. published in 1961 confirmed that the addition of   

acid (HCl, HNO3) to supported Pd-catalysts is critical with respect to improving H2O2 yield,        

and is achieved by decreasing the base-catalysed decomposition of hydrogen peroxide
37-39

.  

These findings were extended by Choudhary and co-workers, who compared the effectiveness  

of a series of acids on the decomposition activity of a 5 wt% Pd/C catalyst in aqueous reaction 

medium
40

. Catalyst testing revealed that acids could be classified into two groups, with the 

nature of the associated anion also determined as being important (approximately one order        

of magnitude higher activity is achieved using halide acids), listed in the ascending order: 

 

Oxyacids (moderate decomposition activity decrease) - acetic acid, phosphoric acid, sulphuric 

acid and perchloric acid. 

 

Halide Acids (strongly suppressing acids with large activity decrease) - hydrochloric acid, 

hydrobromic acid and hydroiodic acid. 

 



Chapter 1 

Introduction 

 

19 

Phosphoric acid was identified as a suitable acid at low concentration (e.g. 0.03M), 

causing negligible leaching of Pd from the catalyst into the reaction medium. The effect of  

halide ion addition to either the reaction medium or catalyst structure (incorporated via pre-

treatment) on H2O2 yield have been investigated in several studies
41-53

 using a stirred glass 

reactor and ambient conditions for Pd supported on: ZrO2, Ga2O3, CeO2, SiO2, H-Beta,        

ThO2, BPO4 and Pd/Al2O3 respectively. Results showed that both acid and halide additives   

were essential for improving H2O2 yield with results for halide incorporation (KF, KCl, KBr 

precursors) being similar in magnitude depending on whether the halide was present in the 

reaction medium or the catalyst structure. The nature of the halide ions in the reaction medium 

was found to influence H2 conversion in the descending order:  

 

KF > No Halide > KCl > KBr 

 

The presence of iodide ions was detrimental to the catalyst with co-ordination to 

palladium resulting in surface poisoning and so was not included in the study, which indicated 

that while KF improved hydrogen conversion the most, the reverse effect existed for H2O2 

selectivity in the descending order:    

 

KBr > KCl > No Halide > KF 

 

This confirmed that fluoride ions in fact promoted side and consecutive reaction 

pathways. The same sequence is reflected for hydrogen peroxide yield with bromide ions    

shown to be more effective than chloride ions on a molar basis (0.94 mmol/dm
3
 KBr vs.           

1.5 mmol/dm
3
 KCl) and which is illustrated best by the decomposition pathway (previously 

hypothesised as being strongly dependent on H2O2 selectivity)
53

.  

 

It is acknowledged that even small amounts of halide additives can affect activity,      

with reduced decomposition observed using concentrations as low as 0.06 mmol-Br/catalyst.  

Burch stated that this catalytic behaviour did not linearly correlate with electronegativity of     

the halide series
54

 and suggested that the reason is due to sigma and pi donation effects, with    

the overall co-ordination ability increasing down group VII.  
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However results from separate studies by Burch
54

 and Fan
55

 contradict those of 

Choudhary who has shown reduced (Pd
0
) catalysts in the absence of halides demonstrate         

both higher H2 conversion and subsequent decomposition activity than their oxidised (PdO) 

counterparts, reducing the corresponding H2O2 selectivity by approximately one order of 

magnitude
41-53

. When compared to particle size and surface area, the bulk oxidation state of     

the catalyst is considered paramount in determining the observed catalytic activity, leading        

to suggestion that the oxidation state and halide type play a co-operative role since oxidised        

and reduced catalyst performances are influenced to different extents depending on the type      

of halide used
26-39

.  

 

This is best illustrated for bromide ions (Figure 1.8) in which X-ray photoelectron 

spectroscopy (XPS) studies indicated ions were either situated close to palladium particles or 

mobile on the catalyst surface during the reaction to have interactions with palladium
33

. The 

technique has been used by Fierro and Campos-Martin to confirm that Pd anchored on ion-

exchanged resins functionalised with sulphonic acid groups was stabilised in the Pd
2+

 oxidation 

state (even after reductive heat treatment) to give improved hydrogen peroxide selectivity
56

. 

 

 
 

Figure 1.8 The effect of oxidation state and halide on the conversion (X), yield (Y) and selectivity of 

Pd/CeO2 catalysts for direct H2O2 synthesis
53

.  
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Lunsford and co-workers have presented evidence of colloidal Pd being active for the 

synthesis of hydrogen peroxide
34, 57-64

. Though use of a colloidal system on industrial scale 

would be extremely difficult to maintain, results from studies using different O2/H2 feed ratios 

introduced through a frit into an acidified solution (1M HCl) are of widespread significance. 

Addition of either PdCl2 or Pd/SiO2 to HCl resulted in oxidation of Pd
0
 to form PdCl4

2-
 ions        

in solution, which are subsequently reduced back to metallic Pd by H2, leaving some metal 

present as colloid (establishing a Pd
0
/Pd

2+
 steady state) and confirmed by electron microscopy

57
. 

 

  

Figure 1.9 Schematic of colloidal system (left) and open (A) and closed (B) stirred testing reactors 

(right)
57

. 

 

A linear relationship between colloid concentration and H2O2 formation rate was 

observed during time on stream studies, while 
16

O2/
18

O2 isotope experiments and Raman 

Spectroscopy confirmed that hydrogen peroxide is derived from molecularly adsorbed oxygen    

on the palladium surface
58

, supporting the existence of a hydroperoxy intermediate species by 

Sivadinarayana
65

. The introduction of 0.01M Br
-
 ions in subsequent experiments saw increased 

product selectivity with H2O2 solutions nearing 2 wt%. Evaluation of different O2/H2 ratios              

(4 and 15) using the colloidal system indicated that the formation of hydrogen peroxide was   

first-order with respect to H2 and zero-order with respect to O2. The highest H2 conversions   

were reported at low O2/H2 ratios, suggesting hydrogen activation as representing the rate 

limiting step
51

. 
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In addition, the Lunsford group have proposed Pd
0
 as the active phase for direct        

H2O2 synthesis over a Pd/SiO2 catalyst in H2SO4/Ethanol slurry
66

. Pd
0
/SiO2 exhibited the  

highest activity at 10 
o
C, forming 0.16 wt% H2O2 after 2 h, and while PdO/SiO2 was almost 

inactive for H2O2 synthesis, activity improved to an intermediate value after mild reduction. 

High Resolution Electron Microscopy (HREM) showed metallic Pd (d = 0.22 nm) decorated 

larger PdO (d = 0.26 nm) nanoparticles on silica with an amorphous boundary. It was concluded 

that both halide and acid promoters are required for the reaction to proceed, by preventing the 

development of surface oxide ions, leading to water formation
66

.
 

 

Both Choudhary and Lunsford have investigated the effect of halide addition and 

concluded that bromide and chloride ions block surface sites responsible for catalysing the   

rapid decomposition of H2O2, with the sequential reaction of hydrogen peroxide instead   

directed through a slower hydrogenation pathway
16

. Given that decreased H2 conversion is      

also evident with bromide/chloride it has been suggested that sites active for combustion are  

also blocked by Br
-
 and Cl

-
 ions, which for both site types inhibit cleavage of molecularly 

adsorbed oxygen to give water. Regarding the influence of oxidation state, Pd
0
/Pd-H species    

are believed to act as an intermediate in the decomposition reaction
42

 with halide addition  

preventing the homolytic fission of hydrogen peroxide to give hydroxyl radicals, leading to      

the formation of water
16

.  

 

The role of acid in the reaction medium have also been considered, concluding that   

acids facilitate the adsorption of halide ions onto the catalyst surface
 
and reduce the base- 

catalysed decomposition pathway: phosphoric acid (0.03M) is effective without causing 

significant metal leaching
41-54

. Numerous studies have used methanol and ethanol as the    

reaction medium given the improved solubility of hydrogen and oxygen in these alcohols 

compared to water. This has been likened to the development of surface formate (methanol)    

and acetate (ethanol) species by reaction with oxygen on the Pd [110] surface, which prevent 

HO-OH bond breaking (HO-OH = 213 kJ mol
-1

,   H-O2H = 369 kJ mol
-1

)
62, 63

. 
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1.3 Catalysis by Gold 

 

Catalysis by gold received worldwide attention after separate discoveries by Haruta
67

      

and Hutchings
68

 of the unexpectedly high catalytic activity of supported gold nanoparticles            

for carbon monoxide oxidation and acetylene hydrochlorination respectively. Following these 

discoveries, there has been an exponential increase in the number of papers using supported     

Au catalysts for multiple applications (Figure 1.10), including: environmental catalysis          

(CO oxidation, NOx reduction, oxidation of volatile alcohols and photocatalysis)
69-72

, energy 

processing (the water-gas shift reaction)
73, 74

 and chemical synthesis (selective hydrogenation  

and oxidation reactions, alkene epoxidation and the direct synthesis of H2O2)
75-78

.   

 

 
 

Figure 1.10 Summary of the number of papers and patents involving the application of gold catalysts     

as a function of time. 

 

While bulk gold is one of the least reactive chemical elements that is solid under  

standard conditions, unique catalytic activity is present at the nanometre scale (<5 nm). The              

high catalytic activity of which has been suggested as correlating with relativistic effects in 

heavy metal elements, i.e. the contraction of 6s orbital across the transition metal series (which  

is greatest for Au and closely followed by Pt) and secondly the strength of the binding energy       

of the Au 6s electron, resulting in high electronegativity
79, 80

. Several important Au-catalysed 

reactions are discussed in the following sections. 
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1.3.1 CO oxidation 

 

The oxidation of carbon monoxide at ambient temperature using supported Au catalysts 

represents one of the most significant breakthroughs in the field. In their initial studies
67, 70

,       

Haruta and co-workers demonstrated that this reaction could be performed at temperatures as 

low as 203 K. There are many unresolved issues in the literature regarding CO oxidation over  

Au catalysts which are subject to continuing debate, including: the nature of the active site,      

the role of the catalyst support and lattice oxygen, the presence of moisture in the reaction
81, 82

,           

the catalyst preparation method, and also deactivation effects. Several reaction mechanisms   

have been proposed
83-85

, including the Bond-Thompson
83

 model (Figure 1.11), in which Au 

atoms at the metal-support interface (an oxide support, e.g. TiO2, Fe2O3, CeO2) represent the 

active sites for CO oxidation.  

 

 

Figure 1.11 The Bond-Thompson model for the Au-catalysed oxidation of carbon monoxide
83

.  

 

Though a widely respected model, debate continues regarding the extent with which 

different Au oxidation states (Au
0
/Au

3+
) participate in the reaction

86-88
. X-ray photoelectron 

spectroscopy (XPS) characterisation of Au catalysts by Hutchings et al. showed a correlation 

between catalytic activity and Au(4d5/2) binding energy
89

, identifying different Au oxidation 

states to be present in active catalysts, with the highest catalytic activity corresponding to the 

presence of cationic Au (for example, detection of Au
3+

 in Au/Fe2O3 catalysts). 
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Haruta pioneered the deposition precipitation (DP) method to synthesise Au catalysts       

in a carefully controlled manner (involving regulation of base, pH, temperature and light) to 

generate 2-4 nm Au particles, determined as critical to achieving high CO oxidation activity
70

.  

High Resolution Electron Microscopy (HREM) characterisation of Au/TiO2 catalysts prepared 

using anatase and rutile phase TiO2 supports concluded that different preferred orientations 

existed between Au nanoparticles and different TiO2 phases, with the Au [111] plane parallel     

to TiO2 [112] in anatase and TiO2 [110] in rutile supports respectively
90

, and corresponding to 

different observed activities for CO oxidation (Figure 1.12, left). 

 

 

Figure 1.12 Transmission electron micrograph showing the Au/TiO2 contact interface
90

 for anatase TiO2 

(left), and High magnification aberration corrected STEM-HAADF images of the Au/FeOx catalyst active 

for CO oxidation
91

, using white circles to show individual atoms and black circles to show sub-nm        

Au clusters consisting of only a few atoms (right). 

 

Application of advanced electron microscopy by Hutchings and Kiely
91

 with respect to 

Au/FeOx catalysts distinguished that sub-nm Au clusters of approximately 0.5 nm in diameter    

containing ~10 atoms were responsible for high CO oxidation activity (Figure 1.12, right). 

Theoretical studies also indicated the beneficial role of clusters with DFT calculations by 

Norskov et al. highlighting that the activation of CO molecules was energetically favoured on        

Au clusters containing 10 atoms
92

, similar to calculations by Haruta et al., which reported a   

strong interaction between negatively charged Au13 clusters and CO molecules respectively
93

.  
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Goodman and co-workers
94

 compared the activity of model Au/TiO2 catalysts, showing 

that the turnover frequency (TOF) for CO oxidation reached a maximum for Au ‘islands’ of    

3.5 nm in diameter and 3 atoms thick, corresponding to the point where Au partially loses its 

metallic character on transition from ‘continuous’ to ‘discrete’ band-gap energies, the transition 

of which has been suggested by the authors to correlate with catalytic activity. However, given   

this is a study of model catalysts, Haruta
95

 stated that it is more reasonable that the ratio of the 

number metallic Au atoms on the surface of Au ‘islands’ relative to the number of Au atoms at 

the metal-support interface reaches an optimum at 3.5 nm average cluster diameter (Figure 1.13). 

 

Figure 1.13 Turnover frequencies (TOF) and band-gap measured by STEM as a function of the diamter 

of Au islands depositied on TiO2 
94

. 

 

 

1.3.2 Hydrochlorination of acetylene 

 

Another milestone was the prediction by Hutchings
68

 in the early 1980’s that Au would    

be the best catalyst for the hydrochlorination of acetylene to vinyl chloride, an important 

industrial chemical used to produce the polymer polyvinyl chloride, a major plastics material
96-99

. 

One of the main industrial synthesis routes was based on acetylene hydrochlorination using 

mercuric chloride, HgCl2, supported on carbon as the catalyst. Aside from the high toxicity 

associated with this catalyst, sublimation of the active component during reaction resulted in 

deactivation, prompting research and development of a stable, replacement material. A wide 

range of metal chlorides supported on carbon were evaluated for this reaction by Shinoda
100

.  
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Hutching’s subsequently plotted the activity of these catalysts (most of which were 

divalent) against the standard electrode potential of the cations to highlight a direct correlation, 

based on the reasoning that hydrochlorination was a two-electron process involving the 2π 

electrons of acetylene
68

. Based on these results it was predicted that AuCl3 supported on carbon 

would be the best catalyst for this reaction, and incipient wetness impregnation with HAuCl4 

solution resulted in a catalyst three times more active than its HgCl2/carbon counterpart, with 

>99.9% selectivity toward the vinyl chloride monomer.  

 

While gold catalysts were more stable compared to mercuric chloride catalysts, slow 

deactivation was recognised and found to be dependent on temperature. At typical operating 

temperatures of around 180 
o
C, deactivation of the catalyst through reduction of Au

3+
 to Au

0
   

was determined using 
197

Au Mossbauer spectroscopy
98

, which could be countered by in-situ 

reactivation with NO. 

 

 

1.3.3 Alkene epoxidation 

 

The selective gas-phase epoxidation of propene to propylene oxide (PO) represents a 

major industrial target, as PO is the monomer used in the production of polyurethane and 

polyols. The epoxidation of C3 alkenes is significantly more complicated (Figure 1.14) than that 

of ethene epoxidation, where >90% selectivity is currently achieved using Ag-based catalysts
101

. 

 

 

 
Figure 1.14 Reaction scheme for the epoxidation of propene

101
. 

 

Haruta and co-workers
102, 103

 demonstrated that gold nanoparticles supported on TiO2 

were selective for the epoxidation of propene to propylene oxide in the presence of a sacrificial 

H2 donor, albeit only at low conversion (~1%) at temperatures of 303-393 K. High selectivities 

based on very low conversions were widely reported in the literature, with the presence of H2       

in the reactant feed gas permitting the activation of O2 at relatively low temperatures
104-107

.  



Chapter 1 

Introduction 

 

28 

Characterisation of Au/TiO2 catalysts prepared by deposition precipitation indicated that 

Au particle size was critical in determining H2 selectivity for propene epoxidation, with Haruta 

suggesting high selectivity is attributed to hemispherical Au nanoparticles of 2-5 nm in diameter, 

with <2 nm particles likened to an increase in rate of propene hydrogenation to propane
108

.  

 

In addition to anatase and rutile TiO2, the Ti-based materials: TS-1, TS-2, Ti-zeolite β, 

Ti-MCM-41 and Ti-MCM-48 were used to support Au, resulting in higher H2 selectivities
109-111

, 

which were attributed to changes in the co-ordination environment and hydrophobicity of the 

support material, leading to a reduction in the total oxidation of propene to CO2. Propene 

conversion could be partially improved to 5% on increasing reaction temperature from 80 to   

150 
o
C while maintaining H2 selectivity >90%. However, time on-line deactivation was observed 

using all supports, due to accumulation of oxidised products on the catalyst surface
109-114

. This 

does not however eliminate the possibility of commercial application as catalysts can easily be 

reactivated, and while propene conversions reported in the literature do not exceed 7%, the       

H2 efficiency/utilisation of the reaction stands at 40% 
115, 116

. 

 

Chen and Nijhuis have demonstrated that high selectivities can be obtained using 

Au/TiO2 catalysts prepared using low Au loadings
117, 118

. However, the formation of very small          

Au particles is these catalysts were found to be disadvantageous with high rates of propene 

hydrogenation to propane reported.  The introduction of a small amount of carbon monoxide to     

the reactant feed gas was found to completely deactivate propene hydrogenation, and the 

presence of water in the gas feed reduced deactivation effect(s)
119

. Investigation of the      

reaction mechanism by the same authors determined that the formation of an active peroxy       

species on gold nanoparticles represents the rate determining step.  

 

The sensitivity of the reaction to gold loading and Si/Ti ratio was noted by several 

authors, with high selectivity reported using a 0.01% Au/TS-1 catalyst (Si/Ti ratio = 500), 

suggested to improve the shape selectivity of catalysts and facilitate the release of PO away  

from the catalyst surface in order to limit the contribution of time on-stream deactivation 

effects
115

. 
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1.3.4 Oxidation of alcohols and aldehydes 

 

The selective oxidation of alcohols and aldehydes to form chemical intermediates of 

importance to the fine chemicals industry is a rapidly growing area, with key examples including 

the oxidation of glycerol to glyceraldehyde and the solvent-free oxidation of primary alcohols   

to aldehyde and acid products
120

 (with hydroperoxy, OOH species considered to be a key 

intermediate in the selective oxidation of alcohols). Studies by Prati and co-workers
121-126

 

demonstrated that supported Au nanoparticles were effective for alcohol oxidation, with high 

activity and selectivity >98% toward the selective oxidation of polyols substrates such as        

1,2-ethanediol and 1,2-propanediol. Catalysts were prepared by sol-immobilization (SIm), a 

technique which involves the formation of metal colloid “sols” stabilised using a protective 

ligand
127

, for example polyvinyl alcohol (PVA), before immobilisation onto a support material, 

i.e. carbon, CeO2, TiO2. 

 

Following these initial discoveries, Christensen et al. 
129

 demonstrated that Au catalysts 

were effective for the oxidative esterification of polyols such as 1,2-propanediol and glycerol    

in the presence of methanol solvent to form dimethyl mesoxalate or methyl lactate products, 

respectively in high yields. Brett and co-workers have reported that using Au-Pd catalysts for 

this reaction lead to a significant enhancement in terms of activity and selectivity to methyl 

lactate, with high selectivity (70-75%) and >30% conversion using Au-Pd/CeO2 catalysts. A 

mechanistic study showed that a primary pathway for methyl lactate formation proceeded via  

the oxidative esterification of hydroxyacetone or lactylaldehyde (Figure 1.15)
128

. Finally, by 

careful tuning of the catalyst support and Au/Pd molar ratio, the further oxidation of methyl 

lactate to methyl pyruvate was achieved for the first time in the literature.  
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Figure 1.15 Reaction pathways for the oxidative esterification of 1,2-propanediol
128

.  

 

Glycerol is the main by-product in the production of biodiesel and is a sustainable raw 

material for which demand has significantly increased in recent years
130

. Hutchings et al. 
131

 

demonstrated that the application of supported Au catalysts for the selective oxdaition of 

glycerol to glyceraldehyde resulted in >99% selectivities when using either carbon or graphite     

as the support, and performing the reaction under relatively mild conditions in glass-stirred 

reactors (60 
o
C, 3 bar) in the presence of NaOH, which is required for the first hydrogen 

abstraction in the reaction mechanism. Base-free conditions have subsequently been reported 

using Au-Pt and Au-Pd nanoparticles supported on Mg(OH)2, resulting in enhanced glycerol 

conversion and selectivity toward C3 products relative to monometallic counterparts
131

. 

 

Corma and co-workers demonstrated that high activity toward the selective oxidation     

of alcohols to aldehydes and ketones, and the oxidation of aldehydes to acids can be achieved 

using Au/CeO2 catalysts
132-136

. A major breakthrough reported by these authors was that the 

reaction could be performed under solvent free conditions, without the requirement of a base     

to achieve high activity. Enache et al. 
137

 showed that bimetallic Au-Pd/TiO2 catalysts were 

highly selective across a wide ride range of alcohol oxidation reactions under solvent free 

conditions, with turnover frequencies (TOF’s) reported in excess of 270,000 in the case of         

1-phenylethanol. These results were an improvement over those initially reported by Corma 

using monometallic Au and Pd catalysts
138

, with the alloying of Au and Pd leading to an 

approximately 25 fold activity enhancement.  
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The selectivity for oxidation of benzyl alcohol to benzaldehyde (which has 5 possible 

side-products) using Au-Pd catalysts exceeded 90%, while further studies determined Au-Pd/ 

TiO2 as the optimum catalyst for this reaction, which is operated at 100-160 
o
C 

138
. Supported           

Au-Pd catalysts are versatile across a wide range of reactions and it was recently reported         

by the Hutchings group
139

 that Au-Pd/C and TiO2 catalysts were highly active and selective      

for the oxidation of C-H bonds in toluene, with a 95% toluene conversion and 96% selectivity   

to the benzyl benzoate product. This represents another significant result since benzyl benzoate, 

in addition to benzyl alcohol, is a valuable chemical intermediate used in the production of 

pharmaceuticals, dyes, solvents and plasticisers. Another recent discovery is the high activity  

and selectivity of supported Au-Pd catalysts for the direct synthesis of hydrogen peroxide in    

the absence of acid and halide promoters
78

. 

 

 

1.4 The direct synthesis of hydrogen peroxide from H2 and O2 using gold-palladium 

catalysts 

 

In early work, Ishihara and co-workers reported that a 1 wt% Au/SiO2 catalyst tested      

in the absence of halide promoters exhibited promising H2O2 synthesis activity (with 30% H2 

selectivity) compared to Pt, Pd or Ag/SiO2 catalysts, for which no hydrogen peroxide was 

formed
140

. The rates of H2O2 synthesis and hydrogenation/decomposition were compared for 

monometallic Au catalysts and concluded that basic oxides such as MgO and ZnO were 

unsuitable supports (forming only water) while Au/SiO2 performed the best. The addition of       

1 wt% Pd to Au/SiO2 gave improved rates of H2O2 synthesis, with a maximum yields reported 

when using a Pd:Au weight ratio of 82:18. The same group have also highlighted that Au           

is highly efficient in forming stable, hydroperoxy, OOH species (an intermediate in direct     

H2O2 synthesis) compared to Pd, which is highly efficient with respect to dissociating the 

oxygen-oxygen bond
141

. 
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The promotional effect on addition of Au to Pd catalysts for the direct synthesis of 

hydrogen peroxide was first reported by Hutchings and co-workers, who have extensively 

studied the direct synthesis reaction using Au-Pd catalysts since 2002. The potential of 

monometallic Au catalysts were evaluated before advancing to Au-Pd nanoparticles
142

. Initial 

experiments were performed in a sealed stainless steel autoclave at 2 
o
C, 37.5 bar H2/O2           

(1:2 molar) pressure and 100% methanol solvent, resulting in improved H2O2 yields based         

on higher H2 selectivities upward to 53% when using an Au/Al2O3 catalyst
142

. To limit the 

influence of mass transfer effects during reaction, a 1200 rpm stirring speed was selected,      

with results for a 0.6 wt% Pd/sulfonated carbon catalyst
143

 indicating that low temperature          

and shorter reaction times favoured hydrogen peroxide yield, with the rate of reaction being      

linearly dependent on pressure.  

 

Further studies have been performed at 2
 o

C in a sealed, stainless steel autoclave         

(580 psi / 37.5 bar pressure, 1200 rpm) with CO2-diluted 5% H2 and 25% O2 (1:2 molar)         

gases dissolved in a methanol/water (2:1 weight) solvent and catalyst (10 mg). Studies 

recognised that supported 2.5 wt% Au-2.5 wt% Pd catalysts evaluated for H2O2 synthesis                

in the absence of halide and acid promoters gave improved H2O2 productivities/synthesis    

activities relative to monometallic 5 wt% Au and Pd counterparts. 

 

A series of supported Au-Pd catalysts prepared via wet-impregnation have been 

evaluated by the Hutching’s group for direct H2O2 synthesis activity, including 2.5 wt% Au-    

2.5 wt% Pd/TiO2, which after calcination in static air at 400 
o
C (3 h) demonstrated a high              

H2O2 productivity/synthesis activity of 64 molH2O2kgcat
-1

h
-1

. This value corresponded to the 

formation of 0.12 wt% H2O2 in solution and represented a three-fold improvement in activity 

compared to previously evaluated Au-Pd/Al2O3 catalysts
144, 145

. A suitable reaction time was 

confirmed as 30 minutes, with a positive correlation found between H2O2 yield and catalyst  

mass (0-50 mg). The effect of calcination and reduction were investigated for Au-Pd/TiO2 

catalysts, with the uncalcined sample exhibiting the highest rate of H2O2 synthesis reported to 

date (H2O2 productivity = 202 molH2O2h
-1

kgcat
-1

, 46% H2 conversion and 89% H2 selectivity), 

although significant catalyst deactivation was observed on subsequent reactions due to the 

leaching of Au and Pd from the catalyst, with ~90% metal content lost after the first reaction.       
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In comparison, catalysts calcined in static air at 400 
o
C retained 100% Au+Pd metal 

content on subsequent reactions, indicating that the calcination/heat treatment step serves as a 

compromise between catalyst activity and stability
144

 (Figure 1.16, (left)). 

 

    

Figure 1.16 The effect of calcination temperature on AuPd/TiO2 catalyst performance (left), and         

XPS analysis of uncalcined (a) and static air calcined 200
 o
C (b) and 400

 o
C (c) samples (right)

144
. 

 

XPS characterisation shown in Figure 1.16 (right) indicated the development of an          

AucorePdshell structure for Au-Pd particles supported on TiO2 upon calcination in static air,   

reporting a high surface Pd/Au ratio with a dramatic decrease in the intensity of the Au(4d) 

signal after 400 
o
C calcination. Scanning Transmission Electron Microscopy (STEM) images 

concluded a bimodal distribution of small (2-10 nm) and large (35-80 nm) particle diameters 

with no small Au particles. This was likened to the improved surface mobility of Au relative     

to Pd particles (below 10 nm), resulting in sintering and formation of large, Au-rich particles 

upon calcination
144

.  

 

Subsequent evaluation of Au-Pd/Fe2O3 catalysts indicated an inverse relationship 

between CO oxidation and H2O2 formation (also reported for Au-Pd/TiO2): specifically it       

was concluded that co-precipitation (CP) was the preferred preparation method of catalysts 

active for carbon monoxide oxidation, while catalysts most active toward hydrogen peroxide    

synthesis were prepared by wet impregnation, based on differences in both the nanoparticle 

composition and size distribution between methods
146

.  
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The microstructural analysis of Au-Pd/C catalysts indicated a bimodal particle size 

distribution and the existence of homogeneous Au-Pd alloys in comparison to the Au-core       

Pd-shell morphologies characteristic of Au-Pd/TiO2 and Al2O3 catalysts
147

. This is highlighted      

in the statistical analysis of X-ray energy dispersive spectroscopy (XEDS) maps leading to 

construction of red-green-blue, RGB images (Figure 1.17). For Au-Pd/C catalysts, the RGB 

image is aqua in colour and corresponding to the random mixing of Au (blue) and Pd (green)     

to form homogenous Au-Pd alloys (aqua), compared to the AucorePdshell nanoparticles clearly 

shown in RGB images for Au-Pd/TiO2 and Al2O3 catalysts
147

. 

 

 

Figure 1.17 Comparison of High Angle Annular Dark Field (HAADF) images, Au and Pd maps and 

RGB (Au = Blue: Pd = Green) overlap maps for 2.5 wt% Au-2.5 wt% Pd/C, TiO2 and Al2O3 catalysts 

prepared by wet impregnation and calcined in static air (400 
o
C, 3 h)

147
. 

 

The development of core shell morphologies has also been observed for Au-Ag 

nanoparticles contrary to phase diagrams for both bimetallic Au-Pd and Au-Ag systems 

predicting the formation of a complete homogeneous solid solution
148

. One reason as to why      

Pd is located at the nanoparticle shell/perimeter is due to the preferential formation of surface      

Pd-O bonds (confirmed by XPS analysis) during high temperature calcination in static air.          

A subsequent reduction step at high temperature >400 
o
C is required to observe an inversion of 

the AucorePdshell morphology, determined as detrimental to catalytic activity. 
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Taking into account the findings of an investigation into the effects of using         

different H2/O2 ratios and total reaction pressures, Hutchings and Moulijn proposed a         

kinetic scheme for the production of hydrogen peroxide (steps 1-5) and for the parallel 

combustion and consecutive hydrogenation/decomposition of hydrogen peroxide (steps 6-10, 

which consider the dissociative adsorption of O2)
36

.           

 

1. H2 → 2H(ad)      6. O2 → 2O(ad) 

2. O2 → O2(ad)     7. O(ad) + H(ad) → OH(ad) 

3. H(ad) + O2(ad) → OOH(ad)   8. OH(ad) + H(ad) → H2O(ad) 

4. OOH(ad) + H(ad) → H2O2(ad)   9. H2O(ad) → H2O 

5. H2O2(ad) → H2O2    10. H2O2(ad) → H2O(ad) + O(ad) 

 
Scheme 1.3 A proposed kinetic scheme describing the steps involved in the direct synthesis of    

hydrogen peroxide
36

. 

 

An important industrial target is to perform the direct synthesis reaction in the absence     

of acid and halide promoters, which are understood to inhibit dissociation of the O-O bond,     

thus reducing the activity of sequential H2O2 hydrogenation/decomposition reactions and 

increasing hydrogen peroxide yield. The presence of both acid and halide promoters in the 

reaction medium is disadvantageous in the development for a commercial application since 

acid/halide additives are detrimental when in contact with metal components, in particular 

stainless steel autoclaves where corrosion is noted as being a significant drawback
32

. There         

are also potential contamination issues and addition steps would be required to separate 

promoters during the extraction and purification of hydrogen peroxide. 

 

The development of supported Au-Pd catalysts represents a potential means to overcome 

these drawbacks, and for Au-Pd/C catalysts it has been demonstrated by Edwards et al. that    

pre-treating the carbon support in dilute nitric acid prior to impregnating Au and Pd metals 

formed in a highly active catalyst with H2 selectivity >98% due to the complete deactivation 

(switching-off) of the sequential H2O2 hydrogenation and decomposition activity over the 

catalyst
149

.  
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This finding represents a first in the literature and the benchmark Au-Pd catalyst           

for direct H2O2 synthesis. Modification of Au-Pd particle composition and size distribution/ 

dispersion leading to ‘blocking’ of surface sites responsible for dissociating the O-O bond     

were proposed as the reasons behind enhanced activity. Further investigation into the effect       

of nitric acid-pretreatment represents the basis of chapter 4. Before outlining the aims of this 

thesis, some alternative direct H2O2 synthesis technologies and theoretical studies reported in the 

literature are presented in section 1.5. 

 

 

1.5 Alternative technologies and theoretical studies 

 

Zhou has reported that H2/O2 can be converted to H2O2 and water under ambient 

conditions when activated into non-equilibrium plasma inside a silent discharge reactor 

consisting of a pair of co-axial glass cylinders and two electrodes of which one was maintained 

at 12.8 kV
150

. The process requires H2 and O2 only, with no requirement for solvent and 

promoters to generate a stable 4.2 wt% H2O2 solution after 3 h discharge, the concentration of 

which increased linearly with time, forming 14.3 wt% H2O2 after 11 h discharge. Though scaling 

the reactor design up to 1m
3
 would result in formation of 30 wt% H2O2 solutions and represent   

a safe process, the non-adiabatic system is currently uneconomical to run with an energy 

consumption of 80 kWh per kilogram of H2O2 formed
150

, outweighing the safety benefits and 

elimination of H2O2 extraction and purification steps
12

. 

 

Electrochemical studies by Yamanaka
151-154

 based on the reduction of O2 to H2O2 in         

an alkaline medium have shown that up to 8 wt% H2O2 solutions can be obtained with a         

25% current efficiency (CE) when using an [AC(HNO3) + VGCF/nafion] cathode, where           

AC = activated carbon, VGCF = vapour grown activated carbon. With recent improvements      

in fuel cell design and flexibility in alkaline medium selection, other reactions have employed 

electrolytes such as 2M NaOH to produce 7 wt% H2O2 solutions at 93% CE, with both the 

concentration and alkaline nature useful for pulp bleaching. However the reality with an 

electrochemical cell system is that the components are in many cases too expensive to scale       

up for an industrial processes and are difficult to maintain with time. Another direct synthesis 

technology investigated is the application of Pd membrane-based catalytic reactors
155-160

.  
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The Pd membrane-based reactor in theory delivers a 100% reaction efficiency and  

involves feeding H2 gas from an internal section of the membrane to an O2 saturated solution, 

given the Pd membrane is permeable to hydrogen atoms but not molecular hydrogen (to give 

improved reaction safety by indirect mixing). Strukul et al. 
155

 identified that both the activity  

and selectivity of Pd catalysts are dependent on the type of support used and the surface Pd 

oxidation state, with 8 nm average particle size in particular producing favourable results. Work 

by Abate et al. 
156

 has indicated that defective surface sites on the Pd catalyst surface are 

responsible for parallel and sequential non-selective reactions taking place to different extents 

(and supported by kinetic studies) under adopted reaction conditions.    

 

  

Figure 1.18 Schematic diagrams showing a typical microreactor set-up with hydrogen generation       

from the electrolysis of water
160

 (left), and a catalytic membrane reactor based on a Pd-Ag composite 

porous membrane
159

 (right). 

 

Microreactor systems offer a less-energy intensive operation and allow safe study of 

O2/H2 mixtures within the explosive limit since as the microreactor channel width is less than   

the quenching distance of hydrogen and oxygen radicals, which consequently means that      

higher temperatures are required to initiate an explosion
161

. Microreactors also offer a degree      

of portability which would benefit the proposal of on-site small scale synthesis. Synthesis          

of 1.3 wt% H2O2 solutions have been achieved using a system packed with 2 wt% Pd/SiO2 

catalyst and though there was only 2% H2 conversion, 100% H2 selectivity was achieved     

posing the potential for a recycle system. The effect of steam flow velocity through the 

microreactor channel confirmed a kinetically controlled reaction with minimal mass transfer 

limitation
162

. 
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Beckman has looked at the feasibility of synthesising H2O2 in-situ (for propene 

epoxidation) using a precious metal loaded TS-1 catalyst in compressed CO2 which under 

optimal reaction conditions gave 32% H2O2 yield based on 56% H2 selectivity 
164

. However,   

both BASF/Dow Chemical and laboratory scale studies by Campos-Martin
164

 have preferred        

a two-step process for Hydrogen Peroxide Propene Oxidation (HPPO) involving an on-site 

strategy where H2O2 synthesis occurs in a separate reactor, before being transported across       

site and used in an epoxidation reactor. This is based on different optimum conditions existing 

for both reactions including substrate/catalyst ratio, temperature and residence time. 

 

 

Figure 1.19 Schematic diagram of an integrated process for synthesizing propylene oxide (PO), based   

on the direct synthesis of hydrogen peroxide in neutral solutions
164

.  

 

The setup described in Figure 1.19 was used on a laboratory scale by Fierro and  

Campos-Martin with H2O2 synthesis performed using palladium anchored into ion-exchanged 

resins functionalised with sulphonic acid groups. A 9 wt% H2O2 solution was used in the         

TS-1 catalysed propene epoxidation which after 45 minutes at 343 K (H2O2/catalyst = 1:4, 

propene/catalyst = 1:25) resulting in a 95% H2O2 to Propylene Oxide selectivity based on            

a 96% H2O2 conversion, which decreased to 80% conversion after 135 h on-stream
164

.  
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Hydrogen peroxide synthesis has formed the basis of numerous theoretical studies     

using DFT calculations via the elementary steps (Scheme 1.3) involving the formation of a 

hydroperoxy OOH intermediate - a process concluded as thermodynamically and kinetically 

favoured on AuPd and Pd3 clusters
165

.  

 

Theoretical studies can discriminate between metallic and cationic Au states in an     

effort to determine the nature of the active site(s), for example, simulations of the formation      

of H2O2 over anionic Au clusters (Aun
-
 where n = 1-4) revealed a high activation barrier for      

O2 hydrogenation by Au
- 

(40.60 kcal/mol) influenced by cluster number
166

, while calculations    

by Ishihara et al., for Pd and Pd-Au systems revealed that the dissociation of the O-O bond, 

leading to the non-selective formation of H2O on Pd [111] surfaces is blocked by the presence     

of Au atoms (Figure 1.20)
167

. Indeed from a theoretical viewpoint, there is agreement that 

arrangement of Au and Pd atoms on an alloyed Pd-Au surface significantly impacts both the 

selectivity and yield, with isolated Pd/Au atoms (contiguous sites
168-170

) found to improve the   

H2 selectivity to H2O2 by inhibiting hydrogenation/decomposition reactions via scission of the 

O-O bond. 

 

Figure 1.20 Schematic of O-O bond dissociation over Pd and Pd/Au surfaces
168

. 

 

 In terms of the electronic structure of Au-Pd alloys, there is agreement in the literature 

that upon alloying, Au gains s, p electrons and loses d electrons, while Pd loses s, p electrons  

and gains d-electrons
171-174

. For late-transition metal elements, the d-character is more important 

than the s, p character in definining their chemisorption and catalytic properties. For Pd atoms, 

gaining d electrons shifts the d band away from the Fermi level, leading to a weaker interation 

between adsorbate and surface Pd atoms, with calculations showing that the Pd d-band for        

Pd monomers surrounded by Au is much lower in energy than that of either monolayer Pd or 

bulk Pd surfaces
175, 176

.  
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In addition, the lattice mismatch between Au and Pd can also cause narrowing of the      

Pd d-band
177

. For instances in which Pd adopts the larger lattice constant of Au (which is         

5% larger) upon alloying, the increase in Pd-Pd bond length causes the Fermi level within the   

Pd d-band to rise. This improves the atomic-like character of the Pd atoms, resulting in weaker 

interactions between the absorbate atoms and surface Pd-atoms. Consequently, it is understood 

that the synergistic effect manifested in Au-Pd alloys is due to Au weakening the binding strenth 

of Pd toward absorbate atoms and by perturbing its d-band structure. For direct H2O2 synthesis,  

a weaker interaction between oxygen atoms and surface Pd present in Au-Pd alloys could explain 

why a reduction in the rate of H2O2 hydrogenation/decomposition is observed relative to Pd-only 

catalysts. As such, whenever the term “synergy” is used in this thesis, it is related to the factors 

described in this paragraph and the preceding one. 
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1.6 The aims of this study 

 

 Using an autoclave reactor (a three-phase, stirred autoclave, operating under batch 

conditions), a range of Au, Pd, Au-Pd, Au-Pt, Pd-Pt and Au-Pd-Pt catalysts supported on  

carbon, ceria, silica and titania will be prepared, characterised and evaluated for the direct 

synthesis of hydrogen peroxide in the absence of acid and halide promoters. This study was 

undertaken in collaboration with Solvay®, the largest manufacturer of hydrogen peroxide    

using the auto-oxidation (AO) process, in an effort to determine suitable catalysts for the 

potential commercialisation of a direct H2O2 synthesis process. 

 

1.6.1 Objectives 

 

1 Optimisation of the wet-impregnation catalyst preparation method for carbon and TiO2 

supported Au-Pd catalysts for the direct synthesis of hydrogen peroxide, and study of   

the preparation of halide-free catalysts. 

 

2 Achieving an improved understanding as to how the acid pre-treatment of carbon 

supports prior to Au-Pd impregnation generates highly active catalysts for the direct 

synthesis of hydrogen peroxide in which the non-selective H2O2 hydrogenation/ 

decomposition pathways are completely switched-off. 

 

3 Development of the colloidal “sol” immobilisation methodology to prepare Au-Pd/C   

and TiO2 catalysts with application of aberration corrected electron microscopy 

techniques to investigate the origin of the very high activity exhibited by these catalysts 

for the direct synthesis of hydrogen peroxide. 

 

4 Investigation into the origin of synergistic effect(s) between Au and Pd supported on 

SiO2 as a function of acid-pretreatment, using multiple characterisation techniques 

including Inelastic Neutron Scattering (INS). 

 

5 Development of trimetallic Au-Pd-Pt catalysts for the direct synthesis of hydrogen 

peroxide, with an extensive catalyst screening study undertaken for Au-Pd-Pt/CeO2. 
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Chapter 2 

2.1 Outline 

 

A range of mono-, bi- and tri-metallic Au, Pd, Pt catalyst compositions supported on 

TiO2, Carbon, SiO2, CeO2, micro- and meso-porous materials were synthesised, characterised 

and evaluated for the direct synthesis of hydrogen peroxide. In this chapter, catalyst precursors, 

preparations, reactor setup and characterisation techniques are discussed. 

 

 

2.1.1 Catalyst Precursors (Provided by Johnson Matthey) 

 

Compound Chemical Formula Purity 

Palladium Bromide PdBr2 99.99% (trace metals basis) 

Palladium Chloride PdCl2 99.99% (trace metals basis) 

Palladium Nitrate Pd(NO3)2 99.99% (trace metals basis) 

Sodium Tetrachloropalladate Na2PdCl4 Pd Assay  =  12.04 wt% 

Hydrogen  

Hexachloroplatinic Acid 
H2PtCl6 99.99% (trace metals basis) 

Gold Bromide AuBr3 99.99% (trace metals basis) 

Hydrogen Tetrachloroauric Acid HAuCl4.3H2O Au Assay  =  41.21 wt% 

Table 2.1 Summary of catalyst precursors. 
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2.1.2 Supports  

 

Support Type Manufacturer 

TiO2 

P25 Degussa 

Nano-grade Aldrich 

Carbon 

G60 Darco 

Vulcan XC-72 CABOT 

Nuclear-grade  

(90 and 300 µm particles) 
BNFL 

SiO2 

<80 µm particles Johnson Matthey 

200-500 µm particles,  

60A
o
 pore size 

Acros Organics 

35-75 µm particles,  

90A
o
 pore size 

Co-Polyimide, CPI Solvay 

CeO2 

<5 µm particles 

Aldrich 

Nano-grade 

Silicalit Si:Al atom ratio - 85:2 Solvay 

Silicalite-1 Si-atoms only 

Provided by 

Dr. C. Hammond, 

Cardiff University
1
 

Zeolite ZSM-5 
SiO2:Al2O3 atom ratios - 

23, 30, 50, 80, 280 
Zeolyst International 

Table 2.2 Summary of catalyst supports. 
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2.1.3 Reagents (Supplied by Aldrich) 

 

Methanol (HPLC), Water (HPLC Chromasolve),  

 

Sodium Chloride, NaCl (99.99%), Sodium Bromide, NaBr (99.99%),  

 

Cerium Sulphate, Ce(SO4)2 (99.99%),  

 

Polyvinyl Alcohol (MW = 10,000, 80% hydrolysed). 

 

Phosphoric acid (5-10 ppm trace level) stabilised 50 wt% H2O2 in water and 1000 ppm 

metal atomic absorption standards were obtained from Sigma-Aldrich.  

 

 

2.1.4 Gases 

 

All gases were obtained from BOC Gases or Air Products Ltd. Purity of gases listed 

below as: 

 

Pure O2 (99.99%), 25% O2/CO2 (99.99%), 5% H2/CO2 (99.99%), 5% H2/Ar (99.95%),                     

10% H2/Ar (99.95%), He (99.99%), Ar (99.95%), N2 (99.95%) and 2% H2/Air (99.99%). 
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2.2 Catalyst Preparation 

 

2.2.1  Standard wet impregnation method 

 

 Supported 5 wt% Au, 5 wt% Pd, 2.5 wt% Au-2.5 wt% Pd catalysts were synthesized by 

the standard wet impregnation methodology
2
. Catalysts comprising 2.5 wt% Au-2.5 wt% Pd 

were prepared using the following standard method with all quantities listed per gram of catalyst. 

PdCl2 (0.042 g) was dissolved in a solution of HAuCl4.3H2O (2.05 ml, 12.25 g Au in 1000 mL, 

[Au] = 62 mM) while stirring at 80 
o
C until the Pd dissolved completely. The appropriate support 

(0.95 g, supports described in section 2.1.3) was then added to the solution and stirred at 80 
o
C to 

form a thick paste or gel (depending on the support used). The material was dried (110 
o
C, 16 h) 

and subsequently calcined in static air (400 
o
C, 3 h). Monometallic Au and Pd were synthesized 

using the same protocol, using a predetermined amount of HCl to completely dissolve PdCl2.  

For the synthesis of supported 5 wt% Au-Pd-Pt catalysts as discussed in chapter 7, a solution     

of H2PtCl2 (1.0g Pt in 25 ml) was introduced via wet impregnation in addition to Au/Pd 

compounds, with the amount added depending on the mono/bi/trimetallic catalyst composition.  

 

 

Important Note: 2.5 wt%-2.5 wt% Pd represents the bimetallic catalyst composition that has 

been found to be the most active for direct H2O2 synthesis. If not specified otherwise or it the 

abbreviation “Au-Pd” supported catalysts is used in this thesis, it can therefore be assumed that 

the standard 2.5 wt% Au- 2.5 wt% Pd composition has been used. 

 

 

2.2.1.1 Preparation of highly active Au-Pd/TiO2 catalysts 

 

 The influence of water addition during preparation of catalysts via wet impregnation was 

found to be critical for TiO2-supported catalysts. Although the synthesis methods remains 

practically identical, an excess of water (2-30 mL) is added during the mixing of Au and Pd 

precursors with P25 TiO2 to form a ‘slurry’ while stirring at 80
 o

C. The slurry was dried          

(110
 o

C, 16 or 48 h) and subsequently calcined in static air (400
 o

C, 3 h). TiO2-supported      

catalysts prepared following this methodology are described in Figure 2.1 and discussed in 

chapter 3. 
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2.2.2  Acid pre-treatment of catalyst supports 

 

A series of Au, Pd and Au-Pd catalysts supported on activated carbon were prepared 

using wet impregnation, the activated carbon was also subjected to acid pre-treatment prior to 

impregnation of the metals onto the support. This pre-treatment step consists of suspending 

activated carbon in aqueous 2 v/v% nitric acid, HNO3 for 3 h, followed by thorough washing     

(1000 mL H2O) and drying (110 
o
C, 58 h). 

 

 

2.2.3  Catalyst synthesis by the deposition precipitation method 

 

Catalysts comprising a 2.5 wt% Au-2.5 wt% Pd maximum theoretical loading were 

prepared using the following standard method with all quantities listed per gram of catalyst. 

PdCl2 (0.0416 g) was dissolved in a solution of HAuCl4.3H2O (2.05 ml, 12.25 g Au/L) stirring     

at 80
 o

C prior to adding distilled water (50 mL) followed by P25 Titania (0.95 g). Sodium 

Hydroxide, NaOH (0.1 M) was slowly added in a drop wise manner until the pH of the        

slurry reached a value of 10, which was subsequently maintained for 1 h, stirring at 60
 o

C.      

The material was then washed on a vacuum filter with warm distilled water (>1000 mL) to 

remove residual chloride. The material was subsequently dried for 16 h prior to optional, mild 

pre-reduction in 5% H2/Ar (100
 o
C, 3 h) and calcination in static air (400

 o
C, 3 h). 
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2.2.4  Catalyst synthesis by the sol-immobilization method 

 

For the preparation of support Au-Pd colloidal materials an aqueous solution of PdCl2 

and HAuCl4.3H2O compounds of the desired concentration were prepared. Polyvinyl alcohol 

(PVA) (1 wt % aqueous solution, Aldrich, MW = 10000, 80% hydrolyzed) and an aqueous 

solution of NaBH4 (0.1 M) were also prepared. For example, a catalyst comprised of Au-Pd 

nanoparticles with 1 wt% total metal loading on a carbon support (Aldrich G60) was prepared as 

follows: To an aqueous PdCl2 and HAuCl4 solution of the desired concentration, the required 

amount of a PVA solution (1 wt %) was added (PVA/(Au+Pd) (wt/wt) = 1.2), a freshly   

prepared solution of NaBH4 (0.1 M, NaBH4/(Au+Pd) (mol/mol) = 5) was then added to form a 

dark-brown sol. After 30 min of sol generation, the colloid was immobilized by adding activated 

carbon (acidified at pH 1 by sulfuric acid) under vigorous stirring conditions. The amount of 

support material required was calculated so as to have a total final metal loading of 1% wt and 

the molar ratio of Au:Pd was varied by adjusting the relative concentrations of the metals in 

solution. After 2 h the slurry was filtered, the catalyst washed thoroughly with distilled water 

(neutral mother liquors) and dried at 110 C for 16 h. 

 

 

Three distinct Au-Pd sols were prepared which differed primarily in the sequence of 

metal salt addition and reduction. Aqueous solutions of PdCl2 (Johnson Matthey) and 

HAuCl4.3H2O (Johnson Matthey) of the desired concentration were first prepared. Fresh aqueous 

solutions of poly vinyl alcohol (PVA) (1 wt% aqueous solution, Aldrich, MW=10000, 80% 

hydrolyzed) and of 0.1 M NaBH4 were also prepared. 

 

 

2.2.4.1 Au+Pd sol 

 

The PdCl2 and HAuCl4 stock solutions were mixed in the desired ratio and the required 

amount of a PVA solution (1 wt%) was added (PVA/(Au + Pd) (wt/wt) = 1.2), the freshly 

prepared solution of NaBH4 (NaBH4/(Au + Pd) (mol/mol) = 5) was then added to the solution to 

form a dark-brown sol (Figure 2.1). The solution was stirred for a further 30 minutes. 
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Figure 2.1 Preparation of Au+Pd/C following the sol-immobilization method. 

 

 

2.2.4.2 Pd{Au} sol 

 

Firstly, the required amount of a PVA solution (1 wt%) was added (PVA/(Au + Pd) 

(wt/wt) = 1.2) to an aqueous HAuCl4 solution of the desired concentration, a freshly prepared 

solution of NaBH4 (0.1 M, NaBH4/Au (mol/mol) = 5) was then added to form a red sol. The 

solution was then stirred for 30 minutes to allow the complete reduction of all the Au
3+

 present in 

the solution. Then, the required amount of the stock aqueous PdCl2 solution was added, followed 

by the desired amount of NaBH4 (NaBH4/Pd (mol/mol) = 5), to produce a dark brown sol  

(Figure 2.2). The solution was stirred for a further 30 minutes. 

 

  

 
Figure 2.2 Preparation of Pd{Au}/C following the sol-immobilization method. 



Chapter 2 

Experimental 

 

57 

2.2.4.3 Au{Pd} sol 

 

 Firstly, the required amount of a PVA solution (1 wt%) was added (PVA/(Au + Pd) 

(wt/wt) = 1.2) to an aqueous PdCl2 solution of the desired concentration, a freshly prepared 

solution of NaBH4 (0.1 M NaBH4/Pd (mol/mol) = 5) was then added to form a brown sol. The 

solution was stirred for 30 minutes to allow the complete reduction of all the Pd
2+

 present in the 

solution. Then, the desired amount of the stock HAuCl4 aqueous solution was added, followed 

by the desired amount of NaBH4 (NaBH4/Au (mol/mol) = 5), until a dark brown sol was 

obtained (Figure 2.3). The solution was stirred for a further 30 minutes. 

 

  

 
Figure 2.3 Preparation of Au{Pd}/C using sol-immobilization procedure. 

 

 

2.2.5 Reflux method 

 

Typically, 1.0 g of catalyst was placed in a round bottom flask and the desired volume    

of solvent (distilled water) was added into the flask. The round bottom flask was connected to a 

reflux condenser and placed in an oil bath, which was heated at 90
 
C. Under vigorous stirring 

(1200 rpm), the solution was left to reflux for 2 h. The slurry was then filtered and washed 

thoroughly with distilled water (2 L), followed by overnight drying (110
 
C, 16 h). 
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2.3 Catalyst Testing 

 

 In this section, standard reaction protocols are described. These conditions are the 

outcome of a previous catalyst optimisation study at Cardiff University
2
 and are adhered to 

throughout the course of this thesis. The primary objective is catalyst development and   

therefore reaction conditions are maintained without addition of acid and/or halide additives, 

which are described elsewhere in two sister publications. 

 

 

2.3.1 Hydrogen peroxide synthesis  

 

Catalyst testing was performed using a stainless steel autoclave (Parr Instruments) with a 

nominal volume of 50 ml and a maximum working pressure of 14 MPa.  The autoclave was 

equipped with an overhead stirrer (0 - 2000 rpm) and had provision for measurement of 

temperature and pressure. For the standard reaction conditions we have employed previously,  

the autoclave was charged with the catalyst (0.01 g), solvent (5.6 g MeOH and 2.9 g H2O), 

purged three times with 5% H2/CO2 (3 MPa) and then filled with 5% H2/CO2 and 25% O2/CO2   

to give a H2:O2 ratio of 1:2 at a total pressure of 3.7 MPa. Stirring (1200 rpm) was commenced     

on reaching the desired temperature (2
 o

C), and experiments were carried out for 30 min. 

Conversion of H2 was calculated by gas analysis before and after reaction. H2O2 yield was 

determined by titration of aliquots of the final filtered solution with acidified Ce(SO4)2              

(7 x 10
-3

 mol/l). Ce(SO4)2 solutions were standardised against (NH4)2Fe(SO4)2.6H2O using 

ferroin as indicator. 

 

 

Important Note: The amount of hydrogen peroxide formed is represented in this thesis in   

terms of both rate (productivity / rate of H2O2 synthesis / synthesis activity (molH2O2kgcat
-1

h
-1

)) 

and yield (wt% H2O2) respectively. 
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2.3.1.1    Catalyst re-usability experiments 

 

The autoclave was charged with the catalyst (0.05-0.10 g), solvent (5.6 g MeOH and    

2.9 g H2O), purged three times with 5% H2/CO2 (100 psi) and then filled with 5% H2/CO2     

(420 psi) and 25% O2/CO2 (160 psi) to give a hydrogen to oxygen ratio of 1:2 at a total pressure 

of 580 psi. Stirring (1200 rpm) was commenced on reaching the desired temperature (2 
o
C) and 

experiments were performed for 30 min. After filtration, the catalyst was then dried the oven     

at 100 
o
C for 2 h. Subsequently, a portion of this catalyst (0.01 g) was re-used as described 

previously (section 2.3.1). 

 

 

 

 

Figure 2.4 Schematic of Parr stainless steel autoclave used for catalytic reaction studies. 
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2.3.2 Hydrogen peroxide hydrogenation  

 

Hydrogen peroxide hydrogenation was evaluated using a Parr Instruments stainless steel 

autoclave with a nominal volume of 100 ml and a maximum working pressure of 14 MPa. To 

test each catalyst for H2O2 hydrogenation, the autoclave was charged with catalyst (0.01 g) and   

a solution containing 4 wt% H2O2 (5.6 g MeOH, 2.22 g H2O and 0.68 g H2O2 (50 wt%)).                

The charged autoclave was then purged three times with 5% H2/CO2 (0.7 MPa) before filling 

with 5% H2/CO2 to a pressure of 2.9 MPa at 20
 o

C. The temperature was allowed to decrease     

to 2
 o

C followed by stirring at 1200 rpm for 30 min. The H2O2 remaining after reaction was 

determined by titration following the procedure described in section 2.2.1. 

 

 

Important Note: The amount of hydrogen peroxide hydrogenated is represented in this thesis    

in terms of both rate (rate of H2O2 hydrogenated / hydrogenation activity (molH2O2kgcat
-1

h
-1

)    

and consumption (percentage H2O2 hydrogenated) terms respectively. For hydrogen peroxide 

reactions performed at 30 minutes, the relationship between activity and hydrogen peroxide 

concentration is shown in Table 2.1. 

 

  

 

 

 

Table 2.3 Conversion of H2O2 synthesis/hydrogenation activities into wt% H2O2 values for standard 

reactions performed at 30 minutes. 

 

In chapter 3, H2O2 decomposition experiments were additionally undertaken using        

the conditions described in section 2.3.2, but instead filling the autoclave with 25% O2/CO2         

to a pressure of 2.9 MPa. Thermodynamically, the contribution of the H2O2 decomposition 

pathway under standard reaction conditions is minimal and based on a high partial pressure of 

oxygen, pO2 (for standard H2O2 synthesis reactions - H2:O2 = 1:2 molar). 

Example 
Activity / 

molH2O2kgcat
-1

h
-1

 
wt% H2O2 

1 50 0.1 

2 150 0.3 

3 2000 4.0 
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2.4 Characterisation 

 

2.4.1  UV-Visible Spectroscopy (UV-Vis) 

 

 Spectroscopy is a fundamental technique that allows quantification of the amount of 

radiation adsorbed or emitted by a sample, based on the interaction of light with matter. In 

particular, UV-Vis spectroscopy concerns the absorption of emission of electromagnetic 

radiation in the ultraviolet or visible spectral region, ranging from 200 to 800 nm. Within this 

region, molecules typically undergo electronic transitions upon excitation by electromagnetic 

radiation, and for transition metal centre(s), electronic transitions including d-d transitions          

and ligand-metal and metal-ligand charge transfer processes can be studied. When light passes 

through an absorbing species, some energy will be absorbed. This causes the species to move 

from a lower energy state to one of higher energy. According to the Beer-Lambert law
3
, the 

electromagnetic radiation absorbed by the species is proportional to its concentration: 

 

     A = ε.[c].l               (Equation 2.1) 

 

where A is the absorbance (no units), ε is the molar extinction co-efficient (mol
-1

 L cm
-1

),         

[c] is the concentration (mol L
-1

), and l is the path length (cm) of the sample cell. 

 

Single-beam spectrophotometers can operate using either a fixed wavelength light source 

or a continuous source. The simplest instruments use a single-wavelength light source, such as    

a light-emitting diode (LED), a sample container, and a detector/photomultiplier. Instruments 

with a continuous source have a dispersing element and aperture to select a single wavelength 

before the light passes through the sample cell (Figure 2.6).  
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Figure 2.5 Schematic of a wavelength-selectable, single-beam UV-Vis spectrophotometer. 

 

UV-Visible spectroscopy of the colloidal sols was used to monitor the intensity and 

position of the plasmon resonance band of gold. In addition, the uptake of Au and Pd catalyst 

precursors on TiO2 and carbon supports during wet impregnation preparation was monitored by 

UV-Vis spectroscopy (using a JASCO UV-Vis/NIR V-570 spectrophotometer) between 200 and 

800 nm, using distilled water in a quartz cuvette as the reference value. Samples (0.5 ml)      

were collected during the impregnation step at timed intervals after the support (C or TiO2) was 

stirred with Au and Pd metal compounds in solution. Each sample was passed through glass 

filter paper (Whatman, 55 micron grade) to carefully separate the solution from the support. 

Concentrated (2 ml water) and dilute (28.5 ml water) metal solutions were studied to assess the 

effect of concentration on the rate of metal uptake. 

 

 

2.4.2 Powder X-ray Diffraction (XRD)  

 

Powder XRD is a useful tool allowing characterisation of crystallographic structure and 

the preferred orientation in powdered solid samples. This is achieved by observing the scattering 

intensities of an X-ray beam as a function of incident and scattered angle (degrees 2-Theta).      

X-rays generated from a source are passed through a monochromator to give one specific 

wavelength of X-ray that is focussed into a beam and directed at the powdered catalyst packed 

flat in the sample plate giving rise to diffraction
4
. The sample and detector (which is Geiger 

Muller tube) are moved with the sample at  and the detector at 2.  
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Figure 2.6 Diagram of a typical powder diffractometer setup. 

 

The diffracted X-rays are collected using a moving detector around the circumference    

of the circle. The resulting pattern shows the relationship between the intensity and degrees 2θ, 

with the number of X-rays proportional to the intensity. Powder diffraction data is presented as   

a diffractogram
 
- a plot of the diffracted intensity, I as a function of the scattering angle, 2.    

The interplanar spacing(s), d within the crystalline sample can be calculated using the Bragg 

equation: 

     nλ = 2dsinθ               (Equation 2.2) 

 

where n is the order of the X-ray beam, λ = wavelength, d is the interplanar spacing, and θ is   

the diffraction angle.  
 

 The characteristic sets of d-spacing’s generated in a typical X-ray diffractograms can be 

used as a fingerprint of the same, since each crystalline material has a unique X-ray diffraction 

pattern, which can be referenced against the JCPDS database allowing for identification for a 

specific material/phases that constitute a novel material. Catalysts were characterised by   

powder X-ray diffraction (XRD) using an X’PERT PANalytical diffractometer with a 

monochromatic Cu-Kα1 source operated at 40 keV and 30 mA. Phases were identified by 

matching experimental patterns with the JCPDS powder diffraction file. 
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2.4.3 Thermo-Gravimetric Analysis (TGA) 

 

 Thermo-gravimetric analysis (TGA) can be used to track the mass variation for a given 

sample as a function of increasing temperature, or isothermally as a function of time, in an 

atmosphere of nitrogen, helium, air or under a vacuum. Thermo-gravimetric analysis was 

performed on a Seteram TG-DTA. The sample (approximately 30-40 mg) was placed in an 

aluminium crucible and heated to 350 
o
C at a ramp rate of 5 

o
C/minute under either air or 

nitrogen atmosphere. Mass variation, temperature and heat flow were measured to a high degree 

of accuracy by a microbalance within the machine. 

 

 

2.4.4  Temperature Programmed Desorption (TPD) 

 

Temperature programmed desorption (TPD) is a method of observing the desorption      

of molecules from a surface as the surface temperature is increased. In TPD studies, a         

sample previously equilibrated with an adsorbate is subjected to a programmed temperature 

increase. When the thermal energy exceeds the adsorption energy of a previously adsorbed 

species, this gives rise to desorption in order of increasing adsorption energy. As molecules 

desorb from the surface they are swept by a carrier gas, such as helium, argon or nitrogen,         

to a thermal conductivity detector where they are quantified. The variation in the thermal 

conductivity of the gas mixture is measured, to give a plot of the thermal conductivity as             

a function of sample temperature, allowing quantification and identification of adsorbed species. 

 

Temperature programmed desorption (TPD) can be used to investigate the surface 

oxygen group(s) on activated carbon supports though desorption of CO2 and CO gases derived 

from the decomposition of characteristic organic functionalities, i.e. carboxylic acids, phenols 

and ethers. TPD can be used to track CO2 and CO desorption upward to 1000
 o

C, which can   

vary based on the activation method (e.g. steam, HCl, CO2) applied to the carbon natural    

source (e.g. date pits, pine trees). Differences in CO2 and CO desorption are associated with   

surface chemistry, in general on-set of CO2 desorption is expected at lower temperatures 

compared to CO, and is related to the decomposition of functional groups where the carbon   

atom is bonded to two oxygen atoms as oppose to one oxygen (CO), and therefore correlating 

with increasing bond strength. 
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Temperature programmed desorption was performed using a Thermo TPDRO 1100 

instrument. All samples (0.10 g) were pre-treated in argon (120
 o

C, 3 h), prior to flowing a 

helium/carrier gas over the sample (flow rate = 20 ml min
-1

) and applying a heating ramp of        

5
 o

C min
-1

 until reaching a maximum temperature of 1000
 o

C. The desorbed products were 

monitored by an on-line thermal conductivity detector.  

 

 

2.4.5  BET Surface Area and Porosimetry Measurements 

 

Nitrogen gas is physically adsorbed through weak Van der Waals bonds at the catalyst 

surface and desorbed at the same temperature by a decrease in pressure (thus achieving 

equilibrium). By admitting stepwise known amounts of nitrogen gas into the sample tube an 

adsorption isotherm was determined. The volume of nitrogen gas adsorbed is equal to the 

difference in gas admitted and the amount of gas filling the free space in the sample tube.         

By plotting the volume of adsorbed nitrogen gas against P/Po (P = equilibrium pressure of 

adsorbate, Po = the saturation pressure of adsorbate) a type II adsorption isotherm results. 

 

 
 

Figure 2.7 Sketch of a type II adsorption isotherm. 
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The linear region (0.05 – 0.35 P/Po) represents the development and completion of the 

monolayer and so was used to determine the surface area. As the molecular cross sectional area 

for nitrogen is known (am = 16.2A
o2

), then the specific surface area was calculated using       

BET theory
5
. This determined the amount of nitrogen gas required to cover the external pore     

surfaces of a solid sample with a complete monolayer of nitrogen. The BET isotherm is an 

extension of the Langmuir isotherm, and can be used to calculate surface areas based on a   

model of adsorption employing certain assumptions. The BET equation is described below: 

 

                        P        =    c – 1 .  P    +    1    

     v(P0 - P)          vmc    P0        vmc             (Equation 2.3) 

 

where P is the equilibrium pressure, P0 is the saturation pressure, v is the quantity of adsorbed 

gas, vm is the volume of monolayer gas adsorbed, and c is the BET constant. 

 

Pore-size distributions were calculated using the Barrett, Joyner and Halenda (BJH) 

method
6
. As the relative pressure of the isotherm increases beyond 0.2, a rapid rise in N2 

adsorption is observed as the mesopores saturate by capillary condensation. The pressure 

required for saturation depends on the pore diameter and the radius of the curvature of the 

resulting meniscus formed by condensation of nitrogen gas. The Kelvin equation
7
 is then  

applied to the data: 

    ln  P    =    - 2.γ.vm 

         P0          RTrm              (Equation 2.4) 

 

where P/P0 is the relative pressure of vapour in equilibrium with the meniscus of the    

condensed gas of radius rm, γ is the surface tension, vm is the molar volume, R is the universal 

gas constant, and T is the temperature.  
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Nitrogen Porosimetry was undertaken using a Quantachrome Nova 1200 Porosimeter   

and NovaWin v2.2 analysis software. Samples were degassed at 120 
o
C for 2 h prior to N2 

adsorption. Adsorption/desorption isotherms were recorded at 77K. BET surface areas were 

calculated over the relative pressure range 0.05-0.2 where a linear relationship was observed. 

Microporosity was assessed using the t-plot method over the relative pressure range 0.2-0.5,   

which displayed a linear correlation. Mesopore diameters were calculated by applying the BJH 

method to the desorption branch.  

 

 

2.4.6  Fourier Transform Infra-Red Attenuated Total Reflectance (FT-IR ATR)  

Corrected Spectroscopy 

 

 Fourier transform infra-red spectroscopy (FT-IR) represents a special measurement 

technique for collection of infra-red spectra (IR). Instead of recording the amount of energy 

absorbed when the frequency of the infra-red light is varied, the IR light is guided through        

an interferometer. After passing through the sample, the measured signal is the interferogram. 

Given FT-IR is a type of IR spectroscopy, the principles behind FT-IR spectroscopy are also   

the same. 

 

 Infra-red spectroscopy (IR) measures the absorption of different IR frequencies by a 

sample placed in the path of an IR beam. Infra-red spectroscopy works because the chemical 

bonds in molecules within a sample have specific frequencies at which they vibrate, and 

consequently the molecular vibrations in a sample can be probed. IR spectroscopy can be used to 

identify different functional groups present in a sample, since different functional groups absorb 

characteristic radiation at frequencies corresponding to molecular vibrations. 

 

 Further to IR spectroscopy, Attenuated Total Reflectance (ATR) is used to study        

solid materials
3
. Referring to Figure 2.9, IR radiation directed onto a transparent block will strike 

the flat surfaces at less than the critical angle, giving rise to total internal reflection (a). 

Subsequently, radiation of a slightly diminished intensity emerges at the far end of the         

block, although it must be appreciated that while the internal reflection is referred to as ‘total’, 

radiation actually penetrates beyond the surface of the block during each reflection (b). If        

the sample material is pressed closely to the outside of the block (c) the beam will travel a    
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small distance through the sample at each reflection and consequently, on emerging at the far 

end of the block, it will possess the absorption spectrum of the sample. The internal reflection is 

attenuated by sample absorption, and is highly dependent on the wavelength of radiation used, 

the angle of incidence and the path length, which must be short to limit the number of total 

internal reflections through the sample. The ‘block’ described in Figure 2.9 must be an infra-red 

transparent material (a germanium single crystal) of refractive index higher than the sample 

being studied, in order to give rise to total internal reflection. 

 

 
 

Figure 2.8 Schematic representation of Attenuated Total Reflectance (ATR), describing: (a) the transport 

block, (b) the internal reflection in the block, and (c) penetration into the sample pressed against the 

block
3
. 
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FT-IR ATR corrected spectra were measured using a Varian Excalibur 400 FT-IR 

spectrometer with an UMA 600 microscope. The images were recorded in reflection mode. A 

small portion of sample was pressed onto a single Germanium crystal/microscope base and 

irradiated by an Infra-Red source. The sample is exposed to the atmosphere during analysis and 

so a background spectrum was processed beforehand to allow subtraction of carbon dioxide 

peaks situated at: 1300-2000 cm
-1

 (broad), 2300-2400 cm
-1

 (sharp), 2840-3000 cm
-1

 (weak)         

and 3500-4000 cm
-1

 (broad). 

 

 

2.4.7 Atomic Absorption Spectroscopy (AAS) 

 

 Atomic Absorption Spectroscopy (AAS) is used to determine the concentration of a 

particular metal element in a sample. Specifically, metals are able to absorb UV radiation     

when excited by heat, with each metal absorbing radiation at a characteristic wavelength,  

thereby allowing elemental identification. AAS scans for a particular metal by focussing a   

beam of UV light at a specific wavelength through a flame and onto a detector. The sample        

is aspirated into the flame and if the metal is present, it will absorb some of the light, leading      

to a reduction in intensity. The AAS instrument measures the change in intensity, which the        

data processor converts into an absorbance measurement (which is proportional to metal 

concentration). 

 

 The concentration measurement is determined from a calibration curve after calibrating 

the instrument using standards of known concentration (0-1000 ppm region). As a result, the 

concentration of a particular element can be determined with reference to the calibration curve. 

A typical AAS instrument is shown in Figure 2.9, comprising of a light source, sample cell, 

monochromator and detector. For successful AAS analysis, the correct flame composition (air/ 

acetylene/nitrous oxide), careful optical alignment of the lamp with the monochromator, and 

careful alignment of the burner with the light path in addition to careful preparation of samples 

and standards are required. 
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Figure 2.9 Schematic of an atomic absorption spectrophotometer. 

 

 

AAS measurements were performed using a Perkin–Elmer 2100 Atomic Absorption 

spectrometer using an air–acetylene flame. Gold/Palladium samples were run at wavelengths    

of 242.8 nm (Au) and 247.6 nm (Pd). Samples for analysis were prepared by dissolving 0.10 g  

of the dried catalyst in an aqua regia solution, followed by the addition of 250 mL deionised 

water to dilute the sample. AAS was used to determine the wt% of the metal incorporated into 

the support after impregnation, as well as the concentration (ppm) of Au or Pd that had leached 

out into solution during reaction, by determining the Au and Pd content of the used catalyst and 

comparing with to the fresh catalyst. 
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2.4.8 Scanning Transmission Electron Microscopy (STEM) 

 

Scanning Transmission Electron Microscopy (STEM) is a type of Transmission Electron 

Microscopy (TEM) and an imaging technique in which a highly accelerated beam of electrons   

are passed through a thin sample, specifically by focusing the electron beam into a narrow spot 

which is scanned over the sample in a two dimensional raster. A primary beam of electrons are 

directed at the surface of the sample and undergo inelastic scattering events on collision with 

atoms in the sample, resulting in the effective spreading of the primary to fill a tear-drop shaped 

volume, known as the interaction volume, extending from less than 100 nm to around 5 µm into 

the surface. The rastering of the electron beam across the sample allows for simultaneous 

operation of elemental analysis techniques, including mapping by X-ray Energy Dispersive 

Spectroscopy (XEDS) and High Angle Annular Dark Field (HAADF) imaging.  

 

The emission of characteristic X-rays is achieved by focussing a high energy beam of 

electrons onto a sample, resulting in the possible excitation of an electron in the ground state, 

leading to ejection from the atom and formation of an electron hole. In order for the excited  

atom to return to its ground state, an electron from an outer atomic shell falls to the inner shell 

where an electron was ejected with loss of a specific amount of energy in the form of X-rays. 

 

 

 
Figure 2.10 Diagram illustrating the principles of XEDS. 

 

X-ray Energy Dispersive Spectroscopy (XEDS) allows elemental analysis since this 

energy difference is element specific. A detector (a semi-conductor material) measures the 

energy values of the characteristic X-rays generated within the microscope before an X-ray 
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microanalysis system converts X-ray energy into an electron count. A spectrum based on the 

chemical analysis of the sample can be formed using this electron count data, indicating which 

elements are present from a given kα value. 

 

Referring to Figure 2.11, a Bright Field (BF) image is formed when unscattered electrons 

from the incident beam combine with scattered electrons as modified by passage through the 

entrance aperture. Dark areas in the image arise from the specimen regions which scatter 

electrons widely and into the entrance aperture. If unscattered electrons are removed, a dark  

field image formed only from scattered electrons results. The reason why the image is referred   

to as ‘dark field’ is because the viewing screen is dark unless a specimen sample is present to 

scatter electrons. Consequently, dark-field images give rise to a higher level of contrast than 

produced in bright field mode although longer exposure time to the incident beam is required, 

based on the reduced intensity of images produced in dark field mode.  

 

 

 

Figure 2.11 Schematic of a Scanning Transmission Electron Microscope
8
. 
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The contrast of HAADF images is highly dependent on the average atomic number of  

atoms that give rise to high angle scattered electrons via inelastic scattering events, as a result it 

is possible to form atomic resolution images where the contrast is directly related to the atomic 

number (Z-contrast image), compared to conventional electron microscopy techniques (TEM) 

which use phase-contrast, producing results which need interpretation by simulation. 

 

 MSA is a group of processing techniques
9
 that can be used to identify specific features 

within large sets of data sets such as X-ray spectrum images and to reduce random noise in the 

data sets in a statistical manner. This technique is useful for the analysis of X-ray maps taken 

from nanoparticles
10

 through performing a data smoothing calculation by portioning the XEDS 

data by using a probability density function. 

 

Samples for TEM and STEM analysis were prepared by dispersing the dry catalyst 

powder onto a holey carbon film supported by a 300 mesh copper TEM grid. Samples were    

first subjected to bright field (BF) diffraction contrast imaging and X-ray energy-dispersive 

spectrometry (XEDS) in a JEOL 2000FX TEM operating at 200 kV. Then they were further 

characterized using high angle annular dark field (HAADF) imaging in order to detect any 

highly dispersed metallic species in a JEOL 2200 FS TEM instrument operating ant 200 kV and 

equipped with a CEOS probe corrector. A sub-set of samples were examined in an aberration 

corrected JEOL 2200FS TEM operated in STEM-HAADF imaging and STEM-XEDS modes at 

200kV in order to study the structural and compositional details of individual metal 

nanoparticles. All samples were analysed by Dr. Qian He and Dr. Ramchandra Tiruvalam at 

Lehigh University, Pennsylvania, USA. 
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2.4.9  Scanning Electron Microscopy (SEM) 

 

SEM is used to study the surface or near surface structure of bulk specimens. By 

focussing a high energy beam of electrons, formed by thermionic emission from a tungsten 

electrode, onto the surface of a sample and detecting signals from the interaction of incident 

electrons with the sample surface, high resolution images of samples can be obtained in the 

backscatter and secondary electron modes respectively. SEM relies upon the intrinsic properties 

of the electron. By aiming an electron beam at the sample, one of two things may happen,        

the electron may be taken up by the system, which then immediately ejects an electron from 

itself, which is called a secondary electron. The second situation that can happen in that the 

incident electron can be back scattered from the sample itself. Specifically the secondary 

electron signals detected are excited from the top surface layer with energies 0-50 eV. 

 

 

Figure 2.12 The types of signals that are used by SEM. 

 

 

Specimens for scanning electron microscopy (SEM) analysis were prepared by dry 

dispersing the powder onto conductive carbon tape attached to an Al stub. The SEM instrument 

used in this study was a Hitachi 4300SE/N equipped with a Schottky field emission gun. The 

backscattered electron (BSE) imaging mode was used in the SEM to highlight the heavier metal 

containing components (Au, Pd) relative to the support material (SiO2, TiO2). 
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2.4.10 X-ray Photoelectron Spectroscopy (XPS) 

 

X-ray XPS is a technique used to probe the atomic energy levels within a sample, and    

is based on the principles of Einstein’s photoelectric effect. Each electron is held in place          

by the nucleus with a characteristic binding energy and in photoelectron spectroscopy, an 

electron from any orbital can be removed, depending on the energy of the incident 

monochromatic radiation. Specifically, an incident X-ray photon collides with an electron, 

transferring its energy to that electron. If the photon energy is greater than the binding energy, 

the electron will be ejected from the atom with a specific kinetic energy and velocity, which      

is defined using the equation: 

 

Binding Energy  =  hv  -  Kinetic Energy             (Equation 2.5) 

 

By knowing the energy of the monochromatic exciting radiation, the binding energies of 

the electrons in the sample can be identified, based on the kinetic energies with which they       

are ejected. Electrons can be ejected from either the core or valence levels of an atom   

depending on the energy of the incident radiation. For XPS analysis, electrons from core and 

inner shells of the atom are ejected and this requires excitation radiation of sufficiently high 

energy. The X-Ray beam is produced by electron bombardment of a clean, aluminium metal 

target, resulting in the emission of monochromatic radiation of energy 1486.6 eV.  

 

 
 

Figure 2.13 Energy level diagram describing XPS
11

. 
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Measurement of the binding energies of electrons ejected from different energy levels     

in an atom can provide information relation to the top layers of a sample surface (1-12 nm 

depth), including, chemical composition, oxidation state and differences in the molecular 

environment and lattice state(s) such as alloying between different elements. Measurement of 

binding energies is in many ways akin to the chemical shifts in NMR spectroscopy, and 

reference to various databases (NIST) can be used to identify the chemical environment the   

atom is in from which the ejected electron originated. 

 

During XPS analysis, the X-ray-induced reduction (photoreduction) of transition metal 

elements (including Pd, Au and Cu) present in oxides is possible. Feibelman and Knotek
12, 13

   

and Cazaul
14

 have suggested that the XPS photoreduction of metals in oxides appears to            

be induced by a mechanism referred to as ‘Coulombic explosion’ due to interatomic (metal–

oxygen) Auger decays. Specifically, under a soft X-ray beam, the ejection of photoelectrons 

from the metal core levels initiates interatomic Auger cascades, which leads to the formation     

of 2p holes in the oxygen valence orbitals. If such a process leads to the removal of three 

electrons from the oxygen atom, a temporary formal positive charge is imparted, leading to      

the formation of O
+
 ions and resulting in the desorption of oxygen from the surface due to 

electrostatic repulsion with the nearest neighbour cations
12-14

. If hydroxide groups are present, 

these may also undergo thermal dehydration from the X-ray exposure, followed by reduction    

of the oxide
15-16

. 

 

X-ray photoelectron spectra were recorded on a Kratos Axis Ultra DLD spectrometer 

employing a monochromatic AlK X-ray source (75-150 W) and analyser pass energies of 160 

eV (for survey scans) or 40 eV (for detailed scans). Samples were mounted using double-sided 

adhesive tape and binding energies referenced to the C(1s) binding energy of adventitious carbon 

contamination which was taken to be 284.7 eV. 

 

Important Note: Analysis of Pd(3d) spectra is complicated by the severe overlap between the 

Pd(3d) doublet and the Au(4d5/2) component. However, when the experimental surface       

Pd:Au molar ratios are calculated based on the Pd(3d5/2)+ Pd(3d3/2) + Au(4d5/2) combined 

integrated intensities and the Au(4f) intensity together with known relative sensitivity factors,   

we are able to correct the molar ratio by simply subtracting 0.5 from the raw experimental 

values. It is a simple matter to correct for this overlap problem. 
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2.4.11 Inelastic Neutron Scattering 

 

Inelastic neutron scattering (INS) is a form of vibrational spectroscopy that is analogous 

to Raman spectroscopy, the key difference being that the entity scattered is a neutron rather than 

a photon. The interaction is between the atomic nucleus and the neutron, with the scattered 

intensity being proportional to the incoherent scattering cross-section (which is element and 

isotope specific) and the amplitude of bond vibration. For 
1
H, this cross-section is ~20 times 

larger than for any other element (or isotope) and since hydrogen is the lightest element, the 

amplitude of bond vibration is also large
17,18

. While there are no selection rules (since these 

derive from the photon-electron interaction), these two factors combined create the result that 

vibrational and bending modes involving hydrogen motion are preferentially observed.  

 

 
Figure 2.14 Description of MAPS, the instrument used to acquire INS data for this thesis, taking 

advantage of the pulsed spallation neutron source at Target Station 1, ISIS, Oxford
19

. 
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The INS spectra were recorded with the MAPS spectrometer
20

 at ISIS (Chilton, UK),      

the operating principle of the instrument is described in detail elsewhere. The samples, ~9 g, 

were loaded into thin-walled, indium sealed aluminium cans. Spectra were measured for ~8 h 

each at 5 K with 4840 cm
-1

 (600 meV) and 2017 cm
-1

 (250 meV) incident energy (Ei) and 

selected using Nimonic and Fermi choppers (Figure 2.14). For the MAPS instrumental, the 

resolution is optimal for energy transfers approaching the incident energy and degrades with 

smaller energy transfer. The two energies used allow the O–H stretch region (600 meV) and     

the water bend and librational region and hydroxyl bend regions (250 meV) to be measured    

with reasonable resolution. 
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Chapter 3 

3.1 Introduction 

 

Bimetallic Au-Pd nanoparticles supported on TiO2 are active for a range of reactions 

including benzyl alcohol oxidation
1, 2

, 1,2 propane-diol oxidation
3
 and the direct synthesis of 

hydrogen peroxide
4
. Catalysts active for direct H2O2 synthesis are typically prepared by     

simple techniques, i.e. wet impregnation, generating a bimodal distribution of Au and Pd 

nanoparticles in which Au-Pd composition is strongly influenced by calcination and reducing 

conditions. Transmission electron microscopy of Au-Pd/TiO2 after calcination at 400
 o

C in air 

detected small Au-Pd alloy particles (1-8 nm) comprising mainly Pd with a detectable Au 

component, and larger particles (20-200 nm) which displayed an AucorePdshell morphology 

alongside occasional Au-only particles
5
. The core-shell structure to date has been recognised     

for Al2O3 and TiO2-supported catalysts, while the more active Au-Pd/C catalyst comprises            

of homogenous Au-Pd alloys only, implying that core-shell formation is not a limiting factor         

in achieving optimum activity in comparison to particle size effects
6
. 

 

      
Figure 3.1 Particle size distributions for Au-Pd/C and Au-Pd/TiO2 catalysts prepared by standard         

wet impregnation, air dried (110
 o
C, 16 h) and calcined in static air (400

 o
C, 3 h)

6
. 
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Figure 3.1 shows both carbon and TiO2-supported catalysts comprised mainly of small    

Au-Pd alloyed particles and a fractional number of larger Au-only particles, present to       

greater extent in Au-Pd/C. Previous studies concluded that small Au-Pd alloy nanoparticles 

constituted the synergistic effect observed in the hydrogen peroxide production relative to 

monometallic Au and Pd catalysts
4, 7, 8

. The composition of alloyed particles is observed to        

be systematically dependant on particle size and in some instances 2 molar% Au content is 

sufficient to induce synergy
9
. 

 

The wet impregnation technique is different to incipient wetness/dry impregnation, 

wherein a metal solution is added to a catalyst support containing exactly the same pore volume 

as the volume of solution added, the maximum loading being limited by solubility of the      

metal precursor. Exceeding the support pore volume in the case of wet impregnation causes the 

mode of solution transport to change from capillary to diffusive, influencing mass transfer 

conditions within pores, concurrent with stirring and heating to slowly evolve excess solution 

forming a thick, viscous gel
10

. The choice of support is important given P25 Titania has   

relatively low porosity
11

 compared to activated carbon supports, which can be highly porous 

depending on the activation process.  

 

Ishihara et al. studied a 1.7 wt% Au-Pd/TiO2 (rutile) catalyst for direct H2O2 synthesis 

and suggested the crystal structure of P25 TiO2 could influence morphology and surface 

composition of bimetallic nanoparticles due to anatase and rutile lattice mismatch/ surface area
12

. 

Rutile TiO2 was proposed to minimise these effects and expose Au-Pd [102] and [010] surface 

planes considered responsible for 99% H2 selectivity using 0.5 wt% Au-1.2 wt% Pd/TiO2 

(average particle size 18 nm) in ambient conditions and using trace acid and halide promoters. 
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Although stable and highly active catalysts can be achieved via wet impregnation, 

improved control of particle size and composition is desired, which has been demonstrated to     

a greater extent for catalysts synthesized by deposition precipitation (DP)
13

 and sol-

immobilization methods (SIm)
14

. For realistic industrial scale up purposes and since only           

wet impregnation to date having produced a catalyst that does not hydrogenate H2O2, much 

interest in optimizing parameters within the impregnation method exists, with an emphasis on 

reducing the ratio of spectator metal to active metal content. Flytzani-Stephanopoulos has 

demonstrated by means of cyanide leaching that a large proportion of Au can be removed from 

Au/CeO2 catalysts without significantly affecting the result activity for the water gas shift 

reaction, characterisation concluded only Au
3+

 species were preserved on ceria defects
15-20

 

 

It is important to continuously identify improvements in the preparation method leading 

to the synthesis of stable catalysts with high activity
18

 and therefore in this chapter the precise 

procedure by which Au and Pd metals are co-impregnated onto P25 TiO2, specifically the 

amount of water and/or the concentration of precursors used in the preparation, along with 

drying parameters and their influence on activity for the direct synthesis of hydrogen      

peroxide, are investigated. Characterisation of catalysts and comparison with an activated  

carbon support (Darco G60) is undertaken in an effort to understand how catalyst structure     

and stability are affected. Several terminologies are used throughout chapter 3 and therefore to 

avoid confusion: addition of water, water treatment, dilution of Au-Pd precursors, and catalyst 

slurry formation all represent the volume of H2O present in the catalyst prior to drying. 
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3.2 Effect of wet impregnation parameters on the H2O2 synthesis and hydrogenation 

activity of bimetallic TiO2-supported catalysts 

 

In previous studies at Cardiff University involving 2.5 wt% Au-2.5 wt% Pd/TiO2, wet 

impregnation was used to add a concentrated solution of HAuCl4.3H2O and PdCl2 precursors    

to TiO2 while stirring and heating to form a thick, viscous gel
4
. This material was air dried    

(110
 o

C, 16 h) and calcined in static air (400
 o

C, 3 h) and formed a stable catalyst that when 

tested under standard reaction conditions gave a H2O2 synthesis activity of 64 molH2O2kgcat
-1

h
-1

 

after 30 minutes.
 
The effect of Au and Pd precursor concentrations and the H2O content of 

catalyst slurries prior to drying are investigated for 0.5 and 1.0 g scale preparations respectively. 

 

H2O /ml 

Productivity / molH2O2kgcat
-1

h
-1

 

0.5 g 1.0 g 

  2 
a
 64 64 

2 95 120 

5 94 120 

7 94 119 

10 93 120 

15 92 121 

20 92 120 

25 91 120 

Table 3.1 The effect of water addition during the impregnation step on the H2O2 synthesis activities       

of 2.5 wt% Au-2.5 wt% Pd/TiO2 catalysts prepared on 0.5 and 1.0 g scale. Samples were dried            

(110
 o

C, 16 h) and calcined in static air (400
 o

C, 3 h). 
a
 Catalyst formed into a gel by stirring at 80 

o
C       

to remove 75% of the 2 ml water present in the impregnation step. 

 

Results obtained for 0.5 and 1.0 g preparations are shown in Table 3.1 and indicate both 

catalyst mass and Au-Pd concentration affect the H2O2 productivity measured at 30 minute 

reaction time. The activity of Au-Pd/TiO2 catalysts prepared on 1.0 g scale showed a 25-30% 

enhancement in hydrogen peroxide synthesis activity compared to catalysts prepared on 0.5 g 
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scale. The Au and Pd concentrations are listed in Table 3.2, taking into account the volume of 

chloroauric acid solution (1.025 ml for 0.5 g preparation) prior to water addition, forming a 

partially hydrolysed [Au(OH)x(Cl)4-x]
-
 precursor (where x > 1) in solution

21
. Further to this,        

the oven drying time at 110 
o
C drying period was extended from 16 to 48 h in order to assess    

the contribution of mild heat treatment in the preparation of supported Au-Pd nanoparticles. 

Results of this variation are presented alongside Au and Pd concentration in Table 3.2. 

 

Added 

H2O /ml 
a 

[Au] 

/mol dm
-3

 

[Pd] 

/mol dm
-3

 

Productivity / 

molH2O2kgcat
-1

h
-1 

  2 
a 

0.0619 0.115 64 

2 0.0211 0.0391 89 

5 0.0105 0.0195 87 

7 0.0079 0.0146 85 

10 0.0058 0.0106 78 

15 0.0042 0.0073 76 

25 0.0024 0.0045 73 

28.5 0.0021 0.0040 65 

30 0.0020 0.0038 58 

Table 3.2 Summary of the Au and Pd concentrations and H2O2 synthesis activities of 2.5 wt% Au-        

2.5 wt% Pd/TiO2 catalysts (0.5 g scale). Samples were dried (110
 o

C, 48 h) and calcined in static air    

(400
 o

C, 3 h). 
a
 Catalyst formed into a gel by stirring at 80

 o
C to remove 75% of the 2 ml water present    

in the impregnation step. 

 

The calcination step is required to produce a stable, reusable material and in the case      

of TiO2-supported catalysts, the calcination promotes the oxidatively driven formation of 

intermediate sized AucorePdshell nanoparticles
4, 6

. However, the contribution of preceding           

drying step(s) on the final activity of the catalysts has not been considered until now.  
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Extending drying time from 16 to 48 h decreased the H2O2 productivity of Au-Pd 

catalysts as a function of increasing water content, which after addition of 28.5 ml H2O gave         

a synthesis activity comparable to when forming a thick, viscous gel (ca. 64 molH2O2kgcat
-1

h
-1

).    

It is likely that a reduction in H2O2 productivity with Au and Pd concentration after 48 h            

is because 16 h drying (Table 3.1) is inadequate for very dilute preparations. This is because 

excess water is slowly evaporated over several hours in a drying oven, and therefore constant     

H2O2 synthesis activity of either ~95 or 120 molH2O2kgcat
-1

h
-1

, depending on preparation scale      

is due to different extents of drying. STEM imaging of non-acid and acid treated Au-Pd/C 

catalysts in chapter 4 confirmed 16 h drying (no added H2O) is sufficient to achieve a high 

dispersion of small and sub-nm sized metal particles, hence the purpose of extended drying is    

to compensate for initial evaporation of water and compare actual concentration effect(s). 

 

Added 

H2O /ml
 

Productivity / 

molH2O2kgcat
-1

h
-1 

Hydrogenation / 

molH2O2kgcat
-1

h
-1 

Decomposition / 

molH2O2kgcat
-1

h
-1 

  2 
a 

64 188 103 

2 89 289 172 

5 87 292  

7 85 284  

10 78 276 157 

15 76 269  

25 73 250  

28.5 65 187 104 

30 58 175  

Table 3.3 The effect of water addition during the impregnation step on H2O2 synthesis and 

hydrogenation/decomposition activities of 2.5 wt% Au-2.5 wt% Pd/TiO2 catalysts (0.5 g scale).
      

Samples were dried (110
 o

C, 48 h) and calcined in static air (400
 o

C, 3 h). 
a
 Catalyst formed into a gel     

by stirring at 80
 o
C to remove 75% of the 2 ml water present in the impregnation step. 
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The effect of the dilution of Au and Pd compounds during the impregnation step was 

investigated for the consecutive H2O2 hydrogenation and decomposition pathways (Table 3.3).      

In these experiments an initial solution of 4 wt% H2O2 was reacted in the presence of H2 but      

in the absence of O2 so that the hydrogenation activity of the catalyst could be determined     

(and vice-versa for decomposition activity with four results presented, representing part of        

the hydrogenation measurement which accounts for total H2O2 consumption). Both reaction 

pathways follow a trend similar to that observed for H2O2 synthesis, as the amount of water 

added during the impregnation step is increased, the H2O2 hydrogenation and decomposition 

activities decrease relative to each other. This confirms that the main effect by which the rate    

of H2O2 synthesis is enhanced by using more concentrated Au and Pd salts during the 

impregnation step originates from an enhanced hydrogenation activity of the catalyst towards 

both H2O2 synthesis and its subsequent hydrogenation. 

 

Added 

H2O /ml
 

[Au] 

/mol dm
-3 

[Pd] 

/mol dm
-3 

Productivity / 

molH2O2kgcat
-1

h
-1 

2 0.0619 0.115 117 

5 0.0180 0.0333 117 

7 0.0140 0.0260 115 

10 0.0106 0.0195 115 

15 0.0075 0.0138 112 

Table 3.4 The effect of water addition during the impregnation step on the H2O2 synthesis activity of    

2.5 wt% Au-2.5 wt% Pd/TiO2 catalysts (1.0 g scale). Samples were dried (110
 o

C, 48 h) and calcined in 

static air (400
 o
C, 3 h). 

 

Increasing the drying time from 16 to 48 h was also investigated for Au-Pd catalysts 

prepared on 1.0 g scale and showed a minimal difference in the H2O2 productivity on adding 

excess water (Table 3.4), supporting the finding that changes in Au and Pd concentration are 

indeed responsible for the eventual activity. It is apparent that by optimising the preparation 

conditions that the activity of TiO2-supported catalysts can be enhanced approximately 2 fold, 

with the rate of H2O2 synthesis increasing from 64 to 110-120 molH2O2kgcat
-1

h
-1

.  
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Changing the TiO2 support from Degussa P25 to Aldrich-sourced material imparted      

no effect, catalysts could be prepared with activities of 110-120 molH2O2kgcat
-1

h
-1

 with both   

supports using the method described above. Extending the drying time from 16 to 70 h caused    

a further decrease in activity to ca. 80-90 mol H2O2 kgcat
-1

h
-1

, indicating the importance of       

the duration of the drying step on eventual catalyst performance. In addition, re-wetting of the 

above materials in water followed by re-drying (110
 o

C, 48 h) prior to calcination does not 

impart any significant effect on activity and therefore it is concluded that all heat treatment   

steps used in the preparation of supported Au-Pd nanoparticles are critical.  

 

3.3 Effect of wet impregnation parameters on the H2O2 synthesis and hydrogenation 

activity of monometallic TiO2-supported catalysts 

 

Modifying the preparation variable for monometallic 5 wt% Pd/TiO2 catalysts also 

resulted in comparable high activity (100-105 molH2O2kgcat
-1

h
-1

) when dissolving PdCl2 in           

2 ml H2O followed by stirring with TiO2 without evaporating the slurry to form a viscous          

gel prior to drying (Table 3.5), indicating that Au does not induce a large synergistic effect. 

 

Catalyst Scale  

/ g 

Added 

H2O
 
/ml 

Productivity
 
/ 

molH2O2kgcat
-1

h
-1 

Hydrogenation /
 

molH2O2kgcat
-1

h
-1

 

1.0    2 
a
 31 288 

0.5 2 105  

1.0 2              100 329 

1.0 5 79 239 

1.0 10 68 234 

1.0 28.5 23 178 

Table 3.5 The effect of water addition during the impregnation step on the H2O2 synthesis activity           

of 5 wt% Pd/TiO2 catalysts. Samples were dried (110
 o

C, 16 h) and calcined in static air (400
 o

C, 3 h).              
a
 Catalyst formed into a gel by stirring at 80

 o
C to remove 75% of the 2 ml water present in the 

impregnation step. 
b
 H2O2 productivity determined on 2

nd
 use. 
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When preparing 5 wt% Pd/TiO2 a predetermined amount of HCl was incorporated into 

the 2 ml volume to dissolve PdCl2 (itself sparingly soluble in water) to form PdCl4
2-

 ions           

in solution. As stated Au does not induce a marked synergistic effect on the synthesis activity 

(increasing from 105 to 120 molH2O2kgcat
-1

h
-1

) of the Pd catalyst when using concentrated 

compounds during the impregnation step and without evaporating the water to form a viscous gel 

prior to drying. This is in stark contrast to the standard method used in previous studies of      

Au-Pd/TiO2 catalysts that were prepared by wet impregnation ensuring the removal of 75%       

of the initial water present to form a gel, resulting in a marked synergistic effect on activity 

(increasing from 31 to 64 molH2O2kgcat
-1

h
-1

) when Au is added to Pd. The role of Au in  

enhancing H2O2 formation is related to its ability to limit the subsequent hydrogenation and 

decomposition of H2O2 formed, reflected in the higher activities obtained for all reaction 

pathways when using more concentrated Au-Pd compounds (Table 3.3). 

 

3.4 Effect of wet impregnation parameters on the H2O2 synthesis and hydrogenation 

activity of bimetallic carbon-supported catalysts 

 

The effect of the dilution of Au and Pd precursors and drying time on the activity of     

2.5 wt% Au-2.5 wt% Pd/C (Darco G60) was investigated and interestingly no difference in 

activity was observed, indicating significant differences based on support choice, in particular 

variation in texture, isoelectric point and the existence of strong metal support interactions
22

. 

 

H2O /ml
 

Drying  

time / h 

[Au] 

/mol dm
-3 

[Pd] 

/mol dm
-3 

Productivity 

molH2O2kgcat
-1

h
-1 

2 16 0.0619 0.115 120 

2 48 0.0619 0.115 120 

28.5 48 0.0041 0.0077 124 

Table 3.6 The effect of water addition during the impregnation step of catalyst preparation on the        

H2O2 synthesis activity of 2.5 wt% Au-2.5 wt% Pd/C catalysts (1.0 g preparation). Samples were dried 

(110
 o
C, X h) and calcined in static air (400

 o
C, 3 h). 
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On adding the TiO2 support to a solution of Au-Pd compounds a cream coloured slurry  

is formed compared to the carbon support where rapid separation from the added solution is 

observed (Figure 3.2) when stirring stops. Adsorption of Au and Pd compounds onto carbon 

occurred immediately and it is proposed that this effect limits the degree with which 

concentration, volume and drying parameters can influence the outcome of the preparative 

procedure with the carbon support. This is not the case for TiO2-supported catalysts where little 

to no adsorption of Au and Pd is observed (which will be discussed in section 3.5.1). 

 

    
Figure 3.2 Images to show the Au-Pd solution at several points of the impregnation procedure with    

TiO2 (a, b, c) and carbon (d) supports. (a) Au-Pd solution (H2O = 2 ml) before and after TiO2 addition.  

Catalyst slurry reduced to a viscous gel under heating. (b) Au-Pd solution (H2O = 28.5 ml) before and 

after TiO2 adsorption. (c) Au-Pd and TiO2 slurry stirring on the hotplate / after 30 seconds resting.         

(d) Au-Pd and carbon slurry stirring on the hotplate / after 30 seconds resting. The image shows a near-

instant uptake of metal onto carbon exclusively. 
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3.5 Catalyst Characterisation 

 

The influence of water in the impregnation step and drying on surface composition, 

alloying, oxidation state and particle size distribution of Au-Pd/TiO2 and C catalysts has been 

probed using X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy 

(TEM), which will be discussed in sections 3.5.2 and 3.5.3 respectively. With reference to 

catalyst images showing, respectively, gel and slurry consistencies in Figure 3.2, UV-Visible 

spectroscopy was used to assess the uptake of Au and Pd compounds on TiO2 and carbon as       

a function of concentration and stirring time. 

 

3.5.1 Measurement of the uptake of Au and Pd compounds during impregnation using 

UV-Visible spectroscopy  

 

With the aid of a distilled water reference the rate of metal uptake onto carbon was   

found to be unaffected by Au-Pd concentration (Figure 3.3). UV-Vis spectra recorded at 

intervals, 2, 5 and 10 minutes after stirring carbon with the Au-Pd precursor are identical to     

the water reference, indicating that Au and Pd have been rapidly adsorbed onto the support and 

supported visually by the rapid separation of water and carbon after stirring (Figure 3.3).           

In contrast spectra recorded for Au-Pd/TiO2 slurries showed a characteristic Au plasmon
23

 

absorbance band in the UV region centred at 218 nm corresponding to a partially hydrolysed 

[Au(OH)x(Cl)4-x]
-
 gold precursor (where x > 1) in solution and representing a blue shift from a 

value of 313 nm recorded for HAuCl4 stabilised in concentrated HCl. 

 

The detection of an absorbance band was anticipated given a brown-gold coloured 

solution was collected through the glass filter paper beforehand, inferring uptake of Au/Pd     

onto TiO2 proceeded significantly slower than observed for carbon. A UV-Vis spectrum was 

recorded for the starting Au-Pd precursor which was identical to spectra recorded at intervals 

after TiO2 addition, showing the 218 nm absorption band remained unchanged. Even after         

25 minutes stirring, Au and Pd precursors were detected in solution (28.5 ml H2O) and it is 

probable that removal of water to generate a gel is required to facilitate a capillary uptake of 

metal. In addition the absorbance profiles for Au-Pd/TiO2 catalysts appeared unaffected by      

Au-Pd concentration. 
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Figure 3.3 UV-Vis spectra recorded for 2.5 wt% Au-2.5 wt% Pd/TiO2 and 2.5 wt% Au-2.5 wt% Pd/C 

catalyst solutions. Sample extractions (0.5 ml) were undertaken at intervals: (a) 2 min, (b) 5 min,           

(c) 10 min, (d) 15min, and (e) 25 min after stirring the support with the Au-Pd precursor and referenced 

against the starting Au-Pd solution and distilled water (blank) respectively. 

 

 

There is a large difference in surface area between C (Aldrich G60 = ~800 m
2
/g) and 

TiO2 (Degussa P25 = 48 m
2
/g) materials and therefore an additional experiment was performed 

to establish the influence of surface area on Au-Pd uptake. This involved increasing the mass of 

TiO2 used from 0.475 to 7.92 g to give an exposed surface area equivalent to carbon, adding 

additional water to allow effective stirring. The subsequent UV-Vis spectrum (Figure 3.4) 

showed only minor uptake of Au-Pd onto TiO2 despite increasing the mass of support, 

confirming that the rapid uptake of metal onto carbon is not merely a surface area effect and       

it is implied that the isoelectric point
21,22

 of each support (IEP C = pH 3.2, IEP TiO2 = 6.4)   

could be critical in understanding this observed behaviour.  

Au-Pd/TiO2 - 2 ml H2O 

 

 Au-Pd/C - 2 ml H2O 

 

       28.5ml  H2O 

 

          28.5ml  H2O 
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Figure 3.4 Plot of absorbance against wavelength for Au-Pd/TiO2 catalyst solution (H2O added =        

100 ml). On mixing the Au-Pd precursors with carbon, sample extractions (0.5 ml) were made at 

intervals: (a) 2 min, (b) 5 min, (c) 10 min and referenced against the starting Au-Pd solution and    

distilled water (blank). The mass of TiO2 was increased from 0.475 to 7.92 g to give an exposed surface 

area approximately equivalent to activated carbon.  

 

 

3.5.2 X-ray Photoelectron Spectroscopy 

 

 Changes in surface composition as a function of water content in the preparation         

step were investigated by X-ray photoelectron spectroscopy (XPS). Quantified XPS data is 

summarised in Table 3.6 for a series of Au-Pd/TiO2 catalysts treated during the impregnation 

procedure with additional volumes of water in the range 0 - 28.5 ml (and comparing 16 h and 48 

h drying times). The addition of water caused a significant decrease in surface chloride 

concentration with approximately 80% reduction after addition of 28.5 ml H2O and 48 h drying, 

and a simultaneous decrease in Pd surface concentration. The latter effect could possibly be 

related to leaching of Pd from the catalyst surface, while the alternative explanation of the 

sintering of Pd nanoparticles is not supported by TEM micrographs shown in Figure 3.6.  

 

 

 

 

 

 

 



Chapter 3 

Preparation of titania supported Au-Pd catalysts 

 

93 

Inspection of Pd(3d) spectra for all samples analysed showed the presence of both       

Pd
2+

 and Pd
0
 species, the Pd

2+
 signal being of higher intensity, and curve fitting analysis of these 

spectra enabled quantification of the Pd
2+

/Pd
0
 ratio, which is plotted as a function of the amount 

of water added (Figure 3.5). Treatment with additional water also resulted in a relative increase 

in the metallic Pd content, which could reflect the preferential leaching of Pd
2+

 species or that 

smaller Pd particles comprise a higher Pd
0
 concentration. 

 

Figure 3.5 Pd(3d) XP spectra for the 2.5 wt% Au-2.5 wt% Pd/TiO2 catalysts after (a) 0 ml, (b) 7ml,      

(c) 15 ml, (d) 28.5 ml addition of water during the impregnation step, showing the presence of both 

oxidised and metallic Pd species (left), and variation of the Pd
2+

/Pd
o
 ratio for Au-Pd/TiO2 catalysts with 

the volume of water added during the impregnation step (right). 
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3.5.3 Transmission Electron Microscopy 

 

Bright field TEM micrographs of water treated Au-Pd/TiO2 samples are presented in 

Figure 3.6, highlighting a bimodal distribution of metal nanoparticles such as seen in image (a). 

X-ray energy dispersive spectroscopy (XEDS) point analysis showed that the larger particles 

(20-80 nm) consisted of Au-only in comparison to the smaller particles in the 2-10 nm size range 

were found to be Pd. The detection limit of the XEDS probe used is very high (~1 atom%)            

and shows no conclusive evidence of Au-Pd alloying in either small or large particle size 

distributions. Representative higher magnification views of the smaller 2-10 nm particles are 

included for the 2 ml (b), 10 ml (c) and 28.5 ml (d) H2O treated samples respectively, where     

the counting of hundreds of individual Pd particles showed a definite shift to a smaller median 

particle size on increasing water content (Figure 3.7), whereas the population of larger Au 

particles showed negligible differences in their size distribution. 

 

   

   

Figure 3.6 Bright field TEM images of 2.5 wt% Au-2.5 wt% Pd/TiO2 catalysts treated with (a, b) 2 ml, 

(c) 10 ml and (d) 28.5 ml of water, dried (110
 o
C, 48 h) and calcined (400

 o
C, 3 h). 

 

 

(a)  

(c)  (d)  

(b)  
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Figure 3.7 Comparison of particle size distributions for the smaller Pd-particles detected in               

water treated 2.5 wt% Au-2.5 wt% Pd/TiO2, dried (110
 o

C, 48 h) and calcined (400
 o

C, 3 h).                             

(a) Solid Black - 2 ml H2O added (75% of initial H2O removed to form a gel), (b) Single Line - 2 ml H2O,                         

(c) Solid White - 10 ml H2O, (d) Cross Hatch - 28.5 ml H2O. 

 

 

The solid black distribution shown in the above histogram is representative of prior 

characterisation work for 2.5 wt% Au-2.5 wt% Pd/TiO2 prepared by wet impregnation and 

removing 75% of the initial H2O to form a gel.
 4,6

 Here a bi-modal size distribution        

consisting of small Pd-rich particles (1-8 nm) and large Au-rich particles (20-200 nm) was 

reported, showing Au and Pd alloying to a varying systematic extent in all particles. XEDS 

analysis provided evidence of AucorePdshell formation in larger nanoparticles also identified in 

Au-Pd/Al2O3 counterparts
7
. The distribution of smaller particles in the standard ‘gel’ catalyst 

(solid black) compared to the water treated Au-Pd/TiO2 samples, contained detectable and 

significantly higher Au content (~2 atom%), resulting in synergy and explaining the lower       

rate of H2O2 hydrogenation over this catalyst. 
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Representative electron micrographs of 2.5 wt% Au-2.5 wt% Pd/C catalysts exhibited      

a bimodal particle size distribution apparently unaffected by water treatment (Figure 3.8). 

Although the largest particles are not shown entirely below, they ranged from 20-100 nm in size 

and contained Au-only. The presence of Pd in these particles if at all lies below the XEDS 

detection limit, however for smaller particles (3-10 nm) only the characteristic Pd XEDS signal 

was detected. There was no significant difference in the particle size distribution of either the 

small or large particles found in catalysts treated with 2 and 28.5 ml H2O, in agreement with the 

preserved catalytic activity (120-124 molH2O2kgcat
-1

h
-1

) for these two samples.  

 

   

Figure 3.8 Representative bright field TEM images of 2.5 wt% Au-2.5 wt% Pd/C catalysts treated with 

(a) 2 ml, and (b) 28.5 ml of water, dried (110
 o
C, 48 h) and calcined (400

 o
C, 3h). 

 

 

3.6 Evaluation of catalyst reusability 

 

 The reusability of water treated Au-Pd/TiO2 catalysts for hydrogen peroxide synthesis 

was investigated and compared against carbon-supported counterparts. Au-Pd/C catalysts were 

stable and could be reused irrespective of the volume of H2O added in the impregnation step,   

however the improved, high activity of TiO2-supported catalysts could not be maintained          

on subsequent use despite calcination at 400
 o

C (Table 3.8). A significant decrease in H2O2 

productivity by approximately 3 fold was observed after adding 2 ml H2O (and 16 h drying) 

although stability did improve on adding 28.5 ml H2O and extended drying, leading to a steady 

decline in activity on second and third use. In addition the productivity of 5 wt% Pd/TiO2 

decreased from 100 to 67 molH2O2kgcat
-1

h
-1

 on second use, indicating that stability is not linked  

to alloying of Au and Pd. 

 

(a)  (b)  
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Added 

H2O /ml
 

Productivity / molH2O2kgcat
-1

h
-1

 

1
st
 use 2

nd
 use 3

rd
 use 

  2 
a
 64 62 62 

                 2 95 30 21 

  28.5 
b
 64 54 44 

Table 3.8 H2O2 reusability experiments for 2.5 wt% Au-2.5 wt% Pd/TiO2 catalysts prepared using 

different amounts of water. 
a
 Catalyst formed into a gel by stirring at 80

 o
C to remove 75% of the              

2 ml water present in impregnation step. Samples were dried (110
 o

C, 16 h except 
b
 48 h) and calcined     

in static air (400
 o
C, 3 h).  

 

Stable activity could be achieved for TiO2-supported catalysts providing no additional 

water is added in the impregnation step, slowly evaporating 75% of the water present in           

the chloroauric acid (62 mM, 2 ml), at 80
 o

C forming a gel prior to drying. This is considered    

as related to the fundamentally different manner in which Au and Pd compounds are adsorbed 

onto the support during impregnation. For the carbon support this process is facile whereas for 

TiO2 lower amounts are adsorbed and variations in the preparation parameters can have a 

marked effect on the stability and activity of the catalyst. Similarly on an industrial scale, the 

oxidative efficacy of carbon is exploited in the extraction and reduction of Au
3+

, which may 

explain why homogeneous as oppose to core shell Au-Pd alloys are favoured on this support. 

 

 

3.7 Discussion 

 

Bimetallic Au-Pd/TiO2 catalysts prepared by wet impregnation in which the catalyst       

is reduced to a viscous gel prior to drying, show a bimodal distribution of Au and Pd 

nanoparticles (small particles 1-8 nm and larger particles 20-200 nm) with the larger particles 

having a core-shell morphology comprising a Au-rich core and Pd-rich surface. The smaller 

particles were all Au-Pd alloys, with a very high Pd fraction, but still detectable Au content. The 

presence of these small Au-Pd alloy nanoparticles on the catalytic surface gives rise to the 

observed synergistic effect and consequently reduction of H2O2 hydrogenation activity. 
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In comparison Au-Pd/TiO2 catalysts (where 2-28.5 ml of H2O is present in the catalyst 

prior to drying) show a bimodal distribution of Au and Pd nanoparticles with larger particles   

(20-80 nm) containing Au and small particles (1-10 nm) containing Pd, no detectable Au-Pd 

alloy formation was found in either the smaller or larger particles. The larger Au-only particles 

are ineffective in limiting H2O2 hydrogenation and as a result a reduced synergistic effect of     

Au is observed, and therefore the higher H2O2 synthesis and hydrogenation activities of Pd-only 

and Au-Pd catalysts prepared using this modified methodology are related to the enhanced       

Pd dispersion. As a consequence the remaining impregnation catalysts discussed in chapter 3 and 

all other result chapters have been prepared by standard wet impregnation. 

 

 

Catalyst 

Pd 

Precursor 

Productivity / 

molH2O2kgcat
-1

h
-1

 

Hydrogenation / 

molH2O2kgcat
-1

h
-1

 

5% Pd / TiO2 

PdCl2 31 288 

Pd(NO3)2 24 101 

2.5% Au-2.5% Pd 

/ TiO2 

PdCl2 64 235 

Pd(NO3)2 64 162 

Table 3.9 Comparison of chloride and nitrate precursors used to prepare 5 wt% Pd and 2.5 wt% Au-     

2.5 wt% Pd/TiO2 catalysts for the direct synthesis of hydrogen peroxide.  

 

Interestingly the XPS analysis revealed a decrease in the concentration of surface 

chloride with water treatment and extended drying. The synthesis of a halide-free catalyst 

represents a major industrial target
24

, however the resulting material must be stable and fully 

reusable. Table 3.9 shows that changing the Pd precursor from chloride to nitrate-based can 

produce comparable H2O2 formation rates and reduce hydrogenation activity, suggesting that 

minimising the chloride content could affect particle sintering and composition during the 

impregnation and calcination steps. For this thesis we are restricted to using the HAuCl4.3H2O 

precursor and therefore cannot synthesise a halide-free catalyst from reagents alone, therefore a 

brief overview of combined and consecutive preparation techniques aimed at reducing chloride 

content and improving activity are presented in section 3.8. 
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3.8 The role of chloride in bimetallic Au-Pd/TiO2 catalysts 

 

The interaction of chloride anions with Au nanoparticles is generally understood as 

having a negative effect on the activity of catalytic reactions including CO oxidation and the 

epoxidation of propylene to propylene oxide.
25-29

 Numerous studies have commented on a 

correlation between the decrease in catalytic activity and the presence of chloride ions in 

Au/TiO2 catalysts for CO oxidation, a reaction where catalysts are typically prepared using      

co-precipitation and deposition precipitation techniques that largely remove chloride and 

preventing sintering and poisoning. For this reaction Bowker et al. developed a method 

harnessing the benefits of incipient wetness (IW) impregnation and deposition precipitation 

(DP)
24

. Here the IW technique is used to fill the TiO2 pores with gold chloride, followed by        

in-situ reduction with sodium carbonate to precipitate Au(OH)3, resulting in enhanced activity 

with effective removal of Cl
-
 ions through washing.  

 

Strukul et al. have reported the preparation of Au-Pd/ZrO2 using consecutive DP and IW 

techniques to deposit Au and Pd respectively resulted in moderate rates of H2O2 synthesis at      

10 bar (59% H2 selectivity) and without halide additives
30

. The same group characterised a stable 

Au-PdO phase with metallic Pd residing predominantly on edge sites and proposed the oxide 

phase is responsible for O2 activation while metallic palladium sites dissociate H2. Miedziak     

compared the activity of three Au-Pd catalysts preparation methods for oxidation of benzyl 

alcohol, determining activity in the order, sol-immobilisation > deposition precipitation > 

impregnation
31, 32

. The impregnation catalyst formed a significant amount of toluene possibly 

related to residual chloride increasing the surface acidity of the catalyst, while deposition 

precipitation was found to improve Au dispersion and Au-Pd alloying. 
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For this investigation, Pd{Au} and Au{Pd}TiO2 catalysts were prepared using a 

consecutive impregnation route, calcining in static air (400 
o
C, 3 h) after impregnating each 

metal (1
st
 metal denoted in {}). Comparison with standard, 2.5 wt% Au-2.5 wt% Pd/TiO2 

showed that impregnation of Au followed by Pd dramatically increased H2O2 synthesis and 

hydrogenation activity while the reverse addition, Au{Pd} also improved H2O2 productivity     

but importantly decreased the subsequent hydrogenation activity by approximately 3 fold    

(Table 3.10). Improved rates of  H2O2 synthesis were not observed for Pd{Au} and Au{Pd}/C 

catalysts and this was likened to disruption of the spontaneous formation of homogeneous      

Au-Pd alloys on carbon. 

 

Support Sequence 

Productivity / 

molH2O2kgcat
-1

h
-1

 

Hydrogenation / 

molH2O2kgcat
-1

h
-1

 

TiO2 

Au-Pd 64 235 

Pd{Au} 164 307 

Au{Pd} 112 86 

Carbon 

Au-Pd 110 117 

Pd{Au} 85 n.d 

Au{Pd} 73 n.d 

Table 3.10 Summary of H2O2 synthesis and hydrogenation activities for standard Au-Pd/TiO2,         

Pd{Au} and Au{Pd}/TiO2 catalysts (all 2.5 wt% Au - 2.5 wt% Pd) prepared by consecutive  

impregnation and 2 x calcination in static air (400
 o

C, 3h), with comparison to activity data obtained for 

carbon-supported catalysts.  n.d = not determined for this investigation. 
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Power XRD profiles of Au{Pd} and Pd{Au}/TiO2 catalysts exhibited a characteristic 

metallic Au [111] reflection at 38.2
 

degrees 2θ (JCPDS Code: 000-02-1095), indicating   

alloying of Au and Pd alloying and the existence of amorphous PdO/Pd in both catalysts         

due to stress-strain effects (PdO [101] reflection not observed at 34 degrees 2θ). By using        

the Scherrer equation, Au crystallite sizes of 17-18 nm and 21-22 nm were calculated for        

Pd{Au} and Au{Pd}/TiO2 respectively. 

 
 

Figure 3.9 Powder XRD profiles of 2.5 wt%-2.5 wt% Au{Pd} and Pd{Au}/TiO2 catalysts prepared by 

consecutive impregnation with calcination in static air (400
 o
C, 3 h) after each step. 
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Support Sequence 

Composition atom% Ratio 

Au Pd Cl   Pd/Au 
a
 

TiO2 

Pd{Au} 0.031 2.15 1.97 68.8 

Au{Pd} 0.086 2.22 1.73 25.3 

Carbon 

Pd{Au} 0.08 0.70 0.36 8.2 

Au{Pd} 0.23 0.80 0.38 2.9 

Table 3.11 Summary XPS derived surface concentrations for TiO2- and carbon-supported Pd{Au} and 

Au{Pd} catalysts. 
a
 Ratio corrected for the overlap of the Pd(3d) doublet and the Au(4d5/2) component. 

 

Surface concentrations listed in Table 3.11 for consecutive impregnation conclude the 

development of AucorePdshell morphologies irrespective of Au and Pd order, with very high  

Pd/Au ratio observed for Pd{Au}/TiO2. Both catalysts show Pd surface enrichment relative       

to co-impregnation of Au and Pd onto TiO2 (Pd/Au ratio ~12-16) and demonstrating the      

strong driving force involved in the development of surface Palladium-Oxygen bonds. The 

Pd/Au ratio for carbon-supported catalysts is also increased albeit to a lesser extent (Pd/Au = 1.8 

for co-impregnated Au-Pd/C)
33

 but does not improve H2O2 yield. The surface concentration      

of Pd is not markedly different for Pd{Au} and Au{Pd} supported on either TiO2 or carbon   

relative to Au exposure which is reduced, leading to higher Pd/Au ratios. The chloride content    

is approximately 5 fold lower  for carbon-supported catalysts and suggesting that use of a  

second identical calcination has aided in reducing concentration to <0.40 atom%.  
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Analysis of fresh and used Au-Pd/TiO2 and C catalysts prepared by standard 

impregnation confirms that a higher amount of chloride is present on the TiO2-supported catalyst 

initially, the majority of which is lost after a single H2O2 synthesis reaction and is therefore 

considered unrelated to the activity, maintained at 64 molH2O2kgcat
-1

h
-1

 (Figure 3.10).    

Performing the heat treatment in a static furnace could possibly explain the presence of     

residual, chemically unbound chloride originating from the decomposition of Au-Pd compounds. 

In comparison, low chloride content is detected for Au-Pd/C (and possibly different Cl-species, 

which will be discussed further in chapter 4) that is largely retained after several reactions. 

However, insufficient information is available to fully understand the role of halide content      

on activity as neither the H2O2 productivity (110 molH2O2kgcat
-1

h
-1

) nor the surface chloride 

concentration change after reaction. 

  

Figure 3.10 Cl(2p) XP spectra for 2.5 wt% Au-2.5 wt% Pd/TiO2 and C comparing chloride            

content in fresh and used catalysts for the direct synthesis of hydrogen peroxide. 

 

There is evidence of an inverse correlation between catalyst active for CO oxidation    

and H2 activation steps depending on preparation method and presence of residual chloride. 

Thomas et al. 
34

 reported that combined addition of acid and halide additives is detrimental        

to the activity of supported Au-Pd catalysts although improvements resulted from their 

individual use. Addition of acid to the reaction medium decreased sequential H2O2 

hydrogenation/decomposition activity by different extents depending on factors such as 

isoelectric point and catalyst morphology (core-shell vs. homogeneous alloy), while addition of 

bromide at low concentration improved H2O2 synthesis through the selective poisoning of 

hydrogenation and decomposition sites
35

. However, use of higher bromide concentrations also 

decreased the synthesis activity with the onset of non-selective site poisoning. 
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Studies have also addressed using excess chloride ions in Au catalyst preparation, which 

in some cases was unsuccessful due to competitive halide adsorption onto the support
36

. 

However, 1 wt% Au-Pd/TiO2 catalysts synthesised by a modified impregnation
37

 route were         

4 times more active for hydrogen peroxide synthesis compared to using standard impregnation 

(99 vs. 23 molH2O2kgcat
-1

h
-1

). The activity enhancement was related to formation of a narrow 

distribution of homogenous Au-Pd alloys (2-6 nm) initiated by excess chloride separating        

Au and Pd compounds during the impregnation step, limiting agglomeration.  

 

 

 

  

 

 

 

 

 

 

 

Table 3.12 The effect of heat treatment atmosphere (400
 o

C, 3 h) on H2O2 synthesis and hydrogenation 

activities of 2.5 wt% Au-2.5 wt% Pd/TiO2 prepared by standard impregnation. 

 

Although Au-Pd/TiO2 catalysts prepared by modified impregnation were superior for 

several oxidation reactions, a reduction step (400
 o

C, 4 h) was applied to remove chloride ions. 

This produced a high concentration of metallic Pd in the final catalyst, considered to facilitate 

sequential H2O2 hydrogenation. Comparison with results for 2.5 wt% Au-2.5 wt% Pd/TiO2 

catalysts treated in different atmospheres indicated that inert and reducing conditions improved 

both rates of H2O2 synthesis and hydrogenation over catalysts (Table 3.12).  

 

A recent investigation
33

 has highlighted that use of Oxidation-Reduction-Oxidation    

(ORO) cycles can induce high activity and deactivate the H2O2 hydrogenation pathway. 

However, both high temperature and prolonged heat treatment stages must be oxidising in    

order to achieve appropriate particle composition and catalyst stability (established for Au-

Pd/C). In this chapter, the application of mild, short duration reductive treatments has been 

investigated to assess whether a chloride free catalyst of low H2O2 hydrogenation activity can    

be prepared by existing techniques.  

 

Heat Treatment 
Productivity / 

molH2O2kgcat
-1

h
-1

 

Hydrogenation / 

molH2O2kgcat
-1

h
-1

 

Static Air 64 235 

99.9% N2 89 385 

5% H2/Ar 96 597 
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The deposition precipitation (DP) of Au onto oxide supports, an intimate metal-support 

preparation technique, has been extensively studied during the past three-decades by Haruta,   

Bond and Thompson
38-40

. Several mechanisms describing surface processes and active site(s) 

involved in the oxidation of carbon monoxide on Au/TiO2 have been proposed, one of the most 

well-known being the Bond-Thompson model, in which oxidation is described as proceeding    

at the metal-support interface, comprising both Au
0
/Au

3+
 states

41
. The deposition precipitation 

route is used to precipitate Au-hydroxide specie(s) onto a support and achieved by hydrolysis    

of HAuCl4, proceeding through a series of complex equilibria on slow addition of base,            

and typically leads to the formation of 2-4 nm Au particles (Figure 3.11). 

 

 
 

Figure 3.11 Scheme representing the hydrolysis of [AuCl4]
-
 on increasing pH value

42
. 

 

 Particle size and chloride content is highly dependent on the final pH and it has been 

demonstrated by Moreau
43

 that Au/TiO2 catalysts containing minimal to no chloride could be 

synthesized on exceeding pH 8. For preparation of bimetallic Au-Pd/TiO2 catalysts using the       

DP method a higher pH (10 or above) must be reached in order to effectively hydrolyse the 

PdCl2 precursor. Changing the pH and therefore the extent of interaction between positively 

charged TiO2 surfaces and anionic Au in solution from a rapid to controlled process on moving 

to higher pH values results in loss of non-deposited metal during filtration and washing stages.  

 

The interaction of Au species with TiO2 is not fully understood and the subject of         

on-going debate in the literature. Louis and Zanella
44-46

 proposed the reaction of [AuCl3(OH)]
-
  

at pH 8 with hydroxyl groups of the TiO2 surface at pH 8, forming a grafted hydroxy-gold 

species when  using NaOH as the base, compared to formation of an amorphous, gold(III) 

precipitate when using urea as the base. The end catalyst acitvity is highly sensitive to prearation 

parameters, including the selection of base, temperature, volume, heat treatment and exposure to 

light.  
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Here, a methodology developed by Bond and Moreau
47

 has been adapted in order to     

co-deposit Au and Pd onto P25 TiO2 and for comparison, carbon supports respectively. For   

TiO2 deposition the support is present in solution while slowly adding NaOH (0.1 M) to increase     

the pH to a value of 10 and maintained for one hour, in comparison to carbon deposition     

where the support is added post-hydrolysis for 5 minutes before filtration and washing. This      

is due to differences in the iso-electric points of each support and to prevent the uptake of        

Au and Pd chloride species and basic modification of carbon functional groups (Figure 3.12).  

 

 

Figure 3.12 Diagram of deposition precipitation techniques to prepare Au-Pd/TiO2 and C. 

 

 For DP preparations the surface chloride concentration has been determined with and 

without use of the reductive pre-treatment shown in Figure 3.12. Future microscopic analysis is 

planned as part of a continuing optimisation study and therefore for preliminary experiments, 

focus is aimed at establishing if a halide-free catalyst can be prepared. Referring to Table 3.13   

it is apparent that different Au and Pd loadings, determined by SEM-EDX and activities are 

achieved depending on the support. The Au/Pd ratio is dramatically changed for Au-Pd/TiO2 

with ~4.5 times more Pd deposited compared to Au, giving a 2.77 wt% Au + Pd loading.  
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Catalyst 
Cl 

(atom %) 

Productivity / 

molH2O2kgcat
-1

h
-1

 

Hydrogenation / 

molH2O2kgcat
-1

h
-1

 

0.50% Au - 2.27% Pd/TiO2    

Calcined 0.14 62 313 

Reduced + Calcined 0.11 58 461 

1.18% Au - 1.31% Pd/C    

Calcined 0.06 21 69 

Reduced + Calcined 0.02 19 33 

Table 3.13 The effect of co-deposition precipitation of Au and Pd metals onto TiO2 and carbon supports 

on the direct synthesis of hydrogen peroxide, comparing chloride content and reductive treatment on 

H2O2 synthesis and hydrogenation activities. 

 

Similar metal loading is achieved for Au-Pd/C (2.49 wt% Au + Pd), however Au/Pd 

weight ratio on carbon is close to unity and both the H2O2 hydrogenation activity and chloride 

are significantly reduced (Table 3.13). Inclusion of a mild pre-reduction decreased the surface 

chloride content to 0.02 atom% indicating that even before optimisation of the deposition 

procedure the halide contribution can virtually be eliminated. The H2O2 productivities over    

Au-Pd/TiO2 catalysts are approximately 3 times higher than observed for carbon-supported 

catalysts (19-21 molH2O2kgcat
-1

h
-1

) but are accompanied by high H2O2 hydrogenation rates. 

Differences in the pH equilibria and rates of HAuCl4 and PdCl2 hydrolysis limit simultaneous 

control of metal loading and Au/Pd ratio in a single step, necessitating further optimisation 

including possibility of using combined preparations, i.e. for example DP-Impregnation as 

shown in Table 3.14. 
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Catalyst 
Cl 

(atom %) 

Productivity / 

molH2O2kgcat
-1

h
-1

 

Hydrogenation / 

molH2O2kgcat
-1

h
-1

 

0.72% Pd {0.72% Au}/TiO2 0.20 46 227 

1.37% Pd {1.37% Au}/C 0.07 44 70 

Table 3.14 The effect of deposition precipitation of Au followed by impregnation of Pd onto TiO2       

and carbon supports on the direct synthesis of hydrogen peroxide, comparing chloride content and 

reductive treatment on H2O2 synthesis and hydrogenation activities. 

 

 The deposition precipitation method outlined in Figure 3.12 was used to deposit 

[Aux(OH)4-x]
-
 species onto TiO2 and carbon supports (100% Au uptake equating to a 2.5 wt% 

loading) and it can be seen in Table 3.14 that a higher proportion of Au was deposited onto      

carbon (1.37 wt% determined by SEM-EDX) at pH 10. After mild reduction of the Au-only 

catalyst, Pd(NO3) was introduced by impregnation and calcined in air (400
 o

C, 3 h) to give a 

calculated 1:1 by weight Pd[Au] loading, however, the final chloride content of both catalysts 

was not reduced to the extent achieved by co-deposition of Au-Pd (Tale 3.13). The rate of    

H2O2 production for Pd{Au}/C was improved relative to the co-deposited counterparts             

(44 compared to ~20 molH2O2kgcat
-1

h
-1

), whereas Pd{Au}/TiO2 was significantly less active    

than its co-deposited counterpart owing to lower Pd loading via deposition-impregnation. 

 

Further improvements in H2 selectivity are required so that catalysts can be used at  

higher temperatures and afford H2 selectivity exceeding the current 70-80% achieved using 

standard batch operation at 2 
o
C. Pre-treatment of carbon in dilute acid

9
 can increase the              

H2 selectivity to >98%, however this effect to date is recognised only for Au-Pd/C catalysts                     

(to be discussed in chapter 4). As a result continual interest exists in alternatives leading             

to improved selectivity and removal of residual chloride, especially for the development of       

in-situ/continuous processes utilising hydrogen peroxide as the oxidant including the selective 

epoxidation of propene to propene oxide. 
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3.9 Conclusion 

 

In chapter 3, it was shown that for 5 wt% Au-Pd/TiO2 catalysts prepared via wet 

impregnation, the addition of minimal amounts of water to form a catalyst slurry, which 

subsequently was not heated to form a thick, viscous gel (i.e. still contained 2 ml of H2O)             

prior to drying and calcination steps, resulted in highly active H2O2 synthesis catalysts (ca. 120 

molH2O2kgcat
-1

h
-1

) of comparable activity to 5 wt% Au-Pd/C catalysts. The addition of more  

water (2-30 ml) during the wet impregnation step prior to drying dramatically altered the  

particle size distribution, with a modified bimodal distribution of Au and Pd nanoparticles 

comprising large Au-only particles (20-80 nm) and small Pd-only particles (1-10 nm) now 

observed for Au-Pd/TiO2 catalysts. The larger, Au-only particles are ineffective in limiting    

H2O2 hydrogenation and consequently a reduced synergistic effect of Au is observed. And 

therefore the higher H2O2 synthesis and hydrogenation activities observed over Pd-only and   

Au-Pd catalysts prepared using this modified methodology are related to an enhanced Pd 

dispersion. Furthermore, TiO2-supported catalysts prepared in this manner are neither stable    

nor fully reusable. However, catalysts prepared by wet-impregnation ensuring the removal of   

ca. 75% of the initial water present to form a viscous, gel consistency prior to drying, were both 

stable and fully reusable (and comprised intermediate, AucorePdshell alloyed nanoparticles). 

 

Contrarily, for Au-Pd/C catalysts, addition of water during the catalyst impregnation   

step (ca. 2-30 ml) did not affect either structure or activity and these catalysts could be             

re-used without loss of catalyst performance. A major difference was established in the rate       

of Au and Pd uptake onto TiO2 and carbon supports, with instant adsorption of Au and Pd 

precursors onto carbon irrespective of water addition/concentration, compared to negligible 

uptake onto TiO2, which was determined as being influenced by surface iso-electric point. 

Additional experiments presented toward the close of chapter 3 confirm that reduced halide 

content/halide free catalysts can be synthesized using deposition precipitation routes and mild 

reduction treatments, leading to moderately active H2O2 synthesis and hydrogenation catalysts.  

A possible drawback with using deposition precipitation methodology to co-deposit Au(OH)3 

and Pd(OH)2 species onto TiO2 and carbon supports is that control over the fraction of each 

metal deposited onto a given support is limited, since AuCl4 and PdCl2 precursors are hydrolysed 

at different pH values and may deposit at different rates onto the support, with higher Pd   

content detected in the final catalysts.  
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Chapter 4 

4.1 Introduction 

 

Treatment of an activated carbon support in dilute nitric acid prior to the impregnation   

of Au and Pd metals and calcination in static air are necessary steps leading to the formation of    

a stable and highly active, supported Au-Pd catalyst in which the non-selective hydrogenation of 

H2O2 to H2O is switched-off
1
. Application of this method to TiO2 and SiO2 supports

2, 3
 also  

improved the rate of H2O2 synthesis over supported Au-Pd catalysts and considerably reduced 

the rate of hydrogenation, but did not switch-off the hydrogenation pathway as observed for      

2.5 wt% Au-2.5 wt% Pd/C. This effect is solely observed for bimetallic Au-Pd catalysts.    

Monometallic Au catalysts are poorly active for the direct synthesis reaction irrespective of acid 

pre-treatment, while minimal to no differences are recognised for monometallic Pd catalysts for 

either H2O2 synthesis or hydrogenation pathways, as illustrated in Table 4.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.1 H2O2 synthesis and hydrogenation activities for 5 wt% Au and Pd catalysts supported on non-

acid treated and 2 vol% nitric acid treated carbons. All Catalysts were calcined in static air at 400
 o
C (3 h). 

 

Catalyst 

Productivity / 

molH2O2kgcat
-1

h
-1

 

Hydrogenation / 

molH2O2kgcat
-1

h
-1

 

5 wt% Au/C   

Non-acid treated 1 0 

Acid treated 1 0 

5 wt% Pd/C   

Non-acid treated 55 135 

Acid treated 60 126 
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In order to preserve catalytic activity over repeated H2O2 synthesis reactions using 

supported Au-Pd catalysts, a calcination step performed in static air at 400 
o
C is required to 

stabilise active sites dispersed across the support material
4
. The rates of hydrogen peroxide 

production and hydrogenation over dried-only materials and of those calcined at temperatures 

below 400
 o

C are typically very high, falling sharply with increasing calcination temperature,    

and are unstable due to deactivation and leaching of active metal into solution. As already 

discussed in chapter 3, variation in the wet impregnation method can impart a dramatic effect    

on both catalyst activity and stability and therefore careful control at every stage of the     

catalyst preparation procedure must be followed
5
. 

 

 The aim of chapter 4 is to improve the understanding of the role of the heat treatment     

in the preparation of non-acid treated and acid treated 2.5 wt% Au-2.5 wt% Pd/C catalysts and   

to identity possible differences in catalyst structure that may constitute deactivation of the    

H2O2 hydrogenation pathway. Characterisation of carbon supports prior to the impregnation      

of Au and Pd metals, and for 2.5 wt% Au-2.5 wt% Pd/C catalysts calcined in static air at        

200, 300 and 400
 o

C has been undertaken using a range of characterisation techniques to probe 

change(s) in the bulk and surface structure initiated by acid pre-treatment (Figure 4.1). 

Experiments comparing the effect of different heat treatment conditions on the structure and 

activity of catalysts are presented and discussed with a proposed mechanism. 

 

 

Figure 4.1 Schematic of the structure of activated carbon showing planes of graphitic structures 

overlapping and in-between plane space corresponding to micro porous features
6
. 
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4.1.1 Experimental Conditions 

 

The reaction conditions adopted in Chapter 4, unless stated otherwise are:  

 

(a) Hydrogen Peroxide Synthesis catalyst (10 mg), 5% H2/CO2 (420 psi), 25% O2/CO2        

(160 psi), 5.6 g MeOH and 2.9 g H2O as solvent, 2 
o
C, 30 minutes.             

 

(b) Hydrogen Peroxide Hydrogenation catalyst (10 mg), 5% H2/CO2 (420 psi), 5.6 g MeOH, 

2.22 g H2O and 0.68 g 50 wt% H2O2 as solvent, 2 
o
C, 30 minutes.       

 

Important Note: In this chapter we have primarily investigated the effect of pre-treating a 

carbon support (G60 activated carbon supplied by Darco) in dilute, 2 vol% nitric acid, prior       

to impregnation of Au and Pd precursors and calcination in static to air. Bimetallic 2.5 wt% Au-

2.5 wt% Pd catalysts supported on non-acid treated/acid treated G60 carbon are referrred to 

throughout this chapter as: non-acid treated Au-Pd/C, while catalysts supported on 2 vol% 

nitric acid treated carbon are referred to throughout this chapter as: acid treated Au-Pd/C.  

 

Experiments comparing other other acid pre-treatments are presented in this chapter, for 

examaple acetic acid, and this is mentioned in the main text where necessary, i.e. acetic acid 

treated Au-Pd/C, to prevent confusion with terminology for nitric acid pre-treated samples. 

Characterisation of carbon supports (before Au-Pd impregnation) and 2.5 wt% Au-2.5 wt% Pd/C 

catalysts are presented separately in sections 4.2 and 4.4 respectively, while catalyst testing data 

is presenting in section 4.3. 
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4.2 Characterisation of the carbon support 

 

 In an effort to determine the origin of the different activities observed for Au-Pd/C 

catalysts based on pre-treatment of the carbon support in 2 vol% nitric acid, both non-acid 

treated and acid treated carbon supports were studied by XPS. The C(1s) and O(1s) spectra 

recorded before and after Thermo-gravimetric analysis (TGA) in nitrogen (in order to remove 

any physisorbed species retained after washing and drying of support, e.g. water) are presented        

in Figure 4.2, and interestingly show no major differences between non-acid treated and         

acid treated carbons, implying that acid pre-treatment of carbon has not modified support 

structure through the development of new functional groups. Comparison of TGA profiles 

recorded for non-acid treated and acid treated carbons (Appendix A4.1) showed despite  

extended oven drying (110
 o

C, 58 h) that approximately 3% by mass was evolved from both 

carbon supports on heating to 350
 o

C, which was likened to the removal of physisorbed water 

molecules from pores of activated carbon. 

 

     

Figure 4.2 C(1s) and O(1s) XP spectra observed for non-acid treated/washed (NAW) and acid 

treated/washed (AW) carbon supports before and after thermo-gravimetric analysis under nitrogen 

atmosphere.  

 

FTIR-ATR corrected spectra recorded for carbon materials before and after treatment 

with 2 vol% nitric and acetic acids respectively are presented in Figure 4.3. Comparison of the 

non-acid treated and nitric acid treated carbons showed a small increase in the carbonyl 

absorption region that is attributed to the carbonyl group in CH3COOH and identified also on 

acetic acid treated carbon. Edwards et al. showed that changing the concentration of nitric      

acid pre-treatment (from 0.5 to 70 vol%) did not affect the rate of H2O2 hydrogenation over     

2.5 wt% Au-2.5 wt% Pd/C catalysts (i.e. the hydrogenation was always completely suppressed), 
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implying that quantification of specific functional group content does not serve as the absolute 

indicator as to why acid pre-treatment is effective
1, 3

. A possible reason for this is that only          

a minor modification of the activated carbon structure is required after which concentration,   

time and temperature are ineffective. This point will be discussed further in sections 4.4 and     

4.6 with respect to XPS and STEM-HAADF characterisation of catalysts. 

 

  

Figure 4.3 FTIR-ATR corrected spectra for carbon supports, non-acid treated (blue), 2% HNO3 pre-

treated (black) and 2% CH3COOH treated (pink) respectively. 

 

 

TPD profiles of non-acid treated and 2% HNO3 treated carbons show differences in 

surface oxygen content related to CO2 desorption (Figure 4.4). A 40 mV increase in the TCD 

signal at ~180 
o
C for 2% HNO3 pre-treated carbon (blue) indicates an increase in the number    

of carboxylic acid groups
7-10

 attached to the carbon, while a broad signal from 240-350
 o

C 

implies a further increase in the number of carboxylic functional groups
10

. A smaller response 

signal is detected in the same region for non-acid treated carbon (black), showing that a    

baseline number of functional groups are present on carbon, present due to the activation step 

employed by the manufacturer
11

. 
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Figure 4.4 Temperature programmed desorption profiles for 2% HNO3 treated (blue line) and non-acid 

treated (black line) carbon supports only. 

 

 

In both profiles shown in Figure 4.4, the TPD signal increases from 400 to 700 
o
C        

and is consistent with high temperature functionalities on carbon derived from decomposition   

of carboxylic anhydrides, lactones and ether groups, all of which are known to decompose         

at elevated temperatures
7-10

. Differences in the signal gradient between supports are observed,      

with non-acid treated carbon (blue) showing a steeper signal variation from 700-850
 o
C.  

 

Decomposition of carboxylic anhydrides and their subsequent interpretation can become 

convoluted as the temperature range attributed to on-set of CO desorption may overlap with      

the desorption of CO2 derived from decomposition of carbonyl/carboxylic units, and therefore 

any increase(s) in the TCD signal at higher temperature could represent a CO/CO2 composite.  

Overall, the TCD signals recorded from 400 to 950
 o

C for non-acid treated and acid treated 

carbons increased by 80 and 91 mV respectively, the difference of which is attributed to a small 

increase in functional group content on the acid treated carbon.  

 

 

 

2% HNO3 treated 

Non-acid treated 
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Nitrogen adsorption/desorption isotherms for non-acid treated and acid treated      

carbons were recorded and subsequently compared. Both the adsorption isotherms and BET 

surfaces areas of each support were found to be identical within experimental error 

(approximately 1000 m
2
/g quoted to an accuracy of ± 10%). The BJH pore size distribution 

measurements shown in Figure 4.5 for non-acid treated and acid treated carbons in addition were 

determined as near identical and confirmed a mesoporous structure. 

 

 

Figure 4.5 BJH Distrubtion Plots for non-acid treated (left) and acid treated (right) carbon supports with 

pore volume and diameter measurements summarised underneath. BET surface areas for carbon were 

determined as 1011 m
2
/g (non-acid treated) and 955 m

2
/g (acid treated). 

 

 From the techniques used in section 4.2 to characterise possible differences between  

non-acid and acid treated carbons, it is apparent that no specific chemical differences result    

from pre-treatment of carbon in 2 vol% nitric acid, as noted in C(1s) and O(1s) spectra 

respectively. In contrast, an enhancement in the concentration of functional groups initially 

present on non-acid treated carbon, specifically carboxylic acid groups (originating from the 

activation process employed by Darco) is implied in FT-IR ATR corrected spectra and TPD 

profiles respectively. Changes in surface area and pore size distribution is also considered, 

however, due to the high surface areas associated with activated carbons and similarities              

in pore size distributions between samples, both of which are mesoporous, it is difficult to  

conclude whether actual changes have occurred. 
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4.3 Effect of acid pre-treatment on the direct synthesis of H2O2  

 

The variation in the rate of H2O2 production with calcination temperature for acid   

treated 2.5 wt% Au-2.5 wt% Pd/C catalysts followed a trend similar to that reported for TiO2-  

supported counterparts
5
, with the dried-only sample exhibiting the highest H2O2 productivity   

(212 molH2O2kgcat
-1

h
-1

), which subsequently decreased on second use by over 50% to               

101 molH2O2kgcat
-1

h
-1

, and was attributed to insufficient catalyst stability in the absence of       

adequate heat treatment (Table 4.2). While H2O2 productivity declined further on increasing    

the calcination temperature, catalysts retained more than 50% of their initial activity on their 

second use, suggesting an improvement in the degree of stability until calcination at 400
 o

C 

formed a stable, highly active material (160 molH2O2kgcat
-1

h
-1

 – an activity that is maintained 

beyond 10 x H2O2 synthesis reactions). 

 

Heat Treatment 

Productivity / molH2O2kgcat
-1

h
-1

 
Hydrogenation / 

molH2O2kgcat
-1

h
-1

 
1

st
 Use 2

nd
 Use

 

Dried 120 °C 212 101 736 

Calcined 200 °C 180 106 617 

Calcined 300 °C 174 124 546 

Calcined 400 °C 160 160 0 

Table 4.2 H2O2 synthesis and hydrogenation activities over 2.5 wt% Au-2.5 wt% Pd/C catalysts          

(2% HNO3 pre-treated). Catalysts dried in air 110
 o
C and calcined for 3 h in static air as indicated. 

 

The H2O2 hydrogenation rate over the catalysts was also found to be affected by           

the calcination temperature, with the dried-only material exhibiting the highest rate of H2O2 

hydrogenation (736 molH2O2kgcat
-1

h
-1

), corresponding to a 36% consumption of the initial            

4 wt% H2O2 present in solution. Increasing the calcination temperature decreased the rate of 

hydrogenation so that by 400
 o

C, hydrogenation activity over the catalyst was switched-off.    

This implies that different sites on the Au-Pd/C catalyst surface are responsible for the    

synthesis and hydrogenation of hydrogen peroxide reactions, and secondly that these sites         

are affected to different extents by calcination temperature, i.e. the rate of H2O2 hydrogenation  
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remains elevated until 300
 o

C before decreasing dramatically thereafter. In response, a portion   

of the dried-only material was calcined at 350
 o

C, and was still found to hydrogenate a 

considerable fraction of H2O2 (279 molH2O2kgcat
-1

h
-1

). It is known that the melting point             

of Au decreases as particle size gets progressively smaller and therefore this could aid in           

the understanding as to why the activity of the H2O2 hydrogenation pathway is switched-off          

over a narrow temperature range (>350-400 
o
C). 

 

Heat Treatment 

Productivity / molH2O2kgcat
-1

h
-1

 
Hydrogenation / 

molH2O2kgcat
-1

h
-1

 
1

st
 Use 2

nd
 Use

 

Dried 120 °C 120 79 729 

Calcined 200 °C 120 105 707 

Calcined 300 °C 130 108 499 

Calcined 400 °C 110 110 120 

Table 4.3 H2O2 synthesis and hydrogenation activities over 2.5 wt% Au-2.5 wt% Pd/C catalysts        

(non-acid treated). Catalysts dried in air 110 
o
C and then calcined for 3 h in static air as indicated. 

 

The same calcination series was investigated for 2.5 wt% Au-2.5 wt% Pd supported      

on non-acid treated carbon, and H2O2 production and hydrogenation rates are shown in         

Table 4.3. It is clear that the non-acid treated 2.5 wt% Au-2.5 wt% Pd/C catalyst does 

hydrogenate hydrogen peroxide after calcination at 400
 o

C and gives a H2O2 productivity        

(110 molH2O2kgcat
-1

h
-1

) that is approximately 35% less than its acid treated counterpart.  

However, in the absence of pre-treatment, the catalyst does not appear as sensitive toward 

calcination temperature. The productivity of the dried-only catalyst is 120 molH2O2kgcat
-1

h
-1

,    

and thus only marginally higher than the productivity of the 400
 o

C calcined catalyst. The    

dried-only and calcined 200 and 300
 o

C catalysts were shown to retain a higher proportion         

of their original activity on second use, while initial rate measurements at 2 min concluded     

that the dried-only Au-Pd/C catalyst was the most active material, followed in descending    

order by catalysts calcined at 200, 300 and 400
 o
C (Figure 4.6). 
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Figure 4.6 Effect of reaction time on the H2O2 synthesis and hydrogenation activities over 2.5 wt% Au-

2.5 wt% Pd/C catalysts (non-acid treated). Catalysts dried in air 110
 o

C and calcined for 3 h in static       

air  as indicated (except the dried-only Au-Pd/C catalyst, which for the purpose of the graph is plotted    

on the horizontal axis as calcined 110
 o
C) 

 

Since three out of four of the Au-Pd/C catalysts (dried-only, calcined 200 and 300
 o

C)   

are unstable and that initial rates were measured after 2 minutes, the leaching of Au and Pd 

precursors could initiate the homogenous catalysed production of H2O2, explaining why           

the dried-only/uncalcined catalyst is the most active material in addition to electronic and 

particle size effects. Once again, calcination at 400
 o

C
 
is required to form a stable and             

reusable catalyst. While rates of H2O2 hydrogenation over non-acid treated Au-Pd/C catalysts  

are comparable to those observed over acid treated Au-Pd/C up to calcination temperatures       

of 300
 o
C, the key difference is that H2O2 hydrogenation over non-acid treated Au-Pd/C  calcined 

at 400
 o

C is moderate (120 molH2O2kgcat
-1

h
-1

) as oppose to being switched-off. In section 4.4,    

the influence of acid pre-treatment and calcination temperature on alloying, oxidation state and 

particle size distribution for Au-Pd/C catalysts has been investigated using X-ray photoelectron 

spectroscopy and detailed microscopy (STEM-HAADF, XEDS).  
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4.4 Characterisation of the carbon-supported Au-Pd catalysts 

 

4.4.1 Electron Microscopy characterisation 

 

 The structure of Au and Pd on activated carbon as a function of calcination temperature 

for fresh, unused catalysts was probed using detailed scanning transmission electron microscopy 

techniques. Bright field TEM micrographs of acid treated Au-Pd/C catalysts both dried at       

120
 o

C and calcined at 400
 o

C samples are presented in Figure 4.7 (calcined 200 and 300
 
°C are 

shown in Appendix A4.2) and show occasional metallic particles exist in the 30-100 nm range 

on the support irrespective of calcination temperature. X-ray dispersive energy spectra (XEDS) 

concluded that larger metallic particles consisted predominantly of Au, while areas without     

any ‘large’ particles comprised solely of Pd, implying the presence of highly dispersed species 

on activated carbon that cannot be observed via conventional BF-TEM imaging. 

 

 
Figure 4.7 XEDS spectra of acid treated 2.5 wt% Au-2.5 wt% Pd/C catalysts, (a, b) dried 120

 o
C,        

and (c, d) calcined at 400
 
°C. Data acquired inside the regions marked by white circles. 

 

The catalyst nanostructure was further investigated using STEM-HAADF imaging. 

Figure 4.8 indeed shows highly dispersed Pd metal species exist for acid treated Au-Pd/C, with 

sub-nm clusters and single atoms present on the carbon surface in all samples, the population of 

sub-nm clusters of which progressively decreases at higher calcinations temperatures, suggesting 

the calcination process is assisting in dispersing the sub-nm clusters into atomically dispersed 

species, although differences between the morphology of samples with different calcination 

temperatures are subtle and do not exceed the instrument detection limit. 
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 (a) Dried 120 °C  (b) Dried 120 °C 

 (c) Calcined 200 °C  (d) Calcined 200 °C 

 (e) Calcined 300 °C  (f) Calcined 300 °C 

 (g) Calcined 400 °C  (h) Calcined 400 °C 

Figure 4.8 Representative 

STEM-HAADF images of 

acid treated Au-Pd/C 

catalysts calcined at 

different temperatures.  

 

(a, b)      Dried 120 °C 

(c, d) Calcined 200 °C 

(e, f)  Calcined 300 °C 

(g, h) Calcined 400 
o
C 

 

There are two types of 

highly dispersed metal 

species, namely sub-nm 

clusters (circled in white) 

and isolated atoms (circled 

in black); of which the 

number of sub-nm clusters 

appears to decrease on 

increasing the calcination 

temperature. 
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Representative STEM-HAADF images for the non-acid treated Au-Pd/C catalyst series 

in Figure 4.9 are structurally similar to their acid treated counterparts (Figure 4.8) in addition    

to the population density of sub-nm species again showing an inverse dependency with 

calcination temperature, indicating that catalyst morphology and metal dispersion are not 

substantially influenced, if at all, through acid treating the carbon support.  

 

     

     

Figure 4.9 STEM-HAADF images of non-acid treated Au-Pd/C catalysts calcined at different 

temperatures, (a, b) dried 120
 
°C, and (c, d) calcined 400

 
°C. Sub-nm clusters (circled in white) and 

isolated atoms (circled in black) are shown in both samples. The morphologies are very similar to       

their acid treated Au-Pd/C counterparts. 

 

 

 

 

 

 

 

 (a) Dried 120 °C  (b) Dried 120 °C 

 (c) Calcined 400 °C  (d) Calcined 400°C 
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 In Figures 4.10 and 4.11, STEM-HAADF images of monometallic Au/C and Pd/C 

catalysts (all calcined at 400
 
°C) respectively are presented, serving as a baseline comparison to 

the aberration corrected microscopy investigation into highly dispersed species already detected 

for the Au-Pd/C samples. Firstly for the Pd/C sample, in addition to occasional nanoparticles 

observed in the bright field region, sub-nm clusters and isolated Pd atoms were detected in both 

non-acid treated and acid treated samples and of similar density to species found in their 

respective bimetallic counterparts. 

 

     

      

Figure 4.10 STEM-HAADF images of monometallic Pd/C catalysts calcined at 400
 
°C, both non-acid 

treated (a, b), and acid treated (c, d). Sub-nm Pd clusters (circled in white) and isolated Pd atoms   

(circled in black) were identified, and their population densities are similar to those noted for their 

bimetallic Au-Pd/C counterparts. 

 

 

 

 

 

 (a) Non-acid treated (b) Non-acid treated 

 (c) Acid treated  (d) Acid treated 
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On inspecting the Au/C sample, nanoparticles and a small fraction of isolated Au atoms 

(of lower number density than observed in Au-Pd samples) were found, unfortunately the 

chemical identity of the sub-nm species and isolated atoms in bimetallic Au-Pd/C catalysts 

cannot be directly determined using atomic level Z-contrast measurements due to the rough 

nature of the support, resulting in complicating height variations between neighbouring metallic 

species. Examination of the monometallic samples can however give some insight as to what         

is probably happening in the bimetallic Au-Pd/C system, microscopy shows that Pd tends to be 

more highly dispersed when preparing catalysts using the impregnation methodology, but that 

there is most likely a very dilute concentration of atomically dispersed Au atoms intermixed 

within the atomically dispersed Pd species in the bimetallic system.   

 

     

     

Figure 4.11 STEM-HAADF images of monometallic Au/C catalysts calcined at 400
 
°C, both non-acid 

treated (e, f) and acid treated (g, h). For these Au/C samples, only a low density of high intensity isolated 

Au atoms were found in addition to the much larger gold nanoparticles.  

 

 

 

 (a) Non-acid treated  (b) Non-acid treated 

 (c) Acid treated  (d) Acid treated 
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Aberration corrected electron microscopy in summary shows that both non-acid treated 

and acid-treated Au-Pd/C samples calcined at 400
 
°C consist of Au-rich nanoparticles and a 

highly dispersed coverage of atomic and cluster-like Pd species, intermixed with a small amount 

of atomically dispersed Au. The heat treatment appears to improve the overall metal dispersion, 

although acid pre-treatment of the support does not seem to affect the catalyst morphology or the 

dispersion of metallic species, suggesting the improvement in activity for acid treated Au-Pd/C 

samples could instead be induced by changes in metal oxidation state and residual species (i.e. 

chloride) and therefore catalysts have been studied using X-ray photoelectron spectroscopy in 

section 4.4.2. 

 

4.4.2 X-Ray Photoelectron Spectroscopy  

 

Au-Pd catalysts supported on non-acid treated and acid treated carbon were analysed by 

XPS to assess the impact of calcination temperature on surface structure and state. Pd(3d) spectra 

for both supports are presented in Figure 4.12.  

 

     

Figure 4.12 Pd(3d) spectra observed for the 2.5 wt% Au-2.5 wt% Pd catalysts supported on non-acid 

treated carbon and calcined at the temperatures indicated. 

 

Both Pd
2+

 and Pd
o
 species are present for catalysts prepared on the non-acid treated 

support, for which the ratio changes little on increasing calcination temperature (Table 4.4). 

Interestingly, catalysts prepared on the acid treated support predominantly consisted of Pd
2+

 

species in excess of 90% at each calcination temperature. However, reference to catalytic data 

for Au-Pd catalysts calcined at temperatures below 400
 o

C shows a decrease in H2O2 synthesis 

activity on second use - corresponding XPS data (Table 4.5) reveals a transformation of Pd
2+
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into metallic Pd that is more pronounced for the dried-only material. The intensity of Pd(3d) 

signal is markedly decreased too indicated leaching of metal from the carbon surface. 

 

Molar ratios Pd/Au 
(Pd+Au)/C 

(x100) 

Cl/C 

(x100) 
Pd

2+
(%) 

Non-acid treated     

Dried 120 
o
C 1.0 0.70 0.61 60 

200 
o
C 1.1 0.66 0.51 57 

300 
o
C 1.3 0.61 0.50 69 

400 
o
C 1.4 0.63 0.44 68 

Acid treated     

Dried 120 
o
C 2.7 0.44 0.71 >90 

200 
o
C 3.8 0.45 0.61 >90 

300 
o
C 4.3 0.46 0.51 >90 

350 
o
C 4.1 0.41 0.44 >90 

400 
o
C 4.2 0.50 0.42 >90 

Table 4.4 Quantified XP data for the 2.5 wt% Au-2.5 wt% Pd/C catalysts, data are included for the     

both the non-acid treated and acid-treated supports. 

 

 

Pd
2+

(%) 

Calcination Temperature 

Dried 120 
o
C 200 

o
C 300 

o
C 400 

o
C 

Fresh >90 >90 >90 >90 

Used x 1 16 35 43 >90 

Table 4.5 Quantified XP data for acid treated 2.5 wt% Au-2.5 wt% Pd/C catalysts comparing the     

surface Pd
2+

 concentration in fresh and used catalysts (1 x H2O2 synthesis reaction). 
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Referring to quantified XPS data in Table 4.4, a clear difference in Pd/Au ratio can be 

observed between carbon supports. Catalysts prepared on the non-acid treated carbon support    

exhibit a low Pd/Au ratio that is relatively constant as a function of calcination temperature, 

having a value in the range 1.0-1.4. The molar ratio for a nominal 2.5 wt% Au-2.5 wt% Pd 

loading is 1:1.85 proving that Au-Pd nanoparticles are homogeneous alloys in nature. Contrarily 

a significant increase in the Pd/Au ratio with calcination temperature is apparent for catalysts 

prepared on the acid treated carbon that could reflect the formation of core-shell type particles. 

The variation in Pd
2+

/Pd
0
 ratio and suggested core-shell formation does not affect the Au 

oxidation state in bimetallic samples, which is metallic for all samples (Figure 4.13). 

 

     

Figure 4.13 Au(4f) spectra observed for the 2.5 wt% Au-2.5 wt% Pd catalysts supported on non-acid 

treated carbon and calcined at the temperatures indicated. 
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Comparison of Cl(2p) spectra for non-acid and acid treated supports show several 

doublets are present, Cl(2p) spectra from non-acid treated samples consist of two (spin-orbit) 2p 

doublets, the relative intensities changing with calcination temperature while three (spin-orbit) 

2p doublets are recognised in the spectra for acid treated samples, implying the presence of 

different species and concentrations of surface chloride
10

. For both supports, calcination at       

400
 o

C leads to the doublet at higher binding energies dominating, which is attributed to a   

highly ionic and negatively charged chloride species. On the following page, quantified       

curve-fitted data is presented in Table 4.6, corresponding to the Cl(2p) XP spectra of both      

non-acid treated and acid treated Au-Pd/C catalysts shown in Figure 4.14. 

 

     

Figure 4.14 Cl(2p) spectra observed for the 2.5 wt% Au-2.5 wt% Pd catalysts supported on non-acid 

treated carbon and calcined at the temperatures indicated. 

 

 

Treatment 
Binding energy (eV) % Concentration 

#1 #2 #1 #2 

Dried 120 
o
C 197.7 200.4 73 27 

200 
o
C 197.8 200.4 74 26 

300 
o
C 198.1 200.5 65 35 

400 
o
C 197.7 200.4 26 74 

Table 4.6 Quantified curve-fitted data for the Cl(2p) spectra recorded for the catalysts prepared on the 

non-acid treated C support (ref Figure 4.7). 
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In summary, XPS analysis in section 4.4 highlights the most important distinguishing 

feature between non-acid treated and acid treated Au-Pd/C catalysts as being the concentration  

of cationic Pd
 

species associated with O
2-

 and/ or Cl
-
 electronic modification, with            

>90% Pd
2+

 present in acid treated catalysts. Regarding the different chloride species noted 

between catalysts in Figure 4.14, a possible modification relating to the interaction between 

chloride species and activated carbon was reported by Simonov et al., who studied H2PdCl4 

adsorption onto graphite-like carbon, identifying two competitive adsorption pathways
12-15

. 

  

 

Figure 4.15 Schematics showing the adsorption of chloride ions on C
+
 sites (left) and the probable 

positions in which adsorption of H2PdCl4 could proceed on carbon surface (right)
13, 14

. 

 

The first involved reduction of Pd (based on the high reducing power of carbon) close     

to the exterior of carbon particles, forming electropositive C holes that are charge compensated 

by the adsorption of chloride ions
13, 14

. The second involved PdCl2 forming π-complexes with 

C=C fragments of different bond strength along the surface, with strong strong/irreversible bonds 

representing micropores. As a result, cationic Pd
2+

 species migrate along the surface during the 

drying step to form clusters centred on step sites where the adsorption probability is high
12-15

 

(Figure 4.15), and could assist in explaining the high concentration of small Pd
2+

 clusters 

detected in acid treated Au-Pd/C catalysts at all calcination temperatures (Figures 4.8 and 4.10). 

In the following section, a study of different calcination atmospheres is undertaken in an effort  

to ascertain the extent that calcination in static air is linked to switching off the H2O2 

hydrogenation pathway for acid treated Au-Pd/C catalysts, with investigation into different 

reduction/oxidation cycles on activity and Pd
0
/Pd

2+
 concentration. 
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4.5 Effect of calcination atmosphere on H2O2 synthesis and hydrogenation 

 

Catalysts until now have been calcined in static air, which aids in maintaining the    

>90% Pd
2+

 concentration present in the dried-only, acid treated Au-Pd/C catalyst and        

imparts long term catalyst stability/reusability for direct H2O2 synthesis. As anticipated, the 

reduction of acid treated Au-Pd/C in 5% H2/Ar (Table 4.7) forms a highly active H2O2 

hydrogenation catalyst via reduction of surface Pd
2+

 to Pd
0
, while He calcination formed a 

catalyst with a H2O2 productivity comparable to static air calcination (150 molH2O2kgcat
-1

h
-1

). 

However, heat treatment in either reducing or inert atmosphere did not form a stable catalyst.  

 

Table 4.7 Effect of heat treatment atmosphere (all 400
 o

C, 3 h) on the rates of H2O2 synthesis, 

hydrogenation and reusability over 2.5 wt% Au-2.5 wt% Pd/C catalysts. 

 

The presence of oxygen is linked to the formation of surface PdO/Pd
2+

 and although     

acid treated Au-Pd/C contains >90% Pd
2+

 before calcination, a high proportion of the Pd
2+

 

present will be associated with the PdCl2 precursor. The relative intensities of chloride species 

identified by XPS change on increasing calcination temperature, correlating to a given extent 

with decomposition of PdCl2 to metallic/oxidised Pd species (including PdO), and depends on 

the nature of the metal-support interaction
6
. 

Heat Treatment 

Productivity /  

molH2O2kgcat
-1

h
-1

 
Hydrogenation / 

molH2O2kgcat
-1

h
-1

 

1
st
 Use 2

nd
 Use 

Non-acid treated    

Static Air 110 110 117 

Helium 116 86 117 

Acid treated    

Static Air 160 160 0 

Helium 150 140 0 

Oxygen 252 n.d 46 

5% H2/Ar 98 62 630 
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The interaction of Au and Pd with the activated carbon defects is not fully understood, 

but is known to an extent as depending on the carbon type and activation process used by the 

manufacturer (Darco G60 is activated in HCl/steam flow
11

). Specifically, these materials can 

contain any number of functional groups/oxygen termination points through which interactions 

with Au/Pd species are possible (Figure 4.16). TPD experiments showed that nitric acid pre-

treatment increased the amount of carboxylic acid groups on the support and therefore it is 

feasible that a reduction treatment is detrimental to catalyst stability by reductive elimination of 

functional groups/oxidic defects. 

 

 

Figure 4.16 Schematic diagram showing the different types of oxygen containing functional groups     

that can be incorporated into graphic planes of activated carbon supports
16

. 

 

Results in Table 4.7 indicated that calcination in either static air or helium at 400
 o

C      

gave H2O2 productivities exceeding 150 molH2O2kgcat
-1

h
-1

 (corresponding to a 0.40 wt% H2O2 

solution) and switched-off the hydrogenation pathway. Figure 4.17 shows that acid treated     

Au-Pd/C catalysts calcined in helium (b) and static air (c) comprised predominantly of Pd
2+

 with 

minimal evidence of metallic Pd. The reason Pd
2+

 concentration is quoted as >90% as opposed    

to >99% is because of the difficulties in applying curve-fitting to metallic features situated at    

334-336 eV (335.2 eV corresponds to bulk metallic Pd) at such low levels, and therefore the 

possibility of there being a low percentage of metallic Pd
0 

species present alongside the cationic 

Pd
2+

 excess cannot be excluded. 
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Figure 4.17 XPS comparison of support pre-treatment and heat treatment on the Pd
2+

/Pd
0
               

spectral features of 2.5 wt% Au-2.5 wt% Pd/C catalysts prepared / calcined on: (a) non-acid treated C / 

Air, 400
 o
C, (b) acid treated C / He, 400

 o
C, and (c) acid treated C / Air, 400

 o
C. 

 

 

Detection of Pd
0
 in non-acid treated Au-Pd/C (a) is straightforward (~60:40 atom% 

Pd
2+

/Pd
0
) while to the best ability only cationic Pd

2+
 could be detected in acid treated Au-Pd/C 

catalysts. Already it is understood that TPD analysis of acid treated carbon shows a broad      

CO2 signal from 200 to 400
 o

C corresponding to decomposition of carboxylic acid groups. 

Decomposition of the same groups during calcination in helium could therefore compromise 

catalyst stability (via anchorage of Au-Pd species to the surface of activated carbon) by the 

possible internal supply of oxygen derived from decomposition of functional groups to produce 

CO and CO2.  

 

Consequently, the high surface Pd
2+

 concentration found in the dried-only, acid treated     

Au-Pd/C catalysts is maintained after calcination in helium (400
 o

C, 3 h), but the resulting 

catalyst lacks the same degree of metal-support interactions critical to the development of a     

stable, reusable catalyst, and found in static air calcined counterparts. In section 4.5.1, the    

effect of pre-heating activated carbon in helium prior to impregnation of Au and Pd on the 

resulting direct H2O2 synthesis activity of the catalyst is also considered, and in addition the 

standard calcination step is modified to determine if it is indeed possible to switch-off the     

H2O2 hydrogenation pathway of a non-acid treated Au-Pd/C catalyst. 
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4.5.1 Effect of heat treatment on activated carbon 

 

Table 4.8 demonstrates the effect of pre-heating activated carbon, using conditions akin 

to TPD experiments, before impregnation of Au and Pd. Results show a significant loss in     

both H2O2 synthesis and hydrogenation activity after heating the carbon support at 950
 o

C  

(which as shown in TPD experiments due to the decomposition of a higher percentage of 

functional groups on carbon) and the importance of using an activated carbon support in catalyst 

preparation. Reference to H2O2 synthesis and hydrogenation activities for Au-Pd supported       

on non-functionalised, nuclear grade carbon sourced from BNFL (Appendix Table A4.2) showed 

a similar low set of activities and corroborated the role of surface functional groups which are 

barely if at all enhanced by nitric acid pre-treatment - the respective TPD profiles are both 

featureless (Appendix Fig A4.3). 

 

  

 

 

 

Table 4.8 Effect of pre-heating activated carbon (1.0 g batches) on the H2O2 synthesis and   

hydrogenation activities of non-acid treated 2.5 wt% Au-2.5 wt% Pd/C catalysts.  

 

 

 

 

 

 

 

 

 

 

 

Treatment 
Productivity / 

molH2O2kgcat
-1

h
-1

 

Hydrogenation / 

molH2O2kgcat
-1

h
-1

 

None 110 117 

He / 450 
o
C / 12 h 37 98 

He / 950 
o
C / 12 h 17 5 
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Referring to Table 4.7, it is observed that calcination of acid treated Au-Pd/C in          

pure oxygen at 400
 o

C formed a highly active catalyst (252 molH2O2kgcat
-1

h
-1

) accompanied by 

H2O2 hydrogenation activity. However, approximately 25-30% of the catalyst mass was lost 

during the calcination step due to burn-off of the carbon support in excess oxygen, and 

consequently the resulting high H2O2 synthesis activity is related to a higher metal loading and 

particle sintering. TGA of dried-only, acid treated Au-Pd/C showed a mass variation that is 

attributed to loss of physisorbed H2O, decomposition of Au-Pd precursors and burn-off of the 

carbon support at temperatures >400
 o

C. This represents the highest temperature that can be used 

for static air calcinations without causing significant damage to the catalyst structure. 

 

 

 
Figure 4.18 TGA profile recorded for acid treated 2.5 wt% Au-2.5 wt% Pd/C (dried-only). 

 

In section 4.3, H2O2 hydrogenation activity over non-acid treated Au-Pd/C catalysts 

(Table 4.3) was reduced on increasing the calcination temperature to 400
 o

C but was not 

switched-off. Based on this finding, a modified, two-step calcination where non-acid treated   

Au-Pd/C was first calcined in static air at 400
 o

C (3 h) before a second calcination in helium      

at 500
 o

C (3 h) to suppress carbon burn-off was performed to establish whether the H2O2 

hydrogenation activity of a non-acid treated catalyst could be switched-off using calcination 

temperatures above 400
 o

C, avoiding substantial burn-off of activated carbon. 
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Figure 4.19 Comparison of calcination conditions and effect of a double calcination on the                 

H2O2 synthesis (blue bars) and hydrogenation (green bars) activities of non-acid treated 2.5 wt% Au-    

2.5 wt% Pd/C. 

 

Although the use of a two-step calcination resulted in a high H2O2 productivity of          

92 molH2O2kgcat
-1

h
-1

, the subsequent hydrogenation activity over the catalyst actually increased 

substantially to 543 molH2O2kgcat
-1

h
-1

 (Figure 4.19). This was attributed to longer exposure to 

high temperatures, which was necessary as the first calcination in static air was required for 

catalyst stability (refer to Table 4.7), alongside with further loss of surface chloride species   

from the catalyst, which are understood to aid in dispersing Au and Pd species during the 

calcination step and minimise the sequential H2O2 hydrogenation/decomposition activity of 

supported Au-Pd catalysts (in the absence of acid promoters).  

 

It can be concluded that application of calcination atmospheres alternative to static air    

in the preparation of 2.5 wt% Au-2.5 wt% Pd/C do not form stable, reusable catalysts and in 

some cases may negatively affect the structure of activated carbon, which participates in the 

switching off of H2O2 hydrogenation activity. The final experiments in section 4.5.2 review     

the effect of oxidation/reduction cycles and are intended to highlight the significance of 

reversibly modifying the surface Pd oxidation state of acid-treated Au-Pd/C catalysts after 

calcination. This will lead into a discussion and conclusion of the aims outlined for chapter 4. 
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4.5.2 Effect of oxidation and reduction cycles of Pd
2+

/Pd
0
 ratio 

 

Although the identity of the precise feature responsible for switching off H2O2 

hydrogenation was not established, key experiments show that Pd oxidation state is an   

important factor. The significance of acid treated Au-Pd catalysts containing a high surface     

Pd
2+

 concentration is demonstrated in an initial series of Oxidation-Reduction-Oxidation (ORO) 

experiments. With reference to Table 4.9, acid treated 2.5 wt% Au-2.5 wt% Pd/C, the 

preparation of which was adjusted to give a partial H2O2 hydrogenation catalyst, was first 

oxidised in static air (1) prior to reduction in dilute hydrogen (2), performed at 100
 o

C to initiate 

Pd
0
 formation and limit particle sintering/variation in morphology. Consequently, the rate of 

H2O2 hydrogenation increased as did the intensity of Pd
0
 signal in corresponding XPS analyses 

(Figure 4.20). A second oxidation step (3) then reduced the rate of H2O2 hydrogenation, 

switching-off this pathway when following step iii. 

 

Table 4.9 Summary of Oxidation-Reduction-Oxidation study applied to an acid treated Au-Pd/C catalyst 

that hydrogenates 1% H2O2 after calcination at 400
 o

C (1), before a reduction step (2), and one of 

oxidation steps i-iii (3). 

 

ORO Sequence 
Productivity / 

molH2O2kgcat
-1

h
-1

 

Hydrogenation / 

molH2O2kgcat
-1

h
-1

 

Spectrum on 

Pd(3d) figure 

(1)   Static Air, 400 
o
C / 3 h 

a
 150 19 (a) 

    

(2)   5%H2/Ar, 100 
o
C / 1 h 76 161 (b) 

    

(3)   + 1 Step from i-iii.    

i.     Static Air, 300 
o
C / 3 h 94 127 (c) 

ii.    O2, 100 
o
C / 1 h 48 100 (d) 

iii.   O2, 200 
o
C / 3 h 34 0 (e)
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Figure 4.20 XPS comparison of Oxidation-Reduction-Oxidation cycles listed in Table 4.8. 

 

On reviewing XP spectra presented in Figure 4.20, corresponding to the ORO sequences 

discussed on the previous page (Table 4.19), the intensity of the Pd
0
 signal was shown to 

decrease on moving from spectrum (b) to spectra (c) and (d), with metallic Pd
0
 content 

remaining just above signal to noise level. On switching off the H2O2 hydrogenation activity       

the Pd
0
 signal disappeared in spectrum (e), although it must be appreciated that H2O2 synthesis 

activity was also reduced in this experiment, and therefore this result serves only as proof of 

concept and a basis for further investigation. Shaw et al. reported that careful tuning of the  

ORO conditions applied to Au-Pd/C catalysts enabled H2O2 hydrogenation to follow the 

sequence: residual hydrogenation > moderate hydrogenation > no hydrogenation, and restored 

the H2O2 synthesis activity to its original value without compromising Au-Pd particle size
17

.  
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4.6 Discussion 

 

 In this chapter a systematic study into the effect of pre-treating an activated carbon 

support in aqueous 2 vol% nitric acid was undertaken, using a range of characterisation 

techniques to probe changes in the structure of both carbon supports and the resulting bimetallic 

Au-Pd/C catalysts prepared by wet impregnation and calcined in static air across a range of 

temperatures. The H2O2 synthesis and hydrogenation activities over non-acid and acid treated 

Au-Pd/C catalysts were compared and contrasted as a function of calcination temperature. A 

minimum temperature of 400
 o

C was required to form both a highly active, stable and fully 

reusable catalyst, and simultaneously decreasing the H2O2 hydrogenation activity to the extent 

that for acid treated Au-Pd/C it was switched-off.  

 

Various underlying differences in the characterisation of carbon-supported bimetallic  

Au-Pd catalysts may provide an explanation as to the precise manner with which the H2O2 

hydrogenation pathway is switched-off. Characterisation of non-acid and acid treated carbons    

by FT-IR ATR spectroscopy and in particular TPD showed an increase specifically in the 

amount of carboxylic acid groups, while XPS analysis of the supports showed that no 

new/different carbon and oxygen species were introduced by nitric acid pre-treatment. Aside 

from confirming mesoporous structure and high surface area (>900 m
2
g

-1
), no real differences 

between the two supports could be ascertained from BET surface area and BJH pore-size 

distribution measurements. Based on these observation, is concluded that acid pre-treatment    

has increased the number of pre-existing carboxylic acid groups on G60 activated carbon.  

 

Base treatment of activated carbon is reported as being detrimental for the direct 

synthesis reaction since it facilitates base-catalysed decomposition of hydrogen peroxide and 

additionally several acids have also been recognised as unsuitable, including HCl, H3PO4         

and H2SO4, with the nature of the counter-ion, e.g. Cl
-
, PO4

3-
, SO4

2-
, considered as playing a 

contributing role
1
. To date, the H2O2 hydrogenation activity has only been switched-off by      

nitric acid and is found to be irrespective of concentration, with hydrogenation switched-off 

using 0.5, 2, 10 and 70 vol% HNO3 solutions
2,

 
3
. This implies a minor modification in structure      

is required to switch-off H2O2 hydrogenation after which further acid imparts no effect.                

NH3-TPD experiments are planned to quantify surface acidity, with focus on dilute acid            
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pre-treatments using concentrations below 0.5 vol% in order to determine the exact point at       

which the sequential hydrogenation activity for resulting Au-Pd/C catalysts is switched-off.
 

 

 Characterisation of non-acid and acid treated Au-Pd/C gave an informative picture as     

to how the resulting catalyst nanostructure is affected. Because the beneficial effect of acid     

pre-treatment with respect to direct H2O2 synthesis is a recent development, the available 

literature has not commented on the effect of catalyst preparation in switching-off H2O2 

hydrogenation. In this study, all catalysts were synthesized by wet impregnation, a relatively 

straightforward method that can be conveniently scaled up to meet industrial requirements. 

Using batch conditions at Cardiff University, concentrations >0.40 wt% H2O2 can already be 

produced by impregnated, acid treated Au-Pd/C catalysts, prompting further characterization    

and optimization studies into wet impregnation prior to other preparation methods (DP, Sol-

Immobilization) known to afford better control over particle composition/size distribution
18, 19

.  

 

The surface composition and structure of non-acid and acid treated Au-Pd/C catalysts 

was studied using XPS and STEM-HAADF imaging techniques. Aberration corrected electron 

microscopy showed that both non-acid treated and acid-treated Au-Pd/C samples calcined at   

400
 
°C consisted of Au-rich nanoparticles and a highly dispersed coverage of atomic and cluster-

like Pd species, intermixed with a small amount of atomically dispersed Au. Calcination appears 

to improve the overall metal dispersion, although acid pre-treatment of the support does not  

seem to affect the catalyst morphology or the dispersion of metallic species, suggesting the 

enhancement in observed activity for acid treated Au-Pd/C samples could be related to changes 

in metal oxidation state and residual surface species.  

 

Indeed XPS analysis showed the most important distinguishing feature between non-acid 

treated and acid treated Au-Pd/C catalysts as being the concentration of surface Pd
2+ 

species 

associated with O
2-

 and/or Cl
-
 electronic modification, with >90% Pd

2+
 present in all acid treated 

catalysts. The stability of surface Pd
2+

 species was however found to be dependent on calcination 

temperature. For all catalysts calcined in static air at temperatures below 400
 o

C, reduction to 

metallic Pd during hydrogen peroxide synthesis occurred (alongside possible leaching of Au and 

Pd from the catalyst), corresponding with a loss of H2O2 synthesis activity on second use. 
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A subtle variation in dispersion of Au and Pd species cannot be excluded as a reason for 

improved catalytic activity and surface Pd
2+

 concentration after acid pre-treating carbon, given 

the inability to directly determine the chemical identity of sub-nm species and isolated atoms in 

bimetallic Au-Pd/C catalysts using atomic level Z-contrast measurements due to the rough  

nature of the support. Microscopy for monometallic Au and Pd samples implies that a small 

concentration of atomically dispersed Au atoms is intermixed within atomically dispersed Pd 

species in bimetallic alloys, and XPS analysis reported higher than anticipated Pd/Au ratios       

on acid treated Au-Pd/C catalysts. The mechanism proposed below in Figure 4.21 links the 

increased number of carboxylic acid groups on activated carbon with an improved anatomic 

dispersion of Au atoms, and for simplicity does not show the functional groups present on 

activated carbon prior to acid pre-treatment. 

 

Figure 4.21 Proposed mechanism contrasting the atom dispersion of Au species on carbon. 

  

 

Firstly, Au and Pd metals are electrostatically anchored to carbon during impregnation   

by COO
-
 charged defects to form sub-nm clusters. Subsequent calcination in static air helps 

disperse these sub-nm clusters into smaller, isolated systems (around 10-20 atoms in size) 

comprising predominantly Pd intermixed with several gold atoms dispersed to a higher extent 

due to the additional carboxylic groups on acid treated carbon.  
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The surface free energy favoured development of PdO results in an AucorePdshell structure 

on sub-nm scale, reflected in the improved Pd/Au ratios detected by XPS. Because HAADF 

imaging does not reveal any significant morphological differences after acid pre-treatment, 

further investigation is required using a microscope capable of performing XEDS analysis of 

individual atoms, instruments that are now beginning to enter the scientific domain
20, 21

. 

 

Finally, regarding the choice of calcination conditions applied in the preparation of     

acid treated Au-Pd/C catalysts, calcination in static air at 400
 o

C is mandatory to form a stable 

catalyst that can be reused for the direct synthesis reaction. This is not afforded via heat 

treatment in reducing, inert or oxygen rich atmospheres and is likely due to the sensitivity of the 

activated carbon material toward these environments. The critical role of surface Pd
2+

 species 

with respect to H2O2 yield was further demonstration by redox cycle experiments, showing that 

post-treatment in mild reducing/oxidising condition could reversibly modify the surface Pd 

oxidation state of acid-treated Au-Pd/C and switch on/off corresponding H2O2 hydrogenation. 

 

 

4.7 Conclusion 

 

In chapter 4, the H2O2 synthesis and hydrogenation activities over non-acid and          

acid treated Au-Pd/C catalysts were compared and contrasted as a function of calcination 

temperature. A minimum and also optimum temperature of 400
 o

C was required to form a   

highly active and fully reusable catalyst, simultaneously decreasing the H2O2 hydrogenation 

activity to the extent that for acid treated Au-Pd/C it was switched-off. Characterisation of     

non-acid and acid treated carbons by FT-IR ATR spectroscopy and TPD showed an increase     

in carboxylic acid functional group content, due to the strong oxidising ability of nitric acid. 

Aberration corrected electron microscopy showed the overall metal dispersion on G60 carbon    

is improved by the calcination step. However, acid pre-treatment of the support did not appear    

to affect either the catalyst morphology or the dispersion of metallic species, suggesting that    

the enhancement in observed activity for acid treated Au-Pd/C samples could be related to 

changes in metal oxidation state and residual surface species. This was confirmed by XPS 

analysis, which showed that the most important distinguishing feature between non-acid    

treated and acid treated Au-Pd/C catalysts as being the concentration of surface Pd
2+ 

species, 

with >90% Pd
2+

 present in all acid treated catalysts. 
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Chapter 5 

5.1 Introduction 

 

In Chapter 3, the catalyst preparation method was investigated and identified several 

factors as critical to achieving high catalytic activity. Despite the impregnation method being 

convenient for industrial scale-up, limited control of particle size distribution and chemical 

composition of Au-Pd nanoparticles is afforded. Sol-immobilization (SIm) is one alternative 

method for preparing Au-Pd nanoparticles and involves reduction of Au and Pd precursors in 

solution by sodium borohydride, generating alloyed Au-Pd nanoparticles in the presence of a    

stabilising ligand such as polyvinyl alcohol (PVA)
1
.  

 

The classic method used to prepare Au nanoparticles involved citrate ion reduction, 

forming Au sols >10 nm, which are too large to be catalytically active
2
. In the times since,        

the preparation method has been developed to form Au sols of smaller particle size via the 

inclusion of stabilising ligands. In particular, Prati and co-workers
3-9

 have demonstrated that    

Au sols, stabilised using PVA ligands and subsequently immobilized onto carbon and oxide 

supports are highly active and selective catalysts for the liquid phase oxidation of alcohols. 

 

 

Figure 5.1 Diagram of the step-wise formation of bimetallic colloidal nanoparticles ‘sols’ - grey lines 

represent polyvinyl alcohol, PVA ligands. 
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Polymerized ligands impart control over nanoparticle growth and agglomeration prior to 

immobilization of colloids onto carbon and TiO2 supports. Homogeneous and core-shell 

morphology colloidal nanoparticles can be formed depending on the order of Au
3+

 and Pd
2+

 

reduction in solution by NaBH4 prior to immobilization onto a support, e.g. carbon and TiO2.    

In principle three different types of Au-Pd nanoparticles can be prepared, including: (i) 

homogeneous alloys - Au+Pd, (ii) Pdshell-Aucore - Pd{Au}, and (iii) Aushell-Pdcore - Au{Pd} 

respectively. An example of Au{Pd} colloidal sol/nanoparticle formation is shown in Figure 5.1. 

 

The development of Au-Pd core-shell morphology particles was first reported
10

 by 

Turkevich and Kim in 1970. This was followed by articles detailing the preparation of a       

range of different possible morphologies such as bi- and tri-layered structures
11-24

 and use of 

other protecting ligands such as polyvinyl pyrrolidine (PVP) and ethylene glycol. Careful  

control of multiple variables during preparation of sol-immobilized catalysts must be followed  

to yield desired particle morphologies and in specific cases prevent phase separation and   

clustering effects
25

, demonstrating the complexity of colloidal preparation. In addition, 

differences between rates of metal ion reduction and the stabilities of resultant Au-Pd 

nanoparticle phases in the colloidal sol can impart a dramatic effect on the potential for phase 

separation, agglomeration and consequent catalytic activity. 

 

Hutchings and co-workers
26

 reported that homogeneous alloy, Au+Pd sol immobilized 

catalysts dried at 110
 
°C were more active for the oxidation of benzyl alcohol to benzaldehyde 

than their impregnation counterparts on both carbon and TiO2 supports and stable over 

consecutive uses
25

. While the presence of PVA ligands on the catalyst were not believed to 

hinder activity (i.e. blocking of active sites, reaction with solvents) in the liquid phase, 

temperatures in excess of 300
 o

C are required to completely remove the ligand from alloy 

nanoparticles, at which point the catalytic activity is significantly reduced.  

 

Considerable interest exists in using Au+Pd core-shell nanoparticles in catalysis in 

addition to their monometallic counterparts and reasons why a difference in catalyst activity 

might be expected using core-shell structures are related to the compatibility of lattice 

interactions between the core and shell metals
27

 (strain effect) and probability of different size 

and thicknesses respectively, and consequently the influence of alloying on surface structure and 

oxidation state
28

 (ligand effect). 
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Relatively small particles
 
may be associated with the reactivity

29
 for the direct synthesis   

of hydrogen peroxide when supported on carbon and TiO2. However, only low number   

densities of ultra-small alloy particles are formed via wet-impregnation methodology, which 

generates small Au-Pd alloy particles (1-8 nm) comprising mainly of Pd with a detectable             

Au component, and larger particles (20-200 nm) exhibiting an AucorePdshell morphology in     

addition to occasional Au-only particles. Some selective and non-selective techniques used to 

prepare bimetallic catalysts are described in Figure 5.2. Methods 1 and 3 can be used as              

a general guideline to show immobilisation of Au+Pd and Pd{Au} or Au{Pd} nanoparticles   

onto a support, representing selective techniques. Method 2 is likened to the impregnation of   

Au and Pd precursors onto a support, a non-selective technique forming particles of different  

size and composition respectively. 

 

  

 
Figure 5.2 Schematic representation of three methods used to prepare bimetallic catalysts:                      

(1) selective / immobilization of Au+Pd, (2) non-selective / impregnation of Au and Pd, and                   

(3) selective / immobilization of Au and Pd, showing the different types of metal-metal            

interactions expected from each method
30

. 
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As a result, the pre-fabrication of Au-Pd colloidal nanoparticles could overcome the 

limitations encountered using impregnation methodology providing the size distribution can be 

retained after nanoparticles are immobilized onto a support. In chapter 5, a series of carbon     

and TiO2-supported 1 wt% Au-Pd catalysts (Au:Pd molar = 1:2 - Au:Pd weight = 1:1) were 

prepared by sol-immobilization (SIm) and evaluated for the direct synthesis of H2O2 with the   

aim of understanding how the structure and activity of Au-Pd catalysts are influenced  by the 

order of Au and Pd reduction during nanoparticle synthesis, i.e. Au+Pd, Pd{Au} and Au{Pd}. 

Prior to their immobilization onto a support, the Au+Pd, Pd{Au} and Au{Pd} colloidal 

nanoparticles (known as ‘starting colloids’) were characterised by XPS and advanced aberration 

corrected electron microscopy. STEM-HAADF imaging and XEDS analysis were used to 

compare the particle size and composition of colloids before and after immobilization on carbon 

and TiO2 and assist in determining the optimum particle morphology and support for the direct 

synthesis reaction. 

 

Secondly, the effect of calcination temperature on the structure and activity of sol-

immobilized Pd{Au}/C and TiO2 catalysts has been investigated with the aid of advanced 

characterisation techniques to establish if the rate of H2O2 hydrogenation over SIm catalysts be 

minimised using a suitable heat treatment. Finally, for highly active sol-immobilized Au+Pd/C 

catalysts, the effect of changing Au:Pd ratio on structure and activity (maintaining a 1 wt%  

metal  loading) has been examined with aim of further improving the high rates of H2O2 

production and more specifically turnover frequency (TOF) achieved via sol-immobilization. 
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5.2 Electron Microscopy Characterization of Sol-Immobilized Catalysts 

 

5.2.1 Au+Pd, Pd{Au} and Au{Pd} Colloids 

 

STEM microscopy of the Au+Pd, Pd{Au} and Au{Pd} starting colloids highlighted 

similar mean particle sizes of 2.9 nm, 3.0 nm and 2.6 nm respectively (Table 5.1). The mean 

particle size of Au+Pd and Au{Pd} colloids increased slightly after immobilization on carbon 

and TiO2 and air drying (110
 o

C, 16 h), with the largest size difference between supports 

recognised for Au{Pd} catalysts. 

 

Support 

Morphology 

Au+Pd Pd{Au} Au{Pd} 

None 2.9 2.6 3.0 

C 3.7 4.3 3.1 

TiO2 3.9 4.6 4.6 

Table 5.1 Summary of the mean particle sizes for Au+Pd, Au{Pd} and Au{Pd} starting colloids                

and corresponding sol-immobilized catalysts, dried at 110 C for 16 h. 

 

A range of different shaped particles were detected using STEM-HAADF to study 

starting colloids dispersed on a continuous carbon film. Particle morphologies identified in 

images of Au+Pd colloids were: icosahedral (Ih), decahedral (Dh) and cub-octahedral (co)          

in nature, ranging 1-5 nm in diameter and exhibiting intensity variations characteristic of  

random alloying. Both Pd{Au} and Au{Pd} colloids comprised icosahedral (Ih), decahedral  

(Dh), cub-octahedral (co) in addition to dodecahedral (DDh) and singly twinned particles (STP) 

particle morphologies. 

 

 

 

 

 

 



Chapter 5 

Preparation of sol-immobilized Au-Pd catalysts 

 

152 

 

Colloid 

Size (nm) 

Core Shell 

Au{Pd} 2-5 0.5-1.0 

Pd{Au} 2-4 2-5 AL 

Table 5.2 Summary of core size and shell thickness in starting colloids.  AL = Atomic Layers. 

 

Advanced Z-contrasting and XEDS measurements confirmed that Pdcore-Aushell and 

Aucore-Pdshell morphologies were formed, with respective core-shell thickness measurements 

listed in Table 5.2. It must be noted that off-centre cores, particles with incomplete shell 

coverage and those simply lacking the core-shell structure were occasionally observed for 

Pd{Au} and Au{Pd} colloids, with variation and non-uniformity in the Au shell coverage of      

Pd-core particles most likely the result of insufficient ‘shell’ material being provided during 

nanoparticle formation. (Appendix A5.1). 

 

 

5.2.2 Au+Pd, Pd{Au} and Au{Pd}/C and TiO2 catalysts 

 

Referring to Table 5.1, the drying process did not promote significant sintering of 

particles on either carbon or TiO2 supports. High resolution images of immobilized Au+Pd 

particles identified a non-wetting interaction between the ‘rounded’ Au+Pd particles and 

activated carbon. In comparison, an extended flat interface was formed between the mainly 

‘faceted’ Au+Pd particles and TiO2, evidence of wetting behavior independent of the order        

of reduction of Au and Pd salts (Figure 5.3). Such wetting behavior on TiO2 is attributed to       

the development of strong metal-support interactions (SMSI), resulting in displacement of     

PVA ligands from interfacial regions across the catalyst surface. 
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Figure 5.3 High resolution electron microscopy of sol-immobilized Au+Pd/C (left) and Au+Pd/TiO2 

(right) catalysts, dried at 110
 
C for 16 h. 

 

Representative STEM-HAADF of sol-immobilized Au+Pd/C and TiO2 catalysts and use 

of Z-contrast measurements confirmed random Au+Pd alloy nanoparticles were present on both 

supports (Figure 5.4). The smallest nanoparticles characteristic of the starting colloid were no 

longer being present, having undergone sintering into larger particles during the drying step. 

 

 

Figure 5.4 STEM-HAADF images of sol-immobilized Au+Pd nanoparticles on carbon (top) and        

TiO2 (bottom) supports, dried at 110
 
C for 16 h. 

 

  



Chapter 5 

Preparation of sol-immobilized Au-Pd catalysts 

 

154 

 Figure 5.5 (left) highlights the existence of Pdcore-Aushell morphologies for Au{Pd} 

particles immobilized on carbon and TiO2, which were greater than 3 nm in size and comprised 

Au shells of thickness 1 nm or lower. The Au shell component was difficult to observe on 

particles smaller than 3 nm and in some cases faceted monometallic particles were detected on 

both supports. Similar to the structure of Au+Pd catalysts as shown in Figure 5.4, the smallest        

nm-scale alloys have sintered into larger particles during the drying step.  

 

 

Figure 5.5 STEM-HAADF images of Au{Pd} (left) and Pd{Au} (right) nanoparticles immobilized    

onto carbon (top) and TiO2 (bottom) supports, dried at 110
 
C for 16 h. 

 

 Figure 5.5 (right) indicates the presence of Aucore-Pdshell morphologies for Pd{Au} 

particles immobilized on carbon and TiO2, which were greater than 5 nm in size and comprised 

Pd shells of thickness 2 nm or higher. Similar to the Au{Pd} distribution, the Pd shell  

component was difficult to observe on Pd{Au} particles smaller than 3 nm, and again some 

particles were identified as monometallic, implying that a minority of Au core particles may     

not have received significant Pd shell coverage during preparation of the starting colloid. 
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5.2.3 The effect of sol-immobilization on the direct synthesis of H2O2 

 

 Time on-line H2O2 synthesis and hydrogenation activities of sol immobilized 1 wt% 

Au+Pd, Pd{Au} and Au{Pd}/C and TiO2 catalysts are summarised in Tables 5.3 and 5.4 

respectively. Carbon-supported catalysts were approximately 5 times more active than their 

TiO2-supported counterparts for direct hydrogen peroxide synthesis across all reaction times    

and outperformed wet-impregnated, 5 wt% Au-Pd/C (110 molH2O2kgcat
-1

h
-1

) catalysts. This 

represents a critical result given 5 times less Au and Pd is present in catalysts synthesised         

via sol-immobilization methodology. Exceptionally high initial rates of H2O2 production 

corresponding to the net formation of 0.16-0.19 wt% H2O2 after 30 seconds were noted            

for carbon-supported catalysts. The concentration of hydrogen peroxide produced after just       

30 seconds by carbon-supported catalysts exceeded the values achieved by many wet- 

impregnated
31

, 5 wt% Au-Pd counterparts after 30 minutes, indicating enhanced utilisation of 

active metal with approximately 8-10 fold improvement in turnover frequency (TOF). 

 

Catalyst
 

Productivity / molH2O2kgcat
-1

h
-1

 

30 min 2 min 30 sec 

C    

Au+Pd 158 720 1303 

Pd{Au} 143 706 1384 

Au{Pd} 142 929 1641 

TiO2    

Au+Pd 31 159 254 

Pd{Au} 25 117 231 

Au{Pd} 29 117 238 

Table 5.3 Summary of time on-line H2O2 productivity over sol-immobilized Au+Pd, Pd{Au},   

Au{Pd}/C and TiO2 catalysts (dried at 110
 o
C for 16 h).  
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Homogeneous alloyed Au+Pd/C and TiO2 supported catalysts in general demonstrated 

higher rates of H2O2 synthesis that core shell AuPd catalysts, although Au{Pd}/C was more 

active at some shorter reaction times, possibly due to a higher Au (shell) surface content, 

consequently lowering the rate of H2O2 hydrogenation relative to other catalysts. Time-on-line 

analysis showed the rate of hydrogen peroxide synthesis falls as the reaction proceeds due to 

high conversion of reactant gases, which decreases the partial pressure of hydrogen in the 

autoclave and reduces the H2 selectivity over the catalyst. 

 

Catalyst
 

Hydrogenation / molH2O2kgcat
-1

h
-1

 

30 min 2 min 30 sec 

C    

Au+Pd 546 4560 17200 

Pd{Au} 654 4120 13700 

Au{Pd} 370 5640 19700 

TiO2    

Au+Pd 384 6030 19300 

Pd{Au} 371 4120 14600 

Au{Pd} 331 4660 15600 

Table 5.4 Summary of time on-line H2O2 hydrogenation over sol-immobilized Au+Pd, Pd{Au}, 

Au{Pd}/C and TiO2 catalysts (dried at 110
 o
C for 16 h). 

 

Referring to Table 5.4, it is observed that high rates of H2O2 hydrogenation were 

obtained using Au+Pd, Pd{Au} and Au{Pd}/C and TiO2 catalysts. Initial rates of H2O2 

hydrogenation reported in the range 13000-19700 molH2O2kgcat
-1

h
-1

 imply that in the direct 

synthesis reaction, a high fraction of H2O2 molecules undergo rapid hydrogenation to H2O 

almost immediately after they are formed. 
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Figure 5.5 Summary of time on-line percentage H2O2 hydrogenation over sol-immobilized Au+Pd, 

Pd{Au}, Au{Pd}/C and TiO2 catalysts (dried at 110
 o
C for 16 h). 

 

 

Comparison of H2O2 hydrogenation using different catalysts in terms of percentage 

consumption in Figure 5.5 revealed that a significant portion of total H2O2 hydrogenated       

after 30 minutes (blue) is actually consumed within the first 2 minutes (green and red) of 

reaction. Although comparable hydrogenation percentages were reported at 30 sec and 2 min   

for Au+Pd/C and Pd{Au}/C, considerable H2O2 hydrogenation continued after this period, 

which could be connected to catalyst structure (i.e. the amount of exposed metallic Pd and 

particle composition), catalyst deactivation (refer to Figure 5.20) and importantly the complex 

interplay of simultaneous reaction pathways and dependency on reactant concentration. 
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The direct synthesis reaction is performed in a sealed autoclave containing a finite 

amount of hydrogen, oxygen and carbon dioxide (580 psi total). The hydrogen concentration 

decreases as hydrogen peroxide is produced, which can react further through the hydrogenation 

and decomposition pathways, of which hydrogenation decreases the hydrogen concentration 

more. As the concentration of hydrogen peroxide increases with time, consecutive reactions play 

a more important role and therefore the rate of hydrogen peroxide synthesis is a composite of    

several reactions.  

 

 

 
 

Equations showing the direct synthesis of hydrogen peroxide and parallel and consecutive reactions 

leading to the non-selective formation of water (left). Changes in the concentration of both H2 and O2 

gaseous reactants and H2O2 and H2O products are represented using differential equations (right).       

Rate constants are denoted k1-k4 and the reaction coefficients are denoted a-e respectively
32

. 

 

Oxygen is present in excess when using our standard reaction conditions and the 

decomposition activity is minimal (and even switched-off) for the majority of our catalysts. 

However decomposition is taken into account when performing hydrogenation experiments as 

subsequent activities are the sum of all H2O2 consumption pathways. Individual reaction 

pathways are difficult to deconvolute, prompting investigation into the direct synthesis reaction 

at very short reaction times where changes in hydrogen concentration and effect of sequential 

reactions are minimised as best as possible. These data present a realistic image of the initial 

activity of these sol immobilized catalysts and confirm that they are very active for both 

hydrogen peroxide hydrogenation and decomposition. 
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5.3 The effect of heat treatment on catalyst structure 

 

In an effort to determine if the high rates of hydrogen peroxide hydrogenation using      

sol-immobilized Au-Pd catalysts could be reduced by catalyst modification, the effect of static 

air calcination temperature on Au+Pd, Pd{Au} and Au{Pd} morphologies was investigated. 

Particular attention is focussed on using immobilized Pd{Au} colloids due to the high surface 

exposed Pd content characteristic of this deposition method and possibility of forming an alloyed 

Au-Pd catalyst retaining a narrow particle size distribution and consisting of a high surface    

Pd
2+

 concentration, the benefits of which were previously reported in a detailed investigation  

and discussed in chapter 4. 

 

 5.3.1 Characterisation of materials calcined at 200
 o

C 

 

 Both Pd{Au}/C and Pd{Au}/TiO2 catalysts calcined at 200
 o

C in static air (3 h) were 

generally found to retain their Aucore-Pdshell morphology despite moderate sintering having taken 

place on activated carbon (Figure 5.6). This was attributed to the weaker particle/support 

interactions  on activated carbon in comparison to the extended flat network formed on TiO2, 

leading to improved adhesion and resistance to sintering, although the onset of core-shell 

destabilization was observed on TiO2 after calcination at 200
 o
C. 

 

 

Figure 5.6 STEM-HAADF images of individual nanoparticles on sol-immobilized 

Pd{Au}/C (top) and Pd{Au}/TiO2 (bottom) catalysts, calcined in static air at 200
 o
C for 3 h. 
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 For some nanoparticles present on TiO2 support, the Au component had diffused   

inward, becoming preferentially attached to the TiO2 surface with the Pd component now 

displaced outward as a result (Figure 5.6). 

 

5.3.2 Characterisation of materials calcined at 400
 o

C 

 

 Calcination of Pd{Au}/C at 400
 o

C in static air (3 h) initiated burn-off of the carbon 

support leading to loss of surface area, PVA ligands on exceeding 300
 o

C and a mean Au+Pd 

particle size of ~35 nm. The decrease in support mass appears unique to sol immobilization 

methodology given no significant burn-off is reported when calcining impregnated Au-Pd/C 

counterparts using the same regime, and implied that Pd enrichment had occurred alongside 

sintering as the XPS derived surface Pd:Au ratio increased approximately 3 fold (Table 5.4).  

The sintering behavior identified for Pd{Au}/C was also identified on Au+Pd and Au{Pd}/C 

catalysts and illustrated by bright field TEM analysis of Au+Pd/C catalysts in Figure 5.7,       

both before and after calcination at 400
 o
C. 

 

    

Figure 5.7 Representative bright field TEM micrographs of sol-immobilized Au+Pd/C, 

before (left) and after (right) after calcination in static air at 400
 o
C for 3 h. 

 

In comparison, a completely different effect was observed on the surfaces of Au+Pd, 

Au{Pd} and Pd{Au}/TiO2 catalysts after 400
 o

C air calcination with HAADF imaging of 

Au+Pd/TiO2 highlighting good preservation of small random alloyed particles due to a strong 

metal-support wetting interaction restricting nanoparticle sintering irrespective of PVA ligand 

contribution (Figure 5.8). However both Au{Pd}/TiO2 and Pd{Au}/TiO2 catalysts lost their 

original core-shell morphologies, which destabilized to form bright particles with faint tails  

(blue arrow), and isolated bright and faint particles (yellow and red arrows) respectively. 
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Figure 5.8 STEM-HAADF images of: Au+Pd/TiO2, Pd{Au}/TiO2 and Au{Pd}/TiO2  catalysts             

after calcination in static air at 400
 o
C for 3 h. 

 

STEM-XEDS measurements of different particle structures concluded the bright regions 

were Au-rich and faint regions as being Pd-rich in nature and therefore elongated head-tail 

particles are indicative of Au and Pd phase separation from the original Pdcore-Aushell and     

Aucore-Pdshell nanoparticles with increasing calcination temperature (Figure 5.9). 

 

 

Figure 5.9 STEM-XEDS point spectra of bright and faint regions in elongated ‘tailed’ particles      

present on Pd{Au}/C after calcination at 400
 o
C, and highlighted by blue arrows in Figure 5.8. 
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XPS analysis presented in Table 5.4 reported a simultaneous oxidation of metallic          

Pd to Pd
2+

, which is attributed to the tendency of Pd to form PdO, in this case by diffusing    

away from Au-Pd alloys and hence forming a ‘tail’ during the calcination step. Analysis of 

Pd(3d) and Au(4f) spectral regions showed that heat treatment did not significantly affect the 

Pd:Au surface molar ratio of Pd{Au}/TiO2 catalysts. To conclude, the XEDS analysis of  

‘bright’ and ‘faint’ isolated components again confirmed existence of Au-rich and Pd-rich   

alloys respectively, which may be derived from insufficiently covered <3 nm Au and Pd “seed” 

particles in the starting colloids, prior to immobilization onto carbon and TiO2 (Appendix A5.1). 

 

 

Catalyst 

Heat  

Treatment 

Mean size 

(nm) 

Pd:Au 

molar ratio 

Pd
2+

/Pd
o
 

valence ratio 

Pd{Au}/C 

110 °C 5.6 2.2 0.42 

200 ºC 5.3 2.5 0.67 

300 ºC 9.4 4.0 2.65 

400 ºC 27 5.7 23.4 

Pd{Au}/TiO2 

110 °C 4.6 1.6 0.47 

200 ºC 4.6 2.2 1.81 

300 ºC 5.8 n.d. n.d. 

400 ºC 6.0 1.5 2.40 

Table 5.4  Summary of the mean particle size, Pd:Au molar ratio and Pd oxidation states of                      

1 wt% Pd{Au}/C and TiO2 catalysts calcined at various temperatures in static air for 3 h. 
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5.4 The effect of heat treatment on the direct synthesis of hydrogen peroxide 

 

The use of high calcination temperatures were found to be detrimental to the H2O2 

synthesis activities of supported Pd{Au}/C and TiO2 catalysts, resulting in near complete 

deactivation after 400
 o

C calcination in static air. As already observed in Table 5.5, Au-Pd 

colloids immobilized on carbon are approximately 5-6 times more active than TiO2-supported 

counterparts, with H2O2 synthesis activities comparable to those for optimized (acid treated),      

wet-impregnated 5 wt% Au-Pd/C catalysts (160 molH2O2kgcat
-1

h
-1

)
29

. 

 

Catalyst
 

Heat          

Treatment 

Productivity /             

molH2O2kgcat
-1

h
-1

 

Hydrogenation / 

molH2O2kgcat
-1

h
-1

 

Pd{Au}/C 

110 ºC 143 654 

200 ºC 155 280 

300 ºC 91 137 

400 ºC 4 252 

Pd{Au}/TiO2 

110 °C 25 370 

200 ºC 24 248 

300 ºC 12 236 

400 ºC 4 275 

Table 5.5 Effect of calcination temperature on the rates of H2O2 synthesis and hydrogenation              

over 1 wt% Pd{Au}/C and TiO2 catalysts calcined at various temperatures in static air for 3 h. 

 

Surprising, calcination at 200
 
°C actually increased the H2O2 synthesis activity of 

Pd{Au}/C from 143 to 155 molH2O2kgcat
-1

h
-1

. This was attributed to minor variation in the 

morphology and size of spherical Pd{Au} nanoparticles on carbon and partial degradation of 

PVA ligands prior to a significant reduction in synthesis activity on further increasing the 

calcination temperature due to particle sintering. The same enhancement was not apparent for 

Pd{Au}/TiO2 due to the on-set of core-shell destabilisation at 200
 o

C and the existence of     

strong metal support interactions across an extended flat interface. The preference of faceted 
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nanoparticles on TiO2 is also predicted to decrease the population of low co-ordination number 

corner and edge sites
33

 relative to more rounded, spherical particles on carbon. 

 

The H2O2 hydrogenation activity of Pd{Au}/C and TiO2 catalysts simultaneously 

decreased moving from 110 to 400
 o

C, with the majority of the loss in hydrogenation activity 

having occurred by 200
 o

C and corresponding to a decrease from 654 to 280 molH2O2kgcat
-1

h
-1

.    

A similar trend was observed for Pd{Au}/TiO2 and indicated that mild heat treatment of            

sol-immobilized catalysts can moderately improve H2O2 synthesis activity and considerably 

minimise sequential hydrogenation, while retaining a high degree of their original particle 

structure. The rapid decline in H2O2 hydrogenation with increasing calcination temperature 

implied the partial removal of PVA as being critical to increasing the amount of active sites 

available for direct H2O2 synthesis. Though H2O2 hydrogenation activity continued to decline   

on exceeding 300
 o

C, catalyst structure by now was seriously compromised resulting in loss      

of the high synthesis activity demonstrated by Pd{Au}/C before calcination. 

 

Referring to Figure 5.8, phase separation of Au and Pd components did not occur on 

Au+Pd/TiO2 after 400
 o

C calcination, implying that lattice interactions in randomly alloyed 

particles are of sufficient strength to counter Au-Pd phase separation and PdO formation.         

To conclude further investigation of the heat treatment parameter leading to better control of 

surface Pd
2+

/Pd
0
 concentration while maintaining original Au-Pd colloid composition is required.  

 

Moving on to section 5.5, the effect of changing Au:Pd ratio on both the structure and       

activity of catalysts toward the direct synthesis reaction has been investigated with aim of  

further improving the high rates of H2O2 synthesis and simultaneous minimising sequential 

hydrogenation activity observed for Au+Pd nanoparticles immobilized on carbon. Edwards        

et al. previously reported that for acid pre-treated Au-Pd/C catalysts prepared using wet 

impregnation
29

, the smallest particles detected comprised mainly Pd and that 3-5 nm Au-Pd 

nanoparticles comprised typically 98% Pd 2% Au. Since the high H2O2 synthesis activity of    

this catalyst (160 molH2O2kgcat
-1

h) was considered to be associated with these small          

particles, it was postulated that for optimum activity, development of a method to synthesise         

a catalyst containing a uniform population of 3-5 nm Au-Pd particles comprising >95% Pd     

was critical, prompting the following investigation into the effect of Au:Pd molar ratios. 
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5.5 The effect of Au:Pd ratio on catalyst structure and activity  

 

In addition to preparation of Au+Pd, Pd{Au} and Au{Pd} colloids and evaluation of 

calcination conditions, the composition of highly active Au+Pd colloids of different Au:Pd  

molar ratio immobilized on activated carbon was investigated. A series of 10 catalysts of   

varying molar ratio (Au:Pd = 1:0, 7:1, 3:1, 2:1, 1:1, 1:1.85, 1:2, 1:3, 1:7, 0:1) were prepared, 

characterized and tested for the direct synthesis of hydrogen peroxide. 

 

5.5.1 UV-Visible spectroscopy of Au:Pd colloids 

 

Prior to catalyst testing, colloidal solutions (extracted after reduction by NaBH4) were 

analysed using UV-Visible spectroscopy, which observed a plasmon band centred at 505 nm 

characteristic of monometallic Au nanoparticles
34

 below 10 nm in size that is not observed for 

monometallic Pd. On increasing the Pd content in Au+Pd bimetallic sols a gradual disappearance 

of the Au plasmon was observed for spectra presented in Figure 5.10. This was attributed to 

changes in the band structure of Au particles alloyed with Pd to form randomly alloyed Au+Pd 

nanoparticles.
36-38
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Figure 5.10 UV-Visible spectra of simultaneously reduced AuxPdy colloidal solutions. 
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5.6 Characterisation of AuxPdy/C sol-immobilized catalysts 

 

5.6.1 X-ray photoelectron spectroscopy 

 

Analysis of the Au(4f) region confirmed the presence of Au
0
 exclusively in AuxPdy/C 

samples and evidence of Au+Pd alloying based on a binding energy downshift moving from 

Au1Pd0 (84.2 eV) to Au1Pd1 (84.0 eV) compositions. In comparison analysis of the 

Au(4d)+Pd(3d) region indicated metallic Pd species for catalysts comprising Pd:Au ratios <1, 

while Pd
2+

 species were detected alongside metallic Pd for catalysts comprising Pd:Au ratios >1, 

the relative amount of which increased with Pd molar content (Figure 5.11). 

 

 

Figure 5.11 Pd(3d) spectra for sol-immobilized Au+Pd/C catalysts of varying molar ratio. 

 

The relationship between the XPS-derived Pd:Au (corrected for Pd(3d5/2) and Au(4d5/2) 

component overlap) and nominal Pd:Au molar ratio moving from 0 to 1 was determined as  

being directly proportional, after which the XPS-derived surface ratios were a factor of ~2    

lower than the nominal Pd:Au ratios used in catalyst preparation (Appendix A5.3). With 

reference to HAADF images shown in Figure 5.12, differences in Au and Pd particle size    

and/or compositional variation (larger Pd-rich signals) could give rise to lower signal intensity 

reflected in the XPS-derived molar ratios.  
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5.6.2 Electron microscopy characterisation 

 

The mean and median particle sizes of Au-only, Pd-only and AuxPdy/C catalysts imaged 

in bright field TEM mode (Appendix 5.4) did not identify a general systematic variation in 

particle size with colloid composition, although the median particle sizes of AuxPdy/C alloys 

were all lower than reported for monometallic Pd/C (5.4 nm) and more ‘tightly’ distributed 

(Figure 5.13). XEDS analysis of immobilized nanoparticles in the bright field (BF) region 

detected both Au and Pd signals of intensity correlating with nominal Au:Pd molar ratios 

respectively, indicating formation of homogeneous Au+Pd alloys. 

 

 

Au:Pd molar ratio 

2:1 1:1 1:2 

 

 

 

 

 

 

Figure 5.12  Representative STEM-HAADF images of homogeneous Au+Pd nanoparticles of        

varying Au:Pd molar compostion. 

 

Indeed STEM-HADDF images of alloyed nanoparticles present in Au2Pd1, Au1Pd1 and 

Au1Pd2 compositions confirmed the existence of spherical, non-wetting homogeneous alloys 

with a face centred cubic, [f.c.c] structure formed exclusively with no evidence of core-

shell/segregated Au-Pd structures by means of Z-contrast measurements (Figure 5.12). Despite 

the synthesis of random Au+Pd alloys, evidence of systematic composition variation with 

particle size was established when studying Au+Pd/C (Au:Pd = 1:7) and completely opposite    

to the composition variation exhibited by impregnation catalysts. The XEDS point analysis           

of 1-12 nm particles as shown in Figure 5.14 consistently highlighted the existence small            

Au-rich particles, intermediate Au+Pd particles and large Pd-rich particles across the support. 
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Figure 5.13 Summary of particle size distributions for AuxPdy particles immobilized on carbon:             

(a) Au only, (b) Au:Pd=7:1, (c) Au:Pd=2:1, (d) Au:Pd=1:1, (e) Au:Pd=1:1.85, (f) Au:Pd=1:2,                

(g) Au:Pd=1:7, and (h) Pd only. 



Chapter 5 

Preparation of sol-immobilized Au-Pd catalysts 

 

169 

     

Figure 5.14 XEDS point spectra measurements of HAADF imaged nanoparticles, analysing the low (a), 

medium (b) and high (c) of the particle size distribution in Au+Pd/C (Au:Pd = 1:7). 

 

The contribution of Ostwald ripening
35-37

 and/or support mediated sintering of Au+Pd 

nanoparticles was discounted after XEDS analysis of the starting colloid (Au:Pd = 1:1.85) 

detected a similar systematic composition variation within which Pd content increased with     

particle size (Figure 5.15 (left)). The size distribution upper limit increased by ~2 nm after        

the Au+Pd colloid was immobilized on carbon and dried at 110 
o
C (Figure 5.15, right) with  the 

Pd wt% for the majority of particles in the 2-7 nm range remaining intact. It is probable that 

differences in the reduction rates of Au
3+

 and Pd
2+

 species during ‘co-reduction’ could lead to 

particle agglomeration and subsequently compositional inhomogeneity. 
 

 

Figure 5.15 Particle size composition scatter diagrams of the Au-Pd colloid (Au:Pd = 1:1.85) before  

(left) and after immobilization on carbon and drying at 110
 o
C for 16 h (right). 
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5.6.3 Effect of Au:Pd molar ratio on H2O2 synthesis and hydrogenation 

 

High H2O2 productivities were demonstrated after 2 and 30 minute reactions using      

sol-immobilized 1 wt% AuxPdy/C catalysts. The optimum composition, Au1Pd2 exhibited a 

productivity of 188 molH2O2kgcat
-1

h
-1

, forming 0.38 wt% H2O2 after 30 minutes and closely 

followed by the Au1Pd1.85/C composition. After 2 minutes, the latter composition produced    

0.10 wt% H2O2 - comparable to the yield obtained using a 2.5 wt% Au-2.5 wt% Pd/TiO2    

catalyst prepared by wet impregnation after a 30 minute reaction and indicating improved 

utilisation of Au and Pd metals via colloidal immobilization. 

  

 

Figure 5.16 The effect of Au:Pd molar ratio on the H2O2 productivity of 1 wt% AuxPdy/C                     

sol-immobilized catalysts after 2 and 30 minute reaction times – optimum yield (wt%) denoted. 

 

Hydrogen peroxide productivity and AuxPdy composition, denoted as Pd molar% in      

scatter profiles obeyed an asymmetric ‘volcano’ relationship situated between the low and 

surprisingly high productivities demonstrated by Au/C and Pd/C (120 molH2O2kgcat
-1

h
-1

)  

catalysts respectively. XPS showed the monometallic Pd catalyst comprised both Pd
2+

/Pd
0
 

species, and exhibited the highest Pd
2+

 concentration out of all the compositions investigated. 

The mean particle size of monometallic Pd/C was only 1-2 nm greater than AuxPdy alloys, with a 

majority of particles remaining 6 nm or less in size, factors that could facilitate the reduced  

albeit still elevated rate of H2O2 hydrogenation that is recognised in Figure 5.17. 
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Representation of H2O2 production in terms of: (i) productivity / molH2O2kgcat
-1

h
-1

, and 

(ii) turnover frequency / h
-1

, taking into account total number of Au+Pd moles in each sample 

both followed an asymmetric ‘volcano’ relationship as a function of AuxPdy composition.  

Furthermore, particle counting and surface area measurements of spherical Au+Pd particles 

imaged in bright field TEM analysis of Au1Pd1.1.85/C estimated a high turnover frequency of 

31,000 molecules H2O2 surface atom
-1

 h
-1

, compared to a value 2183 mol H2O2 molmetal
-1

 h
-1

 

calculated from nominal Au:Pd metal loadings. 

 

 
Figure 5.17 The effect of Au:Pd molar ratio on the H2O2 productivity (black diamonds) and 

hydrogenation activity (red squares) of 1 wt% AuxPdy/C sol-immobilized catalysts after 30 minute 

reaction time. 

 

The most active AuxPdy catalysts for H2O2 synthesis also gave the highest rates of 

sequential hydrogenation, correlating with an increase in Pd content with the notable exception 

of monometallic Pd/C and implying that the addition of Au to Pd actually enhanced the rate      

of H2O2 hydrogenation, with the highest rate achieved by Au1Pd7/C (683 molH2O2kgcat
-1

h
-1

). 

Referring to previous XPS analysis of sol-immobilized Au, Pd and Au+Pd/C catalysts by    

Carley et al. and listed in Table 5.6, it is suggested that random alloying of Au and Pd          

components promotes an increased surface Pd molar concentration coupled with a gradual 

reduction in Pd
2+

/Pd
0
 ratio, which is highest for the monometallic Pd/C catalyst. 
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Table 5.6 Surface molar concentrations for sol-immobilized 1 wt% Au, Pd and AuxPdy/C (Au:Pd = 1:2) 

catalysts
34

. 

 

The fact that addition of Au to Pd improves not only the rate of hydrogen peroxide 

production but also its sequential hydrogenation to water represents a negative consequence       

of synergy when attempting to synthesise an intermediate as opposed to a total oxidation 

product. Despite this conclusion, small immobilized Au-Pd nanoparticles are still superior in 

terms of productivity and H2O2 yield (values in reality are much higher when eliminating the 

hydrogenation factor). To conclude section 5.6, we intend to continue optimization studies of 

Au+Pd colloids with the objective of minimising the rates of H2O2 hydrogenation over catalyst 

without significantly compromising particle size and compositional distributions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Catalyst 

Surface molar % 

Au Pd Pd/Au 

Au/C 0.0251   

Pd/C  0.0141  

AuPd/C 0.0166 0.0219 1.32 
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5.7 The stability of sol-immobilized Au-Pd catalysts 

 

Sol-immobilized 1 wt% Au+Pd/C and TiO2 catalysts (Au:Pd = 1:2) were found to be 

unstable for the direct synthesis reaction on repeat use (Figure 5.18). Over four reactions,          

the H2O2 synthesis activity of Au+Pd/TiO2 steadily decreased from 31 to 12 molH2O2kgcat
-1

h
-1

 

while the fraction of the initial activity lost on each successive use of Au+Pd/C increased, and 

after four reactions was approximately one-third of the initial activity (51 molH2O2kgcat
-1

h
-1

) but 

still exceeded the activity of TiO2-supported catalysts. Under standard reaction conditions     

there is a possibility of hydrogen peroxide facilitating the decomposition of the PVA ligands, 

compromising the structure of colloidal nanoparticles and leading to agglomeration, which         

is suggested in upcoming microscopy (Figure 5.19). 

 

 

Figure 5.18 Evaluation of the catalyst reusability of sol-immobilized 1 wt% Au+Pd/C and TiO2   

catalysts for the direct synthesis of hydrogen peroxide (dried at 110
 o
C, 16 h). 
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Figure 5.19 STEM-HAADF images of 1 wt% Au+Pd/C before (left) and after (right) 3 x H2O2    

synthesis reactions (right). 

 

STEM-HAADF imaging of the 1 wt% Au+Pd/C catalyst before and after three 

consecutive synthesis reactions showed the agglomeration of many <5 nm particles into 

nanoparticles several times larger in diameter, which are responsible for the residual H2O2 

productivity on each subsequent use. Elemental mapping was used to study the composition      

of nanoparticles present on carbon recovered after 3 x H2O2 synthesis indicated minimal 

variation in Au:Pd composition relative to the starting colloid (Au:Pd = 1:1.85) and sintered 

particles generally maintained their homogeneous composition as oppose to forming phase-

separated/core-shell structures (Figure 5.20). Currently, the concentration of PVA ligands on       

a sol catalyst recovered after reaction(s) cannot be quantified because visualisation of ligands     

in either the bright field (BF) or high angle annular dark field (HAADF) modes cannot be 

achieved.  

 

 

Figure 5.20 STEM-XEDS mapping spectra of 1 wt% Au+Pd/C after 3 x H2O2 synthesis reactions 

showing the composition of sintered nanoparticles: (left) a round-shaped, large particle, and (right) a  

large particle originating from agglomeration of 2-3 smaller nanoparticles. 
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XPS analysis of the used samples confirmed retention of a low nominal Pd/Au ratio on 

both carbon and TiO2 supported catalysts (Table 5.7) and that Au and Pd surface concentrations 

were not significantly altered after each successive reaction, implying the agglomeration of 

nanoparticles sintering as being the primary cause of catalyst deactivation as oppose to metal 

leaching. SEM-EDX measurements also displayed consistent Au and Pd signals for the used 

samples in lieu of atomic absorption spectroscopy, given the carbon support cannot be dissolved 

in aqua-regia to liberate Au and Pd into solution and because any metal leached inside the 

autoclaves can readily deposit onto stainless components, preventing a true determination of 

metal leached into solution. Inductively Couple Plasma (ICP) analysis
34

 previously used to     

show 100% immobilization of Au and Pd colloids on supports is planned to examine the        

used samples in future. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.7 Surface atomic compositions of used Au+Pd/C and TiO2 catalysts determined using               

X-ray photoelectron spectroscopy. 

 

 

 

 

 

 

No. Reactions 

Surface atomic % Pd/Au 

Molar ratio 
Au Pd 

Au+Pd/C    

1 0.51 1.08 1.62 

2 0.49 0.92 1.39 

3 0.47 0.92 1.49 

Au+Pd/TiO2    

1 0.09 0.15 1.29 

2 0.10 0.19 1.36 

3 0.12 0.19 1.13 
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When planning the investigation to evaluate the use of sol-immobilized Au-Pd 

nanoparticles as catalysts for the direct synthesis of hydrogen peroxide, it was already 

understood that these materials were stable and could be reused several times with minimal 

differences in particle size and morphology for selective glycerol
37

, benzyl alcohol
38

 and toluene 

oxidation reactions
39

.
 
It is now apparent that a post-modification step is mandatory in the 

development of a highly active, stable and reusable catalyst for direct H2O2 production.  

 

Catalyst 

Productivity / molH2O2kgcat
-1

h
-1

 

1
st
 Use 2

nd
 Use 

Pd{Au}/C 155 115 

Pd{Au}/TiO2 24 18 

Table 5.8 The effect of calcination at 200
 o

C in static air (3 h) on the reusability of sol-immobilized         

1 wt% Pd{Au}/C and TiO2 catalysts for the direct synthesis of hydrogen peroxide. 

 

Calcination of sol-immobilized 1 wt% Pd{Au}/C and TiO2 catalysts using a lower 

temperature of 200 
o
C (Table 5.8) still resulted in a loss of H2O2 productivity on repeat use and 

although further investigation is required, it appears unlikely based on this observation that a 

highly active and fully reusable catalyst can be derived using a single heat treatment step 

performed in static air, which is supported further by results for Au+Pd/TiO2 listed in Table 5.9. 

 

 

5.8 Comment on reflux and reduction methods 

 

Refluxing of sol-immobilized catalysts in water to remove PVA ligands and retain 

particle size and composition were published recently in Nature Chemistry
40

, demonstrating        

an optimum reflux temperature of 90
 o

C increased the activity of several reactions including         

CO oxidation, benzyl alcohol and glycerol oxidation (Appendix A5.2). Given the solvent 

composition used for hydrogen peroxide synthesis comprises 66 vol% MeOH: 33 vol% H2O, the 

partial removal of PVA ligands during the course of the reaction is anticipated. 
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Table 5.9 Summary of the H2O2 synthesis and hydrogenation activities for sol-immobilized                      

1 wt% Au+Pd/C and TiO2 (Au:Pd = 1:1.85) catalysts prepared with additional reflux (water)                   

or reduction steps. 
a
 denotes that catalyst can be reused without loss of activity. 

 

A final set of experiments comparing the effect of water reflux and heat treatment          

in 5% H2/Ar highlight two advantages of using TiO2 as the support. Though rates of H2O2   

synthesis are approximately 5-6 times lower over TiO2-supported catalysts, refluxing the  

catalyst in water is not deleterious to activity and importantly reduction forms a more active     

and stable catalyst, neither of which are achieved using carbon as the support (Table 5.9).         

 

The rate of H2O2 hydrogenation after reduction remains elevated due to the presence of 

high surface Pd
0
 content and in future it may be possible to design more active catalysts with 

minimised hydrogenation activity via oxidation-reduction-oxidation (ORO) conditions instead   

of a single heat treatment step, which we concluded as being insufficient in forming a highly 

active and fully reusable catalyst, with minimal to no sequential H2O2 hydrogenation. Both    

characterisation of the reduced 1 wt% Au+Pd/TiO2 catalyst and further investigation into the        

role of heat treatment on catalyst structure and activity will be undertaken in a follow-on study. 

 

 

 

Catalyst Polymer / Treatment 
Productivity /             

molH2O2kgcat
-1

h
-1 

Hydrogenation / 

molH2O2kgcat
-1

h
-1

 

Au+Pd/C 

PVA 158 546 

PVA  +  Refluxed 90 
o
C 129 829 

  PVA  +  Reduced 400 
o
C 40 525 

Au+Pd/TiO2 

PVA 31 384 

PVA  +  Refluxed 90 
o
C 32 390 

  PVA  +  Reduced 400 
o
C    51 

a
 320 
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5.9 Discussion 

 

 It can be concluded from investigation into the preparation of Au+Pd, Au{Pd} and 

Pd{Au} colloidal nanoparticles that the order of Au and Pd metal reduction during colloid 

synthesis and prior to immobilization on carbon and TiO2 supports can affect the resulting 

activity of catalysts active toward both the synthesis and hydrogenation of hydrogen peroxide   

as summarised for the carbon-supported series in Figure 5.21. Initial rates of H2O2 synthesis over 

sol-immobilized catalysts are exceptionally high and in some instances as much as 0.19 wt% 

H2O2 can be produced after 2 minutes, which is higher than many of the yields reported for 5 

wt% catalysts prepared by wet-impregnation after 30 minutes. This also represents a 7-8 fold 

improvement in terms of turnover frequency given sol-immobilisation catalysts are prepared 

using 5 times less Au and Pd metal relative to impregnation. 

 

 
 
Figure 5.21 Summary of the H2O2 synthesis and hydrogenation activities by Au+Pd, Pd{Au} and 

Au{Pd} nanoparticles immobilized on carbon. 

 

The H2O2 synthesis activities of sol-immobilized Au+Pd, Pd{Au} and Au{Pd)/C 

catalysts are approximately 5-6 times higher than their TiO2-supported counterparts and 

characterisation of catalysts by advanced aberration corrected electron microscopy concludes      

a dramatically different particle structure and metal-support interaction manifests depending on 

the choice of support. Specifically, high resolution images of immobilized Au+Pd particles 

identified a non-wetting interaction between ‘rounded’ Au+Pd particles and activated carbon, 

compared to formation of an extended flat interface was between mainly ‘faceted’ Au+Pd 
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particles and TiO2. The latter observation is evidence of surface wetting behavior and is 

independent of the order Au and Pd reduction during nanoparticle synthesis and is attributed     

to the development of strong metal-support interactions and consequently the displacement of 

PVA ligands in close proximity to metal-support interfaces. 

 

Although the preparation of Au-Pd nanoparticles by sol-immobilisation was undertaken 

in order to generate catalysts of improved particle size and composition, microscopic analysis    

of nanoparticles before and after immobilisation onto carbon and TiO2 did detect some            

off-centre cores, particles with incomplete shell coverage and those simply lacking the core-shell 

structure with respect to Pd{Au} and Au{Pd} colloids. The variation and non-uniformity in     

the Au-shell coverage of Pd-core particles is likely the result of insufficient ‘shell’ material  

being provided during nanoparticle formation. Estimates of the total weight fraction of the    

shell element theoretically required to obtain complete coverage of the core element with an 

integer number of shell layers has been considered for Au{Pd} and Pd{Au} nanoparticles     

using the Mackay icosahedral model and calcinations are summarised extensively elsewhere.     

 

Briefly, one calculation performed for a 4.3 nm Au core (comprising 1415 Au atoms) 

showed that only 20 wt% of Pd was required to form a complete monolayer shell, compared      

to 45 wt% Au being required to form a complete monolayer shell around a 4.1 nm Pd core (again 

comprising Pd 1415 atoms). Given the wt% of Au present was fixed at 50 wt%, this amount    

would be insufficient for achieving a complete coverage of sub-3 nm Pd cores (as the size          

of core-shell particles decreases, the wt% of shell material required for monolayer coverage 

increases) during the preparation of Au{Pd} nanoparticles, which explains why many smaller  

Pd particles exhibited partial to no Au-shell coverage. 

 

The study in chapter 5 also illustrates that use of a heat treatment step, specifically 

calcination in static air can dramatically affect both the morphology and oxidation state of 

metallic components in bimetallic Au-Pd nanoparticles. Characterisation of catalysts by XPS   

and STEM-HAADF suggested minimal oxidation of the Pd component during the 110
 
C   

drying step, which was irrespective of Au+Pd, Pd{Au} and Au{Pd} nanoparticle structure or     

the support. On calcining the catalysts at 400
 
°C, significant changes were observed in the 

structure of nanoparticles immobilized on both carbon and TiO2 supports.  
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For Au+Pd, Pd{Au} and Au{Pd}/C materials, calcination resulted in ‘burn-off’ of the 

carbon support and the sintering of nanoparticles to give an approximately 35 nm average 

particle size. However, for Au+Pd, Pd{Au} and Au{Pd}/TiO2 counterparts, immobilized    

Au+Pd nanoparticles retained a random alloy structure and did not show evidence of phase 

separation, while interesting for Pd{Au} and Au{Pd} nanoparticle on TiO2, development of      

(i) Au-rich particles associated with long PdO tails, (ii) Au-rich particles and (iii) PdO particles 

was tracked with increasing calcination temperature. The latter two morphologies suggest       

that monometallic Au and Pd particles are formed alongside core-shell nanoparticles during 

preparation of Au{Pd} and Pd{Au} nanoparticles. 

 

A key of using a low temperature treatment is to remove the stabilising ligand from the 

catalyst, in this case PVA, which has been proposed as blocking active sites on the catalyst        

to an undetermined extent, without compromising the particle morphology and size of the 

‘starting sol’. It is evident that calcination temperature influenced the activity of Pd{Au} 

nanoparticles to a greater extent after immobilization onto carbon as oppose TiO2. This is         

due to different degrees of particle growth between the supports, in addition to variation in       

Pd oxidation state (with calcination in air promoting the development of surface Pd
2+

/PdO 

species) and the poorer thermal stability of the activated carbon, which appears to exacerbated 

for catalysts prepared by sol-immobilisation, in part perhaps due to the efficacy of very-small, 

Au
0
-Pd

0
 alloyed particles at catalysing the degradation of activated carbon. 

 

Finally, a series of Au+Pd alloy colloidal nanoparticles having a range of Au:Pd ratios 

were immobilized on carbon and evaluated for hydrogen peroxide synthesis. Structural 

characterisation of the catalysts by UV-Vis spectroscopy indicated the disappearance of the 

surface plasmon resonance band associated with Au nanoparticles on developing Au+Pd/C 

catalysts, indicating the presence of alloying as also confirmed by transmission electron 

microscopy and XPS analysis. In all cases, the Au-Pd nanoparticles were found to be  

homogeneous alloys, with the optimum H2O2 synthesis activity attained using a catalyst         

with Au:Pd molar ratio of 1:2. Activity in terms of both H2O2 synthesis and hydrogenation 

obeyed a distorted ‘volcano’ relationship with increasing Pd molar content. Referring to XPS 

studies, the hydrogenation activity of Au+Pd/C catalysts was suggested to increase with rising 

Pd content due to systematic variation in the quantity of surface exposed Pd and Pd
0
/Pd

2+
 ratio, 

which as a result cancels the positive effect of adding Pd to the Au nanoparticles. 
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Comparison of TOF values for bimetallic Au-Pd catalysts in Table 5.10 shows that 

approximately 7-8 times more hydrogen peroxide is produced per mole of metal when using    

sol-immobilized catalysts. At best this representation serves as an estimate because in reality      

it remains unknown how much and what exact phase of metal is ‘active’ for the direct     

synthesis of hydrogen peroxide. 

 

Catalyst  
Productivity /  

molH2O2kg-cat
-1

h
-1 

TOF /  

molH2O2 molMetal
-1

h
-1

 

 

0.5 wt% Au-0.5 wt% Pd/C   SIM 158 2183 

0.5 wt% Au-0.5 wt% Pd/C    CIM 60 832 

2.5 wt% Au-2.5 wt% Pd/C    CIM 110 303 

Table 5.10 Turnover Frequency, TOF comparison for catalysts of different loading prepared                  

by conventional, wet impregnation (CIM) and sol-immobilization (SIM) methods. 

 

  

5.10 Conclusion 

 

From the investigation into the preparation of Au+Pd, Au{Pd} and Pd{Au} colloidal 

nanoparticles, it was concluded that the order of Au and Pd metal reduction during colloid 

synthesis and prior to immobilization on carbon and TiO2 supports can affect the resulting 

activity of catalysts active toward both the synthesis and hydrogenation of  hydrogen peroxide. 

The H2O2 synthesis activities of sol-immobilized Au+Pd, Pd{Au} and Au{Pd)/C catalysts are 

approximately 5-6 times higher than their TiO2-supported counterparts. Characterisation of 

catalysts by advanced aberration corrected electron microscopy concluded that a different 

particle structure and metal-support interaction manifests depending on the choice of support. 

Finally, a series of Au+Pd alloy colloidal nanoparticles having a range of Au:Pd ratios were 

immobilized on carbon and evaluated. For all catalysts, the Au-Pd nanoparticles were found      

to be homogeneous alloys, with the optimum H2O2 synthesis activity achieved using a catalyst 

with Au:Pd molar ratio of 1:2. Activity in terms of both H2O2 synthesis and hydrogenation 

obeyed a ‘volcano’ relationship with increasing Pd molar content, the hydrogenation activity     

of which was suggested to increasing with rising Pd content due to systematic variation in the 

quantity of surface exposed Pd. 
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Chapter 6 

6.1 Introduction 

 

A range of supports have been successfully utilised for Au-Pd catalysts in the direct 

synthesis of hydrogen peroxide, with the monometallic Pd catalyst showing greater activity for 

the direct synthesis activity than the pure Au catalysts, the bimetallic Au-Pd catalysts, however, 

show higher activity than either the Pd or Au monometallic catalysts i.e. a synergistic effect       

is observed, all in the absence of any acid or halide promoters
1
. Interestingly, the morphology of 

the nanoparticles was shown to be support dependent, with metal oxide materials supporting Au 

core-Pd shell particles, and carbon supporting homogeneous Au-Pd alloys. Furthermore, acid 

treatment of TiO2 and activated carbon prior to metal deposition during the catalysts synthesis 

results in materials far more active and selective in the direct synthesis reaction that still do not 

require chemical promoters
2, 3

. The support of choice for Pd catalysts, developed by Lunsford 

and Choudhary
5-7

, is SiO2, and whilst Au/SiO2 catalysts were found by Ishihara
7
 and Haruta

8
 to 

show some activity for the direct synthesis of H2O2, this is small compared to Pd/SiO2 catalysts.  

 

While it was demonstrated in previous studies that TiO2 and activated carbon give      

high activity for Au-Pd catalysts, both of these supports have some disadvantages from an 

industrial viewpoint. For TiO2 it is possible that hydroperoxide species could be formed that   

can pose a hazard with any solvent used in the direct synthesis process, whereas for activated 

carbon the variability of the support material can pose problems in the manufacture of very   

large tonnage amounts required for commercial catalyst synthesis. The support of choice for a      

direct synthesis process is, however, silica. SiO2 has been extensively used for Pd catalysts and 

these were initially studied by Lunsford and Choudhary
5-7

, who found that SiO2 can be used to   

prepare highly active catalysts with Pd nanoparticles as long as halides and acids are included   

in the reaction medium.  
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Studies have focussed on improving Pd dispersion on SiO2 using techniques including 

the Stober method to form Pd core-silica shell particles, Pd@SiO2, and have suggested the 

resultant stabilization of less co-ordinated Pd crystals in a highly dispersed state by core-shell 

formation is effective in achieving improved rates of H2O2 production
9
. Park et al. have 

investigated the effect of functionalizing SiO2 and TiO2 supports with SO3H groups prior to 

depositing Pd metal on the rates of H2O2 synthesis
10-17

, which resulted in improved H2O2 

selectivity and yield realtive to untreated Pd/SiO2 and Pd/TiO2 catalysts, concluding that the 

SO3H functionalized supports served as an alternative acid source for the direct synthesis 

reaction, illustrated in Figure 6.1. The same group has studied the effect of incorporationg Pd 

nanoparticles into CsXH3-XPW12O40 containging heteropolyacid and MCF silica materials and 

identified a correlation betwen surface acidity and the activity exhibited by catalysts in the 

production of H2O2. 

 

Figure 6.1 Schematic of the possible stabilisation effect
14

 imparted by protonated sulfonyl groups on    

the H2O2 molecules produced by anchored Pd
2+

 species on mesoporous SiO2. 

 

Strukul
18

 and Centi
19

 have stated that high dispersion Pd can conversely be detrimental 

for hydrogen peroxide synthesis and leads to deactivation effects depending on the structure of 

the catalyst support. For example, Mesoporous SBA-15 silica possesses an ordered pore 

structure and small pores approximately 4 nm in diameter, whereas MCF silica has a 

characteristic disordered pore structure comprising large pores in the range 8-10 nm. Operation 

of the direct synthesis reaction under batch or semi-batch conditions and using a Pd/SBA-15 

catalyst in CO2-expaned methanol solvent resulted in catalyst deactivation due to loss of 
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exposed, active Pd metal through sintering and in-situ reduction by H2 feed gas dissolved          

in solution - a more facile process on Pd/SBA-15 in comparison to Pd/SiO2 counterparts. 

Specifically, the presence of ordered mesoporosity promoted migration of Pd metal into the 

SBA-15 channels to form elongated nanoparticles compared to the sintering of smaller Pd 

nanoparticles into 20-25 nm agglomerates
19, 20

.  

 

In a separate study
21

, Strukul et al. reported 60% H2 selectivity over a Pd/SiO2       

catalyst for the direct synthesis reaction under mild conditions, superior relative to both   

untreated and sulphated ZrO2 and CeO2 supports. With reference to HRTEM and chemisorption 

measurements, the selectivity was attributed to the ratio of more energetic, exposed sites on 

small Pd particles responsible for dissociative chemisorption of hydrogen peroxide and oxygen 

molecules (O atoms or OH species subsequently reacting with chemisorbed hydrogen to form 

H2O), and less energetic, exposed Pd sites that can chemisorb oxygen in a non-dissociative 

manner (leading to formation of H2O2). The dependency of this conclusion as a function of       

Pd particle size is presented below (Figure 6.2). 

 

Figure 6.2 Schematic of dissociative behaviour of oxygen molecules chemisorbed on small Pd particles
21

 

supported on SiO2. 

 

This has prompted investigation into the use of SiO2 as a catalyst support for hydrogen 

peroxide synthesis using supported Au-Pd nanoparticles. In this chapter, it is shown that     

highly active Au-Pd/SiO2 catalysts can be indeed prepared and used for the direct synthesis of 

H2O2 without the addition of halide and acid promoters. In contrast to all previously studied 

oxide supports, acid pre-treatment of SiO2 is required to observe synergy for the interaction of 

Au and Pd on this support and herein a detailed characterisation study of these materials is 

presented, both for bare supports and after wet impregnation of Au and Pd metals. 
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6.2 Effect of acid pre-treatment on H2O2 synthesis and hydrogenation activity 

 

A series of Au, Pd and Au-Pd catalysts supported on SiO2 (Johnson Matthey) were 

prepared by standard wet impregnation and calcined in static air. The SiO2 support was also   

pre-treated in dilute nitric acid and washed prior to Au and Pd impregnation, following the 

procedure previously described in chapter 4. Table 6.1 shows that both the untreated and        

acid treated Au-only catalysts are active for H2O2 production and afford a reduced rate                

of H2O2 hydrogenation relative to the bare support. However, no synergy was observed            

for the bimetallic Au-Pd/SiO2 catalyst compared to monometallic 2.5 wt% Pd/SiO2 (53 vs.        

51 molH2O2kgcat
-1

h
-1

), which increased to 74 molH2O2kgcat
-1

h
-1

 on doubling the catalyst loading     

to 5 wt% Pd. 

Table 6.1 Summary of H2O2 synthesis and hydrogenation activities over both untreated and acid     

treated  5 wt% Au, 2.5 and 5 wt% Pd and 2.5 wt% Au-2.5 wt% Pd/SiO2 catalysts respectively. Samples 

were dried (110
 o
C, 16 h) and calcined in static air (400

 o
C, 3 h). 

 

 

 

 

Catalyst 

Productivity / 

molH2O2kgcat
-1

h
-1

 

Hydrogenation / 

molH2O2kgcat
-1

h
-1

 

Untreated Acid Treated Untreated Acid Treated 

SiO2 0 0 158 134 

     

5% Au 7 7 112 104 

2.5% Au-2.5% Pd 53 83 275 127 

     

2.5% Pd 51 69 401 300 

5% Pd 74 85 488 359 
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Acid pre-treatment of the support dramatically increased the H2O2 productivity of the 

bimetallic Au-Pd catalyst in addition to raising the activity of monometallic 2.5 and 5 wt% Pd 

catalysts, and considered to arise from an enhanced dispersion initiated by changes in Si-OH 

concentration, which will be discussed in section 6.4. Most importantly there is evidence of 

synergy between Au and Pd after acid pre-treatment, the H2O2 productivity of the bimetallic 

catalyst is improved to 83 molH2O2kgcat
-1

h
-1

 compared to an activity of 69 molH2O2kgcat
-1

h
-1

 

obtained for 2.5 wt% Pd/SiO2.  

 

This increase in the productivity of monometallic Pd catalysts is more pronounced than 

for TiO2- and carbon-supported counterparts, where minimal to no differences were reported. 

Acid pre-treatment of the support also reduced the sequential hydrogenation activity of all the 

catalysts, including the bare support. The rates of H2O2 hydrogenation in descending order were: 

5 wt% Pd/SiO2 > 2.5 wt% Pd/SiO2 > 2.5 wt% Au-2.5 wt% Pd/SiO2 > 5 wt% Au/SiO2.             

Pre-treating the support in nitric acid significantly decreased the hydrogenation activity of          

5 wt% Au/SiO2 and 2.5 wt% Au-2.5 wt% Pd/SiO2 catalysts below the rate observed over         

the bare support (134 molH2O2kgcat
-1

h
-1

), in both instances indicating that Au and Pd metals       

are not introducing the sites responsible for the observed hydrogenation activity. 

 

 

6.3 Catalyst Reusability 

 

The rates of H2O2 production over untreated and acid treated 2.5 wt% Au-2.5 wt% 

Pd/SiO2 catalysts decreased on second use irrespective of calcination in static air (Table 6.2). 

The productivity of the acid treated Au-Pd/SiO2 catalyst fell from 83 to 53 molH2O2kgcat
-1

h
-1

, 

identical to the activity of the untreated catalyst after first use (Table 6.2). Li and co-workers 

have stated that the highly negatively charged surface of SiO2 (IEP = pH ~2-3) limits the 

effective incorporation of anionic [Au(OH)xCl4-x]
-
 complexes derived from hydrolysis of the 

HAuCl4 precursor, resulting in the formation of large Au particles (>10 nm) and impacting on 

the extent of Au-Pd alloying
22

 (discussed in section 6.4). 
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Table 6.2 H2O2 productivities of bimetallic 2.5 wt% Au-2.5 wt% Pd catalysts supported on          

untreated and acid treated SiO2, and the effect of calcination temperature on the resulting                 

activity and reusability of catalysts. n.d = not determined for this study. 

 

 

Atomic absorption experiments summarised in Table 6.3 show that both untreated and 

acid treated 2.5 wt% Au-2.5 wt% Pd/SiO2 catalysts (calcined 400
 o

C, 3 h) leached Au and Pd 

metal during the H2O2 synthesis reaction. The total metal leached did not exceed 20% of the 

original loading with at least 2 wt% Au and 2 wt% Pd remaining after reaction, implying the 

calcination in static air has introduced partial stability, given that >90% Au and Pd loss has 

previously been reported for uncalcined materials. Interestingly, more leaching was detected for 

acid treated Au-Pd/SiO2 particularly with respect to Au content and likely representing an 

artefact of changes in the structure of the SiO2 support induced by acid pre-treatment.  

 

 

 

 

Table 6.3 Summary of Atomic Absorption Spectroscopy studies to determine the initial and final metal 

loadings of bimetallic 2.5 wt% Au-2.5 wt% Pd catalysts prepared using untreated and acid treated SiO2 

supports, dried (110
 o
C, 16 h) and calcined in static air (400

 o
C, 3 h). 

 

 

 

Productivity / 

molH2O2kgcat
-1

h
-1

 

Untreated Acid Treated 

1
st
 Use 2

nd
 Use 1

st
 Use 2

nd
 Use 

Dried 110
o
C 131 n.d 158 n.d 

400
o
C 53 27 83 53 

Au-Pd / SiO2 

Untreated Acid treated 

Fresh Used Fresh Used 

wt% Au 2.44 2.28 2.45 2.00 

wt% Pd 2.46 2.32 2.59 2.13 
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Despite retention of 80% or more of the original Au-Pd loading, there is considerable  

loss of activity on second use, indicating that not all of the metal impregnated onto the support   

is active for the direct synthesis reaction. Edwards et al. 
23

 have reported that the cyanide 

leaching of 5 wt% Au/SiO2 catalysts did not result in significant loss of activity when tested     

for the oxidation of benzyl alcohol, despite almost no Au remaining on the catalyst, while          

Flytzani-Stephanopoulos
24

 has separately demonstrated a similar result for the water gas           

shift reaction using leached Au/CeO2 catalysts. 

 

As a consequence of the low isoelectric point of SiO2, control over particle size, 

composition and catalyst stability by means of a suitable heat treatment is limited, while the 

PdCl2 precursor can be decomposed alone using high temperature reduction to form a stable 

monometallic Pd/SiO2 comprising high surface Pd
0
 concentration (Appendix A6.1). However, 

the hydrogenation activity of the catalyst is elevated through using reducing conditions and 

therefore it appears unlikely that manipulating the heat treatment alone will form a stable, fully 

reusable Au-Pd/SiO2 catalyst synthesized from chloride precursors.  
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Comparison of oxidising and reducing heat treatments on the stability and H2O2 synthesis 

rates of bimetallic Au-Pd catalysts confirmed this is the case. Figure 6.3 shows that reducing   

the catalyst at 400-450
 o

C increased the H2O2 productivity from 53 to 138 molH2O2kgcat
-1

h
-1

        

(black bars) and decreased the loss of activity on repeat use (grey bars). Reduced Au-Pd/SiO2 

catalysts were also more active for H2O2 hydrogenation compared to the materials calcined in 

static air and consequently other methods to address the catalyst stability parameter will be 

discussed at the conclusion of chapter 6. 

 

 

Figure 6.3 Comparison of the H2O2 productivities of 2.5 wt% Au-2.5 wt% Pd/SiO2 catalysts prepared   

by standard impregnation on untreated SiO2, dried (110
 o

C, 16 h) and calcined in static air or reduced in 

5% H2/Ar at different temperatures for 3 h total.  

 

 

 In sections 6.4 and 6.5, respectively, characterisation techniques have been applied to 

understand how acid-pre-treatment of SiO2 modifies the structure of the bare support and the 

subsequent 2.5 wt% Au-2.5 wt% Pd/SiO2 catalysts, where synergy between Au and Pd metals 

was only apparent after acid pre-treatment of the support. 
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6.4 Characterisation of the SiO2 support 

 

6.4.1 FT-IR ATR Spectroscopy 

 

In an effort to determine the origin of the different activities observed for supported    

Au-Pd/SiO2 catalysts (Table 6.2), the untreated and acid treated supports were characterised           

by spectroscopic, microscopic and bulk techniques. The supports were first compared using 

Fourier transform infra-red attenuated total reflectance (FT-IR ATR) spectroscopy, which 

revealed no discernible differences between the non-acid treated and acid pre-treated SiO2 

(Figure 6.4). In the IR spectrum, characteristic SiO2 absorbance bands were observed for both 

supports and these were centred at 804, 977 and 1076 cm
-1

 and are assigned to Si-O-Si bending, 

and the Si-OH and Si-O-Si stretching modes respectively
25

.  

 

 

Figure 6.4 FT-IR ATR corrected spectra recorded for untreated (blue line) and 2% HNO3                                

pre-treated (black line) SiO2 supports. 
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6.4.2 Thermogravimetric Analysis 

 

TGA reported near-identical mass losses (~3.1 wt%) for untreated and acid treated     

SiO2 associated with loss of physisorbed water at temperatures up to 150 
o
C (Appendix A6.2), 

indicating that any water adsorbed during acid-pretreatment was sufficiently removed by the 

drying step (110
 o

C, 58 h). For both supports minimal mass losses were detected in the range 

150-350
 o

C, which in conjunction with TPD experiments concluded that desorption of surface 

hydroxyl groups proceeds at higher temperature. 

 

 

6.4.3 Temperature Programmed Desorption 

 

Temperature Programmed Desorption profiles of untreated and the acid pre-treated SiO2 

supports showed a broad signal consistent with loss of physisorbed water from the support below 

approximately 200
 o

C. However, on increasing temperature a distinct difference was noted 

between desorption profiles with respect to the temperatures of desorption maxima (Figure 6.5).  

 

 

Figure 6.5 TPD profiles recorded for untreated and 2% HNO3 pre-treated SiO2 supports.         

Experiments were performed without the magnesium perchlorate filter to permit the detection of          

OH and H2O species. 
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The signal intensity broadly increased by 20-30 mV upon further increasing temperature, 

resulting in a peak maximum centred at 500
 o

C for as-received SiO2 and a higher value of       

560-570
 o

C for the acid pre-treated SiO2 comparable feature. These desorption features are 

associated with Si-OH surface hydroxyl functionalities, which are known to decompose and 

desorb from the silica surface at higher temperatures due to enhanced hydrogen and covalent 

bonding properties
26

.  

 

The observed difference of 60
 o

C in the maxima of these features far exceeds 

experimental error and may, therefore, be interpreted as a true contrast in the nature of the Si-OH 

groups present on each support in terms of their respective concentration and arrangement on  

the support surface. Additional comparison was made between pre-treating the support with      

dilute nitric and acetic acids, the latter of which displayed a further increase in the peak 

maximum temperature for Si-OH desorption (Figure 6.6), although this change in desorption 

behaviour does not constitute a further decline in H2O2 hydrogenation activity (Table 6.4). 

 

 

Figure 6.6 TPD profiles recorded for nitric and acetic acid pre-treated SiO2 supports. Experiments     

were performed without the magnesium perchlorate filter to permit detection of OH/H2O species. 
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Table 6.4 Summary of the H2O2 synthesis and hydrogenation activities obtained for untreated,            

nitric acid and acetic acid pre-treated SiO2 supports and 2.5 wt% Au-2.5 wt% Pd/SiO2 catalysts 

respectively. Samples were dried (110
 o
C, 16 h) and calcined in static air (400

 o
C, 3 h). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Catalyst 
Productivity / 

molH2O2kgcat
-1

h
-1

 

Hydrogenation / 

molH2O2kgcat
-1

h
-1

 

SiO2   

Untreated 0 158 

2% HNO3 0 134 

2% CH3COOH 0 4 

2.5 wt% Au-2.5 wt% Pd/SiO2   

Untreated 53 275 

2% HNO3 83 127 

2% CH3COOH 91 237 
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6.4.4 Inelastic Neutron Scattering 

 

Figure 6.7 shows the inelastic neutron scattering (INS) spectra of the untreated SiO2 

support (black line), the acid-treated SiO2 (red line) and the difference (blue line) recorded at 

4840 cm
-1

 (600 meV) and 2017 cm
-1

 (250 cm
-1

) incident energies respectively. The vertical 

displacement of the acid treated relative to the untreated support is a consequence of the 

increased hydrogen content of the former. 

 

Figure 6.7 INS spectra of untreated (as-received / black line) and acid pre-treated (treated / red line)   

SiO2 with 600 (a) and 250 (b) meV incident energies respectively. 

 

There are clear differences between the two samples: in the acid-treated sample the 

intensity in the O–H stretch region (~3500 cm
-1

) has increased as have the bands at 1635, 1070 

and 430 cm
-1

. The 1635 and 430 cm
-1

 bands can be assigned to the bend and vibrational modes 

of H-O-H (water) respectively
27

. The feature at 1070 cm
-1

 that has markedly increased, is 

assigned to the in-plane Si–O–H bending mode of a hydroxyl group
28, 29

. Since the integrated 

intensity of an INS transition is directly proportional to the number of scattering centres in the 

path of the beam, it is estimated that the number of surface hydroxyls has increased by a      

factor of 2.3 as a result of the acid treatment. The amount of water present has also increased    

by a similar amount, presumably because there are more sites for hydrogen bonding. The weak 

peaks at 2940 and 1450 cm
-1

 that do not change probably originate from a small amount of 

hydrocarbon contamination in the silica.  

        (a) (b) 
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 INS spectra were also recorded for untreated and acid treated TiO2 (Degussa P25) and 

carbon (Darco G60) supports respectively. At this time it is not possible to comment on any 

changes in the concentration of surface hydroxyl groups on carbon because of ice interference 

present in the spectrometer caused by freezing of trace water present on the support which was 

not removed despite prolonged drying in advance of experiments. Differences were however 

found in spectra recorded at the 250 and 600 meV incident energies for untreated and acid 

treated TiO2 supports, in agreement with the observations made for SiO2 (Figure 6.8).             

INS spectra reported an increase in the intensity in the O–H stretch region (~3500 cm
-1

) for      

the acid treated TiO2 samples and suggest a very small difference in the amount of water present 

(peak at 1600 cm
-1

) and the possibility of a weak, broad feature at ~800 cm
-1

 consistent with 

hydroxyls, although this is right on the limit of detection and may be part of the tail of the    

water librational modes (onset at ~400 cm
-1

).  

 

Figure 6.8 INS spectra of untreated (as-received / black line) and acid pre-treated (treated / red line)   

SiO2 with 600 (a) and 250 (b) meV incident energies respectively. 
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6.4.5 X-ray photoelectron spectroscopy 

 

The O(1s) XP spectra for both untreated and acid pre-treated SiO2 supports might be 

expected to show features corresponding to increases in hydroxyl and water species, however, 

the spectrum obtained from SiO2 has a binding energy overlapping with the expected position   

of OH(a) and H2O adsorbed species, and therefore new components could not be observed. 

There is a small increase in the O/Si molar ratio after acid pre-treatment (from 2.3 to 2.4), but 

this is inside experimental error. In addition, there were no nitrogen containing species present 

on the sample within the detection limits of this technique after pre-treatment in nitric acid, 

functional groups that were incorporated when acid pre-treating the P25 TiO2 support and 

implied in corresponding TPD profiles by very broad, low and high temperature decomposition 

signals (Appendix A6.3). However, these features are very difficult to distinguish in the INS 

spectra due to overlap with the O-H stretching region (Figure 6.8). 

 

 

6.5 Characterisation of the Au-Pd/SiO2 catalysts 

 

6.5.1 Electron microscopy characterisation 

 

The combined application of STEM and SEM techniques was used to characterize the 

metal dispersion in Au-Pd/SiO2 catalysts prepared by standard impregnation and to effectively 

cover the very broad range of particle sizes recognised in these samples. Representative         

high angle annular dark field (HAADF) STEM images of both untreated and acid-treated         

2.5 wt% Au-2.5 wt% Pd/SiO2 catalysts presented in Figure 6.9 showed a large population of 

homogeneously dispersed particles in the 2-5 nm size range were found in both samples, with   

no significant differences observed in the particle size distribution. 

 

 

 

 

 

 

 

 

 

 



Chapter 6 

Preparation of silica supported Au-Pd catalysts 

 

200 

 

   

Figure 6.9 STEM-HAADF images of (a) untreated and (b) acid treated 2.5 wt% Au-2.5 wt% Pd/SiO2 

catalysts respectively. 

 

Analysis of bimetallic catalysts by X-ray energy dispersive spectroscopy (XEDS) showed 

that the 2-5nm particles presented in both samples only exhibited the characteristic Pd-signal 

with no detectable Au content (Figure 6.10), implying that these particles were either Pd-only     

or contained occasional Au atoms (present at a level below the XEDS detection limit). 

 

 

 

Figure 6.10 STEM-HAADF images and the corresponding XEDS spectra from individual nanoparticles 

in (a) untreated and (b) acid treated 2.5 wt% Au-2.5 wt% Pd/SiO2 catalysts respectively. 

 

(a) Au-Pd/SiO2, untreated (b) Au-Pd/SiO2, acid treated 
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The absence of the Au component in these samples can be explained by SEM-BSD   

(back-scatter detection) measurements displayed in Figure 6.11, which show that a significant 

proportion of the Au-rich particles present in both untreated and acid treated Au-Pd/SiO2 

samples are several hundred nanometres in diameter. XEDS analysis of these large particles    

did report a weak Pd signal, although it cannot be concluded from spectra whether particles     

were Au-Pd alloys or merely if the weak Pd signal originated from 2-5 nm Pd particles either 

adjacent or even underneath the larger Au-particles. Occasional m scale Pd-rich particles were 

also detected in both samples with an associated strong Cl XEDS signal, suggesting that they 

could be residues from the PdCl2 precursor insufficiently dissolved in the impregnation step. 

 

   

Figure 6.11 SEM-BSD images and XEDS spectra obtained from two areas of the untreated                   

Au-Pd/SiO2 catalyst (left), showing Au-rich particles that are several hundred nm in size (A), and       

large Pd-containing particles in excess of 10 m, possibly originating from PdCl2 (B). Spectra      

recorded for the acid treated Au-Pd/SiO2 catalyst (right) also shows Au-rich particles several         

hundred nm in size (C), and Pd-containing particles around 10 m in size (D). 

 

 

Based on the observations made using both electron microscopy techniques, it is 

concluded that the wet impregnation method can only finely disperse the Pd component on the 

SiO2 support, and that negligible structural or morphological differences are observed between 

the particles impregnated on the untreated and 2% HNO3 pre-treated SiO2 supports respectively. 
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6.5.2 X-ray photoelectron spectroscopy 

 

Characterisation of Au-Pd catalysts supported on untreated and acid treated SiO2 by      

X-ray photoelectron spectroscopy determined that in both samples the Pd is present as Pd
2+

 

entirely (Figure 6.12). In addition very weak Au signals were detected in both samples, for      

the untreated support, the Au intensity is below detection limits and for the acid treated     

support the Pd:Au surface molar ratio is 18:1, a finding not in agreement with the formation of 

core-shell structures due to the imaging of Au-rich particles several hundred nm in size. Given 

that Pd particles 2-5 nm in size provides the majority of the exposed surface area in the  

catalysts, it is consistent that the Pd signal should be the dominant feature in the XPS spectra     

of both samples. From the XPS data it can be concluded that acid pre-treatment of the SiO2 

support improves the dispersion of Au compared to the untreated support, albeit to a minor 

extent as it is still evident that standard wet impregnation does not effectively disperse the 

HAuCl4 precursor and hence Au metal onto the highly negatively charged surface of SiO2. 

 

 

Figure 6.12 Pd(3d) and Au(4f) XP spectra recorded for (a) the bare untreated silica support,                    

(b) 2.5 wt% Au-2.5 wt% Pd/SiO2 prepared using the untreated support, (c) the bare acid treated          

silica support, and (d) 2.5 wt% Au-2.5 wt% Pd/SiO2 prepared using the acid treated support. 
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6.5.3 Discussion 

 

As stated in the paragraph above, Pd
2+

 species were detected (within the experimental 

limits of the technique) in both the untreated and acid pre-treated Au-Pd/SiO2 catalysts, which 

were active for the hydrogenation of H2O2 (275 and 127 molH2O2kgcat
-1

h
-1

 respectively). The   

XPS observation of improved Au dispersion, albeit to a lesser extent after acid pre-treatment      

is somewhat consistent with findings reported in chapter 3 for carbon-supported Au-Pd catalysts. 

However, while large Au particles (30-100 nm) were also detected on the carbon support for   

Au and Au-Pd/C samples, these particles were generally smaller than the several hundred 

nanometre particle sizes identified for silica-supported Au-Pd catalysts and could be imaged 

using bright field TEM microscopy as oppose to SEM measurements. The clear difference 

between supports is that subsequent hydrogenation of H2O2 can be switched-off on the carbon 

support, whereas  it can only be moderately reduced for Au-Pd/SiO2 counterparts, despite both 

catalysts comprising >90% surface Pd
2+

 concentration.  

 

In addition, results presented in chapter 4 for Au-Pd/C catalysts also illustrate the 

important role of the Pd
2+

 oxidation state, and proposed alloying of Pd with a minor proportion 

of Au as contributing to the high observed surface Pd
2+

 concentration and constituting the  

unique switching-off phenomenon on G60 carbon pre-treated with nitric acid. Based on the 

differences in Pd/Au molar ratio, the implied development of Au-core Pd-shell nanoparticles and 

the type of functional groups present on each support (taking into account isoelectric point      

and possible influence(s) on catalyst stability), it is suggested these critical factors assist in 

explaining why the sequential hydrogenation of H2O2 is not switched-off on SiO2-supported    

2.5 wt% Au-2.5 wt% Pd catalysts in addition TiO2-supported catalysts, as reported previously. 

 

The lack of synergy induced between Au-Pd metals has prompted a short investigation 

into the preparation of bimetallic 2.5 wt% Au-2.5 wt% Pd catalysts on different SiO2 and         

Si-based supports in section 6.6, including a Silicalite framework and zeolite ZSM-5. The      

acid pre-treatment of Si-Al containing supports and the consequential effect on leaching and 

catalyst activity has also been considered and discussed in response to the possible negative 

effects in SiO2 pre-treatment and functionalization reported in the literature by Centi and   

Strukul groups respectively
18-20

. 
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6.6 Comparison of different SiO2 and Si-supports 

 

6.6.1 Silicalite 

 

 The framework structure of Silicalite is identical to that of Titanium-Silicalite (TS-1),      

a material hydrothermally synthesized using tetrapropyl ammonium hydroxide (TPAOH) as      

the template, substituting the Ti-atoms with Si-atoms and preserving angstrom level pore-size 

dimensions
30

. The Silicalite material was prepared under hydrothermal synthesis conditions at 

Cardiff University and calcined in N2 (650
 o

C, 2h, 1
 o

C min
-1

 heating ramp) to remove the 

tetrapropyl ammonium hydroxide, TPAOH template prior to impregnation of Au and Pd salts.   

It is clear from data shown in Table 6.5 that partial synergy is induced for the 2.5 wt% Au-      

2.5 wt% Pd composition with respect to the formation of hydrogen peroxide, although the 

subsequent hydrogenation activity of the catalyst is simultaneously increased relative to the     

2.5 wt% Pd catalyst and of comparable activity to 5 wt% Pd/Silicalite (158 molH2O2kgcat
-1

h
-1

). 

 

 

 

 

 

 

 

 

 

 
Table 6.5 Summary of the H2O2 synthesis and hydrogenation activities obtained for Silicalite-      

supported 5 wt% Au, 2.5 and 5 wt% Pd and 2.5 wt% Au-2.5 wt% Pd catalysts prepared by standard     

wet impregnation, dried (110
 o
C, 16 h) and calcined in static air (400

 o
C, 3 h).  

 

As such these pore-size constraints will limit the extent of interaction and dispersion 

between the Au and Pd metals added using wet impregnation techniques as oppose to complex 

and precise preparations such as ion-exchange, used to incorporated metal content far less      

than the nominal 5 wt% Au-Pd loading and resulting in a vastly different structure and  

dispersion relative to supported nanoparticles, and comparable to interactions in metal-organic 

framework (MOF) or porous co-ordination polymer (PCP) materials. Corma et al. 
31

 applied a 

Catalyst 
Productivity / 

molH2O2kgcat
-1

h
-1

 

Hydrogenation / 

molH2O2kgcat
-1

h
-1

 

5% Au 3 22 

2.5% Au-2.5% Pd 74 164 

2.5% Pd 62 58 

5% Pd 70 158 
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post-synthesis method to introduce Au from solution into the cavities of an IRMOF-3-SI        

type metal organic framework (Figure 6.13), representing the first reported example of a 

catalytically active Au-MOF containing an isolated gold species. IRMOF-3 was reacted with 

salicylaldehyde in equimolar amounts to yield a crystalline IRMOF-3-SI structure - reaction  

with 2,4 DNPH confirmed 3% of NH2 groups were modified. Thermo-gravimetric analysis 

showed IRMOF-3-SI-Au was thermally stable and unaltered upward to 300
 o

C, while TPR    

studies determined the oxidation state of Au as +3 exclusively. IRMOF-3-SI-Au was evaluated 

for the hydrogenation of 1,3 butadiene and found to be stable on repeat use (defined and 

controlled sites maintained) and exhibited catalytic activity one order of magnitude better      

than Au/TiO2 catalysts of higher loading and prepared by deposition precipitation
31

. 

 

 

Figure 6.13 Preparation of an Au
3+

 Shiff base via post-synthesis modification
 
(yellow = Au

3+
) 

31
. 

 

Similarities exist between MOF and zeolite structures though thermal and chemical 

stabilities of the latter are considerably greater. The MOF structure is far more flexible in terms 

of potentially limitless design possibilities and origin of framework stability which can be 

influenced by hydrogen bonding and ion-pairing interactions, particularly for nitrogen donating 

groups but are still insufficient compared to zeolites
32

. Carboxylate based MOFs and        

Zeolite-Imidazolate frameworks
 
developed by Haruta (ZIF-8, 9, 10) are stable in air and 

decompose in the range 300-400
 o

C, while frameworks assembled using terephthalate groups   

are highly air sensitive
33

. The hydrothermal stability is a key concern for MOF-5, MOF-177   
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and all IRMOF structures, which are sensitive to moisture leading to framework damage/phase 

transformation in water and for MOF-5 an irreversible collapse
34

 at 8 vol% H2O.  

 

The thermal and solvent constraints encountered for a range of MOF structures, many of 

which entail long synthesis procedures (the crystallisation of these materials can take several 

days) is not favoured in the development of a direct synthesis reaction to produce aqueous,         

3-8 wt% H2O2 solutions. The synthesis of metal organic frameworks and porous co-ordination 

polymers and discovery of their potential environmental application, i.e. hydrogen storage  

(based on very high surface areas) has been made in the last two decades and therefore it is 

anticipated that the tolerance of these materials in open atmosphere, a wide range of solvents  

and high temperature heat treatments (>400 
o
C) will be addressed in future publications. 

 

 

6.6.2 Zeolites 

 

Zeolites ZSM-5 and Y supported Au catalysts prepared by wet impregnation, however, 

have proven effective for the direct synthesis of H2O2, exhibiting productivities comparable to 

Au/Al2O3 catalysts and superior to Au/silica counterparts, best illustrated by Zeolite Y 
11

. 

Reactivity data for supported 5 wt% catalysts interestingly correlated with aluminium content 

with a dependency on pore structure of Zeolite Y. Appropriate pore channel and cavity 

dimensions are critical to catalytic activity and are controlled to an extent by the secondary       

building units. Although synthesis methods are not developed to the extent where dynamically 

accessible pores can be designed, static porosity in natural and rigid porous materials     

including zeolites has been made possible. Favourable rates of H2O2 production were achieved 

using 2.5 wt% Au-1.8 wt%/ZSM-5 and Y catalysts (102 and 78 molH2O2kgcat
-1

h
-1

 respectively) 

although the rates of H2O2 hydrogenation/decomposition over these supports were in some 

instances observed as high as 1,000 molH2O2kgcat
-1

h
-1

 (50% H2O2 loss) after 0.5 h reaction.  

 

In this study the aluminium content of ZSM-5 supports obtained from Zeolyst ® was 

varied and their viability as a support for 2.5 wt% Au-2.5 wt% Pd catalysts was evaluated for  

the direct synthesis of hydrogen peroxide, as shown in Figure 6.14, using black and red lines     

to represent H2O2 productivity and hydrogenation activity values respectively.  
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Decreasing the Al content in ZSM-5 resulted in a three-fold increase in H2O2 synthesis 

activity over supported 2.5 wt% Au-2.5 wt% Pd catalysts ranging from Si/Al = 23 to 80 (atom 

ratio) and corresponding to a simultaneous decrease in the H2O2 hydrogenation activity of        

the catalyst, which in turn is lowest at Si/Al = 80 (140 molH2O2kgcat
-1

h
-1

).  

 

 

Figure 6.14 Effect of zeolite Si:Al molar ratio on the H2O2 synthesis (black line) and hydrogenation    

(red line) activities of 2.5 wt% Au-2.5 wt% Pd/ZSM-5 catalysts prepared by standard wet impregnation, 

dried (110
 o
C, 16 h) and calcined in static air (400

 o
C, 3 h). 

 

 

Reducing the Al content in zeolite ZSM-5 increases the amount of surface exposed        

Si-atoms and hence modifies the iso-electric point of the support, and affecting the       

interaction between the metal and support and the base catalysed hydrogenation of hydrogen 

peroxide by tetrahedral AlO4
-
 units. As a result the hydrogenation of H2O2 is elevated over 

Al2O3, Fe2O3 and MgO supports and therefore moving to a higher density of exposed, solid    

acid Si-sites which may also be attributed to the marked decrease in H2O2 hydrogenation. 

Powder XRD analysis of 2.5 wt% Au-2.5 wt% Pd/ZSM-5 (Si/Au = 23, 30, 80 and 280)    

catalysts in Figure 6.15 also indicated possible differences in the bulk content of PdO and       

Pd
o
 phases located at 34 and 40 degrees 2θ respectively (JCPDS code: 00-006-0515), which 

were found to decrease on moving from ZSM-5 (50) to (280). This was accompanied by a 

marked decrease in intensity of the major Au
o
 [111] reflection at 38 degrees 2θ (JCPDS code: 

00-002-1095), although caution must be stated in these observations due to the possibility of 

overlap with reflections characteristic of the ZSM-5 material in the same regions. 
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Figure 6.15 Powder XRD profiles of 2.5 wt% Au-2.5 wt% Pd/ZSM-5 (Si/Al = 23, 30, 50 and 280) 

catalysts respectively. 

 

Further investigation into the application of zeolites as supports for the direct synthesis 

reaction is intended, although here it is concluded that high rates of H2O2 formation are            

not maintained on repeat use, illustrated for Au-Pd/ZSM-5 (Si/Al: 280) and several other         

Si-based supported catalysts in Table 6.7. Given this loss in H2O2 productivity (a decrease from    

83 to 23 molH2O2kgcat
-1

h
-1

), leaching of active Au and Pd metal into solution and the possibility 

of a homogeneous contribution to observed rates of H2O2 synthesis and hydrogenation cannot   

be discounted for ZSM-5-supported catalysts.  

 

The homogeneous activities of solutions of Au and Pd compounds of comparable metal 

content to supported 5 wt% Au, Pd and Au-Pd catalysts has been determined, showing that use 

of Pd precursors alone can give rates of H2O2 synthesis and hydrogenation as high as 80 and   

500 molH2O2kgcat
-1

h
-1

 respectiviely (Appendix Table A6.1). Consequently, the impregnation of 

Au and Pd metals onto complex framework-type structures does not result in a stable, fully 

reusable catalyst or sufficiently address the target of switching-off sequential hydrogenation of 

H2O2 produced in-situ, and therefore alternative incorporation methods are required. 



Chapter 6 

Preparation of silica supported Au-Pd catalysts 

 

209 

 

6.6.3 Silicalit (Solvay ®) 

 

In addition to the findings reported for zeolite ZSM-5, the effect of nitric acid              

pre-treatment on the composition of Silicalit (Si:Al = 85:2) supports sourced from Solvay ®    

and the rates of H2O2 synthesis and hydrogenation of supported Au-Pd catalysts has been 

investigated. Powder XRD analysis of Silicalit before and after pre-treatment in dilute nitric   

acid (Figure 6.16) showed a significant loss of Al content, as evidenced by a reduction in the 

intensity of aluminosilicate reflections and a post Si:Al ratio of approximately 277:1 determined 

using SEM-EDX analysis.  

 

Figure 6.16 Powder XRD profiles of Silicalit support before and after 2% HNO3 pre-treatment. 

 

Surprisingly, there is virtually no enhancement in either the rates of H2O2 synthesis           

or hydrogenation over bimetallic 2.5 wt% Au-2.5 wt% Pd catalysts after acid pre-treating the 

Silicalit support, compared to pronounced reduction in the hydrogenation rates over supported    

5 wt% Au and 2.5 wt% Pd catalysts and improved synthesis rates over both monometallic        

Pd catalysts (Table 6.6). These observations were similar to those reported in Table 6.1 for  

SiO2-supported catalysts, and this enhancement in H2O2 productivity is best illustrated for the          

2.5 wt% Pd catalyst and implies that pre-treatment of Silicalit improves the Pd dispersion and 

coverage of hydrogenation sites characteristic of the Silicalit material, noted in particular for      

5 wt% Au/Silicalit (22 molH2O2kgcat
-1

h
-1

). Compared to SiO2-supported catalysts, evidence of 

synergy is noted with bimetallic Au-Pd catalysts exhibiting higher rates of H2O2 synthesis 

relative to monometallic 2.5 and 5 wt% Pd counterparts irrespective of acid pre-treatment. 
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Table 6.6 Comparison of the H2O2 synthesis and hydrogenation activities for untreated and acid      

treated 5 wt% Au, 2.5 and 5 wt% Pd and 2.5 wt% Au-2.5 wt% Pd/Silicalit (Si:Al = 85:2) catalysts 

prepared by standard wet impregnation, dried and calcined in static air (400
 o
C, 3 h). 

 

 

6.6.4 Porous glass and other SiO2 sources 

 

To conclude the evaluation of different supports, a co-polyimide (CPI), porous glass type 

silica and SiO2 supports of different particulate and pore size dimensions (Acros Organics) were 

provided by Solvay and evaluated for the direct synthesis reaction. Co-polyimide glass structures 

have been applied as supports for monometallic 0.25-1.0 wt% Pd catalysts used in Heck and 

Suzuki coupling reactions and the ambient pressure, liquid-phase hydrogenation of C=C, C=N 

and N=N bonds exclusively in terpenoid substrates, with 90-100% yields reported
35

. For the 

majority of C-C coupling reactions in the presence of a base, deactivation after one reaction 

cycle was noted, and while catalysts were easily recovered, a reactivation step prior to repeat  

use was necessitated due to the partial, in-situ reduction of surface Pd
2+

 species.  

 

CPI SiO2-supported Au-Pd catalysts were found to be moderately active for hydrogen 

peroxide synthesis with productivity tripling in value from 17 to 49 molH2O2kgcat
-1

h
-1

 on 

decreasing the particulate size of the support from 500 µm to 80 µm (Figure 6.17). This          

was accompanied by an increase in the rate of hydrogenation over the catalysts, attributed          

to a possible increase in Pd dispersion, which is implied in scanning electron micrographs  

(Appendix A6.4, A6.5). 

Catalyst
1
 

Productivity / 

molH2O2kgcat
-1

h
-1

 

Hydrogenation / 

molH2O2kgcat
-1

h
-1

 

Untreated Acid Treated Untreated Acid Treated 

5% Au 5 6 106 22 

2.5% Au-2.5% Pd 77 81 179 180 

     

2.5% Pd 34 51 240 97 

5% Pd 56 65 114 261 
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Figure 6.17 Assessment of different SiO2 supports of different particulate and pore sizes on the          

H2O2 synthesis and hydrogenation activities of 2.5 wt% Au-2.5 wt% Pd/SiO2 catalysts prepared             

by standard wet impregnation, dried and calcined in static air (400
 o
C, 3 h). 

 

SEM-EDX (back-scatter detection) analysis of CPI-SiO2 catalysts detected µm-sized 

agglomerates comprising a predominantly Au-signal (Appendix A6.4, A6.5), which is in 

agreement with limited dispersion of Au shown on other silica supports. Further to this, an    

increase in the intensity of the PdO [101] reflection at 34 degrees 2θ in corresponding XRD 

diffractograms may indicate the presence of separate bulk Au and Pd phases on 500 µm SiO2 

particulates (in addition to several low intensity Pd
0
 reflections manifested in Figure 6.18 (right). 

 

 

Figure 6.18 Powder XRD diffractograms of 5 wt% Au-Pd/CPI-SiO2 catalysts comparing 80 µm (left)  

and 500 µm (right) supports. 
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 The effect of decreasing the particulate size of the SiO2 supports was also identified as 

leading to an enhancement in the rate of H2O2 formation over Au-Pd catalysts supported             

on Acros silica from 46 molH2O2kgcat
-1

h
-1

 (200-500 µm) to 91 molH2O2kgcat
-1

h
-1

 (35-75 µm). 

However, simultaneously the pore size of this support has increased from 60 to 90 angstroms     

in diameter and could represent a secondary effect in improving metal dispersion, leading to 

catalysts also significantly more active for the hydrogenation of H2O2 (>350 molH2O2kgcat
-1

h
-1

) 

and possibly related to the mechanism
 
proposed by Strukul et al.

21
, as reviewed in section 6.1. 

 

Support 

Productivity / molH2O2kgcat
-1

h
-1

 

1
st
 Use 2

nd
 Use 

Silicalite 74 62 

CPI-SiO2 (80µm) 49 31 

Acros (35-75µm / 90A
o
) 91 60 

ZSM-5 (280) 83 23 

Table 6.7 Comparison of the H2O2 productivities for bimetallic 2.5 wt% Au-2.5 wt% Pd catalysts 

supported on different Si-type/SiO2 supports after first and second use in the direct synthesis reaction.   

All catalysts were dried and calcined in static air (400
 o
C, 3 h). 

 

The impregnation of Au and Pd metals onto Si:Al framework structures and SiO2 

supports of different particulate and pore size dimensions does not resolve the stability issue 

raised in section 6.3, with loss of activity on re-use for all catalysts investigated in Table 6.7.    

As such the preparation technique must be addressed in future studies and improved relative      

to conventional wet impregnation, deposition precipitation and colloidal immobilization routes. 

Ntainjua et al.
36

 have investigated the use of heteropolyacid acid structures for the direct 

synthesis reaction, employing ion-exchange methodology to exchange Au and Pd metal into     

Cs containing Heteropolyacids with the Keggin structure, Cs2.8H0.2PW12O40, to form solid acid 

catalysts. These materials contained on average 0.15 wt% Au-Pd to balance the charge within  

the Keggin structure, and are highly active for the synthesis of hydrogen peroxide and its 

subsequent hydrogenation/decomposition despite such low metal content. 
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 The high activities of heteropolyacid exchanged Keggin materials could be of some        

interest for in-situ capture processes (the hydrogen peroxide is produced and then used to  

oxidise an organic substrate also present in the reactor vessel) based on phenomenal turnover 

frequencies due to the low metal contents used, retention of high activity on repeat use            

and improved H2O2 productivities on increasing reaction temperature from 2 to 20 
o
C for  

Pd0.1Au0.0333Cs2.5H0.2PW12O40 and Pd0.075Au0.05Cs2.5H0.2PW12O40 catalysts (107 and 168 

molH2O2kgcat
-1

h
-1

 respectively). While ion-exchange might be applicable to Silicalite, ZSM-5 and 

mesoporous materials and form a stable Au-Pd catalyst, it is not appropriate for disordered, 

amorphous SiO2 supports and therefore an electroless deposition procedure is reviewed as a 

possible alternative in section 6.7. 

 

 

6.7 Discussion 

 

The reason behind the synergistic effect manifested by the Au-Pd catalyst on acid         

pre-treated SiO2 (JM) cannot be rationalised from the electron microscopy characterisation as  

the overall morphology for the two samples appears identical. XPS analysis does however 

conclusively show that acid pre-treatment increases the degree of Au dispersion on SiO2 and in 

addition clear differences in the nature of the hydroxyl groups using INS and TPD methods     

are identified between supports which might be associated with the onset of synergy and increase 

in activity for Au-Pd catalysts prepared using the acid pre-treated support. With respect to the 

enhanced catalytic activity that is observed for all Pd-containing catalysts prepared using the acid 

pre-treated silica, the enhanced hydroxyl functionality on the silica surface is considered to aid 

the dispersion of Pd metal and it is this effect that constitutes the enhanced activity.  

 

There could be an extremely small amount of Au contained within the 2-5 nm Pd 

nanoparticles which is below the detection limits of the STEM-XEDS microscope (a mass 

fraction sensitivity of the order ~1 atom%), which is possible to detect using XPS, however, as 

the Au signal is observed in the acid pre-treated catalyst, but not in the untreated counterpart.  

For a series of 1 wt% Au+Pd/C catalysts prepared by sol-immobilisation in chapter 5, the 

addition of small amounts of Au to Pd significantly improved H2O2 activity and therefore it       

is plausible that this effect is observed with very small numbers of Au atoms in these small 

clusters, where one or two Au atoms constitute a significant volume fraction of the particle.  
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Theoretical modelling of the inclusion of Au atoms into a Pd surface by Ishihara et al. 
37

 

has established that Au atoms can induce a marked synergistic effect on catalytic activity for   

the direct synthesis reaction through the blocking of O-O scission pathways by Pd ensembles and 

weakening of interactions between H2O2 molecules and the Au@Pd surface, suppressing the 

hydrogenation/decomposition of H2O2 and favouring product release away from the catalyst, 

resulting in higher H2 selectivities. It is understood that catalysts comprising solely of small 

nanoparticles of either Pd or Au-Pd are highly active when supported on carbon. It is therefore 

unlikely that changing the support surface would switch of the activity of such a large population 

of the very small nanoparticles adding strength to the conclusion that synergy arises from a 

slightly enhanced dispersion of Au that arises from the presence of an enhanced population of 

surface hydroxyl functionalities on the surface of the silica due to the acid pre-treatment.  

 

It is obvious from this study that silica is not an optimal support for the dispersion of   

Au-containing catalysts using wet impregnation. However, for Pd only catalysts, silica has been 

found to be effective. In addition, other catalysts preparation method including the deposition 

precipitation procedure are also unsuitable for the preparation of SiO2-supported Au-Pd 

catalysts, given the isoelectric point of the silica support is too low to effectively stabilise the 

HAuCl4 precursor, resulting in the formation of large and inadequately stabilized Au-rich 

particles. Evidence of large Au particles has also been observed for Au-Pd/SiO2 catalysts 

prepared by colloidal immobilization and therefore in future other preparation methods such     

as ion-exchange and electroless deposition could serve as viable alternatives.  

 

The Hutchings
36

 and Park
10

 groups have applied the ion-exchange method to introduce 

Au and Pd metals into the Keggin structure, Cs2.8H0.2PW12O40, to form solid acid catalysts 

exhibiting high H2O2 productivities based on moderate H2 selectivity. The total amount of       

Au and Pd in these catalysts is very low (0.15% by weight) and required to maintain the     

overall electric charge of the Keggin structure, however, in terms of turnover frequency 

(molH2O2/molAu+Pd) the heteropolyacid materials are exceptional and far superior to values 

reported for Au-Pd catalysts prepared by wet impregnation and colloidal immobilization. The 

rate of H2O2 hydrogenation using batch conditions is elevated over Au-Pd exchanged catalysts 

(200-400 molH2O2kgcat
-1

h
-1

 range) and unfortunately these materials cannot be imaging under an 

electron beam as this results in their degradation. Studies directed at optimising the preparation 
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of solid acid catalysts by ion-exchange and the possible introduction of alternative metals are 

currently underway.  

 

Finally, Monnier et al. have successfully developed an electroless deposition method
38

    

to introduce a second metal (i.e. Au) onto a stable, monometallic 2 wt% Pd/SiO2 catalyst with 

control over the specific coverage of Pd sites with Au. This preparation entails the development 

of an electroless bath that is thermodynamically unstable but kinetically stable, and consisting of 

a metal source (potassium dicyanoaurate, KAu(CN)2), reducing agent (hydrazine) and solvent 

(water). Multiple variables including the concentration of the metal ion source, reducing agent, 

pH and temperature must be carefully controlled during the deposition of Au onto Pd. 

 

 

Figure 6.19 Deposition profile of Au metal (of different wt% loadings) onto a 2 wt% Pd/SiO2 

catalyst over a 60 minute period using the electroless deposition (ED) procedure
38

. 

 

The negative standard reduction potential of the metal ion source (E
o

 Au(CN)2- = -0.60 V)  

is required for the formation of kinetically stable electroless solutions of long lifetime and 

prevention of galvanic deposition of Au onto Pd. The deposition of Au was facilitated over         

a period of 60 minutes period as shown in Figure 6.19, and characterisation of catalysts with 

loadings up to 2.01 wt% Au on Pd/SiO2 suggested that Au was deposited on all types of Pd 

surface sites in a non-discriminative manner, with XPS indicating a net electron transfer from  

Pd to Au. The ED synthesised catalysts were evaluated for propylene hydrogenation activity   
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and exhibited significantly enhanced turnover frequencies for Au-Pd/SiO2 catalysts in which   

the fractional coverage (θ) of Au on Pd exceeded 0.60. Hydrogen chemisorption measurements 

showed that Au deposition disrupted Pd ensembles on the catalyst, favouring the formation of 

propylene and preventing formation of the less reactive, propylidyne product
38

.  The ED method 

has also been used by Okada et al.
39

 in the preparation of Pd/SiO2 catalysts, resulting in 

enhanced activities for both the hyrogenation of nitrobenzene and the direct synthesis of 

hydrogen peroxide reactions compared to impregnated Pd/SiO2 catalysts, due to the formation  

of spherical, uniform Pd particles (6-12 nm size distribution) by the electroless deposition route. 

For hydrogen peroxide synthesis, the concencentration of H2O2 produced after 60 minutes 

(ambient conditions in 0.01 M HCl) amounted to 15 mM - 2.3 times greater than that achieved 

using impregnated Pd/SiO2 catalysts. 

 

 

6.8    Conclusion 

 

From the study undertaken in chapter 6, the reason behind the observed synergy 

displayed by the Au-Pd catalyst on acid pre-treated SiO2 cannot be rationalised from electron 

microscopy characterisation as the overall morphology for the two samples appears identical. 

XPS analysis does however conclusively show that acid pre-treatment increases the degree of  

Au dispersion on SiO2 and in addition clear differences both in the bulk concentration and  

nature of the hydroxyl groups using inelastic neutron scattering and temperature programmed 

desorption techniques are identified between supports which might be associated with the onset 

of synergy and increase in activity for Au-Pd catalysts prepared using the acid pre-treated 

support. With respect to the enhanced catalytic activity that is observed for all Pd-containing 

catalysts prepared using the acid pre-treated silica, the enhanced hydroxyl functionality on the 

silica surface is suggested to aid the dispersion of Pd metal and it is this effect that constitutes  

the enhanced activity. There could be an extremely small amount of Au contained within the     

2-5 nm Pd nanoparticles which is below the detection limits of the STEM-XEDS microscope    

(a mass fraction sensitivity of the order ~1 atom%), which is possible to detect using XPS, 

however, as the Au signal is observed in the acid pre-treated catalyst, but not in the untreated 

counterpart. 
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                 Chapter 7 

7.1 Introduction 

 

In previous chapters, it was demonstrated that the addition of Au to Pd significantly 

enhanced the activity and selectivity of catalysts applied to the direct synthesis reaction, with   

Au recognised as playing a critical role in limiting the sequential hydrogenation/decomposition 

of hydrogen peroxide. By comparing the activities of monometallic Au and Pd catalysts and 

bimetallic Au-Pd catalysts, the existence of a synergistic effect between Au and Pd has been 

identified when using carbon, TiO2, Al2O3 or Fe2O3 as the catalyst support
1
. The origin of this 

synergistic effect in relation to catalyst structure is still not fully understood but is known to 

result from alloy formation leading to an electronic enhancement that increases the catalyst 

activity. With respect to gold catalysis there has been considerable interest in the use of ceria     

as a catalyst support, which has been identified as a very active support for gold nanoparticles 

across a range of reactions including alcohol oxidation and carbon monoxide oxidation
2-7

.         

 

Regarding selection of this support, cerium is a lanthanide element characterised            

as having two valence states, +3 and +4. As such, oxygen is adsorbed irreversibly on ceria due  

to the small electric potential that exists between the Ce
3+

 and Ce
4+

 redox couple and is 

considered to serve as an oxygen reservoir with the ability to adjust the oxygen concentration    

at the catalyst surface under reaction conditions
8
. It has been recognised that increasing the      

pKa or the temperature of depositon precipitation and co-precipitation procedures used to 

synthesise ceria particles can siginifcantly the activity of resulting catalysts, due to a decrease      

in surface oxygen content on increasing the pKa or temperature
9
. This is improtant for       

reaction such as CO oxidation for example, where it is widely accepted that the mechanism 

involves the lattice oxygen of the support. An important property of ceria is that is has the  

ability to undergo the transformation from 2CeO2 → Ce2O3 + ½ O2, forming oxygen vacancies 

without loss of the face centred cubic ‘fluorite’ crystal structure (Figure 7.1). 
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Figure 7.1 Fluorite structure of cerium oxide containing oxygen vacancies. 

 

In term of catalysis, CeO2-supported monometallic Pd catalysts have been evaluated     

for methanol oxidation by Matsumura et al. 
10, 11

 and for the water gas shift reaction in      

addition to being used as a monolithic component in modern catalytic converters and as a fuel 

cell electrolyte due to the high oxygen storage properties of ceria. For Pd/CeO2 catalysts   

reduced at low temperature, the interface between Pd and the ceria surface is proposed as         

the active site for the methanation of carbon dioxide
12

 and is characterised as a strong metal 

support interaction, SMSI. 

 

Both the morphology and oxidation state of Pd supported on ceria are highly dependent 

on the synthesis procedure and heat treatment step(s) with strong interactions between Pd and 

ceria capable of stabilising cationic Pd species. Preparation of Pd/CeO2 catalysts by deposition 

precipitation highlighted a surface Pd oxidation state of approximately +1, resulting from the 

formation of Pd(OH)2 at basics sites on ceria that are converted into Pd-O-Ce bonds at the  

metal-support interface under calcination conditions
13

. Theoretical studies have also indicated 

the importance of Pd-O-Ce linkages and ideally dispersed cationic Pd species as critical to the 

catalytic activity of Pd/CeO2 catalysts in addition to determining PdOx cluster edge sites as 

potential active sites, with the boundary between PdOx particles and CeO2 support providing 

similar activity to simulations performed for incorporated PdxCe1-xO2 [111] catalysts with respect 

to hydrocarbon oxidation
14

. 
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CeO2-supported Au-Pd catalysts have been applied as catalysts for methanol synthesis 

and for other reactions including the selective oxidation of arabinose to arabinoic acid
15

, with           

pre-treatment steps performed in hydrogen at T >300 
o
C and room temperature reduction in 

formaldehyde respectively resulting in higher catalytic activity relative to Au and Pd/CeO2 

counterparts. Activity was found to be dependent on the sample pre-treatment and nature of     

the support used, with reduction of Au-Pd/CeO2 in formaldehyde giving the highest activity     

and selectivity towards arabinoic acid
15

.  

 

 Matsamura et al. 
10

 investigated the effect of adding X wt% Au to a 5 wt% Pd/CeO2 

catalyst on the activity exhibited toward the decomposition of methanol at 180
 o

C. For 3 wt% 

Au-Pd/CeO2, a large fraction of the gold component was determined by XRD analysis to be 

excluded from the nano-sized Pd-Au clusters, although it was predicted that the concentration of 

Au in the Pd-Au clusters should rise as a function of increasing Au content, becoming saturated 

at higher concentrations
10

. The activity was found to be highly promoted by addition of a small 

quanitity of Au, leading to the proposal that Au atoms and/or clusters incorporated into Pd-rich 

particles induce a synergistic effect between Au and Pd (Figure 7.2). 

 

Figure 7.2 Au addition to 5 wt% Pd/CeO2 catalysts for methanol decomposition reaction
10

. 

 

XPS analysis of the samples showed no change in the electronic state of Pd or Au 

components, and the authors concluded that the catalytic function of Pd is assisted by the 

presence of Au atoms, with the rate determining step estimated as being the interaction between 

methoxyl groups and surface hydrogen, formed by the dissociative adsorption of methanol.  
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The aim of chapter 7 is to investigate the effect of the addition of Au to Pd/CeO2        

catalysts on the rates of H2O2 synthesis and hydrogenation, prior to extending the study to      

CeO2-supported bimetallic Au-Pt, Pd-Pt and trimetallic Au-Pd-Pt compositions, with reference  

to carbon and TiO2-supported catalysts. XPS characterisation is undertaken for CeO2- and       

TiO2-supported catalysts, while STEM-HAADF images are presented for TiO2-supported 

catalysts only, due to the difficulty in achieving contrast between Au, Pd and Pt and ceria 

particles of comparable dimension (Aldrich-sourced CeO2 is composed of disordered, irregular 

structure ceria particles in the range 20-50 nm) using advanced aberration corrected electron 

microscopy techniques. 

 

In addition, representative STEM-HAADF images and XEDS analysis of both TiO2-

supported bi and trimetallic catalysts are included in chapter 7 to assist in understanding the   

effect of a third metal on structure and activity, specifically the addition of Pt to Au-Pd and      

the role of Pt in bimetallic Au-Pt and Pd-Pt compositions on catalytic activity for direct H2O2 

synthesis.  
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7.2  CeO2-supported monometallic Pd catalysts for direct H2O2 synthesis 

 

For this initial part of study, the activities of supported 5 wt% Pd catalysts for the       

direct synthesis of hydrogen peroxide were compared and these results are presented below       

in Table 7.1. The 5 wt% Pd/CeO2 catalyst was determined to the most active with respect to 

H2O2 synthesis by a considerable margin (97 molH2O2kgcat
-1

h
-1

), highlighting that ceria may 

represent an important choice of support for direct H2O2 synthesis.  

 

Catalyst 
Productivity / 

molH2O2kgcat
-1

h
-1

 

Hydrogenation / 

molH2O2kgcat
-1

h
-1

 

5% Pd/Fe2O3 
[16]

 4 832 

5% Pd/Al2O3 
[17]

 12 200 

5% Pd/TiO2 31 288 

5% Pd/C 55 135 

5% Pd/CeO2 97 329 

Table 7.1 Summary of the H2O2 synthesis and hydrogenation activities using supported              

monometallic 5 wt% Pd catalysts. 

 

It is possible that the defective nature of ceria aids in the dispersion of Pd nanoparticles 

and theoretical modelling has added support to this concept, including for example the work of 

Catlow et al. 
18

, where DFT simulations predicated that Rh
3+

, Pd
2+

 and Pt
2+

 metal ions could 

segregate together at oxygen vacancies at the low index, [111] and [110] surface faces of ceria, 

the former of which is the most stable index face and it is expected that the presence of noble 

metals in this manner can influence catalytic activity. The commercial grade ceria supports      

are predominantly composed of disordered, irregular phases as oppose to controlled and    

ordered morphologies that can be synthesised by precipitation routes
19

. However, highly ordered 

phases of ceria obtained by supercritical anti-solvent precipitation and used as a support for 

bimetallic Au-Pd catalysts and tested for benzyl alcohol oxidation at 160 
o
C were shown to 

collapse and tend toward becoming disordered in nature after multiple reactions
20

. This lead to   

a decline in activity by third use, in comparison to high turnover frequencies that are achieved 

using Au-Pd catalysts supported on commercial grade ceria that are maintained on repeat use. 
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7.2.1  Effect of Au addition to CeO2-supported Pd catalyst for the direct synthesis and 

hydrogenation of H2O2 

 

The addition of Au to Pd catalysts supported on carbon,
 
TiO2,

 
Al2O3 and Fe2O3 is 

understood to lead to a significant increase in H2O2 productivity with Au serving to limit the 

sequential hydrogenation/decomposition of H2O2, and a marked synergistic effect is observed 

between Au and Pd for H2O2 formation over these catalysts. The direct synthesis and 

hydrogenation of H2O2 over CeO2-supported 5 wt% Au, Pd and 2.5 wt% Au-2.5 wt% Pd 

catalysts is shown in Table 7.2. The addition of Au to Pd resulted in a decrease in H2O2 

hydrogenation activity, which is in agreement with previous studies of Au and Pd catalysts. 

However, in contrast to the synergy observed between Au and Pd on other supports, the   

addition of Au to Pd supported on CeO2 resulted in a considerable decrease in both the          

rates of H2O2 synthesis and hydrogenation over the catalyst respectively. 

 

CeO2 

Untreated 

Productivity / 

molH2O2kgcat
-1

h
-1

 

Hydrogenation / 

molH2O2kgcat
-1

h
-1

 
CH2 (%) SH2 (%) 

CeO2 0 88 

n.d 

5% Au 1 118 

5% Pd 97 329 31 43 

2.5% Au-2.5% Pd 68 145 31 30 

Table 7.2 Direct synthesis of H2O2 over CeO2-supported (untreated) Pd, Au and Au-Pd catalysts,        

dried in air (110
 o

C, 16 h) and calcined in static air (400
 o

C, 3 h). n.d = not determined due to yields   

being very low. 
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7.2.2  Effect of acid pre-treatment of the CeO2 support on the direct synthesis and 

hydrogenation of H2O2 

 

It was previously demonstrated that the pre-treatment of carbon or TiO2 supports in         

2 vol% nitric acid prior to the impregnation of Au and Pd precursors resulted in significant 

enhancement in the H2O2 synthesis activity and H2 selectivity of bimetallic Au-Pd catalysts. 

Table 7.3 shows the effect of acid pre-treatment of the CeO2 support on the activity and              

H2 selectivity of supported 5 wt% Au, Pd and 2.5 wt% Au-2.5 wt% Pd catalysts. Although      

acid pre-treating the CeO2 support did not influence the rates of H2O2 production and H2 

selectivity over 5 wt% Pd/CeO2 catalysts, both the 5 wt% Au and Au-Pd catalysts exhibited 

improved H2O2 synthesis activities, increasing from 68 to 85 molH2O2kgcat
-1

h
-1

 for the latter 

catalyst. This improvement can be attributed to a decrease in H2O2 hydrogenation activity over    

acid pre-treated 5 wt% Au/CeO2 (decreasing from 118 to 63 molH2O2kgcat
-1

h
-1

). However, this    

is not applicable to 2.5 wt% Au-2.5 wt% Pd/CeO2, where the rate of H2O2 hydrogenation is     

also increased after acid-pretreatment from 145 to 198 molH2O2kgcat
-1

h
-1

. 

 

CeO2 

Acid Treated 

Productivity / 

molH2O2kgcat
-1

h
-1

 

Hydrogenation / 

molH2O2kgcat
-1

h
-1

 
CH2 (%) SH2 (%) 

CeO2 0 37 

n.d 

5% Au 7 63 

5% Pd 97 329 30 45 

2.5% Au-2.5% Pd 85 198 31 38 

Table 7.3 Direct synthesis of H2O2 over CeO2-supported (2% HNO3 pre-treated) Pd, Au and Au-Pd 

catalysts, dried in air (110
 o

C, 16 h) and calcined in static air (400
 o

C, 3 h). n.d = not determined due        

to yields being very low. 
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For acid pre-treated SiO2, TiO2 and carbon-supported Au-Pd catalysts, an enhanced      

Au dispersion in supported bimetallic Au-Pd catalysts was concluded as a contributing factor     

in the promotional effect observed for the direct synthesis reaction. However, in the case of 

CeO2-supported catalysts, while acid pre-treatment of the support prior to impregnation of       

Au and Pd metals does partially improve the H2O2 synthesis activity of 5 wt% Au-Pd/CeO2  

from 68 to 85 molH2O2kgcat
-1

h
-1

, it does not raise the activity of bimetallic Au-Pd catalysts    

above the activity demonstrated by 5 wt% Pd/CeO2 catalysts (97 molH2O2kgcat
-1

h
-1

). 

 

 

Figure 7.3 Plot showing synergy versus no synergy for supported Au and Pd catalysts for the direct 

synthesis of H2O2, comparing Al2O3, Fe2O3, Carbon, TiO2 and CeO2 (untreated and acid pre-treated) 

supports. All samples were calcined in static air at 400
 o

C for 3h. Key - 5%Au , 5%Pd ■, and     

2.5%Au-2.5%Pd  

 

However, synergy between Au and Pd is observed for materials calcined at lower 

temperatures (uncalcined and calcined 200
 o

C) as shown in Table 7.4, representing the first    

time that this effect has been observed on ceria. Figure 7.3 summarises that while synergy is 

observed between Au and Pd for H2O2 synthesis over Al2O3, Fe2O3, carbon and TiO2-   

supported 2.5 wt% Au-2.5 wt% Pd catalysts after 400
 o

C calcination (denoted using diagonal 

black and white bars), both untreated and acid pre-treated CeO2-supported catalysts did not   

show evidence of synergy between Au and Pd metals for direct H2O2 synthesis. 
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7.2.3 Effect of calcination temperature on the activity of CeO2-supported catalysts 

 

The effect of calcination temperature on rates of H2O2 synthesis and hydrogenation    

over 5 wt% Pd and 2.5 wt% Au-2.5 wt% Pd/CeO2 catalysts is compared in Table 7.4.           

While the H2O2 synthesis activity of Pd/CeO2 initially decreased after calcination at 200
 o

C     

before rising from 46 to 97 molH2O2kgcat
-1

h
-1

 on increasing calcination temperature to 400
 o

C,      

a minor decrease in the synthesis activity of 2.5 wt% Au-2.5 wt% Pd/CeO2 with calcination 

temperature was observed. This was accompanied by a large decrease in H2O2 hydrogenation 

activity (from 433 to 145 molH2O2kgcat
-1

h
-1

) indicating that different sites on the catalyst      

surface are responsible for H2O2 synthesis and hydrogenation on the catalyst surface, and         

are affected to different extents by calcination. On comparing the H2O2 synthesis activities         

of 5 wt% Pd and 2.5 wt% Au-2.5 wt% Pd catalysts, both uncalcined and calcined 200
 o

C,            

a synergistic effect on addition of Au to Pd (58 vs. 72 molH2O2kgcat
-1

h
-1

) is observed and 

subsequently lost after calcination at 400
 o

C. 

 

Calcination 

Temperature / 
o
C 

Productivity / 

molH2O2kgcat
-1

h
-1

 

Hydrogenation / 

molH2O2kgcat
-1

h
-1

 

5% Pd   

Uncalcined 58 639 

200 46 624 

400 97 329 

2.5% Au-2.5% Pd   

Uncalcined 72 433 

200 76 333 

400 68 145 

Table 7.4 Effect of calcination temperature on direct H2O2 synthesis for CeO2-supported 5 wt% Pd      

and 2.5 wt% Au-2.5 wt% Pd bimetallic catalysts.  
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Analysis of the XPS-derived surface compositions for uncalcined and calcined 400
 o

C         

5 wt% Pd/CeO2 catalysts showed that calcination in static air increased the concentration           

of surface exposed Pd approximately 3 fold (Table 7.5). Simultaneously the surface chloride 

content decreased on calcination and this is attributed to the decomposition of the PdCl2 

precursor, while surface oxygen content increased by 8.9%. It is acknowledged that ceria is          

hygroscopic and will absorb carbon dioxide present in the atmosphere, which in some cases    

can constitute a significant portion of the measured surface oxygen content, and therefore a 

contribution to the observed catalytic activity however small, cannot be excluded. 

 

Calcination 

Temperature / 
o
C 

Surface atom % 

Pd Cl O Ce C 

Uncalcined 3.19 2.75 34.92 12.87 46.27 

400 10.35 1.94 43.81 7.77 36.13 

Table 7.5 XPS-derived surface atom concentrations for uncalcined and calcined (400
 o

C, 3 h) 5 wt% 

Pd/CeO2 catalysts as determined by XPS. 

 

The H2O2 productivities determined for CeO2-supported 5 wt% Au, Pd and Au-Pd 

catalysts prepared by wet impregnation can be accurately reproduced and therefore any 

contribution from carbon is either consistent and/or negligible. Inspection of Ce (3d) spectra 

shows Ce to be in the +4 state entirely, with no evidence of a +3 contribution. Although 

calculation of the Ce/O atom ratio gives a stoichiometry deviating from the nominal value         

of 0.5, this effect is anticipated and suggested to be a consequence of surface hydroxylation       

effects, with an increase in oxygen content associated with development of PdO/Pd-O-Ce  

surface species upon calcination. 

 

XPS-derived surface Pd
2+

 concentrations in both uncalcined and calcined 400
 o

C samples 

are 100% and as illustrated by repeat scans in Figure 7.4 (b), the calcined sample solely 

underwent reduction to Pd
0
 on continued exposure to the X-ray beam. This could be brought 

about by reduction of Pd-O-Ce bonds formed during the calcination step in comparison to           

a higher fraction of Pd
2+

 associated with the Pd-Cl bonds in the PdCl2 precursor, present to a 

greater extent in the uncalcined material. 
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Figure 7.4 (a) XPS analysis of 5 wt% Pd/CeO2 catalysts – moderate exposure to X-ray beam. 

 

 

 
 

Figure 7.4 (b) XPS analysis of 5 wt% Pd/CeO2 catalysts - prolonged exposure to X-ray beam. 
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7.2.4  Reusability of CeO2-supported catalysts 

 

Reusability experiments for CeO2-supported 5 wt% Pd and 2.5 wt% Au-2.5 wt% Pd 

(both untreated and acid pre-treated) catalysts calcined at 400
 o

C confirmed that all catalysts 

prepared by wet impregnation were completely reusable (Figure 7.5). In contrast, uncalcined 

counterparts showed a considerable decrease in H2O2 synthesis activity on second use (with     

the activity of uncalcined 5 wt% Pd/CeO2 declining from 58 to 38 molH2O2kgcat
-1

h
-1

), and 

therefore as stated in chapters 3 and 4, the calcination step of the catalyst preparation method     

is critical to forming a stable and reusable material. 

 

 
Figure 7.5 Effect of catalyst reuse on the direct synthesis of hydrogen peroxide over 5 wt% Pd/CeO2    

and bimetallic 2.5 wt% Au-2.5 wt% Pd/CeO2 (untreated and acid pre-treated) catalysts, calcined in     

static air at 400
 o
C for 3 h. 
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7.2.5 Comparison of Au and Pd surface states as a function of calcination 

 

The role of surface oxidation state has been investigated throughout chapters 3 to 6      

and is continued in this chapter, where the effect of treating bimetallic Au-Pd catalysts under 

different atmospheres on the rates of H2O2 synthesis and hydrogenation (expressed as                

percentage H2O2 consumption) is compared. Analysis of the Pd(3d) region of Au-Pd/CeO2 

catalysts treated under different atmospheres is included in Figure 7.6 alongside their 

corresponding activities for direct H2O2 synthesis, where in the absence of STEM-HAADF 

imaging to determine particle size, it is implied that Pd oxidation state influences both the rates 

of H2O2 synthesis and hydrogenation over catalysts. 

 

Figure 7.6 Pd(3d) XP spectra for bimetallic 2.5 wt% Au-2.5 wt% Pd/CeO2 catalysts treated at 400
 o

C     

for 3 h under different atmospheres - Select catalysts were post-treated in aqueous 50 wt% H2O2 for 3 h. 

Respective H2O2 productivities and percentage H2O2 hydrogenation are listed adjacent to the spectra. 

 

 

In general, catalysts comprising a high surface Pd
2+

 concentration hydrogenated the   

least hydrogen peroxide, while all of the catalysts demonstrated high activity toward H2O2 

synthesis, in particular when calcining in flowing air (the Pd(3d) spectra of which is similar       

to that obtained when calcining in static air, and therefore the difference in activity is likely 

associated with differences in Pd surface exposure). Treatment of 2.5 wt% Au-2.5 wt% Pd/  

CeO2 catalysts in aqueous 50 wt% H2O2 after calcination/reduction did not dramatically alter      

either the rates of H2O2 synthesis and hydrogenation over Au-Pd/CeO2 reduced in 5% H2/Ar          
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(H2O2 productivities: 64 vs. 68 molH2O2kgcat
-1

h
-1

, and 19 vs. 20% H2O2 hydrogenation 

respectively), while identical H2O2-treatment of Au-Pd/CeO2 after calcination in static air 

increased the amount of H2O2 hydrogenated over the catalyst from approximately 7 to 9%. 

Simultaneous to this, a partial increase in the Pd
0
 signal intensity was noted alongside the 

dominant Pd
2+

 signal, with surface Pd
2+

 concentration 50 wt% H2O2 post-treatment.           

Atomic absorption spectroscopy of H2O2-treated catalysts showed no evidence of Au or Pd 

leaching, suggesting that for 5% H2/Ar reduced Au-Pd/CeO2 catalysts, particle sintering         

has proceeded to greater extent relative to other heat treatment conditions, forming larger 

nanoparticles that constitute the reduced signal intensities witnessed in Pd(3d) and Au(4f) 

spectral regions. 

 

Figure 7.7 Au(4f), Ce(4p) and Cl(2p) XP spectra for bimetallic 2.5 wt% Au-2.5 wt% Pd/CeO2 catalysts 

treated at 400
 o

C for 3 h under different atmospheres - Select catalysts were post-treated in 50 wt% H2O2 

for 3 h. Respective H2O2 synthesis activities and percentage H2O2 hydrogenation values listed adjacent   

to spectra. 

 

 

 Furthermore, from comparison of the Au(4f), Ce(4p) and Cl(2p) regions shown in    

Figure 7.7, solely metallic Au
0
 species are present for all 2.5 wt% Au-2.5 wt% Pd/CeO2 

catalysts, the binding energies of which fall in the range 83.5-84.2 eV. A high variation of        

0.7 eV across this series may be related to particle size and the degree of Au-Pd alloying     

depending on the heat treatment conditions applied
21

. The chloride content of Au-Pd/CeO2 

catalysts after calcination in static or flowing air is comparable and indicative of at least two 

different chloride species situated in the binding energy range 197-202 eV. This is similar to 
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findings reported for carbon-supported Au-Pd catalysts in chapter 4, and attributed to interaction 

of residual chloride species with Au and Pd nanoparticles and the ceria surface, and chloride 

associated with PdCl2 retained after heat treatment (the decomposition temperature of palladium 

chloride is stated as 679 
o
C)

22
. 

 

 

7.3 Discussion 

 

The initial findings of this chapter highlight that ceria could be a suitable support for      

Au and Pd nanoparticles active for the direct synthesis of hydrogen peroxide, due in part             

to very high H2O2 synthesis activities over 5 wt% Pd/CeO2 (97 molH2O2kgcat
-1

h
-1

) catalysts,  

which are also superior to the activities reported for carbon and metal-oxide supported 5 wt% Pd 

catalysts. However, the addition of Au to Pd/CeO2 catalysts does not result in an enhanced 

synthesis activity, although it does influence the rate of H2O2 hydrogenation. The origin of this 

effect is most likely to be due to lack of alloy formation under the heat treatment conditions 

applied, i.e. calcination in static air.  

 

This is suggested by a large variation in binding energy of 0.7 eV observed in the   

Au(4f) region, corresponding to Au
0
 species ranging from 83.5-84.2 eV and depending on the 

heat treatment atmosphere applied to 2.5 wt% Au-2.5 wt% Pd/CeO2 catalysts. Unfortunately, 

ceria is a difficult support on which to observe Au nanoparticles using aberration corrected 

electron microscopy techniques due to the difficulty in achieving sufficient Z-contrast for this 

system. The determination of whether alloying is observed using more advanced techniques   

will represent the subject of a subsequent and more detailed investigation.  

 

Other studies have indicated that the interactions of Au and Pd with reducible ceria       

can co-exist with the mutual interactions between these metals implying that not all of the    

metal present is alloyed
15

. For the selective oxidation of arabinose to arabinoic in particular,     

non-alloyed Au
0
 species are considered as responsible for the activation of arabinose while 

transformation of Pd
0
/Pd

2+
 species can provoke oxygen interaction

15
, with the proposal that     

Au or Au-Pd alloys covered with a thin PdO film consititue the synergistic effect observed. 
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It is also interesting to note that the method used to synthesize ceria nanoparticles can 

have a profound effect on structure and activity. For Au/CeO2 catalysts where the support       

was synthesized using a solvothermal approach
23

, Au particles were identified as being larger in 

size than the ceria crystallites (~3-8 nm) they were supported on, whereas the crystallite size     

of commercial grade supports are quoted in the range 20-50 nm, with some sources stating       

the average crystallite size as 54 nm which is similar to the value of 51-52 nm, determined   

using the Scherrer equation). The orientation and size of CeO2 crystallites has also been 

suggested to influence catalytic activity.  

 

For example, Rh deposited on cubic [110] and rod [110]/[100] shaped nanocrystalline 

CeO2 formed catalysts that demonstrated improved H2 selectivity for ethanol reforming 

compared to catalysts prepared using disordered/irregular CeO2 nanoparticles, suggesting that 

the ratio of surface planes could play a key role in enhancing ethanol reforming activity
24

.      

The quantity of exposed Pd atoms on CeO2-supported catalysts synthesized by co-precipitation 

were shown to depend mainly on the surface areas of the catalysts, and is supported in part       

by Miedziak and co-workers
20

, who studied the solvent free oxidation of benzyl alcohol using 

cerium oxide prepared by supercritical precipitation to host Au and Pd. The resulting catalyst 

gave improved activity relative to supports derived via a non-supercritical synthesis route and 

showed evidence of synergy between Au and Pd. Microscopy of supercritically precipitated 

CeO2-supported Au-Pd catalysts showed homogeneous alloy particles 50 to 150 nm in size      

(found to be Au-rich) with a low number density of highly dispersed Pd species associated     

with the CeO2 support and present as Au
0
 and Pd

2+
 respectively.  

 

Most importantly the non-supercritically prepared Au-Pd/CeO2 catalyst showed a loss of 

activity on second use compared to a significant increase in activity for the supercritically 

prepared Au-Pd/CeO2 catalyst. However, activity did then decrease on third use given the 

spherical morphology of nanocrystalline supercritical CeO2 started to break down, to resemble 

the morphology CeO2 prepared by the non-supercritical route and was accompanied by phase 

separation of Au and Pd. To conclude, this finding implies that use of a non-ordered ceria 

supports may not necessarily be disadvantageous to catalytic activity. 
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7.4 Development and optimisation of supported Au-Pd-Pt catalysts 

 

Monometallic Pd has so far qualified as the most active composition in chapter 7, 

however, it is appreciated that alloying or combining two metals can lead to materials with 

specific chemical properties due to an interplay of ensemble and electronic effects, and that a 

bimetallic surface can exhibit catalytic properties that are very different from those of the 

surfaces of the individual metals. It has been demonstrated that the combination of Pd with     

Au, Ir, Ag and Pt metal can improve both the activity and selectivity of catalysts active for the 

direct synthesis of hydrogen peroxide
25

. The addition of a second metal to Pd has been claimed 

to improve the H2 selectivity, favouring selective formation H2O2 as oppose to the non-selective 

formation of water. Specifically, the effect of doping Pd with Pt was found to enhance              

the selectivity of catalysts, with a maximum activity exhibited at a Pd:Pt ratio of 18, before        

further increasing Pt content leads to a decrease in selectivity
26

. For TS-1 supported catalysts, 

addition of Pt to Pd resulted in the stabilization of surface Pd
2+

 species, with the optimum level 

of Pt determined to represent a balance between the increase of surface Pd
2+

 concentration and 

variation in the morphology of Pd nanoparticles
27

. 

 

 Okada and co-workers
28

 have synthesised Pd-Pt and Pd-Au/ZrO2-SO4 catalysts and 

compared their activity for the direct synthesis of hydrogen peroxide using mild conditions 

outside of the explosion region. The effect of adding Pt to Pd with respect to increasing the    

yield of hydrogen peroxide is critically sensitive to Pt amount, and using only a low Pt content,    

it is possible to improve the H2 selectivity from 55 to 70% and subsequent H2O2 productivity 

with respect to the Pd-only catalysts. The addition of Au to Pd (1:1 weight) also improved both       

the H2O2 productivity and H2 selectivity, maintaining a stable 62% selectivity after 12 h. 

 

The aim of the second part of chapter 7 is to investigate the effect of addition of Pt          

to Au, Pd, Au-Pd/CeO2 catalysts on rates of H2O2 synthesis and hydrogenation, in addition to 

understanding the role of Pt in supported Pd-Pt catalysts already found to be highly active by 

Lunsford et al. 
29

. 
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7.4.1 Comparison of carbon-supported Au-Pd-Pt catalysts 

 

Platinum is facile at decomposing hydrogen peroxide as was first reported by Faraday 

and has been applied extensive to a range of selective and total hydrogenation reactions of   

major industrial importance, including ethylene and propylene hydrogenation, and represents a 

component of both the three-way catalytic converter and polymer electrolyte fuel cells
30

. Many 

commercially available Pt-based hydrogenation catalysts
31

 are supported on carbon and therefore 

for direct H2O2 synthesis, the activity of Au-Pt, Pd-Pt and Au-Pd-Pt/C (Darco G60) catalysts 

were evaluated in advance of Au-Pd-Pt/CeO2 catalysts for comparative purposes. 

 

 
Carbon  

Composition / wt% 

Productivity / 

molH2O2kgcat
-1

h
-1

 

Hydrogenation / 

molH2O2kgcat
-1

h
-1

 

1 2.50% Au-2.50% Pd 120 117 

2 2.50% Au-2.50% Pt 30 1038 

3 2.50% Pd-2.50% Pt 154 504 

4 2.45% Au-2.45% Pd-0.05% Pt 120 294 

5 2.40% Au-2.40% Pd-0.10% Pt 137 324 

6 2.35% Au-2.35% Pd-0.20% Pt 179 301 

7 2.28% Au-2.28% Pd-0.45% Pt 142 58 

8 0.20% Au-4.60% Pd-0.20% Pt 145 409 

Table 7.6 Effect of catalyst composition on the direct H2O2 synthesis - Carbon supported catalysts. 

 

While high rates of H2O2 production can be achieved, the H2O2 hydrogenation rates     

are exceptionally high over all catalysts (except 2.28 wt% Au-2.28 wt% Pd-0.45 wt% Pt/C),    

and unique to the carbon. This will be demonstrated in the results obtained for CeO2 and      

TiO2-supported Au-Pd-Pt catalysts, and though using carbon as a support is not an aim of  

chapter 7, it is likely differences in the morphology of Au-Pd nanoparticles as recognised for 

reducible (TiO2 - AucorePdshell) and non-reducible (carbon - homogeneous alloys) supported      

2.5 wt% Au-2.5 wt% Pd catalysts may apply to Au-Pt, Pd-Pt and Au-Pd-Pt compositions. 
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7.4.2 CeO2-supported mono and bimetallic Pt catalysts. 

 

Comparison of the activities of CeO2-supported mono and bimetallic Pt catalysts in  

Table 7.7 indicated that while 5 wt% Pt is not a highly active catalyst for H2O2 synthesis            

compared to 5 wt% Pd (97 molH2O2kgcat
-1

h
-1

), it did hydrogenate 2-3 times less hydrogen 

peroxide (126 molH2O2kgcat
-1

h
-1

). The synthesis activity of 2.5 wt% Pd-2.5 wt% Pt/CeO2 is      

138 molH2O2kgcat
-1

h
-1

, confirming that a synergistic effect is manifested on the addition of Pt      

to Pd, compared to no synergy on the addition of Au to Pd, and is accompanied by a decrease    

in hydrogenation activity relative to 5 wt% Pd. 

 

CeO2 

Composition / wt% 

Productivity / molH2O2kgcat
-1

h
-1

 Hydrogenation / 

molH2O2kgcat
-1

h
-1

 
2 min 30 min 

5% Pt 46 8 126 

5% Pd 354 97 329 

    

2.5% Au-2.5% Pt 120 20 109 

2.5% Au-2.5% Pd 281  68 145 

2.5% Pd-2.5% Pt 392 138 182 

    

4.8% Pd-0.2% Pt 441 125 192 

4.8% Pd-0.2% Au 198 79 178 

Table 7.7 Effect of catalyst composition on the direct synthesis of H2O2 over 5 wt% Pt, Pd and              

2.5 wt% Au/Pd-2.5 wt% Pt/CeO2 catalysts including 2 minute / initial rate measurements. 

 

Further compositions are included in Table 7.7 to assess the effect of a minor addition    

of Pt/Au to Pd, where it was determined that addition of 0.2 wt% Pt induced a synergistic    

effect close to the extent achieved in 2.5 wt% Pd-2.5 wt% Pd. In comparison, addition of         

0.2 wt% Au to Pd decreased the rate of H2O2 synthesis from 97 to 79 molH2O2kgcat
-1

h
-1

, but did 

simultaneously reduce the hydrogenation activity of the catalyst. These two observations are a 
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useful guide to directing the design of further compositions (maintaining 5 wt% loading) 

including trimetallic Au-Pd-Pt catalysts, since it is now understood that even low loadings          

of secondary and tertiary metals can induce a significant synergistic effect. 

 

Calcination 

Temperature / 
o
C 

Productivity / 

molH2O2kgcat
-1

h
-1

 

Hydrogenation / 

molH2O2kgcat
-1

h
-1

 

2.5% Au-2.5% Pd   

Uncalcined 72 433 

200 76 333 

400 68 145 

500 34 136 

2.5% Pd-2.5% Pt   

Uncalcined 16 351 

200 23 286 

400 138 182 

500 18 575 

Table 7.8 Effect of calcination temperature on the direct synthesis of H2O2 over bimetallic                     

2.5 wt% Au-2.5 wt% Pd and 2.5 wt% Pd-2.5 wt% Pt/CeO2 catalysts. 

 

Before discussing the screening of 42 CeO2-supported Au-Pd-Pt compositions, the   

effect of calcination temperature in static air on the direct synthesis of hydrogen peroxide was 

compared for CeO2-supported Au-Pd and Pd-Pt catalysts to determine if 400
 o

C represented     

the optimum temperature for Pd-Pt in terms of catalyst activity and reusability (Table 7.8).  

These requirements are fulfilled at 400
 o

C. However, the variation in H2O2 synthesis and 

hydrogenation over Pd-Pt is different to that of Au-Pd, with H2O2 synthesis activity rising     

from 16 to 138 molH2O2kgcat
-1

h
-1

 on increasing the calcination temperature to 400
 o

C, before 

decreasing to 18 molH2O2kgcat
-1

h
-1

 at 500
 o

C (Table 7.8). Simultaneously the rate of H2O2 

hydrogenation over Pd-Pt becomes elevated and reference to the literature
32

 suggests this could 

result from an elevated surface Pt exposure via Pt-O bond formation. 



Chapter 7 

Preparation of ceria supported Au-Pd-Pt catalysts 

 

239 

 

7.4.3  CeO2-supported trimetallic Au-Pd-Pt catalyst screening 

 

In this section, the preparation of trimetallic 5 wt% Au-Pd-Pt/CeO2 catalysts based on      

a gradual addition of Pt, maintaining equivalent Au and Pd loadings is initially investigated. 

Referring to Table 7.9, addition of Pt to Au-Pd induced a significant promotional effect with 

respect to H2O2 synthesis, with an initial decrease in hydrogenation activity at both 0.05 and  

0.10 wt% Pt loadings compared to 2.5 wt% Au-2.5 wt% Pd/CeO2. Addition of 0.45 wt% Pt    

gave the highest rates of H2O2 synthesis (2 min) and hydrogenation for catalyst series 1-7, 

implying that the addition of Pt to Au-Pd/CeO2 catalysts resulted in modification of surface    

Au-Pd-Pt composition, which is supported by catalyst characterisation in section 7.5. 

 

 
CeO2 

Composition / wt% 

Productivity / 

molH2O2kgcat
-1

h
-1

 

Hydrogenation / 

molH2O2kgcat
-1

h
-1

 

2 min 30 min 30 min 

1 2.50% Au-2.50% Pd 281  68 145 

2 2.48% Au-2.48% Pd-0.05% Pt 308 63 46 

3 2.45% Au-2.45% Pd-0.10% Pt 171 109 76 

4 2.40% Au-2.40% Pd-0.20% Pt 436 170 145 

5 2.35% Au-2.35% Pd-0.30% Pt 389 159 177 

6 2.28% Au-2.28% Pd-0.45% Pt 670 100 459 

7 2.00% Au-2.00% Pd-1.00% Pt 194 115 93 

     

8 2.50% Au-2.30% Pd-0.20% Pt 260 86 11 

Table 7.9 Effect of catalyst composition on the direct synthesis of H2O2 using trimetallic Au-Pd-Pt/  

CeO2 catalysts.  
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The most active catalyst composition with respect to H2O2 productivity was determined  

as 2.40 wt% Au-2.40 wt% Pd-0.20 wt% Pt - which also exhibited a hydrogenation activity 

identical to 2.5 wt% Au-2.5 wt% Pd (145 molH2O2kgcat
-1

h
-1

), indicating that addition of Pt            

at specific loadings could improve the H2O2 synthesis activity for a given catalyst without 

modifying the hydrogenation activity. For catalyst 8, a minor variation in Au and Pd metal 

loadings from equivalency (2.50 wt% Au-2.30 wt% Pd-0.20 wt% Pt) significantly reduced      

the H2O2 hydrogenation activity of the catalyst to the extent that it was almost switched-off          

(11 molH2O2kgcat
-1

h
-1

), demonstrating that minor variation in the loading of any metal present     

in trimetallic Au-Pd-Pt catalyst can significantly influence activity. 

 

The results presented in sections 7.4.2 and 7.4.3 respectively serve as the basis of a  

larger catalyst screening study to determine the optimum Au-Pd-Pt catalyst composition with 

respect to both H2O2 synthesis and hydrogenation activity. While no synergy was observed 

between Au and Pd for bimetallic 2.5 wt% Au-2.5 wt% Pd/CeO2 catalysts, addition of Pt to    

Au, Pd and Au-Pd/CeO2 catalysts has induced synergy, and therefore the aim of upcoming 

sections is to gain an understanding of the possible promotional effect(s) on addition of Pt in 

terms of catalyst structure, i.e. evidence of Au-Pt / Pd-Pt / Au-Pd-Pt alloys. 
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7.4.4 The effect of 5 wt% Au-Pd-Pt/CeO2 catalyst composition on both the rates of     

H2O2 synthesis and hydrogenation 

 

In section 7.4.4, results from previous sections comparing the effect of addition of Pt      

to CeO2-supported Au, Pd and Au-Pd catalysts are extended to a full Au-Pd-Pt compositional 

study, encompassing a total of 42 catalysts. All catalysts were prepared by wet-impregnation,   

air dried and calcined in static air (400
 o

C, 3 h) as standard. For convenience, changes in the 

activity and composition of catalysts are presented in the form of 2D (Figures 7.8 and 7.9)      

and 3D (Figure 7.10, Appendix A7.1 and A7.2) ternary diagrams, plotted using Origin 8.5 

software. In addition, the  H2O2 synthesis and hydrogenation activities obtained using              

Au-Pd-Pt/CeO2 are plotted on separate diagrams and therefore will be discussed in sequence, and 

will be used to better highlight optimum catalyst composition(s) using a colour assignment 

scheme. For all ternary diagrams, the top of the diagram represents Pd-rich compositions, 

followed by Pt-rich compositions on the bottom-left and Au-rich compositions on the bottom-

right of the diagram respectively, with the Au/Pd/Pt loading for all catalysts fixed at 5 wt%. 

 

Referring to Figure 7.8, the H2O2 synthesis activities obtained using different CeO2-

supported Au, Pd, Pt, Au-Pt, Pd-Pt and Au-Pd-Pt catalysts are summarised in 2D form. It is 

observed that in general, the highest rates of H2O2 synthesis are obtained using Pd-Pt and        

Au-Pd-Pt catalysts in which the Pd loading exceeds 2 wt% (corresponding to the upper half       

of the ternary diagram), while moderate to low synthesis activities are obtained using Au-Pt and 

Au-Pd-Pt catalysts in which the Au or Pt loading exceeds 2.5 wt%.  

 

The investigation of Pd-rich catalyst compositions showed that partial addition of Pt     

and Au-Pt to Pd resulted in the highest rates of H2O2 synthesis, the maximum of which was 

obtained using 0.20 wt% Au-4.60 wt% Pd-0.20 wt% Pt (185 molH2O2kgcat
-1

h
-1

). 

 

The reasons as to why this catalyst composition is the most active will be discussed in 

section 7.5, but briefly it is understood that high Pd surface exposure is crucial. The second 

highest H2O2 synthesis activity was obtained using 2.40 wt% Au-2.40 wt% Pd-0.20 wt% Pt    

(170 molH2O2kgcat
-1

h
-1

), indicated that partial addition of Pt to Au-Pd catalysts also serves as         

a viable route to achieving high rates of H2O2 synthesis. 
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Figure 7.8 Summary of the H2O2 synthesis activities for 5 wt% Au-Pd-Pt/CeO2 catalysts.             

Numbers presented in the 2D ternary diagram are H2O2 productivities (molH2O2kgcat
-1

h
-1

). 



Chapter 7 

Preparation of ceria supported Au-Pd-Pt catalysts 

 

243 

 

Referring to Figure 7.9, the corresponding H2O2 hydrogenation activities obtained for 

different CeO2-supported Au, Pd, Pt, Au-Pt, Pd-Pt and Au-Pd-Pt catalysts are summarised in   

2D form. A different scenario is evident for H2O2 hydrogenation activity as a function of         

Au-Pd-Pt composition, with high rates of hydrogenation observed in all parts of the diagram, 

indicating that the H2O2 synthesis and hydrogenation pathways, as anticipated, are affected to 

different extents with on varying catalyst composition.  

 

The most active catalyst for H2O2 synthesis: 0.20 wt% Au-4.60 wt% Pd-0.20 wt% Pt,     

is also an efficient H2O2 hydrogenation catalyst (385 molH2O2kgcat
-1

h
-1

) as are many of the 

surrounding compositions. However, on close inspection of Pd-rich, Au-Pd-Pt compositions at 

the top of the diagram, low rates of H2O2 hydrogenation are observed for 2 Au-Pd-Pt       

catalysts both containing 4.20 wt% Pd. The presence of such isolated low hydrogenation 

activities suggests that ‘zones’ exist on descending the diagram / increasing Au, Pt content, 

resulting in several Pd-rich, Au-Pd-Pt catalysts highly active for H2O2 synthesis and exhibiting 

low rates of H2O2 hydrogenation (in the range 30-70 molH2O2kgcat
-1

h
-1

). 

 

Several moderate to low H2O2 hydrogenation activities were also identified on addition 

of Pt to Au-Pd catalysts (of equal loading) and for 2.40 wt% Au-2.40 wt% Pd-0.20 wt% Pt        

in particular, addition of Pt significantly increased the H2O2 synthesis activity of the catalyst 

relative to 2.50 wt% Au-2.50 wt% Pd without modifying H2O2 hydrogenation activity         

(which is maintained at 145 molH2O2kgcat
-1

h
-1

). This catalyst and 2.5 wt% Pd-2.5 wt% Pt 

represent important examples where H2O2 synthesis activity is improved relative to 5 wt% Pd   

and 2.5 wt% Au-2.5 wt% Pd catalysts, without increasing the rate of H2O2 hydrogenation - 

evidence of a promotional effect induced by Pt in bimetallic and trimetallic catalysts. 
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Figure 7.9 Summary of the H2O2 hydrogenation activities for 5 wt% Au-Pd-Pt/CeO2 catalysts.   Numbers 

presented in the 2D ternary diagram are H2O2 hydrogenation activities (molH2O2kgcat
-1

h
-1

). 
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In order to simplify the relationship between H2O2 synthesis and hydrogenation activity 

with Au-Pd-Pt composition, 3D ternary diagrams were plotted using Origin software. Colour 

assignments are used to represent hydrogen peroxide synthesis (Appendix A7.1) and 

hydrogenation (Appendix A7.2) activities respectively, with highly active H2O2 synthesis/ 

hydrogenation catalysts represented using red and grey colours. For H2O2 synthesis, two           

red regions corresponding to CeO2-supported 2.40 wt% Au-2.40 wt% Pd-0.20 wt% Pt and     

0.20 wt% Au-4.60 wt% Pd-  0.20 wt% Pt catalysts exist, whereas only one red region exists     

for H2O2 hydrogenation, corresponding to 0.50 wt% Au-4.00 wt% Pd-0.50 wt% Pt/CeO2. 

 

In Figure 7.10, the H2O2 synthesis and hydrogenation activities determined for             

Au-Pd-Pt/CeO2 catalysts were combined in a composite diagram (synthesis – hydrogenation) to 

show optimum catalyst compositions in red, where H2O2 synthesis > H2O2 hydrogenation,          

to give a positive value. Using this approach, trimetallic Au-Pd-Pt/CeO2 catalysts comprising 

metal loadings (highest to lowest): Pd > Pt > Au, were proposed to represent the optimum 

compositions. More specifically, Pd loading is >2.5 wt%, Pt loading is 0.2-1.9 wt% and           

Au loading is distributed over two regions: 0.2-0.7 wt% and 1.2-1.9 wt% respectively. 
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Figure 7.10 Composite values (synthesis – hydrogenation) values for CeO2-supported 5 wt% Au-Pd-Pt 

catalysts presented as a 3D diagram.  
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It is appreciated that while this approach is not an absolute indicator in terms of what 

constitutes optimum/favourable catalyst compositions as it is specific to the reaction conditions 

used (e.g. batch operation, pressure, solvent, temperature, time), it does serve as a useful 

guideline in directing further development of Au-Pd-Pt/CeO2 catalysts for application in other 

systems. Examples include: (i) flow reactors, where the residence time is dramatically shorter 

(seconds) compared to batch reactors (30 minutes, inside sealed autoclave containing a finite 

concentration of H2/O2 gases), and (ii) use of immiscible solvent mixtures.  

 

Piccinini
33

 demonstrated that performing the direct synthesis reaction in an immiscible 

two-phase, decanol-1-ol/water solvent and using a 0.63 wt% Au-3.75 wt% Pd-0.63 wt% Pt/CeO2 

catalyst and semi-batch conditions that a 3.5 wt% H2O2 concentration could be formed in the 

water phase. This concentration is at the lower end of the industrial target (3-8 wt% H2O2) and   

as represents a highly significant result as no acid/halide promoters or distillation steps were 

required, with high yield achieved via in-situ extraction of hydrogen peroxide formed in the 

organic, decanol-1-ol phase.  

 

The H2O2 synthesis (2 and 30 min) and hydrogenation activities for all Au-Pd-Pt/CeO2 

catalysts in this study are tabulated in Appendix Table A7.1. In addition, results for Pd-Pt and 

Au-Pd/CeO2 catalysts where Au or Pt loading was systematically increased are shown in 

Appendix Table A7.2, as results for bimetallic catalysts plotted along the perimeter of ternary 

diagrams and therefore are difficult to distinguish from each other. Briefly, partial Au or Pt 

addition to Pd/CeO2 was found to influence H2O2 synthesis and hydrogenation activities in         

a somewhat complex manner on systematically increasing Au or Pt content. These findings     

will be investigated in a future study, separate to the development Au-Pd-Pt/CeO2 catalysts.      

In section 7.5, XPS characterisation for a selection of highly active trimetallic Au-Pd-Pt catalysts    

is presented. 
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7.5 XPS Characterisation 

 

The surface composition for select CeO2-supported catalysts was investigated by XPS,  

with results for Pd-Pt and three highly active Au-Pd-Pt catalysts summarised in Table 7.10. 

Firstly for catalyst 2, which exhibited high rates of H2O2 synthesis (185 molH2O2kgcat
-1

h
-1

)        

and hydrogenation (385 molH2O2kgcat
-1

h
-1

) respectively, a high surface Pd exposure consisting    

of >90% Pd
2+

 species was identified. Referring to Figure 7.11 (top), the high Pd
2+

 signal  

intensity in the Pd(3d) region indicates formation of a ‘film-like’ dispersion of PdO alongside           

a minor Pt contribution. Interestingly, no Au(4f) signal was detected despite a 0.20 wt% Au 

loading, implying sub-surface reduction and/or coverage of Au by cationic Pd and Pt species 

(Pt
2+

 detected at 72.5 eV binding energy). 

 

 

CeO2 

Composition / wt% 

Surface atom % 

 Au Pd Pt Cl 

1. 2.50% Pd-2.50% Pt - 6.05 1.51 3.73 

      

2. 0.20% Au-4.60% Pd-0.20% Pt 0.00 19.38 0.26 9.21 

3. 0.63% Au-3.75% Pd-0.63% Pt 0.07 3.73 0.28 3.62 

4. 2.40% Au-2.40% Pd-0.20% Pt 0.08 7.12 0.17 3.74 

Table 7.10 Summary of surface atomic composition for select CeO2-supported catalysts. 

 

The surface Cl concentration for catalysts 1-4 is moderate to high, which may affect the 

H2O2 synthesis/hydrogenation activities of catalysts with respect to controlling the degree of 

particle dispersion during the calcination step, and by minimising H2O2 hydrogenation via 

selective blocking of surface sites active for O-O bond scission. 
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Comparison of Pd(3d) spectra for catalysts 2 and 3 in Figure 7.11 supports the 

development of a thin-film PdO dispersion on ceria for catalyst 2, based on the unexpectedly 

high difference in signal intensity observed between samples, which exceeds the difference in     

wt% Pd loading, Secondly the Pd oxidation state is influenced by composition, with transition 

from Pd
2+

 to Pd
0
 exclusively on increasing both Au and Pt loadings from 0.20 to 0.63 wt%. 

 

 

 

 

Figure 7.11 Pd(3d) spectra for CeO2-supported 0.20 wt% Au-4.60 wt% Pd-0.20 wt% Pt (top),              

and 0.63 wt% Au-3.75 wt% Pd-0.63 wt% Pt (bottom) catalysts. 
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With respect to differences in Pd oxdaition state, a previous Au-Pd-Pt/CeO2 catalyst 

optimisation study by Fierro et al. 
34

 also indicated the suppression of cationic Pd
2+

 species        

in trimetal compositions, and on evaluating catalysts for methane activation recognised an     

optimum ratio between surface Pd
2+

/Pd
0
 species (leading to formation Pd

0
-PdO ensemble     

sites) and stabilization of a high Pd dispersion were required for methane activation.  

 

7.6 Effect of calcination temperature on 2.28% Au-2.28% Pd-0.45% Pt/CeO2 

 

 The effect of calcination in static air at different temperatures was previously investigated 

in sections 7.2.3 and 7.4.2 for 5 wt% Pd, Au-Pd and Pd-Pt/CeO2 catalysts respectively.      

Briefly, results showed that the H2O2 synthesis activity for Pd and Pd-Pt catalysts overall 

increased on calcination up to temperatures of 400
 o

C, compared to only a minor difference in 

activity for Au-Pd. This was suggested to result from differences in alloying behaviour and 

interactions with the ceria surface between bimetallic Pd-Pt and Au-Pd catalysts, with the latter 

catalyst displaying no evidence of synergy.  

 

Calcination 

Temperature / 
o
C 

Productivity / 

molH2O2kgcat
-1

h
-1

 

Hydrogenation / 

molH2O2kgcat
-1

h
-1

 

Uncalcined 73 619 

200 82 553 

400 100 459 

Table 7.11 Effect of calcination temperature on the direct synthesis of hydrogen peroxide for              

2.28 wt% Au-2.28 wt% Pd-0.45 wt% Pt/CeO2. 

 

The H2O2 synthesis activity of 2.28 wt% Au-2.28 wt% Pd-0.45 wt% Pt/CeO2      

increased from 73 to 100 molH2O2kgcat
-1

h
-1

 after 400
 o

C calcination and was accompanied by        

a decrease in subsequent H2O2 hydrogenation activity (Table 7.11). The effect of calcination 

temperature on surface composition was tracked using XPS. Referring to Table 7.12, the   

surface Pd concentration increased by <1% after 200
 o

C calcination before a four-fold increase  

to 5.64% after 400
 o

C calcination. This corresponded to a pronounced decrease in the surface   

Au concentrations which was accompanied by minimal, inconsistent variation for both Pt and   

Cl content respectively.  
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Calcination 

Temperature / 
o
C 

Surface atom % 

Au Pd Pt Cl 

Uncalcined 0.82 0.30 0.01 1.86 

200 0.16 1.06 0.20 2.31 

400 0.11 5.64 0.04 1.71 

Table 7.12 Surface atom compositions for 2.28 wt% Au-2.28 wt% Pd-0.45 wt% Pt/CeO2 catalysts 

calcined in static air (3 h) at the temperatures indicated. 

 

 

 Similar to previous XPS analysis of 0.20 wt% Au-4.60 wt% Pd-0.20 wt% Pt/CeO2, 

inspection of the Pd(3d) and Au(4d) regions in Figure 7.12 indicated that calcination at           

400
 o

C resulted in simultaneous reduction of Au
3+

 to Au
0
 and oxidation to Pd

0
 to Pd

2+
 at        

354.1 and 335.0 eV binding energies respectively, forming a catalyst comprising Au
0
, Pd

2+
     

and Pt
2+

 oxidation states. However, any change in Pt oxidation state on calcination is very 

difficult to observe due to detection of weak signals in Pt(3d) and Pt(4f) regions, which in        

the absence of high resolution microscopy is suggested to arise from an elevated Pt dispersion  

on ceria relative to Au and Pd. 

 

 
 
Figure 7.12 XPS spectra of 2.28 wt% Au-2.28 wt% Pd-0.45 wt% Pt/CeO2 (uncalcined), showing   

Pd(3d), Au(4d), Pt(3d) spectra (left), and Au(4f), Pt(4f) spectra (right) respectively. 
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In addition, Thermo-gravimetric analysis (TGA) performed in static air showed that 

catalyst mass increased by 1.1% on heating to 400
 o

C (Appendix Figure A7.3 (d)), which is 

attributed to the uptake of oxygen by Pd and Pt specifically, via formation of cationic/       

surface oxide surface species, supported by a minimal oxygen uptake on ceria under the same 

conditions (Appendix Figure A7.3 (a)). Catalyst reusability experiments for a several Au-Pd-

Pt/CeO2 catalysts concluded that similar to 5 wt% Pd and 2.5 wt% Au-2.5 wt% Pd/CeO2, 

calcination in static air at 400
 o

C is required to form a stable, reusable catalyst for direct        

H2O2 synthesis (Appendix Table A7.3). To conclude the trimetallic investigation in chapter 7,    

a comparative study with TiO2-supported Au-Pd-Pt catalysts and using STEM microscopy was 

undertaken to assist in understanding the effect of Pt addition to Au, Pt and Au-Pd catalysts. 
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7.7 Comparison of TiO2-Supported Au-Pd-Pt Catalysts 

 

In this section, the preparation of trimetallic 5 wt% Au-Pd-Pt/TiO2 catalysts based on      

a gradual addition of Pt, maintaining equivalent Au and Pd loadings is initially investigated. 

Referring to Table 7.13, addition of Pt to Au-Pd induced a significant promotional effect        

with respect to H2O2 synthesis, with an initial decrease in the hydrogenation activity after        

0.05 wt% Pt addition relative to 2.5 wt% Au-2.5 wt% Pd/TiO2. Similar to CeO2-supported      

Au-Pd-Pt catalysts, addition of Pt to Au-Pd (catalysts 4-8) resulted in high H2O2 synthesis     

activities, specifically for 0.05-0.20% Pt loadings and followed by a decrease thereafter,  

implying that the addition of Pt to Au, Pd and Au-Pd/TiO2 catalysts has modified surface         

Au-Pd-Pt composition.  

 

TiO2 

Composition / wt% 

Productivity / 

molH2O2kgcat
-1

h
-1

 

Hydrogenation / 

molH2O2kgcat
-1

h
-1

 

1 2.50% Au-2.50% Pd 64 235 

2 2.50% Au-2.50% Pt 65 103 

3 2.50% Pd-2.50% Pt 124 129 

4 2.45% Au-2.45% Pd-0.05% Pt 154 135 

5 2.45% Au-2.45% Pd-0.10% Pt 159 283 

6 2.40% Au-2.40% Pd-0.20% Pt 156 318 

7 2.28% Au-2.28% Pd-0.45% Pt 106 263 

8 0.20% Au-4.60% Pd-0.20% Pt 184 382 

Table 7.13 Effect of catalyst composition on direct H2O2 synthesis: TiO2-supported catalysts. 

 

Surprisingly for bimetallic catalysts 1-3, addition to Pt to Au resulted in a catalyst 

exhibiting comparable H2O2 synthesis activity to 2.5 wt% Au-2.5 wt% Pd/TiO2. While       

activity enhancement was anticipated and subsequently demonstrated on addition of Pt to 

Pd/TiO2 for carbon and CeO2-supported counterparts, the beneficial improvement in both      

H2O2 synthesis and hydrogenation activities on addition of Pt to Au/TiO2 is an unexpected    



Chapter 7 

Preparation of ceria supported Au-Pd-Pt catalysts 

 

254 

 

result given the poor synthesis activities obtained for monometallic Au and Pt/TiO2 catalysts      

(7 and 15 molH2O2kgcat
-1

h
-1

) respectively, and shows that high activities can be obtained     

without Pd metal. STEM-HAADF images of Au-Pt/TiO2 (Figure 7.13) highlight a trimodal 

particle size distribution similar to the features reported for Au-Pd/TiO2, with small 1-5 nm     

Pd-rich particles, intermediate 10-20 nm Au-Pt alloyed particles, and large Au-rich >20 nm 

particles identified in corresponding XEDS analysis (Figure 7.14). 

 

    

Figure 7.13 Representative STEM-HAADF images of 2.50 wt% Au-2.50 wt% Pt/TiO2. 

 

       

       

Figure 7.14 STEM-XEDS analyses of 2.50 wt% Au-2.50 wt% Pt/TiO2, highlighting the composition of 

small (left), intermediate (middle) and large (right) particles. Note the presence of Cu signal(s) in XEDS 

represent an artefact of the JEOL FS2200 microscope and are not characteristic of catalyst samples. 
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STEM-HAADF images of Pd-Pt/TiO2 (Figure 7.15) again highlight a trimodal particle 

size distribution similar to the features reported for Au-Pd/TiO2, with small 1-5 nm Pd-rich 

particles, intermediate 10-20 nm Pd-Pt alloyed particles, and large Au-rich >20 nm particles 

identified in corresponding XEDS analysis (Figure 7.16). Referring to XPS analysis of Au-Pt 

and Pd-Pt/TiO2 catalysts in Table 7.14, the formation of homogeneous Au-Pt particles and       

Pt-core Pd-shell nanoparticles is implied by the calculated surface Au/Pt and Pd/Pt ratios of        

1.0 and 6.0 respectively, indicating preferential surface segregation of Pd in the latter sample, 

attributed to the formation of Pd-O bonds, and corresponding to high Pd
2+

 signal intensity. 

 

    

Figure 7.15 Representative STEM-HAADF images of 2.50 wt% Pd-2.50 wt% Pt/TiO2. 

 

       

       

Figure 7.16 STEM-XEDS analyses of 2.50 wt% Pd-2.50 wt% Pt/TiO2, highlighting the composition      

of small (left), intermediate (middle) and large (right) particles.  
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Figure 7.17 Representative STEM-HAADF images of 2.40 wt% Au-2.40 wt% Pd-0.20 wt% Pt/TiO2. 

 

    

    

Figure 7.18 STEM-XEDS analyses of 2.40 wt% Au-2.40 wt% Pd-0.20 wt% Pt/TiO2. 

 

Interestingly, STEM-HAADF images of the 2.40% Au-2.40% Pd-0.20% Pt/TiO2   

catalyst (Figure 7.17) now reported a bimodal particle size distribution, consisting of small         

1-5 nm Pd-only particles, and large Au-rich particles >10nm. Both XEDS (Figure 7.18) and   

XPS (Table 7.14) analysis of this did not detect the presence of Pt in nanoparticles on the 

catalyst surface. The Pt loading in this catalyst is very low and it is probable that highly 

dispersed Pt species (1-2 atoms) are present below the detection limit of XEDS and XPS 

techniques. The presence of a bimodal particle size distribution that is significantly different 
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compared to bimetallic Au-Pd, Au-Pt and Pd-Pt analogues may represent an effect of minor       

Pt addition, specifically a particle size redistribution and elevated surface Pd/Au ratio of ~25, 

explaining the high H2O2 synthesis activity (156 molH2O2kgcat
-1

h
-1

) observed over this catalyst. 

 

    

    

Figure 7.19 Representative STEM-HAADF images of 0.20 wt% Au-4.60 wt% Pd-0.20 wt% 

Pt/TiO2 and corresponding XEDS spectra. 

 

STEM-HAADF images of 0.20% Au-2.40% Pd-0.20% Pt/TiO2 (Figure 7.19) show a 

uniform particle size distribution, consisting of <5 nm Pd-only particles, with no detection of 

either Au or Pt using either XEDS or XPS (Table 7.14) techniques. Both Au and Pt loading       

in this catalyst are fixed at 0.20 wt%, implying that highly dispersed Au and Pt species              

(1-2 atoms) are present below the detection limit of XEDS/XPS. The presence of an atomic 

dispersion of Au and Pt and high surface Pd exposure, partly related to the 4.60 wt% Pd    

loading (in addition to moderate surface chloride content), may explain why both substantial 

H2O2 synthesis (184 molH2O2kgcat
-1

h
-1

) and hydrogenation (382 molH2O2kgcat
-1

h
-1

) activities       

are observed over the catalyst. 
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TiO2  

Composition / wt% 

Surface atom % 

Au Pd Pt Cl 

2.28% Au-2.28% Pd-0.45% Pt 0.04 0.98 0.06 0.98 

2.40% Au-2.40% Pd-0.20% Pt 0.06 1.52 0.00 1.13 

0.20% Au-4.60% Pd-0.20% Pt 0.00 3.14 0.00 2.49 

     

2.50% Pd-2.50% Pt  0.72 0.12 0.93 

2.50% Au-2.50% Pt 0.12  0.12 0.00 

Table 7.14 Summary of the XPS-derived surface atomic concentrations for Au-Pt, Pd-Pt and     

trimetallic Au-Pd-Pt/TiO2 catalysts.  

 

 To conclude, XPS analysis of a 2.28 w% Au-2.28 wt% Pd-0.45 wt% Pt/TiO2 catalyst 

(Figure 7.20) indicated the presence of Pd
2+

, Pt
2+

 and Au
0
 oxidation states at binding energies 

respectively (Referring to Table 7.14, surface Au, Pd and Pt content was detected on this 

catalyst). The same oxidation states were identified for 2.28 wt% Au-2.28 wt% Pd-0.45 wt% 

Pt/CeO2 and imply a degree of crossover may exist between different metal oxide supports with 

respect to activity and surface composition. Both Au(4f) and Pt(4f) signals were of relatively 

weak intensity, corresponding to low surface Au and Pt concentrations of 0.04 and 0.06 atom%. 

 

  
 

Figure 7.20 Pd(3d) spectra (left), and Au(4f) and Pt(4f) spectra (right) obtained for 2.28 wt% Au-       

2.28 wt% Pd-0.45 wt% Pt/TiO2. 
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7.8 Discussion 

 

 In the second part of chapter 7 (section 7.4 onward) the effect of Pt addition to              

Au, Pd, and Au-Pd/CeO2 catalysts was studied, concluding ceria as a suitable support             

with respect to achieving high rates of H2O2 synthesis and moderate/low rates of H2O2 

hydrogenation respectively. Low rates of H2O2 synthesis were obtained using Au, Pt and                 

Au-Pt/CeO2 catalysts, while subsequent evaluation of Au-Pt/TiO2 revealed a H2O2 synthesis 

activity comparable to that of the previously studied and well characterised Au-Pd/TiO2            

catalyst (64 molH2O2kgcat
-1

h
-1

) - a surprise result and demonstrating the potential of catalysts    

prepared without using Pd, which has represented the primary catalyst composition in most       

of the previous studies reported in the literature. 

 

 Following these observations, a series of bimetallic Pd-Pt/CeO2 catalysts were prepared 

leading up to the development of trimetallic Au-Pd-Pt catalysts. While the addition of Au          

to Pd/CeO2 did not induce synergy with respect to H2O2 synthesis, addition of Pt to Pd did 

induce a synergistic effect, with H2O2 synthesis activity increasing from 97 molH2O2kgcat
-1

h
-1

  

(5% Pd) to 138 molH2O2kgcat
-1

h
-1

 (2.5% Pt-2.5% Pd). Even addition of small amounts of Pt 

resulted in enhanced synthesis activity (0.2% Pt-4.8% Pd = 125 molH2O2kgcat
-1

h
-1

), with another 

study
35

 suggesting that the nature of the promotional effect achieved on addition of Pt to Pd         

is different to the behaviour observed on addition of Au to Pd, specifically by the tuning of        

Pd electronic structure by the small addition of Pt (i.e. weakening of surface Pd-O bonds), 

leading to improved stabilization of O2 molecules on Pd sites and subsequent formation of 

hydroperoxy, OOH intermediates.  

 

Clear differences are highlighted between Au-Pd and Pd-Pt catalysts after 400
 o

C 

calcination in static air, however, specific differences between Pd-Pt and Au-Pd interactions     

on ceria have not been determined in this study due to the effective Z-contrast than can be 

achieved between Au, Pd and Ce elements using the JEOL FS2200 microscope. Future studies 

on next generation instruments are planned are intended and are approximately 1-2 years away 

based on recent developments in aberration corrected electron microscopy
36

, to permit imaging 

of multiple elements in a specimen where effective Z-contrasting can be achieved based on 

differences in atomic number as low as 1-2, an improvement on the current which stands at ~4. 
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Regarding the nature of Pd-Pt interaction, theoretical work
37

 has indicated that strong 

surface segregation of Pd atoms is facile in surface [100] and [111] planes of Pd-Pt alloys as       

a result of the lower surface energy of Pd and greater cohesive energy of Pt, while the addition  

of a single Pt atom into a Pd cluster was determined as being sufficient to modify the geometrical 

structure of Pd-Pt clusters
37

. Toshima and co-workers
38

 reported that for a range of Pd-Pt 

nanoparticles synthesised via colloidal development (using different Pd/Pt molar ratios), both 

geometric structure and the degree of disorder of Pd-Pt nanoparticles varied substantially with 

alloy composition. It was also identified that minimization of the surface-free energy of           

Pd-Pt cluster particles, corresponding to maximization in the number of Pd-Pt bonds, resulting  

in surface segregation of Pd relative to the Pt component in Pd-Pt clusters. These previous 

studies add support to findings reported in this chapter, with respect to 5 wt% Pd-Pt/CeO2 

catalysts and likely play an important role in trimetallic Au-Pd-Pt/CeO2 catalyst compositions, 

which will be concluded next, in terms of both structure and activity. 

 

 Important experimental observations were made when evaluating Au-Pd-Pt/CeO2 

catalysts for direct H2O2 synthesis reaction specifically that the application of trimetallic 

catalysts resulted in the highest rates of H2O2 synthesis reported to date (for 5 wt% catalysts 

prepared by wet-impregnation and calcined in static air at 400
 o

C for 3 h). The most active 

trimetallic catalyst compositions for H2O2 synthesis were: 

 

 (1) 0.20 wt% Au - 4.60 wt% Pd - 0.20 wt% Pt    - 185 molH2O2kgcat
-1

h
-1

    

(2) 2.40 wt% Au - 2.40 wt% Pd - 0.20 wt% Pt    - 170 molH2O2kgcat
-1

h
-1

 

  

 Although catalysts 1 and 2 both contained a 0.20 wt% Pt loading, the Au and Pd         

wt% loadings were simultaneously varied, making direct comparison between structure and 

activity particularly difficult for trimetallic systems. In order to identify/better understand        

the possible relationship(s) between catalyst composition and H2O2 synthesis/hydrogenation 

activity, a series of ternary diagrams were plotted (Figures 7.9-7.11) to triangulate activity as       

a function of Au/Pd/Pt loading. The close inspection of Pd-rich, Au-Pd-Pt compositions at the 

top of the ternary diagram evaluating H2O2 hydrogenation (Figure 7.9) revealed low rates of 

hydrogenation for two Au-Pd-Pt/CeO2 catalysts, both comprising 4.20 wt% Pd.  
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The presence of such isolated, low activities indicates the existence of ‘zones’ on 

simultaneous increasing Au and Pt content in trimetallic catalysts, resulting in several Pd-rich, 

Au-Pd-Pt catalysts that are both highly active for H2O2 synthesis and exhibit low rates of      

H2O2 hydrogenation (in the range 30-70 molH2O2kgcat
-1

h
-1

).  

 

On moving from 5 wt% Pd and 2.5 wt% Au-2.5 wt% Pd/CeO2 to select trimetallic                    

5 wt% Pd-Pt and Au-Pd-Pt/CeO2 catalysts, it was demonstrated that Pt addition could 

specifically improve the H2O2 synthesis activity, without increasing the rate of subsequent                       

H2O2 hydrogenation over the catalyst (with hydrogenation activity in many cases actually     

being considerably reduced), providing evidence of a synergistic effect induced by Pt in  

bimetallic and trimetallic catalysts. H2O2 synthesis and hydrogenation activities obtained for  

Au-Pd-Pt/CeO2 catalysts were combined in a composite diagram (synthesis - hydrogenation)     

to show optimum catalyst compositions in red, where H2O2 synthesis > H2O2 hydrogenation,     

to give a positive value (Figure 7.10). Using this approach, trimetallic Au-Pd-Pt/CeO2 catalysts 

comprising metal loadings (highest to lowest): Pd > Pt > Au, were proposed to represent          

optimum catalyst compositions. More specifically, Pd loading is >2.5 wt%, Pt loading is 0.20-

1.9 wt%, and the Au loading is distributed over two regions: 0.2-0.7 wt% and 1.2-1.9 wt% 

respectively. 

 

DFT calculations performed by Meyer and Todorovich
39

 for direct H2O2 synthesis on        

Pd [111], Pt [111], PdH [211] and Au0.89Pd0.11 [221], compared three formation steps               

and their competing reactions on all model surfaces:  

 

(1) O2   hydrogenation  vs.  O2   dissociation            

(2) OOH   hydrogenation  vs.  OOH   dissocation 

(3) H2O2   desorption   vs.   H2O2   dissociation  

 

Results showed that as the surface structure of the catalyst is changed form Pd to            

Pt to Au, the step that governs the non-selective formation of H2O was shifted from O2   

dissociation to OOH dissociation to H2O2 decomposition respectively. Based on the composite 

values presented in Figure 7.10, it is highly likely interplay exists between these three            

steps in trimetallic Au-Pd-Pt/CeO2 catalysts depending on the amount of Au, Pd and Pt      

present and alloying effect(s).  
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X-ray photoelectron spectroscopy (XPS) analysis for select catalysts implied that a thin 

surface Pd
0
/PdO film was formed on ceria, based on extremely high signal intensities observed 

in Pd(3d) spectra. A previous catalyst screening study by Fierro et al, also recognised a high 

surface Pd exposure, and suggested that formation Pd
0
-PdO ensemble sites responsible for 

methane activation
34

 were regulated (e.g. changes in Pd
0
/PdO ratio, dispersion) by Au and Pt 

metals, which too is implied in our XPS studies. It is appreciated that further investigation      

into trimetallic Au-Pd-Pt catalysts is required, and will be continued using ceria - a suitable       

support with respect to achieving high rates of H2O2 synthesis and moderate/low rates of      

H2O2 hydrogenation respectively. In particular, experiments are required to determine the   

nature of the metal support interactions in CeO2-supported catalysts, comparing both strong 

metal support interactions (M-O-Ce, where M = Au, Pd, Pt) and the possible interactions 

operating between Au, Pd and Pt metals.  

 

 

7.9 Conclusion 

 

The work presented in this chapter shows that ceria could be a suitable support for Au 

and Pd nanoparticles active for the direct synthesis of hydrogen peroxide. This is due in part to 

the very high H2O2 synthesis activities achieved over 5 wt% Pd/CeO2 (97 molH2O2kgcat
-1

h
-1

) 

catalysts, which are superior to the activities reported for carbon and metal-oxide supported         

5 wt% Pd catalysts
1
. However, the addition of Au to Pd/CeO2 catalysts did not improve the     

rate of H2O2 synthesis, although it did influence the rate of H2O2 hydrogenation. The origin       

of this effect is considered likely due to insufficient alloy formation under the heat treatment 

conditions applied. On moving from 5 wt% Pd and 2.5 wt% Au-2.5 wt% Pd/CeO2 to select          

5 wt% Pd-Pt and Au-Pd-Pt/CeO2 catalyst compositions, it was demonstrated that Pt addition 

could improve the rate of H2O2 synthesis by a factor of 2 without increasing the rate of 

subsequent H2O2 hydrogenation over the catalyst (with the hydrogenation activity in many   

cases actually being considerably reduced), providing evidence of a synergistic effect induced  

by Pt in bimetallic and trimetallic CeO2-supported catalysts. Characterisation of Pd-Pt and      

Au-Pd-Pd/CeO2 catalysts by X-ray photoelectron spectroscopy indicated that the Pd surface 

concentration and oxidation state (Pd
2+

/Pd
0
) were critically sensitive to Au/Pd/Pt composition. 
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Chapter 8 

8.1 Conclusions 

 

 The study was undertaken in collaboration with Solvay®, the largest manufacturer         

of H2O2 using the anthraquinone auto-oxidation (AO) process. This represents an indirect     

process based on sequential hydrogenation and oxidation of an R-alkyl anthraquinone to  

produce hydrogen peroxide at high concentrations with H2 selectivity >95%. However, the 

degradation of anthraquinone components and organic solvents, which must be extracted and 

regenerated/replaced on a regular basis, and the fact that this process is only viable on an 

industrial scale whereas small scale and widespread processes are desired has generated much 

interest in developing of alternative technologies. A major research area is the direct synthesis  

of H2O2 from H2 and O2. For commercial applications to be realised in the future, this process 

must meet safety criteria, be economically viable and meet industrial targets set by Solvay,      

i.e. production of 8 wt% H2O2 (without acid and halide promoters), H2 selectivity >90%, using   

a catalyst that is stable over extended reaction times. 

 

Using an autoclave reactor (a three-phase, stirred autoclave, operating under batch 

conditions), a range of Au, Pd, Au-Pd, Au-Pt, Pd-Pt and Au-Pd-Pt catalysts supported on  

carbon, ceria, silica and titania were prepared, characterised and evaluated for the direct 

synthesis of hydrogen peroxide in the absence of acid and halide promoters. Because this      

study adheres to using batch conditions, the maximum hydrogen peroxide yield that can            

be produced in a single reaction (based on 100% H2 conversion and selectivity) is 1.1 wt%.  

 

These conditions are employed because this thesis is aimed at catalyst development,     

and the optimized batch conditions described in chapter 2 are appropriate for high throughput 

catalyst screening studies. A selection of the most active H2O2 synthesis catalysts identified 

across chapters 3-7 have been evaluated in separate studies using biphasic systems and semi-
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batch/flow conditions and indeed in principle it has been demonstrated that >3 wt% H2O2 

solutions in the water phase can be produced. The objectives previously outlined in chapter 1 

were: 

 

1 Optimisation of the wet-impregnation catalyst preparation method for carbon and TiO2 

supported Au-Pd catalysts for the direct synthesis of hydrogen peroxide, with insight  

into the preparation of halide-free catalysts (chapter 3). 

 

2 Achieving an improved understanding as to how the acid pre-treatment of carbon 

supports prior to Au-Pd impregnation generates highly active catalysts for the direct 

synthesis of hydrogen peroxide in which the non-selective H2O2 hydrogenation/ 

decomposition pathways are completely switched-off (chapter 4). 

 

3 Development of the colloidal “sol” immobilisation methodology to prepare Au-Pd/C   

and TiO2 catalysts with application of aberration corrected electron microscopy 

techniques to investigate the origin of the high activity exhibited by these catalysts        

for the direct synthesis of hydrogen peroxide (chapter 5). 

 

4 Investigation into the origin of synergistic effect(s) between Au and Pd supported on 

SiO2 as a function of acid-pretreatment, using multiple characterisation techniques 

including Inelastic Neutron Scattering (INS) measurements (chapter 6). 

 

5 Development of trimetallic Au-Pd-Pt catalysts for the direct synthesis of hydrogen 

peroxide, with catalyst screening undertaken for Au-Pd-Pt/CeO2 (chapter 7). 

 

 

In chapter 3, it was shown that for 5 wt% Au-Pd/TiO2 catalysts prepared via wet 

impregnation, the addition of minimal amounts of water to form a catalyst slurry, which 

subsequently was not heated to form a thick, viscous gel (i.e. still contains 2 ml of H2O)             

prior to drying (110
 o

C) and calcination in static air (400
 o

C), resulted in highly active           

H2O2 synthesis catalysts (ca. 120 molH2O2kgcat
-1

h
-1

) of activity comparable to 5 wt% Au-Pd/C 

catalysts (120 molH2O2kgcat
-1

h
-1

). The addition of more water (ca. 2-30 ml) during the catalyst 
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impregnation step prior to drying leads to a significant change in the particle size distribution, 

with a modified bimodal distribution now observed for Au-Pd/TiO2 catalysts.  

 

Specifically a bimodal distribution of Au and Pd nanoparticles with larger particles      

(20-80 nm) containing Au and small particles (1-10 nm) containing Pd was reported, with no 

detectable Au-Pd alloy formation in either the smaller or larger particles. The larger Au-only 

particles are ineffective in limiting H2O2 hydrogenation and as a result a reduced synergistic 

effect of Au is observed, and therefore the higher H2O2 synthesis and hydrogenation activities 

observed over Pd-only and Au-Pd catalysts prepared using this modified methodology are  

related to an enhanced Pd dispersion. Unfortunately, TiO2-supported catalysts prepared in this 

manner are not stable on re-use. However, catalysts prepared using a similar method, but with 

the removal of ca. 75% of the initial H2O ensuring that a viscous, gel consistency is formed   

prior to drying, were determined as stable and fully reusable (and comprised intermediate, 

AucorePdshell alloyed nanoparticles). 

 

In contrast, for Au-Pd/C catalysts, addition of water during the catalyst impregnation   

step (ca. 2-30 ml) did not affect either structure or activity and these catalysts could be             

re-used without loss of catalyst performance. A major difference was established in the rate       

of Au and Pd uptake onto TiO2 and carbon supports, with instant adsorption of Au and Pd 

precursors onto carbon irrespective of water addition/concentration, compared to negligible 

uptake onto TiO2, which was determined as being influenced by surface iso-electric point. 

 

Additional experiments presented in the latter half of chapter 3 conclude that reduced 

halide content/halide free catalysts can be synthesized using deposition precipitation routes     

and mild reduction treatments, leading to moderately active H2O2 synthesis and hydrogenation 

catalysts. A possible drawback with using deposition precipitation methodology to co-deposit 

Au(OH)3 and Pd(OH)2 species onto TiO2 and carbon supports is that control over the fraction    

of each metal deposited onto a given support is limited, since AuCl4 and PdCl2 precursors         

are hydrolysed at different pH values and may deposit at different rates onto the support, with      

a higher Pd content detected in the final catalysts. The use of co-deposition techniques will 

therefore be investigated in future given that halide free catalysts can already be produced 

allowing further studies aimed at optimising Au/Pd particle composition and weight ratio. 
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In chapter 4, the H2O2 synthesis and hydrogenation activities over non-acid and          

acid treated Au-Pd/C catalysts were compared and contrasted as a function of calcination 

temperature. A minimum temperature of 400
 o

C was required to form a highly active, stable     

and fully reusable catalyst, simultaneously decreasing the H2O2 hydrogenation activity to the 

extent that for acid treated Au-Pd/C it was switched-off. Characterisation of non-acid and       

acid treated carbons by FT-IR ATR spectroscopy and in particular TPD showed an increase       

in the amount of carboxylic acid groups. 

 

The surface composition and structure of non-acid and acid treated Au-Pd/C catalysts 

was studied using XPS and STEM-HAADF imaging techniques. Aberration corrected electron 

microscopy showed that both non-acid treated and acid-treated Au-Pd/C samples calcined at   

400
 
°C consisted of Au-rich nanoparticles and a highly dispersed coverage of atomic and cluster-

like Pd species, intermixed with a small amount of atomically dispersed Au. Calcination appears 

to improve the overall metal dispersion, although acid pre-treatment of the support does not  

seem to affect the catalyst morphology or the dispersion of metallic species; suggesting the 

enhancement in observed activity for acid treated Au-Pd/C samples could be related to changes 

in metal oxidation state and residual surface species.  

 

Indeed XPS analysis showed the most important distinguishing feature between non-acid 

treated and acid treated Au-Pd/C catalysts as being the concentration of surface Pd
2+ 

species 

associated with O
2-

 and/or Cl
-
 electronic modification, with >90% Pd

2+
 present in all acid   

treated catalysts. The stability of surface Pd
2+

 species was however found to be dependent on 

calcination temperature (Table 4.11). For all catalysts calcined in static air at temperatures  

below 400
 o

C, reduction to Pd
0
 during hydrogen peroxide synthesis occurred (alongside    

possible leaching of Au and Pd from the catalyst), corresponding to a significant decrease in    

the rates of H2O2 synthesis observed on second use.  

 

A subtle variation in dispersion of Au and Pd species cannot be excluded as a reason for 

improved catalytic activity and surface Pd
2+

 concentration after acid pre-treating carbon, given 

the inability to directly determine the chemical identity of sub-nm species and isolated atoms     

in bimetallic Au-Pd/C catalysts using atomic level Z-contrast measurements due to the rough  

nature of the support.  
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Microscopy for monometallic Au and Pd samples implies that a small concentration of 

atomically dispersed Au atoms is intermixed within atomically dispersed Pd species in bimetallic 

alloys, and XPS analysis reported higher than anticipated Pd/Au ratios on acid treated             

Au-Pd/C catalysts. The critical role of surface Pd
2+

 species with respect to H2O2 yield was 

further demonstration by redox cycle experiments, showing post-treatment in mild reducing/ 

oxidising condition can reversibly modify the surface Pd oxidation state of acid-treated Au-Pd/C 

and switch on/off corresponding H2O2 hydrogenation. A theoretical study of Au@Pd surfaces  

by Ishihara and co-workers
1
 has led to a mechanistic proposal, illustrating the importance of     

the Au present in Au-Pd surfaces with respect to the binding energies of adsorbed reactants/ 

products. The presence of Au in Au-Pd surfaces significantly increases the activation energy 

barriers for competing OOH hydrogenation and decomposition processes (Figure 8.1), which 

could possibly explain the role of the improved atomic dispersion of Au, intermixed with        

sub-nm Pd clusters in acid treated Au-Pd/C catalysts. 

 

Figure 8.1 Schematic of the adsorption configuration of O2 on the H atoms co-adsorbed on the      

Au@Pd [111] surface, showing reactions possible involved in each H2O2 synthesis steps
1
. The       

reaction cycle indicated by red arrows is thermodynamically favoured when Au atoms are presented      

on the Pd [111] surface, with the black arrows corresponding to competing H2O2 hydrogenation/ 

pathways in which the activation energy barrier for a reaction to proceed has been significantly   

increased by the presence of Au. 

 

 

Regarding the choice of calcination conditions applied in preparation of acid treated    

Au-Pd/C catalysts, calcination in static air at 400
 o

C is mandatory to form a stable catalyst that 

can be reused for the direct synthesis reaction. This is not afforded via heat treatment in 
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reducing, inert or oxygen rich atmospheres and is likely due to the sensitivity of the activated 

carbon material toward these environments. Chapter 4 has permitted a better understanding       

of the effect of nitric acid pre-treatment, highlighting that functional groups present on the      

non-acid treated support are enhanced. Currently, the phenomenon in which the rate of 

sequential H2O2 hydrogenation over a catalyst is switched-off is specific to Au-Pd/C, and 

therefore further experiments are planned to ascertain if the H2O2 hydrogenation activity of   

other catalyst compositions can be eliminated. 

 

 In chapter 5, it was concluded from investigation into the preparation of Au+Pd,      

Au{Pd} and Pd{Au} colloidal nanoparticles that the order of Au and Pd metal reduction    

during colloid synthesis and prior to immobilization on carbon and TiO2 supports can affect the 

resulting activity of catalysts active toward both the synthesis and hydrogenation of hydrogen 

peroxide as summarised for the carbon-supported series in Figure 8.2. The initial rates of      

H2O2 synthesis over sol-immobilized catalysts are exceptionally high and in some instances as 

much as 0.19 wt% H2O2 can be produced after 2 minutes, which is higher than many of the 

yields reported for 5 wt% catalysts prepared by wet-impregnation after 30 minutes. This also 

represents a 7-8 fold improvement in terms of turnover frequency given sol-immobilisation 

catalysts are prepared using 5 times less Au and Pd metal relative to impregnation (5 wt%). 

 

 
 

Figure 8.2 Summary of the H2O2 synthesis and hydrogenation activities of Au+Pd, Pd{Au} and    

Au{Pd} nanoparticles immobilized on carbon. 
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The H2O2 synthesis activities of sol-immobilized Au+Pd, Pd{Au} and Au{Pd)/C 

catalysts are approximately 5-6 times higher than their TiO2-supported counterparts and 

characterisation of catalysts by advanced aberration corrected electron microscopy concludes      

a dramatically different particle structure and metal-support interaction manifests depending on 

the choice of support.  

 

Specifically, high resolution images of immobilized Au+Pd particles identified a non-

wetting interaction between ‘rounded’ Au+Pd particles and activated carbon, compared to 

formation of an extended flat interface was between mainly ‘faceted’ Au+Pd particles and TiO2. 

The latter observation is evidence of surface wetting behavior and is independent of the order   

Au and Pd reduction during nanoparticle synthesis and is attributed to the development of    

strong metal-support interactions and consequently the displacement of PVA ligands in close 

proximity to metal-support interfaces. 

 

Although the preparation of Au-Pd nanoparticles by sol-immobilisation was undertaken 

in order to generate catalysts of improved particle size and composition, microscopic analysis    

of nanoparticles before and after immobilisation onto carbon and TiO2 did detect some            

off-centre cores, particles with incomplete shell coverage and those simply lacking the core-shell 

structure with respect to Pd{Au} and Au{Pd} colloids. The variation and non-uniformity in     

the Au-shell coverage of Pd-core particles is likely the result of insufficient ‘shell’ material  

being provided during nanoparticle formation. 

 

In addition, a series of Au+Pd alloy colloidal nanoparticles having a range of Au:Pd 

ratios were immobilized on carbon and evaluated for hydrogen peroxide synthesis. In all      

cases the Au-Pd nanoparticles were homogeneous alloys, with the optimum H2O2 synthesis 

activity attained using a catalyst with Au:Pd molar ratio of 1:2. Activity in terms of both       

H2O2 synthesis and hydrogenation obeyed a distorted ‘volcano’ relationship with increasing Pd 

molar content. Referring to XPS studies, the hydrogenation activity of Au+Pd/C catalysts was 

suggested to increasing with rising Pd content due to systematic variation in the quantity of 

surface exposed Pd and Pd
0
/Pd

2+
 ratio, which as a result cancels out the positive effect of   

adding Pd to the Au nanoparticles.  
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Further experiments will be aimed at addressing the catalysts stability parameter to 

determine if a stable colloidal catalyst can be applied to the direct H2O2 synthesis reaction. 

However, 1 wt% Au+Pd/C was recognised as the only catalyst tested to date that is capable       

of forming hydrogen peroxide in a gas phase reactor over a period of 76 h (albeit at low 

concentration in pilot experiments)
2
, and is most probably related to the exceptionally initial   

rates exhibited by sol-immobilisation catalysts at short reaction times (<2 min). The use of      

low residence times, such as those encountered in gas phase and liquid flow reactors (seconds)     

may provide a way forward for a potentially promising catalyst series. 

 

Referring to chapter 6, the reason behind the observed synergy displayed by the           

Au-Pd catalyst on acid pre-treated SiO2 cannot be rationalised from electron microscopy 

characterisation as the overall morphology for the two samples appears identical. XPS      

analysis does however conclusively show that acid pre-treatment increases the degree of Au 

dispersion on SiO2 and in addition clear differences in the nature of the hydroxyl groups       

using Inelastic Neutron Scattering and TPD methods are identified between supports which 

might be associated with the onset of synergy and increase in activity for Au-Pd catalysts 

prepared using the acid pre-treated support. With respect to the enhanced catalytic activity      

that is observed for all Pd-containing catalysts prepared using the acid pre-treated silica,            

the enhanced hydroxyl functionality on the silica surface is suggested to aid the dispersion of    

Pd metal and it is this effect that constitutes the enhanced activity. 

 

There could be an extremely small amount of Au contained within the 2-5 nm Pd 

nanoparticles which is below the detection limits of the STEM-XEDS microscope (a mass 

fraction sensitivity of the order ~1 atom%), which is possible to detect using XPS, however,      

as the Au signal is observed in the acid pre-treated catalyst, but not in the untreated counterpart. 

For a series of 1 wt% Au+Pd/C catalysts prepared by sol-immobilisation in chapter 5, the 

addition of small amounts of Au to Pd significantly improved H2O2 activity and therefore it       

is plausible that this effect is observed with very small numbers of Au atoms in these small 

clusters, where one or two Au atoms constitute a significant volume fraction of the particle. 
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It has been demonstrated in both chapters 4 and 5 that catalysts comprising solely of 

small nanoparticles of either Pd or Au-Pd are highly active when supported on carbon. It is 

therefore unlikely changing the support surface would switch-off the activity of such a large 

population of the very small nanoparticles adding strength to the conclusion that on silica, Au-Pd 

synergy is derived from a slightly enhanced dispersion of Au that arises from the presence of an 

enhanced population of surface hydroxyl functionalities on the surface of the silica due to the 

acid pre-treatment. It is obvious from this study that silica is not an optimal support for the 

dispersion of Au-containing catalysts using wet impregnation and colloidal immobilization, and 

so further studies would be directed at synthesizing Au@Pd/SiO2 via an electroless deposition 

route, with a metal-support interaction proceeding through Pd nanoparticles (i.e. Au-Pd-O-Si). 

 

Chapter 7 shows that ceria could be a suitable support for Au and Pd nanoparticles   

active for the direct synthesis of hydrogen peroxide, due in part to very high H2O2 synthesis 

activities over 5 wt% Pd/CeO2 (97 molH2O2kgcat
-1

h
-1

) catalysts, which are also superior to          

the activities reported for carbon and metal-oxide supported 5 wt% Pd catalysts. However,            

the addition of Au to Pd/CeO2 catalysts does not result in an enhanced synthesis activity, 

although it does influence the rate of H2O2 hydrogenation. The origin of this effect is most   

likely to be due to lack of alloy formation under the heat treatment conditions applied. 

 

On moving from 5 wt% Pd and 2.5 wt% Au-2.5 wt% Pd/CeO2 to select trimetallic           

5 wt% Pd-Pt and Au-Pd-Pt/CeO2 catalysts, it was demonstrated that Pt addition could 

specifically improve the H2O2 synthesis activity, without increasing the rate of subsequent     

H2O2 hydrogenation over the catalyst (with hydrogenation activity in many cases actually    

being considerably reduced), providing evidence of a synergistic effect induced by Pt in 

bimetallic and trimetallic catalysts.  

 

H2O2 synthesis and hydrogenation activities obtained for Au-Pd-Pt/CeO2 catalysts     

were combined in a composite diagram (synthesis – hydrogenation) to show optimum catalyst 

where H2O2 synthesis > H2O2 hydrogenation, to give a positive value. Using this approach, 

trimetallic Au-Pd-Pt/CeO2 catalysts comprising metal loadings, Pd > Pt > Au, were proposed    

to represent optimum catalyst compositions. Specifically, Pd loading is >2.5 wt%, Pt loading     

is 0.2-1.9 wt%, and Au loading is distributed over two regions, 0.2-0.7 wt% and 1.2-1.9 wt% 

respectively. 
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Although this approach is not an absolute indicator in terms of what constitutes 

optimum/favourable catalyst compositions as it is specific to the reaction conditions used (e.g. 

batch operation, pressure, solvent, temperature, time), it does serve as a useful guideline in 

directing further development of Au-Pd-Pt/CeO2 catalysts for application in other systems. 

Examples include: (i) flow reactors, where the residence time is dramatically shorter (seconds) 

compared to batch reactors (30 minutes, inside sealed autoclave containing a finite concentration 

of H2/O2 gases), and (ii) use of immiscible solvent mixtures.  

 

Piccinini
2
 demonstrated that performing the direct synthesis reaction in an immiscible 

two-phase, decanol-1-ol/water solvent and using a 0.63 wt% Au-3.75 wt% Pd-0.63 wt% Pt/ 

CeO2 catalyst and semi-batch conditions that a 3.5 wt% H2O2 concentration could be formed     

in the water phase. This result is highly significant since no acid/halide promoters or distillation 

steps were required, with the setup enabling high yields to be attained via in-situ extraction       

of hydrogen peroxide formed in the organic, decanol-1-ol phase. As part of future work, the 

development of highly active catalysts (determined using standard, batch conditions) will be 

applied to semi-batch/flow experiments in order to ascertain if the [H2O2] = 8 wt% target can     

be reached using direct synthesis technology in the near future. 

 

The initial results from the trimetallic study are promising when using CeO2 as the 

support. Catalysts up until now only been prepared using relatively simple preparation 

techniques, primarily to cover a broad research objective and to favour potential industrial    

scale-up, since both sol-immobilisation and deposition precipitation methodologies would be 

difficult, although not impossible to control on a large scale. While studies using the wet 

impregnation method to prepare mono, bi and trimetallic Au, Pd, Pt catalysts (in addition to 

searching for other potential metal candidates) will continue, other methods will be addressed. 
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Chapter 4 - Appendices 

Measurement of the water and functional group loss by thermo-gravimetric analysis for 

untreated and 2% HNO3 treated G60 carbon supports. 

 

 

 

 

Figure A4.1 Thermo-gravimetric analysis of non-acid treated (top) and 2% HNO3 pre-treated 

(bottom) G60 carbon supports heated to 350
 o
C under a nitrogen atmosphere. 
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A mass decrease of 2.7% was recorded for the non-acid treated carbon, with mass 

variation below 100
 o

C attributed to water loss. A progressive decrease is observed from         

100 to 350
 o

C, which is in agreement with TPD experiments (Chapter 3, Figure 4.4) and 

suggested to arise from carboxylic acid groups. A comparable decrease in sample mass (2.6%) 

was observed for 2% HNO3 treated carbon with more subtle variation above 100
 o

C. Small 

percentage variations were measured in these experiments and despite the simple identification 

of water evolution, changes in surface functionality are more subjective (a lower signal variation 

for functionalities other than H2O) since introduction of carboxylic acid groups via the acid         

pre-treatment constituted less than 1% of activated carbon support by weight.  

 

 

wt% H2O2 

Heat Treatment 

Dried 

120
 o

C 
200

 o
C 300

 o
C 400

 o
C

 

Initial 4.05 4.05 4.08 4.00 

Final 3.55 3.48 3.49 4.04 

Table A4.1 Summary of Pseudo-Synthesis experiments (H2O2 synthesis performed in the 

presence of 4 wt% H2O2) for acid treated 2.5 wt% Au-2.5 wt% Pd/C catalysts, calcined in    

static air for 3 h at temperatures indicated. 
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 (a) Dried at 120 °C (b) Dried at 120 °C 

 (c) Calcined at 200 °C (d) Calcined at 200 °C 

 (e) Calcined at 300 °C (f) Calcined at 300 °C 

  (g) Calcined at 400 °C (h) Calcined at 400 °C 

Figure A4.2 

 

Representative 

BF-TEM images  

of acid pre-treated 

AuPd/C catalysts 

calcined at different 

temperatures. 

 

(a, b) Dried 120
 o

C 

(c, d) Calcined 200
 
°C 

(e, f)  Calcined 300
 
°C 

(g, h) Calcined 400
 
°C 

 

Images illustrate 

the larger metallic 

nanoparticles on the 

carbon support. 
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Table A4.2 Evaluation of the rates of H2O2 synthesis and hydrogenation for non-acid treated  

and 2% HNO3 pre-treated 2.5 wt% Au-2.5 wt% Pd/C catalysts, prepared by standard wet 

impregnation and using BNFL, nuclear grade carbon (particulate size = 90µm). The samples 

were dried (110
 o
C, 16 h) and calcined in static air, 400

 o
C/3h/20

 o
Cmin

-1
.  

 

 

 

Figure A4.3 TPD profiles recorded for 2.5 wt% Au-2.5 wt%Pd/C (BNFL nuclear grade) 

comparing untreated (bottom) and 2%HNO3 treated (top) carbon supports respectively. 

 

 

 

 

2.5% Au-2.5% Pd/C  
Productivity / 

molH2O2kgcat
-1

h
-1

 

Hydrogenation / 

molH2O2kgcat
-1

h
-1

 

Untreated  21 118 

2% HNO3 Treated 27 105 
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Chapter 5 - Appendices 

        
 

        
 

        
Figure A5.1 STEM-HAADF images of the starting colloids dispersed onto a continuous carbon 

thin film: (a, b) Au+Pd colloids, (c, d) Au{Pd} colloids, and (e, f,) Pd{Au} colloids. 

(a) (b) 

(c) (d) 

(e) (f) 

Ih 

co 
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Figure A5.2 TGA and DSC curves of a PVA sample. Thermal decomposition of PVA occurs in 

the 300-400
 
ºC temperature range. 

 

 

 

Figure A5.3 XPS derived corrected Pd:Au molar ratios plotted as a function of nominal 

(expected) Au:Pd ratios 

TGA 

DSC 
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Figure A5.4 Bright field TEM micrographs showing Au-Pd particles immobilised on the 

activated carbon support and their respective particle size distribution: (a) Au only, (b) 

Au:Pd=7:1, (c) Au:Pd=2:1, (d) Au:Pd=1:1. 

 

(b) Au:Pd=7:1 

(c) Au:Pd=2:1 

(d) Au:Pd=1:1 

(a) Au only 

(h) Pd only 

(e) Au:Pd=1:1.85 

(f) Au:Pd=1:2 

(g) Au:Pd=1:7 
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Chapter 6 - Appendices 

 

Figure A6.1 XRD profiles of 2 wt% Pd/SiO2 prepared by sol-immobilization after different 

treatments: (a) as prepared, (b) after calcination at 673K, (c) after reduction at 473K, (d) after 

oxidation of CO reaction
1
. 

 

 

 

 

 

 

 

 

 

 

 

Table A6.1 Summary of the H2O2 synthesis and hydrogenation activities for Au and Pd 

precursors only performed under standard reaction conditions. The amount of precursor added 

was equivalent to the content (5 wt% metal) present in 10 mg of solid catalyst. 

Precursor  

(5 wt% equiv) 

Productivity / 

molH2O2 Kgcat
-1

 h
-1

 

Hydrogenation / 

molH2O2 Kgcat
-1

 h
-1

 

      1.   Pd(NO3)2 45 516 

      2.   H2PdCl4
2-

 80 499 

      3.   HAuCl4.3H2O 5 32 

      4.   Pd (2) + Au (3) 61 399 
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Figure A6.2 Thermo-gravimetric analysis of untreated (top) and 2% HNO3 pre-treated SiO2 

(bottom) supports heated to 350
 o
C under a nitrogen atmosphere. 
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Figure A6.3 TPD profiles recorded for untreated (black) and 2%HNO3 treated (blue)                

P25 TiO2 supports respectively. 
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Figure A6.4 SEM-BSD image of 2.5 wt% Au-2.5 wt% Pd/CPI-SiO2 (80µm) prepared by         

standard wet impregnation and calcined in static air (400
 o
C, 3 h). Working distance = 9.5 mm. 

 

 

 

Figure A6.5 SEM-BSD image of 2.5 wt% Au-2.5 wt% Pd/CPI-SiO2 (500µm) prepared by 

standard wet impregnation and calcined in static air (400
 o
C, 3 h). Working distance = 9.5 mm. 
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Chapter 7 – Appendices 

 

Catalyst (1-38) 

Productivity / 

molH2O2kgcat
-1

h
-1

 

Hydrogenation /  

molH2O2kgcat
-1

 h
-1

 

2 min / 

wt% H2O2 
30 min 30 min 

5.00% Pt 46 / 0.01 8 126 

2.50% Au-2.50% Pd 281 / 0.09 68 145 

2.50% Au-2.50% Pt 120 / 0.02 20 109 

2.50% Pd-2.50% Pt 392 / 0.05 138 182 

4.80% Pd-0.20% Pt 441 / 0.06 125 192 

0.20% Au-4.80% Pd 198 / 0.03 79 178 

0.20% Au-4.60% Pd-0.20% Pt 630 / 0.08 185 385 

0.83% Au-3.33% Pd-0.83% Pt 399 / 0.06 138 66 

1.25% Au-2.50% Pd-1.25% Pt 436 / 0.06 139 199 

2.475% Au-2.475% Pd-0.05% Pt 308 / 0.04 63 46 

2.45% Au-2.45% Pd-0.10% Pt 171 / 0.02 109 76 

2.40% Au-2.40% Pd-0.20% Pt 436 / 0.06 170 145 

1.20% Au-3.60% Pd-0.20% Pt 394 / 0.05 134 547 

3.60% Au-1.20% Pd-0.20% Pt 59 / 0.01 39 342 

2.35% Au-2.35% Pd-0.30% Pt 389 / 0.06 159 177 

2.275% Au-2.275% Pd-0.45% Pt 670 / 0.09 100 459 

2.00% Au-2.00% Pd-1.00% Pt 194 / 0.03 115 93 

0.455% Au-0.455% Pd-0.09% Pt 95 / 0.01 21 8 
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Table A7.1 Summary of the H2O2 synthesis and hydrogenation activities obtained using      

CeO2-supported Au, Pd and/or Pt catalysts. 

 

 

0.10% Au-4.80% Pd-0.10% Pt 477 / 0.06 111 486 

0.20% Au-3.50% Pd-1.30% Pt 845 / 0.11 139 55 

0.20% Au-2.40% Pd-2.40% Pt 532 / 0.06 106 197 

0.25% Au-3.75% Pd-1.00% Pt 308 / 0.04 73 296 

0.30% Au-4.40% Pd-0.30% Pt 696 / 0.09 123 467 

0.40% Au-4.20% Pd-0.40% Pt 419 / 0.06 121 33 

0.45% Au-4.40% Pd-0.15% Pt 425 / 0.06 106 368 

0.50% Au-4.00% Pd-0.50% Pt 602 / 0.08 129 635 

0.60% Au-4.00% Pd-0.40% Pt 516 / 0.07 110 271 

0.625% Au-3.75% Pd-0.625% Pt 470 / 0.06 153 439 

0.625% Au-2.5% Pd-1.875% Pt 773 / 0.10 117 377 

0.70% Au-4.00% Pd-0.30% Pt 425 / 0.06 92 369 

0.75% Au-3.75% Pd-0.50% Pt 617 / 0.08 131 219 

0.925% Au-0.95% Pd-3.125% Pt 489 / 0.06 94 407 

0.95% Au-3.75% Pd-0.30% Pt 681 / 0.09 129 126 

1.33% Au-1.33% Pd-1.33% Pt 403 / 0.05 84 161 

1.712% Au-2.812% Pd-0.475% Pt 325 / 0.04 91 135 

2.3% Au-2.5% Pd-0.2% Pt 458 / 0.06 155 94 

2.5% Au-2.3% Pd-0.2% Pt 260 / 0.03 86 11 

3.125% Au-0.95% Pd-0.925% Pt 276 / 0.04 74 72 
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CeO2 

Composition / wt% 

Productivity / 

molH2O2kgcat
-1

h
-1

 

Hydrogenation / 

molH2O2kgcat
-1

h
-1

 

Surface Pd /  

atom % 

5% Pd 97 329 10.4 

4.80% Pd 85 216 10.4 

4.60% Pd 68 349 12.7 

4.40% Pd 92 71 10.2 

    

0.20% Pt-4.80% Pd 125 192 10.7 

0.40% Pt-4.60% Pd 68 616 5.8 

0.60% Pt-4.40% Pd 51 560 5.5 

    

0.20% Au-4.80% Pd 79 178 7.4 

0.40% Au-4.60% Pd 98 318 2.9 

0.60% Au-4.40% Pd 56 414 10.1 

Table A7.2 Effect of catalyst composition on H2O2 synthesis and hydrogenation activities  

For bimetallic catalysts supported on CeO2 - progressive variation of either Au or Pt content.  
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Figure A7.1 H2O2 productivities for CeO2-supported 5 wt% Au-Pd-Pt catalysts presented as        

a 3D diagram.  
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Figure A7.2 H2O2 hydrogenation rates for CeO2-supported 5 wt% Au-Pd-Pt catalysts presented 

as a 3D ternary diagram.  
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Figure A7.3 TGA profiles recorded in static air using a 5
 o

C min
-1

 heating ramp for samples,       

(a) CeO2 only, (b) 2.5 wt% Au-2.5 wt% Pd/CeO2, (c) 2.5 wt% Pt-2.5 wt% Pd/CeO2, and                  

(d) 2.28 wt% Au-2.28 wt% Pd-0.45 wt% Pt/CeO2. 

 

 

CeO2  

Composition / wt% 

Productivity / molH2O2kgcat
-1

h
-1

 

1
st
 Use 2

nd
 Use 

2.50% Au-2.50 wt% Pt 20 20 

2.50% Pt-2.50 wt% Pd 138 138 

   

2.40% Au-2.40% Pd-0.20% Pt 170 170 

0.63% Au-3.75% Pd-0.63% Pt 153 153 

2.28% Au-2.28% Pd-0.45% Pt 100 100 

Table A7.3 Reusability studies (H2O2 synthesis) for CeO2-supported Au-Pt, Pt-Pd and Au-Pd-Pt 

catalysts calcined in static air (400
 o
C, 3 h). 
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