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Summary  

Telomeres are specialised structures that that cap the ends of chromosomes; and prevent the 

natural end of a chromosome from being recognised as a double stranded DNA break. 

Telomeres erode with ongoing cell division ultimately leading the induction of replicative 

senescence that provides a proliferative lifespan barrier.  In the absence of a functional DNA 

damage response, telomeres are prone to end-fusions, creating dicentric chromosomes that 

can initiate breakage fusion–bridge cycles. Evidence from studies in well-defined mouse 

models of cancer, and also human tumours, have shown that telomere dysfunction may be a 

key event in the progression of disease via the increasing genomic instabilities that arise from 

telomere fusion events. 

The key aim of this thesis was to test the hypothesis that telomere dysfunction occurs during 

the progression of breast cancer and that this can drive the large-scale genomic rearrangement 

frequently observed in this disease.  

Technology development was attempted in the hope to allow single-molecule telomere fusion 

detection of more complex mutational structures, with limited success but possible future 

potential. 

Telomere length analysis was carried out using high resolution single molecule PCR 

strategies (STELA) in a panel of DNA samples derived from invasive ductal carcinoma.  

Telomere length data analysed alongside clinical data received for all samples was used for 

the potential utility of telomere length as a potential prognostic indicator in breast cancer. 

A key finding of this work was to demonstrate the use STELA combined with statistical tests 

to show that short telomere length is highly significant in terms of prognosis in breast cancer. 

Telomere length stratification could thus potentially be used as a method of defining new 

breast cancer subtypes in terms of severity. 
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Chapter 1: Introduction  

 

1.1: History of Telomere Biology 

 

The name ‘Telomere’ stems from the Greek ‘Telos’ meaning end, and ‘Meros’ meaning part. 

This term was first used in 1938 by North American geneticist Hermann J. Müller (Müller, 

1938). He observed that during the irradiation of Drosophila melanogastor genomes with X-

rays, the DNA was subjected to a plethora of gene mutations and chromosomal 

rearrangements resulting from DNA breaks, such as translocations, inversions and deletions 

(Müller, 1938). The termini of these irradiated chromosomes however, did not exhibit any 

such alterations. He thus speculated of the presence of a ‘terminal gene’ that protects the ends 

of DNA (Müller, 1938; Blackburn and Greider, 1996) 

 

 Barbara McClintock, in 1939, was working on Zea Mays cytogenetics and discovered that 

when the terminal structures of DNA are lost during X-irradiation, sister chromatids tend to 

fuse with one another forming  dicentric chromsomes (McClintock, 1941). When the sister 

chromatids are pulled apart during meiosis an anaphase bridge is formed that can break at 

spontaneous sites (McClintock, 1941). Cycles of this ‘breakage-fusion-bridge’ (BFB) process 

(Figure 1.1) can result in unequal exchange of genetic information and several rounds of 

meiosis in this way can lead to chromosomal aberrations such as gene amplification 

(McClintock, 1941). Barbara McClintock demonstrated that in somatic cells these cycles of 

BFB can continue indefinitely, but in germ cells, regardless of this damage, the ends could be 

restored thanks to the acquisition of new telomere (McClintock, 1941). 

In 1965 Leonard Hayflick published research into ageing showing that human diploid cells 

have a limited replicative lifespan and cannot divide indefinitely Hayflick and Moorhead, 
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1961).   These cells appeared to have a cell-intrinsic mechanism that was capable of counting 

the number of cell divisions that they had undergone (Hayflick and Moorhead, 1961).  

 

In the 1970’s James Watson and Alexey Olovnikov worked independently on the ‘end 

replication problem’; how in linear eukaryote chromosomescannot be fully replicated to the 

terminus of the DNA sequence which would result in a loss of DNA (Watson, 1972; 

Olovnikov, 1971). To solve this and to accommodate Hayflick’s idea about limited somatic 

cell division (Hayflick and Moorhead, 1961), Olovnikov suggested that DNA sequences 

would be lost in every replicative phase until they reached a critical level, at which point cell 

division would stop and thus the loss of terminal sequences may provide a cell division 

counting mechanism (Olovnikov, 1973). 

It wasn’t until 1978, that Elizabeth Blackburn and her colleagues, sequencing Tetrahymena 

thermophilia chromosomes, discovered the presence of telomere repeat DNA (Blackburn et 

al., 1981). 
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Figure 1.1: Mechanism of BFB Cycles as described by Barbara McClintock 

 

 

Figure 1.1: The way in which telomere erosion and subsequent fusion can cause cycles of 

anaphase bridging-fusion-breakage (BFB) and thus an array of chromosomal rearrangements 

at mitosis.  Figure adapted from Gisselsson D . Chromosomal Instability in Cancer: Causes 

and Consequences. Atlas Genet Cytogenet Oncol Haematol. May 2001 . 

URL : http://AtlasGeneticsOncology.org/Deep/ChromosomInstabilID20023.html 
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1.2: Telomere Structure 

 

Telomeres consist of tandem repetitive DNA sequences located at the termini of linear 

chromosomes of most eukaryotic organisms. Telomeric DNA is highly conserved amongst 

eukaryotic species regardless of differences in length and sequence (Moyzis, 1988). 

Telomeres tend to consist of a G-rich strand at the 3′ end of the chromosome that overhangs a 

C-rich strand at the 5′ end. This G-strand ‘overhang’ was first observed in the hypotrichous 

ciliate organism Oxtricha whereby it was shown to be longer than the C-strand at telomere 

termini in this organism (Klotbutcher et al., 1981). The G-strand overhang varies in size 

between species, with a length of 16 nt in Oxytricha, to a length that varies between 50–100 

nt in mouse and human telomeres (Kipling and Cooke, 1990; DeLange et al., 1990). 

Mutations affecting the G-strand overhang in yeast (Saccharomyces cerevisiae) have shown 

to disrupt telomere function and thus it is considered to be essential for telomere function 

(Polotnianka et al. 1998). G-strand overhangs are maintained throughout the replicative 

lifespan of human cells (Chai et al., 2005) either by elongation by telomerase or degradation 

of the C-strand. The G-strand overhang has been hypothesised to be present as a result of the 

end-replication problem. During mammalian replication, lagging strand synthesis involves 

RNA priming events that are considered to occur around every 100–600bp (Anderson and 

DePamphilis 1979). Links have been suggested between this end replication phenomenon and 

with the rates of telomere shortening of 40–200bp per cell in human cells in vitro.  

 

 

  

 

1.2.1 Prokaryotes 

The majority of prokaryotes chromosomes are arranged as circular structures (Charlebois, 
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1999) and this is how they could historically be easily distinguished from eukaryotic 

organisms (Mason & Powelson, 1956; Cairns, 1963, Charlebois, 1999) . This means that the 

end replication problem does not apply here. However, further studies have revealed has 

revealed that not all prokaryotes follow this pattern, some have multiple circular 

chromosomes of different sizes, such as Rhodobacter spheroides (Suwanto and Kaplan, 

1989) and other have linear chromosomes, such as Borrelia (Casjens, 1999) or a mix of linear 

and circular such as a cluster of species in the genus Streptomyces (Chen, 1996). These 

prokaryotic organisms contain linear chromosome structures that also possess telomere-like 

structures.  Some species of bacteria, such as some Proteobacteria, have palindromic hairpin 

loops that act to protect the DNA terminus (Jumas-Bilak et al. 1998); others have ‘invertron’ 

telomeres are protected by proteins that bind to the 5′-ends (Suwanto, A., and S. Kaplan. 

1989). 

 

1.2.2 Eukaryotes 

Telomere sequence and length varies greatly between eukaryotic species, from approximately 

300 to 600bp in yeast to many kilobases (5-20kb) in humans, and usually is composed of 

arrays of G-rich, six- to eight-base-pair-long repeats (Blackburn et al., 1984).  

 

 

1.2.3 Diptera 

 Research into telomere structure in the species Drosophila melanogastor have shown 

Diptera to have a unique telomere structure compared with other orders, lacking telomerase 

and thus lacking the short arrays of simple repeats observed in most other organisms. Instead 

of these short repeat structures, Drosophila species have arrays of long repeats (6-10kb) or 
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telomere-specific long tandem arrays of two non-LTR (long terminal repeat) retrotransposons 

(Pardue and Debaryshe, 2003). 

 

1.2.4 Protozoa 

 The Tetrehymena thermophila telomere structure was first characterised by Elizabeth 

Blackburn’s laboratory (Blackburn and Gall, 1978) and has repeat arrays of 20-70 bps of 

TGGGG. This ciliate protozoan is a model organism in experimental biology due to it being 

easily cultured in abundance. Trypanosomes have been shown to have similar telomere 

sequences to numerous higher eukaryotes. Protazoa such as Trypanosoma brucei have an 

abundance of telomeres that can be easily studied due to the presence of a number of 

minichromosomes. T. brucei and T.cruzi telomeres consist of 10–20 kb of hexameric 

TTAGGG repeat arrays and a 3′ TTAGGG overhang (Blackburn and Challoner, 1984; 

Stansel et al., 2001). Electron microscopy of Trypanosomes has revealed the presence of t-

loops at the Telomeric termini, although these t-loops have been shown to be smaller than 

mammalian t-loops (~1kb instead of 25kb in mammals), suggesting that t-loops are 

conserved among eukaryotic organisms (Stansel et al., 2001). 

 

1.2.5 Fungi 

Yeast telomeres tend to share similarity in structure and functionality to a lot of eukaryotic 

organisms in the way that both budding and fission yeast families have a G-rich terminus and 

are maintained by the action of telomerase to protect the end from degradation. The telomeric 

DNA sequences found in the budding yeast Saccharomyces cerevisiae are TG2-3(TG)1-6 repeat 

arrays and span around 120-150bp (Cohn and Blackburn., 1995; de Bruin et al., 2001). In S. 

cerevisiae two arrays of telomere repeat DNA form a higher order structure different from t-

loops found in other eukaryotes. Not all Saccharomyces telomeres share this pattern of 
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telomere array, S. kluyveri telomere DNA sequences are homogeneous 26-base pair repeats of 

GGGTGGACATGCGTACTGTGAGGTCT, and S. Castellii telomeric DNA consists of 

TCTGGGTG repeats (76%) interspersed with TCTGGG(TG)2-4 repeats (24%) (Cohn and 

Blackburn., 1995 and Cohn et al. 1998). Schizosaccharomyces pombe, a fission yeast, has 

the telomere array G2–8TTAC(A) and is about 300bp long (Murray and Szostak, 1986). 

 

1.2.6 Plants 

Telomeric DNA from Arabidopsis was cloned in 1988 revealing repeat arrays of TTTAGGG 

(Richards and Ausubel, 1988), common to most angiosperms. No telomere-like sequence has 

been characterised in Allium cepa (onion) and other Allium species (Pich et al., 1996). Other 

Asparagales species tend to have the hexameric repeat array TTAGGG, the same sequence as 

mammalian telomeres (Adams et al., 2001). Some Asparagales species have been observed 

to have variant tandem repeats such as TTGGGG and other species have a seven base tandem 

repeat of TTTAGGG (Sykorova et al., 2003). T-loops have been observed in plants, for 

example in Pitum sativum (pea plant) the average size of the t-loop is 22kb, but can measure 

up to 50kb (Cesare et al., 2003). 
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Table 1.1: Telomere repeats found in different organisms 

 

Group Organism Telomeric repeat (5′ to 3′) 

 Vertebrates Human, mouse, Xenopus TTAGGG     

Filamentous fungi Neurospora crassa TTAGGG     

Slime moulds Physarum, Didymium TTAGGG     

  Dictyostelium AG(1-8) 

   Kinetoplastid 

protozoa Trypanosoma, Crithidia TTAGGG     

Ciliate protozoa Tetrahymena, Glaucoma TTGGGG     

  Paramecium TTGGG(T/G)     

  

Oxytricha, Stylonychia, 

Euplotes TTTTGGGG     

Apicomplexan 

protozoa Plasmodium TTAGGG(T/C)     

Higher plants Arabidopsis thaliana TTTAGGG     

Green algae Chlamydomonas TTTTAGGG     

Insects Bombyx mori TTAGG       

Roundworms Ascaris lumbricoides TTAGGC     

Fission yeasts Schizosaccharomyces pombe TTAC(A)(C)G(1-8) 

 

Budding yeasts Saccharomyces cerevisiae 

TGTGGGTGTGGTG (from RNA 

template) 

    or G(2-3)(TG)(1-6)T (consensus) 

  Saccharomyces castellii TCTGGGTG     

  Candida glabrata GGGGTCTGGGTGCTG   

  Candida albicans GGTGTACGGATGTCTAACTTCTT 

  Candida tropicalis GGTGTA[C/A]GGATGTCACGATCATT 

  Candida maltosa GGTGTACGGATGCAGACTCGCTT 

  Candida guillermondii GGTGTAC     

  Candida pseudotropicalis GGTGTACGGATTTGATTAGTTATGT 

  Kluyveromyces lactis GGTGTACGGATTTGATTAGGTATGT 

 

 

Table 1.1 : The types of telomere repeat array that can be found are shown by group 

and subsequent examples of organisms for that group. 
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1.3: Mammalian Telomere structure 

Mammalian telomeres consist of the highly conserved hexameric (TTAGGG)n tandem repeat 

DNA sequence (Meyne et al., 1989). The length of telomere repeat arrays is species specific 

and genetically determined. In mice telomere repeat arrays vary between sub species and can 

extend up to 65 kb in length in Mus musculus and can be much shorted in length in wild Mus 

spretus being anywhere between 5-20kb which is the same as human telomeric length 

(Kipling and Cooke 1990; Hemann and Greider NAR 2000). 

 Human telomeres consist of lengths that average between 5-20kb of TTAGGG repeats and 

also degenerate sequence variants such as TCAGGG, TTGGGG and TGAGGG in the 

proximal 1-2kb (Lange et al., 1990; Baird et al., 2005).  

 

1.4 Human Subtelomeric regions 

Often telomeres and chromosome specific sequences are separated by a repetitive region 

known as a subtelomeric region. The subtelomere tends to contain a large number of 

segmental duplications, and due to the nature of them sharing high sequence identity it has 

been postulated that these subtelomeres evolved via recombinational mechanisms between 

chromosomes such as homologous recombination and non-homologous end joining 

(Richardson et al., 1998). Rudd and colleagues found an enrichment of sister chromatid 

exchanges (SCE) in subtelomeres implicating subtelomeres as hotspots for DNA repair and 

exchange (Rudd., 2007). The segmental duplications can be unique to subtelomeres or shared 

between interstitial sites such as 2q13-q14. Gene families have been identified that share 

subtelomeric sequence homology, such as the olfactory receptor genes and zinc finger genes 

(Trask et al., 1998 and Riethman et al., 2001). A number of the duplications found at the 

subtelomere are situated in proximity to the terminus of multiple chromosome ends giving 

rise to subtelomere families sharing homology. Hybridization experiments using the 
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TelBam11 probe revealed a family of telomere sequences sharing a large degree of 

subtelomeric homology 21q, 1q, 2q, 5q, 6q, 6p, 8p, 10q, 13q, 17q, 19p, 19q, 22q and the 

2q13 interstitial telomeric locus. Similarly using the TelBam3.4 probe revealed subtelomeres 

sharing homology for 16p, 1p, 9p, 12p, 15q, XqYq ant the 2q14 interstitial locus (Riethman et 

al., 2001). These groups of telomeres have since been termed the 21q and 16p families 

respectively (Letsolo et al., 2010). 

 

1.4.1: Humans: The T-loop and G-strand overhang 

Human telomeres consist of TTAGGG tandem repeats and end with a 3′ single stranded 

overhang (figure 1.1), which loops back forming a ‘T-loop’ lariat structure (Griffith et al., 

1999). This 3′ overhang invades the double stranded DNA forming a region of single 

stranded DNA that is displaced (a displacement or D-loop) (Griffith et al., 1999; Greider, 

1999).  

The T-loop is held together by six core proteins: TRF1, TRF2, TIN2, POT1, TPP1 and RAP1 

collectively referred to as the shelterin complex (DeLange, 2005). TRF1and TRF2 bind 

directly to double stranded DNA (van Steensel and de Lange, 1997); POT1 binds to the G-

rich single stranded overhang, Rap1 and TPP1 bind to telomere indirectly via TRF1 and 2 

(DeLange, 2005). 
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Figure 1.2: The shelterin complex and its interaction with the T-loop

 

Figure 1.2 : Structure of the shelterin complex and its associated protein components. 

Adapted from ‘Telomere biology in healthy ageing and disease’ by  Hisko et al. 2010; 

European Journal of Physiology  Vol.  459  Issue  2. 

 

 

 

 

 

 

 

 

 

 

1.3.2: The Shelterin Complex and associated proteins 

1.4.2 TRF1 and TRF2 



 

 

12 

 

Telomeric structure is maintained by the interaction of several telomere-associated proteins. 

Telomere repeat-binding factor (TRF-1) is a protein that in humans is encoded by the TERF1 

gene (Shen et al., 1997). TRF1 was discovered first in HeLa cells when isolating a sequence 

that shared specificity with telomeric repeats (Zhong et al. 1992; Chong et al. 1995). TRF2 

was isolated a few years later and is a protein that is related to TRF1 and is homologous in its 

structure and parts of its sequence (Bilaud et al. 1997; Broccoli et al. 1997). Both TRF1 and 

TRF2 bind double stranded TTAGGG repeats at the telomere as homodimers (DeLange, 

2005; Court et al. 2005). This homodimerisation is regulated by the TRF-homology domain 

(TRFH) (Court et al. 2005). Regardless of these related features, TRF1 and TRF2 do not 

interact with one another, and their specific functions at the telomere appear to be quite 

different (DeLange, 2005). 

TRF1 has been shown to exhibit DNA remodelling activity, (Bianchi et al. 1997; Griffith et 

al. 1998). This may contribute to the folding of the T-loop structure due to evidence that 

TRF1 can bend and pair telomere repeat arrays (Bianchi et al. 1997, 1999; Griffith et 

al.1998). TRF1 has been postulated as a negative regulator of telomere length by directly 

inhibiting telomerase (Kim et al. 2004; Xin, H et al. 2008). Conversely TRF2 has an 

important role in telomere cap protection (Kim et al. 2004). TRF2 inhibition results in the 

loss of single stranded telomeric repeats (TTAGGG) and widespread telomere fusion (Zhu et 

al. 2003). 

 

 1.4.3 The TRF1 Complex: Tankyrase 1 and 2, TIN2, PINX1 and POT1 

As mentioned earlier Telomerase Repeat Binding Factor 1 (TRF1) is involved in telomeric 

structure and binds double stranded DNA at the telomere. Inhibition of TRF1 occurs by the 

interaction of poly ADP-ribose polymerases (PARP) proteins Tankyrase 1 and 2 (Smith et al., 

1998; Cook et al., 2002). TRF1 has been shown to negatively regulate telomere length and 
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has been thought to do this by controlling the action of telomerase (Van Steensel et al., 2000). 

Tankyrase 1 and 2 ribosylate and thus inhibit the binding ability of TRF1 (Cook et al., 2002). 

Overexpression of tankyrase 1 has the same resulting phenotype as with the inhibition of 

TRF1 i.e. the elongation of telomeres. TIN2 (or TRF1 and TRF2-interacting protein 2) has a 

TRF1 binding domain at its C-terminal and has been shown to interact with both TRF1 and 

the tankyrase proteins, having a stabilisation effect on the complex of interactions (Cook et 

al., 2002). PINX1 has been shown to exhibit inhibitory effects on telomerase in vitro (Zhou 

and Lu, 2001; Zhou et al., 2011) and has thus been hypothesised to have a function in 

telomere length maintenance (Zhou et al., 2011). 

POT1 (or Protection of Telomeres 1) is recruited to telomeres and bind to the single stranded 

3′ overhang blocking telomerase from binding to telomeric ends, and thus acts as a telomeric 

length regulator (Baumann et al., 2002). 

1.4.4 Rap1 

 The human form of Rap1 (Repressor/activator protein 1) was initially detected in connection 

to TRF2 and shares homology with S.cerevisiae scRap1 (Li et al., 2000). ScRap has been 

shown in yeast to bind directly to telomeric termini and control length regulation (Conrad et 

al., 1990; Lustig et al., 1990; Krauskopf and Blackburn, 1996). The human form (hRap1) 

binds to telomeric DNA via TRF2 interactions. Rap1 has a BRCT domain, a myb motif, a 

coiled region and a C-terminus (called an RCT domain) which mediates binding with TRF2 

and thus the telomere itself (Li et al., 2000). Deletion of Rap1 in mice has shown a potential 

role in telomere length homeostasis and recombination (Lange et al., 2010; Blasco et al., 

2010). Recent findings reveal that in mammals with deleted Rap1, there is a higher frequency 

of short telomeres and sister telomere recombination but did not show an increase in telomere 

fusions (Martinez et al., 2010). Further work also suggested that Rap1 was vital for the 

repression of homology-directed repair in mice, which can cause alterations in telomere 
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length (Lange et al., 2010). This was shown by an increase in telomere sister chromatid 

exchanges in the absence of Rap1 (deLange et al., 2010). 

1.4.5 TPP1 

Research in both mammals and the fission yeast S. pombe has postulated that the TPP1 

protein binds to POT1 and is actually required for the POT1 mediated binding and 

subsequent protection of telomeres (Miyoshi et al.,2008). 

Mouse models with deficient TPP1 show cell-cycle arrest, an increase in telomere shortening 

and damage (by the detection of telomere damage foci or TIFs) (Tejera et al., 2010) and 

decrease in the binding of telomerase subunit TERT (DeLange et al., 2009). Findings thus 

point towards TPP1 as having a role in both the protection of telomeres and the elongation of 

telomeres (DeLange et al., 2009). 

 

1.4.6 Other telomere associated proteins 

Many of transient telomere associated proteins are involved in DNA damage repair. 

1.4.6.1 PARP 1 and PARP2 

PARP1 and PARP2 are poly(ADP-ribose) polymerases that have similar functions in the 

repair of dsDNA (Kraus and Lis 2003). Cells deficient in both PARP1 and PARP2 have 

shown an increase in the occurrence of spontaneous genomic instability in vitro (Tong et al., 

2001). PARP1 has also been implicated in DSB repair via homologous recombination (HR) 

(Waldman and Waldman, 1991), inhibition of PARP1 has been shown to suppress BRCA1 

and RAD51 leading to inhibition of HR (Bryant et al. ,2005). 

1.4.7 Rad 51D 

Rad 51 is a protein family that are involved in the repair of double stranded (ds) DNA breaks 

(Pittman et al., 1998). One member of this protein family is Rad51D that has been shown to 

be involved in the repair of dsDNA breaks also have a role in telomere protection via 

http://genesdev.cshlp.org/content/19/17/1951.long#ref-62
http://genesdev.cshlp.org/content/19/17/1951.long#ref-121


 

 

15 

 

stabilising the terminal lariat structure T-loop (Tarsounas et al., 2004). In mouse models with 

deletion of Rad51, p53 and overexpression of telomerase, telomeres became more fusogenic 

and dysfunctional (Tarsounas et al., 2004.) 

Other telomere associated proteins include the Ku heterodimer and WRN.. 

1.4.8 TERRA 

Telomeric repeat-containing RNA (TERRA) is a large non-coding RNA that has been found 

in various mammalian species, Zebrafish and fungi via Northern blot analysis and RT-PCR 

by numerous research groups (Azzalin et al, 2007; Schoeftner and Blasco, 2008). Until the 

discovery of TERRA molecules, telomeres were thought to be transcriptionally silent 

(Azzalin et al., 2007). TERRA molecules range from 100bp to 9 kb, contain UUAGGG 

repeats and are located in nuclear fractions.  

TERRA molecules are a key component of telomeric heterochromatin (Azzalin et al., 2007; 

Lingner et al., 2010). TERRA molecules have a role in the formation of heterochromatin and 

have been found to be located in close proximity to various known heterochromatic proteins, 

such as H3 trimethyl K9, and have been shown to associate with ORC1, which has also been 

found to have a role in histone formation (Deng et al., 2009).  

TERRA molecules have also been shown to have a role in the structural stability of telomeres 

and telomerase regulation via interactions with shelterin components, such as TRF1 and 

TRF2 (Schoeftner and Blasco, 2008; Deng et al., 2009). Furthermore the depletion of 

TERRA molecules has been shown to trigger signs of telomere dysfunction by the presence 

of telomere dysfunction-induced foci (TIFs) and structural abnormalities (Deng et al., 2009). 

TERRA molecule levels have been correlated with telomere length, for examples in ageing 

fibroblasts with short telomere lengths, TERRA levels decreased (Caslini et al., 2009). 

Furthermore, human cells have been shown to have lower levels of TERRA than laboratory 

mice which have longer telomeres (Schoeftner and Blasco 2008). 



 

 

16 

 

 

1.5: Telomere length dynamics 

The enzyme telomerase catalyzes the addition of telomere repeats de novo (Yu and 

Blackburn, 1991). Telomerase counteracts the losses from the terminus that would arise as a 

consequence of the end replication problem (Blackburn, 1992). Telomerase is expressed in 

germ cells and stem cells, but not sufficiently in the majority of human somatic cells, 

resulting in gradual erosion of telomeric sequences with each cell division, at rates of 

between 50-200bp each cellular division (Counter et al., 1992). This gradual shortening of 

telomere sequence provides a barrier on the replicative lifespan of somatic cells as described 

by Leonard Hayflick (the ‘Hayflick limit’) (Hayflick and Moorehead, 1961). Telomeres 

eroded past a certain limit lose their function for protecting double stranded DNA and this 

loss of function triggers a DNA damage response inducing a p53 dependent G1/S cell cycle 

arrest known as ‘replicative senescence’ (Harley et al. 1990; Martens et al. 2000). 

Overexpression of telomerase in normal human somatic cells in vitro has demonstrated cells 

can bypass replicative senescence and can proliferate indefinitely thereby formally 

establishing the role of telomere erosion in the induction of replicative senescence (Bodnar et 

al. 1998; Vaziri and Benchimol 1998). 

 

 

 

 

 

 

1.6: Telomere function in human cells 

1.6.1: The end replication problem 
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The end replication problem explains the progressive loss of DNA sequence from the 5′ end 

of the lagging strand during replication (Olovnikov, 1971). In linear eukaryotes DNA 

replicates using an enzyme complex known as DNA polymerase (Kornberg et al., 1958).  

Replication is semi-conservative in that the two strands of DNA are separated and are used as 

a template for a new strand. DNA polymerase can initiate the replication of DNA in a 5′-3′ 

direction and requires the action of an RNA primer (Olovnikov, 1971). The leading strand (5′-

3′) is continuously replicated by the polymerase; however the lagging strand DNA is 

synthesized in small pieces or ‘Okazaki fragments’ (Okazaki and Sakabe, 1966). At the 

extreme end of the DNA, the leading stand can be synthesised to the terminus, but the lagging 

strand cannot because an RNA primer is required to begin each piece of the lagging strand 

DNA, and thus at the end of the DNA there is nothing for this piece to attach to thus the last 

section of the lagging strand cannot be synthesized (Olovnikov, 1971). This truncation at the 

5′ end of the lagging strand leads a gradual loss of DNA from the chromosome end 

(Olovnikov, 1971). 
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Figure 1.3: The end replication problem in human somatic cells

 

Figure 1.3: Simplified diagrammatic representation of the end replication problem 

and how DNA losses are generated with each replication (Adapted from‘The 

disparity between human cell senescence in vitro and lifelong replication in vivo’ 

by Harry Rubin Nature Biotechnology 20, 675 - 681 (2002) doi:10.1038/nbt0702- 
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1.7: Maintaining Chromosomal integrity 

X-ray experiments involving both Drosophila and Zea Mays showed that chromosomal 

alterations caused by damage to DNA were excluded from the termini of chromosomes. This 

‘capping’ effect distinguished the terminus of the chromosome from DNA double strand 

breaks induced by X irradiation (McClinktock et al., 1938, Muller et al.,, 1939). This end-

capping function of telomeres has been hypothesised to arise via the presence of t-loop lariat 

structures (mentioned previously) that were first visualised by electron microscopy (Griffith 

et al., 1999) and also G-quadraplex structures. Telomeres have been shown to form G-

quadraplex structures in vitro (Blackburn, 1991). G-quadraplexes are guanine rich with 

strings of four Gs, and are capable of forming a square planar structures or tetrads whereby 

two or more of these structures can stack on top of each other via Hoogsteen base-pairing to 

form a G-quadruplex (Burge et al., 2006). G-quadruplexes have been shown to decrease the 

activity of the enzyme telomerase, preventing the elongation of telomeres; in HeLa cells 

POT1 and TRF2 proteins binding affinity with to human telomeric DNA decreased when the 

single-stranded overhang is in the form of a quadruplex (Yanez et al., 2004). 

 

1.8: Chromosome healing 

In the 1930s when Barbara McClintock discovered the phenomenon of anaphase BFB cycles, 

one important question to answer was whether these cycles of breakage and fusion continue 

ad infinitum (McClintock, 1941). On analysis of inherited characteristics for plant colour in 

maize development, it was discovered that chromosomes can ‘heal’. Introduction of a 

dicentric-generating chromosome (chromosome 9) that introduced breakage conferred loss of 

a dominant allele (McClintock, 1941). Observations showed that zygotes inheriting the 

dicentric-generating chromosome, after breakage post fertilization, generated newly formed 
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chromosomal ends behaving as natural termini and thus the BFB cycle was broken in the 

embryo. This addition of a new telomere to the site of DSB in telomeres was termed 

‘chromosome healing’ (McClintock, 1941).  Chromosome healing of double-stranded DNA 

breaks is considered to account for genetic conditions that arise as a consequence of terminal 

chromosomal deletions; these include alpha thalassemia (Wilkie, 1990; Flint et al., 1995). 

 

1.9: TPE: The Telomere Position Effect 

The telomere position effect (TPE) is a mechanism by which genes are reversibly silenced 

when they are located close to telomere repeat arrays, via modulation of chromatin structure. 

TPE has been studied in the budding yeast S. cerevisiae, however the role of the TPE 

mechanism in mammals is less understood [Reviewed by: Ottaviani et al., 2007]. TPE was 

discovered in yeast when studying chromatin structure in yeast telomeres (Gottschling et al., 

1990). TPE was observed in S. cerevisiae on the insertion of four reporter genes close to the 

telomere, these genes were silenced however the effects of this could be reversed 

(Gottschling et al., 1990; de Bruin et al., 2000). TPE has also been displayed in yeast strains 

expressing a uracil gene (URA3) (Sandell et al., 1994). URA3 can be both selected for and 

against on different media allowing the observation of the ‘variegated’ or mosaic phenotype 

that is frequently seen in TPE; URA3 that was within 8bp of the telomere array grew on both 

media showing that gene switching can occur. Many proteins have been characterised in yeast 

that counteract TPE, such as the Sir proteins (2, 3 and 4) that interact with Rap1p, a direct 

telomere target (Aparicio et al. 1991; Laurenson and Rine, 1992; Kyrion et al., 1993). The 

human homologue hRap1p has also been shown to have a similar role in eliminating TPE 

silencing of gene expression. TPE has been postulated to respond to changes in telomere 

length to alter gene expression; the effect of TPE on silencing gene expression has thus been 

shown to be dependent upon both telomere length and distance of genes from the telomere 
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(Li et al., 2000; Arat and Griffith, 2012). In humans cells (HeLa) the use of a luciferase 

reporter gene in close proximity (~1.6 kb)  to the telomere repeat array revealed a ten-fold 

decrease in luciferase expression compared with cells that had luciferase integrated in an 

internal site, implicating the TPE mechanism functioning to silence the reporter gene (Baur et 

al., 2001). Furthermore overexpression of hTERT to elongate the telomeres resulted in a 

further silencing of gene expression, implicating telomere length as having an effect on TPE 

(Baur et al., 2001).  It has been hypothesised that gene expression could thus be pre-

programmed via telomere lengths i.e. with ongoing cell divisions telomeres will shorten 

which could have an effect on the genes that are expressed implicating a role for telomere 

length in ageing and cancer via TPE related gene expression changes (Baur et al., 2001). 

 

 

 

1.10: Telomerase and telomere replication 

1.10.1: Telomerase Structure and function 

Telomerase is a ribonucleoprotein structure with an inbuilt reverse transcriptase. Telomerase 

was first discovered in the early 1980’s by Elizabeth Blackburn and colleagues whilst 

studying the protozoa Tetrahymena thermophilia (Blackburn, 1981). Human telomerase 

consists of two molecules each of a telomerase RNA component (TERC), a reverse 

transcriptase (TERT) and dyskerin (DKC1), which binds the TERC component (Cohen et al., 

2007). Human TERT polypeptide is a reverse transcriptase that folds inward with the TERC, 

a non-coding RNA. TERT has a holoenzyme structure that allows it to envelope the 

chromosome terminus to add single-stranded telomere repeats (Cohen et al., 2007). 

In humans, the TERC RNA molecule includes the sequence 5′-UAACCCUAA-3′, which is 

complementary to the telomere repeat 5′-TTAGGG-3′, thus acts as a template for adding 
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telomere repeat arrays de novo to the chromosome end (Cohen et al., 2007) (Figure 1.2).  

             

 1.10.2: Telomerase expression in normal human cells and cancer cells 

The majority of somatic cells in humans do not express telomerase and this leads to the 

subsequent loss of telomeric sequences at a rate of ∼60–120 base pairs (bp) per cell division 

(Harley et al. 1990; Baird et al. 2003). Exceptions include B-and T-lymphocytes, endothelial 

cells and somatic stem cells are  (Kim et al., 1994). Long-lived cell populations such as the 

germline and stem cells, which need a high self-renewal potential, can circumvent telomere-

dependent replicative senescence and acquire unlimited proliferation capability by expressing 

telomerase (Kim et al. 1994). SV40-transformed cells have been shown in vitro to express 

telomerase on emergence from crisis, but not beforehand (Rhim et al., 1985; O Brien et al., 

1986; Counter et al., 1992). Around 80–90% of malignant tumours overexpress telomerase 

and this high telomerase activity is associated with the high immortality of cancer cells and 

thus has a role in tumour development (Kim et al. 1994; Kolquist et al. 1998). A study by 

Hiyama et al. investigated the relative expression of telomerase in a range of different breast 

cancer subtypes. Findings from this indicated telomerase activity was detected in 68% of 

primary stage I breast cancers and 95% in the most advanced stage tumours. These 

observations point to a role for the activation of telomerase in later stages, which will result 

in stabilisation of telomere length and thus immortalisation of cells (Hiyama et al., 1996) 
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Figure 1.4: A simplified model for the action of Telomerase 

 

Figure 1.4: An illustration of how telomerase contains an RNA template against which new 

TTAGGG repeats can be synthesised onto the DNA terminus de novo. Adapted from 

Sweeney, G. (2008), "Telomeres; Genes and Development 2", Lecture, Cardiff University, 

School of Biosciences, unpublished. 
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1.11:  Alternative Lengthening of Telomeres (ALT) 

 

Subsets of SV40-immortalized cells have been found to be telomerase negative yet maintain 

telomere length (Bryan, 1995). It has since been discovered that around 10-15% of cancers 

show no evidence of telomerase activity (Bryan et al., 1997), thus cells that emerge from 

crisis can be immortalized through telomere elongation by an alternative pathway termed 

Alternative Lengthening of Telomeres (ALT). The mechanisms of ALT are largely still 

unknown; however it is thought to elongate telomeres via a recombinational mechanism 

(Dunham et al., 2000). Telomeres that maintain their lengths via ALT pathways have been 

observed to be extremely heterogeneous in length, ranging from 1 kb to over 20 kb (Rogan et 

al., 1995). Histologically presence of ALT  is identifiable by ALT-associated promyelocytic 

leukemia (PML) protein nuclear bodies (APBs) that contain large amounts of extra-

chromosomal telomeric DNA, PML protein and other proteins involved in telomere binding, 

DNA replication, and recombination (Guo, A et al. 2000, Subhawong, et al. 2009). The 

regions of extrachromosomal telomeric DNA may be presented as double stranded telomere 

circles (t-circles) (Cesare and Griffith, 2004). APBs may be the site of telomere lengthening, 

or they may hold the protein complexes required for elongation however the exact function 

remains unclassified (Subhawong, et al. 2009). 
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1.12: DNA Damage Repair Mechanisms 

A number of mechanisms are in place to ensure the faithful replication of DNA, guaranteeing 

the correct genetic information is inherited by daughter cells (Lodish et al., 2004). There are 

however thousands of potential damageing events that can interfere with the stability of the 

DNA such as a break or lesion (Freidburg et al., 1995). It is important to repair damage 

inflicted upon DNA so that replication errors do not occur and mutations are kept to a 

minimum to maintain stability of the genome (figure 1.5). Damaged DNA that has faulty 

DNA repair mechanisms can bring about genome instability, which can have an impact on 

ageing due to loss of functionality of genes and resulting apoptosis/senescence (Hoeijmakers, 

2001; Gottshling et al., 2003; Aguilera and Gonzalez, 2008). Genome instability can lead to 

unregulated cell division via an accumulation of DNA damage and the inability to repair 

faults in the DNA, thus potentially leading to cancer (Hoeijmakers, 2001; Campisi and 

d'Adda di Fagagna , 2007; Aguilera and Gonzalez, 2008).  

Both endogenous and exogenous threats can interfere with the integrity of DNA (Aguilera 

and Gonzalez, 2008). Endogenous factors causing disruption include oxidation, hydrolysis, 

alkylation and the mismatch of bases. Exogenous damage can occur from exposure to 

chemical agents such as hydrogen peroxide, ionizing radiation (IR) and ultraviolet light (UV-

A and UV-B) (Lodish et al., 2000; Marnett and Plastaras 2001). Damage to DNA, such as a 

DNA break, alters the structure of the DNA helix detectable by the cell. Once damage is 

detected or localised, DNA repair machinery can be recruited at or near the site of damage 

(Lodish et al., 2004). 

Single stranded DNA breaks occurs more frequently than double stranded breaks (Bradley et 

al., 1979). Single stranded DNA damage occurs when just one strand of the double helix is 

damaged and thus repair of single stranded breaks (SSB) makes use of the unaffected strand 

as a template to guide the repair (Caldecot, 2008). SSB repair involves three main excision 
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repair pathways that aim to remove the damaged nucleotide section and replace it with 

complementary sequence to the unaffected strand (Caldecot, 2008). Mismatch repair (MMR) 

involves the correction of mispaired nucleotides; base excision repair (BER) replaces single 

bases and nucleotide excision repair (NER) repairs bulky lesions such as pyrimidine dimers 

[Reviewed by Caldecot, 2008). 

Double stranded breaks (DSB) can be especially damageing because if not repaired, they can 

lead to large scale genomic rearrangements (Griffith et al., 1999). There are two 

fundamentally different mechanisms of DSB repair: homologous recombination and non-

homologous end-joining.  

 

 

 

 

Figure 1.5: The importance of DNA damage repair 

 

 

Figure 1.5: In the absence of a functional DNA damage repair during replication, resulting 

mutations, replication errors, DNA damage and genomic instability can arise. These effects 

can lead to both ageing and cancer (Adapted from Day, 2007). 

 

 

1.14:DSB repair mechanisms 

Non-homologous end joining (NHEJ) and homologous recombination are two key 
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mechanisms that repair double-strand breaks (DSB) in DNA (Wyman and Kanaar, 2006). 

NHEJ involves the direct ligation of ends without a template contrasting with homologous 

recombination which requires a homologous sequence template to guide repair (Wyman et al, 

2004; O’ Driscoll and Jeggo, 2006).  

 

1.13.1 Homologous Recombination (HR) 

Homologous recombination (HR) involves the exchange of nucleotides between similar 

chromatids (Lodish et al., 2000; Wyman et al, 2004). HR typically occurs in either the S 

phase or G2 phase of the cell cycle, the availability of sister chromatids for homologous 

templates is important so repair of DSB via this mechanism occurs before the mitotic ‘M’ 

phase of the cell cycle (Alberts et al., 2008). A family of cyclin dependent kinases (CDKs) 

regulate HR in eukaryotic organisms (Shrivastav et al., 2008). The HR model of DNA 

damage repair mechanisms has several key steps (Szostak et al., 1983). Initiation of HR 

involves the binding of the MRN complex either side of the ds DNA break (Szostak et al., 

1983; Lodish et al., 2000). Processing occurs whereby sections of DNA around the 5′ termini 

of the breaks undergo nucleolytic resection giving rise to single stranded tails with free 3′-OH 

ends (Szostak et al., 1983). Strand invasion occurs whereby homologous regions between the 

DNA break and the sister chromatid template are recognised and form a displacement or D-

loop intermediate (Szostak et al., 1983). DNA polymerase synthesises a new strand extending 

from the 3′ end of the invading strand (Szostak et al., 1983). The second DSB is sequestered 

to form another D-loop. Strands cross over forming a double Holliday junction. Gap filling 

DNA synthesis and ligation then completes the new DNA strands (Szostak et al., 1983). 

 

1.13.2 Non-homologous end joining (NHEJ) 

The NHEJ mechanism starts with recognition of the DSB by the action of a Ku protein 
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(Walker et al., 2001). Ku protein is a heterodimer consisting of Ku70 and Ku80 polypeptides 

and binds to the end of DNA thought to act as a molecular scaffold onto which other proteins 

and end-processing enzymes can attach (Walker et al., 2001). The binding of Ku70/80 attracts 

and sequesters the catalytic subunits of DNA-PKcs, forming a complex (Yoo and Dynan, 

1999). This interaction of the catalytic subunit DNA-PKcs with Ku activates the kinase 

function of the complex and thus initiates terminal processing events that involve 

autophosphorylation, phosphorylation of several other proteins, alongside polymerase and 

nuclease interactions (Lee-Miller and Meek, 2003). Ligation finalises the process by the 

acquisition of the DNA ligase IV/XRCC4 complex to stabilise and ligate the breaks (Lee-

Miller and Meek, 2003).  

 

1.13.3 Alterative non-homologous end joining: Microhomology-Mediated End Joining 

(MMEJ) 

An error prone mechanism of end joining has been characterised recently called 

microhomology-mediated end joining (MMEJ), whereby 5-25bp of homologous sequence is 

used to guide the alignment of broken DNA strands prior to ligation. MMEJ has been 

considered a ‘back up’ when NHEJ fails and has been associated with chromosomal 

alterations such as translocations and deletions, however recent studies have shown MMEJ to 

be the mechanism at play regardless of the presence of functional classical NHEJ components 

(Lee-Theilen et al., 2011; Symington and Gaultier, 2011). During V(D)J recombination in the 

developing B-cells, MMEJ has been proposed as an alternative pathway of recombination in 

the absence of DNA ligase IV or XRCC4 (Boboila et al., 2010). Mice lacking functional p53 

and Ku subunits (or DNA ligase IV) have been shown to develop cancers such as lymphomas 

and accumulate non-reciprocal translocations with evidence of microhomologies at the 

breakpoints (Maser et al. 2007). Recent studies by Letsolo et al. have shown evidence of 

http://genesdev.cshlp.org/content/21/19/2495.full#ref-40
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MMEJ as a process of end repair following large scale deletion events occurring when 

dysfunctional telomeres undergo fusion events in telomerase negative MRC5 clonal 

fibroblasts expressing human papillomavirus oncoproteins E6 E7 (Letsolo et al., 2010). 

Evidence in species such as Xenopus and calf (thymus) has shown a Ku independent 

mechanism of end-joining with alternative characteristics such as large deletions and regions 

of microhomology. It has also been shown that it is not only the lack of Ku that can cause an 

alternative end-joining mechanism, but the loss of other NHEJ components such as ligase IV 

and XRCC4 (Mason et al., 1996; Gottlich et al., 1998).  

Repair of DSBs arising from ionising radiation and radiomimetric agents in bladder cancer 

tumours have been observed to preferentially undergo an error prone alternative end-joining 

mechanism mediated by microhomologies, rather than the classical NHEJ pathway (Bentley 

et al., 2004). Ku independent microhomology mediated end-joining has now been observed 

in many different species including fungi (S. cerevisiae) (Maj et al., 2003). 

 

 

 

1.14.1: Telomere dysfunction and telomere fusion 

 

The successive shortening of human telomeres can induce replicative senescence, which is 

the arrest of cellular division in response to DNA damage via the p53 and pRb (cell-cycle 

checkpoint) pathways (Campisi, 1997).  This is also known as the M1 stage and is a natural 

tumour suppressor mechanism providing a barrier to unlimited cell division (Wright and 

Shay, 1992). In the absence of a functional DNA damage response, cells bypass M1 

(senescence) and telomeres erode further until they undergo crisis (M2 stage) (Wright and 

Shay, 1992). M2 is characterised by telomeres that have lost their ability to cap the 
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chromosomal ends, resulting in end-fusions (Wright and Shay, 1992; Counter et al., 1992). 

This can result in potentially oncogenic genomic rearrangements such as NRTs, aneuploidy 

and gene amplification that are consistent with telomere dysfunction (Counter et al., 1992; 

Capper et al, 2007; Lin et al., 2010). Genomic instability has been correlated with the 

progression to malignancy in many types of cancer (Negrini et al., 2010; Shen , 2011)). Non-

reciprocal translocations (NRTs), a type of genomic rearrangement, are thought to be key 

mutational events that can drive many types of malignancy (Mitelman et al., 1997). Telomere 

fusion events have been detected alongside NRTs in the progression of Chronic Lymphocytic 

Leukaemia (CLL) (Lin et al., 2010) 

 In normal cells/tissues that exhibit otherwise long a stable telomeres, large-scale deletion 

events that can create telomeres that are capable of fusion, this can occur in both in the 

presence or absence of telomerase (Baird et al. 2003, 2006; Britt-Compton et al. 2006). A 

fusogenic threshold (<42 pure TTAGGG repeats) has been determined using single molecule 

based techniques in telomerase-negative human cells in vitro below which telomeres are 

deemed a ‘critical’ length and are subjected to fusions (Capper et al., 2007; Letsolo et al., 

2010). 

Telomere fusion events involving regions close to known fragile sites have been identified, 

for example fusions involving telomeres and the non-telomeric loci, 2q14, 8q24.3, 7p21.1 

and Xp22.1, all of which have been documented as being in the same cytogenetic location at 

fragile sites (Letsolo et al., 2010; Debacker, and Kooy, 2007). A number of fragile sites are 

thus associated with human disease and cancer (Debacker and Kooy, 2007), for example at 

FRA3B is the gene FHIT (fragile histadine triad protein), and encodes an enzyme that acts as 

a HER2 tumour suppressor (Bianchi et al., 2007). Large scale genomic rearrangements could 

potentially be generated by the fusion of dysfunctional telomeres with a fragile site, 

facilitating the progression to malignancy. 

http://genesdev.cshlp.org/content/21/19/2495.full#ref-6
http://genesdev.cshlp.org/content/21/19/2495.full#ref-7
http://genesdev.cshlp.org/content/21/19/2495.full#ref-13
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1.14.2 The mechanisms of telomere fusion: 

The mechanistic basis for telomere fusion is still unclear. One study showed that inhibiting 

TRF2 resulted in fusion that was dependent on factors involved in classical-NHEJ (non-

homologous end joining) (Smogorzewska et al. 2002; Celli and de Lange 2005). Telomeres 

have a role in protecting eukaryotic chromosomes from fusions by that action of NHEJ via 

proteins bound to telomeric loci. In mammals TRF2, involved in the t-loop structure, inhibits 

aberrant NHEJ activity at the chromosomal terminus and prevents telomere fusion (Chong et 

al. 1995; Broccoli et al. 1997; Baumann and Cech 2001). Fusions in normal cells are thus a 

rare occurrence, but short dysfunctional telomeres that have lost their protective ‘cap’  are 

more readily fusogenic (Capper et al., 2007). 

Telomere fusions can lead to the formation of dicentric chromosomes which go on to initiate 

cycles of anaphase breakage-fusion-bridging as first characterised by Barbara McClintock 

(McClintock, 1941). Evidence of such dicentric bridging has been observed extensively, 

elucidating roles for TRF2 in fusion prevention and thus telomere stability (Van Steensel et 

al., 1998; Smogorzewska et al. 2002; Celli and de Lange 2005). Van Steensel and colleagues 

noticed an increase in the presence of anaphase bridges when inhibiting TRF2 in human cells 

and Denchi et al. observed extensive telomere fusions when TRF2 was deleted from mouse 

liver cells (Van Steensel et al, 1998; Denchi et al, 2006). Parp1 has also been shown to have a 

role in protecting telomeres from fusions via interactions with TRF2. Parp1 deficient murine 

cells show an increase in telomere fusions when DNA damage is induced (Gomez et al., 

2006). 

In vitro cell assays of double strand break (DSB) repair have revealed non homologous end-

joining (NHEJ) as a key mechanism by which ends are joined accurately, efficiently and 

http://genesdev.cshlp.org/content/21/19/2495.full#ref-55
http://genesdev.cshlp.org/content/21/19/2495.full#ref-16
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without any loss of nucleotides (Labhart et al., 1999). Double strand break repair pathways 

involving NHEJ are thought to account for most chromosome fusions (Smogorzewska et al. 

2002; Celli and de Lange 2005). There are, however, different types of NHEJ mechanism. 

Classical NHEJ requires a Ku heterodimer to recognise a DNA ds break and act as a 

molecular scaffold onto which end-processing enzymes can facilitate repair of the broken 

ends (Labhart et al., 1999). Alternative NHEJ mechanisms in the absence of Ku and ligase IV 

utilise regions of microhomology to facilitate repair of broken ends and this mechanism has 

been observed to be associated with large scale deletions and chromosomal rearrangements 

(Maser et al. 2007; Lee-Theilen et al., 2011; Symington and Gaultier, 2011). 

1.15: The Role of Telomeres in Genomic Instability  

Faithful replication of DNA is constantly challenged (Lodish et al., 2004). Numerous 

processes involved in cell division are stringently controlled to maintain the integrity of the 

genome (Lodish et al., 2004). Genomic instability can drive evolution via genetic variation 

(Maizels et al., 2005; Aguilera and Gonzalez, 2008); however mutations and rearrangements 

associated with genomic instabilities are frequently associated with inherited diseases, ageing 

and cancer [Reviewed by O’Sullivan and Karlseder, 2010; Negrini et al 2010]. There are 

many types of genomic instability and ways in which aberrant changes arise.  

Chromosomal changes or aneuploidy, involve changes in chromosome number via attrition or 

loss altering the karyotype (Sen, 2000). Sister chromatid exchange (SCE) can be a sign of 

DNA damage repair because it is a process that aims to resolve double stranded breaks that 

occur though replication errors (Cortes-Ledesma and Aguilera, 2006). Unequal sister 

chromatid exchange (SCE) is the joining of ends between non-homologous DNA strands 

generated by DNA breaks and because of this SCE can result in large scale chromosomal 

rearrangements such as duplication or deletions (Aguilera and Gonzalez, 2008).  

A large number of genomic alterations occur during the S-phase, via replication errors such 

http://genesdev.cshlp.org/content/21/19/2495.full#ref-40
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as replication slippage (Viguira et al., 2001). Replication slippage gives rise to the deletion or 

insertion of repeat arrays or ‘microsatellite polymorphisms’ due to the misalignment of DNA 

strands during replication (Viguira et al., 2001; Aguilera and Gonzalez, 2008). Replication 

slippage thus causes DNA sequence gains or losses. This is why replication checkpoints are 

important. In humans, ataxia telangiectasia mutated (ATM), ataxia telangiectasia and RAD3 

related (ATR) trigger an S-phase checkpoint response to reduce replication errors (Abraham, 

2001). ATR is a transducer kinase that targets stalled replication forks (RF) and accumulation 

of single stranded DNA (Cortez et al. 2001; Rouse and Jackson 2002; Zou and Elledge 2003). 

ATM targets DSBs and is recruited via an MRN complex (Lavin 2007). Both kinases 

phosphorylate effector kinases CHK1 and CHK2 (Kim et al.,1999; Matsuoka et al. 2000). If 

this response is disrupted DNA breaks accumulate (Abraham, 2001).  

Other mutational processes can cause genomic instability such as deletions, inversions and 

translocations. These aberrant changes can arise in many ways, such as through impaired 

homologous recombination, non-homologous end joining and the error prone 

microhomology-mediated end joining [Reviewed by Aguilera and Gonzalez 2008]. 

Another way in which genomic instabilities can arise is through telomere fusions resulting 

from telomere dysfunction (Lin et al., 2010). Gross chromosomal rearrangements can arise 

via cycles of B-F-B leading to unfavourable alterations (such as NRTs) that potentially drive 

oncogenic rearrangements (Artandi et al., 2000; Murnane et al., 2004). Non-reciprocal 

translocations (NRTs), a type of genomic rearrangement, are thought to be key mutational 

events that can drive many types of malignancy (Mitelman et al., 1997, Artandi et al., 2000). 

Evidence has shown that NRTs can arise from telomere fusion events in the progression of 

Chronic Lymphocytic Leukaemia (CLL) (Lin et al., 2010).  

Telomere length-related genome instability has been extensively modelled in mice (Rudolphe 

et al., 2001; Artandi and dePinho, 2010). Successive generations of mice with a loss of 

http://genesdev.cshlp.org/content/25/5/409.full#ref-59
http://genesdev.cshlp.org/content/25/5/409.full#ref-269
http://genesdev.cshlp.org/content/25/5/409.full#ref-364
http://genesdev.cshlp.org/content/25/5/409.full#ref-164
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mTERC components in APC
min 

models (APC mutations cause multiple intestinal neoplasia) 

were used to relate telomere dysfunction and genomic instability (Rudolphe et al., 2001). 

Findings revealed an increase in detectable anaphase bridges (by FISH), at the adenoma to 

carcinoma transition, which was postulated to implicate telomere dysfunction related 

genomic instability as having an early stage oncogenic effect (Rudolphe et al., 2001). 

In prostate cancer, coupling telomere studies (by TRF and FISH) with cytogenetic analysis to 

assess genomic instability have shown correlations between telomere shortening and genomic 

instability in the early stages of prostate cancer (Meeker et al., 2002). Telomere loss and 

genomic instability have also been modelled in early stages of human prostate cancer using 

p53/PTEN knockout mice with successive loss of mTERT (Artandi and dePinho, 2010, Ding 

et al., 2012). Activation of telomerase following the induction of telomere dysfunction 

allowed an accumulation of genomic instabilities consistent with the idea that in early stages 

of prostate cancer telomere dysfunction can lead to genomic instability and the reintroduction 

of telomerase can maintain cells with instabilities leading to cancer progression (Ding et al., 

2012). 

Telomere lengths in peripheral blood measured by Q-PCR in both sporadic and hereditary 

ovarian cancer patients revealed that short telomeres were associated with earlier age of onset 

in both subtypes (correlation r=0.32; P=3.1 x 10
-12

) (Martinez-Delgado et al., 2012). Short 

telomeres were postulated to thus be contributing to genomic instability hence accelerating 

tumourigenesis (Martinez-Delgado et al., 2012). 

Direct telomere analysis using high resolution single molecule techniques (STELA; Baird et 

al., 2004) has revealed evidence of short telomeres that are capable of telomere fusion events 

coupled with evidence of large scale genomic instability via array-CGH in CLL patient 

samples (Lin et al. 2010). 
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1.16 Telomere dependent replicative senescence 

Replicative senescence is a mechanism that has roles in both cancer and ageing [Reviewed by 

Shay and Wright, 2005). 

Replicative senescence is an essential mechanism employed by somatic cells and is often 

excluded from tumour cells (Campisi, 1997). Replicative senescence impedes unlimited cell 

proliferation (Campisi, 1997). Senescence can be telomere dependent or telomere 

independent. 

 Telomere dependent replicative senescence arises when telomeres reach threshold lengths 

acting as a sensor for the number of cell divisions that have taken place, termed the ‘Hayflick 

limit’ (Hayflick and Moorehead, 1961; (Harley et al., 1990).). Replicative senescence is 

brought about by DNA damage response (DDR) pathways via tumour suppressor proteins 

p53 and pRb. P53 and pRB determine whether or not a cell goes into senescence. Telomeres 

that have lost their ability to cap chromosomal termini and thus initiate a DNA damage 

checkpoint response by activation of the ATM/p53 pathway (Blackburn, 2000, Artandi et al., 

2005). ATM (Ataxia telangiectacsia mutated) activates CHK2, an effector kinase, by 

phosphorylation which in turn inhibits CDC25 (Chehab et al., 2000). CDC25 is a phosphatase 

that regulates entry into and progression through various phases of the cell cycle (Gould et 

al., 1991). This thus halts progression through the cell cycle. P53 is a tumour suppressor 

protein that recognises telomere dysfunction as a DNA break and activates a downstream 

process involving increasing the expression of p21 and inhibiting the phosphorylation of pRB 

[Reviewed by Artandi et al., 2005]. P16 is a positive regulator of the pRB protein and has a 

role in controlling the cell cycle via cyclin dependent kinases (CDKs) (Kulju and Lehman 
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1995; Alcorta et al. 1996; Hara et al. 1996; Reznikoff et al. 1996; Herbig et al., 2004). 

Senescent human fibroblasts have been shown to overexpress p21 and p16, signalling 

proteins that inhibit cyclin dependent kinases upstream of pRb (van Steensel et al. 1998). 

Ectopic expression of telomerase subunit hTERT causes telomere elongation and thus 

senescence can be overcome (Bodnar et al. 1998). 

 

 

Figure 1.7:  Pathways connecting telomeres and p53 in senescence, apoptosis, and 

cancer. 

 

 
Figure 1.7: A diagrammatic representation of how telomeres can affect p53 and its related 

pathways. Telomere erosion can lead to cycles of B-F-B, and the resulting DS breaks that can 

arise lead to the activation of ATM/ATR. Downstream targets of p53: P21 prevents 

progression through the cell cycle; Mdm2 negatively regulates p53 and BAX competitively 

inhibits bcl2 expression which results in the activation of the capsase cascade leading to 

apoptosis. All these processes enable tumour suppression (adapted from Artandi et al., 2005) 
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1.17 Telomere independent senescence 

Telomere independent senescence has been observed via the overexpression of cellular and 

viral oncogenes such as SV40, E6 and E7. Evidence has shown, for example, that expression 

of the SV40 large T antigen dysregulates the function of p53 and pRb genes resulting in cells 

that can bypass replicative senescence (Shay et al. 1991) and thus are immortalised. Cells that 

can bypass senescence extend their natural replicative lifespan and thus have the ability to 

accumulate larger numbers of mutations and DNA damages that can lead to the initiation of 

neoplasia.  In mouse models, restoration of p53 function causes the reduction of tumours such 

as sarcomas via a senescent-like phenotype involving cell cycle arrest (Ventura, et al. 2007). 

Another type of telomere independent senescence can occur in vitro as a result of 

unfavourable culture conditions such as oxidative stress (Chen et al. 1995) or hypoxia, which 

is also referred to as STASIS or Stress or Aberrant Signalling Induced Senescence, premature 

senescence or culture shock. 

1.18: Ageing  

Replicative senescence has been suggested to have evolved as a protective mechanism 

against unwanted cell proliferation, for example due to oncogene overexpression (Campisi, 

2000). The successive shortening of telomeres triggers senescence as a natural function of 

age (Harley et al., 1990). Phenotypically cells that are senescent grow larger, with a flatter 

shape and express senescence-associated β-galactosidase, a marker of cellular senescence 

(Bayreuther et al., 1988; Dimri et al., 1995).  

Replicative senescence is considered to underlie, at least in part, the ageing process in 

humans. Ageing can be characterised by the deterioration of tissue function and has been 

shown in many species to be related to the accumulation of senescent cells (Röhme, 1981). 

Senescent cells can secrete proinflammatory cytokines and other factors that disrupt the tissue 
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microenvironment and thus may contribute to disruption of cell and tissue function (Campisi 

et al., 2000; Shay and Wright, 2000). Some studies show  that senescent cells contribute to 

age-related pathologies such as osteoarthritis (Martin and Buckwalter, 2002; Price et al., 

2002) and to skin aging (Giacomoni et al., 2000). Cells from humans and primates that are 

relatively long-lived species have been shown to senesce after more cell divisions than short 

lived species (Hayflick et al., 1977). In telomerase deficient mouse models, knockout of 

TERC caused the progressive anticipation of pathologies that are associated with loss of 

telomeric repeats and ageing such as heart failure and decreased tissue regeneration (Blasco 

et al., 1997 and 2005). In WRN protein mouse knockout models symptoms of premature 

ageing were correlated with short telomere lengths (Chang et al., 2004; Du et al., 2004). 

Humans with hereditary premature ageing syndromes such as dyskeratosis congenita (DKC) 

have been shown to display genetic anticipation in relation to a decline in telomere lengths 

and this decline in telomere length is associated with earlier onset of age related phenotypes 

such as grey hair, tissue deterioration and cancer disposition (Vulliamy et al., 2008).  

 

 

1.19.1 Telomere length dynamics affected in genetic disease: Dyskeratosis Congenita 

Dyskeratosis congenita is a genetic disease whose pathogenesis is directly related to telomere 

length maintenance (Vulliamy et al., 2001). Mutations in DKC1 andTERC are commonly 

found in patients with dyskeratosis congenita (Vulliamy et al., 2001). DKC1 and TERC are 

important components of telomerase, the enzyme that catalyses the addition of telomere 

repeats in order to maintain telomere lengths. DKC1 encodes the protein ‘dyskerin’ which is 

involved in attrition of TERC, cells lacking this protein thus have reduced levels of TERC 

RNA leading to the inability of the enzyme telomerase acting to elongate the telomere end. 

The disease also shows autosomal dominance due to haploinsufficiency i.e. the sufferer 

http://jcs.biologists.org/content/120/5/713.full#ref-17
http://jcs.biologists.org/content/120/5/713.full#ref-34
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produces half the normal amount of telomerase (Vulliamy et al., 2004) andanticipation 

resulting in progeny of affected parents with a worse prognosis than preceding generations 

(Vulliamy et al., 2004).  

 

1.19.2 Other conditions: Werner’s syndromeUnusually short telomeres are also seen in 

some inherited disorders associated with premature ageing such as Werner’s syndrome. 

Werner’s syndrome is also referred to as ‘adult progeria’ and is a rare autosomal recessive 

disease linked to mutations in the WRN gene found on chromosome 8, and with a high 

incidence of cancer (Epstein et al., 1966). Telomere dysfunction and genome instability has 

been observed in patients with Werner’s and has been hypothesised as having a causal role in 

the premature ageing that is a hallmark of this disease. Mice lacking mTERC, the telomerase 

component showed similar pathologies to mice that lack the WRN gene (Chang et al., 2004). 

As a single dysfunctional telomere was found to be sufficient to limit cell survival in vivo 

(Hemann et al., 2001), it was thus considered that the presence of a few dysfunctional 

telomeres may be sufficient to cause the dysfunctional phenotypes in WRN (Chang and 

Multani, 2007). However the utilisation of single molecule PCR strategies revealed that 

telomeres in Werner’s syndrome cells eroded at rates similar to those of normal controls 

(Baird et al., 2004), suggesting that the ageing phenotype of these cells is due to a stress-

induced, p38-mediated growth arrest that is independent of telomere erosion (Baird et al., 

2004). Studies indicate that an absence of WRN may indirectly effect telomere dynamics via 

cell growth kinetics (Wyllie et al., 2004, Baird et al., 2004). 
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1.20: Cancer 

Cancer can be defined as the disease caused by an uncontrolled division of abnormal cells in 

a part of the body and also a malignant growth or tumour resulting from such a division of 

cells. Cancer cells have many different properties to distinguish them from normal cells of 

the human body. They have the ability to divide indefinitely, can metastasise to invade 

neighbouring tissues, fail to complete normal differentiation, can stimulate angiogenesis by 

releasing growth factors and do not require external signals to promote their growth. Cancer 

can arise from a number of different factors; carcinogens in the form of mutagens and non-

mutagens, oncogenic viruses such as the Human Papilloma Virus (HPV) and also genetics i.e. 

inherited mutation in oncogenic genes such as the BRCA-1 gene in breast cancer. 

 

1.21:  Human Breast Cancer 

Breast Cancer is a multifactorial disease that affects 13.4% of women and 6% of men and 

women combined worldwide (World Cancer Report, 2009). It is the most common malignant 

disease affecting women in the western world.  Historically breast cancer is one of the earliest 

detectable carcinomas due to the visible phenotypic observations of tumourous lumps. Indeed 

possible breast cancer tumour diagnoses dates back to 1600 BC in Egypt (Uroskie and Colen, 

2004).  

Human breast cancer is most commonly characterised by tumours present in either the 

lobules surrounding the mammary ducts or the ducts themselves (Stewart, 1941; Foote and 

Stewart, 1946), but other rarer forms of breast cancer include Paget’s disease of the nipple 

and inflammatory breast cancer affecting lymph vessels in the epidermis of the breast. Ductal 

and lobular carcinoma may begin with what is termed usual ductal or lobular hyperplasia 

(UDH/ULH), which is a benign overgrowth of cells lining the ducts or lobules with a pattern 

that is similar to normal cell histology. Atypical ductal/lobular hyperplasia (ADH/ALH) is a 
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slightly more abnormal class of benign growth in a confined region that gives the patient a 

higher (3½ to 5 times) risk of developing breast cancer. Ductal or lobular carcinoma in situ 

(DCIS/DLIS) is a neoplastic tumour still confined to its region, a pre-invasive cancerous 

stage (Allred et al, 2001; Richie and Swanson, 2003). Invasive ductal or lobular carcinoma 

occurs when the carcinoma in situ metastasises beyond basement membranes to invade 

surrounding parenchyma. Invasive ductal carcinoma (IDC) is more common than invasive 

lobular carcinoma (ILC) occurring in around 75-80% mammary carcinomas compared to the 

10-15% comprised by ILC. ILC has been shown to have a slightly worse prognosis when 

compared with IDC (Klemi et al., 1997). 

 

 

1.22: Epidemiology of Breast Cancer and risk factors associated with the disease 

 

Epidemiology is a useful tool for identifying risk factors that have contributed to the 

improvement in detection and clinical care of the disease. Between 1971 and 1975, 5 year 

disease free survival averaged at about 52%. Today there is an 80% survival rate over 5 years, 

signifying a huge improvement. Regardless of this, breast cancer is still the most commonly 

diagnosed carcinoma of the western world, the lifetime risk of a female being diagnosed in 

the UK alone is 1 in 8 and in the last 10 years, breast cancer incidence rates in the UK have 

increased by 6% (Cancer research UK statistics). 

There are multiple risk factors for developing breast cancer. Age is the largest contributor to 

probability of developing breast cancer, after gender, with people over 50 years of age having 

an 81% more risk than those below 50. This could be due to an accumulation of DNA 

damage with successive cell divisions in ageing tissues increasing the likelihood of oncogenic 

mutations.  
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Reproductive history is another factor to be considered to be strongly associated with breast 

cancer risk due to the circulation of the hormones oestrogen and progesterone cancer (Willett 

et al, 1989). Incidence of breast cancer has been shown to be affected by a number of 

different documented factors such as: age at menarche with a low age correlated with an 

increased risk; parity; late menopause; the use of oral contraceptives; age of woman for the 

birth of a first child [Reviewed by Bernstein, 2002]. Oestrogen and progesterone have been 

shown to increase mammary cell proliferation, leading to an increased risk of the 

accumulation of deleterious mutations via errors in DNA replication. Oestrogen also has been 

shown to encourage growth of the ductal systems in the breast and progesterone stimulates 

alveolar formations.  

 Prolactin is a peptide hormone that is has a key role in mammary gland development; studies 

in mice have shown a correlation between high levels of prolactin and an increase in 

mammary tumours (Biswas and Vonderhaar, 1987 and Welsch et al., 1977). 

The inheritance of mutated breast cancer susceptibility genes (BRCA1&2 and p53) increase 

the risk of developing breast cancer  by around 65% and also give rise to earlier onset of 

breast cancer compared with sporadic breast cancers. However, hereditary breast cancers only 

account for 5-10% of breast cancers. 

 

 

 

 

 

 

1.23: The Methods for Classification of Breast Cancer 

Breast cancer is not a single disease; it is histologically, clinically, genetically and 
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biochemically heterogeneous. 

 

1.24. Pathological assessment of tumour type 

By observing breast cancer tissue phenotypically under a microscope, the nature of the 

tumour relating to the position and malignancy can be characterised. The most common 

classes of breast cancer relate to spread so are invasive or in situ; location of the cancer 

means the tumour is termed either lobular or ductal. Invasive ductal carcinoma is one of the 

more common subtypes of breast tumour accounting for over 50% of breast tumours; 

however the World Health Organisation (WHO) recommends a large list of breast tumour 

pathological types for both benign and malignant tumours. 

 

1.24.2: Histological grading of Breast Cancer 

 

The Scarff-Bloom-Richardson (SBR) system of grading breast tumours microscopically was 

developed in 1957 and has since been adapted for higher quantitative accuracy by Ellis and 

Elston, and this adaptation on the SBR histological grading system is now referred to as the 

Nottingham Prognostic Index or Nottingham Grade. The grading is assessed from a tumour 

sample taken from a breast biopsy, lumpectomy or mastectomy. Phenotypic characteristics 

are scored from 1-3 relative to severity in terms of prognosis (1 being low risk, 3 confers a 

high risk). The factors that are considered include frequency of cell mitosis (mitotic index), 

percentage of tumour that is constituted of tubular structures and changes in cell size and 

uniformity. The scores are then added together for each category to give a final numerical 

value that allows the tumour type to be classed into a grade of I, II or III. 
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             1.24.3: TNM Classification of Malignant Tumours (TNM) 

The TNM system of classification is employed for all solid tumours and was designed in 

1943 (Denoix et al., 1946). ‘T’ relates to the size of the tumour and is scored from 1-4; ‘N’ 

stands for nodes and relates to the spread of the tumour cells to lymph nodes and is scored 0-

3; ‘M’ stands for metastasis and 0=no metastasis, 1= metastasis beyond regional lymph 

nodes. A lower score indicates a lower grade of tumour type and thus the better the expected 

prognostic outcome.  Grading assessed by TNM stageing categorises tumours into grades 1-4, 

grade 4 tumours tend to have spread and tend to be inoperable thus indicate a poor prognostic 

outcome. 

 (see Table 1. 4). 

 

 

 

Table 1.4 

Stage Description 

0 A pre-malignant disease or marker (DCIS/ LCIS) 

1-3 'Early' cancer with a good prognosis. 

4 'Advanced' and/or 'metastatic' cancer with a bad prognosis. 

Table 1.4: Stage that is categorised by the TMN system alongside prognostic description of 

tumour 
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1.24.4: Receptor status 

1.24.5 Hormone Receptor (HR) Positive Breast Cancer 

Breast cancer can also be classified by receptor status, which is dependent upon the 

presence of cell or hormone receptors (HR). Breast cancer cells may  be positive for 

oestrogen receptor (ER) or progesterone receptor (PR)  

 

Around 70% of all breast cancers are ER positive and of these around 60% are also PR 

positive. (Masood, 1992) ER+ (oestrogen receptor positive)  and PR+ (progesterone 

receptor positive) breast cancer cells depend on presence of each hormone for their 

growth, respectively, thus drugs targeting oestrogen and progesterone receptors, such as 

oestrogen receptor antagonist Tamoxifen, can be used to block the hormone binding result 

in a block in cell proliferation and therefore a better prognosis.  

Around 70% of breast cancers overexpress oestrogen receptors (Masood, 1992). There are 

two subtypes of oestrogen receptor: ERα and ERβ, which are different in size (ERβ is 

smallest) and encoded by different genes at different chromosomal loci (ESR1 on 

chromosome 14 and ESR2 on chromosome 6 respectively). However, both isoforms share 

homology in binding domains (Anderson, 2002). Tamoxifen treatment in high risk 

women has shown a reduction in breast cancer incidence (Fisher et al, 1998). 

Progesterone receptor (PR) proteins exist as two isoforms: A and B. The PR isoform type 

A has been shown to repress the action of the B-isoform (of PR) and ER. The balance of 

the presence of these two isoforms in breast cancer has been studied for prognosis and 

studies have suggested that tumours with a higher proportion of PR-A are more likely to 

relapse and have a reduced response to hormone therapy such as Tamoxifen (Torsten et al, 

2004; Badve and Nakshatri, 2008). 
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1.24.6 HER2 positive Breast cancer: over-expression of the ERBB2 gene 

HER2+ (Human Epidermal Growth Factor Receptor 2) breast cancer cells encode the 

ERBB2 gene, which translates the HER2 or neu protein. This protein is similar in 

structure to human epidermal growth factor (HER1) and is a member of the epidermal 

growth factor family.  HER2 is involved in a signal transduction pathway that regulates 

cell proliferation and apoptosis, thus HER2 positive cells display uncontrolled cell 

growth. The gene for this growth factor is located on chromosome 17 and is 

overexpressed in around 30% of breast cancers (Yu et al., 2007). Patients with a mutated 

ERBB2 gene have been shown to have a worse prognosis than ER+ patients; however 

monoclonal antibody treatment with Trastuzumab or Pertuzumab can help to improve this 

(Romond et al., 2005). Trastuzumab and Pertuzumab bind to the HER2 receptors to block 

signalling pathways that lead to cell proliferation.  

 

1.24.7 : Breast cancer subtypes that do not express the genes for estrogen receptor 

(ER), progesterone receptor (PR) and Her2/neu 

Breast cancers that are ER-negative, PR-negative and with show no detectable HER2/neu 

overexpression are referred to as triple negative (TN) or basal-like (BL). Some basal-like 

breast cancers are sometimes defined as being slightly different genotypically and 

phenotypically from triple negative breast cancers, however both types of cancer often 

come under the same definition and both are very heterogeneous for of gene expression 

profiling. Basal-like cancer cells are so named because they can display an increase 

cytokeratin expression such as CK5/6 found in the basal-myoepithelial layer of breast 

tissue. TN and BL subtypes have been associated with poor prognosis (Banerjee et al., 

2006; Hugh et al., 2009) and tend to be more aggressive (Dent et al., 2007) in terms of 

treatment and survival time after diagnosis when compared with other receptor positive 

http://en.wikipedia.org/wiki/Breast_cancer
http://en.wikipedia.org/wiki/Genetic_expression
http://en.wikipedia.org/wiki/Estrogen_receptor
http://en.wikipedia.org/wiki/Progesterone_receptor
http://en.wikipedia.org/wiki/Her2/neu
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subtypes.  

 

 

1.24.8: Expression of tumour markers 

 

Specific DNA mutations or gene expression profiles are identified in the cancer cells this may 

give an indication of which treatment options are most suited to the patient, either by 

targeting these changes, or by predicting from the DNA profile which non-targeted therapies 

are most effective. 

 

 

1.25: DNA classification systems: 

The development of a range of screening assays for the detection of breast cancer coupled 

with the increased awareness of the disease through media campaigns has allowed a greater 

number of women to be diagnosed with breast cancer at an early stage. However, regardless 

of this around 30% of women with small tumours that are negative for lymph node 

involvement (i.e. no metastasis) suffer a relapse and die from their disease (Wong et al., 1992; 

Cardoso et al., 2007). This means that it is difficult to stratify patients into high and low risk 

categories and a high proportion of patients receive adjuvant treatment that may not require 

such toxic treatment (Cardoso et al., 2007). It is thus important to decipher which patients 

need adjuvant therapies. 

 

1.25.1: DNA microarray technology 

A difference in the expression of hundreds of genes has been found when comparing breast 

cancer cells with normal cells using microarray technology. Microarrays allow the expression 
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levels of large numbers of genes to be measured simultaneously. The significance of 

differential gene expression is unclear, however it has been shown that clusters of genes co- 

express, for example ER positive tumours and ER negative tumours (Graham et al., 2010). 

Multigene assays could allow the refinement of treatment options and give indications of 

prognosis depending on gene expression signatures. Various types of gene expression 

profiling by microarray exist such as the American Society of Clinical Oncology (ASCO) 

approved Oncotype DX and FDA approved MammaPrint. 

 

 

1.25.1: Oncotype DX 

Oncotype DX is a 21 gene assay; 16 breast cancer-related genes and 5 normal ‘reference’ 

genes are assessed for ER positive, lymph node negative tumours only. The resulting gene 

expression profile is given a recurrence score (RS) and a high RS denotes a poor prognosis 

(Paik et al., 2004). 

1.25.2: AmpliChip CYP450 

AmpliChip CYP450 from Roche is one of the first FDA approved DNA microarray based 

tools for the prediction of patient specific phenotypes in relation to drug toxicity and efficacy 

in treating breast cancer. The technology is based around the cytochrome P450 family, 

specifically two highly polymorphic genes involved in the metabolism of 25% of all 

prescription drugs: CYP2D6 and CYP2C19 (Heller et al., 2006). Microarrays detect 

genotypic differences in these genes and predict 4 possible phenotypes, ranging from poor to 

hyper rapid, based around 31 polymorphisms and mutations associated with these metabolism 

associated genes (Heller et al., 2006, de Leon et al., 2006).  

1.25.3: MammaPrint 

MammaPrint screening is a gene assay that can be used irrespective of ER status in lymph 
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node negative patients. It was first developed in Amsterdam by Agendia. The expression 

levels of 70 genes are analysed and an algorithm is calculated allowing the patient sample to 

be given a score that determines whether the patient is classified as high or low risk for 

cancer metestasis (Van’t Veer et al 2002 and 2006). Therapy can thus be stratified for 

therapeutics based on their risk of recurrence, administering more aggressive treatment on the 

high risk patients. 

 

 

1.26: Breast Cancer Predisposition genes: 

High penetrance genes: 

1.26.1: BRCA1 

Mutations in either of two major susceptibility genes, breast cancer susceptibility gene 1 

(BRCA1) and breast cancer susceptibility gene 2 (BRCA2), confer a lifetime risk of breast 

cancer of between 60 and 85 percent and a lifetime risk of ovarian cancer of between 15 and 

40 percent. However, mutations in these genes account for only 2 to 3 percent of all breast 

cancers. 

BRCA1 (breast type 1 susceptibility protein) was first identified in 1994 (Miki et al, 1994). 

The BRCA 1 gene is located on the long arm of chromosome 17. Mutations in the BRCA 

genes exhibit high-penetrance, and confer a greater than 10-fold increase in breast cancer 

risk. BRCA 1 has been shown to be involved in the repair of DSB by homologous 

recombination by binding directly to DNA, and also via interactions with RAD51. BRCA1 

was first shown to be a key player in DNA repair when the association of BRCA1 with 

RAD51 in nuclear foci was observed (Scully et al, 1997). RAD51 is involved in locating            

homologous regions and pairing up of DNA strands during the repair process. BRCA 1 has 

been implicated in the signalling response to DNA damage to ensure faithful DNA repair. 
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Modulation of BRCA 1 by ATM, ATR and CHK2 has been observed. ATM is recruited and 

activated by DNA ds breaks. ATM has been shown to phosphorylate BRCA 1 when exposed 

to gamma radiation (Cortez et al, 1999). ATR, related to ATM, is involved in detecting DNA 

damage, particularly single stranded regions of DNA indicative of stalled replication forks, an 

intermediate in DNA repair. ATR has also been shown to associate with and phosphorylate 

BRCA 1 after cells are exposed to DNA damaging agents (Tibbetts et al, 2000). CHK2, a 

downstream target of ATM, phosphorylates a serine residue of BRCA 1 and is important in 

promoting error free homologous recombination and simultaneously inhibiting error prone 

non-homologous DNA repair mechanisms such as microhomology mediated end-joining 

(Zhang et al., 2004). 

 

1.26.2: BRCA2 

BRCA2 (breast type 2 susceptibility protein BRCA 2 was also discovered in 1994 (Wooster 

et al, 1994) and is located on the long arm of chromosome 13. BRCA2 has, like BRCA 1, 

been shown to interact with RAD51 to regulate both the intracellular localisation and DNA-

binding ability of this protein. Cells defective in BRCA2 show that BRCA2 is also implicated 

in DNA repair. In culture mouse embryonic fibroblasts (MEFs) with truncated copies of 

BRCA2 show defects in cell proliferation and a heightened sensitivity to genotoxic agents 

such as UV damage (Patel et al, 1998). There is evidence of a range of chromosomal 

instabilities in cells lacking functional copies of BRCA2 such as DNA breaks (Lee et al, 

1999). BRCA2 has also been implicated in successful mitosis; mitotic checkpoint protein 

inactivation coupled with BRCA2 deficiency causes cells to overcome growth arrest and 

initiate neoplasms (Lee et al, 1999). 
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By influencing DNA damage repair, these proteins thus play a key role in maintaining the 

stability of the human genome. Recently the discovery of PARP inhibitors has shown 

promise in BRCA deficient cells. As mentioned previously PARP 1 is a DNA repair protein 

and cells deficient in PARP have increased DSBs. Studies have shown that PARP inhibitors 

have selective activity for tumours with defects in BRCA1 or BRCA2 (Kaelin, 2005). Cells 

deficient in BRCA1/2 exhibit dysfunctional DNA double strand break (DSB) repair (e.g. HR 

or NHEJ). PARP inhibitors are thought to increase cell death in cells with dysfunctional DSB 

repair via synthetic lethality. Synthetic lethality is when a mutation of either of two genes has 

no phenotypic effect, but combining the mutations results in cell death (Dobzhansky, 1946; 

Telli and Ford, 2010). This effect implies that inhibiting one of these genes in a context 

where the other is defective should be selectively lethal to the tumor cells but not toxic to the 

normal cells, potentially leading to a large therapeutic (Telli and Ford, 2010). 

 

 

1.26.3: p53 

A key gene that is frequently mutated in breast cancer is the p53 gene. P53 is a tumour 

suppressor protein encoded by the TP53 gene in humans; it is located on the long arm of 

chromosome 17. P53 is the most commonly mutated gene in human cancers, mutated in as 

many as 50% of all human cancers (Hermandez-Boussard et al., 1999; Cheah et al., 2001).  

As a tumour suppressor, p53 can activate DNA repair proteins such as ATM; can arrest cell 

growth; or initiate apoptosis. In a normal cell p53 is present at very low levels due to 

interactions with its negative regulator mdm2 with which p53 forms a complex. Upon DNA 

damage or other stresses, various pathways will lead to the dissociation of the p53 and mdm2 

complex. DNA damage triggers the activation of protein kinases such as ATM and CHK2, 
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which phosphorylate p53. Once activated, p53 may induce a cell cycle arrest to allow repair 

and survival of the cell via the expression of p21. P21 is a downstream target of p53 and acts 

as an inhibitor of cyclin-dependent kinases that are required for transition in the cell cycle 

(eg.cdk2). Alternatively p53 may induce apoptosis by triggering the expression of pro-

apoptotic proteins such as BAX (Bcl-2 associated X protein).  

It has been observed by immunohistochemistry that roughly 40% of breast carcinomas show 

high levels of stabilised, often mutant, p53 protein in their cells (Barnes et al., 1996). P53 

dysfunction can arise via mutagens or can be inherited. The inheritance of just one functional 

copy of the p53 gene is classified as the rare Li-Fraumeni syndrome. Li-Fraumeni is a cancer 

pre-disposition syndrome that is associated with an early onset of breast cancer (Fraumeni et 

al., 1990). Individuals with Li-Fraumeni syndrome possess either a mutant p53 gene or 

CHK2 gene (CHK2 regulates p53) and this increases susceptibility to cancer as only one 

allele has to lose functionality to cause dysfunctional cell growth. 

 

 

1.27: Telomere length in Breast Cancer  

 

 A shorter telomere length has been correlated with breast cancer compared with normal 

tissue in multiple studies. In one example, Heaphy et al. focussed on evaluating mean 

telomere lengths in different cancer subtypes based on tumour characteristics. Using FISH at 

the single cell level it was found that telomere lengths were shorter in more aggressive 

subtypes, such as luminal B, HER-2-positive and triple-negative tumours, suggesting that 

tumour telomere length may have utility as a prognostic or risk marker for breast cancer 

(Heaphy et al., 2011).  
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1.28: Genomic instability in Breast Cancer 

Microarray-based gene-expression profiling, has enabled the enhancement of molecular 

classification and has also shown how heterogeneous the disease is. Genomic alterations 

arising from types of genomic instability would explain one mechanism for the extreme 

variation in breast cancer subtypes and the severity of tumour types. Dysfunction in 

housekeeping genes early on in breast cancer progression is thought to lead to the 

accumulation of mutations resulting in large scale genomic instability (Loeb et al., 2001). 

Hallmarks of genomic instability visible via FISH technology, such as an increase in 

anaphase bridges, gains and losses of genetic material etc., have been correlated with the 

progression to malignancy in many types of cancer. Gains and losses on certain chromosome 

arms in particular are consistent with the presence of breast cancer oncogenes such as those 

found on 17q (HER2) (Futreal et al.,1992; Bowcock et al., 1993).  

Genome instability arising as a consequence of telomere crisis is considered to have a crucial 

role in the development of most breast carcinomas, in particular during transition from UDH 

(usual ductal hyperplasia) to DCIS (ductal carcinoma in situ) (Chin et al., 2004). Genomic 

instability and telomere length were observed by Chin et al., using FISH in normal ductal 

epithelium, UDH, DCIS and invasive cancer.  Genome instability was assessed 

phenotypically by confocal microscopy analysis of tissue sections. There were an increase in 

anaphase bridges detectable in UDH and DCIS. Telomere length analysis showed that 

telomere length is significantly shorter in invasive cancers than DCIS and shorter in DCIS 

than UDH. A correlation has thus been shown between genome instability, telomere length 

and progression to invasive breast cancer.  

Comparative Genome hybridisation (CGH) techniques used in breast cancer commonly use 
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microarray based technologies (Array-CGH) (Pinkel et al., 1998; Pollack et al., 1999) to 

compare DNA copy number alterations (CNA) between cancer tissue/tumour samples to 

known genomic sequence positions using oligonucleotide probes. Array-CGH can thus be 

used to assess single nucleotide polymorphisms (SNPs) and loss of heterozygosity (LOH) as 

a measure of the extent genomic instability in cancer tissues. CGH techniques have been used 

as a way to classify breast tumours, for example the distinct genomic profile of BRCA1 

tumours, based on losses or gains at chromosomal loci (Wessels et al., 2002; van Beers et al., 

2005). Therapeutic targets have been investigated using array-CGH to screen for genes with 

abnormal DNA copy numbers and to elucide complex patterns of genomic changes 

accosiated wtih known oncogenes such as ERBB2 and Cyclin D1 (Hosokawa et al., 1998). 

 

 

 

1.29: Telomere dynamics in Chronic Lymphocytic Leukeamia (CLL) 

The development of a high resolution single molecule approaches enabled the determination 

of the full spectrum of telomere length in human tissues as well as the detection of rare 

telomere fusion events (Baird et al., 2004). These techniques were applied to patient samples 

with CLL (Lin et al., 2010). CLL is the most common form of adult leukaemia (Landis et al., 

1998). NRTs are common events in CLL and independent markers of a poor prognosis, along 

with mutations in p53 and ATM genes on 17p and 11q respectively (Mitelman et al., 1997; 

Verstovsek et al., 2004). Telomere length at XpYp and 17p was shorter in later Binet’s stages 

of CLL, thus indicating that short telomere length could be indicative of poorest prognosis 

(Lin et al., 2010; Jones et al., 2012). Interestingly subsets of telomeres in the stage A patient 

group displayed telomere mean lengths (XpYp and 17p) reminiscent of those found in cells 

undergoing crisis, and similar to subsets found in stage C. This could indicate early evidence 
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of patients that will go on to develop a more aggressive form of CLL. Alongside this the 

shortest, most eroded telomeres here were the ones undergoing the highest frequency of 

telomere-telomere fusions, a hallmark of telomere dysfunction regardless of stage (Lin et al., 

2010). Array-CGH was used to display evidence of genomic instability via CNAs in patients 

that exhibited telomere dysfunction (Lin et al., 2010). Thus telomere shortening and telomere 

dysfunction have been documented in human haematological malignancy and correlate with 

the emergence of increased genomic instability (Lin et al., 2010; Jones et al., 2012). 

 

 

 

1.30 Measuring telomere length 

1.30.1 Telomere Restriction Fragment (TRF) analysis 

 Telomere Restriction Fragment (TRF) analysis is the most commonly used assay (Allshire et 

al., 1989) involving digestion of the DNA with one or two frequently cutting restriction 

enzymes such as HinfI and RsaI in human samples (Moyzis et al., 1988). The idea of using 

frequently cutting enzymes such as these is that digestion of the DNA cleaves the majority of 

the DNA and leaves the terminal restriction fragments intact to be detected with telomere 

repeat containing probes. The problem with this method of telomere length detection is that it 

measures both the telomere repeats and the subtelomere. The hybridisation technology may 

also limit this method’s ability to detect short telomere repeat arrays (Baird, 2005). 

Furthermore this technique necessitates large amounts of DNA material and is therefore not 

always suitable for samples with less than 10
5
 cells.  

 

1.30.2 Quantitative fluorescence in situ hybridisation (Q-FISH) 

Q-FISH technology uses fluorescently labelled (Cy3 or FITC) peptide nucleic acid or 
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PNA oligonucleotides to quantify (TTAGGG)n telomere repeat sequences. PNA is a 

synthetic DNA molecule that contains no charged phosphate groups and binds more 

readily to DNA. Q-FISH has the ability to study telomere lengths of each individual 

chromosome (p or q arm) and requires less than 30 cells (Lansdorp et al., 1996). The 

ability to distinguish chromosome arms led to the finding that specific chromosome 

ends, for example 17p, appear to be shorter than others (Martens et al., 1998).  Q-

FISH relies on metaphase chromosomes or interphase nuclei, which limits the cells 

that can be analysed to those capable of growth (not senescent cells). Also the 

labelling with fluorescent probes can be inaccurate and unable to detect very short 

telomeric repeats (Lansdorp et al., 2001; Baird, 2005). 

 

1.30.3 Flow-FISH 

An alternative FISH technique to Q-FISH called ‘Flow-FISH’ was developed in the same 

laboratory that uses interphase cells and hybridizes the PNA probes in suspension (Rufer et 

al., 1998; Lansdorp et al., 2006). The use of flow cytometry coupled with hybridisation 

techniques allows thousands of cells to be analysed in a reasonably short time and has been 

widely used to study telomere length in haematopoietic system. One drawback of this method 

is that Flow-FISH detects an average telomere length for each cell analysed not the telomere 

length of an individual chromosome and because it is hybridisation based it is limit in 

resolution. 

1.30.4 Telomere Q-PCR  

Another fluorescence-based assay that uses Q-PCR is ‘Telomere Q-PCR (Cawthon, 2002). 

Telomere Q-PCR measures the ratio of telomere repeat copy number to single copy gene 

copy number giving a ‘T/S ratio’ (Cawthon, 2002). This technique was initially compared 

with TRF analysis for suitability as a telomere length measurement assay, and similar to TRF 
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only average telomere length can be quantified per sample and individual telomeres cannot 

be quantified (Cawthon, 2002; Vera and Blasco, 2012).  The high throughput of this 

technique mean it is has been widely used in telomere based epidemiological studies. 

 

1.30.5 Single TElomere Length Analysis (STELA) 

 In order to overcome drawbacks with fluorescent related techniques, the PCR-based 

technique Single TElomere Length Analysis was developed. STELA is a high resolution 

single molecule strategy that amplifies single telomeres within a sample. A linker repeat unit 

targets the 3′ overhang structure of the telomere terminus and is ligated to the 5′ of the 

telomere which acts as a unique sequence tag (Figure 1. 8). PCR utilises a tail-specific primer 

‘teltail’ and a chromosome specific upstream primer. Amplification between ‘teltail’ and the 

telomere/chromosome specific primer is dependent upon synthesis of the complementary 

strand of the telorette linker in the first round of PCR. This together with detection of the 

amplified products by Southern hybridisation means that the length of specific chromosome 

ends can be determined. STELA was originally developed at the Xp/Yp telomere, but has 

since been extended to other chromosome ends (Britt Compton et al., 2007).  

 

A key difference between STELA and TRF is that TRF is only capable of determining the 

mean telomere length of all chromosome ends from a large number of cells, whereas STELA 

is able to look at individual telomeres; this results in a simplification of the telomere length 

distributions and an improvement in resolution (Baird et al., 2005). STELA and TRF were 

compared using human fibroblast strains in vitro showing the inability of TRF to detect short 

telomeres in senescent cell populations (Baird et al., 2003). The key advantage of STELA is 

its ability to detect short telomeres that have eroded to the point at which they become 

dysfunctional and capable of fusion (Capper et al., 2007). This has allowed the definition of a 
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‘threshold’ length below which telomeres are dysfunctional (Capper et al., 2007; Lin et al., 

2010).  

 

 

 

 

 

 

 

Figure 1.8: Representation of STELA: 

 

 

 

 

 

 

 

Figure 1.8: STELA PCR: A ‘telorette’ linker has been designed that is complementary to 7bp 

overhang; the Teltail primer homologous to overhang allows amplification   between 

telomere specific primer and teltail Oligonucleotide primers and linkers are shown by blue 

arrows. Adapted from (Baird et al., 2003)). 
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Project Aims: 

This project involved technology development in vitro, together with translational work, 

aiming to use novel single molecule strategies to show that telomere dysfunction occurs 

inbreast cancer. 

 

The first aim of this project was to further develop single-molecule telomere fusion 

technology; it was hoped that this would increase the sensitivity of the assay and allow the 

detection of more complex mutational structures than could be detected previously.   

 

Secondly telomere length analysis was carried out using high resolution single molecule PCR 

strategies (STELA) in a panel of DNA samples derived from invasive ductal carcinoma. This 

aimed to look for evidence of extreme telomere shortening to below the length threshold that 

had been previously determined as critical for the onset of telomere fusion.  

 

A third aim was compare the telomere length data with clinical data received for all samples 

denoting receptor status, morbidity among other characteristics, with a view to determine the 

potential utility of telomere length as a potential prognostic indicator in breast cancer. 

 

The final aim was to apply single-molecule telomere fusion assays to clinical samples to 

examine if telomeres within breast cancers are capable of undergoing telomere-telomere 

fusions that have the potential to drive genomic instability and the progression to malignancy. 

 

 

 

 

 



 

 

 

Chapter 2: Materials and methods: 

2.1   Chemicals and Reagents 

Chemicals were obtained from Fischer Scientific (Loughborough, UK) and molecular 

biology reagents obtained from GObco BRL/Invitrogen Ltd (Paisley, UK), Stratagene (La 

Jolla, California), ABgene (Surrey, UK), Promega (Southhampton, UK), New England 

Biolabs (UK) Ltd (Hertfordshire, UK), Roche products Ltd (Hertfordshire, UK) 

Radiochemical reagents were obtained from Amersham biosciences/GE Healthcare Ltd 

(Buckinghamshire, UK) and PerkinElmer Life and Analytical Science (Milano, Italy). 

2.2   Plastic laboratory equipment 

Plastic labware and glassware used for experiments was obtained from Gilson, Becton 

Dickinson labware, Eppendorf and Thermo Scientific. 

2.3   Equipment/Machinery 

Equipment for use in experiments was obtained from: Bio-RAD, EPS, Finn, Gilson, MSE, 

Hybaid, Amersham, Thermo scientific and Qiagen. Specialised equipment consisted of: PCR 

thermocycler (Bio-RAD), Transilluminator (EPS), Centrifuge (MSE), Hybridisation ovens 

(Hybaid), Gel electrophoresis tanks (Amersham), Fluorometer (Amersham), DyeEX spin kits 

(Qiagen) and Pipettes (Finn and Gilson) 

 

2.4   Oligonucleotides used:  

Oligonucleotides were designed using sequence data for telomere ends compiled by H. 

Riethman at the Wistar Institute, (URL: // http://www.wistar.upenn.edu/Riethman/). The 

subsequent oligonucleotides were then synthesised by MWG-biotech AG (Ebersberg, 

Germany). 

List of Oligonucleotide used for this project: 

 



 

 

 

 

 

 

 

 

 

 

 

2.4.1   STELA Oligonucleotides 

Name Sequence 

Teltail 5’-TGCTCCGTGCATCTGGCATC-3’ 

Telorette2 5’-TGCTCCGTGCATCTGGCATCTAACCCT-3’ 

 

2.4.2   XpYp telomere primers 

XpYpB2 5’-TCTGAAAGTGGACC(A/T)ATCAG-3’ 

XpYpC 5’-CAGGGACCGGGACAAATAGAC-3’ 

XpYpE2 5’-TTGTCTCAGGGTCCTAGTG-3’ 

XpYpG 5’-AATTCCAGACACACTAGGACCCTGA-3’ 

XpYpM 5’-ACCAGGTTTTCCAGTGTGTT-3’ 

XpYpO 5’-CCTGTAACGCTGTTAGGTAC-3’ 

XpYpP 5’- ACCAGGGGCTGATGTAACG-3’ 

XpYpQ 5’-CCATGAGACACAAAGGACTC-3’ 

XpYp433AT 5’-GGTTATCGACCAGGTGCTCT-3’ 

XpYp433GC 5’-GGTTATCGACCAGGTGCTCC-3’ 

 



 

 

 

2.4.3   17p telomere primers 

17p6 5’-GGCTGAACTATAGCCTCTGC-3’ 

17pseqrev1 5’-GAATCCACGGATTGCTTTGTGTAC-3’ 

 

 

2.4.4   21q Telomere primers 

21q1 5’-CTTGGTGTCGAGAGAGGTAG-3’ 

21qseq1rev 5'-AGCTAGCTATCTACTCTAACAGAGC-3’ 

 

2.4.5   16p telomere primers 

16pseq1rev 5'-GCTGGGTGAGCTTAGAGAGGAAAGC-3 

 

2.4.6   9p telomere primers 

9p1 5’-TGCGTTCTCGTCAGCACAGACCC-3’ 

9p2 5’-CACATTCCTCATGTGCTTACG-3’ 

 

 

 

 

2.4.7   ALU primers 

ALU FORWARD 5’-TGGCTCACGCCTGTAATC-3’ 

ALU REVERSE 5’-GAGCGAGACTCCGTCTCA-3’ 

 

2.4.8   LINE-1 primers 



 

 

 

L1 5’-GAACAGCTCCGGTCTACAGCTC-3’ 

L2 5’-GCGTGAGCGACGCAGAAGAC-3’ 

L3 5’-CAGGCCTCCTTGAGCTGTGGTG-3’ 

L4 5’-GTCTGCAGAGGTTACTGCTGTC-3’ 

 

2.4.9   Adaptor-ligation mediated PCR 

Long strand 

of adapter 1 

5’-

GTAATACGACTCACTATAGGGCACGCGTGGTCGACGGCCCGGGCTGC-

3’ 

Short strand 

of adapter * 

5’-Phosphate-AATTGCAGCCCG-amino C7-3’ 

Adapter 

primer 1 

(AP1)° 

5’-GTAATACGACTCACTATAGGGC-3’ 

Adapter 

primer 2 

(AP2) ∆ 

5’-TGGTCGACGGCCCGGGCTGC-3’ 

*HPLC purified; 5’ phosphorylated and 3’ C7 amino modification. °Primer for first PCR. 

∆Primer for second nested PCR  

A1 5’-Phosphate-AATTCATGATGCCAGATGCACGGAGCA-3’ 

(HPLC) 

A2 5’-AATTCATGATGCCAGATGCACGGAGCA 

A3S 5’-AATTCATGATGCCAG-3’ 

A4S 5’- Phosphate-AATTCATGATGCCAG-3’ (HPLC) 



 

 

 

ECOR1 LINKER 1 5’-TGCTCCGTGCATCTGGCATCATG-3’ 

ECOR1 PRIMER 5’-CATCTGGCATCATGAATTCCTG-3’ 

 

2.4.10   Splinkerette primers 

Splink1 5’-CGAAGAGTAACCGTTGCTAGGAGAGACC-3’ 

Splink2 5’-GTGGCTGAATGAGACTGGTGTCGAC-3’ 

SP1 5’- GACACTAGTGGGATCAGCTC-3’ 

SP2 5’-GTGGTCTAGGGTGATCACAG-3’ 

 

2.4.11   Adaptor sequences for splinkerette ligation 

Long-strand adaptor 5’-CGAAGAGTAACCGTTGCTAGGAGAGACC- 

GTGGCTGAATGAGACTGGTGTCGACACTAGTGG-3’ 

Short-strand adaptor 5’-GATCCCACTAGTGTCGACACCAGTCTCTAA- 

TTTTTTTTTTCAAAAAAA-3’ 

 

 

 

 

 

2.5   Samples 

DNA samples extracted from breast cancer tissue Invasive Ductal Carcinoma (IDC) were 

obtained from the Wales Cancer Bank. Microtubes of DNA were received in single tube, in 

duplicate and in triplicate. The samples that were received in multiple tubes were pooled into 

single microtubes and labelled from 1-30 for the first set of samples and from 1-100 for the 

second set. List of patient samples (in a table): 



 

 

 

 

 

 

 

 

Sample I.D.   

RR6BL0000011FT 1 

RR6BL0000067FT 2 

RR6BL0000045FT 3 

RR6BL0000072FT 4 

RVCC40000632FT 5 

RR6BL0000002FT 6 

RR6BL0000004FT 7 

RR6BL0000013FT 8 

RR6BL0000001FT 9 

RR6BL0000039FT 10 

RVCC40000573FT 11 

RVCC40000166FT 12 

RVCC40000649FT 13 

RVCC40000589FT 14 

RVCC40000539FT 15 

RVCC40000033FT 16 

RR6BL0000008FT 17 

RVCC40000030FT 18 

RVCC40000755FT 19 

RVCC40000165FT 20 

RVCC40000042FT 21 

RVCC40000025FT 22 

RVCC40000009FT 23 

RVCC40000155FT 24 

RVCC40000051FT 25 

RVCC40000583FT 26 

RVCC40000144FT 27 

RVCC40000647FT 28 

RVCC40000758FT 29 

RVCC40000698FT 30 
 

 

 



 

 

 

 

 

 

Sample I.D. Number 
 

Sample  I.D. Number 

RR6BL 20 1 
 

RVCC 1 35 

RR6BL 33 2 
 

RVCC 16 36 

RR6BL 83 3 
 

RVCC 21 37 

RR6BL 104 4 
 

RVCC 22 38 

RR6BL 111 5 
 

RVCC 26 39 

RR6BL 117 6 
 

RVCC 29 40 

RR6BL 120 7 
 

RVCC 31 41 

RR6BL 131 8 
 

RVCC 70 42 

RR6BL 134 9 
 

RVCC 72 43 

RR6BL 170 10 
 

RVCC 89 44 

RR6BL 171 11 
 

RVCC 129 45 

RR6BL 184 12 
 

RVCC 135 46 

RR6BL 186 13 
 

RVCC 665 47 

RR6BL 198 14 
 

RVCC 907 48 

RR6BL 199 15 
 

RVCC 642 49 

RR6BL 202 16 
 

RVCC 559 50 

RR6BL 204 17 
    RR6BL 205 18 
    RR6BL 213 19 
    RR6BL 214 20 
    RR6BL 225 21 
    RR6BL 230 22 
    RR6BL 232 23 
    RR6BL 235 24 
    RR6BL 245 25 
    RR6BL 252 26 
    RR6BL 274 27 
    RR6BL 350 28 
    RR6BL 386 29 
    RVCC 348 30 
    RVCC 965 31 
    RVCC 1036 32 
    RVCC 1055 33 
    RVCC 1469 34 
     

 

 



 

 

 

 

 

I.D. Number 

VCC 
643 51 

VCC 
090 52 

VCC 
020 53 

VCC 
631 54 

6BL 
259 55 

6BL 
623 56 

6BL 
064 57 

6BL 
141 58 

VCC 
936 59 

VCC 
067 60 

VCC 
154 61 

VCC 
076 62 

VCC 
786 63 

VCC 
1236 64 

6BL 
409 65 

6BL 
1111 66 

VCC 
1060 67 

VCC 
201 68 

6BL 
571 69 

6BL 
130 70 

6BL 
528 71 



 

 

 

VCC 
540 72 

6BL 
535 73 

6BL 
557 74 

6BL 
070 75 

VCC 
597 76 

VCC 
696 77 

VCC 
134 78 

6BL 
005 79 

VCC 
035 80 

VCC 
737 81 

VCC 
071 82 

VCC 
555 83 

VCC 
591 84 

VCC 
795 85 

VCC 
638 86 

VCC 
039 87 

VCC 
633 88 

6BL 
071 89 

VCC 
015 90 

VCC 
687 91 

VCC 
011 92 

6BL 
019 93 

VCC 
686 94 

VCC 
753 95 

VCC 
124 96 

VCC 
622 97 

VCC 
063 98 



 

 

 

  

 

 

 

 

 

 

2.6   DNA extraction 

 

 

 

 

 

DNA was extracted from HEK-293, MCF7 and MRC5 E6/E7 cells using standard proteinase 

K, RNase A, and phenol/chloroform.  Cells were lysed by the addition of 300 µl of lysis 

buffer (0.5% SDS, 100 mM NaCl and 10 mM Tris-HCL). To this suspension, 60 µg of 

Proteinase K and 30 µg of RNase was added. Cells were then incubated on a hotblock at 

45°C overnight.  Cells were spun quickly in a benchtop centrifuge and then 300 µl of 

phenol/chloroform was added, and the cell suspension was rotated on a tube rotator for 30 

minutes.  Phase separation was achieved by centrifugation at 13,000 rpm for 5 minutes. 

Aqueous and interphase phases were pipetted into a fresh eppendorf containing 300 µl of 

phenol/chloroform. This mix was rotated again for 20 minutes and centrifuged (13 K rpm) for 

5 minutes. At this stage, only the aqueous phase was transferred to a fresh eppendorf.  30 µl 

of 3M NaOAc (pH 5.3) was added to the aqueous phase and mixed (gently). Ice cold 100 % 

Ethanol (900 µl) was added to precipitate the DNA and the mix was left for one hour 

VCC 
752 99 

VCC 
776 100 



 

 

 

(minimum) at -20C. The DNA suspension was then centrifuged for 1 minute (13K rpm), and 

this resulted in the formation of a pellet. The ethanol (100%) was removed and 70% ice cold 

ethanol was added to wash the pellet and the tube was left on ice for 10 minutes. 

2.7   Quantification of DNA 

DNA samples were quantified in triplicate by Hoechst 33258 fluorometry (Bio-Rad) as 

detailed previously (Baird et al. 2003). A selection of breast cancer DNA samples provided by 

the Wales Cancer bank arrived with diluted DNA concentrations (less than 20ng/ul) and 

showed variable to no reading using the fluorometer; these samples were subsequently 

quantified in triplicate using Nanodrop-1000 technology supplied by the Central 

Biotechnology Services (CBS) Core Facility in the School of Medicine, Cardiff University 

(www.cardiff.ac.uk/medic/cbs). 

2.8   STELA  

The ligated DNA was diluted to 250 pg μl−1 in 10Mm Tris-HCL pH 8.0 and then multiple 

PCR reactions were carried out (typically 6 reactions per sample) for each test DNA in 

volumes of 10 μl containing 100–250 pg of ligated DNA, 0.5 μM telomere-adjacent and 

teltail primers, 1.2 mM NTPs, 75 mM Tris-HCl (pH 8.8), 20 mM (NH4)2SO4, 0.01% Tween-

20, 1.5 mM MgCl2 and 1 U of a 25:1 mixture of Taq (ABGene) and Pwo polymerase (Roche 

Molecular Biochemicals).  

The reactions were cycled with an MJ PTC-225 thermocycler (MJ research) under the 

following conditions: 25 cycles of 94 °C for 15 s, 65 °C (XpYpE2) or 66.5 °C (XpYp-

427G/415C and XpYp-427A/415T allele-specific primers) for 30 s, and 68 °C for 10 min.  

 

2.9   TVR PCR 

The following reagents were used per reaction PCR reaction tube: 100ng DNA, 1.2 mM 

NTPs, 75 mM Tris-HCl (pH 8.8), 20 mM (NH4)2SO4, 0.01% Tween-20, 1.5 mM MgCl2, 0.5 



 

 

 

U of Taq polymerase, 1.0µM telomere adjacent primer XpYpE2 and 1.0µM TVR primers Tel-

X, Tel-W or Tel-Y. The reactions were cycled under the following conditions: 33 cycles of 15 

sec at 94°C, 30 sec at 65°C, and 3 mins at 70°C.  

 

2.10   Allele specific STELA 

The same protocol was employed as used for ‘STELA’ PCR, except allele specific primers 

XpYp433AT and XpYp433GC were used individually in the place of the telomere adjacent 

primer. 

2.11   Fusion PCR 

DNA extractions were diluted to a final concentration of 50 ng/μL in 10 mM Tris-HCl pH 8. 

Multiple PCRs were then carried out (typically 9 reactions per primer combination) using 

50ng/ul DNA, 0.5 μM telomere-adjacent primers, 1.2 mM NTPs, 75 mM Tris-HCl (pH 8.8), 

20 mM (NH4)2SO4, 0.01% Tween-20, 1.5 mM MgCl2, and 0.5 U of a 10:1 mixture of Taq and 

Pwo polymerase. The reactions were cycled under the following conditions: 25 cycles of 15 

sec at 94°C, 30 sec at 59°C, and 8 min at 68°C.  

 

2.12   Standard PCR 

The following reagents were used per PCR reaction tube: 100ng/ µl DNA, 0.5 μM forward 

primer, 0.5 μM reverse primer,1.2 mM NTPs, 75 mM Tris-HCl (pH 8.8), 20 mM (NH4)2SO4, 

0.01% Tween-20, 1.5 mM MgCl2, and 0.5 U of Taq polymerase. The reactions were cycled 

under the following conditions: 33 cycles of 15 sec at 94°C, 30 sec at 60°C, and 1 min at 

68°C.  

2.13   DNA digestion 

2µg of genomic HEK-293 DNA was digested in a reaction mix containing 40 U Sau3A1 

enzyme; 1/10 volume of 10x NEB buffer 1; 0.33µg/µl Acetylated BSA and 23µl double 



 

 

 

distilled H2O with a final reaction volume of 30µl. The reactions were carried out in triplicate 

and incubated at 37°C for 12 hours. This was immediately followed by an enzyme 

denaturation step of 65°C for 20mins. The digested DNA was then stored at 4°C or at -20°C 

indefinitely. 

 

2.14 Preparation of Oligonucleotides for EcoRI adaptor ligation mediated PCR 

Adaptors were designed using XpYp sequence data generated by H. Riethman at the Wistar 

Institute, (URL: // http://www.wistar.upenn.edu/Riethman/). A linker was designed to target a 

specific EcoRI site at the XpYp telomere located 146bp from the telomere end. To test for 

ligation efficiency a variety of different ‘adaptors’ were designed that were different lengths 

(10 or 20bp) and either phosphorylated or unphosphorylated at the 5’ terminus. The adaptors 

were designed to be specific to the adaptor sequence and were annealed in various 

combinations (see Figure 2.14 and Table 2.14) using a protocol designed by Artandi et.al 

2005. 20µl of each oligonucleotide (5µM concentration) was added to 1mM Tris-HCl pH 8.3. 

The mix was then heated to 96°C for 2 minutes and cooled gradually to room temperature at 

a rate of 5°C/minute. 

 

 

 

 

 

 

 

 

 



 

 

 

 

Figure 2.14  

Linker 1 

 

  

Figure 2.14: Diagrammatic representation of the orientation of linkers and adaptors that 

have been designed at the XpYp telomeric end. 

Table 2.14 

Combinations: 

Linker 1 (L1     Adaptor 1 (A1) 

    Plus               Adaptor 2 (A2) 

                          Adaptor 3S (A3S) 

                          Adaptor 4S (A4S) 

Table 2.14: This table shows the different sets of adaptors to be used in combination with the 

‘linker 1’ oligonucleotide that is specific to an EcoRI restriction site at XpYp. 

2.15 Ligation of EcoRI linkers  

Typically 4-6 reactions were performed for each digested of DNA and then pooled to form a 

stock of ligated DNA. 300ng of EcoR1-digested genomic DNA was added to a reaction mix 

of 25 pmol Adaptor mix (see above); 20U T4 DNA ligase; 1X T4 DNA ligase buffer and 15 

µl double distilled H2O. This reaction was incubated at 16°C for 30 minutes. The T4 DNA 

ligase enzyme was inactivated by heating each reaction to 65°C for 10minutes. Ligated DNA 

was stored at -20°C. 

 

2.16   Adaptor ligation mediated PCR (ECORI) 

For each PCR reaction tube a mix of 1 µl digested and ligated DNA, 0.5 μM forward primer, 

TEL 3’ 
5’ 

A1 

A2 

 A3S 

A4S 

 

P 

P 



 

 

 

0.5 μM reverse primer,1.2 mM NTPs, 75 mM Tris-HCl (pH 8.8), 20 mM (NH4)2SO4, 0.01% 

Tween-20, 1.5 mM MgCl2, and 0.5 U of Taq polymerase were used. The reactions were 

cycled under the following conditions: 30 cycles of 20 sec at 94°C, 30 sec at 60°C, and 5 min 

at 68°C.  

 

2.17   Preparation of Splinkerette adaptor mix 

The reagents were set up as detailed by Uren, A.G. et al. A 25µM concentration of each 

adaptor oligonucleotide was achieved by adding 50µl of 50µM ‘long-strand adaptor’ to 50µl 

of 50µM ‘short-strand adaptor’ in a 1.5ml eppendorf. The mix was stored at -20°C. 

2.18   Ligation of Splinkerette adaptor to Sau3A1digested DNA 

Typically 4-6 reactions were performed for each digested of DNA and then pooled to form a 

stock of ligated DNA. 300ng of Sau3A1-digested genomic DNA was added to a reaction mix 

of 25 pmol Adaptor mix (see above); 20U T4 DNA ligase; 1X T4 DNA ligase buffer and 29.5 

µl double distilled H2O. This reaction was incubated at 4°C for 12 hours. The T4 DNA ligase 

enzyme was inactivated by heating each reaction to 65°C for 20mins. Ligated DNA was 

stored at -20°C. 

 

 

 

2.19   Splinkerette PCR 

The following reagents were used per reaction PCR reaction tube: 40ng/ µl DNA, 0.5 μM 

XpYp specific primer, 0.5 μM splinkerette primer,1.2 mM NTPs, 75 mM Tris-HCl (pH 8.8), 

20 mM (NH4)2SO4, 0.01% Tween-20, 1.5 mM MgCl2, and 0.5 U of Taq polymerase. The 

reactions were cycled under the following conditions: 25 cycles of 15 sec at 94°C, 30 sec at 

60°C, and 5 min at 72°C.  



 

 

 

 

2.20   Gel electrophoresis for STELA and fusion products 

The DNA fragments were resolved by 0.5% Tris-acetate-EDTA agarose gel electrophoresis. 

PCR products contained 1x Ficoll based loading buffer. For STELA one 40 well comb was 

used to load each sample and the gel was run along a 40cm gel at 120V for 16hours. For 

fusion analysis, two to three 40 well combs were used to load the gel and the DNA was run 

through the same sized 40cm gel at 50V for 16 hours or 140V for 3-4 hours for a good 

resolution.  

2.21   For other PCR products 

The DNA fragments were resolved by 0.7% or 1% (for smaller fragments) Tris-acetate-EDTA 

Agarose gel electrophoresis. Gels were run on a smaller 10-20cm gel at 90V for 1-2 hours. 

2.22 Visualisation of PCR products on Agarose gels 

Ethidium bromide stained bands were visualised using a UV-transilluminator. 

 

 

2.23   Southern blotting 

Resolved DNA fragments within agarose gels from STELA and fusion PCR were first 

washed on a shaker in depurination buffer (0.25M HCl) for two 6 minute washes. The gel 

was then washed in denaturation buffer consisting of 1.5M NaCl/0.5M NaOH for 15 minutes. 

A positively charged membrane (Hybond-XL, Amersham) was used for transfer of DNA 

fragments by alkaline Southern blotting in the same denaturation buffer that was used for the 

final wash. 

 

 

 



 

 

 

2.24   Probe labelling and hybridisation 

25ng of probe DNA and ladder (equal ratios of 1kb and 2.5kb) in Tris-HCL and 1mM EDTA 

(TE) buffer was labelled either in a rediprime II reaction or GE ready-to-go bead labelling 

system (Amersham Biosciences and GE healthcare). Both kits generate radiolabelled probes 

using random hexaprime labelling with the α-33P to incorporate 
α
dCTP into synthesised 

DNA. 

Southern blots were prepared for hybridisation by incubation at 60°C with 15ml church 

buffer (0.5M sodium phosphate buffer pH7.2) consisting of 1M disodium dihydrogen 

phosphate and 1M disodium hydrogen phosphate, 1%BSA, 1mM EDTA and 7% SDS, for 30 

minutes. 

25µl of radiolabelled probe was subsequently added to the hybridisation bottle and left 

overnight at 60°C. 

 

2.25   Removing unbound probes 

A wash buffer was prepared using a mix of 0.1 x sodium chloride sodium citrate/0.1% 

Sodium Dodecyl Sulphate in double distilled H2O. Hybridised southern blots were washed 

several times at 60°C and dried in filter paper at the same temperature. 

2.26   Visualisation of Radiolabelled blots 

Radiolabelled Southern blots were placed in a cassette with a molecular dynamic 

phosphoimager screen (Amersham) for 1 hour and subsequently the phosphoimager screen 

was scanned using the Typhoon 9410 biomolecular imager (GE Healthcare). The screen was 

then blanked using a 15minute exposure to visible light and the placed back in the cassette for 

a 24 hour minimum exposure and the blot was scanned again using the Typhoon. STELA 

blots and fusion-PCR blots were stripped using boiling 0.1% SDS prior to reprobing with a 

second probe. 



 

 

 

 

2.27   Sequencing 

2.27.1 Preparation 

PCR products to be sequenced were seeded with dH2O in a 1:20 dilution and inputted into a 

reamplification PCR which is the standard PCR protocol with 3x all reagents and 33 cycles in 

the thermocycler. 30ul of the resulting product was ran on a 0.7% agarose gel and purified 

from the agarose gel using the QIAquick gel extraction kit from Qiagen. 

2.27.2 Sequencing reaction 

4.4ul of purified DNA suspended in Qiagen’s elution buffer (buffer EB) was added to 0.16uM 

sequencing primer and 4ul of BigDye Terminator Cycle sequencing mix (version 3.1) in the 

following sequencing reaction: 96oC for 30 seconds, 50oC for 15 seconds and 60oC for 4 

minutes. 

Products from this thermocyclic reaction were purified using Qiagen’s Dye Ex 2.0 spin kit 

and resulting DNA was run on a sequencing gel by the Central Biotechnology Service (CBS), 

Cardiff University Heath Park Campus, UK. 

2.72.3 Analysis of sequences 

Resulting sequencing data was analysed using both sequence scanner (Version 1.0-Applied 

biosystems) and FinchTV (Software from Geospiza). Sequences that had been edited using 

this software were subsequently analysed using BLASTN software on the NCBI website 

(URL:http://NCBI.nih.nlm.gov.uk) to confirm sequence identity against sequence databases. 

2.28   Statistics and analysis of gels 

Gels that had been scanned using the Typhoon 9410 were subsequently analysed using 

Molecular dynamics ImageQuant 5.0 (GE). Telomere molecular weights on each STELA 

Southern blot were calculated using Phoretix 1D software from Nonlinear dynamics. 

Calculated molecular weights were then exported to Microsoft Excel (2007 version) whereby 



 

 

 

the distance between the primer site (primer used in STELA PCR) and the beginning of the 

telomere repeat array could be subtracted to reveal more accurate telomere lengths. 

Mean telomere lengths  at XpYp, 17p and 2p for each patient sample, standard deviation, 

standard error and lower 25
th

 percentile values were calculated in Excel. 

General statistics used included a One Way ANOVA were used for ALL comparisons where 

there are more than 2 groups  for example to compare means of telomere length data across 

three telomere loci for all samples, a Student’s t-test to compare telomere means and 

Bartlett’s test for equal variances.  

Kaplan Meier survival curves were created using Graphpad Prism
tm

. Mantel-cox and gehan-

Breslow Wilcoxon statistics for survival were used in Kaplan Meier analysis to assess 

differences in the survival curves generated. 



 

 

 

Chapter 3: Technology development: Developing the Telomere Fusion Assay 

3.1 Abstract  

Single-molecule PCR-based telomere fusion assays have been developed that allow the 

detection of fusion between a subset of chromosome ends. However, the ability of these 

assays to detect more diverse events is limited. The aim of the work described in this chapter 

was to develop fusion assays to screen for fusion events occurring between telomeric and 

non-telomeric loci, thus increasing the scope of the assay and allowing the detection and 

characterisation of a wider mutational spectrum. 

Three strategies were tested, firstly, repeat elements, such as LINEs and SINEs, have been 

shown to be located near to common fragile sites and were used as a starting point for a non-

telomeric locus that could be used to detect fusions. A combination of Alu and LINE-1 

element forward and reverse primers were tested together with the previously characterised 

telomere fusion assay primers. This technique did not result in an increase in the number of 

detectable telomere fusion events. 

Secondly, two different PCR based genome walking techniques, previously described for the 

isolation of unknown DNA sequences, were tested as an approach to identify telomere-fusion 

junctions.  Unfortunately, neither inverse PCR, nor adaptor-ligation mediated PCR, yielded 

fragments that were consistent with telomere fusion events. 

The final approach was to test a high throughput ‘splinkerette’ PCR protocol used to screen 

for transposon inserts within the genome of mice. Optimisation of this technique for use with 

the human XpYp telomere-adjacent DNA has allowed the amplification of bands that were 

consistent with single-molecule telomere fusion events. Re-amplification of these bands 

allowed sequence data to be generated that shows fusion of the XpYp telomere with a region 

of the 9p chromosome.  These indicate that with further development this technique may 

yield a more diverse range of telomere fusion events.  



 

 

 

3.2 Introduction 

3.2.1 Telomere fusion assay 

A single-molecule PCR-based telomere fusion assay has previously been developed for two 

chromosome ends, XpYp and 17p. The sub-telomeric sequence of these telomeres is 

sufficiently unique to allow the design of telomere specific primers for the use of this assay 

(Baird et al., 1995; Britt-Compton et al., 2006; Capper et al., 2007). Since the development of 

this assay, primers have been designed to encompass two subtelomeric sequence families: 

21q and 16p. This allowed the detection of fusions between the 21q groups, including: 21q, 

1q, 2q, 5q, 6q, 6p, 8p, 10q, 13q, 17q, 19p, 19q, 22q and the 2q13 interstital locus; also the 

16p group: 16p, 1p, 9p, 12p, 15q, the 2q14 interstitial locus and XqYq telomeres.  However, 

the analysis of fusion between telomeres alone is limiting; increasing the scope of the assay 

to include more fusion structures will improve the sensitivity and allow the detection of rare 

fusion events; which will be important in examining telomere fusion in clinical samples 

where fusion is likely to be rare. It will also allow the detection of a broader range of fusion 

structures and the identification of specific chromosome ends or ‘hotspots’ in the human 

genome that are subjected to fusion. 

Three different approaches were taken to improve these telomere-fusion assays. 

1. Utilising interspersed repetitive elements 

2. Adaptor mediated PCR approaches 

3. Splinkerette PCR 

3.3 Telomere fusions and fragile sites 

Telomere fusion events involving regions close to known fragile sites have been identified, 

for example fusions involving telomeres and the non-telomeric loci, 2q14, 8q24.3, 7p21.1 

and Xp22.1, all of which have been documented as being in the same cytogenetic location at 

fragile sites (Letsolo et al., 2010; Debacker, and Kooy, 2007). The involvement of fragile 



 

 

 

sites has been documented in the process of tumour development via large-scale 

chromosomal abnormalities, commonly deletions and translocations (Schwartz et al., 1998; 

Arlt et al., 2006; Glover, 2006; Debacker and Kooy, 2007). And a number of fragile sites are 

thus associated with human disease and cancer (Debacker and Kooy, 2007), for example at 

FRA3B is the gene FHIT (fragile histadine triad protein), and encodes an enzyme that acts as 

a HER2 tumour suppressor (Glover, 2006; Bianchi et al., 2007). Large scale genomic 

rearrangements could potentially be generated by the fusion of dysfunctional telomeres with a 

fragile site, facilitating the progression to malignancy. 

The sequence of events and the underlying mechanisms that lead to the fusion of telomeres 

with fragile sites is not clear, i.e. whether there is an initial fusion event between one 

telomeric end and a fragile site sequesters further fusions with other telomeres or whether 

telomere fusion generate a fragile site through the creation of inverted repeats when 

telomeres fuse with sister chromatids (Letsolo et al., 2010).  Thus an assay to screen for 

fusions with fragile sites could help elucidate these mechanisms and potentially understand 

how telomere fusion could contribute to the mutational events involved in the progression of 

cancer.   

LINES and SINES have been identified in close proximity to common fragile sites such as 

FRA3B and FRA14A (Arlt et al., 2006; Ragland and Glover, 2009). Therefore one aspect of 

this project will be to screen for fusions occurring in proximity to loci containing LINES and 

SINES. 

3.4 Long Interspersed Nuclear Elements (LINES) and their role in genomic instability 

Retrotransposons are a type of interspersed repeat element that occur in abundance of over 

40% in the human genome (Lander et al., 2001). These DNA repeat elements have been 

postulated to confer genetic variation within the human genome by the ability of some active 

forms to mobilise via recombinational mechanisms (Pace and Feschotte, 2007). LINEs are a 

type of retrotransposon element commonly found in eukaryotes encompassing about 17-21% 



 

 

 

of the human genome (Lander et al., 2001). Line-2 (L2) elements are thought to be an 

ancestral and inactive nuclear element, whereas Line-1 (L1) elements are active and can 

retrotranspose (Smith et al., 1995; Deininger and Batzer, 2002). L1 is a 6-7 kb element 

(Singer, 1982) and functions as an autonomous retrotransposon, encoding its own reverse 

transcriptase enzyme facilitating its mobility and proliferation [Reviewed by Mills et al., 

2007]. The presence of reverse transcriptase at ORF2 found on L1 elements has been found 

to amplify other retrotransposons, cause unequal homologous recombination, deletions and 

insertions within the genome (Dewannieux et al., 2003; Mills et al., 2007). These alterations 

not only increase the genetic variation of humans but also could implicate these 

retrotransposons in human disease, such as Duchenne’s muscular dystrophy whereby 

insertions of LINE elements have been shown to affect the protein dystrophin (Narita et al., 

1993). LINE insertions have also been shown to play a role in sporadic colon cancer tumour 

formation via insertions that disrupt the APC gene (Miki et al., 1992). Tumour specific 

rearrangement of a myc locus was found to contain a sequence sharing homology to an L1 

(LINE-1) sequence giving evidence for L1 functioning as a mobile element to give rise to a 

mutation in breast tumour tissue (Morse et al, 1988). 

3.5 Short Interspersed Nuclear Elements (SINES) and genome instability 

SINES are also abundant in the genome, encompassing around 13% (Lander et al., 2001). 

Unlike LINEs, SINEs do not encode their own enzymatic machinery for retrotransposition, 

but instead have been hypothesised to utilise LINE transposase for their own mobilisation, 

although mechanisms are unclear (Jurka, 1997; Ostertag et al., 2003; Callinan and Batzer, 

2006). They tend to be much smaller than LINE elements, spanning up to 500bp (Stansfield 

and King, 1997). Alu elements (~300bp) are a the most common type of SINE found in 

humans and are so named because of the presence of AluI restriction sites (Houck et al., 

1979). Alu elements have also been observed to undergo homologous recombinations, 



 

 

 

unequal exchange, and cause insertions in the genome Oldridge et al., 1999; Deininger and 

Batzer, 1999). Events such as this have been linked to genome instability and thus numerous 

types of human disease (Deininger and Batzer, 1999). Alu recombination events have been 

shown in the All-1 gene, which is mutated in a large number of acute lymphocytic leukaemia 

cases (Schichman et al., 1994). Breast cancer susceptibility genes have large numbers of Alu 

element sequences (about 42% at BRCA1 and 20% at BRCA2), and rearrangements 

involving Alu sequences have been shown to disrupt the function of both BRCA1 and 

BRCA2 genes (Miki et al., 1996; Puget et al., 1999).  

Repeat elements have thus been demonstrated to act as hotspots for genome instability. 

Figure 1: The basic structure of a LINE and SINE 

a) 

  

￼ 

 

Figure 1: a) Shows the basic structure of a LINE-1 element consisting of two ORFs, the 

second of which encodes a reverse transcriptase for mobilisation b) Shows the basic structure 

of a SINE: The different shades of grey represent two separate ‘arms’, divided by an A-rich 

tract. The first arm contains two RNA polymerase III promoter boxes. (Figure adapted from 

Callinan and Batzer, 2006) 

3.5.1 Project aims 

b) 



 

 

 

The current telomere fusion assay allows the detection of single telomere–telomere fusion 

molecules between 13 chromosome ends, however there could be 1000s of possible fusions 

occurring within the genome therefore assay is limited. This project aims to increase the 

scope of the current fusion assay to detect and characterise a broader mutational spectrum. To 

do this, interspersed repetitive elements will be used to screen for fusions occurring close to 

these regions and genome walking technologies will be applied: Adapter mediated ligation 

using EcoRI restriction sites; Splinkerette PCR using Sau3ai sites. 

  



 

 

 

3.6 Developing a SINE fusion assay: ALU-PCR 

It was hypothesised that an adapted ALU PCR could be used to detect fusions between 

telomeres and Alu elements by utilising Alu in the existent telomere fusion assay. Primers 

designed against a human Alu sequence were both forward and reverse in orientation, these 

Alu primers were thus used in conjunction with telomere specific primers designed 

previously. To develop this assay DNA was extracted from HEK-293 cells; these cells exhibit 

high frequencies of telomere fusion (Capper et al., 2007) and thus provide a good source 

material to develop new fusion assays.  

An annealing temperature gradient PCR was used to optimise the Alu primers for use with a 

combination of primers to be tested in the existing telomere fusion assay conditions using 

HEK-293 DNA. The PCR reaction was cycled with a temperature gradient ranging between 

55°C and 72°C. Table 2 highlights all combinations of primers used in this assay. The clearest 

bands were visible under ultraviolet light for annealing temperature conditions of between 

60°C and 65°C; therefore 60°C was selected for further experiments (data not shown). 

 

3.7 Results: Alu-telomere fusions 

Putative fusion products resulting from PCR amplification using the Alu reverse primer and 

the XpYp specific telomere fusion primer yielded two bands detected by Southern blot with 

the XpYp o-g probe. (Figure 2). These bands indicate possible fusions that could be occurring 

between the XpYp telomere and the terminus of an Alu element. Other primer combinations 

yielded minimal results, and the results were not reproducible. No other primer combinations 

produced bands that were consistent with fusion events when comparing these to fusions 

visible on a southern blot for the positive HEK-293 control. Attempts to characterise these 

fragments by PCR re-amplification was unsuccessful thus it was inconclusive whether or not 



 

 

 

a fusion between Alu elements and telomeres are being detected here due to the inability to 

sequence the bands.  

3.8 Conclusion: Success of the Alu-PCR 

This technique is limited in the detection of fusion events between telomeres and Alu 

elements in the human genome.  This could be a result of the high abundance of Alu elements 

in the genome saturating the PCR and limiting specificity for the use of detecting single 

molecule events. 

 

Figure 2: Alu PCR-fusion band detection by Southern blot 

 

￼ 

Figure 2: Southern blots a) and b) depict various combinations of telomere specific and Alu 

specific primers used in the current fusion assay. ‘+ve control’ consisted of primers that have 

detected fusions before in HEK-293 cells*. AF and AR refer to an Alu forward and Alu 

reverse primer respectively. Arrow depicts putative fusion when using AR and XpYpm primer 

combinations in a fusion PCR. *XpYpM, 17p6 and 21q1 primers 
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3.9 LINE-1 fusion assay 

3.9.1 Primer optimisation 

Primers were designed against sequence data attained for an L-1 element from ‘Repbase’ at 

the Genetic Information Research Institute (available online at URL http://girinst.org-

repbase). The total size for this LINE was around 5kb. Primers were designed at each end of 

the sequence (Figure 3) in order to look for fusions in the L1 adjacent DNA. This is important 

because L1 elements can be quite variable and abundant in the human genome. By looking at 

the adjacent regions this assay may be more specific for locating fusion points in relation to 

their position within the human genome. 

Each primer combination was tested for the correct product amplification using a temperature 

gradient PCR. These preliminary data indicated that specific amplification of L1 elements 

could be obtained (Figures 3 and 4).  

The most successful primer (see optimisation figure 4a and b) were then tested in conjunction 

with those used for telomere fusion PCR (XpYp, 17p and 21q). The detection of putative 

fusion events was limited (data not shown), therefore to increase the probability of band 

detection by Southern blotting using probes designed for telomere fusion PCR; L1 specific 

primers (L3-L6) were added successively to telomere specific fusion primers known to 

amplify detectable fusion bands. An increase in fusion bands on addition of primers to a 

control fusion assay would thus indicate additional putative fusion events becoming 

detectable. These could thus be isolated and characterised by Sanger sequencing. 

 

 

 Figure 3: Location of L-1 primers



 

 

 

 

Figure 3: LINE-1 element primers were numbered 1 through to 8 and were thus named L1-

L8. Letters A-H on the left hand side of the diagram refers to each primer combination and 

respective product size generated (sizes of these are on the right hand side (bp)).  

Figure 4: Primer optimisation 

 
Figure 4a. Shows each primer combination amplified under standard PCR conditions and run 

on a 1% agarose gel. Letters A-H refer to primer combinations outlined in Figure 3.Figure 

4b. The brightest product bands (shown in red (4a.)), were then optimised using a 

temperature gradient PCR. 

 

 

Figure 5: L-1 PCR inhibits fusion band detection 
G                                       F                            
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Figure 5: (a) Southern blot: positive control consisted of telomere adjacent primer 

combinations used successfully previously: XpYp
m

, 17p
6
 and 21q

1
 ; LINE-1 (L3-6) primers 

were added to the control PCR ‘mix’. (b) PCR products from the same reactions as (a) 

resolved on a standard 1% agarose gel without the blotting step 

 

 

 

 

On addition of L-1 primers the quantity of fusion bands detectable on the Southern blot 

decreased (Figure 5a). This suggested that the fusion reaction was inhibited by the use of 



 

 

 

these new primers. This PCR reaction was repeated with additional cycles in the 

thermocycler (32 cycles), without the Southern blotting step and the products detected on an 

ethidium bromide stained 1% agarose gel. More product was visible on the addition of the L1 

primers into the PCR ‘mix’. (Figure 5b); indicating that over-amplification of LI specific 

products may reduce the single-molecule amplification of the fusion products. 

 

The lack of fusion bands when adding the L-1 primer sets indicated an inhibition of the 

fusion product. This is the opposite of what was expected and so a better method of detecting 

rarer fusion types must be developed. Using the current fusion assay in combination with 

repeat element primers was not a successful strategy for identify additional telomere fusion 

events.  

 

3.12 Adaptor ligation mediated PCR (ALM-PCR) 

Given the apparent lack of success in utilising interspersed repetitive elements to detect 

telomere fusion products, alternative approaches were tested. Linker driven PCR strategies 

are used to amplify regions of unknown sequence by ‘genome walking’. Genome walking 

approaches rely on restriction digestion of DNA providing an overhang onto which a 

linker/adaptor can be ligated to direct PCR synthesis in one direction or another towards or 

away from a known region to an unknown region. Adapting this technology to find loci fused 

to telomeres by combining linker technology with pre-designed telomere specific primers, 

may enable the detection of regions to which telomeres have fused. These assays will have to 

be adapted to amplify at the single molecule level in order to isolate rare single molecule 

events. 

Several restriction sites near to the XpYp telomere were mapped for three different restriction 

enzymes (Figure 6). The XpYp telomere is very well characterised and has been used to 



 

 

 

develop numerous PCR based assays included, TVR-PCR, STELA and fusion assays due to 

the unique nature of the subtelomeric regions allowing accurate primer design (Baird 1995; 

Baird 2003, Capper 2007).  

A linker was designed within the XpYp sequence (sequence information generated from 

Riethman, H et al. URL http://), the reverse strand of which shares 5bp of homology to a 

‘sticky’ EcoRI cut site generated during restriction digestion.  

 

3.13 Optimising the linker technology 

Control experiments were undertaken to examine if the ligation technology would work. A 

primer was designed around a specific EcoRI site around 2kb from the telomere (Figure 7). 

This means that a specific band of a known size should be amplified when using two different 

telomere specific primers. Selections of reverse strand adaptors were designed for 

optimisation of linker design; a range of sizes were designed because certain protocols using 

genome walking techniques have found that a shortened adaptor of around 10bp gives greater 

efficiency. Another factor was to consider end repair priming, which can interfere with the 

efficiency of the amplification. End repair priming can occur when the overhangs of un-

ligated vectors and inserts are filled in and extended by polymerases at the 3′ end during a 

PCR cycle (Horn et al., 2007). Instead of the ligated insert priming amplification from vector 

sequences, these un-ligated extended ends can anneal to one another and compete for genuine 

(i.e. ligation generated) product amplification in the PCR reaction. A phosphate group was 

thus added to half of the linker sequences (Figure 6b). 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 



 

 

 

 

 

3.14 Testing ligation conditions for an ALM-PCR 

The method for ALM-PCR worked by annealing an ‘EcoRI’ linker with an adaptor linker 

(Linker A1-A4) to form a double stranded oligonucleotide that will have a portion of 

homology to the EcoRI cut site (GAATTC) on the lower strand (figure 6b). This linker will 

be that starting point for the PCR reaction. A primer spanning both the EcoRI linker and a 

portion of the XpYp sequence at which a known EcoRI restriction site is located was 

designed for control experiments to test that the ligation of the linker/adaptor was successful. 

Different ligation conditions were tested with all the different adaptor combinations (EcoRI 

linker+ Linker A1-A4s- see figure 6b). ‘ALM ligation’ was used to describe an adapter 

ligation-mediated PCR method adapted from a previously published method (O’ Malley et 

al., 2007) that used the techniquefor high-throughput mapping of T-DNA inserts in the 

Arabidopsis genome. ‘NEB ligation’ utilised the protocol recommended by the manufactures 

of the T4 DNA ligase (New England Biolabs (NEB)).  

 

 

 

3.15 Calculating ligation ratios for ALM-PCR 

Ligation ratios were calculated using molar ratio calculations to alter the ratio of 

oligonucleotide linker to target molecules added to each reaction. Thus ratios of 1:1, 1:3, 1:6, 

1:10, 1:50 and 1:100 were calculated accordingly and followed restriction digestion of DNA, 

these concentrations were used in a series of ligation reactions. The ligations were then 

inputted into a long-range PCR with a combination of adaptors and a range of XpYp telomere 

adjacent primers (see Figure 6a and b). Southern blotting using the XpYp o-g probe, used for 



 

 

 

telomere fusion PCR assays, allowed the detection of the bands generated (Figure 7.)  

Ligations  termed ‘ALM’ and ‘NEB’ were similar in outcome i.e following Southern blot 

hybridisation with telomere repeat containing probes both conditions appeared to be visually 

similar in their ability to amplify bands, and thus NEB ligation was selected for use in 

subsequent reactions (data not shown). The optimal ligation ratios for EcoRI linker-adaptor 

combinations using the NEB ligation conditions appeared to be somewhere between 1:3 and 

1:10, depending on the primer combination so these conditions were taken into account for 

subsequent experiments. 

A PCR cycle gradient was then used to test the number of cycles required to amplify a single 

band of the correct size (figure 7b). The PCR cycle number that was concluded to be optimal 

from this experiment was 28 cycles, due to its ability to amplify the strongest most 

discernible specific bands, without too much background. 

 

 

 

 

 

 

 

Figure 7a: Ligation ratios: serial dilution of insert:vector  



 

 

 

 

￼Figure 7a: Ratios of increasing adaptor insert added to digested DNA for ligation reactions 

are displayed above banding patterns. L1 is the ‘EcoRI linker 1’ and A1-A4S represent the 

different adaptors used in combination. 



 

 

 

Figure 7b: PCR cycle gradient testing

 

 

Figure 7b: Different PCR cycles were tested in conjunction with two different ligation 

conditions plus the variation of ligation ratios. The first four groups (1) were ligated by the 

NEB protocol and the second set (2) from a protocol by Artandi et al. 2000. 

 

 

 



 

 

 

3.16 Titrating to the single molecule level 

Once a clean band of the correct control size (roughly 2 kb) was amplified using the selected 

ligation conditions: NEB ligation reaction with subsequent PCR annealing temperatures of 

60ºC (data not shown), 28 PCR cycles and a ligation ratio of 1:6; the reaction was titrated 

down to the single molecule level (Figure 8). These assays needed to be adapted to amplify at 

the single molecule, because the importance of this technique is to isolate rare single 

molecule events occurring in the genome to better understand the telomere dynamics during 

telomere dysfunction. The number of genomes being amplified in each dilution was 

calculated from the concentration and moles of input DNA. It was concluded that this assay 

had the ability to amplify products at the single molecule level and thus single events could 

be isolated in the genome and characterised. Single molecule efficiency can then be 

calculated by Poisson distributions to determine the probability or rarity of the fusion event 

occurring and we could thus test this by seeding reactions into undigested DNA.  

 

Figure 8: Titrating to the single molecule level 

￼  

   Figure 8: Bands representative of specific amplification appear sporadic when diluting the 

DNA to the single molecule level using ligation conditions highlighted in section 3.16- ALM 

ligation NEB ligation and annealing temperature of 60ºC. Numbers shown at the bottom of 

the blot are representative of the number of genomes being amplified. 

2 kb 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: New primer design 

 

 

 



 

 

 

 

 

Figure 9: A primer was designed that was specific to the linker region only (blue letters). The 

result from using this primer is shown above in a southern blot. ECORI2 is the newly 

designed primer and the PCR reaction product was visualised by Southern blotting (First 8 

reactions on blot; bottom). Alongside this, the previously utilised ECORI primer was used in 

a PCR reaction with XpYp primers B2 and G (using optimum ligation conditions discussed in 

section 3.16 and an annealing temperature of 60C). Genome equivalents represented here are 

33 (1:10 dilution). 

 

 

 

3.17 Testing linker specificity 

As mentioned before (3.14) a primer was designed to span the linker and a known region at 

XpYp (where a cut site is located). This was useful to test the success of the ligation. A linker 

primer was hence designed that would only be homologous to the linker. Thus when the 

portion of DNA containing the annealed linker is synthesised, this new primer will be able to 

bind to initiate synthesis between the linker and telomere adjacent primers.  

When using this new primer design (EcoRI2) in conjunction with XpYpB2, large smears 

were visible on the gel, differing in appearance from the control bands adjacent. Diluting out 

the PCR product and seeding it into new PCR reaction was done in the attempt to clean up 



 

 

 

the PCR reaction and thus isolate a clear band as it was hypothesised that PCR artefacts may 

be interfering with the production of bands akin to fusion events. This approach failed to 

amplify anything but smears. This may be evidence that too many products from the rest of 

the genome were being amplified. (Figure 9) or that the products generated are non-specific.  

 

3.18 Conclusions: 

High ligation efficiency was achieved by the various optimisation steps for this technique. 

Control experiments were thus successful for this purpose. The EcoRI 2 primer products were 

only visible as smears on the gel that are consistent with the amplification of other products 

in the genome putatively crowding the PCR reaction. This may show that the design of 

linkers were not specific enough for fusion amplification. Titrating the DNA has shown that 

this ligation technique can amplify events at single molecule level. Thus despite many 

attempts and alternations of ligation and cycling conditions it was not possible to obtain 

evidence that was consistent with the amplification of telomere fusion events. 

 

 

 

3.19 A High Throughput Splinkerette PCR  

A genome walking protocol used to screen for transposon inserts within the genome of mice 

was adapted for the purpose of telomere fusion detection. This is due to the inability of the 

previous assay to amplify products specific enough for detection and isolation. Interference 

of putative artefacts in the PCR/non-specific products made the detection of any fusion 

events too difficult. It was thus deduced that the linker used for amplification needed more 

specificity to ensure correct amplification of telomere related fusions. The first principle of 

the technique used is to digest the DNA with a Sau3aI restriction enzyme. To this a 



 

 

 

specialised ‘splinkerette’ adaptor can be annealed as a template to drive PCR from these 

restriction sites. The splinkerette consists of annealed oligonucleotide pairs. The annealing of 

pairs of oligonucleotide adaptors creates an overhang compatible with overhangs generated 

by restriction of the DNA with Sau3aI enzyme. Primers to drive PCR synthesis are 

homologous to the splinkerette sequence (not complementary) and can thus only bind to 

newly synthesised strand of splinkerette adaptor. This increases the specificity of the PCR 

amplification reaction. The splinkerette adaptor design is gives the reaction a higher degree of 

specificity compared with the adaptors designed previously (see ALM-PCR), this is due to 

the presence of a hairpin structure that is incorporated on the lower strand, which prevents 

end repair priming (Figure 10). 

 

 

Figure 10: Structure of a Splinkerette 

 
Figure 10: The splinkerette structure has a long strand and a short strand to which the 

‘Splink’ adaptors can anneal. The two homologous sequences in red are the 5’ to 3’ sequences 

for primers Splink 1 (top left) and Splink 2 (bottom right). The A-T rich Hairpin structure 

prevents end repair priming. 

 

3.20 Testing ligation efficiency 



 

 

 

As with previous genome walking experiments it was necessary to design control 

experiments that would confirm successful ligation and amplification of a known product size 

between at the Sau3aI restriction site at XpYp. A primer (SP1) was designed that overlapped 

both the splinkerette adaptor sequence and the sequence that it would have to anneal to at 

XpYp (restriction site). Figure 11 shows the design for this SP1 primer encompassing both 

the adaptor and the XpYp sequence around the cut site. This primer will be used alongside a 

predesigned primer (Splink 1) Uren.A, 2009); Splink 1 is not specific to XpYp and is 

homologous to the splinkerette sequence. (Map of GATC cut site and orientation of XpYp 

primers is shown in figure 7a). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11 



 

 

 

 

Figure 11 

Figure 11: An illustration showing the Sau3aI cut site at XpYp and the way in which the 

Splinkerette (double stranded-shown in red with blue hairpin) will anneal to the GATC 

sequence. At the bottom is the sequence of an SP1 primer that spans the Splinkerette 

sequence and the XpYp sequence (shown in relation to XpYp at the top, see SP1#). 

 

 

 

3.21 : Optimisation of the Splinkerette ligation 



 

 

 

Two different ligation conditions were applied with the new splinkerette adaptor mix and the 

digested 293 DNA (as before, see 3.12) and tested using the SP1 primer. These ligations were 

optimised for annealing temperature at which the primers work most efficiently by 

temperature gradient PCR.  Resulting blots showed that a temperature of between 60 and 65 

degrees was optimum and the ligation conditions showed no difference in efficiency, thus the 

NEB protocol was used henceforth (data not shown). 

 

 

3.22 Results: Preliminary data for ligation of Splinkerette 

The standard Splinkerette protocol outlined by Uren and colleagues (Uren et al., 2009) using 

the Splink -1 (non-specific) primer, was tested in a nested PCR with the XpYp specific 

primers (XpYpM and XpYpO). Several bands were visible on the Southern blot following the 

second round of amplification with XpYpO, one of approximately 970bp was consistent with 

the size of fragment expected following amplification from Splinkerette linker ligated to the 

XpYp Sau3AI site. Different volumes of PCR product were run on the agarose gel, due to the 

presence of large smears in preliminary experiments and by adding less product the control 

bands became clearer (figure 12a). In the presence of a successful ligation of the Splinkerette 

to the Sau3AI site, it should be possible to successfully amplify products of defined sizes 

between the Splinkerette and XpYp specific primers on either side of the Sau3A1 site.  These 

products serve as an internal control for the ligation and amplification stages.  To further 

verify the specificity of the amplification further control experiments using the SP1 and the 

Splink 1 and 2 primers (Figure 11 a) were used in combination of the XpYp primers on either 

side of the Sau3A1 site (Figure 12b-c). Multiple control bands of the expected sizes 

depending on the XpYp specific primer used in the PCR were amplified. No product was 



 

 

 

amplified in the absence of ligase. Together these indicated successful and specfic ligation as 

well as the correct annealing of primers to the splinkerette ligation site. 

 

 

Figure 12: Optimising the Splinkerette PCR assay using XpYp primer combinations 

 12a:￼ 

 

 

Figure 12a: Splink primers were used in combinations in a nested PCR, for example Splink-

1 and XpYpM were used in the first round of PCR and then Splink-2 was used with XpYpO 

(shown at the top) in the second round. Different volumes of product were run on the gel (5ul 

and 1ul) in an attempt to improve resolution. 

 

12b) 

967bp 



 

 

 

 

12b: Nested PCR: To remove any interfering products the first round of PCR product 

(Splink1 +XpYpM) was diluted to 1:10, 1:20, 1:50 and 1:100 in distilled water before being 

used in a second round of PCR (Splink2 +XpYpO).  

12c) 

 

12c) The SP1 primer was used in a fusion PCR assay with a combination of XpYp primers 

(B2, G, O and Q). The negative control consisted of primers Splink1 and XpYpO using DNA 

that had not undergone digestion or ligation with Splinkerette adaptors (i.e. this was a 

negative ligation control). 

 

 

 

3.23 Single round of PCR 



 

 

 

Given the apparent success and specificity of the splinkerette ligation rations, further 

experiments were undertaken to establish if it was possible to detect products that were 

consistent with the amplification of telomere fusion.  Using a new ligation of digested Hek-

293 DNA with the splinkerette (Figure 13) and a single round of PCR instead of a nested 

PCR. The resulting blot showed multiple bands for all primer combinations together with the 

constant bands serving as a positive control for ligation to the XpYp Sau3AI site. 

The SP1 primer was initially designed as a ‘control’ primer i.e. to test the specificity of 

splinkerette ligation in its ability to amplify products with known XpYp telomere adjacent 

primers. As mentioned previously the design enabled this by designing half of the 

oligonucleotide sequence to share homology with the splinkerette linker and the other half 

with a stretch of XpYp sequence occurring immediately after the Sau3ai restriction site. The 

splinkerette could potentially anneal to upper or lower DNA strands during the ligation 

process and thus amplification of PCR products when using XpYp adjacent primers is 

possible from either side of the GAATC cut site. For this experiment it would be expected 

that bands cold be amplified using an array of different XpYp-Sp1 primer combinations, 

however they would be of a known size, i.e. the position of both the splinkerette annealing 

site and the XpYp primers are known. 

 Interestingly the resulting blot showed not only the expected constant product band of 

predetermined size, but also an array of multiple bands above and below this seemingly 

constant band for all primer combinations. The banding pattern obtained contained randomly 

sized bands consistent with single molecule amplification, was similar to that observed in 

telomere fusion reactions using the original technology. Due to the orientation of SP1 being 

towards the telomere, these bands could be evidence of fusion events between XpYp and 

other loci being picked up. Alternatively these bands could be artefacts from the PCR 

reaction. To verify these bands PCR product was seeded into a reamplification PCR with an 



 

 

 

increase amount of PCR cycles, in the hope that these bands could be isolated for Sanger 

sequencing. This approach however proved unsuccessful, when running the reamplified PCR 

products on an agarose gel products appeared as smears under Ultraviolet light (data not 

shown). 

 

Figure 13: Splinkerette PCR was performed on a new DNA ligation with a Single round of 

PCR 

 

Figure 13: The SP1 primer was used in a fusion PCR assay with a combination of XpYp 

primers for just one round of PCR instead of two. 

 

 

 

 

3.26 Elucidating possible telomere fusions 

In order to isolate fusion events between Sau3aI sites in the genome and telomeres, the PCR 

reactions were repeated and diluted to the single molecule level (based on starting 

concentrations of DNA at 40ng/ul). This was done in the hope of characterising any rare 

single molecule fusion events occurring in the genome.  

First a diltution series of Splinkerette ligated DNA between 1:10 and 1:100 was used in a 

PCR reaction in the hope of single molecule level amplification. Genome equivalents being 

amplified using the most dilute DNA (1:100) was estimated to be 3, assuming starting DNA 



 

 

 

concentrations of 40ng/ul after successful digestion with the Sau3ai enzyme. However the 

initial dilutions produced limited detectable bands when hybridised with an XpYpo-g probe 

for anything after 1:10. It was thus proposed that starting DNA concentrations could have 

been overestimated, and thus a dilution series between 1:1 and 1:10 was used for a second set 

of PCR reactions using the same primer pairs. The resulting blots show multiple sporadic 

bands (Figure 14) reminiscent of fusion events seen with the pre-existing assay for fusions 

between telomere groups.  

Figure 14 

 

Figure 14: The input Splinkerette ligated DNA was diluted down in a series of different 

dilutions ranging from 1:1 to 1:100. These dilututions were then used in a PCR reaction with 

the XpYp telomere adjacent primers used previously: XpYp
m

 and XpYp
o
 orientated towards 

the telomere; and XpYp
g 

and XpYp
q
 orientated away from the telomere. Genome equivalents 

amplified are estimated to be about 33 for a dilution of 1:10 and 3 for a dilution of 1:100. 



 

 

 

Figure 15: 

 

Figure 15: The dilution of input DNA into the splinkerette PCR was expanded between 1:1 

and 1:10 to try to increase the yield of bands with the potential to reamplify and sequence 

events. 

 

 

 

3.27 Results: Sequencing fusions 



 

 

 

A putative fusion band was isolated and sequenced in the hope that a rare single molecule 

fusion event involving a telomere could be characterised when using this Splinkerette 

technology. Unfortunately the only successful attempt at sequencing an ‘event’ of this type 

revealed a portion of sequence at the XpYp telomere between the SP1 primer annealing site 

(Sau3ai site) and the XpYp
Q
 primer (See figure 16). Although this is not consistent with a 

telomere fusion event, this does further confirm that the Splinkerette has ligated successfully 

to the Sau3ai site due to the correct amplification between the SP1 primer and XpYp telomere 

adjacent primer. This concludes that this Splinkerette assay has potential for screening fusion 

events in the genome. 

Figure 16: Sequenced junction at XpYp 

                          

Figure 16: Splinkerette PCR with XpYpQ (Q) and SP1 primers isolated a band of just under 

600bp. This region when sequenced was characterised as the region at XpYp between the 

Sau3ai site and the XpYpQ primer (illustrated by the thick black line* on diagram).  

 

 

3.28 Design of a new SP2 primers  

The banding patterns generated using the SP1 primer in combinations with XpYp primers 

were reminiscent of similar banding patterns achieved using the current telomere-telomere 

fusion assay. However the design of SP1 was intended for use as a control experiment to 

optimise the ligation reaction at the single molecule level and in this, regardless of fusion-like 

bands, failed in its ability to characterise genuine fusion events. New primers were designed 



 

 

 

with decreasing specificity to the XpYp known region. Subsets of primers were also designed 

in the opposite orientation of the SP1 primer pointing away from the telomere. Four primers 

were designed, each with decreasing specificity to the XpYp restriction site i.e. number 1 had 

the most homology to the XpYp telomere sequence and number 4 no homology to the XpYp 

site and was purely specific to the splinkerette linker. (Figure 17) It was speculated that the 

fourth, least homologous primer might be able to detect fusions involving telomeres that had 

annealed elsewhere in the genome in proximity to other Sau3ai sites. 

Figure 17: Primer design 

 

  

Figure 17: Diagrams show the design and orientation of the SP2 primer sets (blue arrows), 

the sequence of each different SP2 primer has varying specificity to the XpYp sequence 

adjacent to the known Sau3ai cut site (red triangle) i.e. SP2(1) is similar to SP1 and has an 

overlap sharing homology to the XpYp sequence; whereas SP2 (4) is only specific to the 

splinkerette linker (illustrated as double stranded region (#)). Dashed lines illustrate various 

degrees of overlap each primer has with the linker (Splinkerette) and XpYp sequence. Black 

arrows show the simplified orientation of the XpYp primers to be used in experiments in 

combination with the SP2 primer sets. 

 

Figure 18: Fusion PCR using new primer combinations 



 

 

 

 

Figure 18: Southern blot showing splinkerette PCR results using a combination of XpYpO 

and G with the four different SP2 primers. SP1 with the XpYp primers was used as a positive 

control. . The area above the constant band in the reaction including SP2(1) and XpYpO 

(outlined in red) was cut out from the gel to be sequenced  

 

 

 

3.29 Results: Testing out new SP2 primers designed away from the telomere end: 

Each SP2 primer (1-4) has successively less specificity to the XpYp sequence and slightly 

more to the splinkerette sequence. This gradual loss of specificity results in less clear banding 

patterns and more smearing. This could be due to the vast amount of product being amplified. 



 

 

 

Dilution of the DNA input had no effect on the smearing of the bands. The area above the 

constant band in the reaction including SP2(1) and XpYpO (outlined in red, figure 18) was 

cut out from the gel to be sequenced, however this was unsuccessful. Regardless of this it is 

the first time that this type of fusion-like banding pattern has been obtained using primers in 

the correct orientation, i.e. pointing away from the telomere. Time constraints with this work 

impeded the ability to continue with this technique to characterise exactly what these bands 

akin to fusion events could be, however with more work this assay could be utilised as a 

potential way to screen for fusions involving telomeres in the genome. 

 

 

  

3.32: Conclusions of the splinkerette PCR 

Whilst banding patterns that were consistent with the detection of fusion could be obtained 

using the splinkeretter technology, with the exception of one event it was not possible to 

systematically isolate and characterise these fusion events.  Due to time limitations this aspect 

of the project was not pursued further.   

  



 

 

 

3.33: Discussion 

3.33.1: Fusions between repetitive element and telomeric loci 

Finding fusions by utilising primers designed against repeat elements found in the human 

genome proved limiting. Alu and L1 elements are highly abundant in the human genome 

(Graham and Boissinot, 2006) and this could explain why results were limiting i.e. 

overcrowding of the PCR reaction could inhibit or mask the detection of any specific single 

molecule fusion events involving telomeres.  

3.33.2: Adaptor ligation mediated PCR for a novel fusion assay 

Ligation-mediated based PCR strategies have shown a relative amount of success in regard to 

genome walking, however, the design of the linker/adaptor sequences plays a key role. If the 

linker anneals to multiple non-specific sites then the detection of specific sites will be 

unsuccessful. End-repair priming is a drawback of these techniques. End-repair priming 

involves the free sticky ends of un-ligated linkers which are based on restriction enzyme sites 

that generate 5' overhangs. These ends are filled in during the first round of the PCR reaction 

and are thus able to anneal to one another with sufficient stability to initiate priming (Devon 

et al., 1995; Horn et al., 2007). This leads to exponential PCR amplification, which could 

explain any excess non-specific product on Southern blots. Dimers, i.e. linkers annealed to 

each other, can also be generated by end-repair priming and the two halves will form a 

hairpin (Uren et al., 2009), this could be detrimental to product amplification and could 

explain why L1 technology showed inhibition of PCR product. This is why a splinkerette 

linker was adapted for use in subsequent experiments, to increase specificity of amplification. 

 

 

3.33.3: Splinkerette PCR fusion success 



 

 

 

The results generated from the splinkerette assay were extremely dependant on the successful 

ligation of the splinkerette itself, a number of negative results were generated in preliminary 

experiments before the ligation was successful, highlighting the importance of optimisation.  

The Splinkerette PCR provided the most promising data, however there was limited success 

for sequencing any putative fusion events involving telomeres.  The single fusion sequence 

obtained was not sufficient to deduce that the technique was successful. It is possible that the 

splinkerette technique was capable of detecting telomere fusion events but  the limitation 

might have been in the difficulty of re-amplify the products for sequencing. Thus future 

directions could involve applying a next generation sequencing approach, such as Illumina 

sequencing, to try to ascertain what is being generated in the splinkerette PCR amplification 

without recourse to re-amplification of the fusion products. NGS would allow the full 

spectrum of fusion events occurring in the genome-wide setting to be sequenced; this 

technique has been used successfully for the sequencing of whole genomes in parallel to 

compare mutational profiles in breast cancer (Reis-Filho, 2009). This technique at the 

moment is not successful in identifying novel fusion events within the genome.  



 

 

 

81 
 



 

 

 

Chapter 4: Telomere dynamics in Breast Cancer  

4.1: Abstract 

Telomeres are structures that cap the ends of chromosomes, they prevent the natural end of a 

chromosome from being recognised as a double-stranded DNA break. Dysfunctional 

telomeres may either trigger replicative senescence, or undergo fusion with other 

chromosome ends or non-telomeric DNA breaks.  Fusion can result in the formation of 

dicentric chromosomes and the initiation of cycles of anaphase-bridging, breakage and 

fusion, which in turn can cause large-scale, potentially oncogenic, genomic rearrangements 

such as non-reciprocal translocations. 

This project aims to test the hypothesis that telomere dysfunction occurs during the 

progression of breast cancer and that this can drive the large-scale genomic rearrangements 

frequently observed in this disease.  To do this, tumour derived DNAs from a cohort of 130 

patients with invasive ductal carcinoma of the breast were analysed for telomere length using 

single telomere length analysis (STELA).  STELA is a high resolution single-molecule 

telomere length analysis strategy that allows the full spectrum of telomere length to be 

detected, in particular this includes short telomeres within the length ranges at which 

telomere dysfunction and fusion can occur.  

STELA was used to analyse three telomeres in invasive ductal carcinoma (IDC): XpYp, 17p 

and 2p. This has allowed the high resolution characterisation of an array of telomere 

dynamics in IDC including critically short telomeres and LOH.  

  



 

 

 

4.2: Background to experiments:  Telomere dynamics in breast carcinomas 

4.2.1: Telomere length studies in epithelial and mammary cancers in mice 

A key gene that is often mutated in breast cancer is the p53 gene (Gasco et al., 2002). P53 has 

many tumour suppressive mechanisms, with roles in apoptosis, genomic stability, and 

inhibition of angiogenesis (Schmitt et al., 2002). P53 can activate DNA repair proteins; can 

arrest cell growth at the G1/S cell cycle point; or initiate apoptosis if DNA is damaged beyond 

the point by which it can be repaired by enzymatic machinery (Schmitt et al., 2002; Gasco et 

al., 2003). 

Previous observations have shown that the loss of p53 in cells with telomere dysfunction 

increases cell survival, which confers a greater oncogenic risk (Artandi et al., 2000, Blasco et 

al., 2011). A study by Artandi et al. showed that in mTERC
-/- 

(telomerase RNA component 

knockout) mice, continuous telomere shortening led to an increase in the detection of 

phenotypic characteristics of genomic instability such as aneuploidy and NRTs in ageing 

mice (Artandi et al., 2000). Telomere fusion events (observed by FISH) resulted in higher 

rates of multiple types of cancer tumour formation (Artandi et al., 2000). In this study mice 

were grown with successively deficient telomerase components (mTERC
+/+

, mTERC
+/-

, 

mTERC
-/-

) with mutated copies of the gene encoding p53 (Artandi et al., 2000). In later 

generations of mTERC
-/-

 mice, decreased telomere function was observed and this correlated 

with earlier onset of tumorigenesis (multiple adenomas and mammary cancers) (Artandi et 

al., 2000). Short dysfunctional telomeres were present in p53
+/-

mutants, which correlated with 

earlier tumour onset (Artandi et al., 2000). This evidence shows that dysfunctional telomeres 

combined with a p53 deficiency may contribute to early onset of tumorigenesis.  

 The mechanism behind mTERC
-/-

 p53
-/-

 mouse telomeres becoming dysfunctional and 

leading to accelerated tumourigenesis was studied using FISH in mouse mammary cancer 

tumours (Artandi et al., 2000). Telomere PNA fluorescent in situ hybridization (FISH) was 



 

 

 

carried out on metaphase spreads of breast cancers cells attained from mTERC-/- mice 

(Artandi et al., 2000). Signal-free ends (no telomere signal) were observed in dysfunctional 

telomeres, along with end-to-end fusions and a high number of non-reciprocal translocations 

(NRTs) (Artandi et al., 2000). It was proposed in this study that NRTs arise via dicentric 

chromosome formation due to telomere dysfunction (Artandi et al., 2000). Thus telomere 

instability and shortening may contribute to the initiation of breast neoplasia. 

4.2.2: Telomere length in human breast tissue 

Consistent with the majority of tumour types, telomere erosion has been demonstrated in 

breast cancer.  In a study by Heaphy et al. telomere DNA content was measured using a slot 

blot titration assay. This assay gives a mean percentage of telomeric DNA concentration by 

calculating the ratio of telomeric DNA content to centromeric DNA content. In paraffin 

embedded invasive human breast cancer samples, tumours with the shortest telomeres (lowest 

telomere DNA content) showed an increase in detectable aneuploidy by flow cytometry. 

Human breast tumours with the shortest telomere length had the greatest amount of 

metastasis (significance p < 0.05) (Heaphy et al., 2007). 

A telomere-driven crisis has been considered to play a role in the development of breast 

carcinoma, in particular during transition from UDH (usual ductal hyperplasia) to DCIS 

(ductal carcinoma in situ) (Chin, K. et al., 2004). Telomere crisis is characterised by 

telomeres that have lost their ability to cap the chromosomal ends (Greenberg, 2005). The 

relation between genomic instability and telomere length was observed by Chin et al., using 

FISH in normal ductal epithelium, UDH, DCIS and invasive cancer (Chin, K. et al., 2004).  

Genomic instability was assessed phenotypically by confocal microscopy analysis of tissue 

sections. And an increase in anaphase bridges was detectable in UDH and DCIS (Chin, K. et 

al., 2004). Telomere length analysis by FISH showed telomere length was significantly 

shorter in invasive cancers than DCIS and shorter in DCIS than UDH (Chin, K. et al., 2004). 



 

 

 

There was thus a correlation was shown between genome instability, telomere length and 

progression to invasive breast cancer.  

One study by Heaphy et al. focussed on evaluating telomere lengths in different cancer 

subtypes based on tumour characteristics (Heaphy et al., 2010). Using FISH at the single cell 

level it was found that telomere lengths were shorter in more aggressive subtypes, such as 

luminal B, HER-2-positive and triple-negative breast tumours, suggesting that tumour 

telomere length could be an important tool as a prognostic marker for breast cancer (Heaphy 

et al., 2010).  

 

4.2.3: DNA repair, Telomere length and breast cancer: activation of ATM 

DNA damage has been revealed to take place as an early event in the majority of human 

epithelial cancers and many other types of cancer (Kirsch et al., 1998). Studies have shown 

that abrogating genes involved in DNA damage repair pathways, such as p53, results in an 

increase in cancerous cells/tumours in vitro and in vivo (Kirsch et al., 1998).  Ataxia 

telangiectasia mutated (ATM) is a protein kinase activated in response to DNA double-strand 

breaks (Shiloh, 2006; Lee and Paull, 2007). It phosphorylates several key proteins that initiate 

activation of the DNA damage checkpoint, leading to cell cycle arrest, DNA repair or 

apoptosis. Several of these targets, including p53, CHK2 and H2AX are tumour suppressors 

(Shiloh, 2006; Lee and Paull, 2007). 

Telomere Repeat Binding Factor-2 (TRF-2) has a role in the activation of the ATM/p53 DNA 

damage response pathway (Karlseder et al. 1999).  Studies by Raynaud et al. suggested that 

dysfunction within DNA repair pathways occur between pre-neoplasia and breast cancer and 

this is associated with telomere length abnormalities. ATM activation occurred in the pre-

cancerous stage and not in invasive breast cancer onset, suggesting DNA damage pathways 

having a role in prevention of progression to malignancy. This was correlated with shorter 



 

 

 

detectable telomere lengths when comparing pre-neoplastic lesions to normal tissue 

(P=0.0116) using FISH. There appeared to be a higher frequency of telomere length 

abnormalities in general in breast cancers than in pre-neoplastic lesions, with either very short 

or very long telomere length profiles (Raynaud et al., 2010). These bimodal distributions 

observed by FISH suggest the possibility of multiple mechanisms at play in the progression 

to malignancy. 

 

4.2.4 DNA damage, BRCA-1 and telomere dynamics 

Mutations in the breast cancer susceptibility genes 1 and 2 (BRCA1/BRCA2) are known so 

increase the risk of developing breast cancer considerably (60-85%) (Easton et al., 1993; 

Streuwing et al., 1996). Both BRCA 1 and BRCA 2 have been implicated as having roles in 

DNA repair mechanisms and thus play a role in maintaining the stability of the human 

genome (Cortez et al., 1999; Lou et al., 2003). BRCA1 is involved in the repair of DSB by 

homologous recombination by binding directly to DNA, and also via interactions with 

RAD51 (Scully et al., 1997; Cousineau et al., 2005). RAD51 is involved in the locating 

homologous regions and pairing up strands during the repair process [Reviewed by Fillipo et 

al., 2008]. BRCA2 also interacts with RAD51 to regulate both the intracellular localisation 

and DNA-binding ability of this protein (Chen et al., 1999). 

BRCA1 and BRCA2 mutated tumours have been shown to result in gross chromosomal 

rearrangements (Venkitaraman, 2002; Gretarsdottir et al., 1998). Studies in mice have shown 

that disruption of BRCA2 results in chromosomal aberrations such as chromosomal breakage 

(Patel et al., 1998; Xu et al., 1999). Spectral karyotyping of BRCA 2 deficient cells has 

shown a multitude of chromosomal rearrangements such as translocations or deletions and 

evidence of NHEJ (Yu et al., 2000).  



 

 

 

A study by Al-Wahiby S and Slijepcevic P, 2005, investigated BRCA1 deficient human and 

mouse cells for the presence of chromosomal aberrations suggestive of telomere dysfunction. 

A lymphoblastoid cell line, GM14090, (BRCA 1 heterozygote) showed an increase in 

detectable dicentric chromosomes. Molecular cytogenetic analysis revealed that these 

dicentric chromosomes arose as a consequence of end-to-end chromosome fusions due to the 

presence of telomere sequences at fusion points (Al-Wahiby S and Slijepcevic P, 2005).  

 

 

4.2.5: BRCA-2 involvement in telomere maintenance 

As mentioned previously, BRCA1 and BRCA2 are involved in the repair of DNA double 

stranded breaks (DSBs) via homologous recombination (HR) and thus mutations in either 

gene can drive genome instability. Studies have shown that cells with mutated copies of the 

BRCA2 gene display a variety of chromosomal abnormalities such as chromosome breakage, 

translocations and end fusions that are consistent with telomere dysfunction.  BRCA2 has 

been implicated in telomere biology; Badie et al. showed that BRCA2 facilitates the loading 

of RAD51 onto telomeres as a mechanism of telomere replication and capping (Badie et al., 

2010). BRCA2 deletion in mouse mammary tumours resulted in telomere shortening and the 

accumulation of phenotypes associated with telomere dysfunction such as fragmented 

telomere signals detected by FISH. Research has also shown an indication of telomere 

dysfunction in BRCA2 mutated human mammary tumours (Bodvarsdottir et al., 2011). 

Findings suggest that BRCA2 has a role in telomere capping and stabilisation due to the 

increase in chromosomal aberrations in the absence of functional BRCA2 genes 

(Bodvarsdottir et al., 2011). BRCA2 mutation carriers showed a higher frequency of 

chromosomal end fusions compared with breast tumours that did not have a BRCA2 

mutation, suggesting BRCA2 loss was associated with telomere dysfunction. These data 



 

 

 

implicate BRCA2 in having a role in telomere maintenance (Bodvarsdottir et al., 2011). 

 

 

4.2.6: Telomerase activity and breast cancer 

 Due to its role in maintaining telomere length, telomerase expression has been linked with 

cellular immortality and cancer. Around 80% of malignant tumours overexpress telomerase 

(Kim et al., 1994; Shay et al., 1997). Correlations have been shown between telomerase 

expression and poor prognostic outcome in numerous types of cancer (Streuker et al., 2001; 

Artandi et al., 2009).  A study by Hiyama et al. investigated the relative expression of 

telomerase in a range of different breast cancer subtypes. Findings from this indicated 

telomerase activity was detected in 68% of primary stage I breast cancers and 95% in the 

most advanced stage tumours. These observations point to a role for the activation of 

telomerase in later stages, which will result in stabilisation of telomere length and thus 

immortalisation of cells (Hiyama et al., 1996). A study by Clark et al. assessed telomerase 

activity in patients with node-positive breast cancer and this was linked to patient survival 

data (Clark et al., 1997). Findings from this study showed that increasing levels of telomerase 

expression were correlated with decreased disease free survival (P=0.041) and overall 

survival (P=0.009) (Clark et al., 1997). Mokbel et al. studied telomerase expression in 

different stages of breast cancer. In normal breast tissue, benign breast and ductal carcinoma 

in situ (DCIS) samples telomerase expression was undetected, however in infiltrating 

carcinomas 67% of samples showed expression of telomerase, indicating an association 

between telomerase activity and the progression to invasive malignancy (Mokbel et al., 

1999). These studies indicate that telomere elongation by telomerase may be an important 

step in the progression to malignancy as a way of rendering cells immortal. 

 



 

 

 

 

4.2.7 Project aims:  

Studying telomere dynamics in breast cancer has revealed correlations between short 

telomeres and breast cancer progression. However direct evidence that telomeres within 

breast cancer cells can shorten to within the length ranges at which dysfunction occurs, is 

lacking. The aim of this study was to address this issue by using high-resolution single 

telomere length analysis (STELA) to provide a detailed description of telomere length 

distributions in breast cancer.   

This work provided evidence of evidence of short telomeres within the length ranges at which 

telomere fusion can occur, evidence of clonal evolution and complete telomere loss. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3 Results:  

DNA was extracted from human breast tissue by the Wales Cancer Bank. Unfortunately the 



 

 

 

range of concentrations and their very dilute nature rendered them difficult to work with. Five 

of the 130 samples contained no detectable DNA (0ng/ul) when quantified using both 

Fluorometer and Nanodrop quantification. Concentrations of DNA ranged from 10ng/ul to 

around 75ng/ul and the average concentration detected was 31ng/ul. STELA is a single 

molecule technique that readily amplifies telomeres within a sample when input DNA 

concentrations are low (typically 10ng/ul). This meant that the DNA samples received were 

just adequate for successful STELA analysis, however additional reactions had to be 

undertaken in order to obtain a sufficient sample size of telomeric molecules. A full table of 

DNA concentrations is available in ‘Chapter 2: Materials and Methods’. 

4.3.1 STELA profiles 

STELA is a powerful tool for the analysis of telomere length profiles in vitro and in vivo as it 

is a high resolution method for quantifying individual telomere lengths present in a sample; 

furthermore the distribution of these telomeres can be easily characterised in this way. Figure 

4.1 shows a typical STELA blot generated for three patients comparing XpYp and 17p 

telomere length distributions. Figure 4.2 shows a summary of all telomere lengths detected at 

XpYp, 17p and 2p by STELA. As is visible in the scatter diagrams numerous patients had 

mean telomere lengths below 5kb. Mean telomere length varied by 8.39kb between the 

longest of 9.68kb and shortest 1.29kb at the XpYp telomere. The shortest telomere detected 

by TRF analysis, the gold standard for telomere length analysis, that has been recorded in the 

literature for breast carcinoma is 3.7 kb (Chin et al., 2001). Telomere lengths documented in 

the literature using TRF analysis tend not to be any lower than 4.0 kb, for example the 

shortest mean telomere length reported by Hiromi et al. is 5.2kb (measured using TRF 

analysis) (Schroder et al., 2001; Hiromi et al., 2011). Extensive analysis using STELA in 

CLL has defined a threshold length below which telomere fusion is detected (3.81kb for 

XpYp and 4.81kb for 17p-see red dotted line in figure 4.2).  In the breast cancer cohort 57% 



 

 

 

of tumours were within this length.  

Figure 4.1: Comparing XpYp and 17p telomere lengths for patients 1-3 with IDC.

Figure 4.1: STELA for 3 patients with IDC. The left hand side of Southern blot shows 

telomere lengths for XpYp and the right hand side shows the same patient samples analysed 

for 17p. Mean, grade and standard deviation (S.D.) are shown for each patient below each 

telomere length profile.  

 

 

 

 

 

Figure 4.2: Mean telomere length scatter plot 

 



 

 

 

 

 

Figure 4.2: Figure shows a scatter plot of mean telomere lengths for each telomere analysed 

by STELA and the difference in means between those groups. CLL defined fusogenic lengths 

of 3.81kb for XpYp and 4.81kb for 17p is shown by red dotted line  

 

 

 

4.4: Telomere lengths for three chromosome ends 

Three chromosome ends were chosen as candidates for STELA analysis: XpYp, 17p and 2p.  

STELA was originally developed for the XpYp telomere due to its unique sequence and 

subsequently at the 17p telomere which also has a unique telomere sequence ideal for primer 

design; both these chromosome ends allow for a very robust STELA.  

Chromosomal rearrangements such as deletions, amplifications and inversions are common at 

loci containing oncogenes, for example loss of 17p is frequent due to the presence of the 

tumour suppressor gene p53 (Cogen et al., 1990; White et al., 1996; Lansdorp et al., 1998). 



 

 

 

 Chromosomal abnormalities have been documented for chromosome 2p in the literature. 

Genomic rearrangements involving the losses and gains of chromosome 2p (specifically the 

2p24 locus) have been shown to lead to MYCN amplification which confers poor prognosis 

in patients with neoroblastoma (Pandita et al., 2010). Genetic abnormalities have also been 

characterised extensively for the 2p chromosome locus in hereditary non-polyposis colorectal 

carcinoma (HNPCC) due to the presence of mismatch repair genes MSH2 and MSH6. 

Frequent deletions and rearrangements involving 2p have been observed in HNPCC (Wijnen 

et al., 1998a; Wagner et al., 2003; Wijnen et al., 2005) and the disruption of the mismatch 

repair genes found in this region is thought to be a contributor to the disease.  MSH2 is 

involved in the recognition of DNA damaging lesions in the mismatch repair process (Fishel 

et al., 1994) and has been shown to interact with BRCA-1, with BRCA-1 acting as a 

downstream effector of DNA mismatch repair signalling pathways (Wang et al., 2000; Wang 

et al, 2001). The lifetime risk of ovarian cancers in patients with HNPCC is higher, however 

it remains unclear if this is true for breast cancer. Colorectal cancer mutation carriers have 

been shown to develop breast cancer and in a study it was observed that in patients with both 

HNPCC and breast cancer over 50% had defects in mismatch repair genes (Walsh et al., 

2010). 

Gains and losses involving chromosome 2p have also been observed in patients with breast 

cancer. In patients with a form of DCIS loss of heterozygosity was observed at multiple 

chromosome ends, one of which included 2p, using known polymorphic DNA markers in a 

PCR reaction (Moinfar et al., 1999). Array-CGH techniques have also been used to assess 

genetic alterations in an MCF7 and CL-9 breast cancer cell line (tamoxifen sensitive and 

tamoxifen resistant respectively) showing amplification of 2p regions (Achuthan et al., 

2001).A 2p STELA assay has also been developed and used for the analysis of this telomere 

in cultured cells, but it has not been tested in a cohort of different individuals.   



 

 

 

A comparison of the mean telomere lengths across all three chromosome ends showed no 

significant differences with One-way Anova analysis (statistically p>1) (figure 4.2).  

Telomere length data for the 2p telomere appears to be more homogeneous (figure 4.2), and 

telomeres at XpYp have the largest degree of heterogeneity compared with 17p and 2p when 

analysing the mean data subjectively. The differences in standard deviation between the three 

telomeres are statistically significant (One way anova, p=0.0002) (Figure 4.4). Some of the 

STELA blots however, showed that fewer telomere molecules were detected at 17p and 2p 

than at XpYp.  This is likely to be due to differences in the single molecule amplification 

efficiencies between the STELA assays at the three telomeres analysed. XY scatter plots 

revealed that the mean length of the XpYp and 17p telomeres was significantly correlated 

(r
2
=0.5; p<0.0001; figure 4.3 (a)).  The regression line crossed the Y-axis at 2.0 kb, indicating 

that the 17p telomere was on average longer than the XpYp telomere.  However pairwise 

comparisons with 2p showed no correlation with 17p (r
2
=0.006; p=0.46; figure 4.3 (b)) or 

XpYp (r
2
=0.0003; p=0.87; figure 4.3(c)).  This coupled with the low amplification efficiency 

meant that the data for 2p was considered unreliable and was not used in the subsequent 

analysis. 

Figure 4.3: Comparison telomere length means between telomeres 



 

 

 

 

Figure 4.3: Figure shows a scatter plots comparing telomere lengths between telomeres to 

observe any similarity between telomeres. a) XpYp/17p (top) has the best r-squared value 

(0.49 ; p<0.0001). The regression line for this dataset crosses the y-axis at 2kb and thus 17p is 

as much as 2kb longer than XpYp. B) and c) show no correlation 

 

 



 

 

 

Figure 4.4: Standard deviation for mean telomere lengths shown on a scatter plot 

 

Figure 4.4: Figure shows a scatter plot of standard deviations for each mean telomere length, 

for each telomere analysed by STELA. 

 

 

 

4.5 Telomere length clonality vs. heterogeneity 

STELA analysis revealed several homogenous telomere-length distributions, with telomeres 

that appeared clustered together in a ‘clonal’ pattern (Figure 4.5b), whereby the standard 

deviations were low and the difference between longest and shortest telomere for an 

individual was around 1kb or less. Clonal telomere distributions have been observed 

previously in culture-models (Baird 2003; Britt Compton 2006) in CLL using STELA (Lin et 

al., 2010). Short clonal telomere distributions similar to fibroblast populations derived from a 

single cell were hypothesised to be consistent with clonal B-cell growth (Lin et al., 2010). 

Binet’s staging is the gold standard staging criteria used throughout Europe that classifies 

CLL patients into three groups (A, B and C) depending on lymphoid involvement and the 



 

 

 

presence of anemia and/or thrombocytopenia. Patients with the most severe prognosis 

according to Binet’s staging (stage C) had the shortest telomere distributions and the most 

clonal distributions compared to other stages (A and B), indicating extensive cellular 

proliferation alongside hallmarks of genomic instability such as LOH consistent with the 

accumulation of instabilities giving rise to the clonal evolution of the B-cell population. 

In contrast other tumours displayed more heterogeneous telomere-length distributions with 

much higher standard deviations (figure 4.5a). Genetic heterogeneity can arise in cancer cell 

populations for numerous reasons and these telomere length distributions may be consistent 

with oligo-clonal growth. Microsatellite instability due to defective mismatch repair 

mechanisms can give rise to genomic heterogeneity, and may generate telomere length 

heterogeneity (Pickett et al. 2004) Other changes such as single nucleotides polymorphisms 

(SNPS) and copy number alterations (CNAs) create heterogeneity  [Reviewed by Miller et 

al., 2003] and are frequently observed in tumour via array-CGH technology that compares 

tumour DNA with normal DNA via comparative microarray hybridisation with known DNA 

probes (with a known genomic position eg. cDNA libraries) (Kallioniemi et al., 1992).   

A further explanation for the presence of heterogeneous telomere length distributions is the 

cell purity of the tissue samples analysed.  The presence of stromal cells or infiltrating 

lymphocytes that are likely to contain longer telomere length will influence the telomere 

distribution from the tumour samples, this is likely resulting in an over estimation of telomere 

length.    STELA analysis of the breast cancer cohort thus revealed an array of different 

telomere length profiles, some of which are summarised by use of scatter diagrams in figure 

4.6. 

 

 

 



 

 

 

 

 

Figure 4.5 Clonal vs heterogeneous telomere length distributions 

a) 

b) 

 



 

 

 

Figure 4.5: Figure showing the contrast between heterogeneous telomere length profiles (top-

a) and homogeneous ‘clonal’ profiles (bottom-b). Telomere mean was calculated for each 

patient with the histological grade and standard deviation (S.D.). The red box around #20 

depicts a patient that has died from invasive ductal carcinoma.  

 

Figure 4.6: Variability in Telomere length profiles

  



 

 

 

Figure 4.6: A summary of the most heterogeneous (top), homogeneous (middle) and bimodal 

(bottom) telomere lengths from the patient cohort of 130 are illustrated by the use of scatter 

plots. 

 

4.6 Bimodal distributions 

One striking observation was that several tumour samples exhibited clear bimodal telomere 

length distributions (figure 4.7).  The underlying cause of these distributions is not clear.  One 

possibility is intra tumour heterogeneity. Alternatively contaminating somatic tissue with long 

telomeres could influence the resulting telomere length distributions. As seen previously 

when analysing STELA blots, numerous patients appeared to have bimodal telomere length 

distributions, two clear clusters of populations of telomere lengths with distinctly different 

means (see figure 4.7 for an example of this). Bimodality has been observed in breast 

tumours in relation to ER expression with some tumours displaying both ER+ and ER- 

subtypes (Schnitt et al., 2006). However there is controversy whether tumours of this type are 

actually bimodal for gene expression or whether inaccuracies with immunohistochemistry 

analysis are providing false results of just artefacts making tumours appear bimodal (Rimm et 

al., 2007). Whether the telomere distributions are representative of bimodal tumours or not, it 

is difficult to deduce the mean telomere length accurately, longer or shorter sub-clusters of 

telomeres could skew the mean. It was hypothesised that non-breast cancer tumour DNA 

could have an effect on the telomeres detected, this is because removing tumour DNA will 

incorporate other somatic cells and is not specific to just breast tumour DNA. Infiltrating 

lymphocytes within a sample express telomerase, which will elongate and thus clusters of 

longer telomeres have the potential to skew the results.  

 

 

 

 



 

 

 

 

 

Figure 4.7: Bimodal Telomere length distributions at XpYp for IDC patients 

 

 

Figure 4.7: Figure shows STELA blot with bimodality. The dotted horizontal lines indicate 

the divide between clusters of long and short telomere length distributions 

 

 

 

4.7 Longer mean telomere length distributions at XpYp and 17p 

STELA blots were compared against clinical features such as grade. There were a profusion 

of different profiles of telomeres for each subgroup, for example some patients with the 

highest grade (grade III) and hence a more severe prognosis actually had a longer mean 

telomere length distribution (patient #14, figure 4.8) than those with a less pronounced 



 

 

 

disease. 

Figure 4.8: Long telomere distributions at XpYp for patients with IDC 

 

 

Figure 4.8: Figure shows a STELA blot with the longest patient telomere distributions. 

Below this southern blot is a table with the telomere mean calculated for each patient with the 

histological grade. 

            

 

4.8: Loss of heterozygosity (LOH) 

Detection of loss of heterozygosity (LOH) can be a way to find putative tumour suppressor 

genes involved in the progression to malignancy in cancer. LOH is when one or both arms of 

certain chromosomes are deleted due to the loss of a normal functional allele at a 

heterozygous locus (Callahan et al., 1993; Miller et al., 2003). This can occur if there is a 



 

 

 

tumour suppressor gene that is mutated to facilitate tumour progression, and thus the 

mutation/loss of function of this gene results in subsequent loss of alleles. Pooled analysis of 

LOH occurrence in breast cancer has revealed favoured loss at multiple chromosome arms, 

including 17p (Miller et al., 2003). This is hypothesised to be a common locus for LOH in 

many types of cancer due to the presence of the p53 gene at 17p13.1 (McBride et al., 1986). 

 

STELA blot analysis has revealed varying degrees of LOH for XpYp and 17p by 

quantification of the number of amplifiable molecules at each end. One patient exhibited loss 

of both telomeric alleles at 17p (figure 4.9a). Several other patients displayed a telomere loss 

of between 30-60% for both XpYp and 17p telomeres. Patients with above 50% LOH at 17p 

were tabulated (table 4.1) and the differences in telomere molecules is highlighted by use of a 

scatter plot (Figure 4.9b)  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

Figure 4.9.a Example of complete LOH of 17p telomere 

 

 

Figure 4.9a: Figure shows STELA blot with an example of loss of heterozygosity (LOH). 

Patient #2 (shown in red) has a complete loss of the 17p allele visible by southern blot 

analysis (STELA). 

 

 

 

 

 

 

        #1        #2            #3          #1         #2       #3 

       XpYp                                  

17p 



 

 

 

 

 

Figure 4.9b: LOH comparison for XpYp and 17p  

 
Figure 4.9b: Red squares indicate telomeres detected at 17p and black circles indicate 

telomeres detecxted at XpYp. 

Table 4.1: Patient LOH 

 

 

Table 4.1: A summary of the patients with high percentages of LOH for 17p when compared 

with XpYp. 

  

Patient Number Molecules at XpYp Molecules at 17p LOH detected 

2 204 30 85% 

3 120 46 62% 

7 64 23 64% 

16 138 49 64.5% 

18 158 59 63% 

29 117 67 62% 

36 131 43 67% 

38 104 39 62.5% 

94 17 8 53% 



 

 

 

 4.9: Discussion:  

4.9.1 Telomere length analysis in Invasive Ductal Carcinoma 

Applying STELA to a cohort of 130 patients with IDC has allowed the high resolution 

analysis of individual telomere lengths, revealing a spectrum of telomere length distributions. 

There is no clear pattern of telomere lengths found in IDC. Some telomere length profiles had 

a low standard deviation that was consistent with clonal growth, similar to that observed in 

single-clones in culture or in CLL patients; others displayed heterogeneous telomere–length 

profile; whilst others appear to have two distinct groups of telomeres with distinct mean 

lengths (bimodal populations). Short telomere length has been correlated with prognostic 

severity in numerous cancers including breast cancer. The utilisation of this high resolution 

single molecule technique for measuring telomeres has provided evidence of extremely short 

telomeres in this malignancy. 

 

4.9.2 Telomere length differences between XpYp and 17p 

Mean telomere lengths at 17p were longer than XpYp when comparing using a linear 

regression analysis (P<0.0001; See figure 4.2). Is has been documented previously that the 

17p telomere has a propensity to be shorter than other chromosome ends (Martens et al., 

1998, Lansdorp et al., 1998). It has been postulated this it may be related to the presence of 

the oncogene p53 on the 17p chromosome arm. Studies have suggested that the reason for 

this difference in length is that shorter telomeres act as a molecular ‘clock’ for replicative 

senescence (Martens et al., 1998). However other studies have shown that 17p is not always 

the shortest telomere, and that some telomeres are randomly shorter (Baird et al., 2006) 

suggesting telomere length is governed at the zygote stage and variability could be due to 



 

 

 

difference in the maternal and paternal germlines. 17p has been postulated to be shorter in 

many cell types and enabling a protective mechanism due to the presence of p53; if 17p is set 

shorter than the rest of the telomeres then the cell can senesce/exit the cell cycle more rapidly 

preventing mutation at p53 (Baird et al., 2006). Overall the 17p data here conflicts with the 

idea that 17p is shorter in cancer (Lansdorp, 1998). An alternative explanation for this 

observation may be that presence of Telomere Variant Repeats (TVRs) at 17p may make the 

telomeres appear to be longer, i.e. there might be more TVRs on average at 17p than at 

XpYp. A way of determining this in future would be to perform a TVR-PCR and deduct this 

from the STELA lengths. A recent study in CML (Chronic Myelogenous Leukemia) reported 

longer 17p telomere lengths in patients with CML when compared with healthy patient 

telomere lengths using Q-FISH (Samassekou et al., 2011). 

 

4.9.3 The use of STELA in a large cohort study 

STELA as an assay for measuring telomere lengths has allowed the detection of extremely 

short telomeres of less than 1kb accurately. However, the application of this technique in a 

large cohort study is time consuming as it is a multistep process that requires a long range 

PCR, a southern blot and then an overnight hybridisation with radiolabelled probes. 

Furthermore at present only a few telomeres can be analysed using the STELA technique. 

Groups of telomeres share large degrees of subtelomeric homology and this makes the 

creation of unique oligonucleotide primers for use in the long range PCR difficult and 

inaccurate for many telomere families. However, STELA is the highest resolution assay for 

detecting the shortest telomeres within a sample and thus the development of a high 

throughput STELA method would be beneficial for larger-scale epidemiological studies. 

Other methods of measuring telomere length are generally hybridisation based and cannot 



 

 

 

detect telomeres below lower thresholds of TTAGGG repeats. High throughput Q-PCR based 

techniques only provide average telomere lengths per sample and individual telomeres cannot 

be quantified (Cawthon, 2002). 

 

 

4.9.4 Telomere length analysis in breast cancer:  

There were numerous different telomere length profiles: some telomeres appeared to be 

present in two distinct clusters at different molecular weights (bimodal). This could be due to 

allelic differences in length that have been seen in other cell types such as senescent human 

fibroblasts (Baird et al., 2003).  However this appears unlikely as the presence of telomerase 

activity can homogenise telomere length distributions and thus remove allelic length 

differences (Britt-Compton et al. 2009). Bimodality could also arise due to intra tumour 

heterogeneity (as mentioned earlier). We considered that these bimodal distributions of 

telomeres could be due to the presence of other cell types contaminating the sample, such as 

telomerase expressing lymphocytes and stromal cells from the surrounding tissue. Due to the 

limited nature of the samples received and it was difficult to assess intra tumour 

heterogeneity as a means of bimodality, however future work with tumour tissue instead of 

DNA extraction samples would allow more detailed analysis of each breast tumour. The 

samples obtained from the Wales Cancer Bank were DNA extractions from breast tissue and 

had therefore not undergone any cell purification to isolate carcinoma cells prior to DNA 

extraction and this appeared to be the most likely explanation for the bimodality. 

A number of telomere lengths detected by STELA were extremely short compared to what 

has been observed previously using TRF analysis (1.29kb here compared with lengths of 5kb 



 

 

 

and above with TRF (Schroder et al., 2001; Hiromi et al., 2011). This suggests that the 

telomeres have eroded extensively, this is particularly apparent when one considers that  non-

functional telomere variant repeat regions that encompass 0-2 kb of the proximal regions of 

the telomere repeat array. Recent studies in CLL using the same STELA assay have shown 

telomeres that have eroded to a length reminiscent of cells in crisis in vitro (Lin et al., 2010). 

Telomere erosion may be a result of hyper-proliferation of cancer cells (Weiner et al., 2008). 

Mutations that target cell surface receptors are may drive proliferation in breast cancer cells, 

such as mutations in the ERBB2 gene causing overexpression of HER2 (Yu et al., 2007) and 

also mutations causing overexpression of ER as oestrogen is required for proliferation in 

normal breast tissue (Russo et al., 1999; Haslam and Woodward, 2003), thus overexpression 

will lead to uncontrolled proliferation and thus rapid telomere shortening. It has been shown 

that more aggressive subtypes such as HER2 positive have shorter telomeres (Heaphy et al., 

2010). In CLL the most eroded telomeres were the ones undergoing the highest frequency of 

telomere-telomere fusions, a hallmark of telomere dysfunction (Lin et al., 2010). Thus eroded 

telomeres in the IDC samples described here could be eroded to the point at which they are 

dysfunctional, and telomere fusion could be causing large scale genomic instability thus 

driving the malignancy and not just a result of the proliferative capacity of cancer cells. 

 

The telomere length data obtained from breast cancer samples has been consistent with 

previous reports using STELA in other malignancies.  The shortest mean telomere length that 

was detected was 1.29kb (XpYp) which is the shortest telomere length detected for this 

disease.  Single telomere length distributions (STELA) at XpYp and 17p have been 

previously examined in patients with CLL (Lin et al, 2010). These data showed that telomere 

length was shorter as a function of desease staging and a reduced heterogeneity of the length 



 

 

 

distributions was observed, that was consistent with clonal B-cell growth. Functional 

telomere length was thought to be overestimated due to presence of TVRs, thus TVR-PCR 

was carried out, showing even more extensive telomere erosion during progression to 

malignancy. Array-CGH was also used for CLL samples and was used to test whether 

individuals showing telomere dysfunction showed genomic instability. There was clear 

evidence of large scale genomic instability that included NRTs in sample with telomere 

dysfunction. The application of TVR-PCR and array-CGH was not possible for the IDC 

samples due to the requirement for at least 100ng/ul of input DNA and nature of the samples 

received for experiments was insufficient. DNA aliquots received from the Wales Cancer 

Bank typically had as little as 10ng/ul of breast tumour DNA and a maximum of 60ng/ul in a 

volume of between 50 and 150ul. Development of the TVR-PCR assay as a nested PCR using 

more dilute input DNA was tested but unsuccessful. Array-CGH also requires a large 

concentration of starting DNA and thus could not be used for the DNA material provided to 

us. Nonetheless, telomere lengths detectable for IDC by STELA has allowed the detection of 

short telomeres and considering that part of this length would consist of telomere variant 

repeat regions, the lengths detected by STELA are extremely short. 

4.9.4.1 Telomerase activity 

Short telomeres found in this invasive form of breast cancer may be seen as contradiction of 

what would be expected when taking into account the high telomerase activity observed in 

the majority of human cancers. One model proposed for this would be that short telomeres 

are maintained by telomerase but not elongated as has been seen in HEK293 cells 

(transformed with adenoviral DNA) that express telomerase but maintain telomere length 

distributions that extend to within the length range telomere fusion events have been detected 

(Capper et al., 2007; Letsolo et al., 2010). In a small cohort study (n=11) with T-cell 



 

 

 

prolymphocytic leukaemia (T-PLL) short telomeres were shown to have a high expression of 

telomerase (Roth et al., 2007) and a telomerase inhibitor (BIBR1532) led to selective death of 

the malignant T-PLL cells in vitro (Roth et al, 2007). Taken together it has been hypothesised 

that if a telomere is critically short, it would be prevented from shortening further by high 

expression of telomerase and this is why telomerase inhibitors will selectively kill the more 

aggressive cells because telomeres are then allowed to shorten to lengths recognised as 

critical by the cell (Lin et al., 2010, Jones et al., 2012). Telomerase activity in breast cancer 

patients from this cohort would thus provide more detail to elucidate potential mechanisms 

driving the progression to malignancy. 

 

4.9.5 Loss of heterozygosity  

Interesting observations can be made about the distributions of telomeres using STELA 

techniques, such as heterogeneity of samples, bimodality, clonality and loss of 

heterozygosity. One STELA profile in particular showed the complete loss of both alleles at 

17p. If this extends to the p53 on 17p then the loss of the telomere could be related to the loss 

of p53. LOH of the short arm of chromosome 17 has also been observed in CLL clonal B-

cells and has been linked with the loss of p53 (Lin et al., 2010). Therefore the loss of p53 

could be a contributing factor to the progression to malignancy in IDC allowing neoplastic 

cells to escape senescence.  However the 17p telomere is polymorphic in the human 

population (Britt Compton et al.,  2006) and this may account for the lack of 17p telomere in 

these breast cancer samples.  Unfortunately the absence of patient matched normal tissue 

samples meant that it was not possible to formally verify if the absence of the 17p telomere 

was a function of LOH events or a naturally occur polymorphism.  



 

 

 

 

4.9.6 Telomere elongation 

It’s interesting to note that there was such a variation in the average telomere length 

detectable by STELA, all patients have the same invasive form of ductal carcinoma and there 

are still variations within groups of histological grade. One such observation was the presence 

of long telomere distributions, even in patients that had the worst prognostic outcome. This 

could be representative of telomere elongation events by the action of telomerase. 88% of 

ductal carcinomas have been shown to express telomerase (via the TRAP assay). Telomerase 

expression assays have also revealed a progressive increase in telomerase expression levels 

correlating with the severity of histopathological grade in breast cancer with 14% of 

telomerase positive samples in benign breast diseases, 92% in carcinoma in situ and 94% in 

invasive breast carcinomas (Yashima et al., 1998). It has been proposed that telomere 

elongation can occur via a tankyrase-mediated ADP ribosylation of TRF1 that opens up the t-

loop and thus facilitating the access to telomerase to add telomere repeats de novo (Lange et 

al., 2000). Tankyrase expression levels have been shown to be higher in breast cancer tissue 

compared with normal tissue (Gelmini et al., 2004). Interestingly this research has displayed 

that tankyrase overexpression is highly correlated with progesterone receptor (PR) positive 

breast tumours but not estrogen receptor (ER) positive breast tumours. No correlationcan be 

concluded from this project dataset, the longest two telomere length profiles were receptor 

negative for ER and PR.  

The Alternative Lengthing of Telomeres (ALT) mechanism is relatively common in sarcomas 

for lengthening telomeres independently of telomerase activity. The ALT phenotype is, 

however, thought to be rare in carcinomas. ALT can be distinguished by the presence of 

promylocytic leukemia (PML) protein nuclear bodies (APBs) that contain large amounts of 



 

 

 

extra-chromosomal telomeric DNA among other replication proteins. In a study by 

Subhawong et al. a subset of cancers with varying receptor status including HER2 

overexpression were subjected to FISH combined with PML protein immunofluorescence. 

The ALT phenotype was identified in 3 out of 21 HER-2 positive cases compared and 

showed a high proliferative rate. None of the other subtypes of breast cancer showed the ALT 

phenotype and this was statistically significant. Two out of the three cases with the ALT 

phenotype had rapid tumour progression resulting in death (Subhawong et al, 2010). This 

suggests ALT may adversely affect survival outcomes. The mechanism underlying ALT is 

unknown, however it is hypothesised that a recombination pathway is involved due to the 

identification of proteins that are involved in homologous recombination in telomeres that are 

undergoing ALT. Phenotypically ALT telomeres have been shown to be long and 

heterogeneous (Subhawong et al, 2010). Some of the STELA profiles seen in this dataset of 

invasive ductal carcinoma are long and heterogeneous, for example patient #16 in figure 4.8 

however it is not possible to determine if this is an example of ALT or  heterogeneity 

generated by an independent mechanism.  29 out of 130 patients in this IDC cohort tested 

positive for HER2, of these 13 patients had standard deviations of above 2.5 and would be 

considered fairly heterogeneous (data shown in table in Appendix 2; Table B). One patient in 

particular had a standard deviation of 3.94 and a mean telomere length of 7.01kb; this 

distribution is fairly long and heterogeneous (patient #67 figure 4.3). This correlates with the 

previous evidence that HER2 expressing cells show indications of ALT mechanisms 

(Subhawong et al, 2010). Therefore future experiments could involve the testing of Her2 

positive patient samples for the presence of ALT markers and this could elucidate telomere 

maintenance mechanisms at play to explain the heterogeneous distributions. 

4.10 Conclusions and future work 



 

 

 

Application of STELA for telomere length analysis has allowed the high resolution 

characterisation of telomere dynamics in invasive ductal breast carcinoma (IDC) for XpYp 

and 17p. The telomere length profiles differed markedly, with clonal, heterogeneous and 

bimodal distributions. More analysis of these telomere distributions is required to elucidate 

any mechanisms causing the differences in telomere lengths between patient samples for 

example: testing of patient samples for the presence of ALT markers in heterogeneous 

populations; allele specific STELA to examine the bimodality; and purification of the tumour 

tissue prior to DNA extraction to ensure tumour cells only within a sample.  

The telomere lengths analysed for this cohort are the shortest described in a breast cancer 

cohort and are consistent with telomere lengths detected in CLL using the same technique. 

There is thus direct evidence for the presence of short telomeres in an invasive form of breast 

cancer which could be contributing to the progression of this disease. Future work with larger 

cohorts and more clinical stages could reveal the prognostic power of STELA for breast 

cancer and to elucidate whether short telomeres contribute to the progression of the disease. 

 It is pertinent to note that the telomere length analysis carried out by STELA only detects 

telomere lengths at XpYp and 17p. This is not representative of all telomeres within a 

sample, but only at those chromosome ends. Extending the STELA assay to encompass all 

telomere ends in the future would enable a more accurate estimation of mean telomere length 

for each patient. However the resolution of this assay with its ability to detect individual 

telomeres within a sample renders it extremely accurate for those chromosome ends.
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Chapter 5: Clinical data analysis of commonly used biomarkers for breast cancer 

correlated with telomere length data acquired by STELA 

5.1: Abstract  

Clinical data associated with the cohort of IDC patients was received from the Wales Cancer 

Bank from patient follow up over a period of five years. This data included receptor status of 

all patients alongside survival outcome. 

Telomere lengths for all patients were analysed using STELA analysis and the means were 

inputted into a spreadsheet containing all patient clinical information collected. This allowed 

the comparison of telomere length with clinical features, and these findings could then be 

statistically related to survival and thus prognostic value of telomere length in patients with 

different cancer subtypes/phenotypes.  

Telomere lengths for different subtypes of breast cancer were analysed using Kaplan-Meier 

survival curves. Stratification of patients based on the threshold telomere length at which 

fusion occurs revealed a remarkable level of prognostic power with hazard ratios for overall 

survival that were orders of magnitude greater than that observed in the commonly used 

markers for prognosis in this disease.  
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5.1.2 Clinical background: Breast Cancer subtypes 

Breast cancer can be classified by receptor status. ER+ (oestrogen receptor positive) and PR+ 

(progesterone receptor positive) breast cancer cells depend on presence of each hormone for 

their growth, respectively, thus drugs targeting oestrogen and progesterone receptors, such as 

oestrogen receptor antagonist Tamoxifen, can be used to block the hormone binding result in 

a block in cell proliferation and therefore a better prognosis.  

In about 20% to 25% of breast cancers, the cancer cells overexpress a gene called Human 

Epidermal Growth Factor Receptor 2 or HER2 that is encoded by ERBB2, a proto oncogene 

located on the 17q chromosome. The ERBB2 gene is overexpressed in around 30% of breast 

cancers (Yu et al., 2007). Patients with a mutated ERBB2 gene have been shown to have a 

worse prognosis than ER+ patients; however monoclonal antibody treatment with 

Trastuzumab or Pertuzumab can help to improve this [Reveiwed by Weigelt et al., 2005]. 

HER2 is sometimes referred to as ‘neu’ because of it was characterised from a rodent neural 

tumour cell line (Coussens et al., 1985). Breast cancers with overexpression of HER2 tend to 

be much more aggressive and fast-growing (Tan and Yu, 2007). HER2+ breast cancer patients 

generally have been shown to have a worse prognosis than ER+ patients, however 

monoclonal antibody treatment can help to improve this [Reviewed by Weiglet et al., 2005 

and Dunnwald et al., 2007].  

Cells lacking ER/PR expression and also HER2 overexpression are referred to as basal-like 

or triple negative. The majority of breast cancers associated with the breast cancer gene 

known as BRCA1 are triple negative (Anders et al., 2008). About 75% of all breast cancers 

are ER positive and roughly 65% of these are also PR positive and thus grow in response to 

progesterone (Statistics retrieved from American Cancer Society FDA 2012 

URL:Breastcancer.org; Dunnwald et al., 2007). 



 

 

118 

 

 

As mentioned previously, correlations have been shown between short telomere length and 

the more aggressive breast cancer subtypes, such as HER2 and triple negative (Heaphy et al., 

2010). 

The heterogeneity of breast cancer means that there is a high diversity in the tumour types 

found in patients. This makes it difficult to treat patients and predict their clinical outcome. 

 

5.1.3 Breast cancer metastasis markers: requirements for better prognosis 

The main cause of death from breast cancer in the Western world is from metastasis of 

malignant cells, not the primary tumour alone due to the difficulty in treating metastatic cells 

once they have entered the circulatory system and travelled to distant organs/tissues. It is 

estimated that 20% to 50% patients will develop metastatic breast cancer (Yu et al., 2009) and 

only 26% of these will survive past 5 years. Cytotoxic therapies, such as chemotherapy, are 

still the first port of call for treating metastatic breast cancer, or adjuvant therapies for use 

post-surgery to prevent local recurrence.  Several different drugs are used as a 

chemotherapeutics for IDC, these are often used in combinations, however many of these 

agents cause severe side effects. Anthracyclines used in chemotherapy, such as Epirubicin, 

can cause cardiotoxicity; alkylating agents such as Cyclophosphamide, target 

hyperproliferating cells but are not specific to cancer cells and therefore can be toxic to 

somatic cells that are fast growing such as those in the gastrointestinal tract. There can be 

long term side effects when using these cytotoxic drugs and some treatments even increase 

the risk of contracting a secondary cancer such as Acute Myeloid Leukemia (AML) (Kaplan 

et al., 2007).  A large percentage (around 80%) of patients receive some form of adjuvant 

therapy (Weigelt et al., 2005), such as chemotherapy, when only around half of these patients 

will relapse, and this can negatively affect their quality of life in the short term (hair loss, 
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sickness) and long term (cardiotoxicity, infertility) (Eifel et al., 2001) Thus there is a 

proportion of patients that would not suffer a relapse but would suffer unnecessarily as a 

consequence of adjuvant treatment. There is therefore an increasing requirement to identify 

predictive markers for breast cancer to avoid overtreatment and to better tailor treatment to 

individuals. There are few established prognostic biomarkers: the ERBB2 gene (HER2) 

biomarker has been extensively studied (Slamon et al., 1987; Reviewed by Ross et al.,2003) 

and more recently gene expression profiling has become popular as a way of predicting 

prognosis for individuals (Perou et al. 2000; Van’t Veer et al., 2002).  

 

 

5.1.4 HER2 status and breast cancer risk 

The ERBB2 gene (encoding HER/neu) is overexpressed in 15-30% of breast cancer patients 

and has been correlated with poor prognosis; however the development of monoclonal 

antibodies to target the growth factor receptor has improved patient survival in HER2 

positive (HER2+) patients. HER2 negative (HER2-) tumours fail to respond to monoclonal 

antibodies against HER2 receptors. Interestingly ERBB2 has been implicated as a potential 

predictive marker for therapeutic success (Houston et al., 1999). Breast tumours positive for 

ERBB2 expression have been shown to respond poorly to hormone therapies such as 

tamoxifen (Wright et al., 1992; Klijn et al., 1993; Tan and Yu, 2007), and this highlights the 

importance for distinguishing different breast cancer subtypes for more effective treatment.  

 

5.1.5 Hormone receptor (HR) status and breast cancer risk: Oestrogen receptor (ER) 

and Progesterone receptor (PR) status as a biomarker 

Oestrogen receptor (ER) positivity is found in a large proportion of breast cancer patients – as 

many as 60-70% (Rose et al., 1985; Walker et al., 2007; Wang et al., 2011). The development 
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of hormone therapies such as tamoxifen has enabled better treatment options for patients with 

ER positive (ER+) tumours. ER negative (ER-) tumours however tend to be more aggressive 

and are more likely to relapse and or metastasise (Schmidt et al., 1984; Crowe et al., 1991) 

and this is independent of demographic characteristics (Dunwald et al., 2006). Due to the 

insufficient knowledge attaining to the specific genetic differences between ER+ and ER-, 

there are less treatment options for ER- patients, this difficulty in treating these tumours may 

be one reason why ER- tumours have poorer prognosis than ER+ tumours. 

As with ER positive breast cancers, progesterone receptor (PR) positive breast cancers 

respond well to hormone therapies (tamoxifen). Progesterone receptors exist in two isoforms: 

PR-A and PR-B. Studies have shown that patients with isoform PR-A are more likely to 

suffer a relapse when undergoing tamoxifen therapy (Hopp et al., 2004; Fuqua et al., 2005). 

Furthermore studies by Zhang et al. implicated low PR expression as having a role in an 

increase in growth factor signalling (i.e. increase in HER2 signals) and because of this an 

increase in the aggressive nature of the tumour (Zhang et al., 2005; Fuqua et al., 2005). 

A number of deleterious prognostic implications can be drawn from these 3 biomarkers 

(HER2/ER/PR) when they are not expressed; tumours lacking these biomarkers tend to be 

more aggressive due to the lack of treatment options (Kaplan et al., 2006; Anders et al., 

2009). Also, resistance against hormone therapies can occur in tumours overexpressing these 

markers, either de novo or developed, eg. trastuzumab or tamoxifen resisitance, rendering 

these breast cancers more aggressive and more difficult to treat (Nahta et al., 2006; Narayan 

et al., 2009). There is thus a requirement for further classification of breast cancer subtypes 

for a better understanding and thus more successful treatment. 
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5.1.6 The Nottingham prognostic Index (NPI) for prognosis 

The Nottingham prognostic index (NPI) is used to determine prognosis following surgery for 

breast cancer (Haybittle et al., 1982; Elston et al., 1992). Its value is calculated using three 

pathological criteria: the size of the lesion; the number of involved lymph nodes; and the 

grade of the tumour (Todd et al., 1987; Elston et al., 1992). S is the size of the index lesion in 

centimetres, N is the number of lymph nodes involved: 0 =1, 1-3 = 2, >3 = 3 and G is the 

grade of tumour: Grade I =1, Grade II =2, Grade III =3 (Todd et al., 1987; Elston et al., 

1992).  

 

The index is calculated using the formula: NPI = [0.2 x S] + N + G. Scores calculated using 

this index are related to 5 year survival predictions (Table 5.1). 

Table 5.1: NPI score related to 5 year survival predictions 

 

Score 5-year survival 

>/=2.0 to </=2.4 93% 

>2.4 to </=3.4 85% 

>3.4 to </=5.4 70% 

>5.4 50% 

Table 5.1: Shows the scores calculated for all NPI criteria using the formula NPI = [0.2 x S] 

+ N + G and how they relate to five year predictions 
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5.1.7 Combined approaches for prognosis: NPI and Adjuvant!Online 

Computer-based models are now being combined with clinical characteristics of breast 

tumours, giving algorithms to predict risk of relapse (Geyer et al., 2009). One example of this 

is Adjuvant!Online whereby patient information such as age, clinical characteristics of 

tumour as determined by NPI, ER/PR status and lymph nodes involvement. The relative risk 

of survival and relapse at 10 years of (without additional therapy) is calculated as a guide for 

patient treatment options (Gribbon and Dewis, 2009) i.e. a guide as to whether or not 

oncologists should administer chemotherapy to a patient. 

5.1.8 Gene expression based techiques- Mammaprint, OncotypeDX  

High throughput molecular classification techniques are being used with increasing 

popularity. Collections of gene from different prognostic groups, such as ER+, are used as 

predictive signatures to further classify independent groups. The expression level of key 

genes by microarray analysis is a novel multivariate analysis to predict distant metastases. 

The first recognised prognostic signature used that compares gene expression profiles of 

breast tumours in both lymph node positive and negative tumours was developed by Agendia 

and is called MammaPrint (Van’t Veer et al 2002 and 2006). This technique uses a 70 gene 

signature to distinguish between patients that are likely to develop distant metastases after 5 

years and those that are not. Variations on this microarray based prognostic technique have 

been developed such as a 21 gene assay by OncoTypeDX, using 16 breast cancer-related 

genes and 5 normal ‘reference’ genes to give a recurrence score (RS) (a high RS denotes a 

poor prognosis) (Paik et al., 2004). These techniques have merit and MammaPrint is FDA 

approved and undergoing MINIDACT (Microarray In Node-negative Disease may Avoid 

Chemotherapy) patient trials. OncoTypeDX has been approved for use by the American 

Society of Clinical Oncology (ASCO). There are drawbacks with these technologies. 
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MammaPrint has limited efficacy for ER- tumours (Geyer et al., 2009) and using 

OncoTypeDX gene expression profiles are assessed for ER positive, lymph node negative 

breast tumours only (Paik et al., 2004). 

 

5.1.9 NGS sequencing in breast cancer- defining multiple subtypes with differential 

risks  

To further define molecular subtypes Curtis et al. utilised next generation sequencing (NGS) 

in a large cohort study. Next generation sequencing allows sequencing-by-synthesis reactions 

to be run in parallel in order to provide high throughput sequencing. This allowed copy 

number and gene expression to be analysed in 2,000 breast tumours (Curtis et al., 2012). 

Breast tumours are driven by genomic instabilities and changes in copy number (CNA-copy 

number alterations). However there exist large degrees of somatic (non-oncogenic) copy 

number variation (CNV) and single nucleotide polymorphisms (SNPs). The presences of 

CNAs, CNVs and SNPs in breast cancer genome were mapped by using NGS technology and 

this was integrated alongside gene expression to elucidate clearer breast cancer subgroups 

based on clinical outcome. This technique gives a method of understanding how CNAs affect 

gene expression profiles which could help to understand how different breast cancer types 

respond differently to therapies. Furthermore certain high risk subgroups were defined using 

this technique and this could be a starting point for future studies (Curtis et al., 2012). 

5.1.10 Limitations of these risk categories  

 Therapies tend to be tested in specific subgroups, for example lymph node negative ER+ 

patients with OncoTypeDX, instead of assessing risks across all individual patients. Defining 

risk at the individual level is more difficult therefore there is a requirement for more 
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comprehensive prognostic information. 

5.1.11: Kaplan-Meier analysis of common biomarkers in Breast Cancer 

Multivariate analysis of common breast cancer biomarkers was performed to elucidate the 

prognostic significance over a long follow up period (Hilsebeck et al., 1998). Cox 

proportaional hazards models coupled with diagnostic plots were evaluated for several 

factors: including tumour size, axillary lymph nodes and estrogen receptor (ER) status. This 

was completed for a large sample of breast cancer cases (N=2,873) with up to 17 years of 

follow-up for disease-free survival (DFS). Presence of positive nodes (axillary nodes) was 

found to be the most significant predictor of survival outcome with a hazard ratio of 1.86 

(P<0.0001). 

5.1.12 Telomere length as a prognostic marker 

Few studies have shown a direct statistical correlation between telomere length and 

prognosis. Correlations have been shown between telomere length and severity of disease, for 

example studies using paraffin embedded invasive human breast cancer samples have showed 

that tumours with the shortest telomere length had the greatest amount of metastasis 

(significance p < 0.05) (Heaphy et al., 2007). However no direct link has been used to 

determine whether telomere length can be used to predict survival in a statistically significant 

manner. 

 

 

 

 

5.1.13 Project Aims 
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Telomere lengths analysed by STELA, a high resolution single molecule strategy will be 

compared with clinical data received for all samples. Clinical data collected over a 5 year 

follow up period includes information about: receptor status, lymph node involvement, grade, 

morbidity, whether or not the patient has relapsed and HER2 status. Kaplan Meier analysis 

will allow the calculation of hazard ratios pertaining to survival statistics. By linking the 

clinical data with the calculated telomere lengths it is hoped conclusions can be drawn about 

telomere length as a potential prognostic indicator.  
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5.2 Results: 

To evaluate high resolution telomere length data as a prognostic marker in breast cancer 

clinical data was obtained from 120 patients samples from the Wales Cancer Bank over a 5 

year follow up period.  This data included information about survival, grade, lymph node 

status, relapse and age. 

The mean age of the cohort was 62 years old. 

For overall survival only deaths that were confirmed as related to breast cancer were included 

in the analysis (n=120) (Figure 5.1). 

Figure 5.1: Kaplan-Meier Curve for whole cohort 
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Figure 5.1: Kaplan-Meier curve including entire patient cohort with a total of 19 deaths. 

 

 

 

5.3 Relation between XpYp telomere length profiles and histological grade 

Mean telomere length and standard deviation at XpYp were calculated for each patient 

sample and grouped by grade. Grade 1 cells have the most normal cellular histology, and 

grade 3 cells have the most clonal and fast growing cellular phenotype. Plotting these values 



 

 

127 

 

on an XY scatter plot (figure 5.2a), revealed no significant difference between the telomere 

lengths in each subgroup (p=0.4; Figure 5.2a).  Given the relationship between telomere 

length heterogeneity and clonal composition, standard deviations were also compared to 

grade.   No significant correlation was found (p=0.6, figure 5.2b). 

Included in the plot containing SDs for each histological grade were the SDs that were 

obtained from single cell clones (Baird et al. 2003). This was plotted alongside the IDC data 

to illustrate that some of the tumours do have relatively homogenous distributions that are 

consistent with clonal growth.  Quantification of the proportion of tumours with telomeres in 

this range revealed that 20% of Grade I tumours were in the clonal range; 16% of Grade II 

and 30% of Grade III (giving an average of 22% across all grades). Telomeres in this range 

are shown below the red dotted line shown in figure 5.2b. 
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Figure 5.2a: Mean telomere length scatter plot for Grades 1-3 at XpYp 

 

Figure 5.2a: Figure shows a scatter plot of mean telomere lengths for each histological 

grade. Grade 1 is classed as the least severe subtype and grade 3 the worst in terms of 

prognosis. The P-values shown on the graph were from Student’s t-test to compare telomere 

means. 

 

Figure 5.2b: Standard deviation scatter plot for Grades 1-3 at XpYp 

 

Figure 5.2b: Figure shows a scatter plot of standard deviations (S.D.) for each histological 
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grade. Bartlett’s test for equal variances was not significant p=0.62. Alongside the S.D. 

values observed in the IDC samples is a collection of S.Ds obtained from single cell clones 

(from Baird et al., 2003) to demonstrate the percentage of IDC samples in this range (the 

upper standard deviation limit calculated for telomere lengths analysed in single cell clones is 

illustrated by a red dotted line to show the patients that fall in this range from the IDC cohort) 

 

 

 

5.4 Assessing the performance of the commonly used prognostic markers in IDC  

Kaplan-Meier analysis is a way of relating survival data, using survival curves, with 

prognostic factors such as the presence of hormone receptors. Kaplan-Meier statistics 

generate a hazard ratio which is a predictive value of the survival outcome i.e. a ratio of four 

would mean a patient with the presence of such factor would be four times more likely to die 

of the disease in unit time; a hazard ratio of one means that there is no difference in survival. 

 

 

5.4.1: ER, PR and HER2 status 

Firstly patients were grouped into two groups: ER positive and ER negative. Kaplan-Meier 

analysis showed that patients with ER positive subtypes had poorer prognosis than those 

without, with a hazard ratio of 3.096 (p=0.02). The survival curves were significantly 

different (figure 5.13).  

Partitioning patients based on progesterone receptor (PR) status, i.e. positive and negative. 

Kaplan-Meier survival curves generated for this clinical information were significantly 
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different and gave a hazard ratio of 2.798 (p=0.0364) (figure 5.14).  

HER2 positive patients were initially compared directly with HER2 negative patients for 

Kaplan-Meier survival analysis. The hazard ratio generated for this analysis was 1.549 and 

the survival curves were not significantly different (P=0.4513 Mantel-Cox test; figure 5.15).  

 

Figure 5.13: Kaplan-Meier of Survival vs. ER positivity 
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Figure 5.13: Kaplan-Meier curves showing the survival pertaining to Oestrogen receptor 

(ER) status showing ER negative patients having a predicted poorer prognostic outcome (HR 

3.096; p=0.0411) 
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Figure 5.14: Kaplan-Meier of Survival vs. PGR positivity 
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Figure 5.14: Kaplan-Meier curves showing the survival pertaining to Progesterone receptor 

(PGR) status showing PGR negative patients having a predicted poorer prognostic outcome 

(HR=2.798; p=0.0364) 

Figure 5.15: Kaplan-Meier of Survival vs. HER positivity  
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Figure 5.15: Kaplan-Meier curves showing the survival pertaining to HER2 status. There is 

no significant difference in the survival curves when using HER2 status as a prognostic 

factor. (HR=1.549; P=0.4513 Mantel-Cox test) 
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5.4.2: Kaplan-Meier statistics for Nottingham prognostic index and telomere length 

The Nottingham prognostic index (NPI) is used to determine prognosis following surgery for 

breast cancer. Kaplan-Meier analysis was applied to clinical data collected over a five year 

period for NPI for each patient. The Nottingham Grading system for breast cancer combines 

three main histological features:  nuclear grade, tubule formation and mitotic rate. Each factor 

is given a score of 1 to 3, 3 being most severe, for example cells that are most abnormal in 

appearance and mitotic rate would be scored 3. The score of all three components are added 

together to give the "grade". A score of 3-5 is considered low grade (I); a score of 6-7 is 

graded intermediate (II) and 8-9 would be classified as high grade (III). 

Patients were partitioned by NPI values into three groups: <3.4, 3.4-5.4 and >5.5. The 

resulting survival curves show a significant difference (P=0.0033) between each group, with 

a lower NPI score relating to better survival outcome over time (figure 5.16). 

Figure 5.16: Kaplan-Meier of Survival vs. NPI 
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Figure 5.16: Partitioning patients by NPI values show a significant difference (P=0.0033) 

between each group, with a lower NPI score relating to better survival outcome over time 

 

5.5: Telomere length (XpYp) vs survival using Kaplan-Meier curves 

Telomere length data collected for XpYp was correlated with survival statistically using 

Kaplan-Meier survival curves. Original means calculated from STELA blots and Gaussian 

adjusted means were used for Kaplan-Meier analysis due to the presence of bimodal telomere 

length distributions (chapter 4-telomere length analysis). Comparisons of the two mean 

groups for survival analyses were almost identical in outcome (P<0.001). It could be 

concluded that removing a few outliers from mean distributions using Gaussian statistics was 

not affecting the overall means from the dataset (data not shown). 

As several tumours exhibited bimodal telomere-length distributions as discussed in chapter 4 

STELA profiles were thus reanalysed so that only telomere lengths in the lower bimodal 

group where used for the survival analysis. This would thus account for any infiltrating 

telomere lengths from other cell types and just measure the mean for the lowest clusters of 
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telomeres that are hypothesised to be more closely reminiscent of the tumour cell types. 

Results from Kaplan-Meier curves showed that telomere lengths below 2.26 kb had the most 

significant (p < 0.0001) negative impact on survival (figure 5.17; patients had a hazard ratio 

of 87080 and thus are 87080 times more likely to die from invasive ductal carcinoma if they 

have a mean telomere length that is below 2.26kb. The hazard ratios calculated for this data 

set are the highest hazard ratios that have been documented for breast cancer survival.  The 

data clearly identifies a subset (7%) of patients with IDC that exhibit a considerably reduced 

survival (median survival 0.95 years).  

 

 

 

Figure 5.17: Kaplan-Meier analysis curves for data recursively partitioned by 2.26kb 
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Figure 5.17: Patients partitioned by telomere length 2.26 kb gave significant prognostic 

outcome for survival (HR= 87080; p<0.0001) 

 

 

 

 

 

 

 

5.6 Recursive partitioning 
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To establish if the 2.26 kb represented the optimal threshold for prognostication in breast 

cancer recursive partitioning was performed. The mean telomere length of the whole cohort 

was 4 kb, so this was used as a starting point for partitioning the data. Means above and 

below this value were also used, from 4.5 kb to 1.79 kb (lower quartile (Figure 5.18a and b).  

Partitioning data by the higher means showed low hazard ratios of below 1 and no significant 

difference in curves (P=0.6 for TL 4.0kb; p=0.8 for TL 4.5kb). As the length of the telomere 

mean used to partition the data decreased the hazard ratio began to increase gradually: at TL 

3.0 kb the hazard ratio was 3.4 (p=0.03) rising to over 87,000 at 2.26 kb (figure 5.19). 

 It was clear that the threshold telomere length below which telomeres have been shown to 

readily undergo fusionsis most prognostic in IDC. 
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Figure 5.18a: All Kaplan-Meier plots from rescursive partitioning by telomere lengths of 

4.5kb and 4.0kb gave low hazard ratios of  0.9874 (p=0.8) and 0.8370 (p=0.6) respectively. 

Curves showed no significant difference when partitioning data by these telomere length 

means. 

Figure 5.18a : Kaplan-Meier curves for TL 4.5 and 4.0 
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Figure 5.18b: Rescursive partitioning by shorter telomere lengths of 3.0kb and 2.5kb gave 

higher  hazard ratios (3.4 and 404.4 respectively) with significantly different curves (TL of 

3kb p=0.03 and TL of 2.5 p<0.0001) showing the shorter the telomere the more significant 

the curve separation. 

 

Figure 5.18b: Kaplan-Meier curves for TL 3.0 and 2.5 
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Figure 5.19 Summary HR plot that confirms the 2.26 kb threshold: 
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Figure 5.19: Plot of all hazard ratios calculated following the stratification of patients based 

on the mean XpYp telomere length as indicated on the X-axis.  

 

5.7 Telomere length splits prognostic subsets based on NPI, ER, HER2 and PGR status 

5.7.1 ER: 

As mentioned previously correlations between ER status and survival using Kaplan-Meier 

plots resulted in the calculation of a hazard ratio of 3.096 (p=0.02) (figure 5.13). The 

combined analysis of telomere length with  estrogen receptor status showed that telomere 

length was able to split the good and bad prognostic ER subgroups. Kaplan-Meier curves 

showed that ER positive and ER negative patients had the worst survival outcome if their 

telomeres were below 2.26kb, and patients with longer telomeres had fewer deaths over time 

(both ER positive and ER negative) (figure 5.20). This data indicate that telomere length is 

independent of ER status for prognosis in IDC.  
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Figure 5.20: Kaplan-Meier of ER positivity and Telomere length vs. Survival 
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Figure 5.20: Multivariate analysis using ER status and the prognostic telomere length 

threshold of 2.26kb highlights the prognostic power of telomere length independent of steroid 

hormone receptor status. Both ER positive (blue) and ER negative (red) have a worse 

prognosis with telomere lengths below 2.26kb (shown on graph as dashed lines). 

 

5.7.2 PR status 

The patient data assessed previously using Kaplan-Meier curves was again grouped by 

telomere length above and below the threshold of 2.26kb. None of the patients with short 

telomeres were PR positive. However, regardless of PR status, the patients with short 

telomeres and negative PR status had a worse predicted survival outcome than PR positive 

patients with long telomere profiles (Figure 5.21). Comparison of PR positive patients with 

long telomeres to PR negative patients with short telomeres gave a hazard ratio of 21900. 
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This is a much higher hazard ratio than was calculated for PR status alone. 

 Figure 5.21: Kaplan-Meier of Survival vs. PGR positivity and Telomere length 
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Figure 5.21: Multivariate analysis using PGR status and the prognostic telomere length 

threshold of 2.26kb highlights the prognostic power of telomere length independent of steroid 

hormone receptor status again. Both PR positive (blue) and PR negative (red) have a less 

severe prognosis with telomere lengths above 2.26kb (therefore ‘long’)(shown on graph as 

dashed lines), however no patients fell into the category of PGR positive and short. 

 

 

5.7.3 HER2 status  

On factoring in the telomere length profiles for each patient and partitioning HER2 status by 

a telomere length profile of above and below 2.26kb, the survival curves changed 

dramatically. As seen with the other subtypes, HER2 status was not the defining factor, but all 

patients with short telomere length profiles had a worse survival prediction over time. 

Kaplan-Meier curves generated for this analysis are shown in figure 5.22.  However these 

observations should be taken with the caveat that the two inferior curves contained just 2-3 

patients. 
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Figure 5.22: Survival of patients positive for HER2 vs patients with short Telomere 

length 
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Figure 5.22: HER2 status was partitioned by telomere length. Both HER2 positive (blue) and 

HER negative (red) have a worse prognosis with telomere lengths below 2.26kb (shown on 

graph as dashed lines), however there is only a small number of patients in this grouping. 

 

5.7.4 NPI 

Combined analysis of telomere length with NPI was also carried out. Telomeres in each 

group (short/long) were categorised by a score of above 5.4 as this was shown to have the 

biggest impact on survival. Findings reveal that IDCs with short telomeres and an NPI score 

of >5.4 had a worse prognosis than those with long telomeres (figure 5.23). The hazard ratio 

calculated from this was 68.14, which is extremely high compared to hazard ratios calculated 

previously for breast cancer. This means that patients with a score of above 5.4 and short 

telomeres were 68 times more likely to die of the disease than those with long telomeres and 

the same NPI scores. This again shows the importance of telomere length as a prognostic 

predictive factor for breast cancer survival outcome.  
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Figure 5.23: Kaplan-Meier of Survival vs. NPI partitioned by Telomere Length 

0 500 1000 1500 2000 2500
0

20

40

60

80

100
NPI >5.4 short tel

NPI >5.4 longt tel

NPI vs. Telomere length

Days

P
e
rc

e
n

t 
s
u

rv
iv

a
l

Hazard Ratio

Ratio

95% CI of ratio

68.14

4.933 to 941.1
 

Figure 5.23: Partitioning patients by telomere length proved more significant than the worst 

NPI score (HR=68.14, p=0.0016) 

 

5.8 Grade 

XpYp telomere lengths grouped as long and short (above and below 2.26kb) were compared 

with survival in groups II and III. Comparing patients with short telomeres in group III gave a 

hazard ratio of 226 (p<0.0001; figure 5.24), i.e. patients with a short telomere length profiles 

are more likely to die from the invasive ductal carcinoma than patients with long telomeres in 

the same grade group. A similar and striking observation was also found with data for 

patients in the grade II group. The hazard ratio calculated comparing telomere lengths in this 

grouping was over 7x10
13

, however the inferior curve contained just 2 individuals (figure 

5.25). 

 

Figure 5.24 Patients partitioned by Grade III for TL 2.26kb 
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Figure 5.24: Patients displayed on survival curve are all grade III for NPI score and 

partitioned by telomere lengths of 2.26kb i.e. above 2.26kb classified as ‘long’. Curve 

comparison is statistically significant (P<0.0001) and telomere lengths below 2.26kb are 

prognostic with a hazard ratio of 226. 

Figure 5.25 Patients partitioned by Grade II for TL 2.26kb 
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Figure 5.25: Patients displayed on survival curve are all grade II for NPI score and 

partitioned by telomere lengths of 2.26kb i.e. above 2.26kb classified as ‘long’. Curve 

comparison is statistically significant (P<0.0001) however only 2 individuals are represented 

on the inferior curve and thus the high hazard ratio may not be an adequate representation. 
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5.8: Kaplan-Meier survival analysis for Relapse verses Telomere Length 

The risk of relapse is much higher triple negative breast carcinomas than hormone related 

subtypes for the first 5 years. After this time point, research shows the risk of relapse 

decreases below that of hormone-positive breast carcinomas.  

Clinical information about whether or not there has been a relapse was compared with the 

telomere length profiles for each patient and was analysed by Kaplan-Meier statistics. 

Relapse data pertains to any patient that has had a recurrence i.e. cancer cell growth that 

arises after initial treatment/detection. Recurrences can occur months or even years after the 

initial treatment, and either in the same place as the original tumour site (‘local recurrence’) 

or distant metastases including bones, skin, liver, lungs or brain. Results from input of this 

information gave a hazard ratio of 2252 (p value=0.0002) (figure 5.26), showing that patients 

with short telomeres were more likely to relapse than those with longer telomeres. 

Figure 5.26 Survival for Relapse vs. Telomere length 
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Figure 5.26: Patients in the ‘short’ telomere category have telomeres of 2.26 and below and 

show a poorer prognosis in terms of relapse HR= 2252; p value=0.0002. 
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5.9.1: Discussion: Telomere length as a prognostic factor 

The most striking observation from the clinical of analysis of this breast cancer cohort 

analysed for telomere length at XpYp is that stratification of patients based on the threshold 

telomere length at which fusion occurs (2.26kb) reveals a remarkable level of prognostic 

power for overall survival. Breast cancer is a heterogeneous disease and there are some breast 

tumour types and are more likely to relapse/ metastasise (Schmidt et al., 1984; Crowe et al., 

1991). To prevent this, a large number of patients receive some form of adjuvant therapy, 

many of which can be detrimental to quality of life and even cause the patient to develop 

leukaemia (Kaplan et al., 2007). Biomarker discovery is important to provide more prognosis 

of breast cancer patients as the standard methods (e.g. NPI, hormone status) do not give a 

clear prediction for relapse and patients are often over treated as a result (Weigelt et al., 

2005). The development of microarray techniques, such as MammaPrint (Van’t Veer et al., 

2005), has allowed gene expression profiles to be used as a way to assess breast cancer 

subtypes. These techniques are becoming more widely used and are being approved for 

patient trials, however these gene expression profiles tend to be tested in specific subgroups, 

such as ER positive, and could not be used for all individuals and provide little information 

on overall survival. Newer NGS technology allows the sequencing of entire breast cancer 

genomes to be paired with microarray data to give a better definition of breast cancer 

subtypes (Curtis et al., 2012). 

5.9.2 Telomere length and prognosis in the literature 

 A few studies have correlated telomere length with breast cancer severity, for example in a 

study by Heaphy et al., mean telomere lengths for all chromosomes were assessed in four 

different mammary tumour subtypes: luminal A, luminal B, HER2 and triple negative 

(Heaphy et al., 2010). Luminal A tumours tend to be less aggressive than luminal B subtypes 
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and respond better to oestrogen receptor targeting. Triple negative tumours and tumours 

overexpressing HER2 tend to convey poor prognosis. Findings from applying telomere FISH 

to detect telomere lengths in each subtype of mammary cancer revealed a mean shorter 

telomere length in the more aggressive subtypes: luminal B, HER2 and triple negative. 

Longer mean telomere lengths were recorded for luminal A carcinomas. This research shows 

a correlation between telomere shortening and established prognostic subtypes of breast 

cancer. Telomere lengths were qualitatively scored by direct visual assessment of stained 

slides (FISH) and this method is very subjective and relies on telomeres that are long enough 

to be detected by fluorescent probes. This research does point towards telomere length as a 

useful tool for determining prognostic outcome however using STELA for higher resolution 

of telomere length quantification in different tumour subtypes has already shown an 

extremely significant outcome when calculating survival proportions.  

5.9.3 Telomere length as a biomarker 

 Numerous studies have looked at common biomarkers, such as Her2/ER, that confer risk or 

hazards for breast cancer related unfavourable events i.e., death due to breast cancer, breast 

cancer recurrence, or development of a new primary breast tumour. To date, not many of 

studies have looked at telomere length in relation to breast cancer risk for survival and local 

recurrence. A study by Zhou et al. aimed to investigate whether telomere length in normal 

breast epithelial cells surrounding the tumour is predictive of breast cancer local recurrence 

(LR) (Zhou et al., 2011).  Previous studies have shown that very short telomere length is a 

common genetic abnormality in pre-malignant breast lesions and early breast cancer cells. 

Results from using FISH to detect telomere lengths in samples showed that smaller telomere 

length variation (TLV) in normal epithelial cells adjacent to the tumour had a significantly 

increased risk of LR. More heterogeneous distributions were associated with significantly 

better 10-year recurrence free survival. TLV in normal epithelial cells surrounding the tumour 
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was more significantly associated with LR risk compared with tumour cells. This is evidence 

towards the hypothesis that LR after surgery to remove tumour tissue can be in part due to 

failure to remove sufficient pre-cancerous cells in the vicinity of the tumour bed margins. 

Telomere length variation studies could reflect the recent cell proliferative history. This study 

had flaws however, the sample size was relatively small and the distance between normal 

epithelium and tumour cells was unknown.  

Experiments looking at hazard risk for survival have shown that telomere content (TC) 

determined by slot blot analysis, predicts breast cancer–free survival, independent of other 

clinical and prognostic factors (Griffith, et al., 2006; Heaphy, et al., 2007). Experiments by 

Heaphy et al. showed that tumours with a low TC content compared with a placental DNA 

standard conferred a hazard ratio for overall breast cancer survival as 2.25 (95% CI, 1.09-

4.64; P = 0.029). Another study by Griffiths et al., showed that low TC conferred an 

unadjusted relative hazard of 4.39 (95% CI=1.47–13.08; p=0.008) relative to high TC. These 

hazard ratios are low compared with the hazard ratios calculated from telomere length data 

generated by STELA. STELA data has not only provided the highest recorded hazard ratios 

documented for breast cancer, but appears to be a more powerful biomarker than current 

biomarkers used such as HER2 and ER status. This is because telomere length analysis is 

applicable to all patients and is thus a universal prognostic marker that is highly prognostic 

independent on the presence of cell receptor status. This analysis was carried out in a small 

cohort, however even though only 7% of patients were in the short telomere category, 

statistically comparing telomere length as a survival factor against common biomarkers 

revealed extremely high hazard ratios and thus this need to be tested in larger cohorts for 

validation. In a review of 107 studies, assessing around 40,000 patients, HER2 status was 

documented as having a relative risk of 2.74 (CI: 1.39-6.93) for poor prognosis (Ross et al., 

2009) which is similar to the hazard ratio attained from the clinical data received for this 
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dataset for IDC, but on a much larger scale. Telomere length however greatly exceeds this 

value. It is thus fair to conclude that telomere length has a much higher prognostic power 

than ER, HER2 and NPI status. Telomere length has already shown to be highly prognostic in 

a completely different type of cancer (CLL; Lin et al 2010) with the exact same prognostic 

threshold length. It could thus be speculated that this threshold length is a biological constant 

below which telomere dysfunction occurs. 

5.9.4 Telomere length as a biomarker in human disease 

Abnormal telomere lengths have been documented as being a contributing factor in many 

pathological conditions, not only cancer but age-related diseases and premature ageing 

syndromes [Reviewed by Blasco, 2005]. Telomere length is regulated epigenetically by 

changes to chromatin structures (Ahmad & Henikoff, 2002; Garcia Cao et al., 2004.) Thus 

diseases that have epigenetic defects may have abnormal telomere length regulation, such as 

patients with Rett’s syndrome that have mutations in MECP2 (Ahmad & Henikoff, 2002; 

Blasco, 2005). 

TRF2 protects the G-rich overhang at the telomere terminus and interacts with repair proteins 

such as ATM (Smogorzewska and de Lange, 2004; Karlseder. et al., 2004). Links have been 

shown between defects in DNA damage repair and short telomeres as having a causal role in 

some diseases such a Nijmegen break syndrome (Ranganathan et al., 2001). TRF2 loss has 

been shown to cause an increase in telomere fusions (van Steensel, 1998), and components 

that associate with TRF2 such as NSB1 are implicated in the genomic instabilities in diseases 

(Ranganathan et al., 2001), thus telomere fusion and defective DNA damage repair may be 

driving genomic instabilities that give rise to a whole host of diseases. Other diseases linked 

to defective DNA damage repair and genomic instability such as Fanconi Aneamia have been 

correlated with short telomere length (Callén et al., 2002). A large percentage of patients with 

Fanconi Aneamia go on to develop haematological cancers [Reviewed by Alter, 2003], thus 
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the use of STELA as a biomarker could reflect prognostic severity of condition and may be a 

way of predicting clinical outcome in patients with this condition. Short telomeres have been 

correlative with poor prognosis in patients with heart disease and infections and thus it is not 

onlyage-related diseases and cancer that may have some type of telomere dysfunction 

(Cawthon et al., 2003). 

 Thus using STELA as a high resolution technology to assess telomere length analysis may be 

applicable to a whole host of human disorders, and not just cancer prognosis. 

5.9.5 Telomere length is a driving force behind progression to malignancy 

Studies in vivo have shown the presence of extremely short telomeres across all Binet’s 

stages of CLL, getting progressively shorter with poorer prognostic groups. Telomere erosion 

to lengths at which cells are in crisis, in ranges that have been shown to display high 

frequencies of telomere fusions in vitro have been observed in CLL and correlated with an 

increase in genomic instability. Furthermore some earlier stage CLL patients also exhibited 

telomeres in the dysfunctional length range (Lin et al., 2010). Telomere erosion is thus 

considered to have a causative role in the genomic instabilities that drive progression to 

malignancy. In this breast cancer cohort (IDC) short telomeres within the dysfunctional range 

have been observed across all NPI grades and seem to be independent of receptor status 

(HER2/ER), although with a small cohort it is difficult to draw significant conclusions. It 

would be interesting to expand this cohort with a variation of different subtypes, not just 

differing in receptor status but in invasive vs. in situ to assess telomere lengths across 

subtypes. I would expect that telomeres of critical lengths would be evident in all subtypes, 

but perhaps more so in the later stages. It is possible that in breast cancer telomere erosion is 

an early event, acting as a driving force behind progression to malignancy. Telomere erosion 

has been shown to be facilitated by the inability of DSB checkpoints to recognise dysfunction 

allowing cells to divide past crisis both in vitro with the abrogation of p53 (Lin et al., 2010) 
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and in CLL samples (Britt-Compton et al., 2012). LOH studies in breast cancer have shown 

the loss of p53 and ATM,  in the earliest stages of breast cancer (Shen et al., 2000) which 

supports the hypothesis that short telomeres in the absence of functional DNA damage 

responses are driving chromosomal instabilities and the progression to malignancy.  

Telomerase is found to be overexpressed in the majority of human cancers (Shay and 

Bachetti, 1997). Telomerase activation must occur in later stages of cancer as a way of 

preventing mitotic catastrophe. TERT expression in AML illustrates this process whereby 

clonal expansion of leukemic cells leads to telomere shortening and then is reactivated to 

avoid cellular senescence (Hartmann et al., 2005). Some later NPI grades have longer 

telomeres, and this could be evidence that there is a two-step process at work – first, in the 

absence of telomerase telomeres get shorten and chromosomes fuse together. Then 

telomerase is reactivated rendering cancer cells immortal. One way to verify this would be to 

apply the TRAP (Telomeric repeat amplification protocol) assay to the breast cohort to assess 

the role of telomerase in the mutagenic process. Studies in telomerase negative fibroblast cell 

lines have shown that the shortest telomeres are preferentially elongated in human cells 

(Britt-Compton et al., 2009), therefore it would be interesting to assess the expression of 

telomerase in the breast cancer cohort.  In 15% of human cancers an alternative telomere 

lengthening mechanism (ALT) has been documented (Bryant et al., 1997). It is possible that 

some of the very heterogeneous telomere length profiles are indicative of this rarer 

recombinational based mechanism for telomere elongation and thus apoptotic avoidance. 

 

5.10 Conclusions and future work: 

High resolution analysis of individual XpYp telomere lengths within this cohort has revealed 

a significant association between telomere length and survival statistics. Telomeres below the 

threshold length of 2.26kb have previously been shown to be dysfunctional when observing 
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the high frequency of fusions involving telomeres of this length and below (Capper et al. 

2007). This analysis of 120 patients with invasive ductal carcinoma of the breast has further 

confirmed the strong prognostic power of telomere length. Further work with a larger cohort 

of patient samples with varying breast cancer subtypes would be required to substantiate the 

correlations between short telomere length and poor prognosis. An interesting aspect would 

be to analyse telomere lengths in samples with varying severity of prognosis in breast 

neoplasia. Using STELA, along with a much larger dataset in breast cancer could provide a 

potential powerful prognostic marker not just for breast cancer, but also for human diseases 

that are characterised by chromosomal instability. 
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Chapter 6: an Analysis of Telomere fusion in Invasive Ductal Carcinoma 

6.1 Abstract 

The successive shortening of human telomeres as a natural function of age can induce 

replicative senescence (M1), which is the arrest of cellular division in response to DNA 

damage via the p53 and pRb (cell-cycle checkpoint) pathways.  This process allows 

telomeres to act as a tumour suppressor mechanism that confers a barrier to unlimited cell 

division. In the absence of a functional DNA damage response, cells can bypass replicative 

senescence and telomeres erode further until cells are in the crisis/M2 stage. Telomeres in 

crisis have lost their ability to form a protective cap at the telomeric ends. Fusion of short 

dysfunctional telomeres can result in the formation of dicentric chromosomes and the 

initiation of cycles of anaphase bridging, breakage and fusion, which in turn can cause large-

scale, potentially oncogenic, genomic rearrangements such as non-reciprocal translocations, 

aneuploidy and gene amplification. 

To examine the extent of telomere fusion in breast cancer I applied a single molecule 

telomere fusion assay to 40 patients with invasive ductal carcinoma (IDC). Unfortunately the 

dilute nature of the DNA extractions received from the Wales Cancer Bank limited the 

detection and sequencing of numerous putative fusion events.  However putative telomere 

fusion events were detected; only one of which could be characterised at the DNA sequence 

level this was observed in one patient with grade III IDC, and a telomere length mean of 

1.79kb.  This event involved the XpYp and XqYq telomeres and may have resulted in the 

generation of an Xp/Xq ring chromosome Whilst preliminary these findings are consistent 

with the view that short telomeres in IDC are capable of fusion and that this may in turn drive 

genomic instability in this disease.  
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6.2 Introduction to experiments 

6.2.1  Genomic instability and telomere dysfunction in Cancer: 

Genomic instability is thought to be a key mechanism by which cells accumulate a succession 

of mutations needed for cancer progression (Loeb, 2001; Kwei et al., 2011). There are many 

hallmarks of genomic instability that have been observed in different types of cancer 

(Lengauer et al., 1997; Negrini et al, 2010). One of which is the presence of aneuploidy. 

Aneuploidy is a way of describing cells that have an abnormal number of chromosomes 

resulting in incorrect chromosomal segregation during cell division (Sen, 2000) and has been 

extensively documented as a hallmark in many types of cancer (Reviewed by Ross et al., 

2003). In colorectal carcinoma aneuploidy has been extensively correlated with progression 

to malignancy via an increase in detectable aneuploidy at the adenoma-carcinoma transition 

(Okamoto et al., 1988; Reid et al., 1996; Rudolph et al., 2003). 

6.2.2 Genome instability and telomere dysfunction in cancer 

 Telomeres have been shown to provide a protective ‘cap’ and thus have a key role in 

upholding genomic integrity (Murnane, 2006, Capper et al., 2007).  Several studies have 

correlated hallmarks of genomic instability with an increase in telomere dysfunction and have 

thus proposed telomere dysfunction as a mechanism that gives rise to types of genomic 

instability (Artandi and DePinho, 2000; Rudolph et al., 2001). Telomere dysfunction can lead 

to the formation of dicentric chromosomes/anaphase and this causes cycles of BFB 

(McClintock, 1941). Cycles of BFB can result in the loss/gain of genetic material or NRTs 

(Lo et al., 2002), compromising the integrity of the genome and thus forming potentially 

oncogenic rearrangements. In vivo experiments using telomerase knockout mice, showed an 

increase in detectable NRTs correlated with shorter telomeres, and an increase in the 

formation of epithelial tumours (Artandi et al., 2000). Another study by Rudolph and 

colleagues used anaphase bridge formation as a hallmark of telomere dysfunction, by way of 



 

 

156 

 

studying telomere dysfunction within a human malignancy (Rudolph et al., 2001). Sporadic 

human colorectal tumours at different prognostic stages were observed microscopically to 

determine the proportion of anaphase bridges, and found that the proportion of anaphase 

bridges increased with higher colorectal tumour grades (Rudolph et al., 2001). This increase 

in anaphase bridges was not however consistent in metastatic cells and it was thus 

hypothesised that telomere dysfunction is a driving force behind genomic instability but is an 

early mechanism driving transition from benign to malignant stages (Rudolph et al., 2001).  

 

6.2.3 Telomere fusions detected in cancer: Telomere fusions in Osteosarcoma 

Osteosarcoma (OSA) is the most common form of bone cancer found in mammals and 

canines and is known to display a large spectrum of karyotypic abnormalities. FISH was 

applied to canine OSA cell lines in order to study telomere dysfunction via the presence of 

telomere fusions as a novel prognostic marker (Maeda et al., 2012). Findings revealed 

numerous telomere fusions and interstitial telomere signals in all OSA cell lines that were 

also displaying DNA damage (assessed by co-localisation of γH2AX and telomere signals in 

interphase cells). Telomere fusion analysis was thus hypothesised as a possible diagnostic 

tool. 

 

6.2.4 Telomere fusions in Haematological cancer 

 In CLL clear evidence of large scale genomic instability was observed in samples displaying 

telomere dysfunction (Lin et al., 2010). Telomere dysfunction was assessed by using STELA 

coupled with a single molecule assay to detect telomere-telomere fusions. Work by Lin et al. 

showed a direct observation of short telomeres fusing and higher fusion frequencies were 

correlated with increasing severity of CLL according to Binet’s staging (Lin et al., 2010). 

This is a good example of how dysfunctional telomeres could be driving the progression to 
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malignancy. Sequence analysis of telomere fusion events from CLL patient samples showed 

certain mutational characteristics such as large-deletion events that included both the 

telomere and sub-telomeric DNA (Lin et al, 2010).  Telomeres were also shown to fuse close 

to fragile sites and regions of microhomology at the point of telomere-telomere fusion, which 

may provide clues to how telomeres fuse and whether they have a tendency to fuse at certain 

loci (Lin et al, 2010).  

6.2.5 Genomic instability and telomere dysfunction in breast cancer 

Studies have proposed a link between telomere dysfunction, genomic instabilities and the 

progression of cells to malignancy (Rudolph et al., 2001).  Demonstrations of this 

phenomenon of early telomere dysfunction driving genomic instability and progression of 

breast cancer are circumstantial. One study found an increase in anaphase bridges as a marker 

for telomere fusion in breast cancer samples via fluorescent in situ analysis (Chin et al., 

2004). Human mammary epithelial cells in crisis in culture were compared with different 

breast cancer patient samples in different stages (ranging from atypical to invasive) to support 

their hypothesis/model that transition through telomere crisis is a crucial event in the 

progression of breast carcinomas. Observations of short telomeres and an increase in 

anaphase bridges were correlated with the adenoma to carcinoma transition in breast cancer 

samples implicating telomere dysfunction as an early event in breast cancer. These studies 

were carried out in a relatively small patient cohort of 31 patient samples, 4 of which 

displayed anaphase bridges (Chin et al., 2004). Telomere length analysis by FISH is limited 

in its ability to detect telomeres that are short enough to be in crisis due to the limited 

capacity of the probe to hybridise to shorter telomere repeat arrays (Baird et al., 2003). The 

‘short’ telomeres in this cohort were defined as being 4.5 kb, however telomere thresholds of 

cells in crisis below which they are believed to be dysfunctional have been detected as below 

1kb (Capper et al. 2007). Therefore, though there are examples of correlations between 
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telomeres and genomic instability in the progression of breast cancer (Artandi et al., 2000; 

Chin et al., 2004), there has not been a direct validation that telomeres become short enough 

to lose their end-capping function and undergo fusion. 

 

 6.2.6 Detecting Telomere Fusions in vitro using Single molecule techniques  

There are limitations with a lot of current techniques of detecting telomeres short enough to 

warrant them being dysfunctional, i.e. that have lost enough telomere repeats to have lost 

their protective cap. The development by Baird and colleagues of a single molecule telomere 

length analysis and high resolution fusion PCR has since enabled the characterisation of 

fusion events both in vitro and in vivo (Capper et al., 2007; Letsolo et al., 2010; Lin et al., 

2010). STELA or ‘single telomere length analysis’ has been used to detect short telomeres 

that are of a length at which they readily undergo fusions. Cells that have been forced to 

bypass senescence have been shown to lose telomere repeats and increasingly fuse with other 

telomeres (Capper et al., 2007). This telomere fusion assay was initially developed for the 

well characterised chromosome ends XpYp and 17p, but has since been expanded to 

encompass around 43% possible telomere-telomere fusions in the human genome by 

including oligonucleotides to detect fusions in the 16p and 21q groups of telomeres. Using 

the additional 16p and 21q primers in the existing assay for telomerase expressing HEK 293 

cells and E6/E7 HPV expressing MRC5 cells, Letsolo et al. found an increase in the number 

of detectable fusion events. Furthermore an increase in the number of detectable fusion 

events compared with the original XpYp/17p fusion analysis was observed. All the fusion 

events that were sequenced involved the deletion of either one or both of the telomeres, these 

deletion events extended into the telomere-adjacent DNA. Microhomology was observed at 

multiple fusion junctions. Due to the characteristics of the sequenced fusion events, an 

alternative NHEJ mechanism, likely a microhomology mediated pathway (MMEJ) that is 
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error prone and biased towards G:C base pairs has been hypothesised as the repair process 

that is enabling the telomere-telomere fusions. 

 

6.3: Project Aims 

The aim of this work was to use single-molecule tools for detecting telomere fusion to 

examine the frequency and nature of fusion in breast cancer. These assays were applied to a 

panel of 36 samples of tissue DNA from invasive ductal carcinoma of the breast.  This will 

test the hypothesis that telomere fusion occurs in breast cancer and has the potential to drive 

genomic instability and clinical progression. 
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6.4: Results: Detecting fusions in patients with short telomere distributions 

A single molecule PCR-based assay was developed previously using oligonucleotide primers 

targeted to the telomere-adjacent sequences of specific telomeres, to around 6 kb from the 

telomere repeat array pointing toward the telomere (Capper et al., 2007; Letsolo 2010). 

Detection of specific products by Southern hybridisation with telomere specific probes allows 

telomere-telomere fusion events to be visualised. So far this assay has been designed for used 

with XpYp, 17p, 21q and 16p specific primers (Figure 6.1).  

 

Figure 6.1: Telomere fusion oligonucleotide primer design: 

 

 

Figure 6.1: Figure shows the relative position and orientation of various oligonucleotides 

used in the fusion PCR and probe detection on the Southern blot. Black lines represent 

chromosomes and the black squares on the right hand side of each chromosome represent 

telomere repeat arrays.  Adapted from Letsolo et al. 2010 

 

 

Using the telomere fusion assays on cells undergoing crisis in culture (Capper et al., 2007 and 

Letsolo et al., 2010) and CLL samples ex vivo (Lin et al., 2010) it was apparent that cells 

exhibiting shorter telomere length profiles display higher frequencies of fusion events.  
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Breast DNA samples with the shortest mean telomere lengths were therefore selected for use 

in the fusion assay. Both mean telomere lengths and the telomere length profiles were taken 

into account when choosing patients to screen for telomere fusions. Similar experiments in 

CLL have revealed a threshold telomere length detectable by STELA below which telomeres 

become capable of fusion (3.8 kb; Lin et al. in prep). This meant that telomeres around or 

below this threshold were selected first for use in the fusion assay.  MCF7 and HEK-293 cells 

both express telomerase and maintain their telomeres at a short length and were used as 

positive controls for fusion analysis studies. Figures 6.2, 6.3 and 6.4 show examples of the 

STELA profiles of patients with short telomere distributions and the resulting fusion bands 

detected by southern blot at 17p (figure 6.2), 21q (figure 6.3) and 16p (figure 6.4) telomeres. 
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Figure 6.2: STELA profile with associated fusion band detection at 17p 

 
Figure 6.2:  (A) STELA blot for 8 patients with IDC showing mean telomere length (kb) and 

lower 25
th

 percentile below each patient. (B) The resulting fusion bands were detected by 

Southern hybridisation with the 17p telomere adjacent probe. 
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Figure 6.3: STELA profile with associated fusion band detection at 21q 

 

 

Figure 6.3:  (A) STELA blot for 8 patients with IDC plus a 293 control (HEK-293 cells) 

showing mean telomere length (kb) and lower 25
th

 percentile below each patient. (B) The 

resulting fusion bands were detected by Southern hybridisation with the 21q1 telomere 

adjacent probe 
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Figure 6.4: STELA profile with associated fusion band detection at 16p 

 

 

Figure 6.4:  (A) STELA blot for 5 patients with IDC plus a 293 control (HEK-293 cells) 

showing mean telomere length (kb) and lower 25
th

 percentile below each patient. (B) The 

resulting fusion bands were detected by Southern hybridisation with the 16p telomere 

adjacent probe 
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6.5 Constant fusion product 

Hybridisation of Southern blots with 21q and 16p probes resulted in the production of a 

constant banding pattern with products of the same size across multiple reactions from 

different individuals. This type of pattern has been observed previously in our lab (Letsolo et 

al 2010) when using the 21q and 16p probes are thought to result from cross-hybridisation of 

probes with interstitial loci that share homology with the families of each telomere group.  

These therefore represent an internal DNA loading control and control for the Southern 

hybridisation. Typically 100-200ng of high molecular weight DNA are analysed per fusion 

reaction, this results in strong uniformly hybridising constant bands with the 21q and 16p 

probes (See Figure 6.5) (Letsolo et al 2010).  In contrast, the fusion analysis of the breast 

cancer samples showed that the uniform constant band is often not present, or present only in 

occasional reactions in any one sample (Figure 6.6) This is consistent with dilution of this 

DNA molecule to the single molecule level.  Unfortunately the concentrations of DNA 

available from the breast cancer samples provided by the Wales Cancer Bank were too low 

for an adequate analysis with a mean concentration of just 31ng/ul.  Most of these samples 

were below the detectable range of the spectrophotometer or the fluorometer used to estimate 

the concentration of DNA.  Thus the analysis of the breast cancer sample was suboptimal, but 

nevertheless some useful data could be obtained. 
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Figure 6.5: Typical Fusion Reactions using 100 ng HEK-293 DNA  

 

Figure 6.5:  The outcome of a standard fusion PCR assay with sufficient concentrations 

(100ng/ul) 293 DNA. On hybridisations with 21q and 16p telomere adjacent probes, a 

constant band is detected indicated in figure by arrows on right hand side. 
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Figure 6.6: Constant band in IDC patient samples compared with 293 controls 

 

Figure 6.6: Constant band detection was highly variable in IDC patient samples when 

compared with 293 controls. Some patients had no bands at all (patient #4) and some had 

sporadic bands that appeared to be constant in size (#5). Constant banding patterns are 

highlighted in figure by arrows on right hand side. 
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6.6 Fusion frequencies of detected bands by Southern blot 

Fusion frequencies can be calculated based on the number of input molecules. Input 

molecules can be estimated by using the approximate molecular weight of a single diploid 

human genome, which is 6 picograms and this can be related to the number of detected 

amplified molecules. Per fusion reaction the diploid genome equivalents are 5001 (30ng) 

(166.7 molecules/ng). For each patient 18 reactions were carried out representing a total of 

90000 input genome equivalents, on this basis fusion frequencies were calculated. Due to the 

dilute nature of the DNA (average total concentration of 31ng/ul; ranging from 9ng/ul to 

67ng/ul) the concentrations used in each fusion reaction is an estimation (DNA quantification 

is less accurate with dilute DNA), thus some samples may have had less input DNA than 

others and this will affect the fusion frequencies calculated. All fusion frequencies for each 

patient are in Appendix 4 Table C, however the averages for each telomere are shown below 

(Table 6.1). The majority of fusion bands visible by Southern blot involved the 21q and 16p 

telomere groups, however as mentioned earlier, shared homology between telomere groups 

and the presence of constant bands made distinguishing real fusion events difficult. Thus 

telomere fusion frequencies were calculated involving the XpYp and 17p telomeres. The 

mean fusion frequency across all samples is 3.4 x 10
-5

, which was slightly lower, but still 

close to the with frequencies observed in some CLL patients and MRC5 cells in crisis; 

patients with Binet’s stage C had a fusion frequency of 7 x 10
-5

 , and MRC5 E6/E7 (PD 46) 

had a frequency of 8 x 10
-4

 (Lin et al., 2010). 

 

 

 

Table  6.1: Fusion band detection frequencies: Average frequencies per blot. 
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Experiment 1: Patients 1-9 Fusion 

frequency 

Mean 

XpYp 0  

17p 1.2 x 10
-5

  

21q 2.5 x 10
-5

 1.9 x 10
-5

 

Experiment 2 : Patients 1-8   

XpYp 0  

17p 8.8 x 10
-5

  

21q 1.8 x 10
-5

  

16p 6.6 x 10
-5

 5.7 x 10
-5

 

Experiment 3: Patients 1-8   

XpYp 0  

17p 1.1 x 10
-5

  

21q 3.3 x 10
-5

  

16p 3.1 x 10
-5

 2.5 x 10
-5

 

Experiment 4: Patients 1-8   

XpYp 2.2 x 10
-5

  

17p 3.3 x 10
-5

  

21q 8.8 x 10
-5

  

16p 1.5 x 10
-5

 3.9 x 10
-5

 

Experiment 5: Patients 1-3   

XpYp   

17p 3.3 x 10
-5

 3.3 x 10
-5

 

TOTAL AVERAGE  3.4 x 10
-5

 

 

Table 6.1 : Average fusion frequencies calculated on a blot by blot basis 

6.7 Sequencing of telomere-telomere fusion events 

The DNA sequence of putative telomere fusion events detected with the fusion assay can be 

characterised following purification by re-amplification with nested PCR primers. 
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Unfortunately with the breast cancer samples the re-amplification of fusion bands was largely 

unsuccessful. A few bands were sequenced but results showed that the majority of bands were 

just artefacts from the PCR reaction. One band however was successfully sequenced and the 

fusion event characterised. The band was detected using both the XpYp and 16p telomere 

probes (Figure 6.7). Sequence analysis revealed it to be an intra-chromosomal fusion event 

involving the XpYp and XqYq telomeres. The band was detected using the 16p probe on the 

Southern blot because XqYq is part of the 16p telomere family sharing over 95% homology. 

Alongside this telomere fusion was a deletion of 263 bp from the XpYp telomere and a 

deletion of 3900 bp from the XqYq telomere. Below (Figure 6.8) shows the sequence at the 

fusion junction. 
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Figure 6.7: Southern blot showing fusion bands that were sequenced 

 

 

Figure 6.7: Southern blots show the result of fusion band detection for the same patient 

sample with two separate hybridisations, first (top) with the XpYp specific probe and second 

(bottom) with the 16p specific probe. A similar sized band can be on the right of each blot at 

about 3.5 kb (shown by arrow head). 

 

 

 

 

Figure 6.8: DNA sequence at the junction pont for XpYp/XqYq telomere fusion: a 

putative ring Chromosome. 

 a.) XpYp …GTTGTGGTCTCACTGGCTCAGGACT TGATGGCACCTCCCTCCCTCTCT…XqYq 
 

 

b.) 

       -263 bp                        -3900 

bp 



 

 

172 

 

 

 

Figure 6.8: Top figure (6.8a) shows the sequence of the fusion junction sequenced following 

re-amplification of the bands displayed in figure 6.7. Below (6.8b) shows a graphical 

representation of how the putative ring chromosome may form, first by a large scale deletion 

then by ligation of long and short arms. 

 

6.8 Correlating telomere fusions with grades I-III in invasive ductal carcinoma 

Studies in CLL have shown a correlation between an increased fusion frequency and more 

progressive prognostic stages (Lin et al., 2010). It is hard to make any correlations in this way 

for breast cancer due to the limitation in sequencing telomere-telomere fusions. The one such 

fusion that was fully characterised was detected in a patient in the most severe prognostic 

group (grade III) with a telomere length below the threshold thought to confer telomere 

dysfunction (telomere length detected = 1.79kb; threshold =3.8kb (Lin et al in prep)). Patients 

displaying a high number of fusion bands were highlighted on a scatter plot to see if there 

was any relation to telomere length and grade (Figure 6.9). No fusions were found for the 

lowest grade which would be consistent with studies in CLL (Lin et al., 2010). This however 
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needs to be verified by testing the entire cohort and by using better quality DNA in the hope 

to sequence more fusion events so that conclusions can be drawn.  
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Figure 6.9: Summary of fusions on scatter plot of patient telomere mean lengths: 

 

 

Figure 6.9: Scatter plot showing patient telomere means for all patients categorised by 

histological grade (NPI). Patient in red is the one that had a ring fusion. Patients in blue are 

those with putative fusions that were not successfully sequenced thus characterised. One way 

ANOVA comparing the telomere length means across three grades at XpYp showed no 

significant difference (p=0.1856) 

  

p=0.1859 
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6.9 Discussion  

6.9.1 Limitations of detecting telomere-telomere fusions 

The ability to detect telomere-telomere fusions occurring within IDC samples has been 

limited. The main reason for this limitation is likely to be that the starting DNA 

concentrations were extremely dilute (‘Materials and Methods’ chapter has the list of DNA 

concentrations for each patient sample). Fusion PCR has been shown to be most effective at 

detecting single molecule fusion events with starting DNA concentrations of between 

100ng/ul and 200ng/ul (Capper et al., 2007). Many of the IDC samples only had 10-30ng/ul 

to start with and possibly less in some cases, but low concentrations are difficult to detect and 

quantify accurately. STELA analysis was much more feasible and works well with just 250 

pg of DNA per reaction. Telomere fusion in contrast is rare and thus more input DNA 

molecules are required in order to provide detectable molecules.  A gross underestimation of 

the amount of telomere fusion in IDC may mean that there could be many more telomere 

fusion events in these sample, as has been seen in CLL, however there is not enough DNA 

material to draw accurate conclusions. Array-CGH would be a useful tool to determine the 

extent of genomic instability for each patient (Solinas-Toldo et al., 1997; Pinkel et al., 1998), 

but again the lack of sufficient DNA starting concentrations would limit this. 

Another explanation for the lack of fusions that have been characterised is that there are no 

telomere fusions present in IDC; perhaps telomere fusion in breast cancer is an early event 

driving genomic instability and thus occurs more frequently in the in situ stages as opposed to 

the later invasive stage being examined here. However, recent findings from another lab 

using similar technology suggest that telomere fusions can be detected at similar frequencies 

during early ductal in situ and in the later invasive ductal carcinoma stage (Tanaka et al., 

2012). Primers targeted towards TAR-1 (telomere associated repeat-1) subtelomeric regions 

were used to sequence putative fusion junctions in both pre-invasive and invasive breast 
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cancer samples. Sequencing the fusion junctions indicate that telomere fusions are frequent in 

the both stages of breast cancer and could thus telomere dysfunction could be an early event 

in cancer progression. Secondly consistent with findings in CLL interstitial sites and large 

regions of microhomology were detected in the sequencing of fusion junctions (Tanaka et al., 

2012; Lin et al., 2010). This may implicate a microhomology mediated mechanism of 

telomere fusion that has been hypothesised previously (Capper et al., 2007; Letsolo et al., 

2010, Lin et al., 2010). Solid breast tumours were readily available for this recent work by 

Tanaka et al. and thus a higher concentration of DNA was used in experiments thus 

increasing the ability to detect telomere fusion events.  

This PCR based fusion assay used in these experiments designed by Baird et al. has been 

successfully used to characterise mutational telomere fusion events in colorectal carcinoma, 

CLL, epidermal carcinoma and HPV to name a few, and 48% telomeres are encompassed by 

this assay. However not all telomeres are included in this assay and other artefacts are 

commonly amplified as well, especially when using the 21q and 16p telomere adjacent 

oligonucleotide probes. Only two fusions were detected for XpYp, which is the most unique 

telomere in terms of sequence homology with other telomere families so would be the most 

accurate. There is a SINE and a minisatellite repeat array in proximity to the XpYp telomere 

(Baird et al., 1999) and the presence of such satellites adjacent to the telomere could limit the 

detection of fusion events occurring in those regions; repeat DNA might therefore be 

refractory to the fusion PCR reaction. 

 

 

 

6.9.2 Conclusions and future directions 

One telomere fusion event has been successfully characterised in IDC, and interestingly this 
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fusion event was potentially a rare ring chromosome and also occurred in a patient with one 

of the shortest mean telomere length distributions (1.79 kb). Even though there was a 

limitation in the number of fusions that could be found in the IDC it has been hypothesised 

that the main reason for this was the starting DNA concentrations, as similar studies in other 

types of cancer such as CLL and more recently using a similar technique in the same type of 

breast cancer has revealed that short telomeres exhibit a high frequency of telomere fusion. 

Telomere fusion could thus be used as a marker for genomic instability in the progression of 

cancer, however for these experiments a larger dataset with the availability of original tumour 

tissue would be required to draw more accurate conclusions on the presence of telomere 

fusions in breast cancer. It would also be interesting to assess telomere fusion in a wider 

range of breast cancer subtypes and varying severity from pre-invasive to metastatic to 

observe any correlation between prognosis and telomere fusion frequency as has been 

observed in CLL.
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Chapter 7: General Discussion 

 

7.1 Summary: Telomere length as a biomarker in breast cancer 

This project aimed to test the hypothesis that telomere dysfunction occurs during the 

progression of breast cancer and that this can drive the large-scale genomic rearrangement 

frequently observed in this disease. 

Short telomeres that are below lengths at which they are able to function are thought to drive 

genomic instabilities such as NRTs and cycles of anaphase B-F-B, from which oncogenic 

rearrangements can arise (Baird et al., 2006, Lin et al., 2010). Studies in CLL have shown 

that telomeres length below a threshold of 2.26kb are capable of undergoing a high frequency 

of telomere-telomere fusions (Britt-Compton et al., 2006; Capper et al, 2007; Lin et al., 2010; 

Lin et al. in prep) and that the presence of telomeres below the threshold was correlated with 

poor prognosis. The same techniques were thus applied to a cohort of invasive breast cancer 

samples (IDC) to assess whether telomere length could be related to prognosis in this 

malignancy. Applying a single molecule long range PCR strategy (STELA) enabled the 

characterisation of all individual telomere lengths within each patient sample with a high 

degree of accuracy for telomeres XpYp and 17p, but not at 2p. STELA analysis of these 

samples provided evidence of the shortest telomere lengths detected in a breast cancer 

setting; these lengths that are below the detectable range of the other telomere-length analysis 

techniques.  

7.2 The importance of biomarker detection 

Biomarker detection is becoming increasingly important in breast cancer for patient 

stratification with a view to providing more targeted treatment options that may improve 

patient survival and also quality of life. Due to the heterogenic nature of breast cancer, it is 

difficult to separate out individual patients for different therapies, and as a result as many as 
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80% of patients receive some form of adjuvant therapy. It is disputed as to whether this ‘over-

treating’ with cytotoxic chemicals is necessary (Weigelt et al., 2005). To date, a handful of 

studies have studied the link between telomere length and breast cancer risk, however these 

have not proved powerful enough to be translated into clinical practice.  

Oxidative damage, a cause of telomere shortening and hence a major cause of cellular ageing, 

has been shown to increase genomic instability in carcinomas. Reactive oxygen species 

(ROS) cause damage to DNA, producing mutations. A tumoural increase in hydrogen 

peroxide (reactive oxygen intermediate) levels has been linked with an increase in genomic 

instability and therefore an increase in malignant and metastatic potential of tumours 

(Szatrowski et al, 1991; Brown et al, 2001). Studies using HPLC to detect a marker for ROS - 

8-hydroxydeoxyguanosine (8-OHdG) - found that this marker is more prevalent in invasive 

carcinoma cells (Toyokuni et al, 1994). There are multiple mechanisms that could be the 

cause of this increase in oxidative damage in carcinomas, an obvious source would be the 

inadequate tumour vascular network caused by rapid angiogenesis of tumour cells. Tumour 

angiogenesis causes cycles of hypoxia and reperfusion (Brown et al, 2001). In breast cancer 

specifically thymidine phosphorylase overexpression is a common event and has been shown 

to generate ROS via the metabolism of thymidine (Brown et al, 2000). The metabolism of 

oestrogen hormones has been shown to potentially be a further source of oxidative stress 

(Sipe et al, 1994). One key factor in the contribution to oxidative stress in breast carcinomas 

is in anticancer therapies. Doxorubicin, an anthracycline used in chemotherapy, has been 

shown to generate superoxides (a causative of oxidative damage) (Yokomizo et al, 1995) 

among other chemotherapeutic chemicals. In vitro experiments have shown that tamoxifen 

therapy has the potential to induce oxidative stress in oestrogen receptor-negative human 

cancer cell lines (Ferlini et al., 1999). Treatment with some chemotherapies and hormonal 

therapies could hence be increasing the metastatic potential of tumours via oxidative stress.  
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Resistance to previously effective therapies such as tamoxifen for ER positive breast cancer is 

becoming a common problem for treatment of these subtypes (Clarke et al, 2001). Some 

studies have shown crosstalk between the breast cancer subtypes such as ER positive and 

ERBB2 positive, which can cause difficulties in knowing which therapies will be most 

effective (Hurtado et al., 2008). Tamoxifen resistant strains have shown an increase in 

ERBB2 levels (Osborne et al., 2003).  

These findings not only highlight another mechanism driving genomic instability but a key 

reason to elucidate more accurate prognostic biomarkers.  

 

7.3 Clinical significance of telomere lengths  

 Kaplan-Meier analysis was a useful tool in correlating telomere length with patient survival, 

and demonstrating that STELA combined with the fusion threshold provided a considerable 

improvement in prognostic power. Typically biomarkers such as HER2/neu and the presence 

of hormone receptors analysed using Kaplan plots give hazard ratios for overall survival of 

between 1 and 2 (Hilsenbeck et al. 1998); this was consistent with the data presented in this 

thesis where HRs for overall survival were 1.5  for HER2 (P=0.4513), 2.798 (p=0.0364)  for 

PGR and 3.1 (p=0.02) for ER status. In contrast, high-resolution telomere length analysis in 

the same cohort revealed hazard ratios of up to 87086 (p<0.0001). Telomere lengths were 

tested as a means of determining hazard ratio and were stratified based on the threshold 

telomere length at which fusion occurs (2.26kb). The specificity of this threshold was 

confirmed by recursive partitioning where the highest HR was observed at the 2.26 kb 

threshold.  Indeed even using the non-optimal telomere lengths to stratify patients, higher 

hazard ratios than have been calculated for other oncogenic factors/biomarkers were still 

observed.  

Telomere erosion has been implicated to give rise to dysfunction that when DNA response 

checkpoints fail to repair/remove the dysfunction, in the long run can lead to chromosomal 
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rearrangements of the types observed in cancerous tumours (Counter et al, 1992; Capper et al, 

2007, Lin et al., 2010). Telomere dysfunction has been observed in age related disease and 

modelled rather well in mouse models, with successive telomerase knockout showing 

deficiency in intrinsic telomere length barriers that could underlie the tissue deterioration 

observed in age related disease (Artandi et al., 2000). The threshold telomere length at which 

fusion occurs (2.26kb) has been used as a prognostic threshold in CLL and has been found to 

be highly significant (P<0.0001; HR=100.8 (32.1-316.4)) and has hazard ratios that are 

particularly high in patients with early stage disease (P<0.0001; HR=1353 (205-8902)) in 200 

patients (Lin et al., 2013-pending publication). It is thus interesting that the exact same 

threshold length has been found to be so significant in an unrelated type of cancer. This 

finding could not only represent a powerful biomarker by which to predict survival outcome 

but a biological constant by which genomic instability could be defined. As has been 

mentioned previously ‘short’ telomere lengths have been documented as being a contributing 

factor in a wide range of pathological conditions, not only cancer but age-related diseases and 

premature ageing syndromes [Reviewed by Blasco, 2005]. It may be pertinent to consider 

whether this dysfunctional range that has found to be highly prognostic in two separate 

cancer types, might be applicable to other human diseases. It is unknown why this particular 

length (2.26kb) is significant in terms of survival. It has been observed that below threshold 

telomere lengths, telomeres are in a ‘dysfunctional’ range and are subject to a wide range of 

fusion events of types that are believed to occur via error prone (MMEJ) mechanisms 

(Capper et al., 2007, Lin et al., 2010, Letsolo et al., 2010). This increase in telomere-telomere 

fusions coupled with an increasing genomic instability (assessed by array-CGH) and 

increasing severity of prognosis all point to telomere length as an indicator of dysfunction 

that may be driving progression to malignancy (Lin et al., 2010, Jones et al., 2012). Thus 

telomeres below this dysfunctional threshold must pose a risk for an increase in genomic 
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instability and thus a higher risk in terms of disease outcome. This threshold length for use as 

a biomarker needs to be verified using a much larger cohort with longer follow up data. This 

cohort was relatively small (n=120), with a follow up period of 5 years. There is still a gap in 

the knowledge surrounding the factors that could account for relapse in patients 5 years post 

diagnosis (Bosco et al., 2009); several studies have indicated that recurrent breast cancer that 

occurs after the 5 year mark is more aggressive in nature (Brewster et al., 2008; Bosco et al., 

2009). The possibility that telomere erosion is an early event in breast cancer was mentioned 

in chapter 5 (section 5.95), thus it would also be vital to assess telomere dynamics in a range 

of different breast cancer subtypes, not just by NPI grade but by histological classifications 

such as pre invasive stages (DCIS/LCIS), with a long follow up period, in order to assess the 

true prognostic value of telomere length dynamics. 

 

In a large-scale study using NGS technology was used to compare copy number and gene 

expression in parallel in 2,000 breast tumours (Curtis et al., 2012). The large cohort size used 

and the ability to detect new sub-groups in breast cancer bringing the number from five up to 

at least ten makes this study powerful for the breast cancer setting (Curtis et al., 2012). This 

technology enables the understanding of how copy number alterations affect gene expression 

profiles which could help to understand how different breast cancer types respond differently 

to therapies. Dysfunctional telomeres that undergo fusion events could explain the genomic 

alterations observed in breast cancer such as copy number alterations. Another deep-

sequencing study on triple-negative breast cancer demonstrated the heterogeneity of breast 

cancer as a disease and that no two tumours were the same (Shah et al., 2012). Defining 

better prognostic subgroups for this complex disease is thus becoming more important. 

 

Knowledge concerning gene expression profiles found using deep sequencing techniques 
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coupled with the utilisation of telomere length as a biomarker for prognosis could be a 

powerful way of both diagnosing and treating breast cancer patients much more effectively, 

with less overtreatment with cytotoxic chemicals.  

 

7.4 Telomere length heterogeneity in Breast Cancer 

Analysis of individual telomere lengths by STELA revealed a large heterogeneity in telomere 

length. Heterogeneity of telomere length seen in some patient samples could be down to 

inter-individual variation pre determined at the zygote (Graakjaer et al., 2006, Baird et al., 

2003). Alternatively the origin of this heterogeneity could be due to inter-allelic differences in 

telomere lengths. One way to verify this form of heterogeneity would be to apply an allele-

specific STELA PCR to separate out telomere lengths in individuals containing 

heterozygosities in the XpYp telomere-adjacent DNA, as has been done previously (Baird et 

al., 2006). Some of the poorer prognosis patients, as characterised by Nottingham grading 

and morbidity, might be expected to exhibit clonal telomere length distributions reminiscent 

of clonal expansion. However subsets of patients in the poorest prognoses group (grade III) 

displayed a very heterogeneous pattern of telomere length and thus no pattern between grade 

and telomere profile could be concluded. The origins of this telomere heterogeneity could be 

the existence of mosiacism in the expression of genetic markers, such as the bimodal 

expression of oestrogen receptors (Schnitt et al., 2006). The quality of the patient samples 

being analysed could also explain the more heterogeneous/bimodal clusters of telomere 

distributions. DNA extraction was performed in a separate laboratory prior to delivery of 

samples and therefore the purity of these tissue samples cannot be verified. Infiltrating 

epithelial cells or lymphocytes with longer telomeres could be represented in the DNA 

samples. Purification of breast tumour specific cells prior to DNA extraction would be 

necessary in future experiments to ensure that breast tumour DNA alone is being analysed for 
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telomere length.  

A subset of cancers with varying receptor status including HER2 overexpression subjected to 

FISH combined with PML protein immunofluorescence allowed the identification of the ALT 

phenotype in 3 out of 21 HER-2 positive cases and these showed a high proliferative rate 

(Subhawong et al., 2010). ALT is usually rare in carcinoma cell types. Phenotypically ALT 

telomeres have been shown to be long and heterogeneous, which could fit a few of the 

STELA profiles seen for this dataset of invasive ductal carcinoma, however this is hard to 

characterise by eye and therefore testing of patient samples for the presence of ALT markers 

and this could elucidate telomere maintenance mechanisms at play to explain the 

heterogeneous distributions. 

7.5 Longer 17p telomere lengths compared with XpYp telomere lengths 

Telomere lengths analysis using STELA revealed that 17p telomeres were longer than XpYp 

when comparing using linear regression analysis (P<0.0001). Is has been documented 

previously that the 17p telomere has a propensity to be shorter than other chromosome ends 

(Martens et al., 1998, Lansdorp et al., 1998) and this is believed to be as a consequence of the 

presence of the tumour suppressor p53 on the 17p chromosome arm. This is in contradiction 

with studies that have observed that 17p is not always the shortest telomere, and that some 

telomeres are randomly shorter (Baird et al., 2006) suggesting telomere length is governed at 

the zygote stage and variability could be due to difference in the maternal and paternal 

germlines. As mentioned earlier (Chapter 4) Telomere Variant Repeats (TVRs) at 17p may be 

the reason that the telomeres appear to be longer. A way of determining this in future would 

be to perform a TVR-PCR and deduct this from the STELA lengths. A recent study in CML 

(Chronic Myelogenous Leukaemia) reported longer 17p telomere lengths in patients with 

CML when compared with healthy patient telomere lengths using Q-FISH (Samassekou et 

al., 2011). Longer 17p telomeres could have arisen as a protective mechanism because of the 
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presence of the p53 gene, but this difference between 17p and other telomeres would have to 

be concluded with a larger dataset for a better and more conclusive comparison as to whether 

17p differences are due to mechanisms important for cancer biology or whether a natural 

polymorphism occurrence. The development of STELA technology to encompass a larger 

subset of telomeres would enable a more thorough comparison of differences in chromosome 

arm length. This would be constructive because LOH at regions of interest containing certain 

tumour suppressor genes could enable further definition of mutational processes at play in 

breast cancer. For example some studies have shown that the loss of 9p (LOH) occurs in 

breast cancer due to the presence of p16/CDKN2 (Brenner and Aldaz, 1995). This could also 

be further verified by array-CGH. 

 

  

7.6 Developing telomere fusion technology 

This project also examined the hypothesis that specific regions of the genome are prone to 

fusion with dysfunctional telomeres. In doing so this work hoped to lead to the development 

of more sensitive assays for telomere dysfunction. Ligation mediated techniques aimed to 

target telomeres that had fused close to known restriction sites in the genome. A range of 

controls were successfully set up to show that the PCR based techniques would work with 

oligonucleotide primers designed within telomere adjacent DNA regions. Testing of these 

techniques revealed that their ability to detect fusions was limited. Several methods for 

dectecting fusions were tested and the most successful used a linker termed a ‘splinkerette’, 

however this technique was fairly time consuming which partly limited the  characterisation 

of any fusion events. The results generated from the splinkerette assay were extremely 

dependent on the successful ligation of the splinkerette itself, a number of negative results 
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were generated in preliminary experiments before the ligation was successful. More fine 

tuning of this technique is required, however it cannot be ruled out as a method of finding 

telomere fusions in the genome because such techniques used in other applications are readily 

able to detect inserts on a smaller scales, such to isolate insertion sites in murine leukemia 

virus (Uren et al., 2009).  The main drawback with this method was the inability to sequence 

and thus characterise the putative fusion bands that were visible on the southern blot. I 

believe that this adaptor-ligation technique was working at the single molecule level; it would 

therefore be worth trying to find out exactly what the banding patterns were before ruling out 

this technique. Sequencing the PCR products using a next generation sequencing (NGS) 

approach could give a clearer picture of what is being amplified. A similar technique has been 

used for screening HIV integrating sites using a cassette-PCR genome walking coupled with 

pyrosequencing (Wang et al. 2007) as a high throughput way of sequencing unknown region 

flanking restriction sites. 

7.7 Telomere dysfunction and breast cancer 

Another project aim was to assess the extent of telomere dysfunction in breast cancer. It is 

thought that dysfunctional telomeres are prone to telomere-telomere fusions. A telomere 

fusion assay was therefore applied to the breast cancer cohort used for STELA. 

When E6/E7 expressing cells are forced to divide through crisis in vitro, erosion of telomeres 

has been shown to be correlated with a high fusion frequency (Capper et al., 2007). The 

shortest telomeres have been shown to exhibit the highest frequencies of telomere fusions in 

cell cultures and in CLL (Capper et al., 2007; Lin et al, 2010). Short telomeres that have lost 

their function are hypothesised to be a hallmark of genome instability, as a driving force 

behind the progression to malignancy (Baird et al., 2006, Capper et al, 2007; Lin et al., 2010). 

It was thus hypothesised that the patients with the shortest telomeres and the poorest clinical 

outcomes would exhibit a high frequency of telomere fusions as a marker of telomere 
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dysfunction driving breast cancer. This was not the case. Unfortunately due to the dilute 

nature of the breast tissue DNA, fusion analysis was limited in its ability to detect and 

sequence the full spectrum of fusion events that could be present. However, regardless of low 

starting DNA concentration, a large variety of bands reminiscent of fusion bands were visible 

using Southern blot analysis. These bands could be representative of fusions but the inability 

to sequence these bands meant that these could not be formally verified and characterised. 

One fusion was characterised and sequenced from a patient with short telomeres and poor 

prognosis. Being just one event makes it difficult to make correlations pertaining to telomere 

length and dysfunction; however the fact that it was present in a patient with poor clinical 

outcome and short telomeres is consistent with findings of a similar nature in melanoma and 

CLL (Letsolo, 2011; Lin et al, 2010).  

7.8 Ring chromosomes 

The only fusion event that was successfully sequenced in the IDC patient sample was 

consistent with a fusion event involving XpYp and XqYq telomeric sequences that may have 

resulted in a ring chromosome. This is surprising as ring chromosomes are not commonly 

detected in carcinomas (Gisselsson, 2002) but are more often found in sarcomas. XpYp:XqYq 

fusions have been frequently detected  in vitro (Letsolo, 2011). Ring chromosomes can be 

formed by the loss of both chromosome arms so that they fuse together (Miller and Thurman, 

2001). They can also arise due to loss of just one end causing it to stick to the opposing 

telomere (Arnedo et al., 2005). Loss of genetic information is not necessary for the formation 

of ring chromosomes. Ring chromosomes have been observed in many different diseases, 

such as mental retardation (ring chromome 14) (Schmidt et al., 1981), and are linked to 

genomic instability. Ring chromosomes are unstable structures, particularly during mitosis 

(Miller and Thurman, 2001; Sumner, 2003) and can form anaphase bridges. The unstable 

nature of ring chromosomes has implicated them in causing tumoural heterogeneity 
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(Gisselsson et al., 2000). Ring chromosomes are most commonly detected using hybridisation 

based techniques such as FISH (Bauman et al., 1980), however this can be limiting because it 

requires specific probes to target certain areas and metaphase spreads. FISH can also be 

labour intensive [Reviewed by Scouarnec and Gribble, 2011]. Sometimes a combination of 

SNP-a analysis and FISH is used, for example in studies in acute myeloid leukaemia (AML) 

a whole genome SNP-a was used to characterise a ring chromosome (Huh et al., 2012). FISH 

techniques have been improved to increase sensitivity using shorter probes and extended 

chromatin fibres termed ‘FibreFISH' (Heng et al., 1992; Wiegant et al., 1992; Parra and 

Windle, 1993). The development of Array-CGH  (Solinas-Toldo et al., 1997; Pinkel et al., 

1998) and SNP arrays ((Kennedy et al., 2003; Gunderson et al., 2005; LaFramboise, 2009) 

have facilitated the mapping of chromosomal alterations and copy number variations. 

However chromosomal rearrangements can now be analysed using second generation 

technologies such as next generation sequencing (NGS). NGS allows sequencing in parallel 

of millions of DNA molecules, and more specifically the ‘read-pair method’ is used to study 

chromosome rearrangements using a paired-end read mapping technique (Tuzun et al., 2005; 

Korbel et al., 2007). 

 

7.9 Conclusions and future directions: 

The use of a single molecule high resolution technology (STELA) has allowed the detection 

of individual telomere lengths at multiple chromosome ends in patients with IDC showing a 

spectrum of lengths ranging from above 20kb to below 1kb. The shortest telomere length 

mean detected was 1.29kb, which would be undetectable using other hybridisation based 

techniques. Future experiments would require purification of breast tissue prior to STELA 

experiments to ensure an accurate quantification of telomere lengths for tumour DNA only.    

A larger cohort with better DNA quality/availability would allow confirmation of these 
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results. A range of different breast cancer subtypes with varying severity would be necessary 

to compare telomere lengths among different subtypes. With a larger quantity of DNA more 

detailed telomere fusion analysis in different breast cancer subtypes should be carried out to 

screen for telomere dysfunction in breast cancer and to confirm the hypothesis further that it 

is this telomere dysfunction that is driving the progression to malignancy as has been 

correlated in CLL (Lin et al., 2010). Array-CGH or whole genome sequencing would also be 

possible with a better breast tissue DNA availability. This would be used to screen individuals 

displaying evidence of telomere dysfunction to detect any genomic rearrangements occurring 

and to see whether these are located primarily in telomere regions. 

This project has successfully demonstrated the use STELA combined with statistical tests to 

show that short telomere length is highly significant in terms of prognosis in breast cancer. 

Telomere length stratification could thus be used as a method of defining new breast cancer 

subtypes in terms of severity. 
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wcbnum Age at 
Operation 

pTNM NPI 
Score 

Breast 
Grade 

ER Score pgr score her2score Her2 2+ : Pos or 
neg following 
FISH 

XpYp 
tel 

RR6BL0000011 84  0 III Negative     1.075 
RVCC40000033 75 T2 N3a Mx  6.82 III Negative   Negative   3 positive 1.290 
RVCC40000753 68 T1c No Mx  4.36 III positive    0 negative 1.664 

RR6BL0000004 82 T2 No Mx   0 II positive      1.780 
RR6BL0000120 69  0 II     1.818 

jRVCC40000076 43 T2 N2a Mx  6.46 III Negative   Negative   0 negative 1.845 

RR6BL0000001 72 T2 N1 Mx   0 III positive   Negative   0 negative 2.021 
RVCC40000022 79 T2N1miMx   5.42 III Negative   Negative   3 positive 2.182 

RR6BL0000008 61 T1 No Mx   0 II positive      2.290 
RVCC40001036 73 T2N1Mx     5.84 III Negative   Negative   2 negative 2.328 

RR6BL0000350 59  0 II positive   positive   1 negative 2.458 

RR6BL0000083 75 T2 N1 Mx   0 III positive      2.512 

RR6BL0000274 79 T1 No      0 I positive    0 negative 2.517 

RVCC40000124 45 T2N1aMx    4.8 II positive   positive   0 negative 2.617 

RVCC40000622 59 T2N0Mx     4.44 III positive   positive   0 negative 2.660 

RVCC40000965 73 T2NOMX     4.72 III Negative   Negative   3 positive 2.669 

RR6BL0000013 48 T1 No Mx   0 III Negative   Negative   2 negative 2.680 
RVCC40000021 63 T1c No Mx  3.28 II positive    0 negative 2.686 

RR6BL0000039 34 T2 No Mx   0 III Negative   positive     2.700 
RVCC40000665 65  0 II positive    0 negative 2.701 

RVCC40000072 65 T1c No Mx  4.36 III Negative   positive   0 negative 2.729 

RR6BL0000045 56 T2 No Mx   0 II positive      2.730 
RVCC40000907 53 T2mN1Mx    4.54 II positive    0 negative 2.793 

RR6BL0000067 58 T2 No Mx   0 III positive   Negative   2 negative 2.800 
RR6BL0000072 58 T2 No Mx   0 III Negative   Negative   3 positive 2.920 
RVCC40000135 83 T1cNoMx    2.4 I positive      2.946 

RVCC40000009 68 T2 N2a Mx  6.6 III positive    3 positive 2.960 
RVCC40000025 38  4.3 III positive    3 positive 2.980 
RVCC40000030 74 T1cNoMx    3.34 II positive      3.040 
RR6BL0000386 75 t1n0mx     0 II positive   positive   2 negative 3.044 



Appendix 1b 

 

228 

 

RR6BL0000002 73 T2 N1 Mx   0 II Negative   Negative    3.118 
RVCC40000752 47 T2N0Mx     3.4 II positive    1 negative 3.153 

RR6BL0000020 86  0 II positive      3.158 

RVCC40001469 81 T2NoMx     2.6 I positive   positive   1 negative 3.225 

RVCC40000042 85 T2 No Mx   3.5 II positive      3.230 
RVCC40000144 39 T2N0Mx     4.6 III Negative   Negative   1 negative 3.260 
RVCC40000051 42 T1c No Mx  2.24 I positive      3.260 
RR6BL0000171 45 T2 N1      0 II positive    1 negative 3.265 

RVCC40001055 50 T1cNoMx    3.28 II positive    1 negative 3.353 

RVCC40000696 42 T2N3aMx    6.46 III Negative   Negative   3 positive 3.366 

RVCC40000089 66 T1c N1 Mx  5.26 III positive   positive   0 negative 3.434 

RVCC40000155 78 T2 N1 Mx   5.48 III positive      3.450 
RVCC40000165 47 T2 N1m Mx  5.6 III positive    0 negative 3.500 
RVCC40000795 65 T2N1aMx    3.56 I positive    1 negative 3.520 

RVCC40000070 73 T2 No Mx   3.56 II Negative   Negative   1 negative 3.542 

RVCC40000029 58 T3 N1 Mx   5.02 II positive   positive   0 negative 3.554 

RR6BL0000104 59 T2 No Mx   0 III positive   Negative   2 negative 3.580 

RVCC40000631 79 T2N0Mx     4.66 III positive    3 positive 3.602 

RVCC40000166 69 T1c No Mx  4.34 III Negative   3 positive 3.700 
RVCC40000936 61 T3N1miMx   5.08 II positive    0 negative 3.702 

RR6BL0000111 79 T1 N1 Mx   0 II positive   Negative    3.719 

RVCC40000035 68 T2 N1a Mx  5.46 III positive   positive   0 negative 3.720 

RR6BL0000232 36  0 II positive   Negative   3 positive 3.721 

RVCC40000016 60 T2 N12 Mx  4.54 II positive   positive   2 negative 3.748 

RR6BL0000204 69  0 II positive   positive   0 negative 3.763 

RVCC40000026 45 T1c No Mo  2.28 I positive   positive   0 negative 3.778 

RVCC40000633 68 T2aNoMx    3.44 II positive   positive   2 negative 3.808 

RR6BL0000252 52  0 III positive   positive   1 negative 3.822 

RVCC40000686 49 T2N1miMx   5.52 III positive    0 negative 3.830 

RVCC40000039 46 pT2 No Mx  4.6 III Negative   Negative   0 negative 3.833 

RVCC40000063 81 T3 N1 Mx   6.3 III Negative   Negative   1 negative 3.879 

RVCC40000642 70 T4bNoMx    3.28 II positive   positive   0 negative 3.892 

RR6BL0000557 83 T2N0MX     0 III positive   positive   3 positive 3.961 
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RR6BL0000070 80 T2 N2 Mx   0 III Negative   Negative   3 positive 3.977 

RVCC40001236 55 T1cN0Mx    4.36 III positive   positive   0 negative 3.981 

RR6BL0000623 48 t2n0mx     0 III positive   Negative   3 positive 3.987 

RR6BL0000214 68  0 III positive   positive   0 negative 4.018 

RVCC40000015 87 T2NoMx     4.66 III positive   Negative   3 positive 4.059 

RVCC40000539 70 T1cN0Mx    3.3 II positive   positive   0 negative 4.080 
RVCC40000134 70 T2 No Mx   4.42 III positive   Negative   0 negative 4.080 

RR6BL0000005 53 T2 N1 Mx   0 II positive    1 negative 4.092 

RVCC40000573 46 T2NoMx     3.96 I positive   positive   0 negative 4.100 
RVCC40000011 58 T2 N1a Mx  4.44 II positive    2 negative 4.110 

RVCC40000001 71 T2 No Mx   4.44 III Negative   Negative   3 positive 4.111 

RR6BL0000198 51 T2 N2 Mx   0 III positive    3 positive 4.120 

RVCC40001111 48 T2N0Mx     4.44 III positive   positive   1 negative 4.124 

RR6BL0000186 80  0 I positive   positive   1 negative 4.146 

RR6BL0000019 49 T2 No Mx   0 I positive    1 negative 4.163 

RR6BL0000528 56 T1N0MX     0 II positive   Negative   3 positive 4.170 

RVCC40000638 91 T2N1       0 II positive   positive   0 negative 4.200 

RVCC40000583 47 T2N2aMx    5.98 II positive   positive   2 negative 4.200 
RVCC40000559 61 T1cN1aMx   4.24 II positive   positive   2 negative 4.219 

RVCC40000589 76 T2mN3aMx   6.8 III positive   positive   0 negative 4.220 
RVCC40000632 33 T2N1Mx     5.76 III Negative   Negative   0 negative 4.230 
RR6BL0000117 67 T2 N1 Mx   0 II positive    1 negative 4.290 

RR6BL0000141 48  0 III Negative   3 positive 4.378 

RR6BL0000213 58 T1 No      0 II positive    3 positive 4.459 

RR6BL0000033 84 T2 N1 Mx   0 II positive      4.468 

RVCC40000647 65 T2N0Mx     4.44 III Negative   Negative   2 negative 4.500 
RR6BL0000245 86  0 II positive   positive   0 negative 4.545 

RR6BL0000064 40 T1 No Mx   0 II positive   positive   1 negative 4.635 

RVCC40000031 54 T1c No Mx  4.32 III Negative   Negative   1 negative 4.659 

RR6BL0000184 42 T3N0MX     0 III Negative   Negative   0 negative 4.659 

RVCC40000687 49 T2 No Mx   3.44 II positive    1 negative 4.690 

RVCC40000649 60 T2N1aMx    5.62 III Negative   Negative   1 negative 4.700 
RVCC40000597 48 T2N1aMx    4.6 II positive   positive   0 negative 4.701 
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RVCC40000067 48 T1 N1 Mo   5.34 III positive   positive   1 negative 4.866 

RVCC40000591 50 T2N1Mx     5.66 III positive   positive   1 negative 4.871 

RR6BL0000199 70 T1 No Mx   0 II positive   positive   1 negative 4.894 

RR6BL0000535 46 T2N0MX     0 III positive   positive   3 positive 4.895 

RR6BL0000235 53 T2         0 III positive   Negative   3 positive 4.896 

RR6BL0000205 72 Unknown    0 II positive   positive   0 negative 4.930 

RVCC40000786 60 T2NoMx     3.44 II positive      4.991 

RVCC40000776 65 T1cN0Mx    3.24 II positive    0 negative 5.138 

RR6BL0000131 69  0 II positive   positive   1 negative 5.146 

RR6BL0000409 43 t2n1m0     0 III positive   positive   3 positive 5.151 

RVCC40000348 87 T2NoMx     2.44 I positive   positive   0 negative 5.203 

RVCC40000698 70 T2N0Mx     4.82 III Negative   Negative   0 negative 5.300 
RR6BL0000230 43  0 II positive   positive   1 negative 5.345 

RVCC40000555 76 T2 N3a Mx  6.64 III positive   Negative   0 negative 5.421 

RVCC40000643 42 T1N0Mx     3.26 II positive    2 positive 5.463 

RR6BL0000202 66  0 II positive    0 negative 5.479 

RVCC40000090 84 T1c No Mx  3.4 II positive      5.519 

RR6BL0000571 42 T2N1biMO   0 III positive   positive   3 positive 5.578 

RVCC40000755 73 T2N0Mx     4.28 III positive    2 negative 5.600 
RR6BL0000540 44 T1cN1biMX  0 III positive   Negative   3 positive 5.642 

RVCC40000201 66 T2 N1 Mx   5.7 III Borderline Borderline 3 positive 5.736 

RVCC40000154 49 T2 N1 Mx   6 III Negative   Negative   2 negative 5.750 

RVCC40000758 52 T2N3aMx    6.58 III positive    0 negative 5.800 
RR6BL0000134 68  0 II positive   positive   0 negative 5.812 

RR6BL0000071 71 T2 N1 Mx   0 II Negative   Negative   0 negative 5.847 

RR6BL0000259 75  0 III positive   Negative   3 positive 6.130 

RVCC40000737 78 T4bNoMx    4.5 III positive   Borderline 2 negative 7.036 

RVCC40001060 45 T3N2Mx     0 III Negative   Negative   3 positive 7.046 

RR6BL0000225 67 Unknown    0 I positive   positive   0 negative 7.268 

RVCC40000071 85 T3 N1      6.6 III positive   Negative    7.852 

RR6BL0000130 47 T1 No Mx   0 III Negative   Negative   2 negative 8.460 

RVCC40000020 55 T2 No Mx   4.44 III Negative   Negative   3 positive 9.975 
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Appendix 1b: A summary of clinical data that was used in subsequent analysis is represented alongside patient number (wcbnum). Details 

include TNM score; NPI score; Grade given to each patient; ER/PR/HER2 status and age at operation. Telomere length means used for Kaplan 

meier analysis at XpYp are shown alongside. A summary of patient clinical features shows mean age and the number of patients with ER+/PR+ 

and HER+ breast cancer

 
 
 
 
Summary 

             

Mean Age ER + PR + ER/PR + HER2 +      
62 94 2 40 29      
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Appendix 1a Breast (IDC) follow up summary 

 
WCB Num sex age Grade Total 

Nodes  
Positive Nodes Time 

(days) 
Alive XpYp Mean XpYp SD 17p 

Mean 
17pSD 

RR6BL0000005 F 53 II 5 5 1725 Yes 3.016849398 1.96 5.326209 2.32 
RR6BL0000019 F 49 I 10 0 2001 Yes 2.701871795 3.44 4.23181 1.98 
RR6BL0000020 F 86 II 11 0 2432 Yes 5.436451613 2.36 4.797212 1.51 
RR6BL0000033 F 84 II 6 3 1658 Yes 1.29 1.53 4.991378 1.88 

RR6BL0000064 F 40 II 10 0 2271 No 1.79115625 2.73 3.161435 1.46 
RR6BL0000070 F 80 III 7 5 1382 Yes 4.518212121 4.01 3.96927 2.14 
RR6BL0000071 F 71 II 18 3 504 Yes 3.750581818 2.21 5.420231 2.13 
RR6BL0000083 F 75 III 11 7 1900 Yes 9.947666667 2.25 8.2615 4.21 
RR6BL0000104 F 59 III 24 0 1773 No 3.57508 2.55 3.861723 2.20 
RR6BL0000111 F 79 II 14 0 712 No 6.102722543 3.53 5.932856 3.05 
RR6BL0000117 F 67 II 9 0 1808 No 3.959614815 2.38 3.987069 1.23 
RR6BL0000120 F 69 II 4 2 803 Yes 4.607795322 2.93 4.817007 2.85 
RR6BL0000130 F 47 III 18 0 1780 Yes 3.991190476 2.41 5.218654 3.22 

RR6BL0000131 F 69 II 4 3 1766 Yes 4.350948052 2.81 4.591596 2.34 

RR6BL0000134 F 68 II 13 0 1757 Yes 3.675360544 2.18 4.169907 1.95 

RR6BL0000141 F 48 III 14 12 362 Yes 5.118796117 2.29 5.512888 2.46 

RR6BL0000170 F 66 I 5 0 1694 Yes 4.838508671 3.10 5.341982 2.45 

RR6BL0000171 F 45 II 10 5 1694 No 5.723454545 3.70 6.391345 2.80 

RR6BL0000184 F 42 III 15 4 794 No 4.497176923 3.70 4.358244 1.88 

RR6BL0000186 F 80 I 2 2 2147 Yes 4.963623529 2.70 4.603157 2.18 

RR6BL0000198 M 51 III 7 6 882 Yes 3.954214815 2.50 6.282703 2.96 

RR6BL0000199 F 70 II 13 0 1729 Yes 5.123664286 2.62 4.784091 1.89 
RR6BL0000202 F 66 II 4 2 1884 Yes 4.096993289 2.73 4.454908 2.55 

RR6BL0000204 F 69 II 4 1 1568 Yes 7.018526316 3.94 5.853328 3.05 
RR6BL0000205 F 72 II 16 0 1568 Yes 5.709106061 2.17 4.937048 2.41 

RR6BL0000213 F 58 II 4 0 1542 Yes 5.550716667 3.55 5.100257 3.01 
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RR6BL0000214 F 68 III 6 0 1052 No 8.432573529 3.29 6.325548 3.34 

RR6BL0000225 F 67 I 4 0 1140 Yes 4.143132813 2.24 4.175458 1.55 
RR6BL0000230 F 43 II 9 2 1533 Yes 5.615145695 3.11 5.785374 2.44 
RR6BL0000232 F 36 II 15 2 1369 Yes 4.867612903 2.91 4.816052 2.54 
RR6BL0000235 F 53 III 14 3 1477 Yes 3.93407483 2.78 3.969718 2.24 
RR6BL0000245 F 86 II 3 1 1244 Yes 3.950277778 2.19 4.453422 2.59 
RR6BL0000252 F 52 III 19 19 889 Yes 4.673604444 3.25 5.270442 2.81 
RR6BL0000259 F 75 III 8 4 633 No 3.69161809 2.73 3.805464 2.60 

RR6BL0000274 F 79 I 1 0 1397 Yes 3.339478528 2.59 4.804747 2.08 
RR6BL0000350 F 59 II 3 0 1175 Yes 4.053057554 2.63 4.161381 1.70 
RR6BL0000386 F 75 II 2 0 1129 Yes 4.064532663 2.42 4.227759 2.11 
RR6BL0000409 F 43 III 20 2 1281 Yes 4.866966942 2.98 4.939158 2.68 
RR6BL0000528 F 56 II 3 0 670 Yes 7.240571429 3.41 6.219889 4.47 
RR6BL0000535 F 46 III 3 0 710 Yes 3.693757143 2.53 3.837276 1.64 
RR6BL0000540 F 44 III 3 1 696 Yes 5.318149606 3.12 4.11476 3.29 
RR6BL0000557 F 83 III 3 0 723 Yes 4.868805195 2.99 5.138013 2.88 

RR6BL0000571 F 42 III 15 1 584 Yes 4.432066667 2.60 4.490789 2.38 
RR6BL0000623 F 48 III 2 0 339 Yes 4.263055901 2.35 4.856321 3.46 

RVCC40000001 F 71 III 16 0 2313 Yes 3.693186275 1.89 4.904157 1.90 

RVCC40000011 F 58 II 5 1 2282 No 1.075 2.23 2.895674 1.38 

RVCC40000015 F 87 III 17 0 2157 Yes 3.527236111 1.55 4.189458 2.51 

RVCC40000016 F 60 II 30 3 2268 Yes 7.00902963 3.54 6.317881 4.30 

RVCC40000020 F 55 III 19 0 2058 Yes 2.484841667 1.92 2.923891 1.42 

RVCC40000021 F 63 II 20 0 2006 Yes 7.824867925 4.85 6.80783 6.16 

RVCC40000022 F 79 III 27 1 143 No 2.182 3.44 5.185153 2.20 

RVCC40000026 F 45 I 5 0 2233 Yes 4.844267717 3.09 3.779026 1.65 
RVCC40000029 F 58 III 26 3 2228 No 3.493176471 1.49 4.155758 2.95 
RVCC40000031 F 54 III 32 0 2232 Yes 4.172952381 2.15 3.208333 1.65 
RVCC40000035 F 68 III 16 3 2137 Yes 5.175631579 2.11 3.215313 1.08 
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RVCC40000039 F 46 III 15 0 2221 No 2.659 0.99 2.487071 1.51 

RVCC40000063 F 81 III 26 2 1897 Yes 2.766083333 2.09 3.349462 1.95 
RVCC40000067 F 48 III 15 1 2286 No     
RVCC40000070 F 73 II 35 0 2077  3.806033898 2.30 3.953957 1.77 
RVCC40000071 F 85 III 17 3 2060 Yes 2.300756522 1.72 5.102733 1.10 
RVCC40000072 F 65 III 25 0 1973 Yes 3.781486486 3.28 3.753628 2.43 
RVCC40000076 F 43 III 28 6 1171 Yes 1.845 2.63 4.614727 2.40 
RVCC40000089 F 66 III 14 2 2022 Yes 5.820268293 3.93 5.040171 2.61 

RVCC40000090 F 84 II 18 0 2113 Yes 4.440637255 2.68 5.4594 2.68 
RVCC40000124 F 45 II 19 3  Yes 2.919257576 1.20 4.360538 2.56 
RVCC40000129 F 56 II 4 0 2000 Yes 4.031826087 2.52 3.564782 1.88 
RVCC40000134 F 70 III 17 0 1948 Yes 2.430598291 1.16 2.49013 0.98 
RVCC40000135 F 83 I 19 0 2142 Yes 4.663242105 2.93 5.01588 2.41 
RVCC40000154 F 49 III 21 1 1921 Yes 3.237545455 1.51 2.78837 1.33 
RVCC40000201 F 66 III 17 1 1885 No 4.902689873 2.80 4.249661 2.14 
RVCC40000348 F 87 I 21 0 1866 Yes 4.082888889 2.61 4.187718 2.30 

RVCC40000555 F 76 III 21 20 1151 No 3.325854167 1.30 3.649698 0.97 
RVCC40000559 F 61 III 4 1 1638 No 5.111390374 3.42 4.24685 2.59 

RVCC40000591 F 50 III 5 1 484 Yes 3.197876543 1.22 3.689857 0.86 

RVCC40000597 F 48 II 20 3 1589 Yes 2.047924731 0.86 3.485328 1.32 

RVCC40000622 F 59 III 3 0 1477 Yes 2.674352381 1.49 2.519857 1.48 

RVCC40000631 F 79 III 23 0 1492 Yes 1.776765625 1.28 4.900139 1.52 

RVCC40000633 F 68 II 6 0 1563 Yes 2.918557692 1.13 3.571769 1.05 

RVCC40000638 F 91 II 6 1  No 3.034938931 1.61 4.872512 1.33 

RVCC40000642 F 70 II 6 0 1479 No 3.126026316 1.02 3.852204 1.69 

RVCC40000643 F 42 II 5 0 1561 Yes 3.13050838 1.81 4.434177 2.63 
RVCC40000665 F 65 II 5 2 1570 Yes 4.135612903 2.49 3.86658 2.22 
RVCC40000686 F 49 III 5 1 1424 Yes 3.407466667 1.27 2.845194 1.51 
RVCC40000687 F 49 II 6 0 1527 Yes 2.234923077 1.02 5.413813 2.92 
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RVCC40000696 F 42 III 26 14  Yes 1.791929825 1.22 3.522867 2.05 

RVCC40000737 F 78 III 12 0 1354 Yes 2.642169231 1.41 4.034481 1.07 
RVCC40000752 F 47 II 1 0 1442 Yes 3.865352941 1.58 3.137836 1.25 
RVCC40000753 F 68 III 2 0 1423 Yes 1.664  1.896  
RVCC40000776 F 65 II 4 0 1439 Yes 4.19183871 2.35 3.086189 2.40 
RVCC40000786 F 60 II 4 0 1274 Yes 4.118711111 2.17 4.482837 1.82 
RVCC40000795 F 65 I 2 2 1408 Yes 4.083505155 1.37 4.753698 5.62 
RVCC40000907 F 53 II 4 0 1128 Yes 3.802625 2.55 4.651324 2.18 

RVCC40000936 F 61 II 2 1 1231 Yes 5.784782353 2.99 5.909642 3.43 
RVCC40000965 F 73 III 3 0 1265 Yes 1.636529412 0.62 1.936333 1.41 
RVCC40001036 F 73 III 30 3 985 Yes 2.58975 0.85 1.654438 1.60 
RVCC40001055 F 50 II 2 0 1295 Yes 2.633237288 1.47 2.461315 1.46 
RVCC40001060 F 45 III 25 5 991 Yes 3.736214876 3.35 4.516152 2.14 
RVCC40001111 F 48 III 4 0 1142 Yes 5.451528986 2.86 6.883327 3.68 
RVCC40001236 F 55 III 2 0 896 Yes 4.092526316 2.34 3.819763 2.73 
RVCC40001469 F 81 I 3 0 646 Yes 3.851755102 1.36 1.819808 1.49 
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wcbnum NPI 
Score 

Breast 
Grade 

ER Score pgr score her2score Her2 2+ : Pos or 
neg following 
FISH 

Alive Died of 
Cancer 

OS XpYp 
tel 

RR6BL0000011 0 III Negative      No Yes 233 1.075 

RVCC40000033 6.82 III Negative   Negative   3 positive No Yes 852 1.290 

RVCC40000753 4.36 III positive    0 negative Yes  1423 1.664 

RR6BL0000004 0 II positive      No Yes 241 1.780 

RR6BL0000120 0 II     No Yes 396 1.818 

RVCC40000076 6.46 III Negative   Negative   0 negative No Yes 1760 1.845 

RR6BL0000001 0 III positive   Negative   0 negative No Yes 300 2.021 

RVCC40000022 5.42 III Negative   Negative   3 positive No Yes 241 2.182 

RR6BL0000008 0 II positive      Yes  2467 2.290 

RVCC40001036 5.84 III Negative   Negative   2 negative Yes  985 2.328 

RR6BL0000350 0 II positive   positive   1 negative Yes  1564 2.458 

RR6BL0000083 0 III positive      No Yes 2015 2.512 

RR6BL0000274 0 I positive    0 negative Yes  1766 2.517 

RVCC40000124 4.8 II positive   positive   0 negative Yes  1997 2.617 

RVCC40000622 4.44 III positive   positive   0 negative Yes  1477 2.660 

RVCC40000965 4.72 III Negative   Negative   3 positive Yes  1265 2.669 

RR6BL0000013 0 III Negative   Negative   2 negative Yes  2305 2.680 

RVCC40000021 3.28 II positive    0 negative Yes  2006 2.686 

RR6BL0000039 0 III Negative   positive     Yes  2388 2.700 

RVCC40000665 0 II positive    0 negative Yes  1570 2.701 

RVCC40000072 4.36 III Negative   positive   0 negative Yes  1973 2.729 

RR6BL0000045 0 II positive      Yes  2407 2.730 

RVCC40000907 4.54 II positive    0 negative Yes  1128 2.793 

RR6BL0000067 0 III positive   Negative   2 negative Yes  2271 2.800 

RR6BL0000072 0 III Negative   Negative   3 positive Yes  2264 2.920 

RVCC40000135 2.4 I positive      Yes  2142 2.946 

RVCC40000009 6.6 III positive    3 positive No Unknown  2.960 

RVCC40000025 4.3 III positive    3 positive Yes  2179 2.980 

RVCC40000030 3.34 II positive      Yes  2109 3.040 

RR6BL0000386 0 II positive   positive   2 negative Yes  1493 3.044 

RR6BL0000002 0 II Negative   Negative     Yes  2306 3.118 

RVCC40000752 3.4 II positive    1 negative Yes  1442 3.153 
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RR6BL0000020 0 II positive      Yes  2432 3.158 

RVCC40001469 2.6 I positive   positive   1 negative Yes  646 3.225 

RVCC40000042 3.5 II positive      No Unknown  3.230 

RVCC40000144 4.6 III Negative   Negative   1 negative Yes  2148 3.260 

RVCC40000051 2.24 I positive      Yes  1977 3.260 

RR6BL0000171 0 II positive    1 negative Yes  2060 3.265 

RVCC40001055 3.28 II positive    1 negative Yes  1295 3.353 

RVCC40000696 6.46 III Negative   Negative   3 positive Yes  1329 3.366 

RVCC40000089 5.26 III positive   positive   0 negative Yes  2022 3.434 

RVCC40000155 5.48 III positive      Yes  1927 3.450 

RVCC40000165 5.6 III positive    0 negative Yes  1917 3.500 

RVCC40000795 3.56 I positive    1 negative Yes  1408 3.520 

RVCC40000070 3.56 II Negative   Negative   1 negative Yes  2077 3.542 

RVCC40000029 5.02 II positive   positive   0 negative Yes  2228 3.554 

RR6BL0000104 0 III positive   Negative   2 negative Yes  2141 3.580 

RVCC40000631 4.66 III positive    3 positive Yes  1492 3.602 

RVCC40000166 4.34 III Negative    3 positive Yes  1922 3.700 

RVCC40000936 5.08 II positive    0 negative Yes  1231 3.702 

RR6BL0000111 0 II positive   Negative     No No  3.719 

RVCC40000035 5.46 III positive   positive   0 negative Yes  2137 3.720 

RR6BL0000232 0 II positive   Negative   3 positive Yes  1749 3.721 

RVCC40000016 4.54 II positive   positive   2 negative Yes  2268 3.748 

RR6BL0000204 0 II positive   positive   0 negative Yes  1935 3.763 

RVCC40000026 2.28 I positive   positive   0 negative Yes  2233 3.778 

RVCC40000633 3.44 II positive   positive   2 negative Yes  1563 3.808 

RR6BL0000252 0 III positive   positive   1 negative No Yes 1754 3.822 

RVCC40000686 5.52 III positive    0 negative Yes  1414 3.830 

RVCC40000039 4.6 III Negative   Negative   0 negative Yes  2221 3.833 

RVCC40000063 6.3 III Negative   Negative   1 negative No Unknown  3.879 

RVCC40000642 3.28 II positive   positive   0 negative Yes  1479 3.892 

RR6BL0000557 0 III positive   positive   3 positive Yes  723 3.961 

RR6BL0000070 0 III Negative   Negative   3 positive No Unknown  3.977 

RVCC40001236 4.36 III positive   positive   0 negative Yes  896 3.981 

RR6BL0000623 0 III positive   Negative   3 positive Yes  721 3.987 

RR6BL0000214 0 III positive   positive   0 negative No Yes 766 4.018 
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RVCC40000015 4.66 III positive   Negative   3 positive Yes  2157 4.059 

RVCC40000539 3.3 II positive   positive   0 negative Yes  1362 4.080 

RVCC40000134 4.42 III positive   Negative   0 negative Yes  1948 4.080 

RR6BL0000005 0 II positive    1 negative Yes  1725 4.092 

RVCC40000573 3.96 I positive   positive   0 negative Yes  1436 4.100 

RVCC40000011 4.44 II positive    2 negative Yes  2282 4.110 

RVCC40000001 4.44 III Negative   Negative   3 positive Yes  2313 4.111 

RR6BL0000198 0 III positive    3 positive No Yes 195 4.120 

RVCC40001111 4.44 III positive   positive   1 negative Yes  1142 4.124 

RR6BL0000186 0 I positive   positive   1 negative No Yes 1792 4.146 

RR6BL0000019 0 I positive    1 negative Yes  2436 4.163 

RR6BL0000528 0 II positive   Negative   3 positive Yes  1048 4.170 

RVCC40000638 0 II positive   positive   0 negative No Unknown  4.200 

RVCC40000583 5.98 II positive   positive   2 negative Yes  1508 4.200 

RVCC40000559 4.24 II positive   positive   2 negative Yes  1638 4.219 

RVCC40000589 6.8 III positive   positive   0 negative Yes  1502 4.220 

RVCC40000632 5.76 III Negative   Negative   0 negative Yes  1523 4.230 

RR6BL0000117 0 II positive    1 negative Yes  2173 4.290 

RR6BL0000141 0 III Negative    3 positive No Yes 854 4.378 

RR6BL0000213 0 II positive    3 positive Yes  1907 4.459 

RR6BL0000033 0 II positive      No No  4.468 

RVCC40000647 4.44 III Negative   Negative   2 negative Yes  1442 4.500 

RR6BL0000245 0 II positive   positive   0 negative Yes  1625 4.545 

RR6BL0000064 0 II positive   positive   1 negative Yes  2271 4.635 

RVCC40000031 4.32 III Negative   Negative   1 negative Yes  2232 4.659 

RR6BL0000184 0 III Negative   Negative   0 negative No Yes 1000 4.659 

RVCC40000687 3.44 II positive    1 negative Yes  1527 4.690 

RVCC40000649 5.62 III Negative   Negative   1 negative Yes  1440 4.700 

RVCC40000597 4.6 II positive   positive   0 negative Yes  1589 4.701 

RVCC40000067 5.34 III positive   positive   1 negative Yes  2286 4.866 

RVCC40000591 5.66 III positive   positive   1 negative No Yes 546 4.871 

RR6BL0000199 0 II positive   positive   1 negative Yes  2095 4.894 

RR6BL0000535 0 III positive   positive   3 positive Yes  1085 4.895 

RR6BL0000235 0 III positive   Negative   3 positive Yes  1858 4.896 

RR6BL0000205 0 II positive   positive   0 negative Yes  1935 4.930 
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Table 

A 
Sum

mary 

of 

Grade 

and 

node 

status 

along

side 

mean telomere length and Standard deviation at XpYp and 17p for all IDC patients 

wcbnum Age at 
Operation 

pTNM NPI 
Score 

Breast 
Grade 

ER Score pgr score her2score Her2 2+ : Pos or 
neg following 
FISH 

XpYp 
tel 

RR6BL0000011 84  0 III Negative     1.075 

RVCC40000786 3.44 II positive      Yes  1274 4.991 

RVCC40000776 3.24 II positive    0 negative Yes  1439 5.138 

RR6BL0000131 0 II positive   positive   1 negative Yes  2131 5.146 

RR6BL0000409 0 III positive   positive   3 positive Yes  1281 5.151 

RVCC40000348 2.44 I positive   positive   0 negative Yes  1866 5.203 

RVCC40000698 4.82 III Negative   Negative   0 negative No Yes 412 5.300 

RR6BL0000230 0 II positive   positive   1 negative Yes  1913 5.345 

RVCC40000555 6.64 III positive   Negative   0 negative No Yes 1233 5.421 

RVCC40000643 3.26 II positive    2 positive Yes  1561 5.463 

RR6BL0000202 0 II positive    0 negative Yes  1884 5.479 

RVCC40000090 3.4 II positive      Yes  2113 5.519 

RR6BL0000571 0 III positive   positive   3 positive Yes  959 5.578 

RVCC40000755 4.28 III positive    2 negative Yes  1307 5.600 

RR6BL0000540 0 III positive   Negative   3 positive Yes  1071 5.642 

RVCC40000201 5.7 III Borderline Borderline 3 positive Yes  1885 5.736 

RVCC40000154 6 III Negative   Negative   2 negative Yes  1921 5.750 

RVCC40000758 6.58 III positive    0 negative Yes  1328 5.800 

RR6BL0000134 0 II positive   positive   0 negative Yes  2122 5.812 

RR6BL0000071 0 II Negative   Negative   0 negative No Yes 719 5.847 

RR6BL0000259 0 III positive   Negative   3 positive No Yes 678 6.130 

RVCC40000737 4.5 III positive   Borderline 2 negative Yes  1344 7.036 

RVCC40001060 0 III Negative   Negative   3 positive Yes  991 7.046 

RR6BL0000225 0 I positive   positive   0 negative Yes  1507 7.268 

RVCC40000071 6.6 III positive   Negative     No Unknown  7.852 

RR6BL0000130 0 III Negative   Negative   2 negative Yes  2145 8.460 

RVCC40000020 4.44 III Negative   Negative   3 positive Yes  2058 9.975 

RR6BL0000170 0 I positive   positive   1 negative Yes  2060  

RVCC40000129 3.6 II positive   positive   0 negative Yes  2000  
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RVCC40000033 75 T2 N3a Mx  6.82 III Negative   Negative   3 positive 1.290 

RVCC40000753 68 T1c No Mx  4.36 III positive    0 negative 1.664 

RR6BL0000004 82 T2 No Mx   0 II positive      1.780 

RR6BL0000120 69  0 II     1.818 

RVCC40000076 43 T2 N2a Mx  6.46 III Negative   Negative   0 negative 1.845 

RR6BL0000001 72 T2 N1 Mx   0 III positive   Negative   0 negative 2.021 

RVCC40000022 79 T2N1miMx   5.42 III Negative   Negative   3 positive 2.182 

RR6BL0000008 61 T1 No Mx   0 II positive      2.290 

RVCC40001036 73 T2N1Mx     5.84 III Negative   Negative   2 negative 2.328 

RR6BL0000350 59  0 II positive   positive   1 negative 2.458 

RR6BL0000083 75 T2 N1 Mx   0 III positive      2.512 

RR6BL0000274 79 T1 No      0 I positive    0 negative 2.517 

RVCC40000124 45 T2N1aMx    4.8 II positive   positive   0 negative 2.617 

RVCC40000622 59 T2N0Mx     4.44 III positive   positive   0 negative 2.660 

RVCC40000965 73 T2NOMX     4.72 III Negative   Negative   3 positive 2.669 

RR6BL0000013 48 T1 No Mx   0 III Negative   Negative   2 negative 2.680 

RVCC40000021 63 T1c No Mx  3.28 II positive    0 negative 2.686 

RR6BL0000039 34 T2 No Mx   0 III Negative   positive     2.700 

RVCC40000665 65  0 II positive    0 negative 2.701 

RVCC40000072 65 T1c No Mx  4.36 III Negative   positive   0 negative 2.729 

RR6BL0000045 56 T2 No Mx   0 II positive      2.730 

RVCC40000907 53 T2mN1Mx    4.54 II positive    0 negative 2.793 

RR6BL0000067 58 T2 No Mx   0 III positive   Negative   2 negative 2.800 

RR6BL0000072 58 T2 No Mx   0 III Negative   Negative   3 positive 2.920 

RVCC40000135 83 T1cNoMx    2.4 I positive      2.946 

RVCC40000009 68 T2 N2a Mx  6.6 III positive    3 positive 2.960 

RVCC40000025 38  4.3 III positive    3 positive 2.980 

RVCC40000030 74 T1cNoMx    3.34 II positive      3.040 

RR6BL0000386 75 t1n0mx     0 II positive   positive   2 negative 3.044 
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RR6BL0000002 73 T2 N1 Mx   0 II Negative   Negative    3.118 

RVCC40000752 47 T2N0Mx     3.4 II positive    1 negative 3.153 

RR6BL0000020 86  0 II positive      3.158 

RVCC40001469 81 T2NoMx     2.6 I positive   positive   1 negative 3.225 

RVCC40000042 85 T2 No Mx   3.5 II positive      3.230 

RVCC40000144 39 T2N0Mx     4.6 III Negative   Negative   1 negative 3.260 

RVCC40000051 42 T1c No Mx  2.24 I positive      3.260 

RR6BL0000171 45 T2 N1      0 II positive    1 negative 3.265 

RVCC40001055 50 T1cNoMx    3.28 II positive    1 negative 3.353 

RVCC40000696 42 T2N3aMx    6.46 III Negative   Negative   3 positive 3.366 

RVCC40000089 66 T1c N1 Mx  5.26 III positive   positive   0 negative 3.434 

RVCC40000155 78 T2 N1 Mx   5.48 III positive      3.450 

RVCC40000165 47 T2 N1m Mx  5.6 III positive    0 negative 3.500 

RVCC40000795 65 T2N1aMx    3.56 I positive    1 negative 3.520 

RVCC40000070 73 T2 No Mx   3.56 II Negative   Negative   1 negative 3.542 

RVCC40000029 58 T3 N1 Mx   5.02 II positive   positive   0 negative 3.554 

RR6BL0000104 59 T2 No Mx   0 III positive   Negative   2 negative 3.580 

RVCC40000631 79 T2N0Mx     4.66 III positive    3 positive 3.602 

RVCC40000166 69 T1c No Mx  4.34 III Negative   3 positive 3.700 

RVCC40000936 61 T3N1miMx   5.08 II positive    0 negative 3.702 

RR6BL0000111 79 T1 N1 Mx   0 II positive   Negative    3.719 

RVCC40000035 68 T2 N1a Mx  5.46 III positive   positive   0 negative 3.720 

RR6BL0000232 36  0 II positive   Negative   3 positive 3.721 

RVCC40000016 60 T2 N12 Mx  4.54 II positive   positive   2 negative 3.748 

RR6BL0000204 69  0 II positive   positive   0 negative 3.763 

RVCC40000026 45 T1c No Mo  2.28 I positive   positive   0 negative 3.778 

RVCC40000633 68 T2aNoMx    3.44 II positive   positive   2 negative 3.808 

RR6BL0000252 52  0 III positive   positive   1 negative 3.822 

RVCC40000686 49 T2N1miMx   5.52 III positive    0 negative 3.830 
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RVCC40000039 46 pT2 No Mx  4.6 III Negative   Negative   0 negative 3.833 

RVCC40000063 81 T3 N1 Mx   6.3 III Negative   Negative   1 negative 3.879 

RVCC40000642 70 T4bNoMx    3.28 II positive   positive   0 negative 3.892 

RR6BL0000557 83 T2N0MX     0 III positive   positive   3 positive 3.961 

RR6BL0000070 80 T2 N2 Mx   0 III Negative   Negative   3 positive 3.977 

RVCC40001236 55 T1cN0Mx    4.36 III positive   positive   0 negative 3.981 

RR6BL0000623 48 t2n0mx     0 III positive   Negative   3 positive 3.987 

RR6BL0000214 68  0 III positive   positive   0 negative 4.018 

RVCC40000015 87 T2NoMx     4.66 III positive   Negative   3 positive 4.059 

RVCC40000539 70 T1cN0Mx    3.3 II positive   positive   0 negative 4.080 

RVCC40000134 70 T2 No Mx   4.42 III positive   Negative   0 negative 4.080 

RR6BL0000005 53 T2 N1 Mx   0 II positive    1 negative 4.092 

RVCC40000573 46 T2NoMx     3.96 I positive   positive   0 negative 4.100 

RVCC40000011 58 T2 N1a Mx  4.44 II positive    2 negative 4.110 

RVCC40000001 71 T2 No Mx   4.44 III Negative   Negative   3 positive 4.111 

RR6BL0000198 51 T2 N2 Mx   0 III positive    3 positive 4.120 

RVCC40001111 48 T2N0Mx     4.44 III positive   positive   1 negative 4.124 

RR6BL0000186 80  0 I positive   positive   1 negative 4.146 

RR6BL0000019 49 T2 No Mx   0 I positive    1 negative 4.163 

RR6BL0000528 56 T1N0MX     0 II positive   Negative   3 positive 4.170 

RVCC40000638 91 T2N1       0 II positive   positive   0 negative 4.200 

RVCC40000583 47 T2N2aMx    5.98 II positive   positive   2 negative 4.200 

RVCC40000559 61 T1cN1aMx   4.24 II positive   positive   2 negative 4.219 

RVCC40000589 76 T2mN3aMx   6.8 III positive   positive   0 negative 4.220 

RVCC40000632 33 T2N1Mx     5.76 III Negative   Negative   0 negative 4.230 

RR6BL0000117 67 T2 N1 Mx   0 II positive    1 negative 4.290 

RR6BL0000141 48  0 III Negative   3 positive 4.378 

RR6BL0000213 58 T1 No      0 II positive    3 positive 4.459 

RR6BL0000033 84 T2 N1 Mx   0 II positive      4.468 
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RVCC40000647 65 T2N0Mx     4.44 III Negative   Negative   2 negative 4.500 

RR6BL0000245 86  0 II positive   positive   0 negative 4.545 

RR6BL0000064 40 T1 No Mx   0 II positive   positive   1 negative 4.635 

RVCC40000031 54 T1c No Mx  4.32 III Negative   Negative   1 negative 4.659 

RR6BL0000184 42 T3N0MX     0 III Negative   Negative   0 negative 4.659 

RVCC40000687 49 T2 No Mx   3.44 II positive    1 negative 4.690 

RVCC40000649 60 T2N1aMx    5.62 III Negative   Negative   1 negative 4.700 

RVCC40000597 48 T2N1aMx    4.6 II positive   positive   0 negative 4.701 

RVCC40000067 48 T1 N1 Mo   5.34 III positive   positive   1 negative 4.866 

RVCC40000591 50 T2N1Mx     5.66 III positive   positive   1 negative 4.871 

RR6BL0000199 70 T1 No Mx   0 II positive   positive   1 negative 4.894 

RR6BL0000535 46 T2N0MX     0 III positive   positive   3 positive 4.895 

RR6BL0000235 53 T2         0 III positive   Negative   3 positive 4.896 

RR6BL0000205 72 Unknown    0 II positive   positive   0 negative 4.930 

RVCC40000786 60 T2NoMx     3.44 II positive      4.991 

RVCC40000776 65 T1cN0Mx    3.24 II positive    0 negative 5.138 

RR6BL0000131 69  0 II positive   positive   1 negative 5.146 

RR6BL0000409 43 t2n1m0     0 III positive   positive   3 positive 5.151 

RVCC40000348 87 T2NoMx     2.44 I positive   positive   0 negative 5.203 

RVCC40000698 70 T2N0Mx     4.82 III Negative   Negative   0 negative 5.300 

RR6BL0000230 43  0 II positive   positive   1 negative 5.345 

RVCC40000555 76 T2 N3a Mx  6.64 III positive   Negative   0 negative 5.421 

RVCC40000643 42 T1N0Mx     3.26 II positive    2 positive 5.463 

RR6BL0000202 66  0 II positive    0 negative 5.479 

RVCC40000090 84 T1c No Mx  3.4 II positive      5.519 

RR6BL0000571 42 T2N1biMO   0 III positive   positive   3 positive 5.578 

RVCC40000755 73 T2N0Mx     4.28 III positive    2 negative 5.600 

RR6BL0000540 44 T1cN1biMX  0 III positive   Negative   3 positive 5.642 

RVCC40000201 66 T2 N1 Mx   5.7 III Borderline Borderline 3 positive 5.736 
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RVCC40000154 49 T2 N1 Mx   6 III Negative   Negative   2 negative 5.750 

RVCC40000758 52 T2N3aMx    6.58 III positive    0 negative 5.800 

RR6BL0000134 68  0 II positive   positive   0 negative 5.812 

RR6BL0000071 71 T2 N1 Mx   0 II Negative   Negative   0 negative 5.847 

RR6BL0000259 75  0 III positive   Negative   3 positive 6.130 

RVCC40000737 78 T4bNoMx    4.5 III positive   Borderline 2 negative 7.036 

RVCC40001060 45 T3N2Mx     0 III Negative   Negative   3 positive 7.046 

RR6BL0000225 67 Unknown    0 I positive   positive   0 negative 7.268 

RVCC40000071 85 T3 N1      6.6 III positive   Negative    7.852 

RR6BL0000130 47 T1 No Mx   0 III Negative   Negative   2 negative 8.460 

RVCC40000020 55 T2 No Mx   4.44 III Negative   Negative   3 positive 9.975 

TOTAL +ive       ER 94   HER 29   

Table B summary of TNM stage, HER2 status, ER/PR status and grade for each patient alongside mean telomere length at XpYp and 17p
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Appendix 2 Table B 

Telomere standard deviations with HER2 status 

 

wcbnum 
Her2 2+ : Pos or neg following 
FISH 

XpYp 
tel 

 
SD 

RR6BL0000070 positive 3.977 

 

4.01 

RR6BL0000072 positive 2.920 
 

3.25 

RR6BL0000141 positive 4.378 

 

3.10 

RR6BL0000198 positive 4.120 

 

2.62 

RR6BL0000213 positive 4.459 

 

3.29 

RR6BL0000232 positive 3.721 

 

2.78 

RR6BL0000235 positive 4.896 

 

2.19 

RR6BL0000259 positive 6.130 

 

2.59 

RR6BL0000409 positive 5.151 

 

3.41 

RR6BL0000528 positive 4.170 

 

2.53 

RR6BL0000535 positive 4.895 

 

3.12 

RR6BL0000540 positive 5.642 

 

2.99 

RR6BL0000557 positive 3.961 

 

2.60 

RR6BL0000571 positive 5.578 

 

2.35 

RR6BL0000623 positive 3.987 

 

1.89 

RVCC40000001 positive 4.111 

 
1.78 

RVCC40000009 positive 2.960 
 

2.23 

RVCC40000015 positive 4.059 

 

3.54 

RVCC40000020 positive 9.975 

 

4.85 

RVCC40000022 positive 2.182 

 
1.25 

RVCC40000025 positive 2.980 
 

3.09 

RVCC40000033 positive 1.290 
 

2.11 

RVCC40000166 positive 3.700 
 

2.80 

RVCC40000201 positive 5.736 

 

2.61 

RVCC40000631 positive 3.602 

 
1.11 

RVCC40000643 positive 5.463 

 
1.25 

RVCC40000696 positive 3.366 

 
1.82 

RVCC40000965 positive 2.669 

 

0.85 

RVCC40001060 positive 7.046 

 

2.86 
 

Table B: shows all patients that tested positive for HER2 status (using FISH). Shown in bold 

are all those patients of this subgrouping who had standard deviation telomere lengths of 

2.5kb and above 

 

 

Appendix 3:  Scatter plot A of all STELA telomere lengths 
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Scatter plot A: shows all telomere lengths represented using scatter diagrams and subdivided 

by telomere (XpYp and 17p) 
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Appendix 4 Table C: Fusion frequencies 

Diploid genome equivalents = 5001 (30ng) per reaction (166.7 molecules/ng) 

18 reactions = 90000 input genome equivalents 

 
No. 1 2 3 4 5 6 7 8 

17p 0 2.2 x 10-5 1.1 x 10-5 0 1.1 x 10-5 3.3 x 10-5 0 1.1 x 10-5 

21q 0 0 0 1.1 x 10-5 0 0 1.1 x 10-

5 

0 

16p 1.1 x 10-

5 

0 1.1 x 10-5 2.2 x 10-5 0 0 2.2 x 10-

5 

0 

No. 8 9 10      

17p 0 1.1 x 10-5 0      

21q 1.1 x 10-

5 

0 2.2 x 10-5      

16p         

No. 11 12 13 14 15 16 17  

XpYp 0 1.1 x 10-5 0 0 1.1 x 10-5 0 0  

17p 0 0 2.2 x 10-5 0 0 1.1 x 10-5 0  

21q 1.1 x 10-

5 

2.2 x 10-5 2.2 x 10-5  0 1.1 x 10-5 2.2 x 10-

5 

 

16p 0 1.1 x 10-5 1.1 x 10-5 0 0 0 0  

No. 18 19 20 21 22    

17p 0 1.1 x 10-5 0 0 0    

21q 0 0 2.2 x 10-5 1.1 x 10-5 0    

16p 2.2 x 10-

5 

0 0 0 1.1 x 10-5    

No. 23 24       

17p 2.1 x 10-

5 

1.1 x 10-5       

 

Table C: shows the fusion frequencies calculated on a patient by patient basis. ‘No.’ refers to 

the patient number. Only patients with fusion banding patterns have been included here, and 

they are subdivided by telomere that was probed for. XpYp was detected using the XpYpo-g 

probe; 17p with 17p6; 21q with 21qseq1rev and 16p with 16p1.

 


