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Abstract. We simulate the dynamics of fractal star clusters, in order to investigate the evolution of substructure in recently
formed clusters. The velocity dispersion is found to be the key parameter determining the survival of substructure. In clusters
with a low initial velocity dispersion, the ensuing collapse of the cluster tends to erase substructure, although some substructure
may persist beyond the collapse phase. In clusters with virial ratios of 0.5 or higher, initial density substructure survives for
several crossing times, in virtually all cases. Even an initially homogeneous cluster can develop substructure, if it is born with
coherent velocity dispersion.
These results suggest that the simple initial conditions used for many sophisticatedN-body simulations could be missing a very
important and dramatic phase of star cluster evolution.
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1. Introduction

It appears that most stars – possibly all stars – form in clusters.
Their dynamical evolution is thus of great interest. In recent
years, codes such as6 (Aarseth 2000), which include
detailed stellar evolution and mass loss, binary evolution and
mass transfer, have made possible a new generation of “kitchen
sink” simulations (e.g. Kroupa et al. 2001; Hurley et al. 2001;
Portegies Zwart et al. 2001). However, the initial conditions
for these simulations have often been very simple, for example
Plummer models, in stark contrast with the great detail invoked
in modelling the subsequent evolution.

Observations of star clusters, on the other hand, suggest that
the initial conditions for star formation are highly clumpy and
structured, both in the distribution of the molecular gas from
which stars are about to form (e.g. Williams 1999 and refer-
ences therein), and in the distribution of newly-formed stars
(e.g. Bate et al. 1998; Gladwin et al. 1999).

Aarseth & Hills (1972) were the first to investigate the evo-
lution of collapsing star clusters with substructure. Their sim-
ulations were limited by the available computer power to clus-
ters of 120 stars. They found that subclustering was destroyed
on a free-fall timescale. Later Goodwin (1998) investigated an
initially virialised cluster with density substructure and a larger
number of stars. He found that most of the initial substructure
was erased within a few crossing times.

In this paper we investigate the evolution of initially frac-
tal star clusters to see how long substructure can survive.
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Our models include star clusters with large velocity disper-
sions, as would be expected in clusters shortly after they expel
their residual gas (cf. Goodwin 1997). In addition, we investi-
gate fractal clusters in which the density substructure is corre-
lated with coherent velocity dispersion, as would be expected in
clusters where sub-clusters form from distinct molecular cores.

We are not suggesting that star clustersarenecessarily frac-
tal. The range of scales over which young star clusters exhibit
substructure is usually very small, often less than an order of
magnitude, so the notion of a fractal cannot be applied rigor-
ously. Nonetheless, fractals provide a simple, one-parameter
description of clumpiness, and this is why we are using them.

2. N-body method and initial conditions

We conduct ourN-body simulations on a-5 board,
which allows for very rapid solution of theN-body gravita-
tional problem (Kawai et al. 2000). We use a simple direct first
order N-body integrator, as the speed of the-5 board
allows the timestep to be set sufficiently small that over the
course of a simulations the total energy of the system never
changes by more than 0.01 per cent, and usually by signifi-
cantly less than this. A small softening length is used (generally
of order 10−5 in code units).

The presence of binaries in a cluster will effect the dy-
namical evolution of the system by altering impact parameters.
However, tests using different softening lengths show the re-
sults to be independent of the softenning length, even when it
is significantly larger than our canonical 10−5. This is due to
the relaxation being primerally violent relaxation, rather than
encounter-driven two-body relaxation.
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Fractal distributions are generated by defining anur-cube
with side 2, and placing anur-parent at the centre of the
ur-cube. Next, theur-cube is divided intoN3

div equal sub-
cubes, and a child is placed at the centre of each sub-cube
(the first generation). Normally we useNdiv = 2, in which
case there are 8 sub-cubes and 8 first-generation children.
The probability that a child matures to become a parent in
its own right isN(D−3)

div , whereD is the fractal dimension; for
lower D, the probability that a child matures to become a par-
ent is lower. Children that do not mature are deleted, along
with the ur-parent. A little noise is then added to the posi-
tions of the remaining children, to avoid an obviously gridded
structure, and they become the parents of the next generation,
each one spawningN3

div children (the second generation) at the
centres ofN3

div equal-volume sub-sub-cubes, and each second-

generation child having a probabilityN(D−3)
div of maturing to be-

come a parent. This process is repeated recursively until there
is a sufficiently large generation that, even after pruning to im-
pose a spherical envelope of radius 1 within theur-cube, there
are more children than the required number of stars. Children
are then culled randomly until the required number is left, and
the survivng children are identified with the stars of the cluster.

We explore a range of models withNtot = 1000 and
Ntot = 10 000 stars. The fractal dimensions which we inves-
tigate areD = 1.6, 2.0, 2.6, and 3.0, since these all correspond
to 2D (the mean number of maturing children) being close to
an integer. This reduces the likelihood of departures from the
specified fractal dimension, because in our algorithm for con-
structing an initial cluster the number of maturing children born
to each parent should be an integer.

Our simulations begin with a random velocity dispersion,
which is either incoherent or coherent. For an incoherent veloc-
ity dispersion, each particle is given random Cartesian velocity
components from a Gaussian distribution, and these velocities
are then scaled so that the virial ratioα has the prescribed value.
α is defined as the ratio of the total kinetic energy to the magni-
tude of the gravitational potential energy.α = 0.1 corresponds
to a cluster which immediately collapses.α = 0.5 corresponds
to virial equilibrium.α = 0.75 corresponds to a super-virial
cluster (i.e. one which has just expelled its residual gas).

For a coherent velocity dispersion, each star inherits most
of its velocity from its family tree. We first calculate, for each
mature child of each generation, how many stars are descended
from it, and this gives the child’s mass. Next, starting with the
children of the first generation, we give them random velocities
relative to theur-parent, so that they form a virialised cluster.
We treat the children of each subsequent family in the same
way, giving them random velocities relative to the parent, so
that they form a virialised sub-cluster, but in addition they ac-
quire the velocity of the parent. This process is repeated recur-
sively, and hence the stars of the final generation inherit random
velocities from all their antecedents, giving a coherent velocity
dispersion. Finally, the velocities are scaled so that the virial
ratioα has the prescribed value.

We believe that the most realistic of the initial velocity dis-
persions we use is the coherent, super-virial one (α = 0.75).
Our simulations do not include a gaseous component, but we

assume that the residual gas has been expelled from the cluster
very rapidly and recently. If the stars have previously been in
virial equilibrium with the residual gas, the virial ratio of the
purely stellar component is super-virial. It also seems likely
that the velocities of the stars will be correlated locally, on the
assumption that each sub-cluster of stars has formed from a
single molecular core.

3. Measures of clumpiness

The primary aim of this paper is to investigate how rapidly
initial density substructure and associated velocity coherence
are destroyed, and the typical timescale before a cluster can be
described as smooth. In order to do this we require a robust
method for measuring the clumpiness of a cluster.

One method would be to determine the evolution of the
fractal dimension of the cluster. However, this method has
drawbacks, because it is difficult to measure the fractal dimen-
sion of a distribution with a strong overall radial density gradi-
ent. Clusters rapidly acquire a core-halo structure, in which the
mean separation between stars decreases radially by a signifi-
cant factor. To determine the fractal box-dimension of a cluster,
a grid of cells is overlaid on the cluster, and the number of cells
containing at least one star is counted. This is repeated, start-
ing with a coarse grid of large cells, and proceeding to ever
finer grids of smaller cells. The fractal box-dimension is then
given by the slope of a plot of the log of the number of oc-
cupied cells against the log of the inverse cell size. This slope
turns over at the point where the grid becomes saturated, i.e.
where the number of occupied cells is equal to the number of
stars; further reductions of cell size then make no difference to
cell occupancy. However, in the presence of a density gradient,
saturation of the halo occurs before saturation of the core, pro-
ducing a complicated relationship that is difficult to interpret.
It might be possible to compensate for this, if the overall radial
density distribution is known a priori, but in general it is not.

The simple method we use to measure clumpiness is to
accord each star a local density, given by 5m/V5, wherem is
the stellar mass andV5 is the spherical volume bounded by
the fifth nearest star. Next we overlay spherical shells centred
on the centre of mass of the ten densest stars, and work out
the average density in each shell. Substructure is then visible
as stars (or groups of stars) within a shell having density sig-
nificantly higher than the average density for that shell. As a
measure of the level of clumpiness, we use two numbers,F20

and F50. F20 (F50) measures the fraction of shells in which
more than 20% (50%) of the stars have more than 5 times the
average density. A high level of clumpiness is reflected in large
values ofF20 and F50. We tested more complicated, kernel
weighted density estimates (such as those used in SPH simu-
lations), but found no significant difference in the results.

F20 and F50 are not greatly affected by small number
statistics. Tests performed with clusters of 1000 stars show
thatF50 < F20 <∼ 0.1 for various clusters which should not have
significant clumpiness, viz. a randomly distributed uniform-
density cluster, a randomly distributed Plummer cluster, and
a D = 3 fractal cluster. In contrast, aD = 1.6 fractal clus-
ter, which should be very clumpy, hasF50 ∼ F20 ∼ 1.
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Fig. 1.Left: a clumpy distribution of stars. Right: the stars selected by our clumpiness measure as being significantly overdense. This distribution
has highF20 andF50 which indicate that it is significantly clumpy (which the eye confirms).

Fig. 2. The evolution of theF20 andF50 measures of clumpiness for clusters with 1000 particles, initial virial ratio 0.1, coherent velocities and
initial D of 1.6 (solid lines), 2 (dashed lines), 2.6 (dot-dashed lines) and 3 (dotted lines).

We conclude thatF20 andF50 are useful measures of clumpi-
ness. Figure 1 shows a fractal distribution with obvious sub-
structure, and the large points show which stars have been se-
lected by this method as being 5 times the average density.
They coincide well with the substructure which the human eye
identifies.

4. The evolution of fractal clusters

We now useF20 andF50 to investigate the evolution and erasure
of substructure from an initially fractal cluster.

4.1. Collapsing clusters

Figure 2 shows typical results for the evolution ofF20 andF50

for clusters having initial virial ratioα = 0.1 (such that they

will collapse) and initial fractal dimensionsD = 1.6, 2.0, 2.6,
and 3 (decreasing levels of initial substructure). In all of these
cases the initial velocity dispersion is coherent.

Time is given inN-body units, such thatG = M = R =
1, whereM andR are the total mass and initial radius of the
cluster. For example, if the total mass of the cluster isM =

1000M� and the initial radius isR = 1 pc, then one time unit
is≈1.5 Myr (see Heggie & Mathieu 1986 for details ofN-body
units).

Figure 2 shows that the level of substructure tends to de-
crease with time, and all substructure has essentially disap-
peared byT = 3. An interesting feature is the transient rise in
the level of substructure in clusters with highD (i.e. those with
initially low levels of substructure). This is due to the coherence
in the initial velocity field. Even though there is initially a low
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Fig. 3.The evolution of an initiallyFdim = 2 cluster withN = 1000 and a virial ratioα = 0.1 with coherent velocities. The time inN-body units
is given in the top right of each panel.

level of density substructure, for a short time the coherent ve-
locity field generates substructure. However, this substructure
does not last long.

The main mechanism for erasing substructure is the gravi-
tational interactions between clumps. The potential of a clumpy
cluster is highly uneven and violent relaxation occurs, allowing
the stars to relax into a smooth distribution on a short timescale.
Two-body encounters also act to remove kinetic energy from
the main cluster by ejecting stars. This can be seen in a rapidly
expanding halo of stars around the main cluster, and a cluster
core which is often significantly smaller than the initial size of
the system.

Figure 3 shows in detail the evolution of theD = 2 clus-
ter from the previous figure. By inspection the evolution of the
substructure is well described by our measuresF20 andF50. In
Fig. 3 the initially very clumpy distribution rapidly collapses.
At first some of the clumps disperse, but those which are bound
collapse and the larger of these clumps then attract nearby
clumps. The initial clumpiness is erased as most clumps merge.
However, one of the merging clumps is sufficiently bound to
survive the initial merger process and emerges at late times to
the bottom left. The re-emergence of this clump explains the
increase inF20 andF50 for this cluster in Fig. 2 aroundT = 2.

4.2. Virialised clusters

Figure 4 shows the evolution ofF20 andF50, as in Fig. 2, but
for clusters with an initial virial ratio ofα = 0.5. Clusters with
α = 0.5 have enough kinetic energy to support themselves
against overall collapse, but their clumpy nature means that sig-
nificant dynamical evolution still occurs. The most significant
features of Fig. 4 are the longer time required for substructure
to be erased, and the persistence of substructure throughout the
simulation in theD = 1.6 cluster.

The initial coherence of the velocity dispersion in the
high-D simulations is again responsible for the increase in sub-
structure early on, although this substructure is erased over a
timescale of a few time units (a few Myr in a typical cluster).

In theD = 1.6 cluster the survival of substructure is due to
the high velocity dispersion and its coherence. As can be seen
in Fig. 5 the initial cluster rapidly divides into a main cluster
and a lumpy sub-cluster, which has sufficient bulk velocity to
escape from the main sub-cluster, dividing into 3 small sub-
sub-clusters as it does so.

Such an evolution is typical for clusters of low fractal di-
mension and not unusual for clusters of higher fractal dimen-
sion. The key is the coherent nature of the velocity dispersion.
The velocity dispersionwithin a sub-cluster holds it up against
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Fig. 4. The same as Fig. 2 but for clusters with an initial virial ratio ofα = 0.5.

Fig. 5. The same as Fig. 3 but for a cluster with an initial virial ratio ofα = 0.5.
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Fig. 6. As Fig. 2 but for clusters with an initial virial ratio ofα = 0.75.

collapse, and its bulk velocity helps it to avoid merging with
other sub-clusters. Hence it is able to maintain its separate iden-
tity for a long time. This contrasts with the cases discussed in
the previous subsection, where the collapse tends to erase sub-
structure rather quickly.

4.3. Supervirial clusters

Figure 6 again showsF20 andF50, this time for clusters with
an initial virial ratio of α = 0.75, such that they expand. In
these cases it is clear that the level of substructure does not
decrease rapidly. Significant substructure remains at the end of
the simulations for allD.

Even clusters whose density structure is initially not very
clumpy grow density substructure, again due to the coherence
of their initial velocity dispersion. Generally, the lowerD, the
more clumps there are, and the smaller they are. For highD
often a binary cluster is formed with two major sub-clusters.
Figure 7 shows the final states (atT = 5) for different realisa-
tions of clusters with a variety of initial fractal dimensions. In
virtually all simulations clusters still have a significant amount
of well defined substructure present atT = 5. (For total mass
M ≈ 1000M� and initial radiusR ≈ 1 pc,T = 5 corresponds
to 5 to 10 Myr.)

Typically, by T = 5 a main sub-cluster is identifiable (as
a sub-cluster that is significantly larger than all other sub-
clusters). Figure 7 shows in most cases a clear main sub-cluster
with surrounding substructure. In many cases the substructure
is never erased altogether; some clumps are not bound to the
main clump and so escape. This is very common in clusters
with an initial virial ratio of α = 0.75, and even occurs oc-
casionally in clusters with an initial virial ratio ofα = 0.5.
Sub-clusters thatarebound to the main sub-cluster can remain
as separate entities for a significant length of time. We ran a

subset of our simulations untilT = 100 and found some sub-
clusters remaining in orbit. However, in the majority of cases
the tidal effect of the main sub-cluster disrupts any bound sub-
structure byT = 10 or 20 (roughly 10 to 50 Myr). This leaves
a smooth, but typically elliptical, main cluster surrounded by
a large, and expanding, halo of stars. We did not however in-
vestigate the details of this phase of cluster evolution in any
detail.

4.4. Incoherent velocity structures

Given the potential importance of coherent velocity dispersion
in maintaining – and even increasing – the level of substructure,
it is expected that clusters with incoherent velocity dispersion
will not retain substructure so long. Figure 8 shows the evolu-
tion of F20 andF50 for a cluster with initial virial ratioα = 0.75
and incoherent velocity dispersion. The substructure is erased
almost immediately. This is unsurprising, as, with such a large
virial ratio, any density substructure almost instantly disperses.

However, we believe that coherent velocity dispersion is the
more plausible initial condition. The likely cause of the sub-
structure that is commonly observed in young star clusters is
the formation of sub-clusters of stars in distinct molecular cores
formed by the turbulence in the molecular cloud. It is therefore
to be expected that the stars within a sub-cluster have similar
velocities, and that the velocity dispersion is correlated with the
density substructure.

4.5. The effect of large N

The previous results have concentrated on clusters withNtot =

1000 representing moderately rich, open clusters (for exam-
ple, the Pleiades or Orion). Here we investigate the effect of
largerNtot on the survival or destruction of substructure.
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Fig. 7. The final states of different realisations of clusters atT = 5, with N = 1000, virial ratios ofα = 0.75 and coherent velocities. The initial
fractal dimension is labeled in each case in the top right.

Fig. 8. As Fig. 2 but for clusters with an initial virial ratio ofα = 0.75 and a random rather than coherent velocity substructure.
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Fig. 9. As Fig. 6 but for clusters withN = 10 000.

Figure 9 shows the evolution ofF20 and F50 for clusters
with virial ratio α = 0.75, coherent velocity dispersion, and
D = 1.6, 2, 2.6, and 3, equivalent to Fig. 6 but withNtot =

10 000. Figure 9 illustrates a common theme for largeNtot,
namely that the decline inF20 andF50 is somewhat more rapid
than in clusters with smallNtot.

This result is largely an artifact of the clump detection pro-
ceedure. Often inN = 1000 clusters the number of particles
within a particular radial bin is small (of order a few), whilst in
N = 10 000 clusters that number is (obviously) far larger. Thus
poisson noise has more of an effect upon the statistics in low-N
clusters.

As an example, twoα = 0.75, D = 2 clusters were sim-
ulated, one withN = 10 000 and the other with 90 per cent
of the particles from the first simulation removed at random.
At T = 5, theN = 1000 cluster hadF20 = 0.85 andF50 = 0.25,
and for N = 10 000, F20 = 0.70 and F50 = 0.05. The
F-statistics in theN = 1000 simulation were increased by the
effect of low numbers of particles (5 to 10) in the inner radial
bins, while theN = 10 000 cluster suffered far less from this
effect with no less than 20 particles in any one bin. The den-
sity of particles in low-N simulations is also less smooth than
in high-N simulations as the search radius in which 5 particles
are to be found is usually significantly greater. Small clumps in
low-N simulations tend to be more above the average density
than in large-N simulations.

Nonetheless, largeNtot clusters still maintain significant
levels of substructure for several crossing times. This may be an
explanation for some of the anomalous bumps observed in the
profiles of several LMC star clusters (e.g. Mackey & Gilmore
2003).

4.6. The final structure of clusters

An examination of the most significant sub-clusters at the end
of simulations shows that they generally appear similar to older
clusters. The relaxation of the clusters creates Plummer- or

King-like profiles, i.e. a flat central density profile, with a steep
decline in the halo. This is especially clear in clusters with
N = 10 000. The cluster illustrated in Fig. 5f, has a flat central
surface density of≈500 stars per unit area over a radius of≈0.5,
followed by an approximater−2 decline. There are significant
sub-clusters apparent in the halo, the largest of which cause
“bumps” to appear in the surface density profile. For clusters
with low N, the trend to form core-halo density structures is
present, but far less clear due to low-N noise.

Some clusters have distinct, unbound sub-clusters which
are included in our clumpiness determinations. Once a sub-
cluster has travelled a significant distance from the main cluster
it will be difficult (without proper motions) to determine that it
formed in the same position as the main cluster. Thus it may
appear as if they are smooth and separate clusters that formed
coevally, rather than the result of dynamical segregation from
the same initial cluster.

5. Implications for observations and simulations

Observations of young star clusters often show a very inho-
mogeneous, clumpy distribution. Our simulations demonstrate
that if the velocity dispersion of these clusters is low, then much
of that initial substructure will be erased in the ensuing collapse
(cf. Aarseth & Hills 1972). However, if, as we might expect, the
velocity dispersion is high, such that the cluster remains sup-
ported or even expands, then significant levels of substructure
can survive for several crossing times. Even an initially homo-
geneous distribution of stars can grow substructure if the initial
velocity dispersion is coherent.

These results have two important consequences. First,
young clusters probably undergo significant and rapid dynam-
ical evolution. Therefore drawing conclusions about the ini-
tial stellar distribution from observations is very difficult, and
should take these considerations into account. Taurus is a good
example of a young, embedded cluster with a high level of
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substructure (Briceno et al. 1993; Ghez 1993). Our results im-
ply that, when Taurus expels its residual gas and becomes a
pureN-body system, it will probably not simply collapse into
a small, dense open cluster. Indeed, it is more likely that it will
separate into two or three small clusters, which in a few Myrs
may look as though they formed separately from each other.
As we have shown, this depends crucially on the virial ratio of
the final (gas free) cluster, and on the coherence of the veloc-
ity dispersion. Even a cluster which is initally fairly smooth in
appearance, such as IC348 (Najita et al. 2000), may develop
substructure and look very different in a few Myrs.

Second, the rapid dynamical evolution early in a cluster’s
life is also important when setting the initial conditions for
N-body simulations of cluster evolution. Simple initial condi-
tions (such as Plummer spheres) will fail to capture this poten-
tially important stage of cluster evolution. Processes like binary
capture or dissolution, and stellar ejection, which probably
occur in the first few Myr of a cluster’s lifetime, may be
strongly affected by the evolving density substructure, and the
dynamical changes we have identified here.
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