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Abstract. We implement a Monte Carlo radiative transfer method, that uses a large number of monochromatic luminosity
packets to represent the radiation transported through a system. These packets are injected into the system and interact stochas-
tically with it. We test our code against various benchmark calculations and determine the number of packets required to obtain
accurate results under different circumstances. We then use this method to study cores that are directly exposed to the interstel-
lar radiation field (non-embedded cores). Our code predicts temperature and intensity profiles inside these cores which are in
good agreement with previous studies using different radiative transfer methods.
We also explore a large number of models of cores that are embedded in the centre of a molecular cloud. We study cores
with different density profiles embedded in molecular clouds with various optical extinctions and we calculate temperature
profiles, SEDs and intensity profiles. Our study indicates that the temperature profiles in embedded cores are less steep than
those in non-embedded cores. Deeply embedded cores (ambient cloud with visual extinction larger than 15–25) are almost
isothermal at around 7–8 K. The temperature inside cores surrounded by an ambient cloud of even moderate thickness (AV ∼ 5)
is less than 12 K, which is lower than previous studies have assumed. Thus, previous mass calculations of embedded cores
(for example in theρ Ophiuchi protocluster), based on mm continuum observations, may underestimate core masses by up to a
factor of 2.
Our study shows that the best wavelength region to observe embedded cores is between 400 and 500µm, where the core is quite
distinct from the background. We also predict that very sensitive observations (∼1−3 MJy sr−1) at 170–200µm can be used to
estimate how deeply a core is embedded in its parent molecular cloud. The upcomingHerschelmission (ESA, 2007) will, in
principle, be able to detect these features and test our models.
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1. Introduction

The initial stages of star formation are not very well under-
stood. The general view is that molecular cloud cores with sizes
∼0.1 pc and masses of a fewM�, collapse to form stars, either
in isolation or in clusters. Various observations have been as-
sociated with different stages of this scenario (see Andr´e et al.
2000).Class 0objects correspond to the first stage in the evolu-
tion of a protostar, where a central luminosity source has been
formed in the centre of the core, and matter accretes on to it.
Class Iobjects correspond to a later stage of collapse where a
disc has started to form around the central object but there is
also a residual surrounding envelope. Accretion onto the cen-
tral protostar continues but at a lower rate.Class IIandClass III
objects correspond to the classical T Tauri (CTT) and weak-line
T Tauri (WTT) stars, respectively. CTT stars have well defined
discs, whereas in WTT stars the inner discs have dissipated.
In addition, observations from Earth (IRAM, SCUBA/JCMT)
and space (IRAS, ISO) of various molecular clouds have re-
vealed condensations that appear to be on the verge of col-
lapse or already collapsing (e.g. Myers & Benson 1983;
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Ward-Thompson et al. 1994, 2002; Kirk 2002). These conden-
sations are referred to asprestellarcores.

Isolated prestellar cores have been observed inside molec-
ular clouds (e.g. L1544; Ward-Thompson et al. 1999). These
cores are considered to be precursors of isolated low mass star
formation. Isolated prestellar cores have extent>∼1.5× 104 AU
and masses 0.5−35M� (André et al. 2000). They are not in gen-
eral spherically symmetric and they appear to have flat central
density profiles. Magnetic fields are also present and they may
play a role in core stability (Andr´e et al. 2000 and references
therein).

Prestellar cores have also been observed in young proto-
clusters, such asρOphiuchi (Motte et al. 1998; Johnstone et al.
2000) and NGC 2068/2071 (Motte et al. 2001; Johnstone et al.
2001).ρ Oph is a star-forming cluster of about 1 pc diameter,
with estimated average particle densityn(H) ∼ 2−4×104 cm−3

and thermal gas pressure∼106 cm−3 K (Liseau et al. 1999).
In this region there have been detected 100 structures, 59 of
which are identified as prestellar cores and the remaining as
embedded young stellar objects (Motte et al. 1998). The extent
of the prestellar condensations is 2−4 × 103 AU (more com-
pact than isolated prestellar cores), and they have sharp edges.
Their estimated masses are 0.05−3 M�. NGC 2068/2071 are
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protoclusters in the Orion B cloud complex. Observations
(Motte et al. 2001; Johnstone et al. 2001) have revealed a fila-
mentary structure with∼70 starless condensations having small
sizes (∼5000 AU) and masses from∼0.3 M� to ∼5 M�.

Mass estimates from mm continuum observations, where
the cores are optically thin, suggest that the initial mass func-
tion (IMF) could be determined by fragmentation at the pre-
stellar stage of star formation (e.g. Andr´e et al. 2000). The
question of whether fragmentation can produce the smallest
masses in the IMF is still open. Observations of very low
mass prestellar condensations are crucial for answering this
question but they are beyond the limits of today’s telescopes.
Furthermore, current mass estimates are uncertain, due to our
limited knowledge of the properties of the dust in and around
these cores, and of the dust temperature. Previous studies have
assumed isothermal dust at 12–20 K (e.g. Motte et al. 1998;
Johnstone et al. 2000). More recent radiative transfer studies
(Evans et al. 2001; Zucconi et al. 2001) model cores that are
illuminated directly by the isotropic interstellar radiation field
and find that the temperature decreases towards the centre of
the core. However, these studies cannot be applied to embed-
ded cores, because in this case the illuminating radiation field
is not the interstellar one, and, in general, it is not isotropic.

In this paper, we present a more realistic model that treats
cores that are embedded in molecular clouds. We use a Monte
Carlo radiation code we have developed to study cores approxi-
mated by Bonnor-Ebert (BE) spheres. In Sect. 2, we discuss the
basics of our code and the tests we have performed to check
its validity. In Sect. 3, we discuss how we adapt our code to
treat the radiation transfer in externally illuminated spheres,
and present the tests we have performed. In Sect. 4.3, we briefly
examine the effect of different dust properties on our calcula-
tions and, in Sect. 4, we study BE spheres exposed directly to
the Black (1994) interstellar radiation field and compare our
results, which wereacquired by a different radiative transfer
method, with those of Evans et al. (2001) and Zucconi et al.
(2001). In Sect. 5, we study the more realistic case of cores
embedded in molecular clouds; we calculate the dust temper-
ature in their interiors, their spectra and their intensity profiles
at different observing wavelengths. Finally, we summarise our
results in Sect. 6.

2. Monte Carlo radiative transfer

We implement a method for radiation transfer calculations
based on a Monte Carlo approach, similar to that developed
by Wolf et al. (1999) and Bjorkman & Wood (2001). We make
use of the fundamental principle of Monte Carlo methods, ac-
cording to which we can sample a quantityξ ∈ [ξ1, ξ2], from a
probability distributionpξ using uniformly distributed random
numbersR ∈ [0, 1], by pickingξ such that

∫ ξ
ξ1

pξ′dξ′∫ ξ2
ξ1

pξ′dξ′
= R. (1)

Here we briefly outline the basics of our code, named
PHAETHON after a Greek mythical hero.

We discretise the radiation field of a luminosity source (star
or background radiation) using a large number of monochro-
matic luminosity packets (hereafter referred to as “L-packets”).
The frequency of anL-packet is chosen from the source ra-
diation field Iν, using Eq. (1), which, in this case, becomes∫ ν0
0

Iν(T)dν/
∫ ∞
0

Iν(T)dν = Rν, (Rν ∈ [0, 1]). Each of theL-
packets is injected stochastically into the medium, either from
a specific point (for a point star) or from the boundaries of
the system (for background radiation). For an isotropic radia-
tion field from a point source (e.g. Yusef-Zadeh et al. 1984),
the direction (θ, φ) of the L-packet is calculated usingθ =
cos−1(1 − 2Rθ) and φ = 2πRφ (Rθ ,Rφ ∈ [0, 1]). EachL-
packet is also assigned an optical depth, usingτν = − lnRτ,
Rτ ∈ [0, 1], and this determines how far the packet propagates
into the the medium before it interacts with it.

The computational domain in which theL-packets propa-
gate is divided into a number of cells. In regions where the
density or the temperature gradients are large, more cells are
needed. We can fulfil both conditions by constructing cells with
dimensionsScell less than, or on the order of, the local direc-
tional scale-heights,

Scell . MIN
{
hρ, hT

}
. (2)

In the direction given by the unit vectork, the directional scale
heights are

hρ =

( |k · ∇ρ|
ρ

)−1

, hT =

( |k · ∇T |
T

)−1

· (3)

In theory, we can construct a grid with a very large number of
cells to satisfy our accuracy requirements in calculating tem-
perature. However, if we use a large number of cells we need
a large number ofL-packets to interact with each of these cells
so that the statistical noise of our calculations (of the order
of 1/

√
Nabs, whereNabs is the number ofL-packets absorbed

in each cell) is small, that will increase the computational time
of our calculations.

If τtotal is anL-packet’s total optical depth then in order to
calculate the distance it propagates into the system before it
interacts with it, we need to calculate the line integral along the
path of the packet,

∆S =
∫ τtotal

0

dτ
κλρ
· (4)

In the general case it is not possible to calculate the preceding
integral analytically. Our approach is to approximate this inte-
gral with a sum:∆S =

∑
i (δτi/κλρi) =

∑
i δSi . The element

stepδSi that eachL-packet propagates should be small, so that
the density remains almost constant along this step. Also, the
element optical depth,δτi = κλ ρi δSi , should not be larger than
the remaining total optical depth of theL-packetτi ; τi is just
the optical depth that theL-packet still has to propagate afteri
steps,τi = τtotal − ∑i

j=0 δτ j . To satisfy the above requirements
we chose an element step according to the following condition:

δSi = MIN
{
ηρ hρ, η l, (τi + ε) l, ηr |r|

}
, (5)

wherel = (κλρi)−1, andηρ, η, ηr are constants that determine
the accuracy we demand (typical values are between 0.1 and 1).
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Fig. 1. PHAETHON: Code flow chart. Luminosity packets are in-
jected into the system, propagate, interact and finally escape. The
propagation routine is the most computationally expensive routine.

The first term (ηρ hρ) ensures that the density does not change
much in one element step (hρ is the density scale height in the
direction that theL-packet propagates), the second term (η l)
ensures that the element step is less than the mean free path of
theL-packet and the third term [(τi+ε) l] takes effect on the last
step (ε is a very small number). The last term (ηr |r|) ensures
that the distance theL-packet travels in one element step is less
than the distance from the luminosity source. This term comes
into effect when a gap exists around the source. The smaller
the factorsηρ, η, ηr are chosen, the better the accuracy in prop-
agatingL-packets, but on the other hand a smaller element step
means more computation. We propagate theL-packet follow-
ing the above procedure untilτi ≤ 0 or until the packet escapes
from the system.

When anL-packet reaches an interaction point within the
medium (at the end of its optical depth), it is either scattered or
absorbed, depending on the albedo. If the packet is absorbed its
energy is added to the medium and raises the local temperature.
To ensure radiative equilibrium theL-packet is immediately
re-emitted. The new temperature of the cell that absorbs the
packet is found by equating the absorbed and emitted energies.
The re-emittedL-packet has the same energy but a new fre-
quency chosen from the difference of the local medium emis-
sivity before and after the absorption of the packet (Bjorkman
& Wood 2001). The direction of the reemittedL-packet is ran-
dom. If theL-packet is scattered then it is assigned a new di-
rection, using the scattering phase function due to Henyey &
Greenstein (1941). Then the packet propagates again in the
medium to a new interaction location. This procedure contin-
ues until all the packets escape from the system. They are then
placed into frequency and direction-of-observation bins. The
general flowchart of the radiative transfer code PHAETHON
is shown in Fig. 1. The shaded parts in this diagram refer
to procedures that, in general, need to be done more than
once for eachL-packet and consequently are those that dictate
the efficiency of the code. A simple code efficiency analysis,

indicates that theL-packet propagationroutine takes about
25–50% of the computational time, depending on the specific
problem. Thus, this is the routine that should be targeted by any
efforts to diminish the running time of the code. Time efficiency
is very important since a large number ofL-packets is needed
for good statistical results. To reduce the running time of the
code, whilst maintaining good results, the specific nature of the
system we examine should be taken into account (for exam-
ple, in the case of a uniform density sphere we can propagate
eachL-packet in a single step), any kind of symmetry should be
exploited (e.g for spherically symmetric systems) and look-up
tables should be used to solve for the cell temperature after ab-
sorbing a packet and then to calculate the reemission frequency
of the new packet.

We have tested our code against benchmark calculations
proposed by Ivezic et al. (1997) for a star surrounded by a
spherical envelope, first with constant density, and then for
density decreasing asr−2. They used three different, well es-
tablished radiative transfer codes using different numerical
schemes to solve a set of benchmark spherical geometry prob-
lems. In all cases, these methods gave differences smaller
that 0.1% and, as Ivezic et al. noted, the solution should be
considered exact. Our code reproduces those results and also
the results of Bjorkman & Wood (2001), for a disk-like struc-
ture embedded in an envelope. These tests demonstrate the va-
lidity of our radiative transfer code. We will not present these
tests but, instead we will later discuss two different tests: (i)
the “thermodynamic equilibrium test” in which a Bonnor-Ebert
sphere is illuminated by a uniform blackbody radiation field
and (ii) the “pure scattering test” in which the albedo of the
dust is set to 1.

This Monte Carlo radiative transfer method conserves en-
ergy exactly, accounts for the diffuse radiation field, can be
implemented for any geometrical structure and is very effi-
cient, making it very attractive for use in a variety of problems.
However, it can be implemented, without iteration, only when
the opacity is independent of temperature, so the method is use-
ful for treating radiation transport against opacity due to dust
grains which are large enough to be in thermal equilibrium.

3. Radiative transfer in prestellar cores

3.1. Core density profile

A simple approach to prestellar cores is to assume that they are
isothermal spheres in which gravity is balanced by gas pressure
(Bonnor-Ebert spheres; Bonnor 1956; Ebert 1955). Recent ob-
servations (e.g. Alves et al. 2001; Ward-Thompson et al. 2002)
show that this is a good approximation for many cores. We use
the Monte Carlo radiative transfer code to study cores embed-
ded in an isotropic interstellar radiation field. We choose to
parameterise BE spheres using the temperature, the mass of
the sphere, and the external ambient pressure on the sphere.
This type of parameterisation is quite useful when examining
prestellar cores in the same molecular cloud, in as much as we
can presume that they all experience roughly the same exter-
nal pressure. The sphere is divided into a number of concentric
cells (typically 50–100) with equal radial width (Fig. 2).
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Fig. 2. Schematic view of Bonnor-Ebert sphere model.L-packets are
injected from the point (0,0,R) at such an angle as to imitate an
isotropic radiation field.

In our study we assume isothermal gas BE spheres.
Generally, dust and gas do not have the same temperature un-
less the density is quite high, in which case they are thermally
coupled (n > 1− 3× 104 cm−3, Mathis et al. 1983; Whitworth
et al. 1998). However, even non-isothermal models that allow
a small gas temperature gradient, give density profiles that are
very close to the BE profile (Evans et al. 2001). Thus, our re-
sults for isothermal spheres should represent non-isothermal
spheres reasonably well.

3.2. The Illuminating radiation field

Because the core is spherically symmetric and the radiation
field is isotropic, we can – without loss of generality – inject
all L-packets at the point (0, 0,R) along theyz plane, whereR
is the radius of the BE sphere (Fig. 2). IfI0 is the integrated
intensity of the radiation field, then the total luminosity inci-
dent on the sphere isLtotal = πI0 4πR2. If we useNp luminosity
packets, the luminosity perL-packet isδL = (πI0 4πR2)/Np.
For isotropic intensity the injection angle probability is

pθdθ = 2 cos (θ) sin (θ)dθ,
π

2
≤ θ ≤ π, (6)

and theL-packet injection angle is therefore

θ = cos−1
[
−Rθ1/2

]
, Rθ ∈ [0, 1]. (7)

For the spectrum of the radiation incident on the core, we
use the Black (1994) interstellar radiation field (hereafter
BISRF). Black has compiled an average Galactic background
spectrum from radio frequencies to the Lyman continuum
limit, based both on observations and theoretical modelling
(Fig. 3). This spectrum consists of an optical component with
a peak at around 1µm, due to radiation from giant stars
and dwarfs; a component due to thermal emission from dust
grains with a peak at around 100µm; mid-infrared radiation
from non-thermally heated grains in the range 5–100µm; and

Fig. 3. Black (1994) Interstellar Radiation Field.

the cosmic background radiation with a peak around 1 mm
(T = 2.728± 0.004 K). This background is similar to that of
Mathis et al. (1983) apart for the region from 5 to 400µm,
where it is stronger on the basis of COBE data. As noted by
Black, his estimate only accounts for continuum radiation and
does not include strong emission lines, which may have signifi-
cant power in the far-IR and submillimetre part of the spectrum.

The BISRF seems to be a good approximation to the inter-
stellar radiation field in the solar neighbourhood. However, it
is not always an appropriate choice when studying prestellar
cores, because many cores are embedded in molecular clouds.
Consequently, the radiation field is attenuated at short wave-
lengths (<30−40µm) because the surrounding cloud absorbs a
large part of this radiation, and enhanced at long wavelengths
(>50 µm) due to the thermal emission from the molecular
cloud (Mathis et al. 1983). Also the radiation field may be
anisotropic. In this work, initially we study cores directly ex-
posed to the BISRF (like the previous studies of Evans et al.
2001; Zucconi et al. 2001) but we also extend our study to the
more realistic case of cores inside molecular clouds of different
sizes.

3.3. Dust opacities

Typical dust temperatures in prestellar cores are quite low
(5−20 K) and under these conditions dust grains are expected
to coagulate and accrete ice mantles. Following recent studies
of prestellar cores (Evans et al. 2001; Zucconi et al. 2001), we
use absorption opacities calculated by Ossenkopf & Henning
(1994) (hereafter OH) for a standard MRN (Mathis et al. 1977)
interstellar grain mixture (53% silicate and 47% graphite), with
grains that have coagulated and accreted thin ice mantles over
a period of 105 years at densities 106 cm−3. We also assume a
gas-to-dust mass ratio of 100.

Ossenkopf and Henning only calculated absorption opaci-
ties down to 1µm, so below this value we use the MRN stan-
dard model (grains without ice mantles) with optical constants
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Fig. 4. Ossenkopf & Henning (1994)+ MRN (1977) opacities. The
solid line represents the absorption opacity and the dashed line the
scattering opacity (κabs + κscat= 10.45× 102 cm2g−1 atλ = 0.55µm).

from Draine & Lee (1984), after scaling to fit the OH absorp-
tion opacity at 1µm (Fig. 4). In any case, the choice of absorp-
tion opacities below 1µm, does not play an important role in
our calculations since at these short wavelengths the core is op-
tically thick and the radiation does not penetrate much inside
the core.

Also due to lack of data for scattering opacities we use
the MRN scattering opacities after scaling them as before. We
should note though that for dust in prestellar cores, scattering
is expected to be less by at least a factor of 2 (Ossenkopf;
private communication). The choice of scattering opacities
does not greatly affect the temperature in the inner regions
of the core, since scattering is only important for short wave-
length (<∼20 µm) radiation, which, anyway, cannot penetrate
deep inside the core. We will discuss the effect of scattering
in more detail later.

3.4. Code tests

3.4.1. Test 1: Thermodynamic equilibrium

Consider a system that is illuminated by a uniform, isotropic
blackbody radiation field of temperatureT. Thermodynamic
equilibrium dictates that every part of the system will adopt
the same temperatureT. This also means that the intensity of
the radiation coming from the system is the same as that of the
illuminating blackbody field. It is easy to see this from a simple
radiative transfer calculation. IfIν(0) = Bν(T) is the intensity
of the incident radiation at a specific direction on the system,
the intensityIν(D) of the radiation that escapes, after travelling
distanceD inside the system, is

Iν(D) = Iν(0)e−τν(D) + Bν(T)
[
1− e−τν(D)

]
= Bν. (8)

Practically this means that the system is invisible to an ob-
server. This test can be applied to any structure (e.g. spheres,

Fig. 5. Thermodynamic equilibrium test for a Bonnor-Ebert sphere.
a) Temperature versus distance from the centre of the sphere.
b) Spectrum of the incident and the emergent radiation in units of
B = σT4/π (there is no difference at all).

discs, non-symmetric structures) and it is a good way to check
the main radiative transfer code (i.e.L-packet injection, prop-
agation, absorption, temperature correction and reemission). It
is a very discriminating test and we suggest that it should be
applied to all radiative transfer codes.

We perform the thermodynamic equilibrium test for an
unstable Bonnor-Ebert sphere (ξout = 11.8, M = 4.5 M�,
T = 11 K, Pext = 104 cm−3 K). Initially, we do the test with
a blackbody illuminating field havingT = 10 K and then with
T = 20 K (using 109 luminosity packets). As seen in Fig. 5
the output spectrum is the same as that of the illuminating field
and the temperature at any distance from the centre of the core
is constant and equal to that of the radiation field. Small vari-
ations on the order of 0.1 K are not important and are due to
statistical noise.

3.4.2. Test 2: Pure scattering

If the radiation field incident on the sphere is isotropic and if
theL-packets just pass through the sphere without interacting,
the observed intensity will be the same at each impact param-
eter b, and equal to the intensity of the illuminating field. The
same holds if theL-packets just get scattered, i.e. when the
albedo of the grains is set equal to 1. It is easy to understand
this when the scattering is isotropic, but the same is also true
for non-isotropic scattering. Since the incident field is isotropic,
theL-packets come from all directions and the effect of scatter-
ing will simply be to rotate the whole radiation field through an
angleθ but the field will remain isotropic. The same argument
holds if anL-packet undergoes more than one scattering. Thus,
if the radiation just gets scattered in the medium, the emer-
gent spectrum will again be the same as that of the incident
radiation.

We perform this test for a BE sphere (parameters:ξout =

4.1, M = 4 M�, T = 11 K, Pext = 104 cm−3 K). This time
the sphere is illuminated by the BISRF. We do calculations for
mean scattering cosine 0 (isotropic scattering), 0.5 and 1 (us-
ing 2× 107 luminosity packets). We present our results for the
g = 0.5 case in Fig. 6. The code successfully passed this
test too.
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Fig. 6. a) SED of the incident and the emergent radiation (no dif-
ference at all).b) Pure scattering test: Intensity profiles at wave-
lengths 850, 200, 450 and 0.55µm (top to bottom), for mean scat-
tering cosineg = 0.5 . The dotted lines against the righthand margin
of the right plot correspond to the background radiation at each of
the above wavelengths. Forλ = 450µm the statistical noise is larger
because fewerL-packets are emitted at this wavelength than at other
wavelengths.

4. Non-embedded prestellar cores

We use the termnon-embeddedprestellar cores to refer to cores
that are directly exposed to the BISRF. We perform simula-
tions for a number of Bonnor-Ebert spheres under different ex-
ternal pressures and for various gas temperatures and masses.
In Table 1, we list the parameters of our models to show the
parameter space investigated. BE spheres with the same set
of Pext, T andM correspond to one subcritical and one super-
critical sphere. These can be distinguished by theξout value; if
ξout > 6.451 then the sphere is supercritical. For each model
we calculate the temperature profile of the dust in the core, the
core SED and intensity profiles at different wavelengths (90,
170 and 450µm).

4.1. Temperature profiles

The dust temperature inside the core drops from around 17 K
at the edge to a minimum at the centre, which may be as low
as 7 K, depending on the total optical depth of the sphere. The
higher the optical depth to the centre of the core the lower the
central temperature and the larger the temperature gradient. In
Fig. 7b, we plot dust temperature profiles for three representa-
tive core models with different density profiles.

Our results are in general agreement with previous similar
calculations by Evans et al. (2001) and Zucconi et al. (2001).
We compared our results with those of Evans et al. for a sys-
tem as close we could to get to one of their models. They do
not mention what opacities they use forλ < 1 µm, they use
an ISRF atλ < 1, different from the BISRF, and some parame-
ters in their model are unclear. We find that the temperature we
calculate at the edge of the core is≈3 K higher than their calcu-
lation (17 K rather than 14 K). This difference can be explained
in terms of different opacities and different ISRF forλ < 1 µm.
We also find that the temperature is almost 1 K lower than re-
ported by Evans et al. at the centre of the core. This may in part
be due to slightly different density profiles. Zucconi et al. also
reported a higher estimated temperature at the edge (≈16.5 K)
and a lower temperature (≈0.3 K lower) at the centre of the

Table 1.Non-embedded prestellar cores: model parameters.

model ID Pa
ext( K cm−3) Tb( K) Mc(M�) ξdout τeV

BE1 104 10 2 2.6 4.0
BE2 104 10 3.5 4.5 8.3
BE2.2 104 10 3.5 9.9 24.0
BE3 104 15 2 1.7 2.4
BE4 104 15 4 2.4 3.6
BE5 104 15 6 3.2 5.2
BE5.2 104 15 6 21.6 64.0
BE6 105 15 1 2.1 9.8
BE7 105 15 2.6 5.0 30.1
BE7.2 105 15 2.6 8.5 62.0
BE8 5× 104 15 2 2.6 8.9
BE9 5× 104 15 3.5 4.5 18.2
BE9.2 5× 104 15 3.5 10.1 56.2

a External pressure.
b Gas temperature.
c Bonnor-Ebert sphere mass.
d ξ parameter (sphere is supercritical ifξ > 6.451).
e Visual optical depth to the centre of the sphere.

core, when they compared their model with the Evans et al.
calculations. However, these are small differences.

4.2. SEDs and intensity profiles

We see from the component version of the SED (Fig. 9), where
we plot the contribution from scattered, processed and direct
photons to the SED for the BE2.2 model, that short wavelength
radiation (λ <∼ 50 µm) is absorbed from the core and then is
reemitted at longer wavelengths, whereas most of the longer
wavelength radiation (λ >∼ 50µm) just passes through the core
without interacting at all. The UV, optical and NIR radiation
that is absorbed is mainly responsible for the heating of the
core. A large amount of this radiation will not be available if the
core is inside a molecular cloud, as we discuss later in this pa-
per. The core emits most of its radiation in the FIR and submm
(also see Fig. 7c). The peak of the emission is between 110 and
160 µm (note that this is the peak ofλFλ not Fλ). At these
wavelengths, the core is easily observable against the back-
ground. At shorter wavelengths (e.g. 90µm) the contrast with
the background is not very distinct. Finally, in the optical the
core is seen in absorption and appears like a black blob against
the bright background.

The radial intensity profile of a core at a specific wave-
lengthλobs depends on whether this wavelength is shorter or
longer from the peak wavelengthλpeak. If λobs is much longer
thanλpeak (e.g. at 450µm) then the Rayleigh-Jeans approxi-
mation for the Planck function holds and the intensity is pro-
portional to the product of column density with temperature.
The density decrease towards the edge of the core is much
larger than the corresponding temperature increase, and the in-
tensity decreases considerably towards the edge (see Fig. 8c).
If λobs is much shorter thanλpeak (e.g. at 90µm) then the
Wien approximation holds and the intensity depends on the
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Fig. 7. Density profiles(a), dust temperature profiles(b) and SEDs(c), for BE spheres atT = 10 K under external pressurePext = 104 cm−3 K
and with masses 3.5M�; one subcritical (model BE2, solid lines) and one supercritical (model BE2.2, dashed lines). Also for a subcritical BE
sphere atT = 15 K with mass 2.6M�, under external pressurePext = 105 cm−3 K (model BE7, dotted lines). The dash-dot line on the SED
graph corresponds to the background SED. The temperature at the centre of more centrally condensed cores is lower and the core emission is
shifted towards longer wavelengths.

Fig. 8. Intensity profiles at 90(a), 170(b) and 450µm (c), for the models in Fig. 7 (BE2: solid lines, BE2.2: dashed lines, BE7: dotted lines).
The horizontal solid lines on the profiles correspond to the background intensity at each wavelength. At 90µm the intensity increases towards
the edge of the core but the emission is just 5−10 MJy sr−1 above the background and, thus, the cores are barely detectable. At 170µm the
intensity drops towards the edge of the core, or rises by a small amount, if the core is cold enough. At 450µm the intensity drops towards the
edge of the core in all cases.

temperature exponentially, so even a small increase in the tem-
perature can balance the density decrease and the intensity in-
creases slightly (∼5 MJy sr−1) towards the edge of the core
(Fig. 8a). However, the contrast between core and background
radiation is very small (∼5−7 MJy sr−1) and cores should be
barely detectable at 90µm. This result is consistent with obser-
vations of prestellar cores (Ward-Thompson et al. 2002) that
show that cores are usually well defined at 170 and 200µm
but not always well defined at 90µm. Finally if λ andλpeak

are comparable (e.g. 170µm) the intensity either drops from
the centre to the edge (λ a bit longer thanλpeak; Fig. 8b, mod-
els BE2 and BE2.2) or it increases (λ a bit smaller thanλpeak;
Fig. 8b, model BE7). In general, the contrast with the back-
ground is quite large at these intermediate wavelengths.

4.3. Effects of dust scattering properties

The properties of dust in molecular clouds and prestellar cores
are quite uncertain (see Andr´e et al. 2000). In this section we
examine the effect of different dust scattering properties on the
temperature profiles and on the spectra of prestellar cores. We

perform radiative transfer calculations using PHAETHON for
a supercritical Bonnor-Ebert sphere (ξout = 11.8, M = 4 M�,
T = 11 K, Pext = 104 cm−3 K) with total visual optical depth
τV = 30.6, and different dust properties.

Initially, we vary the mean scattering cosineg. We see
(Fig. 10a) that when the scattering is isotropic (g = 0, solid
line) the dust temperature at a specific radius inside the core
is a bit lower (∼0.3 K) than for the case of forward scattering
(g = 1, dashed line). The caseg = 1 is equivalent to no scatter-
ing, so at optical wavelengths there is significant intensity only
at the very edge of the core where the optical depth through the
core is small and radiation can pass straight through (Fig. 10b).
If photons are scattered forward, they are able to penetrate
deeper inside the core and heat it to higher temperatures. As
a result more optical photons are absorbed and more FIR pho-
tons are emitted. The intensity difference between dust models
with different mean scattering cosine is very large in the optical
region (Fig. 10b) but it is only∼10−20% at FIR and submil-
limetre wavelengths (e.g. 170 and 450µm, Fig. 10c).

Next, we vary the scattering opacities of the dust (Fig. 11).
We perform 3 calculations: (a) with MRN scattering opacities
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Fig. 9. Components of the spectrum for the BE2.2 model. The dotted
black line is the SED of the radiation incident on the core, the solid
line is the output SED, the dash-dot line is the part of the radiation
that passes through the core without interacting, the short-dashed line
is the core emission and the long-dashed line is the scattered light.

κscat= κ
MRN
scat (solid lines), (b) withκscat= κ

MRN
scat /2 (dotted lines),

and (c) with no scattering at all (κscat = 0, dashed lines). The
results are similar to the previous case: when there is no scat-
tering (which is the same asg = 1 in Fig. 10) more photons are
absorbed by the core, heating it to slightly higher temperatures.
Scattering provides photons with a quick way out of the core
without them being absorbed.

This study shows that different dust composition, as
reflected in different dust scattering opacity and different
scattering mean cosine, results in only slightly different tem-
perature profiles. The optical intensity profiles are strongly de-
pendent on the dust scattering properties but at FIR and submil-
limetre wavelengths, where prestellar cores emit most of their
radiation, the intensity is not affected significantly. Thus, we
conclude that the scattering properties of the dust do not
greatly affect the results of our radiative transfer calculations of
prestellar cores.

5. Prestellar cores embedded in molecular clouds

In many cases prestellar cores are embedded deep inside
molecular clouds and the radiation incident on them is differ-
ent from the interstellar radiation field, and anisotropic (Mathis
et al. 1983). The ambient molecular cloud acts like a shield
to UV, visual and NIR interstellar radiation, absorbing and re-
emitting it in the FIR. It also makes the radiation incident on
the core anisotropic because in general the molecular cloud is
not homogeneous and it is not spherically symmetric. Even for
a spherical ambient molecular cloud with uniform density the
radiation incident on the prestellar core is not isotropic, even if
the core lies at the centre of the molecular cloud. That is be-
cause there will be more radiation incident on a specific point
on the embedded core from the radial direction (which is closer

to the boundary of the cloud) than from the tangent or any other
direction (see Fig. 12).

Another factor contributing to the anisotropy of the radia-
tion incident on a prestellar core is the presence of stars or other
luminosity sources in the vicinity of the core. For example, ac-
cording to the Liseau et al. (1999) model there is a B2V star
close toρ Ophiuchi that increases the UV radiation incident on
the cloud from one side. Also the NGC 2068/2071 protoclus-
ters in Orion B (Motte et al. 2001) are in an environment rich in
FIR, submm and mm photons, from reprocessed UV radiation
from the newly born stars in Orion. In such cases, the BISRF
is probably not a very good representation of the radiation field
incident on the core.

Previous studies (Evans et al. 2001; Young et al. 2002) have
acknowledged that deviations from the BISRF are important
and have used a scaled version of the BISRF that is either en-
hanced at all wavelengths or selectively at UV and FIR. This
simple approach has a free parameter, the ISRF scaling fac-
tor, that is varied arbitrarily to fit the observations but it is not
connected directly to the molecular cloud in which the core is
embedded or the transport of radiation inside the cloud, and
does not account for the fact that the radiation field incident on
an embedded core is not isotropic. Here, we present more con-
sistent models in which deviation from the BISRF is a direct
result of the presence of a molecular cloud that surrounds the
core.

5.1. Model description

We examine the simple model of a spherical prestellar core that
is at the centre of a spherical molecular cloud (see Fig. 12).
We try to mimic the conditions inρ Ophiuchi, where conden-
sations have masses in the range 0.05–3M� and dimensions
1−6 × 103 AU (∼7−42 arcsec). The thermal pressure at the
edge of the cloud is∼106 cm−3 K and the estimated particle
density is∼2 × 104 cm−3 (Liseau et al. 1999). In our study
we examine cores with dimensions 4−8× 103 AU and masses
0.4−1.2 M�. We assume that the molecular cloud outside the
core has constant particle densityn(H2) = 0.77× 104 cm−3

(corresponding tontot = 0.96× 104 cm−3 for a gas with mean
molecular weightµ = 2.3 and hydrogen abundance by mass
X = 0.7). We also assume that the dust in the molecular cloud
has the same composition as the dust in the core and, therefore,
the same opacities. As in the study of non-embedded cores we
use the Ossenkopf & Henning (1994) opacities (see Sect. 3.3).
We use a BE sphere density profile for the prestellar cores,
with fixed ambient pressure at∼106 cm−3 K. Thus, the free pa-
rameters in defining the BE profile are the mass of the sphere
and the gas temperature. Becausen(H2) is specified, the visual
optical depthτcloud is the only free parameter for the ambient
cloud.τcloud also determines the extent of the cloud. Motte et al.
(1998) calculateAV ∼ 10 mag forρ Ophiuchi, but depending
on the position of the core in the cloud, the extinction could be
up to∼40 mag. We use visual optical depths 5, 10 and 20. The
detailed parameters of our models are listed in Table 2.
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Fig. 10.Temperature profiles(a) and intensity profiles at 0.55µm (b), 170 and 450µm (c) for a Bonnor-Ebert sphere (ξout = 11.8, M = 4 M�,
T = 11 K, Pext = 104 cm−3 K) with different dust scattering properties. The dashed line corresponds to mean scattering cosineg = 1 (forward
scattering, i.e. in effect, no scattering), the dotted line tog = 0.4 and the solid line tog = 0. The dash-dot horizontal lines on the intensity
profiles correspond to the background intensity at the wavelenght noted on the graph. Different dust mean scattering cosines do not greatly
affect the dust temperature profile in the core.

Fig. 11.Temperature profiles(a) and intensity profiles at 0.55µm (b), 170 and 450µm (c) for a Bonnor-Ebert sphere (ξout = 11.8, M = 4 M�,
T = 11 K, Pext = 104 cm−3 K) with different dust scattering opacities. The dashed line corresponds to zero scattering opacity, the dotted line to
half the MRN scattering opacity and the solid line to the MRN standard model scattering opacity. The dash-dot horizontal lines on the intensity
profiles correspond to the background intensity at the wavelength noted on the graph. Different dust scattering opacities do not greatly affect
the dust temperature profile in the core.
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Fig. 12. Schematic representation of a prestellar core embedded in a
molecular cloud (not in scale). The radiation incident on the core is
not isotropic becauseτt > τr = τcloud.

5.2. Temperature profiles and mass estimates

The dust temperature profile inside the core depends on the
optical depth of the molecular cloud in which the core is em-
bedded, and the density profile of the core. (Additionally, the
dust opacities are important, but we will not study their influ-
ence here.) The presence of even a moderately thick cloud of
τcloud = 5 around the core, shields the core from UV and NIR
radiation, resulting in a less steep temperature profile inside
the core than in the case of a core that is directly exposed
to the interstellar radiation field. When there is no surround-
ing cloud the temperature drops from 16 K at the edge of the
core to around 6–7 K in the centre (∆T ≈ 9−10 K, depend-
ing on the core density), whereas with aτV = 5 cloud the
temperature drops from around 11 K to 7 K (∆T ≈ 4 K),
as seen in Figs. 13b and 15b. Particularly, in the case of a
deeply embedded core (τcloud = 20) the core is almost isother-
mal (∆T <∼ 1.5 K) at around 7–8 K, for a not very centrally
condensed core (Fig. 13b), whereas for a supercritical core
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Table 2.Embedded prestellar cores: model parameters.

model ID Ma(M�) Ta (K) ξout
a nc

a(cm−3) nb
a(cm−3) τV

a RBE
a (AU) τcloud

b Rcloud
b (AU)

EM1 0 6.1× 103

EM1.05 0.8 15 4.7 4.5× 105 6.7× 104 87 6.1× 103 5 1.5× 104

EM1.10 10 2.3× 104

EM1.20 20 4.1× 104

EM2 0 5.2× 103

EM2.05 0.8 15 9.4 2.4× 105 6.7× 104 227 5.2× 103 5 .4× 104

EM2.10 10 2.3× 104

EM2.20 20 4.0× 104

EM3 0 5.4× 103

EM3.05 0.4 15 2.4 1.4× 105 6.7× 104 36 5.4× 103 5 1.4× 104

EM3.10 10 2.3× 104

EM3.20 20 4.0× 104

EM4 0 8.1× 103

EM4.05 1.2 20 3.6 1.9× 105 5.0× 104 61 8.1× 103 5 2.0× 104

EM4.10 10 3.1× 104

EM4.20 20 5.5× 104

EM5 0 6.2× 103

EM5.05 1.2 20 15.4 6.1× 106 5.0× 104 430 6.2× 103 5 1.8× 104

EM5.10 10 3.0× 104

EM5.20 20 5.3× 104

a Embedded core properties:M: mass,T: gas temperature,ξout: ξ parameter of the BE sphere (ξ > 6.451 for supercritical spheres),nc: central
density,nb: boundary density,τV: visual optical depth to the centre of the sphere,RBE: radius of the sphere.

b Ambient cloud properties:τcloud: visual optical the of the cloud (see Fig. 12),Rcloud: cloud radius.

(Fig. 15b)∆T ≈ 3 K. Our studies show that temperatures in-
side embedded cores are probably lower than 12 K in cores
surrounded by even a relatively thin cloud (visualτcloud = 5),
which seems to be the case for many of the prestellar cores inρ
Ophiuchi. Previous studies (Motte et al. 1998; Johnstone et al.
2000) of prestellar cores inρ Oph assumed isothermal dust at
temperatures from 12 to 20 K, when calculating core masses
from mm observations. At these wavelengths the dust emission
is optically thin and, consequently, the observed flux is

Fλ = Bλ(Tdust) τλ ∆Ω = Bλ(Tdust) κλ N(H2) µmH ∆Ω. (9)

Hence, the inferred column density is

N(H2) =
Fλ

µmH ∆Ω κλ Bλ(Tdust)
· (10)

∆Ω is the solid angle of the telescope beam for a resolved
source, or the solid angle of the source if unresolved,N(H2)
is the hydrogen column density,κλ is the mm dust opacity,
and Bλ is the Planck function. At mm wavelengths and tem-
peratures<20 K the Rayleigh-Jeans approximation holds, so
Bλ(Tdust) ∝ Tdust. Therefore, the estimated column density, and
consequently the mass, depends on the observed mm flux, and
the dust opacity and temperature,

N(H2) ∝ Fλ
κλ Tdust

· (11)

Thus, the masses of the prestellar condensations calculated by
Motte et al. and Johnstone et al., using mm continuum obser-
vations, may be underestimated by up to a factor of 2, which

will affect their evaluation of the core mass function in theρ
Oph protocluster, and the inferred stability or instability of the
observed cores. Detailed modelling for each of the prestellar
cores, taking into account their environment (i.e. surrounding
cloud and nearby luminosity sources), is needed to calculate
their masses with more accuracy. Also, as Motte et al. point
out, the dust opacities and also the dust-to-gas ratio, introduce
additional uncertainties in mass calculations.

5.3. SEDs and intensity profiles

In the UV and optical (0.01–1µm), the radiation coming from
the system is scattered light and direct background radiation
(mainly coming from the edge of the cloud where the optical
depth is small). In the NIR and MIR (1–50µm) most of the ra-
diation is direct background radiation that just passes through
the outer, optically thin parts of the cloud. This depends on
the assumed background radiation field, the optical depth of
the cloud (and hence the dust properties) and the extent of the
cloud. The FIR and mm range (60–1300µm) is the most inter-
esting area since the core emits most of its radiation at these
wavelengths. Many terrestrial and space-borne observatories
cover (or have covered) this range: ISOPHOT/ISO(90, 170 and
200 µm), SCUBA/JMCT (350–1300µm), IRAM (1300 µm)
and finally the upcomingSIRTF(3.6–160µm, to be launched
in 2003) andHerschel(75–500µm, to be launched in 2007).

At 90 microns the core is seen in absorption against the
background (Figs. 14a and 16a). The intensity depends on the
temperature exponentially, so the relatively small increase in
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Fig. 13.Density profiles(a), dust temperature profiles(b) and SEDs(c), for BE spheres atT = 15 K with mass 0.8M�, under external pressure
Pext = 106 cm−3 K, surrounded by a spherical ambient cloud with visual optical depth 20 (model EM1.20, solid lines), 5 (model EM1.05, dotted
lines) and 0 (model EM1, dashed lines; no surrounding cloud). The dash-dot line on the SED graph corresponds to the background SED. The
deeper the core is embedded the lower the dust temperature inside the core. The dust temperature is lower than 12 K even when the core is
embedded in a relatively thin molecular cloud with visual extinction 5 mag.

Fig. 14. Intensity profiles at 90(a), 170 (b), 450 and 850µm (c), for the models in Fig. 13 (EM1.20: solid lines, EM1.05: dotted lines, EM1:
dashed lines). The horizontal solid lines on the profiles correspond to the background intensity at the wavelength marked on the graph. At
90µm the core is seen in absorption against the background but the core is not easily distinguishable. At 170µm the intensity increases towards
the edge of the core only if the core is not very deeply embedded. However, very sensitive observations are needed to detect this feature. At
450 and 850µm the intensity drops towards the edge of the core.

temperature towards the edge of the core can compensate for
the rapid decrease in the density (ρ ∼ r−2), and the intensity
increases towards the edge of the core. For a very centrally-
condensed core (e.g. models EM2x, Fig. 16a) the decrease to-
wards the centre is around∼8−10 MJy sr−1 (depending on how
deep the core is embedded in the cloud; for deeper embed-
ded cores the intensity decrease is smaller), and this would be
very difficult to detect. For less centrally-condensed cores (e.g.
EM1x, Fig. 14a) the decrease is even smaller (∼4–6 MJy sr−1).
Thus, very sensitive (say∼1−3 MJy sr−1) observations are
needed to detect cores in absorption. This sensitivity is very
close to the limits of current instruments, so it is very difficult
to observe embedded prestellar cores at 90µm.

At wavelengths near the peak of the emission
(150–250µm) the intensity increases by a small amount
(∼5−20 MJy sr−1 above the background) towards the edge
of the cloud and then decreases to the background intensity
(Figs. 14b and 16b). If the temperature increase towards the
edge of the core is big enough to compensate for the decrease

in density, the outer parts of the core are just visible (e.g.
models with visual optical depthτcloud = 5). On the other
hand, if the increase of the temperature is not high enough,
as happens when the core is deeply embedded (τcloud = 20),
then the core cannot be distinguished from the background.
Thus, our models indicate that cores can be observed at
150–250µm only if they are surrounded by a cloud with a
relatively small visual optical depthτcloud ∼ 5, in which case
the intensity increase is∼10 MJy sr−1. Cores could in principle
be observed even if they are deeply embedded, provided there
were accurate observations of∼1 MJy sr−1 at 150–250µm.
This result agree with the fact thatISO did not detect the
prestellar condensations inρ Oph (André et al. 2000).

Finally, at submillimetre and millimetre wavelengths
(400–1300µm) the Rayleigh-Jeans approximation for the
Planck function holds, and the observed intensity is propor-
tional to the product of the core column density and temper-
ature. Thus, at the edge of the core the intensity drops con-
siderably because the temperature increase cannot compensate
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Fig. 15.The same as in Fig. 13, but for a supercritical BE sphere with the same parameters (EM2x models): density profiles(a), dust temperature
profiles(b) and SEDs(c), for BE spheres at 15 K, with mass 0.8M�, under external pressurePext = 106 cm−3 K, surrounded by a spherical
ambient cloud with visual optical depth 20 (model EM2.20, solid lines), 5 (model EM2.05, dotted lines) and 0 (model EM2, dashed lines; no
surrounding cloud). The dash-dot line on the SED graph corresponds to the background SED.

Fig. 16. Intensity profiles at 90(a), 170 (b), 450 and 850µm (c), for the models in Fig. 15 (EM2.20: solid lines, EM2.05: dotted lines, EM2:
dashed lines). The horizontal solid lines on the profiles correspond to the background intensity at the wavelength marked on the graph. In this
case (more centrally condensed core than that in Fig. 14), the intensity at the centre of the core at 90µm is lower and, thus, the core is relatively
more easily observed in absorption than a less centrally condensed core. In addition, the increase of the intensity towards the edge of the core
at 170µm, is larger in this case and thus easier to observe.

for the density decrease. The core can be easily observed at
400–500µm, where the contrast with the background is quite
considerable (∼50−150 MJy sr−1). At wavelengths longer than
∼600µm the background radiation becomes important and the
core emission is not much larger than the background emis-
sion. For example at 850µm (Figs. 14 and 16c) the core emis-
sion is only∼20–50 MJy sr−1 above the background, depend-
ing on the density profile of the core and how deeply the core is
embedded inside the molecular cloud. High accuracy observa-
tions are needed to observe cores at mm wavelengths, but they
are available. For example, the sensitivity of IRAM is around
∼1 MJy sr−1. The peak luminosities at 1300µm that we com-
pute with our models are comparable with the observed lumi-
nosities of Motte et al. (1998).

To check if our results are affected by the extent of the am-
bient cloud, we study a core with the same parameters as the
EM2.05 model but embedded in a more extended, less dense
cloud. In both models the optical depth of the cloud is the
same. As seen in Fig. 17, the temperature and intensity profiles
at 90, 170 and 450µm of the two models are almost identical
inside the core. This result indicates that the only parameter
of the ambient cloud that is important in determining the dust

temperature and the SED of a core embedded in the centre of a
molecular cloud, is the optical depth of the molecular cloud.

5.4. Diagnostics

In Table 3, we list the peak intensities (maximum intensity
above or below the background) at wavelengths 90, 170, 450,
850, 1300µm, for cores embedded in molecular clouds with
visual optical depths 5 and 20. The lower intensity values cor-
respond to less condensed cores (subcritical) and the higher in-
tensity values to more condensed cores (supercritical). This ta-
ble indicates that embedded cores are most easily distinguished
from the background radiation around 450µm. The peak emis-
sion from embedded cores could be as low as∼10 MJy sr−1

above the background at 1300µm, but it’s at least∼40 MJy sr−1

at 450µm. The wavelength range between 400–500µm seems
favourable for observing embedded cores but the atmospheric
transmission is not good in this range and space observations
are needed. The upcomingHerschelspace telescope will be
operating in this range.

Continuum intensity observations at different submm
wavelengths can be used to determine if a core is subcritical or
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Fig. 17. Density profiles(a), dust temperature profiles(b) and intensity profiles(c) at 90, 170 and 450µm (the horizontal solid lines on
the profiles correspond to the background intensity at the 170, 90 and 450µm, from top to bottom), for a supercritical BE sphere at 15 K,
with mass 0.8M�, under external pressurePext = 106 cm−3 K, surrounded by a spherical ambient cloud with visual optical depth 5 and
ntot = 0.96× 104 cm−3 (model EM2.05, solid lines) andntot = 0.45× 104 cm−3 (same optical depth as before but more extended cloud, dotted
lines). The dust temperature and the intensity profiles are almost identical inside the core for the two models examined, indicating that these
profiles are determined mainly by the optical depth of the core rather than its physical extent.

Fig. 18.Comparison of a subcritical (model EM1.05, dotted lines) with a supercritical (model EM2.05, solid lines) BE sphere, embedded in a
molecular cloud with visual optical depth 5. Density profiles(a), dust temperature profiles(b) and intensity profiles(c) at 90, 170 and 450µm.
The horizontal solid lines on the profiles correspond to the background intensity at the 170, 90 and 450µm, from top to bottom. The dust
temperature inside a more centrally condensed core is lower than for a less centrally condensed core. The core emission is shifted towards
longer wavelengths and, thus, a supercritical core will emit more radiation at submm wavelengths than a subcritical core does.

supercritical, assuming cores can be described as BE spheres.
If the core is supercritical, it is more condensed in the centre
and the optical depth to the centre of the core is larger than
a subcritical, less condensed core. This means that the dust
temperature at the centre of the core is less for a supercriti-
cal core, and the resultant spectrum is shifted towards longer
wavelengths. Thus, a supercritical core emits more radiation at
longer wavelengths (e.g. 450µm; see Fig.18) than a subcritical
core. We can exploit the fact that the intensity at 170–200µm
varies little for different cores in the same environment, and
use the colour index CI= m(450µm) − m(170µm) to distin-
guish between subcritical and supercritical cores, eliminating
this way any uncertainties about the distance of the observed
cores. The CI will be larger for supercritical cores. This result
can be used to determine whether a core is subcritical or super-
critical when the core cannot be resolved and the usual density
criterion (ρcentre/ρedge > 14.1 for supercritical spheres) is not
useful.

Our models can also be used to estimate the visual extinc-
tion of the ambient cloud surrounding an embedded core. The
outer parts of even deeply embedded cores (τcloud ∼ 20−30)
are expected to be just visible in emission at 170–200µm
(∼3 MJy sr−1 above the background), whereas cores embedded
in a moderate-thick cloud (τcloud <∼ 5−7) will be more visi-
ble (∼10 MJy sr−1 above the background), as seen in Figs. 14b
and 16b. The higher the increase in the intensity near the core
boundary, the less embedded is the core. Thus, very sensi-
tive observations of embedded prestellar cores at 170–200µm
(∼1−3 MJy sr−1), might allow us to determine the extinction of
the cloud surrounding the core, and thus to estimate roughly
the position of the core inside the molecular cloud. However,
more sophisticated modelling is required, with a more detailed
density profile for the cloud and taking into account the close
environment of the core under study.
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Table 3.Typical peak∗ intensities for embedded cores.

λ (µm) Iλa (MJy sr−1)

τcloud = 5 τcloud = 20

90b 5–15 ∼3

170 10–15 ∼3

450 55–160 40–130

850 20–80 15–70

1300 10–40 10–25

∗ The termpeakrefers to the maximum intensity above or below
the background (as noted) at a specific wavelength.

a These are typical approximate peak intensities for a core embed-
ded in a cloud with visual optical depthτ = 5 andτ = 20. The
deeper the core is embedded the less distinct from the background
is. The lower value corresponds to a subcritical core and the higher
value to a supercritical core.

b At 90 µm the core seen in absorption against the background.

6. Summary

We have implemented a Monte Carlo radiative transfer method
to study non-embedded and embedded prestellar cores. This
method discretises the radiation of one or more sources with
a large number of monochromatic luminosity packets that are
injected into the system and interact stochastically with it. Our
code has been tested against benchmark calculations of other
well established radiative transfer codes. We have also tested
our code against the thermodynamic equilibrium test (the sys-
tem is illuminated by an isotropic blackbody radiation field and
acquires the same temperature as it) and the pure scattering test
(only scattering interactions are allowed and the output inten-
sity is the same as the input one).

We studied cores that are directly exposed to the ISRF
and found similar results (temperature and intensity profiles) to
Evans et al. (2001), using a different radiative transfer method.
We extended our study to cores that are embedded inside spher-
ical molecular clouds. We assumed that the ambient cloud has
uniform density, and that the dust composition is the same as
that in the embedded core. In this case, the radiation incident on
the embedded core is not isotropic and cannot be represented
by the Black (1994) approximation, since the ambient cloud
shields the core from UV, optical and NIR photons and en-
hances the FIR and mm part of the spectrum. We found that,
in this case, the temperature is generally less than 12 K, even
for an ambient cloud with low visual extinction (∼5 mag). The
temperature gradients inside an embedded core are smaller than
in the case of a non-embedded core; deeply embedded cores are
almost isothermal. Recent studies (Andr´e et al. 2003) using a
different approach, in which they estimate the effective radia-
tion field incident on an embedded core from observations, also
find that the temperature inside embedded cores is lower than
in non-embedded cores. Previous mass estimates using mm
fluxes have assumed isothermal cores at temperatures 12–20 K
and, consequently, they may have underestimated the masses
of the cores by up to a factor of 2. However, more detailed

modelling is needed for each specific core for accurate mass
estimates.

Our models provide a view of cores at a wide range of
wavelengths. We found that the best wavelength range to ob-
serve embedded cores is 400–500µm, where the core is easily
distinguished from the background. Embedded cores could also
be observed at 600–1300µm. The contrast of the core radiation
against the background radiation is not large but very sensitive
observations are available in this range. At shorter wavelengths
the cores are just visible in emission (170–200µm) or in ab-
sorption against the background. We also found that very sen-
sitive observations at 170–200µm, could be used to estimate
the visual extinction of the cloud surrounding a core, and thus
get a rough idea of where the core lies in the in the environ-
ment of the protocluster. The upcomingHerschelsatellite will
be observing in the 60–700µm range with high sensitivity and
high angular resolution (Andr´e 2002), and will test our models.
Sensitive intensity observations in this range will also reveal
very low-mass condensations present in embedded protoclus-
ters, that were previously undetected or poorly detected. These
observations combined with theoretical models will enable us
to estimate with great accuracy the temperature profile of re-
solved prestellar cores. In addition, mm observations from the
ground will provide accurate mass estimates for the cores, and
they will constrain the dust opacity.

Theoretical modelling should be done for each core indi-
vidually, taking into account the core surroundings (ambient
cloud, local luminosity sources). The Monte Carlo approach
for the radiative transfer that we have implemented here is in-
herently 3D and can treat such asymmetric systems. We plan
to extend our study to ellipsoidal cores, asymmetric ambient
clouds and anisotropic illuminating radiation fields and, hence,
model specific cores in embedded protoclusters.
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