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A numerical study is conducted to investigate the influence of a uniform axial
magnetic field on the global linear stability of the rotating-disc boundary layer.
Simulation results obtained using a radially homogenized base flow were found to
be in excellent agreement with an earlier linear stability analysis, which indicated that
an axial magnetic field can locally suppress both convective and absolute instabilities.
However, the numerical results obtained for the genuine, radially inhomogeneous, flow
indicate that a global form of instability develops for sufficiently large magnetic fields.
The qualitative nature of the global instability is similar to that which was observed
in a previous study, where mass suction was applied at the rotating disc surface.
It is shown that, just as for the case with mass suction, it is possible to explain
the promotion of global instability by considering a model that includes detuning
effects, which are associated with the radial variation of locally defined absolute
temporal frequencies. The recurrence of the same type of instability behaviour when
two distinct flow control strategies are implemented, one using suction and the other
an axial magnetic field, indicates that the phenomena described by the model may be
considered generic.
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1. Introduction
The behaviours that are found when a magnetic field is imposed upon an

electrically conducting fluid flow can have important consequences for a variety
of engineering applications. They also merit attention because there can be an
exhibition of interesting changes from the behaviour that is usually obtained for
non-conducting flow problems. Electromagnetic stirring and casting of liquid metals
and the stimulation of the growth of crystals (Organ & Riley 1987; Hicks &
Riley 1989) are examples of industrial processes where magnetic fields are utilized.
Magnetohydrodynamical effects can also influence the stability characteristics of fluid
systems, by suppressing or promoting flow instability and transition from a laminar
to a turbulent state. (For an example of a recent investigation, that demonstrates the
stabilization of an oscillatory laminar flow, see Thomas, Bassom & Davies (2010).)
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Several studies have indicated that magnetic fields can be used to control the
onset of instability for the rotating-disc boundary layer that is generated when a
radially unbounded solid disc rotates beneath an initially stationary, incompressible,
viscous body of electrically conducting fluid. Circular magnetic fields applied to the
rotating flow have a tendency to increase the boundary-layer thickness and destabilize
disturbances from the basic state (Pao 1968; Kumar, Thacker & Watson 1987), while
axial magnetic fields directed normal to the disc surface are known to have a
stabilizing effect (Sparrow & Cess 1962; Suryaprakasarao & Gupta 1966; Thacker,
Watson & Kumar 1990). For the latter case, which will be investigated further in
the present study, the changes in the character of the base flow that are due to
the magnetic field are qualitatively similar to those which are found when uniform
mass suction is applied at the disc surface. In particular, the magnitude of the radial
component of the base flow decreases and the azimuthal component (in the non-
rotating frame of reference) decays more rapidly away from the disc. It is these kinds
of alteration to the base flow that lead to the local stabilization of small-amplitude
disturbances.

For non-conducting fluids placed above a rotating disc, the boundary-layer flow has
a long and rich history of both theoretical and experimental investigation (Saric, Reed
& White 2003). The profile of the basic flow, which can be obtained using a similarity
solution to the Navier–Stokes equations due to von Kármán (1921), is qualitatively
similar to that of the boundary layer that forms over a swept wing. Both flows have
inflection points and are susceptible to the cross-flow instability that was discovered by
Gray (1952) and Gregory, Stuart & Walker (1955). An inferred kinship between the
instability mechanisms has often been taken as the prime motive to study rotating-disc
boundary layers, the real aim being to cast some light on swept-wing behaviour.
Nevertheless, there are at least two further modes of instability that can occur for the
rotating-disc boundary layer, which were identified by Faller & Kaylor (1966) and
Mack (1985). The cylindrical geometry of the rotating-disc flow also distinguishes it
from swept-wing flows: the periodicity of the azimuthal co-ordinate can be interpreted
as creating, along the tangential direction in planes parallel to the disc, an enclosed
space for the propagation of disturbances, which has no immediate counterpart in the
swept-wing geometry.

For both non-conducting and conducting fluids, with or without an axial magnetic
field, the linear stability characteristics of the rotating-disc boundary layer can be
determined, at least locally near a specified non-dimensional radius, using a sixth-order
linear system of equations. This system defines a local dispersion relationship

D(α, ω;Re, β,m)= 0, (1.1)

where α and β are the respective radial and azimuthal wavenumbers for the presumed
normal-mode form of the disturbances, ω is the corresponding temporal frequency
and Re is the Reynolds number based on the constant boundary-layer thickness and
the local circumferential speed of the disc rotation. The parameter m gives a non-
dimensional measure of the axial magnetic field strength. It is important to note that
the use of a base-flow homogeneity approximation along the radial direction is an
essential step in the construction of the dispersion relation (1.1). The Reynolds number
Re is inherently local because it is equal to the non-dimensional radius at the radial
location where the base flow is homogenized. (A few further comments are given
shortly in connection with this. For more details and a careful discussion, see, for
example, Davies, Thomas & Carpenter (2007).)



512 C. Thomas and C. Davies

For the non-conducting flow case, for which m= 0, Lingwood (1995, 1997) showed
that absolute instability appears for Reynolds numbers greater than 507.3, which was
noted to be very near to the typically observed locations for transition to turbulence in
physical experiments. Jasmine & Gajjar (2005) extended the analysis of Lingwood to
non-zero m and found that the critical Reynolds numbers for convective and absolute
instabilities were both raised significantly with the introduction of a uniform axial
magnetic field. For the conducting flow with m = 0.5, the critical Reynolds number
for absolute instability was given as Re= 1091.9, more than double that found for the
non-conducting flow.

It should be reiterated that the linear stability investigations of Lingwood (1995),
Lingwood (1997) and Jasmine & Gajjar (2005) were all carried out using the
homogenized flow approximation that facilitates the construction of a local dispersion
relation. In order to obtain a separable eigensystem, which involves only ordinary
differential equations, the variation of the base flow along the radial direction is
artificially frozen, which permits a normal-mode treatment for the radial dependence
of the disturbances. This simplification of the basic flow state, although convenient for
the purposes of the stability analysis, leaves out a characteristic physical feature of
rotating-disc boundary-layer flows. Namely, the attribute that the radial and azimuthal
velocity components of the basic state are linearly proportional to the radius.

In the current investigation we will conduct a study of the linear stability
of the genuine, radially dependent, rotating-disc boundary layer with an imposed
axial magnetic field, i.e. without making use of any base-flow homogenization.
This is achieved by means of direct numerical simulations for impulsively excited
linear disturbances, which were undertaken using the numerical methods and
velocity–vorticity formulation that were described by Davies & Carpenter (2001). A
similar simulation scheme had previously been deployed to study the evolution of
disturbances in the non-conducting rotating-disc boundary layer (Davies & Carpenter
2003; Davies et al. 2007) and extended to cases where there is uniform mass transfer
applied at the disc surface (Thomas & Davies 2010). The changes that were needed to
incorporate the magnetic force term will be described further on in the paper.

In the earlier numerical simulation studies for the flow with no mass transfer, the
results indicated that the long-term behaviour of impulsively excited disturbances was
convective; perturbations were found to continually propagate radially outwards, even
when they originated within or passed into absolutely unstable regions of the flow.
Thus, the influence of the radial inhomogeneity of the basic state was considered to be
globally stabilizing. Within the confines of the linear approximation that was used, the
absolute instability predicted from the local dispersion relation only made its presence
felt through a form of transient temporal growth; at any given radial location, the
disturbance would eventually begin to decay. The occurrence of this form of behaviour
was subsequently confirmed by observations that were made in a physical experiment
conducted by Othman & Corke (2006), for disturbances that were carefully excited so
as to have a sufficiently small initial amplitude.

When the numerical simulations were extended to introduce mass injection at the
disc surface, the flow remained globally stable, even though it became locally more
unstable. However, when mass suction was applied instead of injection, the effects on
the global and local stability were reversed. For sufficiently large suction it was found
that disturbances became globally unstable, despite the fact that they were locally
stabilized. Some more details about the novel nature of this instability will be given
later, when we describe how similar behaviour arises in the presence of an axial
magnetic field.
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An explanation of the global stability behaviour was first given in Davies et al.
(2007) for the case with no mass transfer, and then generalized to encompass
the whole class of rotating disc boundary flows with mass transfer in Thomas &
Davies (2010). In both of these investigations, successful comparisons were made
between numerical simulation results and impulse solutions of the linearized complex
Ginzburg–Landau equation. The relevant impulse solutions were originally found by
Hunt & Crighton (1991).

Healey (2010) made a speculative extension of the modelling work of Davies et al.
(2007) and Thomas & Davies (2010), in which the effects of a finite radial extent for
the rotating disc were accounted for by the ad hoc imposition of a boundary condition
on the impulse solutions of the Ginzburg–Landau equation. Subsequent physical
experiments, which were carefully conducted by Imayama, Alfredsson & Lingwood
(2013), have failed to provide any firm evidence to support Healey’s contention that
for finite discs there would a global instability with an onset that varied according to
the disc radius.

The elucidation of the behaviour identified in the previously conducted numerical
simulations hinges on the fundamental notion of temporal frequency detuning. If a
disturbance propagates within regions of a flow where the local absolute temporal
frequency varies in space, then dependent upon a competition between changes in
the frequency and corresponding changes in the absolute temporal growth rates, either
global stability or global instability can ensue. The precise balance that determines the
global stability is also mediated by dispersion and diffusion effects.

A primary motivation for studying the rotating-disc boundary-layer flow with an
axial magnetic field, aside from its intrinsic interest as a distinct physical problem, is
to explore whether or not the kind of global stability behaviour that was identified for
the family of flows with mass transfer can be considered generic. More specifically,
it may be asked: Can any variations that are discovered between globally stable and
globally unstable behaviour be accounted for, once more, by considering a model that
includes detuning effects? We shall see that this question can in fact be answered
affirmatively.

The remainder of the paper is organized as follows. The subsequent section briefly
describes the basic flow equations and the amendments to the velocity–vorticity
formulation of Davies & Carpenter (2001) that were needed in order to incorporate
the effects of the axial magnetic field when tracking the evolution of disturbances.
In § 3, numerical simulation results are presented. The main focus will be on the
development of disturbances in the inhomogeneous flow for the specific choice of
the non-dimensional axial magnetic field parameter m = 0.5. This particular case
was selected because it exemplifies the globally unstable behaviour that is of central
interest here. We also consider, more briefly, simulation results that display how the
qualitative nature of the behaviour varies when m is altered. In the following § 4 an
explanatory account is given for this variation in the behaviour. A few final remarks
regarding our findings are presented in § 5.

2. Formulation
Consider a disc of indefinitely large radial extent, rotating with a constant angular

velocity Λ∗ about a vertical axis that passes through the centre of the disc.
The rotating-disc rests beneath a semi-infinite stationary body of incompressible,
electrically conducting, viscous fluid. Cylindrical polar co-ordinates are used to define
our system, where r∗, θ and z∗ refer to the respective radial, azimuthal and axial
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directions. The frame of reference is taken to be at rest with respect to disc. A uniform
magnetic field B∗ = B∗k is imposed, where k is the unit vector parallel to the axial
direction and B∗ is the magnetic field strength. (Here and immediately below, an
asterisk denotes a dimensional quantity.)

The impact of the magnetic field on the fluid motion is represented by a Lorentz
force, L∗ = J∗ ∧ B∗, where J∗ = σ(E∗ + U∗ ∧ B∗) is the current density, for an
electric field E∗, velocity U∗ = {U∗r ,U∗θ ,U∗z } and electrical conductivity σ . For the sake
of simplicity, we suppose that the direct effect of the electric field is negligible in
determining the Lorentz force and that the magnetic field is not altered by the fluid
motion. These assumptions can be applied when the magnetic Reynolds number Rem

is found to be such that Rem/Re = µ0σν � 1, where µ0 is the magnetic permeability
constant and ν the kinematic viscosity. For the particular case of liquid Mercury at
room temperature, it is easily checked that the physical values taken by µ0, σ and ν
do in fact ensure that the Reynolds number for the fluid motion is several orders of
magnitude greater than the associated magnetic Reynolds number.

Making use of the simplifying assumptions that were just stated, we obtain the
expression

L∗ = σB∗2 (U∗ ∧ k) ∧ k, (2.1)

for the magnetic force term that appears in the momentum equations for the fluid
motion. It may be noted that this term has a quadratic dependence on the strength of
the magnetic field and thus remains unaltered if the direction of the magnetic field is
reversed.

2.1. Basic state
A similarity type of solution may be determined by introducing von Kármán (1921)
similarity variables such that

{U∗r ,U∗θ ,U∗z } = {r∗Λ∗F(z), r∗Λ∗G(z), δ∗ΛH(z)}, (2.2)

where F, G and H represent the respective non-dimensional radial, azimuthal and
axial basic flow profiles. The non-dimensional co-ordinate that is used along the
wall normal direction is z = z∗/δ∗, where δ∗ = (ν/Λ∗)1/2 is the constant boundary-
layer thickness. On substituting (2.2) into the Navier–Stokes equations for the given
cylindrical configuration, the following system of ordinary differential equations is
obtained

F2 + F′H − (G+ 1)2+mF = F′′, (2.3a)
2F(G+ 1)+ G′H + m(G+ 1)= G′′, (2.3b)

2F + H′ = 0, (2.3c)

where a prime denotes differentiation with respect to z and m = σB∗2/(ρΛ∗) > 0 is
the non-dimensional magnetic field parameter, with ρ being the fluid density. Note that
the invariance of the magnetic force term with respect to reversal of the magnetic field
direction is implicit in the restriction that m cannot be negative.

Equations (2.3a)–(2.3c) need to be solved subject to the boundary conditions

F(0)= G(0)= H(0)= 0, (2.3d)
F(z→∞)= 0, G(z→∞)=−1. (2.3e)

Numerical solutions for the profile functions F, G and H were determined and found
to be in good agreement whose those that have been obtained by previous investigators
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(Thomas 2007). As was noted in the introduction, two of the most salient features of
these solutions are that, as the magnetic field is increased, the magnitude of the radial
velocity component F diminishes and the azimuthal velocity component G approaches
its far-field value at infinity more rapidly. The latter behaviour can be interpreted as
being a kind of boundary layer thinning, but it should be remarked that this takes
place with respect to a wall-normal co-ordinate that has already been scaled using the
constant dimensional boundary-layer thickness δ∗.

The spatial variation of the basic flow may be represented in non-dimensional form
as

UB =
(

r

Re
F(z),

r

Re
G(z),

1
Re

H(z)

)
, (2.4)

where a local Reynolds number Re is defined as

Re= r∗a

(
Λ∗δ∗

ν

)
= r∗a
δ∗
= ra, (2.5)

for some reference radial position r∗a . As has been mentioned before, previous
theoretical studies concerning the stability of rotating-disc boundary layers, such as
those undertaken by Lingwood (1995, 1997) and Jasmine & Gajjar (2005), have
enforced a radial homogeneity approximation; the radial dependence of the basic flow
(2.4) is removed, by the simple expedient of setting r = ra, whenever the base flow
appears as a multiplier in the governing equations that determine the development of
linear disturbances.

2.2. Disturbance equations
Perturbations to the basic flow (2.4) are considered using the decomposition

U = UB + u, Ω =ΩB + ω, (2.6)

where the undisturbed vorticity is ΩB = ∇ ∧ UB and the perturbation variables are
given as

u= {ur, uθ , uz}, ω = {ωr, ωθ , ωz}. (2.7)

Selecting the perturbation components {ωr, ωθ , uz} as the primary variables, the
linearized disturbance evolution can be determined using the following set of
governing equations, obtained by a straightforward amendment of those that were
derived in Davies & Carpenter (2001):
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, (2.8a)
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where

∇2f = ∂
2f

∂r2
+ 1

r

∂f

∂r
+ 1

r2

∂2f

∂θ 2
+ ∂

2f

∂z2
, (2.9)

and

N = {Nr,Nθ ,Nz} =ΩB × u+ ω × UB. (2.10)

The linearized convective term N depends upon the remaining perturbation
components {ur, uθ , ωz}, but these so-called secondary variables may be eliminated
since they can be defined explicitly in terms of the primary variables. (Further details
are provided in Davies & Carpenter (2001)).

It may be seen that, due to the imposed magnetic field, the vorticity transport
equations are modified by the inclusion of additional terms that are multiplied by the
magnetic field parameter m. These represent the non-dimensional version of the curl of
the magnetic force that is given in (2.1). In each of the radial and azimuthal vorticity
transport (2.8a,b) the extra terms are proportional, respectively, to the wall-normal
derivative of the azimuthal and the radial component of the perturbation velocity; the
definition of the vorticity has been deployed to conveniently rewrite these secondary
variable derivatives using the primary variables only.

Since we are only concerned with linear disturbances, it is possible to consider the
independent development of modes of the general form

{u,ω} = {û, ω̂}einθ , (2.11)

where n is the azimuthal mode number. The cylindrical geometry of the flow
configuration means that n is restricted to take integer values. For all of the
simulations that we shall report, a disturbance with a chosen value of n was
impulsively excited by prescribing a deformation in the height of the disc surface.
This was fed into the boundary conditions on the disturbance using a linearization. The
forcing was taken to have a high degree of radial localization, as well as being applied
for only a very short time duration, which ensured that a broad spectrum of temporal
frequencies was seeded. Details about the specific form of the impulse that was used
can be found in Thomas & Davies (2010).

3. Results
Numerical simulations were conducted for a range of magnetic field parameter

values up to m = 0.5. Particular values of m were selected so as to check that the
simulation results were in good agreement with the published data given by Jasmine
& Gajjar (2005) for the local stability behaviour. This provided a careful validation of
the computer code, which had been amended to incorporate the effects of the magnetic
field. In order to facilitate comparisons, we had to artificially homogenize the basic
flow, suppressing its radial variation. Full details of the excellent matching that was
obtained are documented in Thomas (2007).

For disturbances developing in the genuine, radially inhomogeneous, base flow, we
will indicate the typical character of the numerical simulation results by describing
the behaviour for m = 0.5. Following on from our reports for this particular case, the
qualitative variation of the behaviour with changes in m will be considered.

3.1. Illustration for the case m= 0.5
We first examine the evolution of a disturbance with an azimuthal mode number
n = 119 that is impulsively excited at the radial location re = 1092. This position
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FIGURE 1. Spatial–temporal development of azimuthal vorticity at the disc surface |ωθ |z=0
for an impulsively excited disturbance in the flow with m = 0.5: (a) displayed with a larger
radial range; (b) for a reduced radial range. The azimuthal mode number is n = 119 and the
disturbance was excited at re = 1092. Contours are plotted using a logarithmic scaling. The
amplitude changes by a factor of two between successive contours.

is selected so as to be very near to that for which there would be critical
absolute instability, according to the results of the stability analysis for the
homogenized version of the flow. The spatial–temporal disturbance development
for the inhomogeneous flow is displayed in figure 1(a) over the radial range
1080 6 r 6 1200. The time is measured using a globally valid scaling, to remove the
implicit local dependence that would otherwise appear, because the time period for the
disc rotation is given by T = 2πRe when the usual form of non-dimensionalization is
employed. (The usage of a global time scale also shows up later, in factors of Re that
are included when we plot temporal frequencies and growth rates.) The wavepacket
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development is plotted using contours of the amplitude of the azimuthal perturbation
vorticity ωθ at the wall. The leading edge of the disturbance can be seen to propagate
to the right of the original impulse in figure 1(a) and is clearly travelling with a
non-zero velocity. By contrast, the trailing edge is almost parallel to the time axis and
moves with what might seem to be a diminishing velocity. However, if we reduce
the range of the radii over which the trailing edge is examined, as in figure 1(b),
then it may be seen that at about the time t/T ≈ 0.7, the edge reverses in direction
and the disturbance begins to propagate radially inwards, with a small but increasing
velocity. Hence, the two edges of the disturbance wavepacket eventually propagate
in opposite directions, suggesting that a global form of instability is developing. The
long term character of the disturbance can thus be seen to be markedly different from
that identified by Davies & Carpenter (2003) for the non-conducting flow. Instead, the
behaviour is qualitatively similar to that which was observed by Thomas & Davies
(2010) when they considered the rotating-disc boundary-layer modified by uniform
suction, applied with sufficient strength.

Some more insight into the disturbance behaviour can be obtained by using the
simulation data to compute the following complex-valued logarithmic derivative

ω = i
A

∂A

∂t
, (3.1)

where A is a chosen measure of the disturbance amplitude. As before, the perturbation
azimuthal vorticity at the disc surface is selected to give the amplitude. For any given
radial position, the real and imaginary parts of ω may be interpreted as being the
instantaneously defined temporal frequency and growth rate, respectively.

Figure 2 displays temporal frequencies and growth rates obtained from the same
inhomogeneous flow simulation that was considered immediately above. The results
are plotted for four successive radial positions, including the centre of the impulse.
Additional solid-dotted lines, denoted P, give frequencies and growth rates that were
found from a corresponding homogenized flow simulation with Re = 1092. For
the homogeneous case, results are only shown for the location where the impulse
was applied. It may be seen that the frequency is constant for the time duration
considered and is given approximately as ωrRe ≈ −33; because of the imposed
radial homogeneity, essentially the same behaviour was found at other nearby radial
locations. It may also be observed that the growth rate for the homogenized flow
asymptotes towards zero, which is consistent with our having chosen the parameters to
coincide with critical absolute instability.

The temporal frequencies from the inhomogeneous flow simulation display features
that match those of the earlier study of Davies & Carpenter (2003), for the rotating-
disc boundary layer without a magnetic field. Just as was found for the m = 0 case,
the temporal frequencies vary in a systematic fashion with the radial position, but all
show an eventual decrease in magnitude as the time increases and fail to approach any
constant value.

The behaviour of the corresponding temporal growth rates does not, however, agree
with that which was observed for the non-conducting flow. The temporal growth
rates develop in a distinctive manner that looks similar to that which was identified
for disturbances in the rotating disc with uniform mass suction (Thomas & Davies
2010). In figure 2(b), the growth rates are plotted over the full interval of times
from the simulation, while in figure 2(c), the time axis has been magnified and the
plots are given for a much reduced range of later times. For each of the radial
positions considered, the growth rates are found to show an eventual increase. After
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FIGURE 2. Instantaneously defined (a) temporal frequencies ωrRe and (b, c) temporal growth
rates ωiRe for the same disturbance excited at re = 1092 as was shown in figure 1. The
evolution is plotted for four different radial positions, re − 25, re, re + 25 and re + 50. The
solid-dotted lines labelled with a P are for the corresponding development in the homogenized
version of the flow with Re = 1092. The temporal growth rates are displayed over the full
time interval in (b) and for a reduced range of times towards the end of this interval in (c).

sufficient time, positive growth is experienced at all of the selected radial locations,
including the position re − 25 that is located radially inwards from the origin of
the excitation. Unfortunately, the simulations could not be continued indefinitely, to
determine the disturbance behaviour for an arbitrarily large period of time; given
enough time, artificial effects contaminate the results because the maxima of the
disturbance wavepacket grows enormously, which leads to convergence problems and
also makes it difficult to control reflections from the computational boundaries. Thus,
we cannot completely dispel the possibility that the growth rates will at some later
time begin to decrease and perhaps change sign, so as to indicate temporal decay.
Nevertheless, our simulation results strongly suggest that the rotating-disc flow with a
magnetic field parameter m = 0.5 is in fact globally unstable. It must be emphasized
that the behaviour that characterizes this instability differs markedly from what is
commonly found in other globally unstable flows, such as bluff body wakes, in that
there is no selection of any dominant global temporal frequency as the disturbance
develops. The absence of a global frequency was also a distinguishing feature of the
instability that was discovered when uniform suction was deployed as the means of
modifying the basic flow (Thomas & Davies 2010).

We now continue our investigation for the case m = 0.5, by considering simulation
results for the evolution of a perturbation with the same azimuthal mode number as
before, but which is now excited at a large distance radially inboard from the region
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FIGURE 3. Spatial–temporal development of |ωθ |z=0 for an impulsively excited disturbance
in the flow with m= 0.5. The azimuthal mode number is again n= 119, but the disturbance is
now excited at re = 892. Contours are separated by factors of two.

where the homogenized flow analysis predicts that there will be absolute instability.
Letting rc = 1092 denote the location for which absolute instability is expected to set
in, the impulse is centred at re = rc − rs = 892, where we have set rs = 200 to be
the radially inward shift into the region where only convectively unstable behaviour is
anticipated. Our intention is to highlight some contrasts with the disturbance evolution
that was found in a similar simulation, with the same choice of rs, that was reported
by Davies & Carpenter (2003) for the non-conducting flow. When they examined
the disturbance wavepacket they found that, as might be expected, it passed through
the region of convective instability and into the region of absolute instability. More
interestingly, the simulation results indicated that the trailing edge would continue to
travel radially outwards, with an increasingly positive velocity, even as it approached
and subsequently moved beyond the radial position rc where the onset of absolute
instability had been predicted.

For our present study with m = 0.5, figure 3 depicts the spatial–temporal
development of a disturbance excited at the chosen radial location re = 892. A
vertical dotted line is used to mark the critical radius rc. It may be seen that as the
wavepacket develops, the trailing edge of the disturbance propagates radially outwards.
However, the velocity associated with the trailing edge does not appear to increase as
it approaches rc, as it did in the corresponding simulation for m= 0. Instead, the edge
seems to move with a diminishing velocity. From a consideration of the contour lines
drawn within the wavepacket, it might be inferred that the trailing edge will eventually
slow down to a zero velocity near to rc. Unfortunately, no categorical assertion can be
made about this behaviour, in view of the finiteness of the time interval over which the
simulation could be successfully continued. Likewise, there is no unequivocal evidence
to confirm that the trailing edge will, given enough time, reverse its direction of travel,
in the same fashion as was described previously for the case where the disturbance
was excited at rc.
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FIGURE 4. Instantaneous growth rates and their gradients for disturbances at the critical
point of absolute instability for flows with various values of the magnetic parameter. Solid
line: m = 0, (re = 508, n = 68); dashed line: m = 0.1, (re = 595, n = 76); dashed-dotted
line: m = 0.2, (re = 696, n = 86); dotted line: m = 0.3, (re = 813, n = 96); solid-dotted line:
m= 0.4, (re = 946, n= 107); solid-star line: m= 0.5 (re = 1092, n= 113).

3.2. Variation of behaviour with m

Having used the case m = 0.5 to illustrate the kind of globally unstable behaviour
that can occur when the base flow is modified by the presence of an axial magnetic
field, we now turn to consider how the behaviour varies when the strength of the
magnetic field is altered. Figure 4 displays the evolution of the temporal growth rates,
together with their gradients, for disturbances that are all excited at radial locations
re = rc that correspond to critical absolute instability. Results are given for six different
flows, with magnetic field parameters taken at equally spaced increments in the range
between m = 0 and m = 0.5. The data for each of the plotted lines are as given
in the caption; all of them are taken at the centre of the impulse. Initially, the
growth rates for every case show the same trend of increase from negative values
within the lower half of the plane. However, after approximately t/T = 0.5 there
are significant differences amongst the behaviours exhibited by the growth rates. For
relatively small magnetic fields, m < 0.2, the growth rates reach a maximum before
reversing downwards and decreasing. Temporal decay is observed over the whole of
the time interval for these cases. By contrast, the growth rates for the larger m values
continue to increase throughout the finite time period that is considered. For the flows
with m = 0.2, 0.3, it would appear, from an inspection of the matching gradients
shown in the bottom half of the figure, that the trend is such that the growth rates
may eventually decrease to become negative. As with the smaller values of m, this
would mean that the disturbance has temporal decay attributes which indicate that
there is global stability. The long-term behaviour seems a little clearer for the flows
with magnetic field parameters m= 0.4, 0.5. The growth rates continue to increase and
become positive for the latter portion of the time interval. It also appears that the
corresponding growth rate gradients, although themselves decreasing, may be bounded
below by a positive constant, which would signify a disturbance with an increasingly
large degree of amplification.

Although it was feasible to conduct numerical simulations for the rotating-disc
boundary layer with magnetic field strengths greater than those that have just been
considered, such simulations were not undertaken in any systematic manner. This
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was simply because the critical parameters for the absolute instability, as determined
using a local stability analysis based on the homogeneous flow approximation, are
not currently available in the literature for m > 0.5; so the selection of appropriate
parameters for the simulations would be hampered. Some further investigation would
be preferable, to confirm that larger axial magnetic fields do in fact continue to
promote globally unstable behaviour, when inhomogeneous flow effects are taken into
consideration. Fortunately, for our purposes, it was possible to identify a changeover
from global stability to global instability within the limited range of m values that we
chose to study.

4. Comparison with model impulse solutions
In their study of the global stability of the rotating-disc boundary layer with mass

transfer at the disc surface, Thomas & Davies (2010) were able to offer an explanation
of their simulation results by making careful comparisons with behaviour displayed
by impulse solutions of the linearized Ginzburg–Landau equation. Similar comparisons
can be made for the present case. Rather than repeating the same kind of detailed
analysis as was presented in the earlier study, we will confine ourselves to showing
how it is possible to capture the essential features of the disturbance evolution that are
conveyed in the growth rate plots given in figure 4.

The linearized Ginzburg–Landau equation may be written in the form:

∂A

∂t
+ U

∂A

∂r
= µA+ γ ∂

2A

∂r2
, (4.1)

where A(r, t) is some measure of the disturbance amplitude at the spatial location r
and time t. The terms multiplied by the quantities µ, U and γ (where Re(γ ) > 0) are
included to specify, respectively, the behaviour due to temporal growth/oscillation, flow
convection and diffusion/dispersion. All three of these quantities need to be taken as
constants for a spatially homogeneous flow.

If we allow µ to vary linearly by setting µ = µ0 + µ1r, while still keeping both
U and γ constant, then we obtain a simple model that may be used to capture the
effects of local alterations in the stability properties when the flow is inhomogeneous.
The real part of µ1 provides a measure for incorporating spatial variation in the
temporal growth that disturbances will exhibit, while the imaginary part encompasses
the corresponding dependency in the temporal oscillation frequency. Alterations in
the disturbance frequency, when the spatial position is changed, can easily be
overlooked because attention is usually focused on changes in the growth rate. We
designate as detuning the phenomena where the temporal frequency predicted for an
instability depends to a significant extent on the particular spatial location that is being
considered.

When a linear variation is prescribed for µ, it is possible to derive an impulse
solution of the Ginzburg–Landau equation that has the following analytic form (Hunt
& Crighton 1991; Thomas & Davies 2010):

G(r, t)=
√

1
4πγ t

exp
(
− r2

4γ t
+ 1

2
µ1rt + 1

12
µ2

1γ t3

)
exp (i(α0r − ω0t)) , (4.2)

where

ω0 = i
(
µ0 − U2

4γ

)
, α0 =−i

U

2γ
. (4.3)
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For the sake of convenience, the spatial co-ordinate r is shifted so that r = 0 defines
the centre of the impulse. The explicit dependency of the solution on the convection
velocity U has been suppressed by introducing the temporal frequency ω0 and the
radial wavenumber α0. Both of these quantities will be complex-valued in general. In
the homogeneous flow case, where µ1 = 0, the imaginary part of ω0 gives the temporal
growth rate that determines whether or not there is absolute instability.

When the flow configuration is taken to be inhomogeneous, it may be seen from
(4.2) that the long-term growth behaviour of the impulse solution is dictated by the
sign of the quantity

D= Re(µ2
1γ ). (4.4)

The global stability behaviour thus depends on a balance between the effects of
detuning Im(µ1), growth rate variation Re(µ1), diffusion Re(γ ) and dispersion Im(γ ).
If D is positive then the response to the impulse will grow and there will be a global
form of instability. However, if D is negative, which is a possibility only when there is
detuning so that Im(µ1) 6= 0, then there is global stability; for large enough times, the
disturbance will decay. This can happen even if the flow is absolutely unstable.

It should be emphasized that our analysis is for linearized disturbances. For the
evolution within a realistic flow configuration, nonlinear effects may need to be taken
into account. From the analytic form of the impulse solution (4.2), it may easily be
surmised that if the magnitude of D is sufficiently small and the initial size of the
disturbance happens to be large enough, then temporal amplification associated with
absolute stability, which is determined to first order by the growth rate Im(ω0), may
suffice to switch on nonlinear effects in the flow; there may not be enough time for
any decay that is associated with a negative value of D to come into play.

As in § 3, we can define an instantaneous complex frequency by setting

ω = i
1
G

∂G

∂t
. (4.5)

Using (4.2) it may be seen that

ω = ω0 + i
(
− 1

2t
+ r2

4γ t2
+ 1

2
µ1r + 1

4
µ2

1γ t2

)
. (4.6)

A relationship with this general form can be used to provide a detailed account of
the variations in the growth rates and frequencies that were displayed in figure 2.
The three complex parameters ω0, γ and µ1 can be chosen by following the
same procedure as was described by Thomas & Davies (2010) for modelling the
corresponding behaviour in the rotating-disc flow with mass transfer.

Here, we will adopt a much more succinct approach for making comparisons
between the numerical simulation results and the impulse solution obtained from
the Ginzburg–Landau equation. If we apply the expression (4.6) to the radial position
where the impulse is applied, and also suppose that this is the critical point for
the onset of absolute instability in the homogenized flow, then the following simple
expression for the instantaneous growth rate is obtained:

Im(ω)=− 1
2t
+ 1

4
Dt2. (4.7)

It may be recalled that figure 4 displays growth rate plots that were obtained from
numerical simulations for various values of the magnetic field parameter m, with each
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FIGURE 5. Instantaneous growth rates and their gradients for disturbances at the critical
point of absolute instability, as given by (4.7) for various values of the parameter D. The
values of D are chosen so as to fit the simulation data shown in figure 4. The line types used
for different m are preserved between the simulation results and the fitted curves.

of them showing the development at the centre of an impulse that had been applied
at the critical point. Thus, if the behaviour discovered in the numerical simulations is
well described by the analytic impulse solution that we have been considering, then
we should be able to use (4.7) to obtain a good match to each of the curves that are
displayed in figure 4. This should be achievable by making appropriate choices for just
one single real parameter D, which can be expected to be different for every value of
m. Moreover, a change in the sign of D from negative to positive, as m is varied, will
indicate the switchover from global stability to global instability.

Figure 5 shows plots of growth rates, as well as their gradients, that were
determined using (4.7) for various values of the parameter D. Although the values
of D were chosen to reproduce the variation with m that is shown in figure 4, no
systematic attempt was made to optimize the fit. It can be seen that there is excellent
qualitative agreement, as well as a very good degree of quantitative agreement,
between the behaviour predicted from the model and that which was discovered in
the simulations. It is likely that the small discrepancies that do occur can be traced
back to the fact that the impulse applied at the disc surface in the simulations had
to be slightly smeared along the radial direction and in time; this is so as to avoid
incurring too much computational expense through the use of an unnecessarily high
level of numerical resolution.

In agreement with our previous discussion and interpretation of the simulation data
in § 4, a change in the sign of D was found when the growth rate curves were
fitted for increasing values of m, thus indicating the onset of a global instability.
By interpolating between the discretely sampled set of m values, it was possible to
determine that this onset occurred near to m= 0.2.

5. Final remarks
Numerical simulations of the rotating-disc boundary layer with an imposed axial

magnetic field have been carried out. The results of these simulations demonstrate
the onset of a globally unstable form of disturbance behaviour. We have investigated
the nature of this onset, thus extending the work completed in two recent studies by
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Davies & Carpenter (2003) and Thomas & Davies (2010), which were concerned with
the non-conducting flow and the effects of mass transfer at the disc surface.

Whilst previous studies, carried out using an homogenized version of the rotating-
disc boundary layer flow, had shown that axial magnetic fields can give rise to a
local stabilization, the current investigation indicates that the radial inhomogeneity of
the genuine flow can promote globally unstable behaviour when the magnetic field
strength is sufficiently large. The contrast between the effects of the magnetic field
on the local and global stability behaviour is similar to that which was uncovered by
Thomas & Davies (2010), when they found that locally stabilizing uniform suction
could also be a source of global instability.

For disturbances developing in rotating-disc flows modified by mass transfer at the
disc surface, it proved possible to cast some light on numerical simulation results
by modelling them using simple analytic solutions of a spatially inhomogeneous
version of the linearized Ginzburg–Landau equation (Thomas & Davies 2010).
It was concluded that the global disturbance response, following on from an
impulsive excitation, was determined by a competition between the effects of
frequency detuning, local temporal growth variation and diffusion/dispersion. The same
modelling procedure has been applied to the current problem. It was again found that
frequency detuning effects played a central role in the explanation of the disturbance
behaviour that was obtained in the numerical simulations. In particular, the apparent
transition between globally stable and globally unstable responses, as the magnetic
field parameter is increased, could be captured by considering the corresponding
variation of a single modelling parameter that incorporated the detuning. We surmise
that this provides evidence that both the form of the globally unstable behaviour and
the nature of its onset are generic.
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