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The effect of acid treatment on the surface chemistry and topography of graphite. 
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Abstract 

Highly oriented pyrolytic graphite (HOPG) samples were investigated as model catalyst 

supports. The surfaces were treated with dilute HCl and HNO3 under ambient conditions and 

examined with atomic force microscopy and scanning tunnelling microscopy (STM) and X-

ray photoelectron spectroscopy (XPS). Raised features were formed on the HOPG surface 

after acid treatment. These protrusions were typically 4-6 nm in height and between 10 to 100 

nm in width, covering 5% to 20% of the substrate for acid concentrations between 0.01 and 

0.2 M. Both width and surface density of the features increases with acid concentration but 

the heights are not affected. STM images show that the graphite lattice extends over the 

protrusions indicating that the features are “blisters” on the surface rather than deposited 

material, a view that is supported by the XPS which shows no other significant adsorbates 

except for oxygen in the case of the nitric acid. We propose that penetration of the acid at 

defective sites leads to a decrease in the interplanar van der Waals forces and a local 

delamination similar to the “bubbles” reported between exfoliated graphene sheets and a 

substrate. These findings are important in the context of understanding how carbon supports 

stabilise active components in heterogeneous catalysts.  

1. Introduction 

Carbon materials, including graphite and “activated carbon”, are commonly used as a 

supports for heterogeneous catalysts because of their relatively low cost, high surface area 

and the ease with which precious metals can be reclaimed from the support at the end of the 

catalyst’s active life.[1–3] However, in nearly all cases, carbon supports are acid washed, 

typically with HCl and/or HNO3, before the adsorption of the active component. The wash 

has two purposes; it removes unwanted contaminants such as N, P, Si, Ca, Na, K, Al, Zn and 

Fe, that accumulate on the carbon surface during preparation; and it is also thought to 

introduce hydrophilic functional groups that modify the behaviour of the carbon towards the 

adsorption of the active component and the reaction solvent, [4,5]. There have been a number 

of studies of the effects of acid washing on carbons; Wang et al. for example, showed [5] that 

the use of an acid wash significantly increased the dispersion of nickel on carbon which they 
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attributed to the formation of acidic functional groups that could react with the nickel salts. 

They noted that treatment with HCl resulted in a less stable catalyst than with nitric acid and 

also reported an increase in pore volume and surface area. A later paper by Wang[6] gives 

further detail of the differences between HCl and HNO3 treatments, this time in relation to the 

adsorption of dye molecules. Using temperature programmed desorption (TPD), the authors 

observed differences in the evolution of CO2 and CO from the differently treated carbons 

with a HNO3 wash giving rise to significantly more CO2 desorption at lower temperatures. 

The authors accounted for this behaviour by suggesting that the nitric acid gives rise to 

carboxylic, anhydride, lactone and phenol groups. In contrast, HCl washed carbon gave only 

a small change in CO2 desorption from that seen with the untreated surface. Wang and Zhu 

suggest that this indicates that the HCl causes a small decrease in acidic groups at the 

surface. However, a sharp increase in CO desorption at high temperatures is also observed 

after HCl treatment which was attributed by the authors to an increase in phenol groups. 

There is some support for these observations in their x-ray photoelectron (XP) spectra of the 

C(1s) region but unfortunately no O(1s) data are provided to confirm the assignments. Zhu, 

Radovic and Lu have published a more detailed discussion of the effects of acid washes on 

carbon supports, where they examined the effect of HCl, HNO3 and HF treatments on NO 

and NO2 reduction by carbon-supported copper catalysts.[7] In their paper they draw 

attention to two separate phenomena which may play a role in catalysis over acid washed 

carbon catalysts. Firstly, the increase in –CO2
-
 functionality can hinder the adsorption of 

anionic species because of charge repulsion whilst improving the adsorption of cations; thus 

PtCl6
2-

 adsorption is adversely affected by HNO3 treatment whilst Cu
2+

 adsorption is 

enhanced. Secondly, the presence of –CO groups on the surface act as stabilising sites which 

hinder sintering during calcination. Acid pre-treatment of carbon nanotubes used as supports 

for iron based Fischer-Tropsch catalysts resulted in smaller iron particles anchored on the 

support [8] as well as increasing the overall surface area and introducing defects into the 

nanotubes.  

More recently Conte et al. have studied [9,10] the effects of acid washing carbon 

supported gold catalysts in relation to the gold/carbon catalyst they have pioneered for the 

hydrochlorination of acetylene, an emerging alternative to the oxychlorination of ethene 

currently used industrially for the synthesis of vinyl chloride monomer (VCM). Since 1985, 

Hutchings’ group [11–14] have investigated the possibility of replacing the current 

environmentally unfriendly Hg based catalyst with a Au/C alternative. A key component of 

this development has been the use of acid treatments before impregnation with gold and also 

after reaction to regenerate the catalyst [15]. Conte et al. show how the acid treatment has a 

direct effect on both the chemistry and the structure of the carbon supports. They conclude 
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that the Au/C interface may be as important to hydrochlorination catalysis as the Au/Oxide 

interface is to the oxidation of CO. 

Our particular interest in this topic is how the treatment of the carbon surfaces and the 

functional groups that are formed as a result, affects the nature of the gold nanoparticles that 

are deposited to form the working catalyst. To study these phenomena at the nanoscale we 

have employed a combination of atomic force microscopy (AFM) and scanning tunnelling 

microscopy (STM), together with XP spectroscopy. The microscopy methods require relative 

flat surfaces and therefore our investigations are carried out on highly oriented pyrolytic 

graphite (HOPG). HOPG is often used as a model carbon surface for studies under ultra high 

vacuum conditions[16–18] despite the lack of functional groups that would exist on real 

catalyst surfaces. For this reason the present study can also be regarded as bridge between the 

idealised UHV systems and the practical catalysts.  

2. Experimental 

The HOPG samples (~ 10 mm square, ZYH quality, NT-MDT) were cleaned before each 

experiment by peeling off the top few graphene monolayers using adhesive tape. Acid 

treatment involved placing a droplet (100 μl) of acid (HCl or HNO3) and leaving to stand for 

a set period of time before drying under a pure He stream. The acids wet the surface quite 

effectively and therefore no investigation was made into the effect of droplet size. Acid 

concentrations of 0.01, 0.1 and 0.2 M were investigated, and ultra pure water (Millipore) was 

used for dilution and as a control experiment, Figure 1 (c), after initial experiments showed 

dionized water left surfaces contaminated with calcium and sodium containing deposits.  

AFM images were acquired on a Bruker Veeco Multimode probe in tapping mode using 

silicon nitride tips. STM was performed under ambient conditions on a bench top Nanosurf 

Easyscan apparatus using a platinum-iridium tip. All SPM images were analysed using 

WSxM software; the tools available within this software are discussed elsewhere.[19] XP 

spectra were recorded with a Kratos Axis Ultra-DLD photoelectron spectrometer using a 

monochromatic Al K x-ray source and the “hybrid spectroscopy” mode resulting in an 

analysis area of 700×400 µm at a pass energy of 40 eV for high resolution scans and 160 eV 

for survey scans. All binding energies are referenced to the C(1s) peak at 284.3 eV. Surface 

concentration have been calculated using the method of described in detail by Carley et 

al.[20,21] 

3. Results  

3.1 AFM of clean and water treated HOPG 

AFM images of clean (freshly stripped) HOPG surface show large flat terraces up to 1.5 

μm in width separated by steps which are up to 15 nm in height, (fig. 1a & b). Washing with 



4 | P a g e  

dionised water resulted in deposits of sodium and calcium containing materials but control 

experiments involving HOPG treated with ultra-pure water retain the large flat terraces with 

no evidence for the development of other features, (fig. 1 c).  

3.2 AFM of acid treated HOPG 

Even relatively weak acids have an immediate impact on the HOPG surface. Figure 2 

shows AFM images of HOPG treated with 0.01 M HNO3 and HCl for 1 minute and for 30 

minutes. After the one minute treatment, protrusions are evident in the AFM images of both 

surfaces with heights of ~1.5 nm and widths of approximately 25 nm. In the case of the HCl 

there appears to be a preponderance of raised features at the step edges although they are also 

seen in the middle of terraces. For the nitric acid treated surface the distribution is more 

random. After the longer exposure to the acid the number of features on both surfaces has 

increased and as the line profiles show, there is also a small increase in both height and width 

of the features. There remains a slight tendency for the protrusions to be located at step edges 

but this is by no means the only site, may features are located in the centre of terraces. Note 

also that the AFM images exaggerate the z-axis significantly, an effect exacerbated by the 

different x and y scales used in the profile plots in order to emphasise the features present in 

the data. The diameters of the protrusions are typically ten times larger than the heights 

indicating gentle mounds rather than the hemispherical particles the images suggest.  

More severe treatments give rise to greater numbers of features with larger dimensions. 

Figure 3 (a & b), shows the consequence of treating a surface with 0.1 M HCl for 30 minutes. 

The surface is decorated with raised features of between 20 and 40 nm in diameter and up to 

7 nm in height. The features are non-uniform in circumference with no preference to form 

circular shapes or mimic the structure of the HOPG substrate. The surface area covered by 

the features was estimated from flooding analysis to be between 10 and 15%. There is an 

increase in size and number of features at the higher HCl concentration of 0.2 M (Fig 3 c & 

d) with feature widths increasing to ~60 nm and the coverage to approximately 20% but the 

height of the protrusions is not significantly affected.  

HCl is a strong acid (pKa of ~ -7) but HOPG treated with the less acidic HNO3 (pKa in the 

range -1 to -2) showed very similar behaviour. AFM images after treatment with 0.1 M 

HNO3 (fig. 4 a-c) show protrusions at the surface with widths typically between 30 and 45 

nm but with some features as much as 60 nm across. The heights of these features were 

measured to be approximately 5 nm. Figure 4b shows that in some areas the density of raised 

features is less than in others but in this case the structures are somewhat larger in diameter. 

The coverage of the HOPG surface by the protrusions was estimated to be around 8%. As 

with HCl, increasing the acid concentration to 0.2 M, led to an increase in the size of the 

protrusions which were predominantly in the range 40 to 60 nm with some larger features as 
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much as 75 nm in diameter. It was estimated that at 0.2 M the features occupied around 15% 

of the substrate surface. 

We have investigated the stability of the features towards further treatment with water. 

Washing in ultrapure water for 1 minute followed by drying in helium resulted in no change 

in the AFM images for either the nitric or hydrochloric acid treated surfaces.  

Quantification of the images, using the flooding analysis tool of WSxM,[19] confirms the 

qualitative discussion above and is illustrated in Figure 5 which compares the distribution of 

raised features over similar areas of graphite after treatment with acids of different strength. 

Both HCl and HNO3 give similar effects with the nitric acid producing slightly more 

protrusions. In both cases, the height of the protrusions is affected less by the acid 

concentration than the number of features, particularly smaller features which, increases with 

acid strength together with the range of “diameters” of the protrusions. This is consistent with 

a model in which larger islands are formed by the coalescence of smaller protrusions a 

conclusion that is also hinted at by the observed shape of the islands in the AFM images 

which are reminiscent of the joining of liquid drops on the surface.  

3.3 XPS of acid treated HOPG 

XP spectra of the acid treated HOPG were recorded (Figure 6) with the aim of detecting 

any functional groups generated on the surface by the acid treatment. In the C 1s region, 

species such as hydroxyl and ester or carbonyl would be expected at between 286-288 eV and 

287-290 eV respectively[22] but no significant additional components are observed to the 

high binding energy side of the main C 1s peak at 284.3 eV indicating that if these are formed 

their concentrations are low, probably less than ~4×10
13

 cm
-2

 (~1 % of a monolayer ).  

From the O1s spectra it is evident that a small amount of oxygen is present at the clean 

surface giving a weak, broad O 1s signal ranging from 531.5 eV to ~534.5 eV and a total 

oxygen surface concentration (calculated from the XP peak area ) corresponding to ca. 

7.5×10
13

 cm
-2

. This is approximately 2% of the carbon atom concentration at the clean 

surface (3.9×10
15

 cm
-2

) and is typical of HOPG samples cleaved in air. Treatment with HCl 

caused an increase in the surface oxygen concentration to 2.1×10
14

 cm
-2

 equivalent to ca. 5% 

of a monolayer with the binding energy centred at 531.8 eV. This increase has been attributed 

previously[23] to the binding of hydroxide ions to the vacant sites at the defects created by 

the HCl in the graphene layer. HNO3 treatment resulted in a greater increase in surface 

oxygen concentration than did the HCl, with a calculated concentration of 5.3×10
14

 cm
-2

 

equivalent to ca. 14% of a monolayer. The O1s binding energy was again centred at 531.8 

eV. After treatment with HCl a small Cl 2p signal appears at approximately 197 eV with a 

peak area corresponding to a surface concentration of 4.2×10
13

 cm
-2

 equivalent to ~1% 

monolayer. The N 1s spectrum of the clean graphite surface exhibits a small peak at a binding 
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energy of ~ 399.5 eV, but on treatment with HNO3 another, weaker peak appears at 406 eV, a 

binding energy which is typical of a functional group such as nitrate. The increase in nitrogen 

concentration corresponds to ~0.7% of a monolayer, (~ 2.7×10
13

 cm
-2

). No other elements 

were detected in the survey scans for any of the surfaces. In particular, the presence of 

sodium and calcium can be ruled out. 

3.4 STM of acid treated HOPG 

The atomic force microscope used in this study is limited to a resolution of ~ 2 nm, 

therefore to investigate the nature of the features generated on the graphite surface in more 

detail we examined the HOPG samples with a desktop STM capable of atomic resolution. 

STM images of freshly cleaved and HNO3 treated HOPG surfaces are shown in figure 7. At 

the clean surface the characteristic C-C interatomic spacing of 1.4 Å can be identified [24], 

although individual atoms were not imaged (Figure 7a). A typical STM image of a nitric acid 

induced feature is shown at large scale in Figure 7b and in close up in Figure 7c where the 

characteristic C-C lattice spacing is observed on top of the feature. This demonstrates that the 

graphite lattice extends over the protrusions – although atomic size defects could still be 

present. Similar images were recorded at different scan rates in order to rule out external 

interference and repeated on other features in separate experiments.  

4. Discussion 

Our aim in treating the HOPG with acids was to generate functional groups at the surface 

and to study how these influence the deposition of the gold nanoparticles involved in the 

active hydochlorination catalyst. However, the XPS data presented here shows little 

functionlisation of the surface was occurring under the mild conditions used, whereas the 

AFM data shows significant impact on the surface topography. The nature of the features 

produced is therefore the central focus of this paper. In view of the XPS data it is unlikely 

that the protrusions seen in AFM could be due to the deposition of some precipitate from 

solution: sodium and calcium are frequent contaminants in lower quality water (as shown in 

the control experiments involving deionised water) but neither was seen in any spectra of 

these samples and the sensitivity of the XPS is sufficient to rule out their presence here. 

Furthermore, deposition on HOPG surfaces is typically dominated by nucleation at step edges 

and the features observed in the AFM are more evenly dispersed over the surface, albeit a 

slight preponderance at step edges for HCl. An alternative explanation is that the acid 

treatment results in a degradation of the carbon lattice, possibly at existing defect sites, and 

that these disrupted sites are imaged as raised features. This interpretation is also contradicted 

by the XPS data which indicates a lower surface concentration of functional groups at the 

surface than we would anticipate for the surface coverage of features we observe. It is the 
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STM data however which is the strongest evidence against either of the previous two 

explanations showing as it does a largely coherent graphite lattice extending over the 

protrusions seen in the STM and AFM images. This data leads us to propose that the raised 

features are due to local areas of delamination. 

Interestingly, there is some similarity between the features observed here and the 

“bubbles” reported to form between single graphene layers placed on a variety of different 

substrates.[25,26] Bubble diameters ranging from 10 nm to 10’s of microns have been 

reported but their origin is not fully understood. One suggestion is that they are caused by 

residual gas trapped between the graphene and the substrate on which the layer is deposited. 

Since graphene is impermeable to other molecules the protrusions seen in the present case 

imply the presence or formation of defects in the graphene sheet. If such defects are formed 

by the acid treatment it is difficult to explain why any gases generated between the graphene 

sheets could not escape through the defects and therefore we attribute the protrusions seen 

here to local weakening of the interplanar forces caused by disruption of the bonding by 

reaction with the acids penetrating through the graphene. Disruption of the graphene lattice 

by HCl has been reported previously albeit using much more severe conditions  than those 

used in this study (e.g. 35% HCl, 90 
o
C, 4 hours[23]) and Shin et al. have suggested “direct-

acid-penetration” through graphitic layers with a nitric acid/sulphuric acid mixture.[27] 

Graphite intercalation as a result of mild aqueous acid electrolytes has also been reported 

previously [28–30] but in these cases, is driven by large applied potentials to initiate the 

reaction. The present results are the first to indicate that even mild treatment of graphite 

surfaces can have significant effects on the surface topography. Interestingly, Conte et al. 

observed [10] a significant degree of penetration of gold into the carbon lattice during acid 

treatment and suggest that the activity of the Au
3+

 in the hydrochlorination reaction may 

depend as much on where it is on the catalyst as what it is. In future work we will investigate 

how the modifications to the surface observed here can influence the topography and nature 

of the gold nanoparticles deposited on these surfaces.  

5. Conclusions 

The treatment of HOPG surfaces with HCl and HNO3 has a significant impact on the 

surface topography, generating blister like features which adorn the surface even after a brief 

acid treatment at low acid concentration. XPS results give strong evidence against the 

presence of functional groups at high enough concentrations to be responsible for these 

features and STM studies at atomic resolution confirm that the graphite lattice extends over 

the protrusions. We conclude that this modification of the HOPG surface occurs through 

intrusion by the acid into the graphite, causing weakening and breakage of the interplanar 

bonds. The results may have implications for our understanding of carbon based catalysts 
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since functional groups generated under the surface would be less effective at stabilising 

nanoparticles of active material deposited onto the graphite. 
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Figure 1. 

(a) and (b) AFM images of clean 

HOPG; (c) image of HOPG treated with 

ultra pure water. 
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Figure 2.  

AFM images of acid treated HOPG: (a) 0.01 M HNO3 for 60 seconds, (b) 0.01 M HNO3 

for 1800 seconds; (c) 0.01 M HCl for 60 seconds, (d) 0.01 M HCl for 1800 seconds. Line 

profiles from the images are compared in (e) and (f) 
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Figure 3.  

AFM images of HOPG treated with HCl: (a) and (b) 0.1 M for 30 min; (c) and (d) 0.2 M 

for 30 min; (e) & (f) line profiles from (b) and (d) respectively. 
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Figure 4.  

AFM images of HOPG treated with HNO3; (a)-(c) 0.1 M HNO3 for 30 min; (d) and (e) 

0.2 M HNO3 for 30 min; (f) & (g) line profiles taken from (c) and (e) respectively. 

  



15 | P a g e  

 

Figure 5. 

The effect of acid concentration on the distribution of island sizes on graphite surfaces. 

Data for acid concentrations of 0.1 and 0.2 molar are offset for clarity. 
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Figure 6.  

XP spectra of C (1s) and O (1s) regions: (i) clean HOPG; (ii) treated with 0.2 M HCl; (iii) 

treated with 0.2 M HNO3. Cl (2p) region: (i) clean HOPG; (ii) treated with 0.2 M HCl; and N 

(1s) region: (i) clean HOPG; (ii) treated with 0.2 M HNO3. 
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Figure 7. 

 STM images and line profiles of the clean and acid treated HOPG sample. (a) Clean 

surface showing the typical C-C periodicity of 0.14 nm. (b) HOPG treated with 0.2 M HNO3, 

the white oval indicates a protrusion similar to those seen by AFM and confirmed by the 

profile shown in the inset in (d). (c) High resolution image recorded from the top of the 

protrusion imaged in (b), the 0.14 nm periodicity is again evident. 

 


