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Time occupies a central role in both the induction of causal relationships and determining
the subjective value of rewards. Delays devalue rewards and also impair learning of relation-
ships between events.The mathematical relation between the time until a delayed reward
and its present value has been characterized as a hyperbola-like function, and increasing
delays of reinforcement tend to elicit judgments or response rates that similarly show a
negatively accelerated decay pattern. Furthermore, neurological research implicates both
the hippocampus and prefrontal cortex in both these processes. Since both processes are
broadly concerned with the concepts of reward, value, and time, involve a similar func-
tional form, and have been identified as involving the same specific brain regions, it seems
tempting to assume that the two processes are underpinned by the same cognitive or
neural mechanisms. We set out to determine experimentally whether a common cognitive
mechanism underlies these processes, by contrasting individual performances on causal
judgment and delay discounting tasks. Results from each task corresponded with previ-
ous findings in the literature, but no relation was found between the two tasks. The task
was replicated and extended by including two further measures, the Barrett Impulsiveness
Scale (BIS), and a causal attribution task. Performance on this latter task was correlated
with results on the causal judgment task, and also with the non-planning component of the
BIS, but the results from the delay discounting task was not correlated with either causal
learning task nor the BIS. Implications for current theories of learning are considered.
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INTRODUCTION
The role of time is central to learning and behavioral processes.
The precise temporal arrangements of when we perform actions,
when the consequences of those action manifest, and when other
events occur alongside these, can have a profound influence on the
way in which such events are interpreted. Researchers in fields as
diverse as neurology, computer science, and psychotherapy have
long been interested in the ways in which our behavior is sensi-
tive to time, and which psychological processes and underlying
neurological structures govern such activity.

Reinforcers or rewards are stimuli that elicit a change in the
behavior of an organism. Though virtually any stimulus has the
potential to reinforce behavior, the typical conception of a reward
is that which has a particular motivational significance or adap-
tive value to the organism, such as food. Rewards can in many
cases be quantified (for instance, the volume of food received) and
in this regard have an objective value. As one might expect, ani-
mals exhibit preference for larger rewards over smaller rewards.
However, depending on the current situation (such as the ani-
mal’s level of deprivation) the reward may also have a subjective
value that differs from its objective magnitude. A factor of crucial
importance in determining the subjective value is the time when
a reward is received. Naturally, immediate rewards are preferred
to delayed rewards, when the rewards are of equal magnitude;

however, numerous studies have demonstrated that in certain
cases, animals will choose a smaller, immediate reward over a
larger, delayed reward. If we assume that the animal always selects
the reward which it perceives has the greater value, then we may
conclude that the subjective value of a reward declines with delay.
Delays of reinforcement thus result in the objective value of the
reward being discounted, hence the term delay discounting is used
to describe this process.

The rate at which rewards are discounted as the delay increases
varies between individuals. Those for whom the value of rewards
declines steeply with delay are often identified as impulsive, since
their routine preference for rapid reinforcement implies an inabil-
ity to delay gratification in order to receive a larger reward. Studies
have found differences in the rate of discounting between differ-
ent age groups (Green et al., 1994, 1999) and cultures (Du et al.,
2002). However, the general shape of the discounting function
tends to be the same across individuals. A considerable effort has
been made by a number of researchers (Mazur, 1987; Rachlin et al.,
1991) to identify the mathematical relation that best describes the
relationship between the delay until a reward is received and its
subjective value. Initial work found that both an exponential decay
function, V=Ae−kD , and simple hyperbola, V =A/(1+ kD), pro-
vided reasonable fits to discounting data, where V is the current
subjective value, A is the nominal amount of the reward, D is
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the delay to reward, and k is a free parameter, representing the
steepness of the discounting function. Myerson and Green (1995)
concluded that the function most closely mapping how subjec-
tive value changes with delay is a hyperbola-like function with the
addition of a scaling parameter: V =A/(1+ kD)s, where the expo-
nent s represents the non-linear scaling of amount and time; in
other words, s has the effect of causing the curve to decline more
slowly at long delays.

Obtaining a reliable measure of discounting can be problematic
because of the lack of consensus over the mathematical function
best suited to fit discounting data, and the difficulty involved in
estimating the parameter k. To address this, Myerson et al. (2001),
proposed the novel measure of obtaining the area under the curve
(AUC) of the empirical discounting function. For this to be cal-
culated, the points on a plot of the function are connected using
straight lines and the area below the line can then be obtained
using a fairly simple calculation. Further details of this procedure
are provided in the Section “Materials and Methods” of this paper.
AUC provides a simple, parameter-free measure of discounting
that is not tied to a specific theoretical framework. It has the
advantage of being applicable to individual or group data, and
furthermore allows for direct comparison of discounting rates,
whether between individuals or across tasks involving different
amounts of reward or delay.

Delays also play a central role in conditioning, appearing to
interfere with the acquisition process, with behavior taking longer
to establish (Wolfe, 1921; Solomon and Groccia-Ellison, 1996) and
being diminished either in magnitude or in rate (Williams, 1976;
Sizemore and Lattal, 1978). Plots of the decline in response rate
against time reveal similarly negatively accelerated functions as
for delay discounting. Chung (1965) found in a signaled-delayed-
reinforcement task that pigeons’ response frequencies declined
exponentially as a function of the delay interval. Other work (Her-
rnstein, 1970; Mazur, 1984) suggests that hyperbolic functions
more accurately describe the trends in response data with delays.
As with discounting, there is a lack of consensus regarding the pre-
cise shape of the function describing how response rates decline
with delay. However, it is generally agreed that the relationship may
be broadly described as a negatively accelerated decay function. A
commonality between the process of temporal discounting and
associative learning may thus be identified, raising the possibility
that the two processes may have a shared cognitive basis. Indeed,
some researchers (Dickinson et al., 1984; Dickinson, 2001) posit
that many aspects of what is commonly referred to as higher-level
human learning and cognition are fundamentally governed by
simple associative mechanisms. Others adopt the viewpoint that
processes such as induction and reasoning are based on more com-
plex computational (e.g., Cheng, 1997) or symbol-manipulating
(e.g., Holyoak and Hummel, 2000) architectures. However, such
processes are still subject to the effects of time, as shall now be
discussed.

Causal inference is the process by which we come to learn
that an event has the capacity to produce or otherwise influence
another event. Acquiring the knowledge that one event leads to
another is fundamental not only to understand why events occur,
but to direct our own behavior to intervene on the world and

bring about desired outcomes. Causal inference is referred to as
such because we cannot directly perceive a causal relation, and
causality must therefore be inferred from the observable streams
of evidence that are available to us. Hume (1888) identified three
cues to causality: temporal precedence, contingency, and contigu-
ity. To elaborate, causes must precede their effects, be followed by
their effects with sufficient regularity, and be closely coupled in
time (and space) with those effects.

Time is therefore a bedrock of causal induction according to
the Humean doctrine, with contiguity essential for learning to take
place. Initial research, approaching causal induction from an asso-
ciative learning perspective, indeed supported this view. Shanks
et al. (1989) found that in judging contingency between press-
ing a button and a triangle illuminating on a computer screen,
human participants were unable to distinguish conditions involv-
ing delays of 4 s or greater from non-contingent conditions where
the probability of the outcome was just as likely in the presence
and absence of the cause. Such findings appear puzzling since both
humans and animals demonstrate the ability in a variety of tasks to
learn delayed causal relations. Recent research has demonstrated
that there are a number of factors mitigating the effects delay such
as prior knowledge or previous experience and resultant expecta-
tion (Einhorn and Hogarth, 1986; Buehner and May, 2003, 2004),
awareness of causal mechanism (Buehner and McGregor, 2006), or
structural information in the environment (Greville et al., 2010).
Nevertheless, it is generally recognized that delays create difficul-
ties for causal induction and that all other things being equal, a
reasoner is more easily able to identify contiguous causal relations
than those involving a delay. Studies such as those of Shanks et al.
(1989; see also Shanks and Dickinson, 1991) show that causal rat-
ings do tend to follow a pattern of decline with time that is similar
to the decline of response rates in reinforcement learning with ani-
mals, with a sharp fall in ratings from immediate to delayed causal
relations, with the steepness of the curve easing and flattening as
delays extend.

Thus, there is a common effect of delays in associative learning,
causal induction, and delay discounting. While it may be a stretch
to posit that they are all essentially the same cognitive process, it
seems reasonable enough to suggest that the way by which delays
are recognized, interpreted, and represented may involve a com-
mon mechanism that forms a crucial part of all these processes.
The effects of delay may vary from person to person, and from
task to task, but it seems plausible that if delays are interpreted via
a stable underlying process, then there should be some perceptible
pattern in the way in which delays generally affect the behavior of
an individual. Having then identified a common cognitive contri-
bution of delay across learning processes, we now turn to consider
evidence of how delays may be represented from a neurobiologi-
cal perspective, and whether these processes all involve a common
region of the brain that may be the site of temporal processing.

While the effects of reinforcement delay on behavior have been
extensively studied, the neurobiological basis of such effects has
received comparatively less attention (Evenden, 1999). However,
it is well-established that the hippocampus plays an important
role generally in learning and memory. Solomon et al. (1986)
demonstrated that an intact hippocampus is required for trace
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conditioning but not delay conditioning in rabbits1. Beylin et al.
(2001) demonstrated that hippocampal lesions in rats also impair
delay conditioning when a longer inter-stimulus interval is used.
This suggests that the hippocampus plays a role in the formation
of associations between temporally discontiguous stimuli.

Bangasser et al. (2006) postulated that the hippocampus was
responsible for forming an active representation of the CS that
could then be associated with the US. Using a novel “contiguous
trace conditioning” (CTC) paradigm, where the standard trace
conditioning preparation was modified by representing the CS
simultaneously with the US following the trace interval, Ban-
gasser et al. demonstrated that hippocampal-lesioned rats could
successfully condition with this procedure. Related findings by
Woodruff-Pak (1993) concerning the patient HM, were inter-
preted by Bangasser et al. as evidence that existing association
between the stimuli (as a result of previously experienced tempo-
ral contiguity) is required for trace conditioning with hippocampal
damage. They speculate that the function of the hippocampus in
conditioning is to bind stimuli that do not occur together in time.

Cheung and Cardinal (2005), however, obtained results that
appear to directly oppose those of the above studies. In an action-
outcome (i.e., instrumental) learning task, hippocampal-lesioned
animals actually became better at learning (relative to shams)
as the delay between action and outcome increased. Cheung
and Cardinal explain this effect by suggesting that normal hip-
pocampal function promotes the formation of context-outcome
associations. In instrumental conditioning then, context-outcome
associations compete with and thus hinder learning of response-
outcome associations, so a disruption of contextual processing via
hippocampal lesion will improve learning with delayed outcomes.
Meanwhile during classical conditioning the CS may be considered
part of the context and thus the reverse effect is obtained. In yet a
further twist, Cheung and Cardinal found that the same lesioned
animals were also poorer at choosing a delayed larger reward over
an immediate smaller reward – despite their apparently supe-
rior ability at learning the predictive relationship between action
and outcome when delays were involved. In other words, lesioned
animals made more impulsive choices relative to shams.

Similar findings were obtained by McHugh et al. (2008) using
a T-maze task. Rats chose between the two goal arms of a T-maze,
one containing an immediately available small reward, the other
containing a larger reward that was only accessible after a delay.
Hippocampal lesions reduced choice of the larger delayed reward
in favor of the smaller immediately available reward. McHugh
et al. advanced the argument that the hippocampus assists nor-
mal temporal processing by acting as intermediate memory store
that allows animals to associate temporally discontiguous events,
and that insertion of a delay into tasks will result in abnormal
performance in animals with hippocampal damage.

In summary then, the hippocampus has been implicated both
in the process of choice between delayed rewards, and in condi-
tioning processes. While the empirical evidence does not precisely

1It is worth mentioning here that while trace conditioning involves a delay (trace
interval) separating CS and US, counterintuitively, delay conditioning does not; CS
either follows immediately or co-terminates with US. The “delay” in the term refers
to that between CS onset and US onset.

elucidate the role of the hippocampus, there is clear indication
that it is involved in processing temporal and contextual infor-
mation. Specifically, the temporal processing that appears to be
a necessity for trace conditioning or the delay of gratification to
receive a larger reward is hippocampal-dependent. Thus, it seems
logical to query whether both processes appeal to the same neural
mechanism, and thus whether there may be a common process by
which delayed rewards lose their subjective value and associative
strength or impression of causality declines with delay.

Having reviewed a number of behavioral and biological find-
ings, there seems to be mounting evidence that the processes of
reinforcement learning and intertemporal choice behavior may
well share a common foundation. We investigated the behav-
ioral evidence that could lend credence to a hypothesis of shared
function. More specifically, we pursued an individual differences
approach, where we related an individual’s performance in a stan-
dard causal learning task to their degree of temporal discounting
to ascertain whether the two are correlated. It seems that whatever
the outcome, there may be important implications for our under-
standing of timing behavior, in particular with regard to providing
a unified theory of learning.

EXPERIMENT 1
Our goal for the first empirical study was to contrast behavior
at the individual level on two well-established paradigms. Each
participant completed two studies, a causal judgment task and
a delay discounting procedure. It is important here to note that
that the former, although an instrumental task, was evaluative
rather than performance-based. In a typical instrumental perfor-
mance task, the outcome has some appetitive value; such as a food
reinforcer in animal reinforcement learning, or scoring points in
a simple game context (Shanks and Dickinson, 1991) for tasks
with human participants. Such tasks can often be complicated by
the payoff matrix – that is the benefit of the outcome compared
to the cost of responding. A causal judgment task meanwhile is
free from such complications; the outcome is not assigned a par-
ticular value and the participant is given no motivation to try
and make the outcome occur as much as possible. Rather, partici-
pants are simply given time to investigate and evaluate the causal
relationship between response and outcome, selecting their own
response strategy and providing a declarative judgment of con-
tingency. Employing such a task thus enabled us to probe causal
learning in an uncompromised manner.

MATERIALS AND METHODS
Participants
Ninety-one undergraduates from Cardiff University, 28 males and
63 females, with an average age of 20 years, volunteered to partic-
ipate as part of a practical class. Participants did not receive any
payment for participation. Due to computer malfunction, data for
two participants was lost for the delay discounting task.

Design
The experiment consisted of two components, a causal judg-
ment task, and a delay discounting task. The causal judgment
task manipulated the independent variables contingency (or more
accurately P(e|c), the probability of an outcome given a response),
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and delay between response and outcome. Two levels of contin-
gency (0.50 and 0.75) were factorially combined with three levels
of delay (0, 2, and 5 s) to produce six experimental conditions, each
of 120 s duration, in a 2× 3 within-subjects design. With condi-
tion order counterbalanced across participants. The dependent
measure was the causal rating (0–100) provided by participants at
the end of each condition.

The delay discounting task combined two levels of the factor
reward (£200 and £10,000) with seven levels of the factor delay
(1 month, 3 months, 9 months, 2, 5, 10, and 20 years) in a 2× 7
within-subjects design. The dependent measure in each case was
the point of subject equivalence (see below for how this was deter-
mined). Taken together, the points of subjective equivalence at
each level of delay (for a given reward amount) yielded the AUC
(again see below) which was the main dependent measure we used.

Apparatus and procedure
The two tasks were programmed using Python version 2.4.1 for
the causal learning task and E-Prime version 2.0 from Psychology
Software Tools for the delay discounting task. Each participant
used a PC running Windows XP with a 19” LCD widescreen dis-
play, using a standard mouse and keyboard to input responses. The
experiment was conducted in a small computer lab, with partic-
ipants seated at individual workstations which were screened off
from each other.

The causal judgment task was closely modeled on Shanks et al.’s
(1989) study. For each condition, an outline of a triangle was dis-
played on the computer screen and beneath this a button which
could be pressed by clicking on it with the mouse. Participants
engaged in a free-operant procedure (FOP), where they were
permitted to respond at any point and as often as they wished,
with each response subjected to the reinforcement schedule. Every
press therefore had the specified probability (either 0.5 or 0.75)
of generating an outcome. If an outcome was scheduled, the tri-
angle illuminated (the gray background became red and a “glow”
effect appeared around the outline) for 250 ms following the pro-
grammed delay (either 0 s, i.e., immediately, 2 or 5 s). For all
conditions, the triangle also illuminated unprompted once every
10 s period at a random point within that 10 s period – in other
words, the first such background effect could occur at any time
between 0 and 10 s, the second between 10 and 20 s, and so on.
These random background effects were included to add a degree
of uncertainty as to whether a given outcome was indeed gen-
erated by a response made by the participant or due to unseen
alternate causes, thus making the task non-trivial. Each condition
lasted for 2 min, at the end of which participants were asked “how
effective is pressing the button at causing the triangle to light up?”
and instructed to provide a rating from 0 to 100.

The delay discounting task was essentially a replication of Du
et al.’s (2002) experiment. Combination of the factors amount and
delay provided 14 different conditions,presented in a different ran-
dom order for each participant. On-screen instructions and three
practice trials were presented prior to beginning the experiment.
It was made clear to participants that the amounts of money were
hypothetical and they would not receive any real money for par-
ticipating in the study. Each condition comprised seven choices or
trials. For a given trial, participants were presented with two boxes,

one containing the smaller, sooner (SS) reward and one contain-
ing the larger, later (LL) reward, and required to indicate which
of these rewards they would prefer to receive. The left-to-right
placement of the two rewards was randomized from trial to trial.
Participants pressed Q or P on the keyboard to select the left or
right reward respectively.

The value of the LL reward was always fixed at the specified
amount of either £200 or £10,000, and the time until its receipt was
one of the seven delays. The SS reward could be obtained “now,”
and its value changed from one choice to the next. For the first
choice within each condition, the value of the immediate reward
was half that of the delayed reward (e.g., £5000 now vs. £10,000 in
10 years). If the SS reward was chosen, its value was decreased on
the subsequent choice; if the LL was preferred, the value of the SS
was increased. The amount by which the SS was adjusted was half
of the difference between the two rewards (i.e., £2500 in the above
example). Thus if the participant chose £5000 now, the next choice
would be between £2500 now and £10,000 in 10 years; if they chose
the £10,000, the next choice would be between £7500 and £10,000.
The amount of the adjustment was rounded to the nearest integer.
This “titration” procedure was designed to converge on the subjec-
tive value of the LL reward. The subjective value was calculated as
the mean of the last immediate reward that had been chosen and
the last immediate reward that had been rejected.

To calculate the AUC, we normalized delay and subjective value
by expressing each delay as a proportion of the maximum delay
(20 years, i.e., 240 months), and each subjective value as a pro-
portion of the nominal amount (i.e., £200 or £10,000). These
proportions were then used as x and y coordinates respectively
to graph each individual’s discounting function. Connecting the
individual data points using straight lines effectively divides the
graph into a series of trapezoids, with the sum of the areas of all
the trapezoids providing the total AUC. These areas can be calcu-
lated without actually constructing the graph, by using the simple
formula: (x2−x1)× [(y1+ y2)/2] for each trapezoid, where x1

and x2 are successive delays and y1 and y2 are the corresponding
subjective values. For the first trapezoid, the values of x1 and y1

are 0 and 1 respectively. Since the x and y values are proportions,
the maximum AUC is 1 (i.e., no discounting) with smaller values
representing steeper discounting.

RESULTS
Causal judgment task
Figure 1 shows mean causal ratings for all six conditions in
the causal judgment task. As expected, ratings were consider-
ably higher at P(e|c)= 0.75 than at P(e|c)= 0.50. Also in accor-
dance with our expectations, ratings declined as the delay between
cause and effect increased. A 2× 3 repeated-measures ANOVA
confirmed significant main effects effect of contingency, F(1,
90)= 39.69, p < 0.001, MSE = 470, η2

p = 0.306 and delay, F(2,

180)= 52.61, p < 0.001, MSE = 640, η2
p = 0.369 as well as

a significant interaction between contingency and delay, F(2,
180)= 4.12, p < 0.05, MSE = 437, η2

p = 0.044 Closer inspec-
tion of Figure 1 reveals that the difference between judgments
at P(e|c)= 0.75 and P(e|c)= 0.50 was noticeably greater with 0 s
delay than with 2 or 5 s, which is likely the driving force behind the
significant interaction. The main effects are in accordance with
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FIGURE 1 | Mean causal ratings for all conditions in the causal
judgment task as a function of temporal delay for the causal judgment
task in Experiment 1. Filled and unfilled symbols refer to P (e|c) values of
0.75 and 0.50 respectively.

several previous findings in the literature; a similar interaction
meanwhile was also found by Shanks et al. (1989) when contrasting
experimental conditions with P(e|c)= 0.75 against control con-
ditions with P(e|c)= 0. Although our study instead used values
of 0.75 and 0.5, this finding is broadly consistent with the idea
that delays make it harder to recognize and differentiate between
objective contingencies and that contingency and contiguity act in
concert to influence perception of causality (Greville and Buehner,
2007).

Mean response rates per minute are reported in Figure 2, and
a 2× 3 within-subjects ANOVA was again used to examine dif-
ferences between conditions. An analysis of response rates found
no significant effect of contingency, F(1, 90)= 0.483, p= 0.489,
MSE = 1118; however there was a main effect of delay on response
rates, F(2, 180)= 28.582, p < 0.001, MSE = 1305, η2

p = 0.241
with fewer responses emitted during the delayed conditions, in
line with existing findings (Reed, 1999; Buehner and May, 2003).
The implication is that participants withhold further respond-
ing until the consequences of their actions are revealed, leading
to fewer responses with longer delays. There was also a signifi-
cant contingency× delay interaction, F(2, 180)= 3.973, p < 0.05,
MSE = 10597, η2

p = 0.042 response rate with 0 s delay was signif-
icantly greater at P(e|c) of 0.5 than at 0.75. These extra responses
could account for the interaction observed in the causal ratings,
in line with a negative outcome density effect. In an appetitively
neutral task such as this however, response rate may not indicate
much about causal beliefs and it is the causal judgment that should
be focused on as the critical measure.

Delay discounting task
Using the points of subjective equivalence, the AUC was calcu-
lated at each amount of reward for all individual participants, as

FIGURE 2 | Mean total responses for all conditions in the causal
judgment task as a function of temporal delay for the causal judgment
task in Experiment 1. Filled and unfilled bars refer to P (e|c) values of 0.75
and 0.50 respectively.

FIGURE 3 | Mean area under the curve (AUC) as a function of delayed
reward amount for the delay discounting task in Experiment 1. AUC is
calculated from participants’ point of indifference at combinations of delay
extent and value of immediate reward.

specified in the Section “Materials and Methods”. Mean AUC for
£200 and £10,000 are shown in Figure 3. AUC was significantly
greater with delayed rewards of £10,000 than £200, t (88)= 12.138,
p < 0.001, indicating that discounting was less severe with the
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larger reward and thus replicating established findings (e.g., Green
et al., 1994). Although individuals tended to discount smaller
amounts more steeply, they were consistent in the manner of their
discounting across reward amounts, with a strong positive correla-
tion between an individual participant’s AUC at £200 and £10,000,
r = 0.541, n= 89, p < 0.001. This supports the idea that individ-
ual discounting functions at different reward amounts differ by a
scaling factor, rather than by any qualitative difference in function
shape.

Cross-task comparisons
We created a novel metric for each participant that allowed us
to relate their performance on the causal judgment task to their
individual level of delay discounting task. More specifically, we
represented the manner in which an individual’s perception of
causality declined with delay in a fashion analogous to AUC: we
expressed each rating and each delay as a proportion of the max-
imum (100 and 5 s respectively). This allowed calculation of the
AUC in the same manner as described for the delay discounting
task, separately for judgments at P(e|c)= 0.75 and 0.50 as for £200
and £10,000. Henceforth we distinguish between the two measures
using the terms AUCc (for the causal judgment task) and AUCd

(for the discounting task).
AUCc was significantly greater at P(e|c) of 0.75 than 0.5,

indicative of the higher ratings attracted by the stronger contin-
gency. There was however a strong significant positive correlation
between individuals’ AUCc at P(e|c) of 0.75 and that at 0.50,
P(89)= 0.546, p < 0.001, much like that between AUC at £200
and £10,000 in the discounting task. Once again this demonstrates
that delays affected individuals’ perception in a consistent manner,
with causal judgments being devalued similarly within individ-
uals across both levels of contingency. Males evaluated delayed
causal relations more favorably than did female participants, both
at P(e|c)= 0.75 (mean AUCc were M = 0.60 and M = 0.53 for
males and females respectively) and P(e|c)= 0.50 (M = 0.49 and
M = 0.43),yet discounted delays slightly more steeply than females
at both £200 (M = 0.28 and M = 0.30) and £10,000 (M = 0.53 and
M = 0.56). However, none of these differences reached statistical
significance (all ps > 0.1). The remainder of the analysis therefore
collapses across gender.

Since representing the delay-induced decline in causal judg-
ments is not an established standard, we also calculated the ratios
of the delayed to the immediate scores; specifically, ratings at 2 s
over ratings at 0 s and ratings at 5 s over ratings at 0 s, for both
P(e|c)= 0.75 and 0.50. This gave four individual ratios, plus a
mean ratio across levels of contingency. This provided several bases
of comparison to the AUCd from the discounting task. Figure 4
shows a plot of all individual participants’ mean AUCd against
their mean AUCc. There was no correlation between these two
scores, r =−0.114, n= 89, p= 0.289, nor was there a correlation
between mean AUCd and mean ratio of delayed to immediate
judgments, r = 0.026, n= 89, p= 0.809. There was likewise no
correlation between ratio and AUCd for any of the possible eight
comparisons between the AUCd at the two nominal values and the
four ratios (all ps > 0.2).

We set out to examine the relationship between delay dis-
counting and delay-impaired causal judgment, aiming to identify
whether individuals devalue delayed rewards in the same manner

FIGURE 4 | Scatter plot of area under the curve for the discounting
task against mean area under the curve for the causal judgment task
for individual participants in Experiment 1.

as they appraise delayed causal relations. Overall, our results
replicate several well-established findings in the literature: both
contingency and contiguity substantially impact perceived causal-
ity, with causal judgments increasing in line with the proportion
of responses generating outcomes, and declining with response-
outcome delay (Shanks et al., 1989); and larger rewards being
discounted less steeply with delay than smaller rewards (Raineri
and Rachlin, 1993). We also found good consistency at the individ-
ual level both between discounting functions at different amounts,
as well as coherence between trends of delay-induced decline at
different contingencies. We can thus have confidence both in the
reliability of our paradigms and the measures adopted. However,
of principle interest was whether a relationship existed between
individual discounting function and evaluations of delayed causal
relations. No such correlations were found with any of the com-
parisons we applied. The implication therefore is that the effect of
a delay on an individual’s perception of causality is not related to
the rate at which a reward loses its subjective value with delay. An
extension of such a conclusion is that the discounting of a delayed
reward is not based on an inability to identify or recognize a causal
agent or mechanism that may be responsible for generating this
delayed reward.

EXPERIMENT 2
The failure to obtain a significant correlation in the first experi-
ment is a result that is somewhat difficult to interpret. This could
be taken as evidence that causal learning and choosing between
concurrently available rewards are distinct processes, and do not
share a common temporal processing mechanism. However, such
a contention comes from the unenviable position of arguing from
the null. Further investigation is therefore required. In the first
instance, it seems most prudent to attempt to replicate these
two studies and see if the same effect (or rather lack thereof)
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persists. At the same time, other measures can be introduced which
may provide additional insight as to whether causal learning and
discounting processes are in some way allied.

The following experiment then reprised effectively the same
causal judgment and delay discounting tasks of the previous exper-
iment (though both were streamlined as described in the Section
“Materials and Methods”). In addition, two further tests were
administered to participants. The first was a causal attribution
task, in which participants had to select the true cause (or most
likely cause) from three concurrently available causal candidates
(further details will follow in the Section “Materials and Meth-
ods”). Performance in this task was used to compute a single metric
that could be contrasted with the AUCs obtained from the causal
judgment and discounting tasks. The second was version 11 of the
Barrett Impulsivity Scale (BIS-11; Patton et al., 1995), a popular
measure for assessing impulsive personality traits. Measures from
all four tasks were then compared across participants.

MATERIALS AND METHODS
Participants
A total of 71 participants with a mean age of 20 years took part in
the study (29 males, 41 females, with one participant declining to
disclose gender). Of these 71 participants, five failed to complete
the causal judgment task, with one of these five also failing to com-
plete the delay discounting task. One additional participant failed
to complete the BIS-11, while one further participant failed to
complete the causal attribution task. This gave a total sample sizes
of 66, 70, 70, and 70 for each of the individual tasks respectively.

Design
The general format of both the causal judgment and the delay
discounting tasks remained identical to that in the first experi-
ment. However, given the additional tasks being included, it was
decided to streamline both tasks in order to reduce the demands
on participants. For the causal judgment task, we removed the
second level of P(e|c), 0.5, making it a single-factor task with the
same three levels of delay (0, 2 and 5 s), and P(e|c) set at 0.75 for
each of these three condition. For the delay discounting task, the
value of the LL reward was fixed at £200, with the additional value
of £10000 dispensed with. As a result, the delay discounting task
no longer remained as an experimental study in itself (since there
were no independent factors) but instead contributed a single mea-
sure, AUCd, for later comparison with other tasks. Both AUCc and
AUCd were calculated in exactly the same manner as for the pre-
vious experiment, however as a result of streamlining, rather than
there being two values for AUCc (at P(e|c)= 0.75 and P(e|c)= 0.5)
and AUCd (at LL= £200 and LL= £10000), there were only single
values of each (at P(e|c)= 0.75 and LL= £200 respectively).

For the causal attribution task, the independent variable was
the interval separating cause and effect. The dependent measures
was whether the participant selected the true cause (accuracy) and
the time taken for them to make their selection (response time).
By taking mean accuracy and response times over all three condi-
tions, we have two single measures which can be contrasted with
AUCs for the initial two tasks and scores from the BIS-11.

The BIS-11 provides a total score with a possible range of 30–
120, with higher scores indicating greater impulsiveness. The scale

can be further subdivided into three second order factors, cogni-
tive, motor, and non-planning, which can additionally be included
in our cross-task comparisons.

Apparatus and procedure
All four tasks were completed in the same computer laboratory
using the same equipment as for Experiment 1. Both the new
causal attribution task and the administration of the BIS-11 were
programmed using Python.

The new causal decision making task was adapted from Young
and Nguyen (2009). They used a first-person-shooter (FPS) video
game in which the participants’ task was to protect buildings that
were being shot at by groups of three attackers. In each case, one
attacker was an enemy and was firing explosive projectiles (the true
cause, or target) while the other two were “friendlies” and firing
duds (the foils). Participants could therefore protect the building
by destroying the attacker that was causing the explosions. The key
independent variable in Young and Nguyen’s experiment was the
temporal interval between the true cause and the effect. Essentially
then, the task can be summarized as deciding which of three can-
didate causes was producing an effect (explosions) by observing
the timing of when each attacker fired its weapon and when the
explosion occurred at the building.

In the causal attribution task for the current paper, we trans-
ferred the essential features of Young and Nguyen’s task from a
3D virtual environment to a simple experimental protocol using
simple 2D stimuli, more closely resembling standard contingency
judgment problems. Participants were presented with a triangle
in the upper portion of the screen and below this was situated a
row of three buttons. Alongside each button was a pointing hand,
which would periodically press its adjacent button, constituting an
instance of a candidate cause. The triangle illuminated contingent
upon one of the buttons being pressed, with the other two but-
tons being foils. Buttons were labeled 1, 2, and 3 from left-to-right,
and the position of the true cause on each condition was random-
ized on each condition. In our version of the task, participants
were given three conditions in which the interval between the true
cause and its effect was either 0, 2, or 5 s.

In governing stimulus delivery,an underlying trial structure was
used in the same manner as for Young and Nguyen’s experiments,
with the timeline divided into 4 s segments. This trial structure
was not explicitly signaled to participants, and trials ran seam-
lessly from one into the next with each trial beginning immediately
following the previous trial with no inter-trial interval. All the can-
didate causes (button presses) occurred during the first 3 s of each
4 s trial, randomly distributed within this 3 s. The effect then fol-
lowed its true cause with the specified delay. The foils had no
effect over the triangle. Trials continued until participants made
their choice of which of the three candidates they felt was the true
cause of the triangle lighting up.

The fourth and final task administered to participants was the
BIS-11, a well known metric for assessing impulsiveness. The BIS-
11 program presented all the items simultaneously on the same
page. Participants clicked on labeled buttons to indicate the extent
to which they agreed with each statement, and pressed a “submit”
button to record these choices and calculate their score. All par-
ticipants were administered all four tasks in the same fixed order,
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which was as follows: causal judgment, causal attribution, delay
discounting, BIS-11.

RESULTS
Causal judgment task
Results for the causal learning task mirrored those of the previous
experiment. Both causal ratings, F(1, 130)= 23.477, p < 0.0005,
MSE = 458.747, η2

p = 0.265 and overall response rates, F(1,

130)= 42.790, p < 0.0005, MSE = 751.475, η2
p = 0.397 declined

as a function of increasing cause-effect delay. The results are
summarized in Figure 5.

Causal attribution task
Figure 6 shows mean accuracy and response times for each of
the three conditions in the causal attribution task. Reaction time
was significantly affected by delay, with longer intervals result-
ing in longer latencies. Binary logistic regression was meanwhile
used to assess the impact of delay on accuracy. However, it has
previously been reported that a relationship often exists between
the speed and the accuracy with which a task is performed or a
decision is reached (Garrett, 1922; Schouten and Bekker, 1967;
Wickelgren, 1977) commonly referred to as the speed-accuracy
tradeoff (SAT). Therefore, as well as being a dependent measure,
response time also has the potential to be a determinant of accu-
racy of choice, and hence was entered into the regression model
along with delay. Analysis confirmed that interval length was a sig-
nificant negative predictor of accurate choice, Wald χ2

= 19.796,
β=−1.115, p < 0.0005, in other words longer intervals resulted in
poorer accuracy. This is consistent with the findings obtained by
Young and Nguyen (2009), who also saw accuracy impairments
as a consequence of increasing cause-effect intervals, and also
with general findings in the literature regarding effects of delay
in causal learning (e.g., Shanks et al., 1989). Reaction time was not
in this case a significant predictor of accuracy, Wald χ2

= 0.104,
β=−0.002, p= 0.747. Of principle interest for the current paper
however was how performance in this experiment correlates with
performance in the causal judgment task, delay discounting task,
and the BIS. To this end, both mean accuracy and mean response
time across the three conditions was calculated.

Cross-task comparisons
Neither the delay discounting task (this time) nor the BIS-11
yielded any individual results that can be analyzed in isolation, but
instead produced scores for each participant that can be compared
to performance in the causal learning tasks. Analysis once again
revealed no significant correlation between the causal judgment
and delay discounting task, nor was there a correlation between
the causal attribution task and the delay discounting task. There
was however a significant correlation between participants’ AUCc

on the causal judgment task and their mean accuracy on the
causal attribution task, r = 0.362, n= 65, p < 0.005. This indi-
cates that participants whose assessments of response-outcome
relations were less adversely affected by delay also showed greater
ability to identify the correct causal candidate from a number of
alternatives even when delays were involved. While many experi-
ments in the literature have confirmed detrimental effects of delay
across a wide range of studies, there has been considerably less

FIGURE 5 | Mean causal ratings and mean total response rates as a
function of temporal delay for the causal judgment task in
Experiment 2.

FIGURE 6 | Mean percentage accuracy and mean response times as a
function of temporal delay for the causal attribution task in
Experiment 2. Different symbol and line styles denote accuracy and
response time.

(if any) research demonstrating that individuals show an internal
consistency in the ways in which their causal decisions are affected
by delays across learning tasks.

Overall scores on the BIS-11 were not correlated with any of the
metrics obtained from the three other tasks, including the delay
discounting task, which may be seen as something of a surprise.
There was however a marginally significant negative correlation
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between participants’ scores on the non-planning factor of the BIS-
11 and accuracy on the causal attribution task, r =−0.229, n= 70,
p= 0.057. This suggests that higher scores on the non-planning
second order factor (indicating a lack of planning) tended to result
in a lower proportion of accurate choices in the causal attribution
task. There were no further significant correlations between the
other factors of the BIS-11 (cognitive and motor) and the other
three tasks.

DISCUSSION
Summary and interpretation of results
The most notable finding from our second experiment is that there
was a strong positive correlation between two very distinct forms
of causal learning task. The first was an elemental causal judgment
task, where participants were required to evaluate the extent of
a putative causal relation by performing responses and observing
the subsequent outcomes. The second was a causal attribution task
where participants observed three candidates that were all poten-
tial causes of a single outcome, and identifying the most likely
cause. The two tasks clearly both involve causal thinking, but the
disparities between the two are evident, not least in the hypothe-
sis space for each task (see, e.g., Griffiths and Tenenbaum, 2005,
2009). Yet despite their differences, performance in these two tasks
was comparable for a given individual, with those doing well on
one also tending to do well on the other.

This suggests that when engaging in causal learning, thinking,
or reasoning, delays may have a consistent effect upon a given
individual from one task to another. It therefore follows that an
individual could potentially be categorized as being “delay suscep-
tible” or “delay resistant” depending on their ability to recognize
delayed causes or the extent to which they consider delayed effects
to be evidence in favor of a causal relation. This is a strong parallel
with evidence that has been obtained from studies of intertempo-
ral choice and delay discounting, as reviewed in the Introduction,
which suggests that individuals differ in the extent to which they
discount delayed rewards. Some individuals (and indeed, cultures,
age groups, and other social strata) have a strong preference for
immediate rewards and steeply discount delayed rewards. This is
often interpreted as an inability to delay gratification and an indi-
cation of impulsiveness compared to those who do not discount
delayed rewards as steeply and are instead prepared to wait for
rewards that are larger in magnitude.

Yet, despite this parallel, and many others earlier outlined in
the introduction, we have now twice demonstrated that individual
behavior in causal judgment and delay discounting tasks show no
correlation. This replication of our earlier finding makes it increas-
ingly likely that the results of this paper constitute evidence of an
absence of correlation, rather than merely an absence of evidence.
At the same time, the marginally significant correlation between
non-planning impulsiveness and accurate causal attribution sug-
gests that causal learning and impulsivity may yet indeed share a
connection at some level. However, since the correlation involved
the non-planning factor rather than cognitive aspects, then any
connection is likely to be based on a lack of forethought or a fail-
ure to allow oneself adequate time to make an informed decision,
rather than being founded on a common temporal processing
mechanism.

On the surface this finding may seem somewhat surprising. The
evidence reviewed in the introduction appeared to suggest that
because of their inherent similarities, causal judgment and delay
discounting may be governed by the same mechanisms. However,
one may be even more inclined to suspect that the far more sim-
ilar processes of delay discounting and probability discounting
should share the same cognitive basis. Probability discounting is
the process by which the subjective value of a reward declines
as the likelihood of its delivery decreases, and therefore would
seem to be very tightly connected to delay discounting. Recently,
however, there has been an accumulation of data suggesting that
a number of variables have different, even opposite, effects on
temporal and probability discounting. Green and Myerson (2004)
reviewed this evidence and concluded that despite the similarity
in the mathematical form of the discounting functions, the pat-
terns of results from their analyses strongly suggest that separate
underlying mechanisms are involved for probability and temporal
discounting. Hence, with potentially distinct cognitive pathways
for these closely allied, perhaps we should not be surprised to find
a lack of overlap between individual discounting functions and
evaluation of delayed causal relations.

The lack of correlation between the BIS-11 and AUC from the
delay discounting task is perhaps surprising, since the latter is often
considered to be a behavioral measure of impulsiveness. Indeed
numerous studies have previously found a strong positive corre-
lation between BIS-11 and AUC (e.g., McHugh and Wood, 2008),
though our study is not the first to show an absence of correlation
between the two (Lane et al., 2003; Reynolds et al., 2008). These
inconsistencies raise questions over the use of steep temporal
discounting as an operational definition of impulsiveness.

Implications for theories of learning
Decision making in terms of choice between alternatives involv-
ing delays (such as performance on reinforcement schedules) is
a direct reflection of the rate at which rewards are devalued by
delays. The process of delay discounting however appears to be
unconnected to a causal understanding. It would thus seem that
this dissociation between discounting and causal learning indi-
cates that simple associative learning cannot form the basis for
both these processes. While for the sake of parsimony, a unified
learning theory explaining such processes certainly offers appeal,
based on the results of this and other studies, such a theory looks
set to remain elusive.

To fully explore this conclusion, let us first review some of the
essential concepts of learning theory. It is a fairly well-established
finding in the behavior analysis literature that animals tend to
respond more frequently during variable-interval (VI) reinforce-
ment schedules compared to fixed-interval (FI) schedules (Herrn-
stein, 1964; Davison, 1969). It has also been demonstrated that ani-
mals prefer variable over fixed response-to-reinforcer delays when
choosing between two concurrently available alternative response
keys (Cicerone, 1976; Bateson and Kacelnik, 1997), thus indicat-
ing that the preference for variable reinforcement goes beyond
task demands and reflects an inherent property of aperiodicity
that makes it preferable. Researchers (McNamara and Houston,
1992; Bateson and Kacelnik, 1995) suggest that such preferences
arise from foraging strategies or predatory behavior, which tend
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to benefit from variability of behavior. However this can also be
explained from the perspective of temporal discounting.

If rewards lose their subjective value or associative strength as
delays increase, then obviously an early reward contributes more,
and a late reward contributes less, relative to a reward occurring at
the midpoint of the two. However because of the negatively accel-
erated shape of the discounting function, the difference between
the early and the intermediate reward is greater than the difference
between the intermediate and the late reward. In other words, the
gain from the early rewards is greater than the loss from the late
rewards (compared to an intermediate reward). For an illustrative
example, see Greville and Buehner (2010), Figure 1. Thus, a set
containing an approximately equivalent number of both early and
late rewards will have a greater net subjective value than a set where
all the rewards are of intermediate latency. Therefore, assuming
that on comparable interval schedules (where the variable sched-
ule will have an even distribution of early and late rewards about
the central midpoint of the fixed schedule), although the mean
delay-to-reinforcement is approximately equivalent, the variable
schedule results in the formation of stronger associations. Apply-
ing the temporal discounting principle to animal learning thus
provides an account for the apparent preference for variability.
The question which then arises, and which is most pertinent to
the focal issues being explored in this paper, is whether human
causal reasoning follows these same principles.

Greville and Buehner (2010) carried out a series of experiments
comparing predictable and variable response-to-reinforcer delays
in an instrumental causal judgment task, similar to that employed
in the current paper. It was found that conditions where the inter-
val was fixed were routinely judged as more causally effective than
those with variable intervals, and furthermore that judgments
tended to decline as variability increased. This is in direct oppo-
sition to the variability preference observed in animals. Greville
and Buehner’s results appear to complement those of the cur-
rent paper, where we similarly show a dissociation between causal
learning with delays and choice involving delayed rewards.

These results would appear to endorse view that causal induc-
tion cannot simply be reduced to associative learning. However,
this interpretation rests on the assumption that preference for
variable reinforcement is a reflection of the associative strength
between response and reinforcer, which may not be entirely valid.
If instead subjective value and associative strength are dissocia-
ble, this may in turn suggest that animals have the capacity to
learn associations, or causal connections, without this necessarily
resulting in an observable change expressed in behavioral prefer-
ence. Indeed, a recent variant of associative learning theory, the
temporal coding hypothesis (TCH; see, e.g., Miller and Barnet,
1993) posits exactly that. The TCH departs from the traditional
associative view by arguing that the temporal relationship between
events is encoded as part of the association; that is, the animal
learns not only that the US will occur but also when it will occur.
This temporal information plays a critical role in determining
whether a response is made, and the magnitude and timing of that
response. In other words, whether or not an acquired association
will be expressed as observable behavior depends on the encoded
temporal knowledge (Savastano and Miller, 1998; Arcediano and
Miller, 2002). An extension of such an argument would be that

an organism may be perfectly capable of recognizing a particu-
lar relation, and indeed identifying that relation as stable, but still
exercise preference for another schedule that it perceives as perhaps
less stable but offering greater potential for reward.

There remain, however, aspects of the design of the current
study that could provide alternative explanations for the results
obtained. While both the causal judgment task and the delay
discounting task are well-established measures in the field, and
therefore adequate to assess these respective processes, there are
two important distinctions between them. Firstly, the outcome in
the causal judgment task had no motivational significance for the
participant. Greville and Buehner (2010) suggested that the facil-
itatory effect of temporal predictability in causal learning found
in their studies, which contrasted with the long-established find-
ing of animal preference for variable reinforcement, might in part
be attributable to the fact that their causal judgment tasks were
appetitively neutral. The same point may be raised here; although
the amounts of money in the discounting task were hypothetical,
subjects nevertheless tend to respond to such choices as though
they were real amounts. In contrast, the outcome in the causal
judgment task had no value, hypothetical or otherwise. It is there-
fore possible that adopting a causal learning task where outcomes
provide more tangible reinforcement may have produced different
results. However, Shanks and Dickinson (1991) have already con-
trasted causal judgment with instrumental performance (where
participants engaged in a “points-scoring” task) and found that
performance and judgment closely mirrored one another. Thus
there is little to suggest that such an extension to the current study
would yield a different result.

Secondly, while temporal delays in the causal learning tasks
are directly experienced, the delay delays in the discounting tasks
were merely described. There is considerable evidence that causal
judgments made in described situations follow similar patterns
to those made based on directly experienced events (Wasserman,
1990; Shanks, 1991; Lovibond, 2003; Greville and Buehner, 2007).
We may therefore reasonably conclude that if a described causal
learning task had been employed, similar results would have been
obtained. However Hertwig et al. (2004) suggest that the same is
not necessarily true for choice behavior; for instance, people tend
to overestimate and underestimate the probability of rare events
in decisions from descriptions and experience, respectively. Future
research exploring this question then may seek to see if the same
holds true in choosing between immediate and delayed rewards
when delays are directly experienced.

Neurobiological correlates of associative and causal learning
The evidence from neurological studies reviewed earlier impli-
cated the hippocampus in both the processes of trace conditioning
and ability to delay gratification to select a larger delayed reward,
and thus formed an important part of the motivation behind the
study. We considered that the role of delay in both reducing the
subjective value of reward and impairing causal attribution might
be similar within individuals, but this proposition was not sup-
ported by our experimental findings. The primary implication of
these results is that delays impact the two processes in different
ways, and thus suggest that local temporal processing, rather than
a common temporal processing structure, governs the impact of
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delays in these processes. We now turn to review further evidence
from neurological research that can ballast this argument.

Turner et al. (2004) applied fMRI during a judgment task and
found that right lateral prefrontal cortex (PFC) activation is sensi-
tive to the magnitude of prediction error, which is a cornerstone of
associative learning models such as the Rescorla-Wagner (Rescorla
and Wagner, 1972) model, thus providing direct evidence for a
neural basis of the mechanisms proposed in associative learn-
ing. However, it is debatable whether the task employed during
their experiment constituted a valid test of causal, rather than
just simple associative, knowledge. Fugelsang and Dunbar (2005)
applied fMRI to a more complex causal judgment task and found
that the brain responds differently to incoming data depending
on the plausibility of the theory being tested. Specifically, given a
plausible causal theory, evaluation of data consistent with that the-
ory recruited neural tissue in the parahippocampal gyrus, whereas
evaluating inconsistent data recruited neural tissue in the anterior
cingulate, left dorsolateral PFC, and precuneus. Perhaps most rel-
evant to the current article, Satpute et al. (2005) carried out fMRI
during a relation-judgment paradigm (see Fenker et al., 2005).
Their results revealed that although causal and associative pro-
cessing shared several regions of activity in common, accessing
causal knowledge produced patterns of activity in left dorsolateral
prefrontal cortex (DLPFC) and right precuneus that were absent
during associative judgment, even after correcting for task dif-
ficulty. They concluded that evaluating causal relations involves
additional neural mechanisms relative to those required to evalu-
ate associative relations. Indeed, further dissociations can be made
at the neurological level even between basic associative processes.
Myers and Davis (2002) report that acquisition and extinction
appear to be governed by fundamentally different neural mecha-
nisms in different learning paradigms, evident particularly when
comparing extinction of fear conditioning and conditioned taste
aversion. Each appears to recruit its own configuration of cellular
mechanisms, perhaps as a function of task difficulty or the nature
of the CR, CS, or US.

These findings appear to support a distinction between causal
and associative learning. While there are certainly elements in
common between the two processes, both in their neurological
bases and at a cognitive or computational level, a number of impor-
tant contrasts remain. Specifically, it appears that causal learning
involves an additional layer of complexity, and recruits additional
neurological structures, than associative learning.

Critique and future directions
This study is the first, as far as we are aware, to experimentally
explore a potential link between causal learning and discount-
ing. As such, the work was largely exploratory in nature and the
methodology untested, so it is entirely possible that superior meth-
ods of comparing discounting functions with causal judgment
data may be constructed. While the AUC has become a standard
measure for temporal discounting, no such universally accepted
measure exists for the causal judgment task. Our application of this
procedure to our causal judgment task may thus be open to some
criticism. For instance, the delays in the two tasks differ greatly
in duration; seconds for the causal judgment task and months
and years for the discounting task; moreover, as mentioned earlier,

delays are experienced in the former while described and imagined
in the latter. In addition, we only used three delays in the causal
judgment task, rather than the seven in the delay discounting task;
studying judgments over a much broader range of delays may
provide a more finely tuned measure of the causal judgment data.

An alternative suggestion might be to contrast fixed and vari-
able delays, as in Greville and Buehner’s (2010) studies, and inves-
tigate whether preference for fixed vs. variable relations has any
connection to temporal discounting. Despite the general trend of
preference for predictability shown in Greville and Buehner’s stud-
ies, individual participants may deviate from this trend and exhibit
preference for variability. It would be interesting to see if such a
preference arises from a contiguity bias, whereby the potential
for immediate reinforcement in variable conditions overrides the
impression of stability provided by fixed conditions, and whether
such a contiguity bias is correlated with steep temporal discounting
and impulsivity.

Finally, steep discounting has often been linked in the lit-
erature with impulsivity (Richards et al., 1999), which in turn
has been linked to a number of socially maladaptive behaviors,
including violence, drug abuse, and pathological gambling (Steel
and Blaszczynski, 1998; Fishbein, 2000). As a result, considerable
effort has been devoted to the development of potential inter-
ventions for impulsive behavior, and the current line of research
may help provide further insights. For instance, although overall
we found little evidence of any relationship between impulsiv-
ity and causal understanding, there was a marginally significant
negative relationship between non-planning impulsiveness and
correct identification of causes. An adaptation of this paradigm
into a training game designed to improve causal attribution might
therefore be a potential means of reducing the propensity for
non-planning impulsivity. Though the current study does not yet
provide strong enough evidence that could inform clinical prac-
tice, future research might suggest avenues for the development of
new therapeutic strategies.

CONCLUSION
To summarize, this study represents an early step in exploring the
potential relationship between areas of learning that have previ-
ously tended to be somewhat shielded from one another in the
literature. Our results indicate that delays have a consistent influ-
ence in tasks involving causal learning, and that a given individual
may be affected in the same way by delays across different causal
learning tasks. However no such correlation exists between the
manner in which delays hamper causal learning and the rate at
which the subjective value of delayed rewards is discounted. Taken
together with the results of Greville and Buehner (2010) and those
of Satpute et al. (2005), the implication is that there is a dissocia-
tion between reinforcement learning and causal inference, and the
effects of time in these learning processes cannot be attributed to a
common temporal processing mechanism. The results have valid
implications for current theories of learning as well as considera-
tions for interventions in problem behavior and psychotherapy. It
is our hope that further research will shed more light on this topic
and more precisely identify those facets of learning processes that
are idiosyncratic and those that form common elements between
processes.
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