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With genesis in the ventral tegmental 
area and the substantia nigra pars com-
pacta (SNc), the neurotransmitter dopa-
mine influences brain function through 
three distinct pathways: the nigrostriatal, 
 mesolimbic, and mesocortical. Dopamine 
plays a crucial role in a range of functions, 
for example: reward-related processing 
(Schultz et al., 1997) and reinforcement 
learning (Montague et al., 1996; Frank and 
Claus, 2006; Frank et al., 2007), working 
memory (Brozoski et al., 1979; Kimberg 
et al., 1997; Lustig et al., 2005; Cools et al., 
2008), and motor function, including deter-
mining the vigor of actions (e.g., Niv et al., 
2007; Smith and Villalba, 2008). Here our 
focus is on the role of dopamine in tem-
poral processing, a less commonly recog-
nized function (Meck, 1996; Buhusi and 
Meck, 2005; Meck et al., 2008; Jones and 
Jahanshahi, 2009; Allman and Meck, 2011; 
Coull et al., 2011 – but see Hata, 2011).

A growing body of research has sought to 
characterize the role of dopamine in inter-
val timing, which can be broadly thought of 
as motor and perceptual timing in the milli-
seconds- and seconds-range. The influence 
of dopamine on interval timing has been 
demonstrated in pharmacological studies 
both with animals (Drew et al., 2003; Matell 
et al., 2006; Cheng et al., 2007; Meck et al., 
2011) and humans (Rammsayer, 1993, 1997, 
for reviews see Meck et al., 2008; Jones and 
Jahanshahi, 2009; Coull et al., 2011). Using 
the peak-interval procedure, in which a 
learnt temporal interval is reproduced, ani-
mal research has established that dopamine 
agonists lead to the interval being underesti-
mated, whereas dopamine antagonists lead 
to overestimation (e.g., Drew et al., 2003; 
Matell et al., 2004, 2006; MacDonald and 
Meck, 2005). These results have been inter-
preted as the effect of dopamine agonists 
and antagonists on speeding and slowing an 
“internal clock,” respectively. Lesions to the 
SNc and the caudate–putamen (CPu) both 
impair temporal control on the task, while 

rats with lesions to the nucleus accumbens 
show no evidence of disrupted temporal 
performance (Meck, 2006a). This pattern 
implicates the nigrostriatal (substantia 
nigra–dorsal striatum) dopamine pathway 
in interval timing. Further, levodopa, a pre-
cursor to dopamine that is commonly used 
to treat Parkinson’s disease (PD), restores 
timing performance in rats with lesions to 
the SNc but not in those with lesions to the 
CPu, which may reflect the distinct roles 
of these structures in temporal calculation 
(Meck, 2006a). Work on healthy humans 
has established that haloperidol, a non-
specific D2 receptor antagonist, attenu-
ates both milliseconds- and seconds-range 
perceptual timing (comparing the length of 
two stimuli), whereas remoxipride, which 
blocks D2 receptors in the mesolimbic and 
mesocortical tracts, only impairs seconds-
range timing (Rammsayer, 1997). These 
results were considered to support the role 
of the nigrostriatal system in milliseconds-
range timing. More recently, Wiener et al. 
(2011) were able to apply a more targeted 
investigation by studying the effect of dif-
ferent single-nucleotide genetic polymor-
phisms on perceptual timing. Participants 
with a polymorphism affecting the density 
of striatal D2 receptors showed increased 
variability for milliseconds- but not sec-
onds-range perceptual timing. Conversely, 
participants with a polymorphism that 
affects an enzyme (COMT) influencing pre-
frontal dopamine showed greater variabil-
ity only in the seconds-range. Thus, these 
data suggest a double dissociation, with the 
nigrostriatal pathway being important for 
milliseconds-range perceptual timing and 
the mesocortical pathway being important 
for seconds-range perceptual timing.

Parkinson’s disease is a movement disor-
der associated with degeneration of dopa-
minergic neurons in the SNc. There is now a 
body of evidence that motor and perceptual 
timing within the milliseconds- and sec-
onds-range are impaired in PD (see Jones 

and Jahanshahi, 2009; Allman and Meck, 
2011; Coull et al., 2011). Dopaminergic 
medication often improves performance 
on perceptual (e.g., Pastor et al., 1992a; 
Malapani et al., 1998) and motor timing 
tasks (e.g., Pastor et al., 1992b; O’Boyle 
et al., 1996) in patients with PD; although 
the pattern of effects (e.g., whether accuracy 
or variability is affected) is variable and sig-
nificant effects are not always found (e.g., 
Pastor et al., 1992b; O’Boyle et al., 1996; 
Jones et al., 2008; Harrington et al., 2011b). 
The variable findings might relate to the 
insufficiency of dopaminergic medication 
for fully restoring striato-frontal function 
(Harrington et al., 2011b), or to the inad-
equacy of medication withdrawal and the 
lingering effects of long-acting medica-
tion in patients tested “off” medication. 
Difficulties with interval timing have also 
been observed in other disorders that are 
associated with dopaminergic dysfunction, 
including schizophrenia and attention-
deficit/hyperactivity disorder (ADHD; see 
Jones and Jahanshahi, 2009; Allman and 
Meck, 2011).

There is consensus from imaging stud-
ies that the basal ganglia, particularly the 
dorsal striatum, are engaged during interval 
timing (e.g., Rao et al., 2001; Harrington 
et al., 2004, 2010, 2011a,b; Jahanshahi et al., 
2006, 2010; Coull et al., 2008, for reviews 
see Meck et al., 2008; Jones and Jahanshahi, 
2009; Coull et al., 2011). The basal ganglia 
are closely connected to the cortex through 
a series of striato-cortical loops (Alexander 
et al., 1986). Recording from neural ensem-
bles in animal studies supports the role of 
both striatal and cortical regions in encod-
ing temporal intervals (e.g., Matell et al., 
2003, 2011; Lebedev et al., 2008; Höhn et al., 
2011), whilst cortical lesions in rats attenu-
ate temporal performance (Meck, 2006b). 
Further, patients with cortical lesions and 
healthy individuals with short-lasting 
TMS-induced disruption to cortical func-
tion demonstrate difficulties on temporal 
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tasks (Jones et al., 2004; Coslett et al., 2009). 
Thus there has been increasing interest in 
explaining and exploring how interval tim-
ing might be distributed across key cortical 
and subcortical regions. The obvious medi-
ator for this relationship is dopamine. To 
better examine the effects of dopamine on 
striato-frontal function in PD, we investi-
gated the neural correlates of motor tim-
ing in a repetitive tapping task, in patients 
tested both “on” and “off” apomorphine, a 
non-selective dopamine receptor agonist 
(Jahanshahi et al., 2010). Using effective 
connectivity analysis, we established that 
task-related coupling between the left head 
of the caudate nucleus and the prefrontal 
cortex was increased when the patients 
were “on” medication compared to the 
“off” state. The data support the proposal 
that dopamine modulates the coupling 
between frontal and striatal regions during 
motor timing. Fronto-striatal connectivity 
in PD has also been investigated during a 
perceptual timing task where the durations 
of two stimuli were compared (Harrington 
et al., 2011b). Consistent with the previous 
study, greater activation of the putamen 
and superior frontal gyrus was observed 
“on” compared to “off” medication during 
the decision phase of the perceptual timing 
task. However, the dominant finding was 
that connectivity between the basal ganglia 
and cortex was greater “off” than “on” medi-
cation during this task.

A challenge for the field has been to 
develop a biologically plausible model of 
interval timing. The striatal beat frequency 
model (Matell and Meck, 2000, 2004) pro-
poses that the striatum receives cortical and 
thalamic oscillatory activity that serves as 
a clock signal. Using a process of coinci-
dence detection, striatal spiny neurons fire 
when a criterion number of neuronal inputs 
oscillate with the same beat frequency. It 
is suggested that nigrostriatal phasic dopa-
mine signals the onset and offset of a timed 
interval, whereas tonic dopamine alters 
the frequencies of the cortical oscillations, 
thus directly modulating the speed of the 
“internal clock.” According to this model, 
dopamine is a critical mediator of temporal 
calculations (see Allman and Meck, 2011; 
Oprisan and Buhusi, 2011).

Interval timing fits under the broad 
umbrella of temporal processing, which 
includes circadian rhythms through to the 
psychological relationship between time and 

memory. The different types of temporal 
experience are poorly defined and under-
stood (Grondin, 2010), and the relationship 
between these various types of temporal 
processing has received little attention. A 
complete account of interval timing should 
seek to position this process within the wider 
context of temporal processing. Particularly, 
an unexplored question is whether the role 
of dopamine in interval timing can be 
integrated with ostensibly distinct areas 
of dopamine-focused research that have a 
temporal component. The temporal dif-
ference model of learning proposes that 
the phasic activity of midbrain dopamine 
neurons code the time discrepancy between 
the expected and actual delivery of reward, 
calculating a reward prediction error (e.g., 
Montague et al., 1996; Schultz et al., 1997; 
Hollerman and Schultz, 1998). Dopamine 
neurons in the substantia nigra have also 
been implicated in temporal discount-
ing, which is the waning of reward value 
with increasing delay, and in the temporal 
uncertainty inherent in delayed rewards 
(Kobayashi and Schultz, 2008). Related to 
this, administration of dopamine antago-
nists to healthy participants increases the 
degree of temporal discounting, i.e., the 
relative value of delayed rewards decreases, 
leading to impulsive behavior (Pine et al., 
2010). Other work proposes that tonic levels 
of dopamine in the nucleus accumbens play 
an important role in response vigor (i.e., the 
rate of responding) by calculating the aver-
age rate of reward (Niv et al., 2007), a process 
that has an intrinsic temporal component. 
Finally, mesocortical dopamine is critical 
for working memory (Brozoski et al., 1979; 
Kimberg et al., 1997; Cools et al., 2008), 
which is essentially the process of main-
taining information “on line” over a time 
interval. To date, the investigation of the 
role of dopamine in reward prediction error, 
reinforcement learning, temporal discount-
ing, working memory, response vigor, and 
interval timing have remained largely dis-
tinct fields. There may be a value in explor-
ing whether the temporal components of 
these tangential fields can be integrated with 
research that seeks to formulate a role for 
dopamine in modulating interval timing.
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