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Abstract

The highly conserved, Nxf/Nxt (TAP/p15) RNA nuclear export pathway is important for export of most mRNAs from the
nucleus, by interacting with mRNAs and promoting their passage through nuclear pores. Nxt1 is essential for viability; using
a partial loss of function allele, we reveal a role for this gene in tissue specific transcription. We show that many Drosophila
melanogaster testis-specific mRNAs require Nxt1 for their accumulation. The transcripts that require Nxt1 also depend on a
testis-specific transcription complex, tMAC. We show that loss of Nxt1 leads to reduced transcription of tMAC targets. A
reporter transcript from a tMAC-dependent promoter is under-expressed in Nxt1 mutants, however the same transcript
accumulates in mutants if driven by a tMAC-independent promoter. Thus, in Drosophila primary spermatocytes, the
transcription factor used to activate expression of a transcript, rather than the RNA sequence itself or the core transcription
machinery, determines whether this expression requires Nxt1. We additionally find that transcripts from intron-less genes
are more sensitive to loss of Nxt1 function than those from intron-containing genes and propose a mechanism in which
transcript processing feeds back to increase activity of a tissue specific transcription complex.
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Introduction

Export of mRNAs from the nucleus is a fundamental aspect of

gene expression regulation. This involves RNA processing and

packaging followed by translocation via nuclear pores (reviewed in

[1,2]). During transcription, nascent RNA associates with hnRNPs

and a succession of export factors. The THO complex binds

transcripts as they emerge from the RNA polymerase, and

promotes transcription elongation and 39 end processing [3].

Associated with THO are UAP56 (an RNA helicase) and REF (an

adaptor protein), to make a super-complex, TREX [4]. Splicing

occurs co-transcriptionally, and intron excision leads to deposition

of the exon junction complex (EJC) 59 of the splice site [5]. The

EJC is also implicated in recruitment of TREX to the nascent

transcript [6]. After this initial processing, a dimer comprising

Nxf1 (TAP) and Nxt1 (p15) is recruited via interaction of Nxf1

with REF [7]. Recruitment of these export factors renders the

mature poly adenylated mRNA competent for export via nuclear

pores. mRNAs derived from intronless genes also interact with

REF and UAP56, and this again recruits Nxf1/Nxt1 [8]. The

Nxf1/Nxt1 dimer is released from the mRNA in the cytoplasm,

and recycled to the nucleus. Most RNA polymerase II transcripts

are exported via this Nxf1/Nxt1-dependent route, however some

endogenous mRNAs and viral RNAs use a parallel route,

dependent on the nuclear protein export factor Crm1, acting via

unknown RNA-binding adapters [9]. The components of the

canonical pathway are well conserved throughout eukaryotes.

REF (RNA export factor) is also known as ALY or Aly (ally of

AML1 and LEF1), however the protein product of the Drosophila

melanogaster meiotic arrest transcriptional regulator aly (always early)

is also abbreviated Aly. To avoid confusion, throughout this paper

we will use REF to denote the RNA export factor, encoded in

Drosophila by Ref1 and ref2, and aly (Aly) to refer to the always early

gene (and protein).

Differential gene expression underlies the morphological diversity of

differentiated cell types, and depends on regulation at both transcrip-

tional and post-transcriptional levels. The production of mature sperm

demonstrates the extreme morphological specialisation achievable, and

relies on testis-specific expression of many genes. About 8% of

annotated Drosophila protein-coding genes are expressed exclusively in

testes [10,11]. Transcription of these genes occurs predominantly in

primary spermatocytes [12,13]. The mRNAs are exported from the

nucleus and either translated immediately, or, more typically, are

stored in translationally inactive RNPs for translation during

spermiogenesis (reviewed in [14]). Most of the ‘‘meiotic arrest’’ genes

promote the spermatocyte-specific transcriptional programme (re-

viewed in [15]). Meiotic arrest testes contain only stages up to and

including mature primary spermatocytes and the spermatocytes of

almost all meiotic arrest mutants fail to express a very large subset of the

testis-specific transcripts, as well as some ubiquitous transcripts [16,17].

Most meiotic arrest genes encode proteins predicted to form two

distinct complexes, tMAC and a testis-specific version of TFIID

(reviewed in [15]). These complexes are believed to primarily regulate

transcription within primary spermatocytes, rather than acting post-
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transcriptionally. tMAC comprises at least 6 subunits that co-purified

from testis extract, encoded by aly, comr, tomb, topi, mip40 and Caf1 [18].

Genetic and protein interaction data indicate that the complex also

probably contains Wuc and Achi/Vis [16,19]. At least four tMAC

subunits (Comr, Tomb, Topi and Achi+Vis) contain predicted DNA-

binding motifs, and the complex localises to chromatin in primary

spermatocytes, consistent with a transcriptional transactivator role

[20,21,22,23,24]. The testis-specific TATA-binding proteins (tTAFs),

subunits of a putative testis form of TFIID, and encoded by can, mia, nht,

rye and sa, localise to promoters of target genes and the nucleolus in

primary spermatocytes [25,26,27]. The meiotic arrest mutants are

classified according to phenotype. aly-class mutants (aly, comr, tomb, topi

and achi+vis) have virtually undetectable levels of a very large number of

transcripts in mutant testes. All aly-class mutants encode tMAC

subunits. can-class mutants (encoded by tTAF genes) have dramatically

reduced expression of a large subset of the genes affected in aly-class

mutants, although they express normal levels of some aly-class

dependent transcripts [15]. Interestingly, wuc;aly double mutant testes,

despite being mutant for two tMAC subunits actually has a can-class

phenotype with respect to defects in gene expression [16]. Recently a

new meiotic arrest mutant, thoc5, which encodes a THO complex

subunit was reported [28]. No transcriptional defects were reported in

this mutant, although transcription of only a few genes was assayed.

Here we identify Nxt1 as a meiotic arrest gene in Drosophila, and show

that it is a founding member of a new meiotic arrest gene class. Partial

loss of function of Nxt1 results in failure of primary spermatocytes to

accumulate many transcripts. Transcripts that were sensitive to loss of

Nxt1 were also dependent on tMAC for their transcription, indicating a

mechanistic link between the testis-specific transcription machinery

and the core mRNA export pathway. We demonstrate that the link

depends on the promoter used to generate the mRNA, and not on the

mRNA sequence itself. We found that spliced transcripts are expressed

more efficiently in the Nxt1 loss of function background than unspliced

transcripts, and propose a model in which RNA processing feeds back

to increase the activity of the tissue-specific transcription complex.

Results

Nxt1 is a novel meiotic arrest gene
The line z2-0488 was identified by screening a collection of

EMS-induced male sterile mutants using phase-contrast micros-

copy of live testis squash preparations [29]. z2-0488 homozygote

and hemizygote males showed a typical meiotic arrest phenotype;

the mutant testes had stages up to and including mature primary

spermatocytes, however the meiotic divisions and spermatid

differentiation were absent (Figure 1C). Positional cloning (see

Materials and Methods and Figure S1) revealed that z2-0488

causes an amino acid substitution (D126N) in the RNA export

protein Nxt1. An independent allele. Nxt1DG05102, which has a P-

element insertion in the coding region, and is expected to be a null,

was obtained from Bloomington Drosophila stock centre. Nxt1z2-0488

homozygotes, Nxt1z2-0488 hemizygotes and Nxt1z2-0488/Nxt1DG05102

transheterozygotes were semi-lethal and male and female sterile.

Most of these pupae had head eversion defects during the pupal

stages (Figure 1 H–K), accounting for the semi-lethality. Testes

from Nxt1z2-0488/Nxt1DG05102 displayed a meiotic arrest phenotype

(Figure 1B). Nxt1DG05102 homozygotes and hemizygotes were

embryonic lethal. Depletion of Nxt1 from spermatocytes by RNAi

also generated a meiotic arrest phenotype (Figure 2A), indicating

that Nxt1 functions autonomously in these cells.

We conducted a detailed phenotypic analysis to compare the

meiotic arrest caused by Nxt1 mutation with previously described

meiotic arrest loci. RNA in situ hybridisation revealed that Nxt1

mutant testes had defects in accumulation of some tMAC target

mRNAs, while other tMAC target transcripts were detected in the

cytoplasm of the mutant primary spermatocytes (Figure 3). Nxt1

mutant testes failed to express some genes that were expressed in

nht, a can-class mutant (Figure 3). The RNA in situ hybridisation

profiles thus did not match those seen in any characterised class of

meiotic arrest mutant (Figure 3), suggesting that Nxt1 is the

founding member of a novel class. Surprisingly, given the known

role of Nxt1 in mRNA export from the nucleus [30], we detected

no accumulation of transcripts within the nucleoplasm. All

mRNAs detected were exclusively cytoplasmic (Figure 3H–H90).

Uniquely among meiotic arrest mutants, thoc5 primary sper-

matocytes showed severe fragmentation and disorganisation of the

nucleolus [28]. Phase contrast microscopy revealed no overt

nucleolar organisation defect in Nxt1 mutant testes, although the

nucleoli in some mature primary spermatocytes appeared smaller

than in wild type (Figure 1D–G). Sa-GFP, whose localisation is

abnormal in both aly-class and thoc5 mutant testes, was localised to

the nucleolus and indistinguishable from wild type in Nxt1 primary

spermatocyte (data not shown). The chromatin in arrested

spermatocytes was partially condensed, and displaced from the

nuclear envelope (Figure 1F, G).

The subcellular localisation of Nxt1 is dynamic in male
germline cells

We determined the sub-cellular localisation of Nxt1 protein by

expressing eGFP-Nxt1 using the GAL4-UAS system. When

expressed in spermatocytes (with bam-Gal4VP16), the protein

was primarily nuclear, although some cytoplasmic signal was

detected (Figure 4A, B). Within early primary spermatocyte nuclei

the signal was weaker in the nucleolus, and enriched in a peri-

nucleolar dot (Figure 4E, F). As primary spermatocytes matured

this peri-nucleolar dot disappeared, and one or more cytoplasmic

puncta appeared, typically apposed to the nuclear membrane

(Figure 4G, H). The protein remained stable into spermatid

differentiation, and was localised to one face of the nuclear

envelope of early elongation stage spermatids (Figure 4I, J). The

protein remained detectable in the needle-shaped nuclei of

spermatids (Figure 4K, L), but was not detected in mature sperm.

When eGFP-Nxt1 was expressed in ovarian somatic cells using a

ubiquitous driver (tubulin-Gal4) it was predominantly nuclear;

relatively uniformly distributed within the nucleoplasm, but

weaker in the nucleolus. Some cytoplasmic signal was detected

(Figure 4M, N).

Author Summary

In multicellular organisms, differentiated cells have a cell-
type specific profile of gene expression. Sperm production
is particularly specialised, and as a result over 5% of all
genes are expressed exclusively in the sperm precursor
cells, termed primary spermatocytes. Expression of these
genes depends on a particular transcription regulation
complex (tMAC) only active in spermatocytes. In this paper
we show that a factor, Nxt1, whose previously charac-
terised function is in transport of RNA from the cell nucleus
to the cytoplasm, is also required for expression of many
testis-specific transcripts. Spermatocytes deficient for Nxt1
fail to express many tMAC-dependent genes, and we show
that this effect is due in part to reduced transcription. We
further show that processing of the RNA, via splicing, can
partially offset the need for Nxt1 in expression of tMAC-
dependent genes. Our data reveal an unexpected link
between the core RNA processing pathway and a tissue-
specific transcription factor.

RNA Export and Transcriptional Control
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Nxt1 protein instability caused by D126N
The crystal structure of the human Nxf1/Nxt1 dimer has

been solved, and we used this structure to predict the molecular

effects of the D126N mutation [31]. The residue is conserved in

metazoa (D131 in human Nxt1), and lies on a beta sheet at the

Nxt1/Nxf1 dimer interface. The D131 side chain is oriented

towards the core of the protein, and participates in a hydrogen

bonding network with three other residues, Y24, Y39 and

Q111. All three of these residues are conserved throughout

metazoa, suggesting that this H-bonding network is conserved.

Substitution of D131N disrupts the H-bonding network

(Figure 5). This is likely to destabilise the folding around the

core of the protein, particularly the interaction of the beta sheets

of the dimer interface and an alpha helix on the opposite protein

face. Expression of GFP-Nxt1-D126N revealed a dramatic

decrease in protein stability (Figure 4). When driven with bam-

Gal4VP16, fusion protein was only detected in the cells in which

the driver itself was active (Figure 4C, D). The fusion protein in

these cells was uniformly distributed. When expressed using

tubulin-Gal4 no fusion protein could be detected under

conditions in which the wild type protein was detected

(Figure 4O, P). The mutation is not predicted to affect the

dimer interaction with Nxf1, thus we conclude that the primary

defect in the mutant is reduced protein stability, but expect that

any mutant protein that does get folded is likely to be able to

participate in mRNA nuclear export.

Many testis-specific transcripts fail to accumulate in Nxt1
mutant testes

We used microarrays to characterise the gene expression defects

in Nxt1 mutant testes. We found that Nxt1 mutant testes had

dramatic defects in transcript accumulation, with many transcripts

being reduced in abundance, or undetectable (Figure 6A). As with

other meiotic arrest loci, there were very few transcripts whose level

was elevated in mutant testes compared to controls (Figure 6A,

Figure S2). 485 probes showed a 16 fold or more decrease in signal

in Nxt1 mutant testes compared to normal testes. Comparison with

FlyAtlas data revealed that the transcripts highly dependent on Nxt1

for expression in testes were strongly biased towards testis-specific

expression (Figure 6B). 78% of all highly Nxt1-dependent transcripts

were testis-specific (Figure 6D), although clearly the majority of

testis-specific transcripts are not highly Nxt1-dependent (defined as

166 or more down-regulated in Nxt1 testes). To test whether the

transcription defects were a peculiarity of our EMS allele, we

assayed gene expression changes in the meiotic arrest testes

generated by Nxt1 RNAi in spermatocytes. We found a very

dramatic down-regulation of ran-like, and a mild down-regulation of

expression of djl and CG42355, mirroring the results seen with

Nxt1z2-0488/Nxt1DG05102 (Figure 2B).

We compared the global effects on gene expression of Nxt1

mutation with microarray data from aly testes [16]. 1064 probes

were highly (166or more) down-regulated in aly testes. Comparison

Figure 1. Mutation of Nxt1 leads to meiotic arrest in testes and failure of head eversion in pupae. (A) All stages of spermatogenesis are
seen in wild type testes by phase contrast microscopy. Large round cells near the apical region (*) are primary spermatocytes, while spermatids
elongated up the length of the testis (arrow). In Nxt1z2-0488/Nxt1DG05102 mutant (B) or Nxt1z2-0488/Deficiency (C) testes, only stages up to mature primary
spermatocytes are present. (D) Hoechst fluorescence and (E) phase contrast images of wild type mature primary spermatocytes reveals a prominent
nucleolus and distinct chromosome territories in each nucleus. (F) Hoechst fluorescence and (G) phase contrast imaging of Nxt1 mutant
spermatocytes reveals that the cells arrest with partially condensed chromatin and a prominent nucleolus. (H) Nxt1/+ pupae had everted spiracles,
and distinct head, thorax and abdomen (h, t, a), while Nxt1 mutant pupae (I–K) often had only partially everted spiracles, and the thorax was at the
extreme anterior of the pupal case. Many mutant pupae were also curved (J).
doi:10.1371/journal.pgen.1003526.g001
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of the fold-change in Nxt1 vs. control and aly vs. control revealed

that 424 (87%) of the 485 probes that were highly dependent on

Nxt1 for expression were also highly dependent on aly for expression.

(Figure 6C, D; Figure S2). Of the remaining 61 highly Nxt1-

dependent probes, 34 were 8–16 fold down-regulated in aly, 24 were

2–8 fold down-regulated in aly and only 3 were normal or nearly-

normal (less than 26down) in aly. In contrast, the 1064 highly aly-

dependent probes showed a graded response to loss of Nxt1. 424

(40%) were also highly dependent on Nxt1 (16 fold change), 186

(17.5%) showed a strong requirement for Nxt1 (8–16 fold change),

313 (29.5%) showed a mild-moderate reduction in expression (2–8

fold change) while 141 (13%) were detected at normal, or near-

normal (less than 2 fold change) levels in mutant testes (Figure 6C,

D; Figure S2). We did not see any reduction in the levels of

transcript for any of the known tMAC subunits in Nxt1 testes (Figure

S2). Immunohistochemistry indicated that Aly protein is expressed

and localised to the nucleus as per wild type in Nxt1 testes (data not

shown). The finding that many highly aly-dependent transcripts are

expressed at near-normal levels in Nxt1 testes, coupled with the

observation that no known tMAC components are under-expressed,

indicate that the transcript accumulation defects seen in Nxt1 testes

are very unlikely to be caused indirectly, via reduction in expression

of a tMAC subunit. These data confirm that Nxt1 founds a novel

meiotic arrest class of mutant, and is required for accumulation in

testes of a large set of predominantly testis-specific transcripts that

depend on tMAC for transcription.

The failure to accumulate target mRNAs in Nxt1 testes is
primarily due to reduced transcription

In light of the known role of Nxt1 in RNA nuclear export we

tested whether the gene expression defects in Nxt1 testes are the

consequence of reduced transcription, or whether normal tran-

scription occurs but the transcripts have reduced stability, or both.

We compared the levels of nascent RNA to mRNA in wild type

and mutant cells. If transcripts are produced in the mutant, and

then degraded, the level of nascent RNA would be similar to WT,

while the mRNA level is reduced. If transcription itself is reduced

in the mutant then both RNA species would be lower than in WT.

To distinguish between nascent and mature RNA we generated

cDNA from DNase-treated total spermatocyte RNA using random

primers. We amplified nascent RNA with at least one primer in an

intron; for mRNA we placed one primer in an exon and the other

spanning an exon-exon junction (Figure 7A). All genes selected for

this analysis had a single, small, intron. Control genes, ocn and

CG12699 were selected that showed no defect in expression in Nxt1

according to the microarrays. mRNAs and nascent RNAs of these

control genes were expressed in mutant spermatocytes at levels

similar to WT (Figure 7B). 9 genes (CG4907, CG10478, CG11249,

CG14546, CG16736, CG17380, CG32487, CG33125 and pif2) were

selected as being highly dependent on Nxt1 from the microarrays.

For all these test genes we saw a reduction in the mature transcript

level of 20–40 fold. Analysis of the nascent transcripts revealed a

reduction of about 5 fold (Figure 7B). Thus the failure of Nxt1

mutant testes to accumulate testis-specific transcripts can partially

be explained by reduced transcription of these genes.

tMAC imposes a requirement for Nxt1 on the transcripts
whose expression it promotes

The finding that Nxt1-dependent transcripts all rely on tMAC for

their expression suggests that the transcriptional regulation could be

key to determining whether a specific transcript requires Nxt1 for

accumulation. We tested this using reporter constructs in which a testis-

specific transcriptional control element is used to drive expression of

LacZ (Figure 8A). djl is highly transcribed in primary spermatocytes,

and the transcript remains stable until late elongation, when it is

translated. djl is testis-specifically expressed and depends strongly on the

tMAC component aly, but less strongly on Nxt1, for its expression

(Figure 3, E–E90, Figure 8C). A genomic fragment spanning the region

Figure 2. RNAi of Nxt1 in spermatocytes phenocopies the Nxt1z2-0488 defect. (A) Expression of an Nxt1 RNAi hairpin construct in the male
germline causes a highly penetrant meiotic arrest phenotype. (B) Q-RT-PCR reveals that expression of Nxt1 target genes is reduced in Nxt1 RNAi testes
(dark bars), and that the effect is similar to that seen in Nxt1z2-0488/Nxt1DG05102 mutant testes (light bars).
doi:10.1371/journal.pgen.1003526.g002
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from 2555 to +95 (relative to the transcription start site, TSS) is

sufficient to drive transcription of the reporter in primary spermato-

cytes, and to confer translational repression on the mRNA [32]. This

transcription has already been shown to be reduced in tTAF mutants

[32]. RNA in situ hybridisation (data not shown) and q-RT-PCR

(Figure 8C) revealed, as expected, that this djl+95-LacZ reporter

construct expression is extremely low in a tMAC mutant (comr). We

found a dramatic reduction in reporter expression in Nxt1 mutant

Figure 3. Gene expression defects in Nxt1 mutant testes places Nxt1 in a novel meiotic arrest class. Comparison of gene expression
defects in Nxt1, aly (aly-class mutant) and nht (can-class mutant) by RNA in situ hybridisation. All test genes were expressed in primary spermatocytes
of control testes (A–F), with some transcripts persisting into spermatid elongation stages. No signal was detected in tMAC mutant testes (aly) (A0–F0),
while all were detected at basal level (CG11249 and ran-like) or higher (CycB, CG15177, djl) in nht testes (A90–F90). CycB, CG15177 and CG42355
expression was detected in Nxt1z2-0488/Nxt1DG05102 mutant testes (A90, C90, F90) while CG11249, ran-like and djl, were not detected in Nxt1 testes.
CG3927 expression (control) is restricted to primary spermatocytes, and robust expression was detected in all four genotypes (G–G90). Higher
magnification images of the CG3927 staining (H–H90) show a honey-comb appearance of the signal in all four genotypes, indicating mRNA
accumulation predominantly in the cytoplasm rather than the nucleus (arrows). Scale bars are 50 mm. Bar in G90 applies to A–G90, bar in H90 applies to
H–H90.
doi:10.1371/journal.pgen.1003526.g003

RNA Export and Transcriptional Control

PLOS Genetics | www.plosgenetics.org 5 June 2013 | Volume 9 | Issue 6 | e1003526



primary spermatocytes compared to wild type by q-RT-PCR and

RNA in situ hybridisation (Figure 8B, C). This indicates that the

promoter and/or 59UTR are critical for determining Nxt1 depen-

dence.

To test whether the Nxt1-dependence of a specific transcript

depends on the transcript sequence or on the promoter used to

activate transcription, we drove expression of the djl+95-LacZ

transcript independently of the djl promoter by replacing the djl

promoter with 56UAS and the Hsp70 minimal promoter (up to the

TSS, Figure 8A). q-RT-PCR of spermatocyte samples revealed that

reporter expression in Nxt1 mutant cells (w ; Nxt1z2-0488/Nxt1DG05102 ;

UAS-djl-LacZ/bamGal4VP16) was essentially equal to that in control

cells (w ; Sco/Nxt1DG05102 ; UAS-djl-LacZ/bamGal4VP16) when driven

using bamGal4VP16 (Figure 8C). The transcripts from djl+95-LacZ

and UAS-djl-LacZ have the same sequence; they differ only in the

promoter sequence used to activate their expression. Their

differential requirement for Nxt1 in accumulation of the transcript

therefore reveals that the promoter sequence, rather then the RNA

sequence, imposes Nxt1-dependence on the transcript.

To test whether this finding is a general property of tMAC-

dependent promoters we generated a reporter using the CG42355

promoter and 59 UTR. CG42355 is expressed specifically in testes

in the same pattern as djl. CG42355 expression depends on tMAC

but less strongly on Nxt1 (Figure 3 F–F90, Figure 8C). CG42355

promoter + 59UTR (2177/+136)- LacZ reporter lines recapitu-

lated the native expression of the mRNA in control testes

(Figure 8B), and revealed that CG42355, like djl, is significantly

translationally repressed (Figure S3). Expression of this construct

was barely detected in both comr and Nxt1 mutant spermatocytes

(Figure 8C, Figure 9). We conclude that the tMAC-dependence of

a promoter + 59UTR is sufficient to confer Nxt1-dependence onto

an exogenous transcript. The native CG42355 gene must contain

features that allow the transcript to overcome this requirement for

Nxt1, and be expressed at only 56 reduced levels in Nxt1 mutant

cells.

Translational repression does not confer Nxt1
dependence

tMAC predominantly regulates genes whose transcripts are

normally translationally repressed in the male germline; if Nxt1

is required to recognise and protect translationally repressed

mRNAs then the overlap in target genes would be merely co-

incidental. To test this we used a djl+43-LacZ reporter construct

Figure 4. The dynamic localisation of eGFP-Nxt1. Phase contrast (A, C, E, G, I, K, M, O) and fluorescence images (B, D, F, H, J, L, N, P) of
ectopically expressed eGFP-Nxt1(wild type) or eGFP-Nxt1-D126N (D, P). (A–D) Testes tips oriented with younger cells towards the top. When
expressed in male germline cells the wild type protein (A, B) localised predominantly to the nucleus, and remained stable as spermatocytes matured.
The signal from mutant protein was dramatically weaker, and predominantly cytoplasmic (C, D). In early primary spermatocytes the WT protein
localised to an intra-nuclear dot, adjacent to the nucleolus (F) as well as throughout the nucleoplasm. As spermatocytes matured the protein
relocated to one or more cytoplasmic puncta, frequently found adjacent to the uniformly labelled nucleus (H). Early elongation spermatids showed
cytoplasmic puncta and eGFP-Nxt1 localisation to one face of the nuclear envelope (J). Label persisted until late elongation in spermatid nuclei (L). In
the ovarian follicular epithelium the wild type eGFP-tagged protein was predominantly nuclear (N), while the D126N form of the protein was not
detected (P).
doi:10.1371/journal.pgen.1003526.g004

Figure 5. Modelling the potential effect of D126N. The human
Nxt1 protein structure was used to model the Drosophila Nxt1 protein
folding (WT) using Swisspdb viewer, and the region containing the
mutated residue is shown. The side chain of D126 is indicated with an
arrow. Computed H-bonds are shown in green. Running the model with
the D126N substitution (arrow) revealed disruption of two computed H-
bonds.
doi:10.1371/journal.pgen.1003526.g005
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(Figure 8A), which is transcribed in primary spermatocytes, but

not translationally repressed (Figure S3) [32]. We confirmed by

both RNA in situ hybridisation (data not shown) and q-RT-PCR

(Figure 8C) that transcription of this reporter depends on

tMAC function. Expression of this reporter in Nxt1 mutant

testes was even lower than expression of the djl+95-LacZ

construct, indicating that the promoter and first 43 bp of

59UTR, and not the translational repression sequence of the

mRNA, is responsible for conferring Nxt1 dependence on this

exogenous reporter transcript (Figure 8B, C). This correlates

with the results obtained from the UAS-djl+95-LacZ construct,

in which an mRNA that is translationally repressed accumu-

lates normally in Nxt1 mutant testes (Figure 8B, Figure S3).

Short and intron-less genes are particularly sensitive to
the lack of Nxt1 function

To understand why some tMAC-dependent transcripts require

Nxt1 for their expression, while others show much lower

dependence on Nxt1, we further analysed the microarrays, and

focused on genes 166 or more down-regulated in Nxt1 or aly

Figure 6. Microarray analysis of Nxt1-dependent gene expression in testes. (A) Scatter plot showing normalised expression levels in control
testes vs. Nxt1z2-0488/Nxt1DG05102 mutant testes of all probes on the Affymetrix expression arrays. Red dots correspond to probes for genes with
introns, blue dots are probes for intron-less genes. (B) FlyAtlas expression data for 485 probes that are 166or more down-regulated in Nxt1 testes
compared to control. ‘‘Up’’ indicates probes whose signal is 26or more higher in the specific tissue than whole fly, ‘‘Down’’ indicates 26or more
lower signal in the specific tissue than whole fly. TA ganglion = Thoracioabominal ganglion. (C) Scatter plots showing log2-transformed fold changes
in Nxt1-vs-control and aly-vs.-control pairwise combination. Red indicates intron-containing genes, blue represents intron-less genes. (D) Venn
diagram to show that most highly Nxt1-dependent genes (blue) have testis-specific expression (green), and that most highly Nxt1-dependent genes
are also highly aly-dependent (red), but not vice versa.
doi:10.1371/journal.pgen.1003526.g006
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mutants. Highly aly-dependent transcripts were significantly longer

(mean 1694 bp, SD 1209) than highly Nxt1-dependent transcripts

(mean 1518 bp, SD 1170) (2-tailed Mann-Whitney U test,

p = 0.0024). This difference was even more dramatic when the

length of highly Nxt1-dependent transcripts was compared to those

that depend highly on aly but are not 166or more down-regulated

in Nxt1 (mean 1800 bp, SD 1238) (2-tailed Mann-Whitney U test,

p,0.0001). Thus we conclude that shorter transcripts are more

likely to be dramatically under-expressed in Nxt1 testes than longer

transcripts. However CG42355 encodes a short transcript (,1 kb)

that is only mildly down-regulated in Nxt1 mutant testes, while the

LacZ reporter driven by this promoter is much longer (.3 kb),

and is dramatically under-expressed in the mutant, so other

features of the transcript must also be implicated.

Approximately 22% of all annotated Drosophila genes lack

introns. 1412 genes are expressed specifically in testis (based on

FlyAtlas data) and 521 (37%) of these lack introns, a significantly

higher proportion than expected by chance (Chi-squared,

p,0.0001). Thus, intron-less genes are enriched for testis-specific

expression. Of the 1019 genes that were 166or more reduced in

aly testes, 404 (40%) lack introns, indicating that the presence or

absence of introns does not affect whether a testis-specific

transcript is also highly aly-dependent (Chi-squared, p = 0.18). In

contrast, of the 456 highly Nxt1-dependent genes, 303 (66%) lack

introns, revealing that highly Nxt1-dependent genes are signifi-

cantly more likely to lack introns than randomly selected testis-

specific genes (Chi-squared, p,0.0001). Genes that are highly

dependent on both aly and Nxt1 for their expression are

predominantly intron-less while genes that are highly dependent

on aly, but are only mildly dependent on Nxt1 predominantly have

introns (Figure 6D). Notably, the more introns present in a

strongly tMAC-dependent gene, the higher its expression in an

Nxt1 background (Figure S4). We analysed the 300 most down-

regulated genes in a tMAC mutant, and correlated fold change

compared to control in Nxt1 mutants with intron number (0, 1, 2,

3+). Relative expression of genes lacking introns was significantly

lower than that of genes containing introns (t-test, p = 1.18889E-

32). Relative expression of genes with 1 intron was not significantly

different than that of 2-intron genes (t-test, p = 0.126), however

genes with 1 or 2 introns had significantly lower expression in Nxt1

mutants compared to wild type than genes with 3 or more introns

(t-test, p = 0.00013). This indicates a dose-response relationship

between gene expression in Nxt1 mutant testes and intron number,

where the more introns a tMAC-dependent gene, has the lower its

requirement for Nxt1 for expression.

The presence of introns partially negates the
requirement for Nxt1 in reporter gene expression

The microarray results indicate that having at least one

intron is beneficial for expression of tMAC-dependent genes in

Nxt1 mutants. We used reporter constructs to test how the

presence or absence of introns impacts on reporter gene

expression in Nxt1 testes (Figure 8A). We inserted the djl intron

into the 59UTR of (the previously intron-less) djl 2555/+95

reporter sequence, and found that the reporter was testis-

specifically expressed, and translation was delayed until

spermatid elongation stages, in a pattern indistinguishable

from the original construct. Similarly, insertion of the

Figure 7. Expression of both nascent and mature mRNA of target genes is reduced in Nxt1 mutant spermatocytes. (A) Expression of
nascent (unspliced) RNA was quantified using primer pairs a+c, b+c or b+d, while mRNA levels were determined with primer pairs a+sr or sf+d. (B)
CG12699 and ocn control genes were expressed at broadly similar levels in WT and mutant testes, while expression of both nascent and mature RNA
for the Nxt1-dependent test genes CG4907, CG10478, CG11249, CG14546, CG16736, CG17380, CG32487, CG33125 and pif2 were reduced. For each
gene, the expression levels of nascent transcript (dark gray) and mature transcript (light gray) in Nxt1z2-0488/Nxt1DG05102 are presented as relative levels
to those found in the wild-type (arbitrarily assigned as 1).
doi:10.1371/journal.pgen.1003526.g007
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CG42355 introns into the LacZ coding sequence of the djl

construct resulted in expression mirroring the original reporter

(Figure S3). Equivalent one and two intron CG42355 reporters

were constructed (Figure 8A). We confirmed correct splicing of

these transcripts by RT-PCR (data not shown).

When we tested expression of these intron-containing reporters

in Nxt1 spermatocytes we found that insertion of the introns

partially restored the reporter expression (Figure 8D, Figure 9).

Strikingly, the djl- reporter with two introns was expressed at over

50% of wild type levels. Similarly, introduction of two introns into

Figure 8. Nxt1 is required for full expression of tMAC dependent reporter constructs. (A) Schematic diagram to illustrate reporter
construct design. Promoter regions are narrow coloured boxes, transcribed regions are broad boxes. The djl promoter and UTRs are light green; ORF
grey; intron dark green. CG42355 promoter and UTRs are pale pink; ORF grey; introns dark pink. UAS-djl-LacZ uses 56UAS (red) and hsp70 minimal
promoter to the TSS (orange) as the promoter. All reporter transcripts comprise 59 UTR (from djl or CG42355) fused to Adh 59UTR (cyan) LacZ ORF
(blue) and SV40 39UTR (cyan). (B) RNA in situ hybridisation with a LacZ probe reveals reduced expression of reporter constructs in Nxt1z2-0488/
Nxt1DG05102 mutant testes compared to control. (C) q-RT-PCR to test LacZ reporter expression in mutant spermatocytes compared to controls.
Expression for each transgene was normalised as 1 in the control, and the relative expression in Nxt1z2-0488 homozygotes (blue) and comr (red)
mutants was calculated. (D) q-RT-PCR to test the effect of inclusion of introns on reporter expression in Nxt1z2-0488 homozygote spermatocytes
compared to controls. Expression for each transgene was normalised to 1 in the control samples and relative expression in mutant was calculated.
Introduction of two introns into the reporters increased expression in the mutant testes compared to the no intron version. Two separate reporter
lines for transgenes are shown.
doi:10.1371/journal.pgen.1003526.g008
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the CG42355 reporter elevated expression to 15% of that seen for

the reporter in wild type spermatocytes. This represents a 106
increase in expression in mutants compared to the intron-less

version of the reporter. Insertion of introns did not increase

reporter expression in comr mutant testes (Figure 9). We conclude

that, in spermatocytes, tMAC-dependent promoters confer

dependence on Nxt1 for transcript expression, but that this

dependence can be partially overcome if the transcript has one or

more introns.

Discussion

Identification of Nxt1 as a novel regulator of gene
expression in the male germline

To date 14 meiotic arrest loci have been described (aly, achi-vis,

topi, tomb, comr, wuc, mip40, can, mia, sa, rye, nht, thoc5, Nurf301)

[15,28,33]. Most of these encode subunits of either a testis-specific

TFIID complex or tMAC. The exceptions are mutations resulting

in a C-terminally truncated product from Nurf301 [33], and loss of

thoc5 [28]. In both these cases the effect on gene expression is

apparently much less dramatic than loss of either tTAFs or tMAC.

Here we identify Nxt1 as a novel meiotic arrest locus, and show

that the phenotype does not fit with any previous classification.

Notably, mutation of Nxt1 has much more dramatic effects on

gene expression than thoc5, Nurf301 or tTAFs, although the defect

is not as pronounced as that seen in most tMAC mutants.

Nxt1 protein acts in the same biochemical pathway as the

TREX subunit, Thoc5, suggesting that the entire RNA export

pathway might be critical for testis gene expression. In support of

this, in preliminary experiments we have observed incomplete

meiotic arrest phenotypes in testes with spermatocyte specific

knock down (by RNAi) of either Ref1 or sbr (data not shown). No

defects in gene expression were detected in the thoc5 mutant [28],

but we note that the genes assayed (bol, twe, cycB, dj, fzo, Mst87F) all

contain at least one intron, and, although fzo, bol and dj have

reduced expression in Nxt1 testes, none is on the list of genes 166
or more down regulated in this background. It would be very

interesting to determine whether the intron-less genes most

dependent on Nxt1 for expression are also dependent on thoc5 or

other RNA export factors. Notably, Nxt1 and Thoc5 localise to a

punctate structure adjacent to the nucleolus in early primary

spermatocytes and to a structure adjacent to the nuclear envelope

in late primary spematocytes. This localisation adjacent to the

nuclear envelope is also seen for Nxf1, the binding partner of

Nxt1, encoded in Drosophila by the sbr gene [28,30,34]. Both Nxt1

and Sbr also localise to one face of the nucleus in spermatids. This

co-localisation suggests that the proteins are all working together

in these cells.

A model to explain how tMAC and the RNA export
factors together regulate testis gene expression

The direct link we describe here, between tMAC and RNA

export in regulating testis gene expression, can be explained by

two theoretical mechanisms. (1) tMAC could promote transcrip-

tion of target genes and feed-forward to promote their stability and

RNA export. In the absence of Nxt1 the mRNAs would not be

protected, and instead would be degraded. (2) Initially low tMAC

activity promotes production of low levels of transcript. Binding of

the export factors to these transcripts during processing would

feed-back to increase the activity of tMAC. This would then

increase the transcription of the tMAC-dependent gene. The

ability of introns to rescue expression in the mutant indicates that

the mechanism must be mediated through the RNA transcript,

and presumably depends on the higher affinity of spliced

transcripts for the Nxt1/Nxf1 dimer. If the feed-forward

mechanism predominates, the rate of nascent transcript produc-

tion should be equal to wild type. If feed-back predominates, the

rate of nascent transcript production would be lower than wild

type. We found a reduction in both nascent and mature transcripts

in the mutant, although the reduction in mRNA is greater than the

reduction in nascent RNA. We propose that both feed-forward

and feedback occur, to give an amplification loop. This

amplification would depend on a specific interaction between

the RNA export factors and tMAC.

The RNA nuclear export pathway and tissue specific
transcript accumulation

The RNA nuclear export pathway has been deduced primarily

using experiments in yeast, and in tissue culture cells (reviewed in

[1]). Drosophila culture cells depleted of components of the

pathway, including Nxt1, accumulate poly-adenylated mRNAs

within the nucleus. Most transcripts in the cell are also reduced in

abundance, typically a 1.5–2 fold level change for altered

transcripts [35]. Very few transcripts were reduced more than 5

fold after RNAi treatment, and very few were significantly

increased in abundance. The RNAi treatments used in these

experiments also caused defects in cell proliferation or viability.

The in vivo role of sbr, which encodes the Nxf1 partner of Nxt1, has

been investigated in embryos and larvae, and again defects have

been detected in bulk export of mRNAs from nuclei [36]. In none

of these experiments has a link been detected between the role of

the Nxt1/Nxf1 and transcription.

Factors in the mRNA export pathway, upstream of Nxt1/Nxf1

have been linked to transcription, consistent with the fact that

RNA splicing and processing is co-transcriptional. Specifically the

TREX complex interacts with chromatin and RNA polymerase II,

and is important for facilitating transcription elongation, 39 end

formation, mRNA processing, and transfer to the nuclear pore [4].

Figure 9. Addition of introns partially restores reporter
expression in Nxt1 but not comr. RNA in situ hybridisation reveals
CG42355-LacZ reporter construct expression in control testes, and no
signal in Nxt1Z2-0488/Nxt1DG05102 or comr mutant testes. Addition of one
intron generates detectable, although weak, expression in Nxt1Z2-0488/
Nxt1DG05102 testes, but not in comr mutant testes.
doi:10.1371/journal.pgen.1003526.g009
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While the interaction of TREX with RNA polymerase is well

established, there has been no data to implicate Nxt1/Nxf1 in this

process. TREX promotes association of REF with the transcript,

and this in turn promotes Nxt1/Nxf1 association [37]. Similarly,

the spliceosome can have a stimulatory effect on transcription,

both at the level of initiation and elongation [38]. Our study is the

first, to our knowledge, to implicate these pathways in the

regulation of a programme of gene expression promoted by a

specific transcription factor complex.

Recently two studies have demonstrated that the stability of

specific S. cerevisiae mRNAs can depend on non-transcribed

promoter sequences. RPL30 mRNA was shown to have a short

half-life imposed by the transcriptional activator Rap1 and its

binding site in the UAS, although how this affects the RNA is not

yet determined [39]. The cell cycle regulation of the half-lives of

SWI5 and CLB2 was independent of the transcript sequences, was

coordinated with transcription, and was promoter dependent [40].

Dbf2, a kinase, is recruited by specific promoter sequences and co-

transcriptionally deposited on the SWI5 and CLB2 mRNAs. Dbf2

is a component of the CCR4-NOT cytoplasmic deadenylase

complex, and the activity of this complex could then normally de-

stabilise these transcripts. In both these examples the promoter

acts to confer a short half-life on the transcripts it regulates. We

report a similar phenomenon in an animal system, however the

outcome is increased mRNA expression, with the RNA processing

pathway feeding back to increase transcription.

Why don’t transcripts accumulate in Nxt1 mutant nuclei?
The canonical role for Nxt1 is export of mRNAs from the

nucleus, however, paradoxically, and in contrast to the results

from tissue culture studies [41], we do not detect accumulation of

mRNAs in Nxt1 mutant nuclei. The majority of mRNAs expressed

in the mutant spermatocytes are present at normal levels, and are

detected in the cytoplasm. This mRNA export capability could be

provided by residual Nxt1 function, or by a parallel pathway. We

suggest instead that residual Nxt1 function provided by the

hypomorphic allele is sufficient for mRNA export. This interpre-

tation is supported by the observation that the null allele is

embryonic lethal while the z2-0488 allele is viable, thus sufficient

activity remains in this allele to support normal function of most

cells. The fact that reduction in Nxt1 levels by RNAi in

spermatocytes phenocopies the z2-0488 allele indicates that the

effect is due to reduced activity, rather than an allele-specific effect.

A well characterised alternative mRNA export pathway involves

the Crm1 protein, binding RNA via an unidentified adaptor

protein. Crm1 is implicated in export of a subset of endogenous

RNAs, as well as HIV mRNA in humans [42]. The Drosophila

Crm1 protein is encoded by the gene embargoed. This gene is

expressed at much lower levels in testes than in other adult tissues,

and thus is unlikely to represent the major RNA export pathway in

spermatocytes, given their high level of transcriptional activity.

How does the presence of introns promote transcript
accumulation in Nxt1 mutant spermatocytes

Nxt1/Nxf1 heterodimers are already known to be implicated in

export of some mRNAs with retained introns, and have been

demonstrated to interact with constitutive transport elements

present in some cellular and viral mRNA [43]. Similarly, in

human cells naturally intronless transcripts tested were transported

from the nucleus in a TREX and Nxf1 dependent manner [44]. In

the absence of Nxf1 the transcripts remained nuclear, but

apparently were not destabilised. When nascent transcripts are

being produced they are bound by hnRNPs, and those with

introns are processed by the spliceosome. During this processing

the EJC associates with the transcript. This is then responsible for

recruitment of Ref1, which recruits Nxt1/Nxf1. Transcripts that

lack introns also associate with Ref1 and thus Nxt1/Nxf1, but

without the help of the EJC. Thus the EJC increases the affinity of

Nxt1/Nxf1 to the transcript. For a transcript being synthesised in

an Nxt1-depleted background this could be sufficient to ensure

association of the export factor, and thus to ensure proper

processing and export. We detect a dose response for intron

number, specifically, the more introns a tMAC dependent gene

has the higher its expression in an Nxt1 mutant background. If, as

we propose, there is feedback from the export pathway to increase

tMAC activity, then the presence of the EJC and the increased

affinity for Nxt1/Nxf1 would result in higher transcript levels from

intron-containing genes than intron-less genes in an Nxt1-depleted

background, consistent with our findings.

Introns and evolution of testis-enriched genes
It is well demonstrated that the presence of introns in primary

transcripts correlates with higher gene expression levels [45]; this is

true for almost all Drosophila adult tissues. Indeed, most ectopic

expression systems include at least one intron to facilitate higher

transcription levels, higher transcript stability and higher transla-

tion efficiency. However the testis is unique among Drosophila adult

tissues in that, amongst genes whose expression is detected, the

expression level of intron-containing genes is significantly lower

than that of intron-less genes (Mann-Whitney U test, p,0.001)

(deduced from FlyAtlas data; expression is in arbitrary units).

Specifically, the median expression signal for intron-containing

genes in brain (a typical somatic tissue) is 139, while that for

intron-less genes is 78.1. In contrast, the equivalent figures for

testes are 84 and 168.5. In testis, and in somatic tissues,

approximately 60–65% of all annotated intron-containing protein

coding genes are expressed. In somatic cells only 30–35% of all

annotated intron-less genes are expressed. In contrast, in testes,

63% of all annotated intron-containing genes are expressed

(Figure S5). Thus spermatocytes must have evolved a mechanism

to support high level expression of intron-less genes. Many of the

intron-less genes expressed in testes are retroposed copies of

intron-containing genes. Typically the parent gene will have a

broad or ubiquitous expression pattern while the retroposed gene’s

expression is highly restricted [46]. The new gene is often subject

to rapid evolution under positive selection, and contributes to

sperm-specific cell biology. Most of these retroposed gene copies

are regulated by the tMAC transcriptional regulation complex,

and, like other tMAC-dependent genes, they typically have short

promoters. Surprisingly, the promoter regions, and even tran-

scription start sites, are not highly conserved between species [47],

although the insertions are biased towards genomic regions

already containing testis-specific transcription units [48]. This

could be explained by low-affinity tMAC binding occurring by

virtue of the chromosomal domain, promoting transcription of the

newly inserted sequence, and feedback from RNA export factors

serving to increase tMAC activity, and thus expression of the new

gene.

Nxt1 function is not limited to the male germline
In this study we have demonstrated a link between the core

RNA export pathway and testis-specific transcription. Null alleles

of Nxt1 are recessive lethal, and the hypomorph (homozygous or

hemizygous has low viability. The animals often pupate with a

distinctive elongated curved shape, uneverted spiracles, and then

fail in head eversion, consistent with defects in air bubble

movement. These processes are controlled by transcriptional

responses downstream of ecdysone signalling, and the mutant
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phenotype is highly reminiscent of mutants in Eip74EF, an ets

family transcription factor [49]. Nxt1z2-0488 homozygous or

hemizygous adult females are also sterile. These highly reproduc-

ible defects potentially also arise as a result of defects in gene

expression in the relevant tissues, rather than being caused by a

general defect in export of all mRNAs from the nuclei of somatic

or female germline cells. In testes we have demonstrated that the

effect is via a specific transcription complex, tMAC. The soma and

female germline defects cannot be caused by an interaction

between Nxt1 and tMAC since tMAC expression is restricted to

testes. We postulate that Nxt1 might be important for regulating

the transcriptional response to ecdysone during pupariation, and

expression of specific genes in the female germline. Thus we

suggest that Nxt1 could work with, as yet unidentified, specific

transcription factors to control gene expression in other tissues.

Materials and Methods

Cloning of z2-0488
We mapped the male and female sterility, and semi-lethality, of

z2-0488 using deficiency chromosomes to a region of approxi-

mately 100 kb containing 22 known or predicted genes at the

distal end of chromosome 2R (Figure S1). 9 candidate genes were

sequenced, and a single non-synonymous change was found

(D126N, codon GAT-AAT) in the Nxt1 gene. A P-element

insertion allele of Nxt1, P{wHy}DG05102, failed to complement

the semi-lethality and sterility of the z2-0488 mutation. This P-

element insertion, which is in the first exon, just downstream of the

ATG, and predicted to be a null allele, results in homozygous and

hemizygous lethality. We conclude that z2-0488 is a hypomorphic

allele of Nxt1, and designate the allele Nxt1z2-0488.

Microscopy and in situ hybridisation
Testes were dissected from young adults, prepared for phase

contrast and fluorescence microscopy as in [50] and imaged using

a Hamamatsu Orca-05G camera driven by HCImage software on

an Olympus BX50 microscope. RNA in situ hybridisation using

dig-labelled RNA probes was as in [51]. Primer sequences used to

generate templates are in Text S1. CycB probe was made from a

cDNA clone as in [17]. Templates for CG42355 and djl were

subcloned into pGEM-T-Easy, while other probes were generated

directly from PCR products. Beta-galactosidase activity assays on

whole mount testes were as in [17]. Colour images were taken with

a JVC-F75U camera run by KY-LINK software mounted on the

Olympus BX50 microscope. Image composites were assembled

using Adobe Photoshop.

Plasmid construction
djl-lacZ 2555/+95 and djl-lacZ 2555/+43 [32] were provided

by Renate Renkawitz-Pohl. PCR from genomic DNA yielded a

fragment 59-EcoRI-CG42355-177/+136-BamHI-39 which was

cloned into pCaSpeR4-AUG-betaGAL [52] to yield CG42355-

LacZ 2177/+136. The plasmids djl-lacZ -555/+95 +1 intron, djl-

lacZ 2555/+95 +2 introns, djl-lacZ 2555/+43 +1 intron, djl-lacZ

2555/+43 +2 introns, CG42355-lacZ 2177/+136 +1 intron and

CG42355-lacZ +2 introns were derived from these basic

promoter-reporter constructs by incorporation of a synthetic

DNA fragment containing the intron(s) (see Text S1 for sequences

and construction details). pUAST-eGFP-Nxt1 and pUAST-eGFP-

Nxt1-D126N were generated by PCR and subcloning of the Nxt1

ORF from Nxt1z2-0488/CyO flies [53]. pCaSpeR4-UAS-djl- AUG-

betaGAL was made by cloning a synthetic fragment comprising

56UAS; Hsp70 minimal promoter (up to the TSS); +1–+95 of djl

into the MCS of pCaSpeR4-AUG-betaGAL using EcoRI and

BamH1 (Text S1).

Drosophila methods
Drosophila were maintained on cornmeal, sucrose, yeast, agar

medium, at 25uC (29uC for RNAi crosses). Mutant alleles were

aly5, comrZ1340, nhtZ2-5946, Nxt1DG05102, Nxt1z2-0488. w1118 was used

as a control. For RNAi against Nxt1 we used UAS-hairpin lines

from the Vienna Drosophila Resource Centre [54] driven by bam-

Gal4VP16, with both constructs heterozygous. bam-Gal4VP16

was also used to drive fusion protein constructs in spermatocytes.

tub-Gal4 was from the Bloomington Drosophila stock centre and

was used to drive ubiquitous fusion protein expression. Transgenic

lines were selected after injection of P-element constructs into

w1118 using standard methods. Insertions on the third chromosome

were selected, balanced, and crossed into Nxt1z2-0488, Nxt1DG05102

and comrZ1340 mutant backgrounds.

Purification of RNA from spermatocytes
For q-RT-PCR, total RNA was extracted from purified

spermatocyte samples using the RNAqueous micro kit (Invitro-

gen). Testes were dissected from 1–3 adult males of the

appropriate genotype in TB (183 mM KCl, 47 mM NaCl,

10 mM Tris pH7.4), transferred to a small drop of TB on a

hydrophobic plate, and the testis tip was cut open using a tungsten

needle. Spermatocytes were pushed out of the testis sheath into the

buffer with the needle and the remainder of the testis discarded.

Most of the buffer was removed, leaving approximately 1–2 ml,

and 10 ml lysis solution was added. The lysate was added to 90 ml

lysis solution in a microfuge tube; immediately frozen in liquid

nitrogen, and stored at 280uC. Preparation of each sample took

no more than 10 minutes. RNA was purified according the

manufacturer’s instructions. RNA was eluted from the spin

column with 266.5 ml of elution buffer. The total eluate volume

was approximately 11 ml.

RT-PCR and q-RT-PCR
For conventional q-RT-PCR, cDNA was synthesised using

Superscript III (Invitrogen) and oligo-dT primers. For analysis of

nascent RNA and spliced products the purified RNA was treated

with DNase I, half of the RNA sample was reserved as a control

to assay DNA contamination and the remainder was reverse

transcribed using Superscript III and random hexamer primers.

PCR primers (sequences in Text S1) were used that recognised

exon, intron or exon-exon junction sequences. The cDNA

reaction was diluted to 60 ml with water, and 1 ml of this was

used as a template in PCR reactions, using PowerSybr reagent

(ABI) in a Chromo4 instrument (MJR). For q-RT-PCR of

reporter gene expression and CG42355 and djl levels, the entire

RNA eluate was used for cDNA synthesis with oligo dT primers.

CG3927 was used as a control gene for relative quantitation using

the DDCt method. Expression of the test gene relative to CG3927

gene was normalised to 1 in the control sample. Control testes

had the relevant transgene present in the same copy number as

the test sample, but had normal testis morphology. CG3927

expression is restricted to primary spermatocytes (Figure 3).

CG3927 expression in Nxt1 and comr mutant testes is similar to

wild type, as judged by both RNA in situ hybridisation and

microarray analysis. All reactions were performed in triplicate.

We performed biological replicates for the djl+95 and djl+43

lines, for which only one insertion was available. For other

reporters we used two different third-chromosome insertion lines,

and show both results.
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Microarray and bioinformatics
Testes from Nxt1z2-0488/Nxt1DG05102 transheterozygote males,

raised at 25uC were used for Affymetrix microarray analysis, and

were compared to our existing microarray data sets. Sample

preparation, processing and data analysis were as described in

[16]. The FlyMine interface was used to extract lists of probes

associated with intron-containing and intron-less genes, as well as

to extract data from FlyAtlas on gene expression profiles in adult

and larval tissues. A list of 1412 genes with testis-specific

expression (1523 probes) was created by filtering of FlyAtlas data

[11]. We selected those probes where the present call in testis was

4/4, and sum of present calls in all other adult tissues was ,4.

FlyMine (v27.0, Feb 2011) was used to generate lists of genes

with and without introns. First a list of all annotated Drosophila

melanogaster genes was created. A list of genes with introns were

selected using the ‘‘Gene R Introns’’ template, and selecting the

column ‘‘genes’’ as output. A list of all genes without introns was

generated by subtracting the genes with introns list from the all

genes list. The ‘‘Gene R Affymetrix probe’’ template was used to

generate a list of all probes for intron-less genes. This was then

combined with our Affymetrix data in Microsoft Excel to allow us

to analyse intron-containing and intron-less genes separately. The

number of introns present in each of the 300 genes most down

regulated in tomb was determined by first ranking Affymetrix fold

change data for tomb-vs.-control, then manually checking annota-

tions in FlyBase. Annotated transcripts were cross-referenced with

the RNA-seq data for adult males to ensure accuracy. All genes

with valid male- (probably testis-) expressed spliced transcripts

were scored as having an intron, even if they also encoded

alternative intron-less transcripts.

Supporting Information

Figure S1 Cloning of Z2-0488. The meiotic arrest phenotype of

Z2-0488 was mapped by recombination to a region of chromo-

some 2R. From published data [55] we defined the proximal end

of the Z2-0488 region by the distal breakpoint of Df(2R)bw5,

which uncovers egl, but does not uncover Z2-0488; and by the

proximal breakpoint of Df(2R)or-BR11, which uncovers Z2-0488

but not egl. The distal end of the Z2-0488 region was defined by

the proximal breakpoint of Df(2R)HB132, which uncovers egl and

Z2-0488, but does not uncover gbb. Thus Z2-0488 lies between egl

and gbb. The lethality of P{wHy}Nxt1DG05102 had the same

complementation pattern with respect to deficiencies as Z2-

0488. Candidate genes from the region were sequenced (blue), and

the only mutation detected in Z2-0488 was in Nxt1.

(PDF)

Figure S2 Nxt1-dependent transcripts are also highly aly-

dependent but not vice-versa. Scatter plots of microarray data

comparing gene expression in wild type with Nxt1 mutant (A, C, E)

or with aly mutant (B, D, F). Probes that pass the threshold filters

(166, 86or 46down in mutants vs. wild type) are coloured (A, B).

(C, D) expression plots as in A or B are recoloured according to

how the probes behave in the other mutant genotype. Probes in

purple in panel D (wt vs. aly) are those whose expression is 16 fold

or more reduced in Nxt1 mutants compared to wild type. These all

cluster in the bottom right hand corner of the plot, ie they have

high expression in wild type and low expression in aly. Probes in

red in panel C (wt vs. Nxt1) are those whose expression is 16 fold or

more reduced in aly mutants compared to wild type. These spread

up the right hand side of the plot, ie they have high expression in

wild type, and high, medium or low expression in Nxt1 mutants.

(E, F) The same plots as C and D except that the probes that did

not pass the filters (ie less than 46 change), coloured white, are

plotted on top of the other data rather than behind. Very few

white dots are present in the bottom right corner in panel E while

many white dots are in this region in F. This demonstrates that

virtually all genes that depend on Nxt1 also depend on aly, but that

not all genes that depend on aly also depend on Nxt1. The

expression of known meiotic arrest genes in mutant testes, is shown

by large dots in panels A and B. None of the known meiotic arrest

genes have reduced expression in Nxt1 or aly testes.

(PDF)

Figure S3 Reporter construct LacZ protein expression patterns.

Beta-galactosidase activity staining reveals that translation of both

djl+95-LacZ and 42355-LacZ is delayed until spermatid differen-

tiation, while djl+43-LacZ translation is detected in late primary

spermatocytes. Insertions of introns into the reporters does not

alter the translation timing or protein expression pattern.

Expression of the djl+95-LacZ transcript with the UAS construct

results in earlier expression than of the endogenous transcript.

There is a bi-phasic protein expression profile, with translation in

early primary spermatocytes, repression in later primary sper-

matocytes and early spermatids, and a second wave of translation

in spermatids. When expressed in Nxt1Z2-0488/Nxt1DG05102 testes

the protein is expressed in early primary spermatocytes, and

repressed in the later primary spermatocytes.

(TIFF)

Figure S4 Effect of intron number on TMAC-dependent gene

expression in Nxt1Z2-0488/Nxt1DG05102 testes. The scatter plot

shows the 300 transcripts most down-regulated in tomb mutant

testes. The array data of log2 transformed relative expression of

transcripts in TMAC mutant testes (tomb) compared to wild type is

plotted on the y-axis, while the relative expression in Nxt1Z2-0488/

Nxt1DG05102 testes compared to control is on the x-axis. Transcripts

from genes with no introns are indicated by blue squares, while

those from genes with 1, 2 or 3 or more are indicated with green,

orange and red diamonds respectively. Mean expression fold

changes are show with large dots.

(TIF)

Figure S5 Expression of genes with and without introns in adult

and larval fly tissues. The proportion of all annotated genes with

(blue) or without introns (red) whose expression is detected in a

specific tissue. Only testis expresses a the same proportion of

intron-less genes as intron containing genes. br = brain; hg = hind-

gut; mg = midgut; sg = salivary gland; tt = testis; he = heart;

wf = whole fly; cr = crop; hd = head; tg = thoracio-abdominal

ganglion; ac = adult carcass; ae = eye; af = adult fatbody; ma = -

male accessory gland; st = S2 cells; tu = malpigian tubule;

vs. = virgin female spermatheca; ms = mated female spermatheca;

lh = larval hindgut; lc = larval CNS; lk = larval carcass; lm = larval

midgut; ls = larval salivary gland; lt = larval trachea; lu = larval

malpigian tubule.

(TIF)

Text S1 This file contains details of the cloning of introns into

the reporter constructs, including the sequences used in their

native context and in the reporter construct context. This file also

contains sequences for all the PCR primers used in the

manuscript.

(DOC)

Acknowledgments

We acknowledge the critical input into experimental design from

colleagues in Cardiff University, notably Sonia Lopez de Quinto, Wynand

van der Goes van Naters and Mike Taylor. Dafydd Jones provided protein

modelling expertise. We thank Renate Renkawitz-Pohl and Christina

RNA Export and Transcriptional Control

PLOS Genetics | www.plosgenetics.org 13 June 2013 | Volume 9 | Issue 6 | e1003526



Rathke for fly lines. RNAi lines were obtained from VDRC. Deficiency

stocks, tub-Gal4, and Nxt1DG05102 were obtained from Bloomington

Drosophila Stock Centre.

Author Contributions

Conceived and designed the experiments: SC YY JJ HW-C. Performed the

experiments: SC YY JJ HW-C. Analyzed the data: SC YY JJ HW-C.

Wrote the paper: HW-C.

References

1. Carmody SR, Wente SR (2009) mRNA nuclear export at a glance. J Cell Sci

122: 1933–1937.

2. Erkmann JA, Kutay U (2004) Nuclear export of mRNA: from the site of

transcription to the cytoplasm. Exp Cell Res 296: 12–20.

3. Jimeno W, Rondón A, Luna R, Afuilera A (2002) The yeast THO complex and

mRNA export factors link RNA metabolism with transcription and genome

instability. EMBO J 21: 3526–3535.
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