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Axonal branches of the trigeminal ganglion (TG) display characteristic growth and arborization patterns during development. Subsets of
TG neurons express different receptors for growth factors, but these are unlikely to explain the unique patterns of axonal arborizations.
Intrinsic modulators may restrict or enhance cellular responses to specific ligands and thereby contribute to the development of axon
growth patterns. Protein tyrosine phosphatase receptor type O (PTPRO), which is required for Eph receptor-dependent retinotectal
development in chick and for development of subsets of trunk sensory neurons in mouse, may be such an intrinsic modulator of TG
neuron development. PTPRO is expressed mainly in TrkB-expressing (TrkB�) and Ret � mechanoreceptors within the TG during
embryogenesis. In PTPRO mutant mice, subsets of TG neurons grow longer and more elaborate axonal branches. Cultured PTPRO�/� TG
neurons display enhanced axonal outgrowth and branching in response to BDNF and GDNF compared with control neurons, indicating
that PTPRO negatively controls the activity of BDNF/TrkB and GDNF/Ret signaling. Mouse PTPRO fails to regulate Eph signaling in
retinocollicular development and in hindlimb motor axon guidance, suggesting that chick and mouse PTPRO have different substrate
specificities. PTPRO has evolved to fine tune growth factor signaling in a cell-type-specific manner and to thereby increase the diversity
of signaling output of a limited number of receptor tyrosine kinases to control the branch morphology of developing sensory neurons.
The regulation of Eph receptor-mediated developmental processes by protein tyrosine phosphatases has diverged between chick and
mouse.

Introduction
The trigeminal ganglion (TG) topographically innervates distinct
facial regions through its three main branches (maxillary, man-
dibular, and ophthalmic) and conveys mainly sensations of pain,
touch, and temperature (Erzurumlu et al., 2010). Work over the
past decades has identified periphery-derived signals, such as
members of the nerve growth factor (NGF), glial cell line-derived
neurotrophic factor (GDNF), semaphorin, and slit families, all
having some degree of growth-promoting and branching activi-
ties or guidance function (Davies, 1997; Rochlin et al., 2000;

Airaksinen and Saarma, 2002; Ma and Tessier-Lavigne, 2007).
However, our understanding of the development of branched
neuronal morphologies is still poor. Subsets of TG neurons ex-
press different receptors for neurotrophic factors, but these fac-
tors alone cannot explain the many unique axonal arborization
patterns. Receptor-associated proteins, such as members of
leucine-rich repeat (LRR) and Ig superfamilies, enhance or sup-
press receptor activities to control sensory axon growth, guid-
ance, or branching (Ledda et al., 2008; Mandai et al., 2009). It is
possible that other intrinsic modulators of neurotrophic factor
receptors contribute to the development of stereotyped axon
growth patterns.

The receptor-type protein tyrosine phosphatase (RPTP)
PTPRO (protein tyrosine phosphatase receptor type O), a mem-
ber of the R3 subfamily (Matozaki et al., 2010), has been impli-
cated previously in motor and retinal ganglion cell (RGC) axon
guidance in the chick (Stepanek et al., 2001, 2005; Shintani et al.,
2006). In mouse, PTPRO was shown to be required for survival
and correct axonal projection of trunk sensory neurons
(Gonzalez-Brito and Bixby, 2009). PTPRO has not been impli-
cated previously in trigeminal sensory neuron development, and
the tyrosine-phosphorylated substrates of PTPRO in the mouse
remained uncharacterized.
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PTPRO can dephosphorylate TrkC, the receptor for
neurotrophin-3 (NT-3) (Hower et al., 2009), and all members
of the neurotrophin family—NGF, brain-derived neurotrophic
factor (BDNF), NT-3, and NT-4 —regulate various aspects of
trigeminal neuron development, including cell survival, axon
growth, branching, and guidance (Reichardt, 2006). Hence, Trk
receptors were prime substrate candidates of PTPRO. PTPRO
may also regulate Ret receptor signaling by GDNF family ligands,
which are required for development of subsets of dorsal root
ganglia (DRG) (Luo et al., 2007, 2009,) and trigeminal neurons
(Airaksinen and Saarma, 2002). Finally, Eph receptor tyrosine
kinases (RTKs) have been identified previously as PTPRO sub-
strates in the chick retinotectal system (Shintani et al., 2006). One
member of this large receptor family, EphA4, is required for sen-
sory innervation of vibrissae in mice (North et al., 2010), suggest-
ing that mouse PTPRO (mPTPRO) may modulate Eph signaling
in TG neurons.

Here, we describe novel functions for PTPRO as a regulator of
neurotrophin receptor signaling in trigeminal axon arborization
and growth during mouse embryogenesis. Genetic ablation of
PTPRO expression in mice enhanced the outgrowth of trigeminal
neurons, resulting in an increased arbor size and complexity of
the ophthalmic nerve in vivo and in an enhanced response to
BDNF and GDNF ex vivo. Moreover, ablation of PTPRO did not
change the sensitivity of trigeminal, RGC, or motor axons to
ephrins, suggesting that the regulation of Eph receptors during
development by RPTPs has diverged between chick and mouse.

Materials and Methods
Mice. PTPRO�/� and Hb9 –GFP transgenic mice have been described
previously (Wharram et al., 2000; Wichterle et al., 2002). All the mutants
were maintained in a comparable mixed 129/P3J � C57BL/6 back-
ground. Embryos used were of either sex.

Immunostaining. Embryonic day 10.5 (E10.5), E11.5, E12.5, and E15.5
embryos and newborn pups were fixed in 4% paraformaldehyde (PFA)
for 2 h or overnight and then incubated overnight in 30% sucrose. Cry-
ostat sections of 30 �m were blocked in 4% goat serum, 4% donkey
serum, 2% bovine serum albumin (BSA), and 0.3% Triton X-100 in PBS.
Primary antibodies were applied overnight in 4% goat serum, 4% donkey
serum, 2% BSA, and 0.1% Triton X-100 at 4°C. After 45 min washes in
PBS, sections were incubated with secondary antibodies (1:200) at room
temperature for 1 h. After 45 min in PBS, cryosections were mounted
using Dako fluorescent medium. The following primary antibodies were
used: rat anti-PTPRO (1:200; kindly provided by Prof. Takashi Matozaki,
Gunma University, Maebashi, Gunma, Japan), rabbit anti-Lim1 (1:1000;
kindly provided by Dr. Andrea Huber, German Research Center for
Environmental Health, Neuherberg, Germany), mouse anti-Islet1 (1:50;
Developmental Studies Hybridoma Bank), rabbit anti-TrkA (1:500; Mil-
lipore), goat anti-TrkB (1:500; R&D Systems), goat anti-TrkC (1:500;
R&D Systems), goat anti-Ret (1:100; R&D Systems), mouse anti-NeuN
(1:500; Millipore), and mouse anti-Tuj1 (1:100; Covance). Images were
acquired at the Axioplan epifluorescent microscope (Carl Zeiss). For
analysis of colocalization and to count neurons, images were acquired
using the confocal microscope (Spinning Carl Zeiss Axio Observer Z1
with a Yokagawa Spinning Disk Confocal Unit and a Cool SNAP HQ 2

CCD Camera).
Neurofilament staining on the whole embryo. E11.5 and E12.5 embryos

were fixed overnight in Dent’s solution (1 part DMSO, 4 parts metha-
nol). Then, they were bleached in one part 30% H2O2 and two parts
Dent’s solution for several hours at room temperature. Three washing
steps (1 h each at room temperature) in PBS containing 0.2% gelatin and
1% Triton X-100 (Sigma) were followed by incubation with the anti-
neurofilament antibody (1:300 in 4 parts newborn calf serum, 1 part
DMSO; NF-160; Sigma) overnight at room temperature. Five washing
steps in TBS containing 1% Triton X-100 and 0.2% gelatin for 1 h each
were followed by incubation with anti-mouse horseradish peroxidase

(HRP)-conjugated antibody (1:300 in 4 parts newborn calf serum, 1 part
DMSO) overnight at room temperature. Finally, embryos were washed
and developed in diaminobenzidine working solution followed by dehy-
dration in methanol and clearing in BABB (1 part benzyl alcohol, 2 parts
benzyl benzoate). Images were acquired using the DC150 camera from
Leica and analyzed using NIH ImageJ or NeuronJ. The ophthalmic nerve
phenotype at E11.5 was quantified as the ratio between the area of the
ophthalmic nerve arbor and the area of the maxillary nerve arbor. The
ophthalmic nerve arbor complexity at E12.5 was analyzed using the Sholl
analysis plug-in of NeuronJ. The hindlimb phenotype at E12.5 was quan-
tified as the ratio between the diameter of the tibial nerve and the diam-
eter of the peroneal nerve.

Trigeminal neuron cultures. Dissociated cultures of trigeminal neurons
from E12.5 embryos were grown onto polyornithine/laminin-coated
four-well plates. Neurons were grown for 18 h in F-12 medium supple-
mented with 10 ng/ml NGF (R&D Systems), and when indicated, 5 ng/ml
BDNF (R&D Systems) or 5 ng/ml GDNF (R&D Systems) were added
to the culture medium. Neurons were fluorescently labeled with
calcein-AM (Invitrogen) and imaged with an Axiovert 200M microscope
(Carl Zeiss) using a 10� objective. Neurite length and number of
branches were estimated as described previously (Gutierrez and Davies,
2007). For the culture in the presence of caspase inhibitors, neurons were
grown onto polyornithine/laminin-coated coverslips for 18 h in F-12
medium supplemented with 10 �M Q-VD-Oph (Calbiochem) and NGF,
BDNF, or GDNF as indicated. Neurons were stained with cell tracker
green (Invitrogen) and fixed 5 min with 4% PFA, and coverslips were
mounted using Dako fluorescent medium. Images were acquired with
Carl Zeiss epifluorescent microscope. Explant cultures of trigeminal neu-
rons from E12.5 embryos were grown on poly-D-lysine/laminin-coated
coverslips for 15 h in F-12 medium supplemented with 10 ng/ml NGF.

Motor neuron cultures. Explant cultures of motor neurons from the
lower half of E12.5 lumbar lateral motor column (LMC) were grown on
poly-D-lysine/laminin-coated coverslip. Neurons were grown for 15 h in
Neurobasal medium supplemented with B27, glutamine, glutamate,
penicillin/streptomycin, 1 ng/ml BDNF, 1 ng/ml GDNF, and 10 ng/ml
ciliary neurotrophic factor.

Growth cone collapse assay. Trigeminal explants were stimulated for 30
min with 0.5 �g/ml preclustered ephrinA5 or with 0.5 �g/ml preclus-
tered human IgG Fc fragments as a control. Motor neuron explants were
stimulated for 30 min with 0.1 and 0.5 �g/ml preclustered ephrinA2/A5
(mixed 1:1) or with 0.1 and 0.5 �g/ml preclustered human IgG Fc frag-
ments as a control. Explants were fixed twice for 30 min in 2% PFA–15%
sucrose, blocked in 0.5% Triton X-100, 1% BSA in PBS, and then stained
using Phalloidin-568 (1:100; Invitrogen). Coverslips were mounted us-
ing Dako fluorescent medium, and images were acquired with an Ax-
ioplan epifluorescence microscope (Carl Zeiss).

Cell culture and Western blot. HEK293 and HeLa cells were cultured in
DMEM supplemented with 10% fetal bovine serum and 1% penicillin/
streptomycin. Cells were transfected using Lipofectamine2000 (Invitro-
gen), according to the instructions of the manufacturer, kept at 37°C for
24 h, then stimulated with 50 ng/ml BDNF or 50 ng/ml GDNF and
soluble GFR�1 (R&D Systems), and harvested. Plasmids for mammalian
expression used were mPTPRO in pFlag–CMV-5 (kindly provided by
Dr. Eek-hoon Jho, The University of Seoul, Seoul, Republic of Korea),
cPTPRO–Flag in pcDNA3, TrkB in pMEX–neo, EphA4 in pFlag–
CMV-3, and Ret51 in pcDNA3. Lysis buffer (50 mM Tris-HCl, pH 7.5,
150 mM NaCl, and 1% Triton X-100) was supplemented with protease
inhibitor cocktail and phosphatase inhibitor cocktail tablets (Roche).
Proteins were separated by 7.5% SDS-PAGE, transferred onto nitrocel-
lulose membranes and blotted with the following primary antibodies:
rabbit anti-Flag (1:1000; Sigma), goat anti-TrkB (1:1000; R&D Systems),
mouse anti-phosphotyrosine (1:1000; hybridoma clone 4G10), mouse
anti-phospho-p44/42 MAPK (1:2000; Cell Signaling Technology), rabbit
anti-p44/42 MAPK (1:1000; Cell Signaling Technology), mouse anti-
phospho-Ret pY1062 (1:1000; R&D Systems), goat anti-Ret (1:1000;
Fitzgerald), rabbit anti-phospho-Eph (1:1000; Abcam), and mouse anti-
EphA4 (1:5000; Zymed). The blots were then incubated with HRP-
conjugated secondary antibodies (1:5000; GE Healthcare). Luminol (GE
Healthcare) was used for chemiluminescence detection. For immuno-
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precipitations, lysates were incubated overnight at 4°C with TrkB anti-
body (R&D Systems). The protein A-Sepharose beads (GE Healthcare)
were then added to the mixture and incubated at 4°C for 2 h.

Cell culture immunostaining. Transfected HeLa cells were stimulated with
50 ng/ml BDNF or GDNF/GFR�1 and fixed in 4% PFA for 20 min on ice.
Then they were permeabilized in 0.1% Triton X-100 in PBS, blocked in 3%
BSA in PBS, and stained with rabbit anti-Flag (1:1000; Sigma) to detect
PTPRO expression, rat anti-PTPRO (1:200) to detect PTPRO surface ex-
pression, goat anti-TrkB (1:500; R&D Systems), goat anti-Ret (1:200; R&D
Systems), and mouse anti-phosphotyrosine (1:500; 4G10; Millipore), and
with Cell Mask Blue (1:1000; Invitrogen) to detect the cell outline. To deter-
mine the surface expression of TrkB, Ret and PTPRO cells were not perme-
abilized. A single plane of a confocal stack was analyzed using NIH ImageJ
plugin to determine the colocalization of TrkB and Ret with PTPRO before
and after stimulation. Using MetaMorph, the outline of the cells was drawn
based on the Cell Mask Blue staining, and the intensity was determined for
TrkB, Ret, and the phosphotyrosine stainings.

Retrograde tracings. E12.5 embryos were eviscerated and kept in
DMEM/F-12 medium (Invitrogen) aerated with 5% CO2/95% O2. A 6%
lysine-fixable tetramethylrhodamine– dextran (molecular weight of
3000; Invitrogen) solution in PBS with 0.4% Triton X-100 was injected
into the ventral hindlimb and allowed to diffuse for 5– 6 h at room
temperature.

Anterograde tracings. Anterograde tracing experiments were essen-
tially performed as described by Rashid et al. (2005). In brief, the off-
spring from crosses of PTPRO�/� mice was analyzed at postnatal day 8
(P8), a time at which the retino-collicular projection is considered ma-
ture. Anterograde tracing of RGC axons was performed by focal injection
of DiI (Invitrogen) as a 10% solution in dimethylformamide into the
peripheral region of the nasal retina. Approximately 24 h later, mice were
deeply anesthetized and perfused transcardially with PBS. The superior
colliculus and inferior colliculus as well as the injected retinae were whole
mounted onto glass slides and examined under UV light. The injection
sites of all retinae were verified by fluorescence imaging of flat mounts.

Results
PTPRO is expressed in developing TrkB-expressing and
Ret-expressing trigeminal neurons
To understand the role of PTPRO in developing TG neurons, we
examined its temporal expression pattern by immunostaining
between E10.5 and P0. The specificity of the PTPRO antibody
was tested on different tissues from PTPRO wild-type and
PTPRO�/� embryos (data not shown; see also Kotani et al.,
2010). At E10.5, PTPRO is barely detectable in trigeminal neu-
rons, but by E11.5, PTPRO expression is seen on trigeminal cell
bodies and axons. PTPRO expression is maintained through all
later stages of embryonic development and in newborns (Fig.
1A–F ). TG neurons are subdivided into several subpopula-
tions, including TrkA-expressing (TrkA�) nociceptive, TrkB�

or Ret� mechanoceptive, and TrkC� neurons. Later in develop-
ment, TrkA� neurons further differentiate into peptidergic and
non-peptidergic neurons and start expressing Ret (Marmigère
and Ernfors, 2007). To investigate which subpopulations ex-
pressed PTPRO, we performed coimmunostainings with TrkA,
TrkB, TrkC, and Ret antibodies at three different developmental
stages: E12.5 (axon elongation and branching), E15.5 (axon ar-
borization), and P0 (Erzurumlu et al., 2006). At E12.5, PTPRO
was expressed in approximately half of TrkB� and Ret�, in a
small population of TrkC�, but rarely in TrkA� neurons (Fig.
1C–F). At E15.5, and similarly at P0, PTPRO expression strongly
decreased in TrkB� but remained high in Ret� neurons, and did
not increase in the other two populations (Fig. 1B–F and data not
shown). The expression pattern suggested that PTPRO was local-
ized in mechanoceptive trigeminal neurons in the early phases of
development. Because PTPRO is reportedly expressed in E16.5
DRGs (Beltran et al., 2003), we also performed immunostainings

in developing lumbar DRGs. At E12.5 and E15.5, PTPRO was
expressed primarily in TrkB� and Ret� neurons, as observed for
the TG. By birth, expression decreased in TrkB� and Ret� and
increased in TrkC� neurons. PTPRO expression in TrkA� neu-
rons was low across stages (data not shown).

PTPRO�/� embryos show increased complexity of the
ophthalmic branch and defasciculation of the maxillary
branch
To test whether PTPRO modulates the outgrowth and arboriza-
tion of trigeminal axons in vivo, we followed the development of
the three major trigeminal axon branches using whole-mount
neurofilament immunostaining in PTPRO�/� embryos. No ma-
jor changes were observed in the mandibular branch of E11.5 and
E12.5 whole-mount stained embryos (data not shown), but we
found a marked defect in one of the arbors of the ophthalmic
branch. This projection normally starts to grow at E10.5, forms a
highly branched arbor above the eye at E12.5 (Fig. 2A,D), and
becomes fully developed, covering the entire upper half of the
face by E13.5 (data not shown). In E11.5 wild-type embryos, the
arbor had formed two main branches, whereas in stage-matched
PTPRO�/� embryos, there were secondary branches growing out
of the main branches and the area covered by the arbor was bigger
(Fig. 2A,B). Similarly, the maxillary arbor covered a bigger area
in PTPRO�/� embryos (Fig. 2B). However, the difference in the
ophthalmic branch was greater than in the maxillary branch.
Hence, the ratio measurement (ophthalmic/maxillary branch),
designed to normalize for small developmental differences, also
showed a significant increase (Fig. 2C). No significant differences
were observed between wild-type and heterozygous PTPRO�/�

embryos (Fig. 2B,C). At E12.5, we analyzed the ophthalmic pro-
jections by Sholl analysis (Gutierrez and Davies, 2007) and found
an increased complexity in PTPRO�/� embryos compared with
wild-type controls, indicating a role for PTPRO as outgrowth
and/or branching inhibitor (Fig. 2D,E).

Next we prepared cryosections of E12.5 embryonic heads and
further analyzed the complexity of the maxillary branch to com-
plement the quantification in the whole-mount configuration.
Immunostainings for the axon marker Tuj1 revealed more nu-
merous areas of defasciculation of the maxillary axon bundle in
PTPRO�/� embryos than in wild-type littermates (Fig. 2F,G),
possibly caused by enhanced branching or defasciculation of
these neurons. The areas of defasciculation were seen mainly in
the proximal region of the nerve; more distal terminal arboriza-
tions were not affected (data not shown).

Cultured PTPRO�/� neurons have longer axons and are more
responsive to neurotrophic factors
To examine whether the exuberant complexity of trigeminal
arbors in PTPRO�/� embryos is the result of enhanced respon-
siveness to growth-promoting signals, we prepared primary
trigeminal neuron cultures and stimulated them with different
neurotrophic factors. E12.5 neurons were maintained for 18 h in
the presence of 10 ng/ml NGF to promote their survival, alone or
in combination with 5 ng/ml BDNF or 5 ng/ml GDNF (Fig. 3A).
Because PTPRO is mainly expressed in TrkB� and Ret� neurons,
we expected an effect on growth and branching only in the pres-
ence of BDNF and GDNF. Indeed, stimulation with NGF alone
did not show differences in outgrowth or branching between
wild-type and PTPRO�/� neurons (Fig. 3B,C). In contrast, in the
presence of BDNF and GDNF, PTPRO�/� neurons had longer
axons than their respective controls (Fig. 3B). Although E12.5
neurons were mainly bipolar, BDNF stimulation triggered a sig-
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nificant increase in the mean number of primary branch points
(Fig. 3C). BDNF stimulation increased the number of branch
points to the same extent in wild-type and PTPRO�/� neurons,
whereas GDNF stimulation enhanced branching only in
PTPRO�/� neurons (Fig. 3C).

To better uncouple effects on axon growth from those on cell
survival, we next cultured TG neurons in the presence of caspase
inhibitors instead of NGF to promote their survival and scored
responses to neurotrophins and GDNF at different doses. Inter-
estingly, even in the absence of extrinsic factors, PTPRO�/� ax-
ons were longer than wild-type axons (Fig. 3D). As before,
whereas treatment with NGF promoted similar outgrowth in
wild-type and PTPRO�/� axons, BDNF and GDNF induced
greater axon growth in PTPRO�/� neurons than in controls (Fig.
3D). For all groups, growth was stimulated most at physiological

levels of neurotrophic factor (1 ng/ml). Axon branching in re-
sponse to BDNF and GDNF was also enhanced in PTPRO�/�

neurons. Strongest differences were seen at intermediate concen-
trations of neurotrophic factors (10 ng/ml), and the responses
generally plateaued by 100 ng/ml (Fig. 3E). Stimulation with
NGF at physiological concentrations produced similar axon
branching responses in wild-type and PTPRO�/� neurons (data
not shown). These results indicate that embryonic PTPRO�/�

neurons are more responsive to BDNF and GDNF, consistent
with the expression of PTPRO in TrkB� and Ret� neurons.

Loss of TrkA � and TrkC � neurons in PTPRO�/� newborn
mice
Because cranial sensory neurons display intrinsic differences in
growth rates (Davies, 1989), the enhanced growth and arboriza-

Figure 1. PTPRO expression pattern in the developing TG. A, Representative images of PTPRO and Tuj1 immunostainings of sagittal sections of E10.5, E11.5, and E12.5 TG. Arrows point to cell
bodies and arrowheads to axons. Scale bar, 200 �m (E10.5 and E11.5) and 400 �m (E12.5). B, Graph shows mean � SEM of the percentage of TrkA �, TrkB �, TrkC �, and Ret � neurons expressing
PTPRO at E12.5, E15.5, and P0. For each data point, n � 3 embryos (9 images/embryo). For each group (TrkA, TrkB, TrkC, and Ret), the percentages of neurons expressing PTPRO at different
developmental stages were compared using one-way ANOVA, followed by Bonferroni’s post hoc comparison test (*p � 0.05, **p � 0.01). C–F, Confocal images showing colocalization in E12.5 and
P0 TG of PTPRO with TrkA (C), TrkB (D), TrkC (E), and Ret (F ). Scale bar, 100 �m. Arrowheads point to neurons coexpressing PTPRO and either Trks or Ret.

5402 • J. Neurosci., March 20, 2013 • 33(12):5399 –5410 Gatto et al. • PTPRO Regulates TrkB and Ret in Sensory Neurons



tion of a sensory nerve branch may also result from a relative
increase in the numbers of fast versus slow growing neurons.
Such alterations may arise from changes in cell fate or cell loss of
a selective subpopulation. To test this hypothesis, we counted the
numbers of TrkA�, TrkB�, TrkC�, and Ret� neurons at E12.5
and P0. At E12.5, the predominant subpopulation of trigeminal
neurons was NGF dependent and expressed TrkA, whereas the
other three subpopulations together accounted for less than half
(Huang et al., 1999b) of the overall contingent (Fig. 4A,B). At P0,
TrkA� neurons were still the largest subpopulation, although

reduced in number compared with E12.5. TrkB� neurons were
unchanged in numbers compared with E12.5. TrkC� neurons
were slightly reduced, and the Ret� population had increased
(Huang et al., 1999a) (Fig. 4C,D). In PTPRO�/� embryos, the
distribution of neuronal subpopulations was not significantly
different from controls (Fig. 4B), suggesting that the absence of
PTPRO did not affect the cell fate of these neurons. At P0, there
was a small but significant reduction in the numbers of TrkA�

and TrkC� neurons and no significant change in TrkB� and
Ret� neurons (Fig. 4D). Staining for the general neuronal marker

Figure 2. PTPRO�/� embryos show exuberant arborization of the ophthalmic branch of the trigeminal nerve and defasciculation of the maxillary branch. A, D, Representative pictures of
trigeminal nerve branches from whole-mount neurofilament stained E11.5 and E12.5 embryos. Red and blue dashed lines encircle the area of ophthalmic and maxillary arbors, respectively. The inset
shows a higher magnification of the arbor of the ophthalmic branch that was analyzed (A). Bottom panels in D show tracings of the ophthalmic arbors. B, Graph represents the mean � SEM area
of 18 wild-type, 21 PTPRO�/�, and 15 PTPRO�/� ophthalmic and maxillary arbors. C, Graph represents the mean�SEM ratio of the areas covered by the ophthalmic and maxillary arbors. Numbers
of embryos analyzed were the same as in B. E, Sholl analysis of the ophthalmic arbor at E12.5 was done on 32 wild-type and PTPRO�/� and 24 PTPRO�/� TG. F, Tuj1 immunostaining on sagittal
sections of E12.5 wild-type and PTPRO�/� TG. The inset displays a higher magnification of the maxillary nerve. Red arrowheads point to defasciculated axons. G, Graph represents the percentage
of sections with defasciculated axons (mean � SEM, n � 16 embryos per genotype). Statistical analysis was done using two-tailed Student’s t test (*p � 0.05, **p � 0.01, ***p � 0.001). Scale
bar, 500 �m.
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NeuN at E12.5 and P0 did not reveal changes in the total numbers
of neurons (Fig. 4A–D). Together, these results suggest that
changes in cell fate and survival do not contribute significantly to
the exuberant growth of E12.5 embryonic trigeminal axons.

PTPRO regulates TrkB and Ret signaling
Next we asked whether PTPRO interacts directly with TrkB and
Ret and exerts its growth-suppressive function by suppressing
TrkB and Ret kinase signaling. We tried to examine colocaliza-
tion of PTPRO with RTKs in cultured neurons but were unable to
detect PTPRO with sufficient subcellular resolution with the
available antibodies. As an alternative, we investigated colocaliza-
tion and activation of these proteins in cell culture, overexpress-

ing mPTPRO. When TrkB and mPTPRO were coexpressed, the
two receptors strongly colocalized on the cell surface but much less
so in the cell interior (Fig. 5A and data not shown). Overexpression
of TrkB in HeLa cells led to ligand-independent activation (Shintani
and Noda, 2008), as shown by anti-phosphotyrosine immunostain-
ing (Fig. 5B). In the presence of PTPRO, the intensity of phospho-
tyrosine immunostaining was markedly reduced (Fig. 5C,D).
Moreover, BDNF-induced autophosphorylation of TrkB and
ERK1/2 phosphorylation were strongly suppressed by coex-
pressed mPTPRO (Fig. 5E–G).

Ret has two main isoforms: Ret9 and Ret51. Because they elicit
similar responses to GDNF stimulation in sympathetic neurons
(Encinas et al., 2008), we used only Ret51 for the following in vitro
experiments. In the case of Ret, colocalization with mPTPRO was
as strong as for TrkB, and the degree of colocalization in trans-
fected HeLa cells was enhanced by stimulation with GDNF and
soluble GFR�1 (Fig. 6A,D,E). However, the increase in colocal-
ization was detectable only when cells were permeabilized, sug-
gesting that mPTPRO and Ret may colocalize in intracellular
compartments, for example, endosomes, during stimulation.
Stimulation with GDNF and soluble GFR�1 also increased the
intensity of phosphotyrosine staining, and this increase was sup-
pressed by the presence of mPTPRO (Fig. 6B–D,F). In trans-
fected HEK293 cells, basal Ret autophosphorylation, which was
visualized by immunoblotting with anti-phosphotyrosine anti-
bodies, was high and was not increased by GDNF stimulation but
was strongly suppressed by coexpression of mPTPRO (Fig. 6G–
I). mPTPRO effects on overall Ret tyrosine phosphorylation were
significant but stronger on Ret phosphotyrosine 1062, suggesting
that PTPRO may dephosphorylate only a subset of tyrosine resi-
dues present on the receptor (Fig. 6G,I). This strong inhibition of
Ret kinase activity correlated well with a pronounced inhibition
of GDNF-induced ERK phosphorylation (Fig. 6G,J).

Finally, we checked whether PTPRO coexpression influenced
surface levels of Ret and TrkB in the presence and absence of their
ligands. During stimulation with BDNF for 5 min, TrkB expres-
sion on the surface slightly increased, and no differences were
observed if PTPRO was coexpressed. During stimulation with
GDNF, Ret was internalized. Also in this case, we did not observe
significant differences in Ret distribution when PTPRO was co-
expressed (data not shown).

Together, these results suggest that PTPRO regulates TrkB
and Ret kinase activity and signaling, supporting the role of PT-
PRO as a negative regulator of BDNF- and GDNF-induced axon
growth and branching.

PTPRO does not regulate Eph kinase activity and signaling
To examine whether the exuberant complexity of axonal arbors
in PTPRO�/� embryos might also result from altered responsive-
ness to specific repellent signals, we investigated whether Eph
tyrosine kinase signaling was affected. cPTPRO is a known regu-
lator of Eph signaling in the retinotectal system (Shintani et al.,
2006), and several Eph family members are expressed in the TG
(Luukko et al., 2005). TG explant cultures from E12.5 mouse
embryos were stimulated with soluble ephrinA5 fused to the Fc
portion of human IgG (ephrinA5-Fc) or with control Fc and
stained with phalloidin to visualize the growth cones (Fig. 7A).
Stimulation with ephrinA5-Fc led to a marked increase in the
numbers of collapsed growth cones of TG neurons, but there was
no difference in the rate of collapse between wild-type and
PTPRO�/� explants (Fig. 7B), arguing against an impairment of
Eph signaling as the cause of the increased complexity of TG
axonal arbors. To explore in vivo whether Eph signaling is regu-

Figure 3. Cultured PTPRO�/� trigeminal neurons are more sensitive to BDNF and GDNF but
not NGF stimulation. A, Representative pictures of E12.5 trigeminal neurons, stimulated with
growth factors as indicated. Scale bar, 100 �m. Quantification of the length of the axons (B) or
the number of branching points (C) of neurons stimulated as indicated on the x-axis. Graphs
represent mean � SEM. Numbers of trigeminal neurons analyzed from at least three indepen-
dent cultures: for NGF stimulation, 200 neurons (wild type) and 195 neurons (PTPRO�/�); for
BDNF and GDNF stimulation, 150 neurons per genotype. D, E, The length of axons and the
number of branching points in response to increasing amounts of NGF, BDNF, and GDNF in the
presence of caspase inhibitors (10 �M Q-Oph-VD) were measured in dissociated trigeminal
cultures. Numbers of trigeminal neurons analyzed: no stimulation, 550 neurons; NGF stimula-
tion, 150 neurons; BDNF and GDNF stimulation, 200 neurons per genotype. Statistical analysis
was done as for Figure 2.
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lated by PTPRO (Shintani et al., 2006), we analyzed the retino-
collicular projection in PTPRO�/� mice at P8. Although PTPRO
is expressed in the retina at P0 (data not shown), there were no
obvious topographic targeting defects or ectopic branching of
RGC axons in PTPRO�/� mice compared with littermate con-
trols (Fig. 7C).

These results suggested that mPTPRO and chick PTPRO
(cPTPRO) may have different substrate specificities. To test this
hypothesis further, we examined the responsiveness to ephrins in
another mouse neuronal population, namely limb innervating
(LMC) motor neurons, and the rate of EphA4 dephosphorylation
by either mPTPRO or cPTPRO. We stimulated explants of lum-
bar motor neurons from Hb9 –GFP� transgenic embryos
(Wichterle et al., 2002) with different doses of either control Fc or
a 1:1 mix of ephrinA2 and ephrinA5-Fc, and ephrinB2-Fc. Both
subtypes of ephrins markedly increased the fraction of collapsed
growth cones in the explant, regardless of the presence or absence
of PTPRO (Fig. 7D,E and data not shown). These results dem-
onstrate that PTPRO�/� LMC motor neurons are not more sen-
sitive to ephrin stimulation, despite the fact that PTPRO is

prominently expressed in both subpopu-
lations of LMC neurons (data not shown).
Also, in vivo, guidance of the lateral cohort
of LMC motor axons to the dorsal limb,
though critically dependent on ephrinA/
EphA4 signaling (Helmbacher et al., 2000;
Eberhart et al., 2002; Kramer et al., 2006)
is unaffected in PTPRO�/� embryos. The
evidence includes quantification of axon
bundle diameters in neurofilament whole-
mount stained embryos and axon tracings
with rhodamine–dextran (RD) injected
into the ventral or dorsal hindlimb as de-
scribed previously (Kramer et al., 2006;
Dudanova et al., 2012) (Fig. 7F–I and data
not shown). To examine the substrate spec-
ificity of PTPRO, HEK293 cells coexpress-
ing either mPTPRO or cPTPRO with
mouse EphA4 were stimulated with control
Fc or ephrinA4-Fc, and EphA4 autophos-
phorylation was assessed by Western blot-
ting. Interestingly, only cPTPRO, was able
to significantly dephosphorylate EphA4
(Fig. 7J,K). These results indicate that
mPTPRO does not regulate Eph signaling
and suggest that mPTPRO and cPTPRO
have different substrate specificities.

Discussion
Here we have shown that PTPRO, a recep-
tor tyrosine phosphatase, is expressed in a
large fraction of TrkB� and Ret� mech-
anoreceptors within the TG during embryo-
genesis. In PTPRO�/� mice, TG axons grow
longer and exuberant branches, suggesting
that PTPRO suppresses the response to en-
dogenous growth factors. Furthermore, cul-
tured PTPRO�/� TG neurons show more
BDNF- and GDNF-induced axonal out-
growth and branching than control neu-
rons, indicating that PTPRO regulates the
activity of TrkB and Ret receptors. This role
of PTPRO is also seen in the chick system,
suggesting that this function is evolution-

arily conserved. Although PTPRO has been shown to regulate Eph
signaling in the chick retinotectal system, we find that mouse
PTPRO fails to do so in several neuronal systems in vivo and in vitro,
suggesting that the regulation of Eph receptor-mediated develop-
mental processes by RPTPs has diverged between chick and mouse.

PTPRO modulates growth factor responses
Our work revealed a role for PTPRO as a negative modulator of
TG axon growth and branching in response to specific growth
factor stimulation. PTPRO is excluded from the largest popula-
tion of TG neurons, TrkA� nociceptive neurons, and the re-
sponse of cultured PTPRO�/� TG neurons to exogenously added
NGF is not different from wild type. In contrast, the strong re-
sponse of cultured PTPRO�/� TG neurons to BDNF and GDNF
correlates well with the prominent expression of PTPRO in
TrkB� and Ret� neurons. These results strongly suggest that
PTPRO has a cell-autonomous role in constraining TG neuron
growth and branching. Interestingly, the loss of PTPRO affects
neuron growth and branching at lower concentration of BDNF

Figure 4. PTPRO�/� embryos do not have defects in neuronal differentiation, but there is a loss of TrkA � and TrkC � neurons
at P0. A, C, Immunostainings for TrkA, TrkB, TrkC, Ret, and NeuN on cryosections from E12.5 (A) and newborn (C) wild-type and
PTPRO�/� TG. Scale bars, 50 �m. B, D, Graphs represent the average number (mean � SEM, n � 3– 4 embryos, 9 –20 images/
embryo) of TrkA �, TrkB �, TrkC �,Ret �, and NeuN � neurons per section. Statistical analysis was done as for Figure 2.
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and GDNF, hinting at the requirement of the phosphatase in
setting a functional threshold in response to neurotrophin stim-
ulation. Genetic ablation of PTPRO does not change the maximal
effect of the response but rather shifts the dose–response curve to
the left (higher sensitivity to neurotrophin stimulation).

Mechanistically, we show that PTPRO suppresses ligand-
induced autophosphorylation of TrkB and Ret and that Ret acti-
vation enhances colocalization with PTPRO, suggesting that
these RTKs are direct substrates of PTPRO in living cells. Alter-
natively, PTPRO may target other tyrosine phosphorylated
downstream effectors of these RTKs (see below). Moreover, we
show that ligand-induced activation of ERK signaling is sup-
pressed by coexpression of PTPRO. This result is consistent with
the known function of ERK signaling in sensory axon growth
(Markus et al., 2002; Zhong et al., 2007).

The function of PTPRO as a negative modulator of RTK sig-
naling is reminiscent of RPTP�, a class IIa RPTP, which limits
neurite outgrowth of DRG sensory neurons by directly dephos-
phorylating either TrkA and TrkC receptors (Faux et al., 2007) or
the cell adhesion molecule N-cadherin (Siu et al., 2007). Similar
to TG neurons in PTPRO�/�, DRG neurons in RPTP��/� mice

exhibit faster growth rates ex vivo (Siu et al., 2007), but in vivo
sensory axon development has not been analyzed. Negative mod-
ulation of neurotrophic factor receptors is not restricted to
RPTPs. Lrig1, a transmembrane proteins with LRRs in its ectodo-
main, abolishes GDNF/Ret-induced axon outgrowth by inhibi-
tion of GDNF binding and recruitment of Ret to lipid rafts
(Ledda et al., 2008).

RPTPs and LRR proteins can also be positive regulators of
RTK signaling. Leukocyte common antigen-related (LAR) RPTP
enhances TrkB signaling by dephosphorylation and activation of
Src downstream of TrkB. LAR�/� hippocampal neurons display
reduced TrkB signaling and diminished BDNF-induced survival
(Yang et al., 2006). More recently, LAR was shown to bind hepa-
ran sulfate proteoglycans to mediate attractive guidance of sen-
sory axons to the skin; however, the signaling mechanism
underlying this function is unknown (Wang et al., 2012). The
LRR protein Linx positively modulates NGF/TrkA and GDNF/
Ret signaling, possibly by promoting ERK signaling. Axonal de-
fects in Linx mutants resemble those in mice lacking NGF, TrkA,
and Ret (Mandai et al., 2009). The neurotrophin receptor p75,
which can directly interact with Trks (Dechant, 2001), is also

Figure 5. PTPRO dephosphorylates TrkB. A, HeLa cells transfected with TrkB and PTPRO and immunostained to detect surface expression of PTPRO (PTPRO surface) and TrkB (TrkB surface) and
total expression of TrkB (TrkB total). B, C, HeLa cells transfected with TrkB with (C) or without (B) mPTPRO–Flag and immunostained for Flag (PTPRO), TrkB, and phosphotyrosine (pTyr). Cells outlines
are labeled with Cell Mask Blue. Insets are higher-magnification images of the areas marked with a box. Scale bar, 20 �m. D, Graph represents the intensity of phosphotyrosine (pTyr) staining
normalized by the intensity of TrkB staining (mean � SEM). Number of cells analyzed: 26 cells for TrkB and 29 cells for TrkB and PTPRO from 3 independent experiments. E, Western blots of HEK293
cells transfected with TrkB with or without mPTPRO–Flag and stimulated as indicated. Total cell lysates (TCL) were probed against phospho-ERK (pERK), ERK1/2, and Flag (PTPRO). Immunopre-
cipitates of TrkB (IP �TrkB) were probed against pTyr and TrkB. F, G, Graphs represent TrkB autophosphorylation levels (F ) and ERK phosphorylation (G). Three independent experiments were
performed, and the intensities of the phospho bands were quantified using NIH ImageJ and normalized by the total levels of the proteins. Statistical analysis was done as for Figure 2.
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important for growth of the ophthalmic branch and sensory
axons to the limbs (Bentley and Lee, 2000; Ben-Zvi et al.,
2007); it is currently unknown whether the interaction of p75
with Trk receptors is essential for this in vivo function. PTPRO

and other RTK interactors seem to have evolved to fine tune
growth factor signaling in opposing manners and in a cell-
type-specific manner. These proteins therefore increase the
diversity of signaling output of a limited number of RTKs and

Figure 6. PTPRO dephosphorylates Ret. A, HeLa cells transfected with Ret51 and PTPRO and immunostained to detect surface expression of PTPRO (PTPRO surface) and Ret (Ret surface) and total expression
of Ret (Ret total). B–D, HeLa cells transfected with Ret51 and with (B, D) or without (C) mPTPRO–Flag and stimulated as indicated. Fixed cells were stained with anti-Flag (PTPRO), anti-Ret, and pTyr antibodies
and marked with Cell Mask Blue. Scale bar, 20 �m. E, Graph represents the degree of colocalization of Ret and PTPRO (mean � SEM) before and after GDNF stimulation, with (total) or without (surface) cell
permeabilization. Numbers of cells analyzed after permeabilization (total staining): 23 cells before and 14 cells after stimulation from at least 3 independent experiments. Numbers of cells analyzed without
permeabilization (surface staining): 13 cells before and 23 cells after stimulation from 3 independent experiments. F, Graph represents pTyr staining intensity normalized by the intensity of Ret staining (mean�
SEM).Numbersofcellsanalyzed:48cellsbeforeand26cellsafterstimulationforRetalone,and36cellsbeforeand26cellsafterstimulationforRetandPTPRO,fromatleast3independentexperiments.G,Western
blots of HEK293 cells transfected with Ret, with or without mPTPRO–Flag, and stimulated as indicated. TCL were probed against phosphotyrosine (pTyr), Ret phosphotyrosine 1062 (Ret pY1062), Ret, pERK,
ERK1/2,andFlag(PTPRO).H–J,GraphsrepresentRetautophosphorylationlevels(H,I )orERKphosphorylation(J ).QuantificationofphosphorylationwasdoneasforFigure5,andstatisticalanalysiswasdoneasforFigure2.
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growth factors to control the branch
morphology and connectivity of devel-
oping neurons.

PTPRO and modulation of
repulsive cues
We also explored the possibility that
PTPRO modulates responses to repulsive
guidance cues, thereby limiting axon
branching. Repulsive guidance cues, such
as members of the Slit family, have been
shown previously to positively modulate
sensory axon branching (Ma and Tessier-
Lavigne, 2007). Moreover, PTPRO was
initially characterized as negative regulator
of repulsive Eph signaling in the chick reti-
notectal system (Shintani et al., 2006). Gain-
and loss-of-function (shRNA knockdown)
studies established a role for PTPRO in reti-
notectal projection guidance in vivo, pre-
sumably involving Eph regulation (Shintani
et al., 2006). Several lines of evidence suggest
that mouse PTPRO does not control Eph
signaling: (1) ex vivo cultures of PTPRO�/�

and control TG neurons are equally sen-
sitive to ephrin-induced growth cone
collapse; (2) the retinotopic maps in

Figure 7. Eph signaling is not affected in PTPRO�/� embryos. A, Representative pictures of trigeminal neuron explant cultures
stimulated with 0.5 �g/ml preclustered Fc (negative control) or preclustered ephrinA5. Explants were stained with Phalloidin-
568. Arrows point to non-collapsed growth cones, and arrowheads show collapsed growth cones. Scale bar, 100 �m. B, Graph
represents the percentage of collapsed growth cones. Four to six explants per condition were analyzed from three embryos per
genotype. C, Representative pictures for the analysis of the retinocollicular projection in wild-type and PTPRO�/� mice at P8.
Injection of DiI into a small area of nasal retina (drawings on left side) result in labeling of topographically appropriate termination
zones in the caudal part of the superior colliculus. Numbers of animals analyzed for the termination zone were 7 wild-type, 12
PTPRO�/�, and 5 PTPRO�/�. Numbers of animals analyzed for ectopic branching were three wild-type, four PTPRO�/�, and four
PTPRO�/�. D, Representative pictures of motor neuron explant cultures stimulated with Fc (as a control) or ephrins. Arrows

4

and arrowheads point to non-collapsed and collapsed growth
cones, respectively. In green is the Hb9 –GFP and in red the
Phalloidin-568 staining. Scale bar, 200 �m. E, Graph repre-
sents the percentage of collapsed growth cones. Three to six
explants per condition were analyzed from four embryos per
genotype. Compared with the respective controls, all the eph-
rinA2/A5 stimulated explants show a statistically significant
increase in the percentage of growth cone collapse (0.1 �g/ml
ephrin-Fc on wild-type cultures, p�0.038; 0.5 �g/ml on wild
type, p � 0.008; 0.1 �g/ml on PTPRO�/�, p � 0.007; 0.5
�g/ml on PTPRO�/�, p � 0.002). F, Representative pictures
of neurofilament stained E12.5 whole-mount embryos. Ar-
rowheads point to the peroneal nerve; arrows point to the
tibial nerve. G, Graph represents the ratios between the diam-
eter of the peroneal and the tibial nerves of 16 wild-type, 12
PTPRO�/�, and 15 PTPRO�/� hindlimbs (mean � SEM). H,
Single confocal plane of ventral retrograde tracings in E12.5
embryos. RD was injected in the ventral shank of the hindlimb,
and sections were stained with Islet1 and Lim1 to label the
medial (LMCM) and lateral (LMCL) cohorts (populations are de-
limited by a dashed lines), respectively. Scale bar is 50 �m. I,
Graph represents the percentage of misprojections (neurons
positive for RD and Lim1 staining) in relation to all RD-labeled
cells in ventral retrograde tracings of six wild-type or PT-
PRO�/� and eight PTPRO�/� embryos. J, Western blots of
HEK293 cells cotransfected with EphA4 and mPTPRO or cPT-
PRO isoforms of PTPRO–Flag and stimulated as indicated. To-
tal cell lysates (TCL) were probed against phospho- and total
EphA4 and Flag. Asterisks indicate PTPRO bands; mPTPRO runs
at 140 kDa and cPTPRO at 160 kDa. K, Graph represents the
levels of EphA4 autophosphorylation (mean � SEM) after
control Fc and ephrinA4-Fc stimulation. The experiment was
done in triplicate, and the intensities of the phospho bands
were quantified using NIH ImageJ and normalized by the
total level of the proteins. Statistical analysis was done as
for Figure 2.
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PTPRO�/� mice were indistinguishable from control mice; (3) limb
motor axons, which are sensitive to Eph/ephrin signaling
(Bonanomi and Pfaff, 2010), did not show projections defects in
PTPRO�/� embryos in vivo and were not more sensitive to eph-
rins ex vivo; and (4) cPTPRO, but not mPTPRO, is able to
dephosphorylate EphA4 in living cells. These results suggest
that mPTPRO either does not control Eph activity in the retino-
collicular system or is functionally redundant with other phos-
phatases that regulate Eph activity (Nievergall et al., 2010).
mPTPRO and cPTPRO are divergent enough (80% similarity) to
have different substrate specificities, as was shown previously for
mouse and human RPTP� (Hou et al., 2011). Future structure–
function work to elucidate the molecular basis of substrate specificity
of mPTPRO versus cPTPRO would be interesting to help shed light
into this rather unexplored question.

Non-cell-autonomous roles of PTPRO?
Previously, PTPRO�/� mice were shown to have decreased num-
bers of a subset of nociceptive (calcitonin gene-related peptide�)
DRG neurons at birth and as adults (Gonzalez-Brito and Bixby,
2009). In addition, the central projections of the surviving noci-
ceptive and proprioceptive (parvalbumin�) DRG neurons were
abnormal, and PTPRO�/� mice performed abnormally on tests
of thermal pain and sensorimotor coordination (Gonzalez-Brito
and Bixby, 2009). Here we show that, during early embryonic
development, PTPRO is rarely coexpressed with TrkA or TrkC,
antigens that are early markers of nociceptive and proprioceptive
neurons. Moreover, PTPRO�/� trigeminal cultures do not show
aberrant sensitivity toward exogenous NGF. However, at birth,
expression of PTPRO increases in TrkC � neurons, and
PTPRO�/� mice show partial loss of TrkA� and TrkC� sensory
neurons. Thus, the observed changes in nociceptive and propri-
oceptive subpopulations may at least in part be attributable to
non-cell-autonomous functions of PTPRO. Whether PTPRO has
a pro-survival function or affects cell differentiation remains to
be clarified. PTPRO is also expressed at the spinal cord midline
and in the dorsal root entry zone of DRG axons in the spinal cord
(data not shown and Beltran et al., 2003), and its removal could
non-cell autonomously affect the positioning of nociceptive and
proprioceptive fibers. A non-cell-autonomous role of PTPRO
was suggested previously in RGC axon guidance, because the
PTPRO ectodomain is chemorepulsive for RGC axons ex vivo
(Stepanek et al., 2001). Conditional ablation of PTPRO in sen-
sory axons versus their target fields should resolve these mecha-
nistic questions.

In summary, our results have shown that PTPRO fine tunes
growth factor signaling in a cell-type-specific manner and
thereby controls the axonal branch morphology of developing
TG neurons. Future work will show whether this function of
PTPRO also controls the connectivity of TG neurons in the adult.
It will also be interesting to explore whether PTPRO activity is
regulated by interaction with extracellular ligands. Our work has
also shown that the regulation of Eph receptor-mediated devel-
opmental processes by RPTPs has evolved differently between
chick and mouse. It will be important to identify the molecular
features that determine substrate specificity of cPTPRO and
mPTPRO and possibly of other protein tyrosine phosphatases.
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