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SUMMARY

The aim of this thesis is to examine the importance of constraints in design activity, and more
specifically, in constraint satisfaction tasks. Constraints are involved in all design tasks and
denote criteria on what constitutes a good design outcome. Within the present research, a
constraint stipulates a restriction on how a design element may be assimilated into a design.
For instance, given a spatial office layout design, the positioning of an employee may be
restricted by a constraint stipulating that they should be in close proximity to a particular
area. This thesis attempts to address a gap in the design literature by examining the effect of
such constraints on design performance using experimental methodology. Two research
threads are addressed; the effects of constraints on performance, and how constraint
satisfaction performance can be improved by training. In the first research thread, the
theoretical framework adopted concerns Newell and Simon’s (1972) problem space theory
and more recent suggestions by Halford, Wilson and Phillips (1998) concerning relational
complexity. These are used to predict the effects of increasing the number of design
constraints (Experiments 1-2) and the number of types of constraint (Experiments 3-4). Both
these factors together with a reduction in the degree of cognitive fit (Vessey & Gellata, 1991)
between the constraints and the external representation (Experiment 5) were found to reduce
design performance. The second research thread examines whether training can improve
design performance. Practice only was found to improve performance on a near transfer task
relative to a control group but not a dissimilar, far transfer task (Experiment 6). The
subsequent Experiments examined the effect of what has been labelled ‘metacognitive’
training on performance. Findings indicated that a training intervention aimed at encouraging
either reflective self-explanation (Experiment 7), or aimed at improving planning strategy
(Experiment 8) improved performance in comparison to both control and practice only
groups. The implications of these results are discussed together with future research

directions.



OVERVIEW OF THESIS

The present experimental thesis is concerned with design problem solving. More specifically,
it is concerned with the cognitive processes of humans when satisfying external design
constraints. The structuring of relevant theoretical threads and empirical research are
organised as follows:

e Chapter 1 outlines what is meant by the term design problem solving and the situations
in which it occurs. The main features of design problem solving are described and the
notion of variation in the level of design task structure is detailed. Following from this,
preliminary evidence into human cognition in design problem solving is briefly
reviewed and research aims are outlined.

e Chapter 2 introduces some psychological theories that may shed light on how variation
in external constraints impacts upon design complexity. In addition, two experimental
paradigms are described in terms of their relevance to applied situations and their
psychometric properties.

e Chapters 3-5 describe experimental work investigating whether variation in design
constraints affects measures of design performance. This captures the first experimental
theme of this thesis.

e A foreword to the remaining experimental work outlines a change in focus, from
constraint factors affecting design performance, to training initiatives that may aid
design performance. Relevant theories are introduced briefly.

e Chapters 6 and 7 present empirical work investigating how practice and training
interventions affects design performance. This constitutes the second research theme.

Both the intrinsic feedback available through practice (without further training



instruction), and practice plus metacognitive training interventions, specifically self-
explanation techniques, were examined.

Finally, Chapter 8 summarises the empirical research undertaken presently and general
conclusions and implications are drawn. Afterwards, research limitations are addressed

and avenues for future research are identified.



CHAPTER ONE

Introduction to design problem solving

11 What is design problem solving?

Design is concerned with investing effort in order to create a new product, or new
specifications, given no set procedure for doing so (Ball, Evans, Dennis & Ormerod, 1997,
Purcell & Gero, 1996). As such, design problem solving is concerned with the cognitive
process(es) engaged in when a structure or object is being created. Likewise, research into
human design processes concerns itself with identifying sources of cognitive complexity in
design. Such research may enable the development of training or support methods that may
ease the level of cognitive complexity encountered.

Design is both a formal discipline and an everyday activity (Visser, 2004). It
permeates many technical and professional disciplines such as engineering, architecture and
graphical design. In such disciplines, large-scale projects may affect many users. Here
consequences of bad design may be wide-reaching. Such design failures may be costly,
dangerous or may require the initiation of time-consuming redesign. As an everyday activity,
design is abundant in multiple situations, albeit on a smaller scale. The functional
arrangement of any living accommodation will incorporate some design principles. Indeed,
any form of spatial arrangement may be considered a design process. The scheduling and
organising of multiple activities may also be considered a design activity. Route-planning is a
further form of common design activity. The consequences of everyday design failures here
may not necessarily be as extreme as professional design failures. However, consequences of
bad design may, at best, still be inconvenient or unproductive.

Design problem solving is a notoriously difficult activity (Chandrasekaran, 1990;

Guindon, 1990; RoOmer, Leinart & Sachse, 2000). Typically involving ill-specified,



incomplete or ambiguous goals, and no obvious solution (Ball et al., 1997; Purcell & Gero,
1996; Restrepo & Christiaans, 2004), the design of any new item will require a designer to
strategically utilise various cognitive abilities including analysis, prioritisation and decision
making (Ball, Lambell, Reed & Reid, 2001; Hacker, 1997, Romer, Pache, WeiBhahn,
Lindermann & Hacker, 2001). Designers must be able to tolerate ambiguity and uncertainty
whilst still showing good judgement (Dym, Agogino, Eris et al., 2005). Smith and Browne
(1993) highlight five crucial elements of design that are inherently intertwined with the
cognitive processes of designers when undertaking design problem solving. These are goals,
constraints, alternatives, representations and solutions. Each element is now briefly described.
Goals: Design problem solving necessarily involves the presence of unmet goals. These goals
are helpful in that they allow a designer to ascertain criteria for evaluating design solutions
(Smith & Browne, 1993). Additionally, goals may be decomposed into sub-goals to allow the
designer to create structure to direct their design efforts more effectively (Liikkanen &
Perttula, 2008). Chan (1990) suggests that the prioritisation of, and focus on, a design sub-
goal can be considered a strategic way of starting the design process. Nevertheless, goal
identification in design problem solving situations is complex. Goals may be multiple,
incomplete, and of varying and sometimes unknown importance. Further difficulty may arise
when there is no apparent match between a goal or sub-goal and possible solutions or design
alternatives.

Constraints: Constraints may derive from different sources and are usually concerned with
what is required or feasible in a design situation. Smith and Browne (1993) refer to the
existence of external and internal constraints. External constraints may refer to social and
environmental policies, the wishes of the client/stakeholders and the context in which
designing is taking place. External constraints may also be necessary restrictions imposed

upon a design task. Internal constraints are defined as the essential functions, or requirements



of the artefact being developed (Smith & Browne, 1993). In the field of cognitive
psychology, internal constraints are most often conceptualised in terms of the cognitive
limitations of the problem solver. One such constraint is the presence of limited working
memory (i.e., Miller, 1956; Sweller, van Merrienboer & Paas, 1998), or the conditions
surrounding the willingness to deploy memory-based problem solving strategies (i.e.,
Waldron, Patrick & Duggan, 2010).

Whilst the presence of external design constraints may aid a designer in narrowing
down their search for sensible solutions (Visser, 2004), the presence of overly restrictive
constraints may lead to less innovative and less effective design (Smith & Browne, 1993).
Extensive numbers of constraints may be expected to diminish design possibilities. The issue
arising from this is how to determine which constraints may not be relaxed, as ignoring such
constraints will inevitably result in flawed designs. It may be that some proposed constraints
cannot be practically or effectively assimilated into a design. Also, some design constraints
may not be apparent at the onset of design activity but may arise as a product of exploring
differing design alternatives. Indeed, in conceptual design where novel products or services
are created, the process of problem decomposition and the exploration of design alternatives
often lead to the identification of additional design constraints (Chan, 1990). The discovery
of more constraints at these points may necessitate a revision of design problem solving
strategy.

Alternatives: Alternatives are possible courses of action that act as intermediaries between
the current state of the design problem and the goal (or sub-goal) that the designer is trying to
achieve. Smith and Browne (1993) point out that alternatives do not ‘pre-exist’, rather they
emerge via the process of goal-directed search. In design problem solving, the often ill-
specified nature of the goals may lead to an undisclosed amount of possible alternatives.

These alternatives may themselves be vague, incomplete or dependent on the resolution of



related design issues (Ullman & D’Ambrosio, 1995). While prioritisation of goals and
constraints may serve to filter out less desirable alternatives, there is always the possibility
that some overlooked constraint may cause a desirable alternative to be overlooked. Often
design entails an iterative process of alternative generation and alternative evaluation, with
subsequent design decisions made on the basis of trade-offs between what is desirable (goals)
and what is possible (constraints).

Representations: Representations refer to a depiction of the problem space in which design
problem solving takes place (Smith & Browne, 1993). Representations may be internal or
external. Internal representations correspond to a designer’s mental model of the relevant
design knowledge (goals and constraints) and the possible alternatives which can be
generated from this knowledge. External representations may contain similar information but
can take various forms including sketches, diagrams, and graphs. In addition, representations
may be complete, entailing all relevant knowledge and alternatives for the problem in
question, or incomplete containing unknown parameters and possibilities (Goldschmidt,
1997). Visser (2006) describes representations as ‘operative’ in that they are constantly under
revision as new information, constraints, or design developments are integrated into it. As
such, representations should be flexible and restructuring, a form of representation
translation, can occur (Akin, 2002; Jones & Schkade, 1995; Visser, 2006).

Solutions: Solutions are a designers attempt to fulfil design goals. They are necessarily
complex, usually entailing many attributes and interrelations (Smith & Browne, 1993). Due
to the uncertainty inherent in the nature of design problem solving, design solutions are likely
to be merely satisfactory rather than optimal (Cross, 2001). Often, formulated designs are
simply effective until a situation arises whereby the end design runs into unforeseen
circumstances that prevent it from functioning as intended. At this point a design may be

recycled, modified, or the design process may begin again.



It is the interlinked nature of all of Smith and Browne’s (1993) crucial elements which
make design inherently complex. In an ideal design situation, a designer would endeavour to
gain a full understanding of design goals and constraints leading to the construction of a
comprehensive representation of the design problem space. Having achieved this, the
designer should be able to weigh the costs and benefits of the alternatives available to them.
However, in practice, design is never as straight forward as this. The ill-defined and ill-
specified nature of most design tasks (Ball et al., 1997; Visser, 2006) may make exhaustive
problem scoping impossible. Some aspects of the problem representation or some design
alternatives may never be identified or explored. Designers may be sensitive to cost-benefit
trade-offs. As design is computationally costly, cognitive short-cuts are likely to be applied.
However, there is some suggestion that a degree of structure can be imposed onto a design
problem solving task, as knowledge about that design task is accumulated (i.e., Restrepo &
Christiaans, 2004). Design researchers have attempted to detail the design process in terms of
a prescribed set of systematic and sometimes iterative stages, whereby a design task may vary
in its degree of structure at any stage. A couple of examples of prescriptive accounts of
design problem solving are now discussed.

Dym’s (1992) prescriptive account describes the beginning of the design process as
(1) the ‘conceptual stage’ involving the identification and prioritisation of goals and
constraints, the exploration of design alternatives, the gathering of further information and the
resolution of trade-offs between conflicting goals and constraints. This is followed by (2) a
‘preliminary design’ period in which the components and design sub-parts are identified.
Then follows (3) ‘detailed design’, whereby a designer outlines the specific parts needed to
construct the end product. Finally (4) ‘analysis and optimisation’ occurs. This involves the
testing and evaluation of the design. Coming from an engineering background, Dym (1992)

essentially captures the design process, from its start, to the point at which a design can be



mass-produced, mass-distributed, refined and recycled. Hacker (1997) offers a similar,
although somewhat simplified, description of design that focuses on its’ initial stages rather
than later manufacturing processes. Hacker’s (1997) stages are, (1) the identification and
clarification of the design problem, (2) the development of a frame of conceptual solutions,
(3) the design of a favoured solution, and (4) working out details so as to make the end design
both functional and feasible.

It appears that it is the early stages of a design process that are the most ill-specified
and ill-structured periods of design. This is especially true of the early stages of conceptual
design (Dym, 1992), where a novel product must be created from scratch. It is here that
uncertainty surrounds many of the crucial design features outlined by Smith and Browne
(1993). In later stages, some of the uncertainty has been alleviated due to sourcing of new
design information and the setting of new design parameters. This should result in the
emergence of more definite design goals and requirements, and the introduction or
acknowledgment of relevant constraints. As such, a more accurate representation of the
design task should emerge, and subsequent design problem solving efforts may be directed
more effectively. Towards the latter stages of design, an increased level of structure has been
imposed onto the task (Fernandes & Simon, 1999; Restrepo & Christiaans, 2004). Therefore,
structure might not be an invariant feature in design problem solving. The section that
follows discusses properties of well-structured and ill-structured tasks.

1.2 Properties of task structure

There are several published papers that attempt to highlight the crucial differences and
distinctions between well-structured and ill-structured problem solving tasks (Dorst, 2006;
Fernandes & Simon, 1999; Goel & Pirolli, 1992; Shin, Jonassen & McGee, 2003). Borrowing
heavily from the researchers referenced, typical characteristics of well-structured and ill-

structural problem solving tasks are now reviewed. Table 1.1 depicts the differences between



Table 1.1. Important distinctions between well-structured and ill-structured tasks or problems

Feature Well-structured Il-structured

Knowledge Complete knowledge of problem Incomplete knowledge of problem
of problem elements. All problem features are  elements. Fails to present all or
elements presented. Goals and constraints some problem elements. Goals and

are known and there is no need to
source further information.

constraints may be vague or may
conflict.

Presence of

There is a definite, correct solution.

No optimal solution. Several

solutionand  This clear solution provides satisfactory solutions may exist.

evaluative evaluative criteria that can be used  The lack of a clear solution criteria

criteria to gauge progress towards the leads to uncertainty concerning

solution. how to monitor progress towards

task solution. As such, there may
be no clear criteria for terminating
problem solving.

Solution There is a set, direct pathway to the The lack of a definite solution

pathways solution that may be navigated criteria means that there are no

from application of task rules and
restrictions and logic. Any
divergence from this pathway is
indicative of cognitive errors.

obvious pathways to a solution. As
such, there is no simple way of
reaching a solution. The potential
viability of multiple pathways may
make it harder to identify any
errors made.

Task rules or
principles

Productive problem solving moves
can be readily identified from
logical application of explicit task
rules and constraints. These rules
and constraints are known
throughout problem solving.

The productivity of problem
solving moves may be unknown.
Further rules and constraints may
continue to emerge as problem
solving progresses. Any constraints
or rules indentified may require a
re-evaluation of task goals and
current progress. Task rules or
constraints may conflict. Therefore,
prioritisation of emerging rules and
constraints may occur.

well-, and ill-structured tasks on four crucial task features; knowledge of problem elements,

solution criteria, solution pathways and task rules or principles. The distinction between the

levels of structure on all of these criteria is the degree of specification and clarity. Well-

defined problem will have clear goals, clear constraints and also clear rules for attaining the

desired solution. In contrast, ill-defined problems are underspecified in respect to task goals,

constraints and rules. Here there is no ‘best’ solution. Instead there may be a number of

satisfactory solutions reachable by multiple and sometimes convoluted pathways. As such,



ill-structured problem solving tasks are heavily under-determined in that they lack clarity
about many problem aspects at the outset (Dorst, 2006).

Simon (1973) suggested that the distinction between well-structured tasks and ill-
structured tasks is not set in stone. Instead, ill-structured and well-structured may represent
the extremities of a continuum (Fernandes & Simon, 1999), with intermediate levels of task
structure in between. Indeed, it may be necessary to impose structure upon a task before a
solution can be reached. As previously alluded to, it is possible to gain (or to impose)
structure within design problem solving contexts (Restrepo & Christiaans, 2004). Problem
structuring, sometimes referred to as problem setting or problem framing, may occur during
the early stages of a design cycle, and may reoccur periodically as more relevant information
is assimilated (Fernandes & Simon, 1999; Goel & Pirolli, 1992; Schon, 1987). Problem
structuring is the process of drawing upon knowledge, experience, or new information to
compensate for unknown parameters (Restrepo & Christiaans, 2004; Schon, 1987). Table 1.2

captures and formalises some structuring effects within design contexts.

Table 1.2. Proposed structure of design tasks

Feature

II-structured design
(early stages of the design process such
as conceptual or creative/novel design)

Semi-structured design

(later stages of the design cycle such
as design detailing, configuration,
constraint satisfaction design)

Knowledge of
problem elements

I1l-specified problem elements.
There may be open-ended goals
and few explicit constraints.

Knowledge of all problem
elements. Goals and external
constraints known.

Presence of solution
and evaluative
criteria

No obvious solution criteria.

No obvious solution criteria.

Solution pathways

Multiple pathways to solution.

Multiple pathways to solution.

Task rules or
principles

Vague knowledge of task rules,
principles and constraints.
Rules may conflict.

Knowledge of task rules,
principles and constraints.
Rules may conflict.

Early conceptual design, sometimes referred to as creative design (i.e., Goel & Pirolli,

1992), exhibits all of the characteristics of ill-structured tasks outlined in Table 1.1. However,
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later stages of design, such as Dym’s (1992) detailed design stage, or Hacker’s (1997)
working out stage, have a greater degree of structure. Here, parameters concerning goal
specifications and relevant constraints have been defined more clearly. Some researchers
refer to such forms of design as configural design (Bayazit, 2004) or constraint satisfaction
tasks (Sabin & Freuder, 1996; Visser, 2004). Whilst these design activities are semi-
structured, they are not fully specified. Some of the complexities inherent in ill-structured
designs are still evident. There are still multiple pathways to solution and no clear stopping
criteria. In addition, uncertainty may still surround the legality of design actions due to
conflicting or complex task rules.

So far, discussion has centred around situating design as a problem solving activity
comprised of a number of key features (Smith & Browne, 1993) and a less than optimal level
of task structure (i.e., Restrepo & Christiaans, 2004). Attention now turns towards empirical
evidence and documentation of the design process. In particular, the following section
focuses on empirical research concerning human cognition in design contexts.

1.3 Empirical evidence concerning design problem solving

Many design activities do not easily lend themselves to empirical investigation. Some design
cycles are lengthy. They may take place over a number of weeks or, for huge design projects,
perhaps even years (Pahl, Beitz, Feldhusen & Grote, 2007). Design may also involve multiple
designers, or stakeholders, each performing a different role. Also, in applied situations, the
design process is not typically replicated and may not be stringently documented. As such,
comparisons of similar design processes may be difficult. Nevertheless, there is a slowly
expanding body of research focusing on human cognition in design. A brief literature review

detailing some key research themes are now summarised in the following sub-sections.
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Design strategies
Following on from prescriptive models of design, the notion that design is carried out as a
strategic activity has been examined. Strategic designers are expected to perform thorough
decompositions of design problems and then work towards accomplishing the goals and sub-
goals identified. A distinction has been made between top-down, depth-first approaches and
top-down, breadth-first approaches to design (Ball & Ormerod, 1995; Ball et al., 1997). In
depth-first approaches, a designer may work towards satisfying one sub-goal before
considering how to achieve the next. In breadth-first approaches a designer will work on
many sub-goals simultaneously, at increasing levels of detail. The breadth-first approach is
generally favoured (Ball & Ormerod, 1995), as this approach preserves the interrelations
between sub-goals whilst also monitoring and resolving any conflicting design aspects. In the
case of depth-first approaches, the piecemeal nature of the design may result in part solutions
that need to be reworked and reconfigured to achieve a satisfactory and functional end design
(Lee, Eastman & Zimring, 2003). However, it is possible that some designers switch between
various top-down approaches, or fail to engage in a strategic top-down strategy altogether.
Ball et al. (1997) and Lee et al. (2003) found evidence to support a top-down,
breadth-first approach to design. Ball et al. analysed the verbal protocols of six electronic
engineers designing a novel integrated electrical circuit, whilst Lee et al. examined the
protocols of two groups of architects redesigning an architectural studio. Ball et al. report that
a depth-first approach was demonstrated by a progression from problem understanding
activities to developing high-level solutions. These solutions were then refined into
progressively greater levels of detail. Lee et al. interpreted a frequent level of switching
between design activities producing student workspaces, and those producing group
workspaces, as indicative of a breadth-first approach. They further attributed better design to

breadth-first activities. Guindon (1990) also examined the notion that strategic top-down
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activity occurs in design problem solving by analysing the verbal protocols of two practicing
software designers programming a lift to move between floors based on a list of rules.
Guindon (1990) reported that although designers did evidence a tendency towards top-down
breadth-first design strategies, there were considerable deviations from this pattern. Here,
designers intertwined solution development with reconsideration of the design requirements.
Guindon suggested that opportunistic deviation from top-down approaches took place for
several reasons, including insufficient or conflicting information, the recognition of
interrelated parts of a design, or the economical use of newly discovered solution options.
Further research has attempted to isolate and identify the prevalence of design
activities such as problem decomposition more closely. Liikkanen and Perttula (2008)
propose that the recognition of design principles should both encourage, and follow from,
explicit decomposition. As such, explicit decomposition should be an effective design
strategy. Liikkanen and Perttula observed mechanical engineering students performing a
design problem. Designers were instructed to sketch and annotate design concepts. Sketches
were then analysed, and verbal protocols coded, to determine whether designers proceeded
through identifiable stages of problem decomposition, the justification being that an explicit
form of decomposition would be evident from evidence attesting to a progression of design
activity from analysis, through goal-setting, to design solution development. Only three of the
16 designers explicitly decomposed the design problem, but their design productivity levels
benefitted from this process. The authors imply that more experienced designers may be more
proficient in performing explicit problem decomposition. On a related line of enquiry, Kruger
and Cross (2006) observed the cognitive activities of nine industrial designers whilst
designing a rubbish disposal system. Inspection of verbal protocols led the author to propose

four strategic design approaches:
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(1) Problem driven design, characterised by high levels of data gathering, constraint
identification and solution generation

(2) Information driven design, characterised by high levels of data gathering and constraint
identification, but little solution generation

(3) Solution driven design, characterised by high levels of solution generation and relatively
little data gathering

(4) Knowledge driven design, characterised by a high level of modelling activity

Kruger and Cross (2006) found that designers adopting problem and information
driven strategies, thereby showing a greater degree of explicit problem decomposition,
produced designs of greater overall quality. Whilst this does not allow the conclusion that
experienced designers necessarily engage in more explicit problem decomposition, it appears
to support the notion that engaging in more thorough problem decomposition benefits design
efficiency.

Atman, Chimka, Bursic and Nachtman (1999) examined whether experience
differentially affects designer’s cognitive activities by comparing 1% and 4™ year engineering
students designing an urban playground. Videotapes were analysed for evidence of several
cognitive activities relating to problem analysis, solution generation and solution
development. Atman et al. noted some key differences between novice and experienced
designers. Novices spent more time defining the problem whereas experienced designers
spent more time gathering relevant information. Both groups spent equivalent proportions of
time on solution development although experts produced more design alternatives. As could
be expected, experienced designers were credited with better quality designs.

Studies surrounding design strategies are necessarily exploratory. A lack of statistical
analysis within this area means inferences are often made on the basis of qualitative analysis

utilising small samples. Prescriptive models of design imply design should be approached
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strategically. Indeed, the initial studies (Ball et al., 1997; Guindon, 1990; Lee et al., 2003)
concluded that breadth-first approaches were adopted, albeit with some opportunistic
deviation (Guindon, 1990). Further studies suggest that problem decomposition, an activity
believed to occur at the beginning of the design process may not be undertaken thoroughly or
explicitly, regardless of the level of design experience (Atman et al., 1999; Liikkanen &
Perttula, 2008). Nevertheless, some tentative differences between novices and experienced
designers have been proposed (Atman et al., 1999). Overall, mixed results, and the use of
differing qualitative criteria, mean that firm conclusions regarding design strategies are hard
to pinpoint. It appears that individuals vary greatly in their approach to design with no one
strategy favoured consistently.

Sketching as an external cognitive aid

Many researchers suggest that sketching, as a form of external memory, may relieve
cognitive load and prove helpful when revising and refining design ideas (Bilda, Gero &
Purcell, 2006; Cross, 2001; Romer et al., 2000). The benefits of sketching may be many and
varied. For instance, Bilda et al. (2006) proposed that sketching plays a vital role in the
acquisition and representation of design concepts. Goldschmidt and Smolkov (2006) studied
the effects of being able to sketch on design outcomes using a sample of industrial designers.
Half sketched freely, others just sketched their end design. Sketching did not appear to effect
design originality. However, significantly higher practicality scores were found when
sketching was permitted. In another study, Sachse, Leinert and Hacker (2001) asked students
from technical disciplines to complete a regular and a complex computer aided design
(CAD). Half were permitted to sketch. No benefit of sketching was found in the regular CAD
task, but an effect was found within complex CAD tasks, as those permitted to sketch had
shorter solution times and used fewer design moves. No difference in the solution quality was

found. Of designers who sketched, most felt sketching to be unnecessary for the regular CAD
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problem, but all reported benefits when performing the complex design task. Benefits include
easier problem analysis and support during the planning and structuring of design solutions.
Both Goldschmidt and Smolkov (2006), and Sachse et al. (2001) propose that sketching is
beneficial when tackling complex design problems. In a study of somewhat narrower focus,
Romer et al. (2000) investigated whether sketching can lead to improved design problem
analysis. Undergraduate designers analysed low and high complexity mechanical systems.
Half were instructed to sketch system features. Results indicated that those sketching recalled
more facts and interrelations. The effect was greater when recalling information about
complex systems. Designers who sketched also perceived the tasks as less difficult. They
further found that designers who sketched recalled more information only when allowed to
retain their sketches. Romer et al. (2000) suggest that sketching is beneficial as an external
representation of design problems when the sketches produced remain available for later
inspection. When memory alone must be relied upon, previous sketching activities do little to
aid detailed problem representation. Collectively, the experiments reported tentatively
indicate that sketching is of some benefit during the solving of complex design problems but
may not be linked to overall design quality.

External problem representation

There is some suggestion that the presentation in which a design problem is relayed has an
effect on the quality of design solutions. To test this notion Carroll, Thomas and Malhotra
(1980) had students perform a spatial design task and an isomorphic manufacturing
scheduling task. Results indicated that designers tackling the spatial task achieved higher
scores and completed their designs quicker than those completing the scheduling task. Carroll
et al. suggest that spatial design tasks may be easier, as they involve designing at a physical,
rather than an abstract, functional level. The authors also noted that all of the designers

completing a spatial design task produced a graphic representation of the problem, whereas
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only two of the designers in the scheduling task produced such a representation. Carroll et al.
suggest that spatial tasks are more easily translated into graphical representation, and that this
process may aid solution generation. As a follow-up, Carroll et al. examined whether
providing designers with an external diagram representing the design problem aids the
generation of appropriate solutions. Forty-five students, completing the same spatial and
scheduling tasks, were provided with a graphical representation of the design problem in the
form of a matrix that solutions could be mapped onto. Results indicated higher design scores
were still evident when performing spatial design tasks. However, the difference was reduced
in comparison to previous results. Carroll et al. concluded that providing an appropriate
external representation may mitigate some of the complexities of a problematic design task
and make the generation of design solutions easier.

Romer et al. (2001) attempted to more closely identify the benefits afforded by
external problem representations by analysing the self-reported use of such representations by
engineering designers working in various industrial settings. Results indicated that 95% of
those sampled used sketches during the early, conceptual stages of design. CAD
representations were used by 67% of respondents, and over half of the sample constructed
models during the initial stages of a design process. Of those utilising representations,
sketching and CAD were used more frequently than models. The self-reported functional
uses of external representations included; developing and testing solutions, checking
requirements, supporting memory processes, and also documenting and communicating
design ideas. Overall, sketching was credited with the biggest impact on improving design
quality, followed by modelled representations. Sketching was also attributed with faster
development of design solutions in comparison other with models. R6mer et al. conclude that
external representations are a vital factor in any design process, but the use of them may

depend on the ease of their generation.
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In another experimental study, Jones and Schkade (1995) examined the suggestion
that alternative representations, despite being informationally equivalent, may still differ in
the cognitive demands and benefits placed on the designer. As such, designers may translate a
problem representation into a form that is more compatible with their preferences. These
authors examined the representations used by systems analysts whilst performing system
design modifications. Designers were presented with one of two diagrammatic problem
representations, a flow chart or an input-output process table, considered approximately
equivalent in the information that could be represented. Representations depicted the current
system and were accompanied by new design specifications. Experimental groups received
either form of external representation whilst a control group received both. They found a
significant amount of participants translated the representation from the format it was
presented in into a differing, preferred format. More specifically, more than half of those
given a table translated the representation to a flow chart but few given a flow chart translated
their representation. In addition, the majority of the control group favoured a flowchart
representation. Jones and Schkade concluded that designers are not always bound by problem
representations, as some designers will choose to translate a representation into a more
compatible format should the cognitive cost of doing so not outweigh the benefits.

These few studies indicate that external representations are a good way of supporting
various cognitive design activities. Expert designers may have multiple ways of representing
a problem and various uses for these representations, whereas novice designers may not
spontaneously produce an appropriate representation.

Transfer of knowledge between design problems
The transfer of knowledge between design problems may be an effective approach to design
(Chrysikou & Weisberg, 2005). Two related aspects of knowledge transfer have been studied

in relation to design, analogising and fixation. Analogising is the process of transferring
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knowledge from prior experience and mapping it onto new problems. Ball, Ormerod and
Morley (2004) examined whether experts and novices differ in their use of analogies. These
authors distinguished between schema-driven and case-driven analogies. Schema-driven
analogising is the automatic identification of experiential knowledge of relevance. Case-
driven analogising refers to the identification of physical aspects of prior problem solutions
that can be directly mapped onto the solution of a current problem, proposed to be triggered
when noticeable surface similarities exist between problems. Whereas case-driven
analogising results from slow and effortful analysis of prior problems, schema-driven
analogising is quick and relatively effortless but may stem from familiarity with design
processes. Ball et al. proposed that experts would be more inclined to adopt schema-driven
analogising than novices and tested this by contrasting the performance of student and expert
engineers whilst designing an automated car rental facility. The frequency of schema-driven
and case-driven analogising indicated that expert designers engaged in more analogising than
novices, with schema-driven analogising more prevalent than case-driven analogising.
Novices showed the opposite pattern of analogising. Ball et al. proposed that a novices’
application of case-based analogising is a crucial step in knowledge schematisation that may
eventually lead to expert levels of design skill. Nevertheless, even experts with considerable
experience may engage in case-driven analogising when a design problem is unfamiliar or
unusual.

Fixation is a form of negative transfer whereby a feature of a previous design is
reproduced in a current design. Purcell, Williams, Gero and Colbron (1993) suggest that the
provision of pictorial examples during design may produce design fixation. These authors
compared the performance of student designers when developing a measuring product.
Designers were provided with either a basic, or a complex, pictorial example. Purcell et al.

reported that those who were provided with a complex example reproduced more of the
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designs flaws than those provided with a simple example. They concluded that design
fixation only occurs under a specific set of conditions. Chrysikou and Weisberg (2005) also
examined whether the presence of design examples led to fixation. They examined
psychology students performing design tasks. A fixation group were provided with an
example design picture. The same pictures were given to a de-fixation group along with
instructions to avoid using problematic aspects of these designs. When designing a bike rack,
the fixation group produced designs considered more physically similar to the problematic
example design. However, designs produced by the de-fixation group were of lower
similarity to the example design than that of a control group. When designing a spill-proof
cup, the fixation group reproduced the most problematic features from the example design.
Chrysikou and Weisberg concluded that the inclusion of a pictorial design example can
produce fixation effects, even when flawed aspects of the design are highlighted. However, if
designers are instructed to avoid using problematic features of the example designs fixation
effects are eliminated. Both Purcell et al. (1993), and Chrysikou and Weisberg (2005)
demonstrate that designers who are fixated may produce less innovative and less creative
designs.

Conclusions

A number of differently themed design studies have been reviewed, each adding a little to
what is known about design. Many of these studies touch upon some of the cognitive features
(goals, constraints, representations, alternative & solutions) of design described by Smith and
Browne (1993). For instance, studies on design strategy appear to concentrate on how well
designers identify and work towards design goals (Ball et al., 1997; Liikkanen & Perttula,
2008), and indicate that a top-down, breadth-first strategy may produce beneficial outcomes
(i.e., Lee et al., 2003). External representations, including sketches, aid the design process in

complex design situations (Carroll et al., 1980; Goldschmidt & Smolkov, 2006; Sachse et al.,
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2001), although not all external representations may be suited to a design problem (Jones &
Schkade, 1995). In regards to alternatives and solutions, Kruger and Cross (2006) identified
a ‘solution driven strategy’ whilst Atman et al. (2004) report that experts produce more
alternatives than novices and better quality solutions. Carroll et al. (1980) are the only study
reviewed to explicitly examine the implementation of design constraints in a quantifiable
way. Presently, very little empirical research focuses on designers’ resolution of design
constraints (although an exception is Visser’s (2004) work on the travelling salesman
problem). This may be an artefact of ill-structured design, as little is known about the
applicable constraints at the outset of such design tasks. Here, any constraints identified are
likely the result of individual problem solving strategies. As such, the systematic
manipulation of constraints in ill-structured design tasks is not possible. Indeed, a related
feature of the studies reviewed here is that most refer to ill-structured design. In most
experimental tasks goals were open-ended and constraints were not specified. The publication
of empirical evidence concerning human designers undertaking semi-structured design is
somewhat lacking. Again, Carroll et al. (1980) appear to be an exception. These researchers
provided their designers with a list of explicit constraints and provided a more detailed design
goal. This allowed a quantifiable measure of design performance in terms of the number of
constraints satisfied. It is presently felt that paradigms similar to those used by Carroll et al.
may be a suitable platform for a closer inspection of the role of external constraints in
producing variability in design performance in semi-structured design contexts.

A further notable feature of studies reviewed is the predominance of laboratory-based
studies. None observed designers in applied settings, although many did endeavour to
encourage ecological validity by constructing realistic design tasks. The realities of design in
applied settings may make the systematic manipulation of design features unproductive. Pahl

et al. (2007) point out that many individuals may be involved throughout the various stages
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of design, and as such, group dynamics may complicate the isolation and identification of
effective strategies or helpful cognitive aides. Another potential complication is the variation
in design time spans. In addition, similar design tasks are unlikely to be repeated by multiple
designers. This poses problems to researchers wishing to study designers undergoing
comparable design projects. The conclusion drawn from this is that laboratory studies may be
the most suitable way of studying design under controlled conditions.

1.4 Summary and overview of research objectives

The preceding sections have attempted to identify what is meant by the term design problem
solving, to outline various stages of design, and to describe the level of structure within
design tasks. A case was made for the notion that design activities, whilst inherently
complex, are not always ill-structured. Indeed, some semblance of structure must be imposed
upon a design problem in order for solutions to be derived (Fernandes & Simon, 1999; Goel
& Pirolli, 1992; Restrepo & Christiaans, 2004; Schon, 1987). In addition, some current
design research themes have been discussed and an avenue for potentially fruitful empirical
investigation has been formed. It appears that little empirical research has looked at how
human designers deal with variation in external constraints in design contexts. A preliminary
search for research on design constraints produces many results. However upon closer
inspection, many of the results refer to attempts to model constraint satisfaction using
computerised algorithms (i.e., Mullineux, 2011; Schaerf, 1999), attempts to propose
constraint classification schemes or taxonomies (i.e., Ullman & D’Ambrosio, 1995), or, the
identification of undocumented constraint types in a particular context (i.e., Manz, Brunner &
Woaullschleger, 2006). What is lacking is empirical research of the effects of systematic
variation in constraints on human design performance, accompanied by an appropriate sized

sample to support statistical analysis.
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This gap in the design literature is most likely due to the lack of specification in many
ill-structured design tasks. Creative forms of design are characterised by the presence of few
explicit constraints. Here constraints dynamically emerge as a result of continued design
efforts, via the collection of more design-relevant information. However, a continuum of
design structure exists (Fernandes & Simon, 1999), accommodating design tasks with an
increased level of structure. Semi-structured design activities have improved structure due to
the presence of more specific design goals and the specification of external constraints.
Within these contexts, a closer investigation of controlled constraint variation is possible. The
research thread pursued in the present thesis shall endeavour to utilise such contexts as a
preliminary attempt to address the gap in the literature. More specifically, the experimental
work that follows focuses on the role of constraint variation in constraint satisfaction
performance. Two research questions are posed;

1. What forms of variation in external constraints lead to variation in design efficiency?
(Experiments 1-5)
2. Can training methods be used to improve design performance? (Experiments 6-8)

The only question yet to be addressed is why attempt to empirically study design?
Despite the difficulty in empirically investigating aspects of design such as constraints,
research aimed at isolating aspects of design performance variation is a worthy pursuit.
Indeed, design is a pervasive activity that permeates both formal disciplines and day to day
activities (i.e., route-planning; Visser, 2004). The consequences of bad design are, at the best
inconvenient, but in some situations can be costly and even dangerous. As such,
endeavouring to accumulate knowledge that may shed light on aspects of design difficulty
may have promising applications. Indeed, Ball et al. (1997) state, “the more we know about
how designers design, the more we should be able to counteract ineffective design strategies

by means of education, training, and computer-based support” (p 248).
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CHAPTER TWO

Psychological underpinnings

2.1  Psychological theories

There are a number of theories of problem solving. Few have been extended or adapted to
encompass design problem solving. However, the most applicable and widely referenced
theory of human problem solving, Newell and Simon’s (1972) problem space theory, has
been extended to design contexts. The following section aims to outline the main features of
problem space theory and discuss its application to the examination of constraint variation in
constraint satisfaction contexts. Following from this, other principal theories of problem
solving that are applicable to the first research thread (What forms of variation in external
constraints also lead to variation in design efficiency?) are briefly addressed.

Problem space theory. Problem space theory (Newell & Simon, 1972) stipulates that problem
solving activities are bounded within a problem space. Here a problem solver must transform
the problem from its current state, through a series of intermediate states to the desired goal
state by applying a number of operators. The problem space contains all of the intermediate
state spaces possible. Therefore, problem solving is essentially a search and navigation
through this problem space. Efficient problem solving is denoted by discovering the most
direct route through the problem space. Intertwined with problem space theory is Simon’s
(1979) information processing (SIP) theory. SIP theory suggests that problem solving is
essentially an information processing task. As such, problem solving success depends heavily
upon the amount of task relevant information. Should a larger problem space abound, more
task relevant information needs to be encoded, weighed and utilised. At the same time, the

maintenance of task goals, partial solutions and progress monitoring may become a much
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more taxing process. As such, the cognitive load entailed in searching larger problem spaces
should be expected to increase accordingly.

The application of problem space theory to design problem solving has received some
criticism (Goel, 1994; Goel & Pirolli, 1992; Guindon, 1990; Purao, Rossi & Bush, 2002).
Criticism is usually based on the notion that problem space theory was developed to account
for well-structured problem solving. In well-structured problem solving all relevant task
information is presented at the outset. Here boundaries of the problem space can be
estimated, possible states are known, and a direct pathway can be surmised from the
application of sound logic and known operators. However, should ill-structured design be the
focus, then the lack of inherent structure is mirrored by the lack of clarity in the
corresponding design problem space. Indeed there is some suggestion that multiple problem
spaces may be utilised by designers in the initial stages of ill-structured design (Dorst &
Cross, 2001). In contrast, this criticism of problem space theory is not so applicable within
semi-structured design problem solving contexts. Here, a problem space is more closely
defined. The parameters within which problem search can take place is known and the
problem rules are known. As such, the problem state space is well-specified. What remains
unclear in such semi-structured design spaces is the optimisation of legal operators and the
derivation of a pathway to a suitable solution (note the absence of one, optimal solution). As
such, problem space theory is considered to be relevant to the research that follows.

Since its conception, various extensions and amendments have suggested further
properties of problem spaces. Simon and Lea (1974) proposed an extension regarding the
inclusion of a rule or operator space that exists alongside the state space. They suggest that as
the rule space expands, complexity in regards to the applicable legal operators increases. This
increased complexity in the rule space also increases the complexity when traversing the state

space. Indeed, both Simon and Lea (1974) and Kotovsky, Hayes and Simon (1985) suggest
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that as the number of operators increase, problem spaces becomes larger and more complex
to traverse. This has implications for variation in design constraints. Whilst SIP theory would
indicate that additional constraints increase the information processing load, an expansion in
the rule space and rule space complexity (Simon & Lea, 1974; Kotovsky et al., 1985)
initiated via the introduction of more constraints, should also increase the complexity of
navigating through the problem space. Reductions in design efficiency could result. This
theme shall be empirically investigated in Experiments 1 and 2.

Relational complexity theory & interactivity theory. Other variation within a design rule
space (Simon & Lea, 1974) may have further implications for the complexity of a design
task. In semi-structured constraint satisfaction contexts, both goals and constraints are
specified at the outset of a task. Therefore, when considering the transition from one problem
state to another, a subset of the constraints outlined will be applicable. Therefore, the
variability in terms of the qualitatively differing types of constraint that need to be considered
when performing a transformation may also be a source of performance variation, regardless
of the overall size of the rule (or constraint) space.

Sweller and colleagues (Paas, Renkl & Sweller, 2004; Sweller, 1994; Sweller,
Chandler, Tierney & Cooper, 1990; van Merri€rboer & Sweller, 2005) notion of element
interactivity suggests that, in learning contexts, having to integrate information from different
sources in order to perform a cognitive task may be a source of difficulty. Whilst not
previously applied to design contexts, Halford and colleagues (Halford, Baker, McCredden &
Bain 2005; Halford, Cowan & Andrews, 2007; Halford et al., 1998) similar notions of
relational complexity were formulated to be applicable to all cognitive activity, regardless of
context. Relational complexity theory, building upon notions of information processing and
parallel processing limitations (Schneider & Detweiler, 1987), proposes that decisions that

require the processing of multiple pieces of interrelated but qualitatively distinct information
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are more complex. In relation to constraint satisfaction design, should multiple interrelated
constraints be applicable to a proposed design move, then accurate evaluation of that design
move may be problematic. As such, the successful transformation of one design problem
state into another, closer to a satisfactory goal state, should be more difficult. Should this be a
recurring issue within a design task, reductions in design efficiency could result. This theme
shall be empirically investigated in Experiments 3 and 4.

Differing forms of constraint processing and their match with the external representation.
A final source of constraint variation that may affect the complexity of a design task may be
the nature of certain external constraints. It may be the case that some types of constraint are
easier to implement than others. They may be less complex to process, or the nature of the
processing required may be better supported by the external representation provided.
Cognitive fit theory (Shaft & Vessey, 2006; Vessey, 1991; Vessey & Gellata, 1991) suggests
that when problem information is well-emphasised or well-represented within an external
representation, then a greater degree of cognitive fit is evident. When a good match is
achieved, problem solvers can use similar cognitive strategies to process both task
information, here external constraints, and also to process representational information.
Indeed, the previous review of literature concerning external representations implies that the
format and suitability of the external representation is crucial in supporting efficient design
activities (Carroll et al., 1980; Jones & Schkade, 1995). In design contexts, an implication
may be that qualitatively differing forms of constraint processing may be differentially
supported by the same external representation. For instance, should a design task contain
spatial constraints then a suitable spatial representation would enable a good degree of
cognitive fit. However, should temporal constraints be applicable, a spatial representation
may not provide a good degree of cognitive fit. Whilst present research efforts do not

examine variation in the external representation, the degree of cognitive fit engendered by
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variation in the nature of constraint processing, with a set representation is examined more
closely in Experiment 5.

The rest of the experimental work will focus on training methods. As this constitutes a
qualitative and theoretical shift in the examination of constraint satisfaction design, relevant
theories shall be addressed later in the thesis.

2.2  Experimental paradigms

Two experimental paradigms were developed for present purposes. Each was selected and
developed on the basis that no specialised knowledge would be required. In addition, the
contextual familiarity should result in no need to train participants as to the nature of the task
and also means that no elaborate introductory cover story need be constructed. In addition,
practical considerations such as the length of the design process, and the ability to carry out
data collection in a single laboratory session factored in task selection. One constraint
satisfaction paradigm entailed the spatial arrangement of a hypothetical office layout (adapted
from Carroll et al., 1980). The other involved the creation of educational or academic
timetables.

Both tasks contained some comparable or equivalent task features. Firstly, each
contained a number of design elements. Each design element was a necessary feature of the
completed design. Therefore, incorporation of each design element was a pre-requisite of any
completed design. In the spatial office arrangement, design elements were employee offices.
In the timetabling paradigm, design elements were the classes that required a slot in the
schedule. Secondly, each contained a number of explicit design constraints. Constraints
stipulated restrictions on how design elements should be incorporated into a design. These
constraints were categorised according to a two-tier hierarchy. Low-level specific constraints
stipulated a restriction on a particular design element (or elements). High-level general

constraints stipulated a rule for implementing a subset of specific constraints. For instance,
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given the office design paradigm a general constraint may stipulate that someone high in

status requires a more prestigious office location. Applicable specific constraints may

indicate that one employee may be higher in status than another. An example may be,

“Employee B is higher in status than employee D”. Both experimental paradigms are

discussed in detail in the following sections.

2.2.1 Timetabling design task

Timetabling occurs in many practical settings. In educational contexts timetables must be

carefully organised and implemented. In workplace settings work activities are scheduled

around organisational resources, constraints and deadlines. Likewise, healthcare systems

implement procedures to provide timely and appropriate care. These selected examples

highlight the importance of timetabling for productivity and efficiency in a number of applied

settings. As such, timetabling principles should be familiar to most individuals, and extensive

task training should not be required. Design elements within the timetabling paradigm

developed were classes that needed to be scheduled into a timetable. General constraints were

presented as timetabling rules. The seven rules, developed to appear ecologically valid given

the context, were as follows:

1) Classes must be scheduled in chronological order (i.e., Biology | must precede Biology
1)

2) Classes must be scheduled so that theory classes precede practical classes (i.e., Music
Theory must precede Music Practical)

3) The same teacher cannot be scheduled into consecutive timeslots if the classes are taking
place in different locations

4) Teachers should not be scheduled for periods when they are not available

5) Rooms should not be scheduled for periods when they are not available

6) The number of students per class should not exceed the capacity of the room allocated
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7) The required class facilities must be met by the room allocated to that class

Specific constraints were comprised of more exact restrictions derived from the
application of relevant timetabling rules to a class (design element). For instance, should the
hypothetical class History | have 80 students, the specific restriction derived from rule 6 is
that History I should be scheduled to occur in a room that can accommodate this number of
students. Should a History Il be present, timetabling rule 1 (above) would result in the
specific constraint that History Il must appear later in the timetable than History I. A Java
platform was developed that allowed a number of timetabling features, including any
applicable general constraints, to be programmed and compiled into a timetabling task.

Programmable features included the following:

e The timetable: The number of days and timeslots in which classes could be scheduled into
were set.

e Timetabling rules (general constraints).

e Teachers: Teachers could be named and the periods in which they were available could be
detailed.

e Classes: Classes were labelled. A teacher could be assigned to the class. The number of
students and various required facilities could also be assigned to the class. In addition,
classes could be linked to other related classes (i.e., English I, English I1).

e Rooms: Class rooms could be labelled. Classes were also assigned a capacity and
facilities. The times when the room was available for the scheduling of classes could also
be designated.

Once compiled, tasks were presented via two computer monitors. One monitor
depicted the timetable outline and a number of class tiles located towards the bottom of the

screen (see Figure 2.1). Participants were able to drag class tiles into desired timeslots. Once
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a class had been dropped into a timeslot, participants were prompted to select a room and

location in which to conduct the class via selection from a drop down menu (see Figure 2.2).

B 1con Demo: Please Select a class - 1o x|
Finishad ?

Timelabling Task

Days/Slots 9:00am 10:00 am 11:00 am 12:00 pm 13:00 pm

[RI2)
Monday

Tuesday

A
Wednesday

INiA
Thursday

A IMiA
Friday

Geography | Physical
Education

.| ProtB1adon Dr Tranter
| Linguistics Photography

[ Praf Hunt Drwilliams ‘

Dr Cullen Dr Cullen DrTranter
German German Law
Theory Practical Practical

-
o ==
Please choose Room
AN1 |~
AN1
ANZ
| I

Figure 2.2. Example room selection menu

Another computer monitor was used to display other timetabling information. Figure
2.3 depicts an example information screen. At the top of this screen the timetabling rules are
displayed. Beneath this, information regarding each class to be scheduled is shown. Here
participants can view the class capacity and facilities required, as well as noting who teaches
the class and whether there are any class prerequisites. Towards the bottom of the screen,

information concerning teacher availability is displayed. Finally, at the bottom of the screen
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the available rooms were detailed. Here room availability was detailed along with room

capacity and room facilities.

o [=l 3|
Timetabling rules
1. Classes on the same subject must be scheduled in order (e.g., Biology | must precede Biology Il
2. Classes must be scheduled so that any theary class precedes its corresponding practical class
3. The same Professor cannot be scheduled into consecutive times|ots if the classes are in different locations
4. Teachers should not be scheduled for periods when they are not available
5. R0OMs should not be scheduled for periods when they are unavaitable
6. The number of students per class (noted on each class tile) should not exceed the capacity of the allocated room
7. The facilities required by amy class (e.g. projector) must be in the allocated room
Classes
Agriculture Waths I Soriology | [ Religious Gtudies [ Design Practical Graphics | Engineering Art Graphics I Voga
Teacher of class Prof Sallis |Dr Webb Prof Sallis |Dr Stokes Dr Evans Prof Lawrence |Prof Sallis Dr Evans Dr Stokes Praf Sallis
Number of students |33 43 92 323 52 323 24 58 59 92
Required facilities  |Board Projectar, Computers |Board Board Computers, Board |Computers Computers, Workstations [Workstations |Projector, Computers |Projectar
Prerequisite 1 Maths | Graphics |
Prerequisite 2 Design Theory
Classes 2
Modern His..[Archaealogy Th Practical Maths | Music Practical Chemistry | Chemistry | Design Theory| Music Theory
Teacher of class |Dr Stokes |Dr Stokes Dr Webhb Prof Lawrence |Dr Evans  Dr Webh Dr Webh Dr Evans |Prof Lawre... |Prof Lawrence| +|
nNumber of stud. |38 102 105 38 ] 59 55 117 78 50
Science Kit, Board T
Required faciliti...|Board Projector Computers, Workst... \(Computers, B... |Projector EITKSTBUEIFI\S ! Board, Science Kit, Workst...|Board Computers  |Projector, B...
Prerequisite 1 Chemistry | Sociolo... -
Teacher Availability
I Prof Sallis I DrEvans I Dr Stokes I Prof Lawrence I DrWebh ]
Awailanility |Tuesday Friday [wednestday Thurstday |Marctay Friday [Monctay Thurstay [Tuestay wednesday <]
Rooms for classes
22a GeoZ1 JPLT Geod
Capacity 110 120 23 70 =
Location Annex 1 Geostiences Park Place (Geosciences
Computers, Board, Computers, Board,
Facilities Projector, Computers Science Kit, Workstations orkstations Projector, Board
Awailability Monday Tuesday Tuesday Wednesday Monday Thursday Friday Wednesday Thursday |

Figure 2.3. Example of a timetabling information screen

A number of dependent measures of timetabling efficiency could be extracted from
any timetable design. Product measures include the number of classes scheduled successfully
(those with no constraint violations), the number of constraint violations in the end design,
and the time taken to complete a timetable design. Process measures include the number of
design moves (defined as a class placement, class deletion or the rescheduling of a class) and
the number of errors made throughout the timetabling process.

2.2.2 Office layout design task
Another form of constraint satisfaction that may occur in many practical settings is spatial
arrangement design. Spatial arrangement design has been undertaken in nearly all functional

spaces, both public and private, although public areas may be subject to more strict design
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rules. Some examples include manufacturing production lines and catering Kitchens.
Similarly to timetabling design contexts, the design of spatial layouts should not be
completely unfamiliar to most individuals and no elaborate task cover story should be
required. The present office design paradigm was adapted from one used by Carroll et al.
(1980). Design elements here were the employees’ offices. As in the timetabling task, the
general constraints here were rules for the successful implementation of lower-level specific
constraints, introduced via paper instructions studied before the presentation of the design
task. The specific constraints, that appear upon commencement of each task, are binary in
nature, as they specify a restriction on the location of one employees office relative to that of
another employee. For example, one of Carroll et al.’s (1980) original arrangement rules was
that employees who use a particular work area more often should have an office positioned
closer to that area. A specific constraint related to this rule might be that employee B uses the
accounting area more often than employee F.

All office design tasks were programmed in Java. Each task allowed participants to
view a number of specific constraints and a set of seven or eight employees to be arranged
into office spaces. Differing sets of employees could be selected when necessary. Also,
differing sets of specific constraints could be uploaded to a task via a text file. Movable
interface components allowed participants to construct corridors and offices, and also to
assign employees to offices within the workspace. On first presentation, each office task
program contained a representation of an office floor plan from a bird’s eye view as depicted
in Figure 2.4. This representation included a main corridor for the office complex, with a
reception and accounting department at either end. The office space was contained within a
set space, indicative of boundary walls. Dependent measures of design efficiency within this

paradigm include the product measures; number of specific constraints satisfied and the time
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taken to complete the design. The process measure, number of design moves can be

calculated via review of design videos.

I
|

@ Offices () Corridors (JA (B OC D (E OF (UG (UH Distances: from Reception: None from Accounting: None

Figure 2.4. Example of office design task upon task commencement
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CHAPTER THREE

Number of constraints

3.1 Do more constraints lead to greater design difficulty?

In order to successfully transverse the problem space and formulate a solution, information
from various sources needs to be assimilated into a meaningful problem representation.
Within both experimental paradigms outlined in the previous chapter, much of the relevant
information is provided via a task goal and a number of external constraints (both specific
and general constraints). Indeed, in constraint satisfaction paradigms, external constraints
may make up the bulk of all information to be processed. As such, variation in the number of
external specific design constraints should be expected to impact upon design cognition and
subsequent design performance.

Presently, little empirical research attests to the impact of variation in constraint
numbers on human design performance. At the ill-structured end of the design spectrum,
where goals are vague, and constraints are not explicit at the outset, the dynamic and
changeable nature of the task does not lend itself to the systematic manipulation of
constraints. Despite the lack of evidence, there is some suggestion that further constraints
serve to reduce the number of viable design possibilities, as they may be beneficial in setting
parameters, narrowing down the problem space and restricting design search to more viable
design pathways (Besnard & Lawrie, 2002; Visser, 2006). Design tasks with a greater degree
of structure, such as constraint satisfaction problems, allow more strategic variation of
constraints whilst retaining some important features of design tasks (dynamic
transformations, no set pathway to solution and no known best solution). In such contexts, it
is unclear whether more constraints act to limit the problem space in a helpful manner.
Indeed, as the problem space is already defined, additional constraints may constitute an

increase in task complexity and also an increase in cognitive workload. The following
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discussion aims to outline a number of theoretical reasons for speculating as to why the
presence of more specific constraints may induce deterioration in performance within
constraint satisfaction design.

Newell and Simon’s (1972) influential problem space theory details human problem
solving as a search or navigation through possible problem states. Operators (rules or
constraints) act to transform one problem state to another. Further extensions to problem
space theory distinguish between a state space outlining all possible problem configurations,
and a rule space outlining the constraints restricting the transformation from one problem
state to the next (Burns & Vollmeyer, 2002; Simon & Lea, 1974; Zhang & Norman, 1994).
Changes in the rule space necessarily impact upon search within the state space (Simon &
Lea, 1974). Kotovsky et al. (1985) theorised that the larger the problem space associated with
a task, the more difficult a task will be. Here it is proposed that the greater the number of
constraints, and therefore the larger the rule space, the more complex navigation of the state
space becomes. In the relatively more researched field of traditional, structured problem
solving, there is evidence to attest to the notion that larger constraint/rule spaces are a source
of problem difficulty. An example is the work of Davies (2003) who found that problem
solving on the Tower of Hanoi (ToH) became more complex and required more careful
planning when the number of discs and corresponding constraints increased.

Simon’s (1979) information processing theory may offer further insight into why
greater numbers of constraints may lead to greater difficulty and performance deterioration
within constraint satisfaction problems. This approach implies that much of the difficulty
involved in any task is a result of the amount, and complexity, of information to be
processed. In unfamiliar tasks, designers have to rely heavily on working memory to process
all relevant information. Larger numbers of specific constraints will impose greater load on

working memory. As working memory is known to have a limited capacity (Baddeley, 1992;

36



Miller, 1956), at some point information to be processed will surpass working memory
capacity. At this point a designer may attempt to expend additional cognitive effort to
maintain design standards by encoding design information (Newell & Simon, 1972).
Alternatively, designers may be unable or unwilling to deploy memory resources to aid
performance. In this case, deteriorations in various design performance measures could be
expected. However, there is reason to suggest that designers will not choose to encode design
information. Recent research in human-computer interaction indicates that a more
cognitively-intensive, memory-based strategy is unlikely to be adopted in problem situations
when a computer continually displays all relevant problem information. In these instances, a
display-based perceptual strategy is usually adopted as this requires the least cognitive effort
on the part of the problem solver (Anderson, 1996; Gray, Sims, Fu & Schoelles, 2006;
Morgan, Patrick, Waldron et al., 2009; Waldron, Patrick & Duggan, 2010). However, this
strategy is likely to come at the cost of reduced memory of task progress (Waldron, Patrick,
Morgan & King, 2007). In constraint satisfaction situations, such as those outlined
previously, this may translate into a reduced ability to monitor design progress and may
ultimately result in unmet or forgotten constraints. As such, a greater number of specific
constraints accompanied with greater working memory load should lead to reduced design
efficiency.

In summary, both problem space theory (Newell & Simon, 1972), it’s extensions
(Burns & Vollmeyer, 2002; Kotovsky et al., 1985; Simon & Lea, 1974; Zhang & Norman,
1994) and Simon’s (1979) information processing theory imply that additional specific
constraints applied to a constraint satisfaction problem will strain mental resources. The
following experiments aim to establish whether increasing the number of constraints taxes

cognitive resources to such a point so as to affect design performance.
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3.2 Experiment 1
The previous discussion of human information processing (Simon, 1979) and problem
solving (Newell & Simon, 1972; Kotovsky et al., 1985) concluded that the presence of a
greater number of specific constraints, in a constraint satisfaction context, should increase
task complexity and subsequently lead to performance deterioration. This prediction is now
examined using the timetabling paradigm, described in the previous chapter (Section 2.2.1).
In the experiment that follows, participants are required to complete three timetable
design tasks. Tasks vary in the number of specific constraints applied. Performance measures
obtained include product measures such as the number of classes successfully timetabled, the
errors (constraint violations) in the end design and the time taken to complete the timetable.
Process performance measures will entail the number of errors made throughout the design
process and the number of design moves utilised. It is expected that increasing the number of
specific constraints applicable within a task will lead to deterioration on all performance
measures. Therefore, tasks with more specific constraints should evidence fewer successfully
placed classes, more errors (constraint violations both at the end of the design process, and
throughout the design process), and also longer design completion times and the utilisation of
a greater number of design moves.
3.2.1 Method
Participants
Sixty psychology undergraduates, aged between 18 and 21 years, with an average age of
18.97 years (SD = .76), took part in the experiment in return for course credit. The sample
consisted of 55 females and five males. None had any experience with the experimental task.
Materials
Experimental materials consisted of three timetabling tasks (see section 2.2.1), displayed via

two interfaces (a timetabling screen and an information screen; see Figures 2.1 & 2.3)
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presented on two adjacent computer monitors. The timetabling screen contained an empty
five day (monday - friday), five timeslot (9am-1pm), timetable. Towards the bottom of this
screen, a resource window displayed the 20 classes to be scheduled into free timeslots. The
information screen displayed further information concerning the attendees and requirements
of each class, the availability of classrooms with various facilities and the availability of the
teachers. This screen also displayed the seven timetabling rules detailed in Section 2.1. Tasks
varied in the number of general constraints (here the applicable timetabling rules) and also in
the number of derivable specific constraints, in order to produce a Low, a Medium, and a

High constraint task. Table 3.1 displays the breakdown of constraint types across task.

Table 3.1. Breakdown of general and specific constraints across timetabling tasks

Low Medium High
constraint constraint task constraint task
task
No. of applicable 3 5 7
general constraints
Exact general Rules2,4,7 Rules1,2,4,56 All rules
constraints applicable (1,2,3,4,5,6,7)
Specific constraints 48 67 97

+ - as calculated by the maximum number of specific constraint violations that may be incurred in each task

Design

A within-subject design was used such that each participant performed all three timetable
tasks. The tasks differed in the number of general and specific constraints applicable. As
such, the independent variable, with three levels, was the number of constraints within the
task; Low (3 general constraints producing 48 specific constraints), Medium (5 general
constraints producing 67 specific constraints), and High (7 general constraints producing 97
specific constraints). The presentation order of tasks was counterbalanced across participants.

Dependent measures were the number of successful class placements (classes not incurring
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any constraint violations) out of the maximum 20, time taken to complete the timetable
design (seconds), and the total number of constraint violations in the end design. Process
measures include the number of constraint violations incurred and the number of design
moves used throughout the design process.

Procedure

Participants were given general instructions describing the nature of the timetabling task
environment, the nature of the information on the two screens available during each
timetabling task (including the possible rules constraining class placement) and how to drag
and drop classes into timetable slots. These instructions were followed by a practice task in
order to familiarise participants with the interactive elements of the interface. This involved
copying a mini-timetable of 12 classes by dragging and dropping classes into the correct
timetable slots. Instructions then explained that participants were required to schedule 20
classes, all an hour in duration, into 5 days (Monday to Friday, between 9am & 1pm), and
that they should do so as quickly and accurately as possible whilst bearing in mind that not all
timetabling rules might be applicable. Following this, participants completed the three
experimental timetabling tasks according to the order they had been assigned. No time limit
was given to complete the timetabling tasks.

3.2.2 Results

Thirty outliers were present within the dataset, constituting 3.33% of all data points. Outliers
were identified by converting data points into z-scores and removing data points with a z-
score outside of the +3.28 range. The process of converting data into z-scores was repeated
on the remaining data points in order to identify any further outliers. After three iterations, no
additional outliers were identified. All outliers were then replaced with grand means in order
to avoid a reduction in sample (Field, 2009). Table 3.2 displays the mean scores for all

experimental performance measures. Means suggest that as the number of constraints
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increase, performance on product measures deteriorate. A similar trend was evident for the
process performance measures with the exception of the number of successful class
placements. Nevertheless, within this measure, those with the greatest number of constraint
rules obtained the lowest scores. A number of within-subject one-way analyses of variance
(ANOVASs) were conducted in order to determine if the number of constraints significantly

impacted on design performance measures.

Table 3.2. The effect of number of constraints on timetabling design performance

Measures of Low Medium High
performance constraints ~ constraints  constraints
Product Successful class  Mean 13.67 14.34 12.10
measures placements SD 5.34 4.07 4.06
End violations Mean 7.32 6.55 10.44
SD 6.50 4.71 5.64
Design time Mean 562.61 687.49 757.27
(seconds) SD 127.48 238.11 223.22
Process Total constraint ~ Mean 10.46 12.40 17.72
measures violations SD 8.39 8.76 8.66
Design moves Mean 26.08 28.13 28.97
SD 5.17 6.13 7.82

Product measures
In regards to the number of classes successfully placed within a timetable there was a
significant effect of constraint numbers, F (2, 118) = 7.57, MSE = 10.43, p < .001, f = .63.
Bonferroni comparisons revealed that significantly fewer classes were correctly placed in the
high constraint task than in the medium (p < .001) or the low constraint task (p < .05), with
no significant differences between the latter two tasks (p = .94).

The number of constraint violations in the end design also indicated a significant
effect of constraint numbers, F (2, 118) = 13.85, MSE = 18.44, p < .001, f = .48. Ponferroni

comparisons indicated more constraint violations for high constraint tasks in comparison with
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both the low and medium constraint tasks (ps < .001 in both instances). No difference was
apparent between the low and medium constraint tasks (p = 1.00).

An effect of number of constraints on design completion time was also found, F (2,
118) = 16.30, MSE = 35796.28, p < .001, f = .52. Bonferroni post-hoc comparisons indicate
that low constraint tasks were completed significantly quicker than both medium (p < .01)
and high constraint (p < .001) tasks. The latter tasks did not significantly differ on completion
time (p = .14).

Process measures

In respect to the measures obtained during the design process, there was a significant effect of
constraint numbers on the number of constraint violations incurred throughout designing, F
(2, 118) = 16.89, MSE = 50.21, p < .001, f = .54. Bonferroni comparisons revealed that the
high constraint task incurred more errors throughout the design process than both the low and
the medium constraint tasks (ps < .001 in both instances). No apparent differences were
found between the low and medium constraint task (p = .29).

Finally, the number of design moves utilised throughout the design process was also
affected by the number of task constraints, F (2, 118) = 3.97, MSE = 33.52, p < .05, f = .26.
Bonferroni comparisons indicated that fewer moves were needed to complete a low constraint
design task in comparison to high constraint task (p < .05). Moves on a medium constraint
task did not significantly differ from either the low (p = .14) or the high constraint task (p =
1.00).

3.2.3 Discussion

The present results indicate that when designing a timetable, increasing the number of
explicit constraints, here general constraints in the form of timetabling rules, and the specific
restrictions that can be derived from them, has an effect on design efficiency. This was

manifested in deterioration of both product and process measures as hypothesised. In respect
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to product measures, greater numbers of explicit constraints resulted in the use of more
design time, in the increased number of constraints violated in the end design, and also in
fewer successful class placements. The number of successful class placements, arguably the
most important indicator of design effectiveness, did not evidence a consistent linear trend of
deterioration as the constraint numbers increased. Nevertheless, performance in the high
constraint task was worse than the other experimental tasks. In respect to process measures,
the high constraint task produced significantly more errors throughout the design process than
other experimental tasks. In addition, the number of design moves utilised was significantly
higher in the high constraints task in comparison to the low, but not the medium constraints
task. Overall, performance in the high constraint task was consistently worse on all dependent
measures.

The present results support experimental predictions and can be explained by the
notion that an enlargement of the constraint space (Simon & Lea, 1974) may increase the
complexity of the overall problem space (Zhang & Norman, 1994). The results are also
consistent with notions of greater numbers of constraints leading to increased information
processing demands, and therefore also increased cognitive load when incorporating more
timetabling rules into the search through problem space (Simon, 1979). In regards to the
suggestion that greater numbers of design constraints may act to more effectively direct
design efforts (Besnard & Lawrie, 2002; Visser, 2006), it appears that whilst this may be the
case in more ill-structured, creative design, it may not be the case for more structured forms
of design such as constraint satisfaction tasks. In these instances, the extent of the design
space is not unknown. Therefore, further restrictions imposed by increasing the number of
constraints may act to restrict the number of viable design options but, at the same time, may

not prove helpful in narrowing the design search or reducing the problem space.
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A particular feature of the present experimental design, which warrants highlighting,
was that throughout all timetabling tasks all seven general constraints (timetabling rules)
were displayed. This was implemented in order to preserve perceptual equality between the
three tasks, as removing irrelevant timetabling rules would have led to noticeable differences
in task layout (by altering the layout of the information screen, see Figure 2.3). This may
have had the unintentional effect of making the low and medium constraint tasks more
difficult, as participants still had to consider all timetabling rules and then identify those that
were relevant to each task. This acts as a more stringent test of the experimental hypothesis as
the presence of all timetabling rules may have suppressed some of the between task
differences. Had only the task relevant general constraints been displayed, then the
differences in design performance observed between conditions may have been greater.

Another notable feature of the present design is that the differing number of general
constraints applied per task did not result in equivalent increases in specific constraints. The
three general constraints in the low constraint task produced 48 specific constraints, the five
general constraints in the medium task produced 67 specific constraints, and all of the
timetabling rules in the high constraint task produced 98 constraints. This differential
increases in constraint numbers is likely to have resulted in a differential increase in task
complexity (as more general constraints are applied). As such, the smaller difference in
constraint numbers between the low and the medium constraint tasks may have made these
tasks more alike in comparison to the high constraint task and may explain why, for the
majority of dependent measures obtained, no significant differences between the low and
medium constraint tasks were evident. Nevertheless, an exception to the trend, a significant
difference in the time taken to complete a low versus a medium constraint design task, is
indicative that these tasks were not necessarily equivalent in complexity. It may be the case

that the additional time taken to complete a medium constraint task (in comparison to a low
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constraint task) may have allowed participants to maintain the level of performance on other
dependent measures. This notion is speculative and cannot be confirmed without replicating
the design in which a suitable time limit is imposed on all tasks.

A few experimental limitations should be acknowledged. Firstly, the present
experiment needs to be interpreted in the light of the timetabling rules (the general
constraints) applied to each task. Just one version of the low and medium constraint task was
used, as there was a limited number of timetabling rules that could be designed out of a task
whilst still having all rules displayed on the information screen (note, all timetabling rules
were displayed during all tasks). Therefore, it may be the case that idiosyncrasies surrounding
certain rules may have contributed to some of the performance differences between the tasks.
One such idiosyncrasy may be that some of the general timetabling constraints may refer to
the relative scheduling of two classes (timetabling rules 1-3), rather than stipulating
restrictions on one class (rules 4-7). This limitation is difficult to overcome in a within-
subjects design. Ideally, provision should be made for a between-subjects replication to
incorporate two differing versions of the low and medium constraint tasks (with differing
subsets of the timetabling rules). A further limitation is that two aspects of constraint
numbers, the number of general and the number of specific constraints co-varied. The present
results and conclusions do not distinguish between the differing forms of constraint variation.
Untangling these timetable design effects, although potentially beneficial, would not be
straightforward and may require a revision of the current experimental paradigm. A final
limitation was the sample. Participants were psychology students without any specific
training in design. Therefore, participants would have had experience of the execution of
timetables and may have some notion of effective principles for constructing them.
Nevertheless, participants were not considered experts so the generalisability of results to

designers with more extensive design experience may not be appropriate. Nevertheless, the
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findings reported here allow insight into what may constitute an important aspect of design
difficulty for designers without formal training. It is further expected that the performance
decrements found in the present study may be experienced in other constraint satisfaction
tasks. These may include, but may not be limited to, manufacturing process scheduling,
spatial layout design, and also computer programming. Further empirical research should
examine this suggestion.

To summarise, the results from the present experiment indicate that there may be a
threshold beyond which increasing the number of explicit design constraints, via changes in
timetabling rules (general constraints), and the specific constraints which can be derived from
them, leads to a more complex problem space. The search or navigation through these more
complex problem spaces exert greater cognitive load upon designers, and lead to performance
decrements. In this instance, when all timetabling rules were applicable to a task,
performance was worse on all experimental measures. Further research should aim to
establish whether similar effects are found in other constraint satisfaction design contexts.
The experiment that follows aims to replicate some of the effects found here in a different
constraint satisfaction context, namely spatial office layout design.

3.3 Experiment 2

Experiment 1 indicated that having more constraints in a timetabling task reduced efficiency
as indicated by performance deterioration on a number of dependent measures. The present
experiment aims to investigate whether increases in constraints in an office layout task results
in similar design performance decrements. As previously outlined, theories of information
processing (Simon, 1979) and problem space (Burns & Vollmeyer, 2002; Newell & Simon,
1972; Simon & Lea, 1974; Zhang & Norman, 1994) indicate that having more information to

incorporate, increases task complexity. This is expected to impact on performance regardless
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of the context of the constraint satisfaction task. As such, experimental predictions are that
more constraints should result in deterioration in design performance.

A subsidiary aim of the present experiment is to overcome some of the
methodological issues surrounding Experiment 1. The use of differing timetabling rules,
constituting different general constraints, raised the possibility that idiosyncrasies between
differing rule sets may have affected results. In addition, number of constraints (specific
constraints) was indistinguishable from the number of constraint types (general constraints)
in that both co-varied together. Such limitations affected the confidence with which
conclusions were drawn. Presently, a between-subjects design with specific constraints
explicit at the outset of the design task proffers more experimental control and greater ease of
interpretation. The present study also offers an opportunity to test whether some of the effects
reported in Experiment 1 generalise to another constraint satisfaction paradigm, namely
office design.

In the experiment that follows, groups of participants completed either a low, medium
or high constraint office design task, whereby varying numbers of specific constraints were
evenly divided amongst three general constraints, here rules restricting the positioning of
employee offices. Performance measures obtained include the proportion of constraints
satisfied in the end design, time taken to complete a design, and the proportion of time
relative to each constraint satisfied. It is expected that having a greater number of design
constraints will increase the complexity of the problem space, increase greater cognitive load
and result in deteriorations in design performance. As such, an office design task with more
constraints should result in a lower design scores, longer design completion times, more time

devoted to each constraint satisfied and more design moves.
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3.3.1 Method

Participants

Forty-five psychology undergraduates, aged between 18 and 26, with an average age of 19.00
(SD = 1.38) took part in the experiment in return for course credit. The sample consisted of
43 females and two males. None had experience with the experimental task. Participants were
randomly allocated to one of the three experimental conditions.

Materials

Experimental materials consisted of three computerised office layout tasks adapted from
Carroll et al. (1980) as described in Section 2.2.2. On first presentation, each office task
program contained a representation of an office floor plan from a bird’s eye view. This
representation included a main corridor for the office complex, with a reception area at the

west end and an accounting department at the east (see Figure 3.1).

g Office Arrangement

Constraints:

D uses accounting more than A
H uses reception more than E
F uses accounting more than B
C uses reception more than G

E is incompatible with A
H is compatible with D
Fis incompatible with C
B is comnpatible with G

F is higher in status than A
C is lower in status than H
E is higher in status than B
D is lower in status than G

@ Offices ) Corridors (OA B C D OE OF G (OH Distances: from Reception: None  from Accounting: None

Figure 3.1. Initial screen on a low constraint office layout design task
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All tasks were programmed in Java and were designed to allow participants to view a
set of either 12, 24 or 36 specific constraints in the form of binary relationships between
fictional employees (labelled A - H) that appeared once the task commenced. Each task
encompassed three general constraints. These were:

e Compatibility; employees who are compatible should have adjacent offices on the same
corridor but employees who are not compatible should not. An example of a specific
constraint derived from this is, “Employee B is incompatible with employee G”.

e Status; employees who are higher in status should have an office closer to the central
corridor. A corresponding specific constraint may be, “Employee A is higher in status
than employee F”.

e Work area; should an employee use a work area more often than another, they should
have an office positioned closer to that area. A corresponding specific constraint might

be, “Employee G uses the reception area more than employee B”.

Repetition in binary constraints between the same two employees never occurred
within the same general constraint or was avoided when possible (that is, in the low and
medium constraint tasks). Within each task, movable interface components allowed the
construction of offices and corridors and the relocation of employees in the workspace.
CamStudio was used to record on screen actions whilst participants produced their office
designs.

Design

A between-subjects design with one independent variable, number of constraints was used.
This variable had three levels; low (12 specific constraints), medium (24 specific constraints),
and high (36 specific constraints). Specific constraints were divided equally amongst the
three general constraints (see Table 3.3). Dependent variables measured include the output

measures; proportion of task constraints satisfied (in order to control for the differing overall
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number of constraints between experimental conditions), time taken to complete the office
design (seconds), and the length of time taken to satisfy each constraint (seconds). The

process measure, number of design moves utilised, is also examined.

Table 3.3. The number of specific constraints applicable to each design element
Low constraint Medium constraint High constraint

Task Task task
General constraint 1 1 2 3
General constraint 2 1 2 3
General constraint 3 1 2 3
Total specific constraints 3 6 9

Procedure

All participants were familiarised with the office design interface and instructed how to
generate design features by copying, and then altering, a mini office arrangement containing
four employee offices from paper instructions. Participants were then asked to read through
instructions detailing the constraints they would be implementing and instructed that they
should complete the task as quickly and accurately as they could. CamStudio recording began
as soon as experimental constraints were displayed. No finish time was set. Participants
terminated performance themselves.

3.3.2 Results

Two participants failed to understand task instructions and complete the task correctly so
their data was deleted from subsequent analysis. Table 3.4 displays the mean scores on each
dependent measure as a function of number of task constraints. Mean scores suggest that
those with fewer task constraints generally satisfied a higher proportion of those task
constraints and that they completed their designs quicker. However, they spent proportionally

more time satisfying each constraint.
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A number of between-subjects, one-way ANOVAs were carried out in order to
establish whether differences were significant. Firstly, a significant effect of number of
specific constraints on the proportion of task constraints satisfied was found, F (2, 40) = 9.66,
MSE = 76.97, p < .001, f = .70. Bonferroni post-hoc comparisons revealed a significantly
higher proportion of constraints were satisfied in the low constraint task in comparison to the
high constraint task (p < .001) but not the medium constraint task (p = .62). Those performing
the medium constraint task satisfied a significantly higher proportion of their constraints than

those performing the high constraint task (p < .01).

Table 3.4. The effect of number of specific constraints on office design performance

Measures of performance Low Medium High
constraints  constraints constraints
(n=13) (n=15) (n=15)
Proportion of constraints Mean .82 .78 .68
satisfied SD .09 A1 .06
Design completion time Mean 656.69 833.53 1026.40
(seconds) SD 168.54 199.21 223.51
Time taken per Mean 66.34 44.72 42.11
constraint satisfied SD 14.02 12.19 9.20
Number of design moves  Mean 43.77 47.40 63.33
SD 15.21 22.71 23.35

A significant effect of the number of specific constraints was also found when
examining time taking to complete a design, F (2, 40) = 12.06, MSE = 39896.80, p < .001, f
= .78. Ponferroni comparisons indicated that those tackling the high constraint task took
significantly longer to complete their designs than those tackling the low and or the medium
constraint tasks (ps < .001, & < .05 respectively). Design time between the low and the
medium constraint tasks did not differ significantly (p = .10). In addition, as overall design

times varied a proportional time measure, time divided by the number of constraints satisfied,
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was examined to give a crude indication of the rate of design progress. A significant effect of
the number of constraints was found on time taken to satisfy each constraint, F (2, 40) =
17.13, MSE = 140.60, p < .001, f = .92. Further Bonferroni comparisons revealed that those
performing the low constraint task took significantly longer, proportionally, per constraint
satisfied, than participants in both the medium and high constraint conditions (ps < .001 in
both cases). Time per constraint did not differ significantly between the medium and high
constraint tasks (p = 1.00).

Finally, a significant effect of the number of specific constraints was found on the
process measure, number of design moves used (F (2, 40) = 3.54, MSE = 440.68, p <.05, f =
42). Bonferroni comparisons indicated that the difference between the number of design
moves utilised in high and low constraint conditions approached significance (p = .06). No
further differences were found.

3.3.3 Discussion

Results imply an important effect of number of specific office design constraints on multiple
measures of design performance. Those undertaking a high constraint task satisfied a
significantly smaller proportion of their task constraints and took longer to complete their
design than those faced with a medium or low constraint task (who did not differ
significantly). In addition, participants in the high condition used more design moves to
complete their design than those in the low constraint condition. Whilst these results do not
indicate a consistent linear increase in design difficulty, a threshold effect is apparent. It
appears to be the case that having to process 36 specific constraints taxes the mental
resources of designer’s to the extent that comparative performance is worse than in all of the
other experimental tasks. In contrast, the doubling of the number of specific constraints
between the low and the medium constraints task did not appear to constitute a great enough

increment to produce significant deterioration in performance. These results provide support
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for the notion that the presence of a large number of specific constraints leads to greater task
complexity. The need to process and integrate additional information into an already complex
problem space results in greater levels of cognitive load (Simon, 1979) and ultimately, lower
standards of design performance.

Further results concerning the amount of time devoted to satisfying each task
constraint do not support experimental predictions. The amount of time devoted to satisfying
each task constraint was calculated in order to provide a crude indication of the rate of
progress. Contrary to expectations, those completing an office design with just 12 constraints
took longer to satisfy each constraint than other groups. Whilst it could be expected that the
fewer constraints imposed in the 12 condition would make satisfying each constraint easier,
due to a smaller and less complex problem space (Newell & Simon, 1972), coupled with a
lower amount of information to process (Simon, 1979), this measure indicated that rate of
progress was actually slower. Whilst seemingly problematic, this result could be interpreted
in a number of ways. It may be the case that having just 12 constraints corresponds to an easy
task where cognitive load is relative low. As such, it may be that participants felt they had a
good chance of improving the design further, coupled with the spare cognitive processing
capacity to do so. This may have led participants to work on the constraints displayed for
longer (proportional to number of constraints in each task). A related explanation may be that
participants completing tasks with just 12 constraints may have not felt time pressures as
keenly as participants completing other experimental tasks. This may have caused there rate
of progress to slow down. Alternatively, a methodological limitation may be responsible
whereby participants continued designing in an effort to seem to have done enough
work/participation in return for the course credit on offer. Participants were advised that their
participation slot would be up to 30 minutes. Whilst experimental instructions urged them to

complete their task as quickly and accurately as possible, participants were notified, upon
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booking an appointment to participate, that this may take up to 30 minutes. No definite
conclusions can be made as to why rate of progress appeared slower for participants faced
with fewer task constraints. Further replications could involve analysing design videos in
order to examine why rate of progress may appear slower in tasks with fewer constraints.

Some further methodological considerations need to be acknowledged. Firstly, just as
in Experiment 1, the current sample were psychology students. Whilst this may be considered
a homogenous sample, it is not expected to greatly affect the results as processing capacity
should not differ greatly from a more diverse sample. Secondly, all participants were
experimentally naive and had no formal design training. However, it is expected that
participants would have some experience, or knowledge of, spatial layouts arrangement.
Therefore, the effects found presently may not generalise to expert designers. In addition to
the above considerations, there were some methodological advantages of the present design
worth highlighting. In Experiment 1 the explicit constraints, timetabling rules, were not
necessarily applicable to every design element (class). Also, the differing numbers of
timetabling constraints necessitated that both the number and the nature of the timetabling
constraints varied between tasks. In the present experiment, a between-subjects design
allowed all three office layout rules to be applied in every task. This allowed control over the
number of both general and specific constraints, and also afforded the construction of design
tasks whereby each general constraint applied to each design element.

In summary, the present results offer further support for the notion that there may be a
threshold beyond which increasing the number of explicit design constraints, leads to
substantial increases in problem space complexity. This results in deterioration in important
measures of performance efficiency, here the proportion of constraints satisfied and the time
taken to complete a design. The time spent satisfying each constraint successfully

implemented did not follow a trend for deterioration in performance with an increasing
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number of specific task constraints. Reasons for this were not clear-cut and no firm
conclusions could be made. Further research could focus more closely on investigating
whether strategic differences exist between those undertaking a task with just 12, rather than
36 constraints.
3.4  Conclusions
Both Experiment 1 and 2 demonstrate that the presence of more explicit design constraints
result in deterioration in design performance, as assessed by various measures of design
efficiency. Both Experiments 1 and 2 compared and contrasted performance in three tasks
with differing levels of explicit constraints. Whilst strict linear deteriorations were not
apparent with the increasing numbers of constraints, there was considerable evidence to
suggest that there was a threshold effect whereby completing a constraint satisfaction task
with the highest numbers of constraints, resulted in many performance disadvantages.
Theoretical explanations of results revolve around notions of enlarged rule spaces
(Burns & Vollmeyer, 2002; Simon & Lea, 1974), and increased problem space complexity
(Newell & Simon, 1972; Zhang & Norman, 1994). Alone, the integration of more
information into a designer’s task representation would increase the cognitive load of the
designer, but when also coupled with greater complexity when searching within that problem
space, greater numbers of explicit constraints appear to tax designers’ cognitive resources
enough to produce deterioration in performance when compared to similar tasks with fewer
constraints. These results, whilst not groundbreaking, are an initial endeavour to fill in the
literature gap concerning human performance on constraint satisfaction design tasks.
Conclusions here confirm similar effects found in more structured problem solving contexts
such as Davies (2003) work with the Tower of Hanoi, where the presence of additional task

constraints resulted in longer task completion times and more task errors.
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Results contradict notions that additional constraints in design contexts may act to
narrow the problem space and more effectively direct design search (Besnard & Lawrie,
2002; Visser, 2006). It is presently suggested that these actions are perhaps more applicable
to more ill-structured, creative design, where the problem space is not bounded at the
beginning of the design process. In constraint satisfaction paradigms, the extent of the
problem space is much clearer from the task specifications, the external representation format
and the explicit constraints supplied. Here, further constraints may still act to limit design
options but may not narrow down the various design options effectively.

In regards to the experimental paradigms used, the office layout task appeared to offer
more experimental control over variables of interest than the timetabling task. The effects of
the number and nature of timetabling constraints were not clearly distinguishable as the
number of general and specific constraints co-varied. The office task allowed more controlled
and systematic variation in lower level, specific constraints. Another pragmatic difference
between the office design and timetabling paradigms is the nature of the constraints. The
office task involved binary constraints, all of which specified an interrelation between two
design elements. Whilst the timetabling task incorporated some constraints indicating a
relation between two design elements (i.e., Biology I must precede Biology II), other
constraints referred to differing scheduling features such as location or teacher availability.
As suggested in the discussion of Experiment 1, it is possible that variation in the types of
constraints may be a source of constraint satisfaction difficulty. Likewise, a possible source
of constraint difficulty in Experiment 2 may have been the growing number of interrelations
between design elements that increased with every additional binary constraint. In a low
constraint office task, each employee would have fewer interrelations with their fellow
employees than in a high constraint office design task. Further research would therefore

benefit from examining whether differences in constraint types, specifically general
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constraint types, and their interrelations with design elements, affects design performance. It
may be the case that some particular general constraints are harder to successfully implement.
Alternatively, having more general constraints, specifying a growing numbers of qualitatively
different interrelations among design elements, may constitute a greater cognitive load. The

following chapter aims to investigate these suppositions.
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CHAPTER FOUR

Variation in the number of qualitatively different constraint types

4.1 Types of general constraints and design elements

Newell and Simon’s (1972) problem space theory, and later extensions of this theory (Lea &
Simon, 1974; Zhang & Norman, 1994) indicate that the presence of greater amounts of
information (such as specific constraints) and task rules (here general constraints) lead to
greater task complexity. Correspondingly, Chapter three concluded that a greater number of
constraints, be they lower level, specific constraints between pairs of employees in the office
task, or more specific and general constraints in the timetabling task, leads to greater design
complexity. The previous chapter also introduced the notion that variation in the differing
types of constraints (the differing general constraints), may also have an impact on design
complexity. Therefore, the present chapter examines whether design complexity and
subsequent design performance is affected by such variation. More specifically, the following
experiments will introduce variation in the number of differing types of constraint, and their
interactions with design elements, whilst keeping the overall number of specific constraints
constant. Relevant theories are now considered.

In the field of instructional design, the notion of cognitive complexity as a result of
variation in element interactivity has been proposed. Sweller and colleagues (Paas et al.,
2004; Sweller, 1994; Sweller et al., 1990; van Merriérboer & Sweller, 2005) suggest that it
may not be the number of information items in any material being studied that is a source of
cognitive complexity, but whether these items can conceivably and effectively be considered
in isolation. In instances where element interactivity is high and information from a number
of differing sources needs to be assimilated, greater cognitive load will be placed on the

learner. For instance when learning technical information, element interactivity will be higher
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when trying to incorporate information from a range of sources, compared to learning from
worked examples where this information is already integrated. Whilst problem solving
performance and learning are not always separate or distinguishable processes (Anderson,
1993; Schnotz & Kirschner, 2007; Sweller et al., 1990, van Merriérboer & Sweller, 2005),
the notion of interactivity, albeit phrased somewhat differently, has been proposed as a source
of cognitive complexity in all human activity. Indeed, memory processing capacity has been
deemed to extend to the parallel processing of around four items (Schneider & Detweiler,
1987) indicating that all cognitive activity may be limited by whether items need to be
considered in parallel rather than serially. Similarly, relational complexity theory (Halford et
al., 2005; Halford et al., 2007; Halford et al., 1998) suggests that processing capacity is
constrained not just by processing limitations but also by the complexity of the items to be
processed. Halford et al. (1998) indicate that complexity increases with the number of
interrelated aspects (related sources of variation) that need to be processed in parallel. They
further propose that as relational complexity increases, so will cognitive load. These authors
speculate that the need to process an aspect with more than four interrelated aspects may
overwhelm working memory capacity and should result in deterioration in performance.

In the context of constraint satisfaction design, both Sweller and colleagues’
interactivity theory of cognitive load (Paas, et al., 2004; Sweller, 1988; Sweller, 1994;
Sweller et al., 1990; van Merriérboer & Sweller, 2005), and Halford and colleagues’ theory
of relational complexity (Halford et al., 2005; Halford et al., 2007; Halford et al., 1998) may
provide insight on how variation in the differing types of constraints applicable to a design
element effects the ease and efficiency with which that element is incorporated into a design.
When more constraint types interact with, or are applicable to each design element, the
section of the problem space that the designer must negotiate when integrating a design

element becomes more qualitatively complex. For instance, given an office design task,
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employee A may be subject to three specific constraints. These specific constraints may all be
of the same constraint type (i.e., status, “A is higher in status than C...lower in status than
F... lower in status than H”), or could fall under multiple general constraints (i.e., status, “A
IS higher in status than C”, compatibility, “A is compatible with F”, and work area, “A uses
the reception area more often than H”). It is apparent that the latter example requires the
integration of more qualitatively different dimensions of information when selecting a
position for employee A. An outcome of this is that cognitive processing capacity may be
taxed, or indeed exceeded, and design performance may deteriorate. This notion is consistent
with the extensions of Newell and Simon’s (1972) problem space theory that imply that an
expansion in the problem rule space are a source of task complexity (Simon & Lea, 1974;
Zhang & Norman, 1994). Therefore, an increase in the amount of qualitatively differing types
of constraint (presently more general constraints), without an increase in the number of
constraints (here specific constraints), would still constitute an expansion in rule space. An
outcome of such an expansion should be increased task complexity and performance
deteriorations may occur. The rest of this section will now discuss preliminary evidence of
such effects in related disciplines.

There is a lack of empirical evidence investigating whether variation in the
qualitatively differing types of constraints affect human performance in constraint satisfaction
contexts. However, within the cognitive load literature, Sweller et al. (1990) found that
during the learning of technical material, worked examples that integrate relevant diagrams
and text produced better learning outcomes in high school children than conventional
methods with the same relevant information spread over a variety of sources. These authors
indicated that having to attend to and integrate various sources of relevant information,
perceptually spread out over different modalities and different sources, was a cause of

increased cognitive load that could lead to deterioration in performance. Similarly, various
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studies of relational complexity have indicated that having a greater number of informational
items to consider when reasoning results in performance deterioration. For instance, Birney
and Halford (2002) presented psychology students with suppositional reasoning problems
containing either four or five relational aspects. They found that participants reasoning with
five related items made more errors and had longer response times than those reasoning with
just four items. A later study by Halford et al. (2005) found that problem solving
performance in adults required to match a graphical depiction of numeric results to a verbal
description of those results deteriorated as the number of item interrelations increased.

Within the field of computer science, attempts to automate the constraint satisfaction
procedure have highlighted some principles, or heuristics, that researchers believe to be both
important and helpful. Burke and Petrovic (2002), and Burke, Petrovic and Qu (2006) suggest
that an effective heuristic in timetabling is that the design element with the largest number of
requirements should be placed first. Likewise, Schaerf (1999) suggests that the most urgent
component, that with the greatest amount of restrictions and the fewest design options should
be placed first. Both of these principles imply that having a greater number of constraints
hinging upon a design element will increase the chances that incorporation of that element
will be problematic. This intuitively encompasses notions of element interactivity and
relational complexity within a constraint satisfaction context.

In summary, the theories and evidence reviewed here imply that having a greater
number of differing constraints interacting with each design element results in greater
relational complexity and greater cognitive load. Within constraint satisfaction tasks, this
should mean that having to consider more general constraints when incorporating each design
element, will be a source of difficulty and should lead to performance deteriorations. Using

the office design task, this hypothesis will be examined.
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4.2 Experiment 3

The previous section reviewed theories of element interactivity (Paas et al., 2004; Sweller,
1988; Sweller, 1994; Sweller et al., 1990; van Merriérboer & Sweller, 2005), relational
complexity (Halford et al., 2005; Halford et al., 2007; Halford et al., 1998) and problem rule
space expansion (Simon & Lea, 1974; Zhang & Norman, 1994). These complementary
theories indicate that when more sources of information (here, differing types of constraint)
are applicable to more design elements, the complexity and subsequent difficulty in
incorporating these elements will increase. The present experiment examines this prediction
using the office layout task.

Participants completed two office design tasks. Both tasks required the arrangement
of eight employees (design elements), with the number of specific constraints per employee
held constant. However, between the two tasks the number of types of constraint applicable
to each employee (or each design element) varied. In one task, labelled the high variability
task, three differing constraint dimensions were applicable to each design element. In the
other task, labelled the low variability task, whilst three different types of constraint were
present within the task, only one or two of these were applicable to any one design element. It
is expected that when performing the high variability task, designers will be subjected to
greater task complexity and increased cognitive load and task performance will be worse in
comparison to that in the low variability task. As such, the high variability task should result
in deterioration on all performance measures.

4.2.1 Method

Participants

Forty students, aged between 18 and 25, with an average age of 19.2 years (SD 1.51)
participated in Experiment 3 in return for course credit. The sample contained 36 females and

four males. None had experience with the experimental task.
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Materials

Experimental materials consisted of four office layout tasks adapted from Carroll et al.
(1980). Each task, programmed in Java, was designed to allow participants to view a set of 18
binary constraints (specific constraints) between fictional employees labelled either A-H, or
S-Z. Tables 4.1 and 4.2 display the division of general and specific constraints according to
each design element. Each task entailed three general constraints stipulating rules for specific
constraint implementation. An equal number of specific constraints pertained to each general
constraint. Across tasks, the number of specific constraints per design element was constant

(half with 3 & half with 6 constraints).

Table 4.1. The number of general and specific constraints applicable to each design element
in a low variability task

Design elements: A B CDETFGH
Specific constraints pertaining to general constraint 1 3 3 3 3
Specific constraints pertaining to general constraint 2 3 3 3 3
Specific constraints pertaining to general constraint 3 3 3 3 3
Total specific constraints per design element 3 6 3 6 3 6 3

N.B. design element labelling interchangeable (A-H, or S-Z).

Table 4.2. The number of general and specific constraints applicable to each design element
in a high variability task

Design elements: S T UV WX Y Z
Specific constraints pertaining to general constraint 1 1 2 1 2 1 2 1 2
Specific constraints pertaining to general constraint2 1 2 1 2 1 2 1 2
Specific constraints pertaining to general constraint3 1 2 1 2 1 2 1 2
Total specific constraints per design element 3 6 3 6 3 6 3 6

N.B. design element labelling interchangeable (A-H, or S-Z).

Two versions of the low and high variability tasks were developed, requiring two sets
of general constraints to prevent any constraint-specific practice effects. The general
constraints used in Experiment 2, those concerning compatibility, status and work area, made

up rule set A. Further constraint rules making up rule set B were as follows:
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e Car park location constraints, for example, “Employee A uses the east car park more than
employee C”, indicating that employee A should have an office situated closer to the east
facing side of the building.

e Lunch arrangement constraints, for example, “Employee F goes out for lunch more than
employee H”, indicating that employee F should have to walk past fewer offices when
exiting the corridor on which their office is situated.

e Noise level constraints, for example, “Employee G requires a quiet office more than
employee D”, indicating that employee G should have an office further away from the
noisy, main corridor.

As in Experiment 2, each task had movable interface components allowing the
construction of offices and corridors and the relocation of employees in the workspace. On
initial presentation, each task program contained a representation of an office floor plan as in
Experiment 2. CamStudio was used to record on screen actions whilst participants produced
their office designs.

Design

A mixed-factor design was used. The independent variable of interest, the level of design

element variability was within-subjects. This variable had two levels; high variability,

whereby all three differing constraint types were applicable to each design element, and low
variability, whereby just one or two of the differing constraint types were applicable (see

Tables 4.1 & 4.2). The between-subjects variable was presentation order. This was fully

counterbalanced, as half of the participants completed the low variability task first, and the

other half completed the high variability task first. Furthermore, to avoid practice effects,
participants were exposed to different constraint rule sets for each task completed. For
example, should a participant have performed a low variability task with rule set A, they

would then complete a high variability task with rule set B. The dependent product measures
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collected were the number of constraints satisfied in the participants’ end design and the time
taken to complete the design. A further process measure, number of design moves utilised
throughout the design process was also collected.
Procedure
Participants were initially familiarised with the office design interface and instructed how to
generate design features by copying, and then altering, a mini office arrangement containing
four employee offices from paper instructions. During each of the counterbalanced
experimental tasks the following procedure was used. Participants were given paper
instructions to read detailing the constraint rules they would be implementing on the
following task and instructed that they should complete the task as quickly and accurately as
they could. CamStudio recording began as soon as experimental constraints were displayed.
No finish time was set. Participants terminated performance when they felt they had satisfied
as many constraints as they could.
4.2.2 Results
Participants with multiple statistical outliers were deleted leaving a sample of 36. As a
precautionary measure, the differing sets of general constraints were compared on the high
variability task in order to check for any differences that may have arose due to differing rule
sets. A paired-samples t-test revealed no significant effect of rule set in respects to the
number of task constraints satisfied (t (34) = 1.00, p = .32), arguably the most important
indicator of design efficiency. Similarly, non-significant results were obtained for task time (t
(34) = .43, p = .67) and design moves (t (34) = .83, p = .41)

Table 4.3 displays the means for all dependent measures as a function of variability in
the number of differing constraint types applicable to each design element. Trends among the
means displayed here indicate that performance in the low variability task was more efficient

on all dependent measures than performance in the high variability task.
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Table 4.3. The effect of general constraint variability on performance in an office layout
design task

Performance measures Low variability High variability

task task

(n=18) (n=18)
Number of constraints satisfied Mean 13.28 12.22
SD 2.93 2.66

Design completion time (seconds) Mean 580.97 668.69

SD 176.84 180.12
Number of design moves Mean 32.36 41.22
SD 11.26 15.12

Paired-sample t-tests revealed a significant difference between these tasks on the
number of constraints satisfied (t (35) = 2.14, p < .05, d = .38), the design completion times (t
(35) =-2.90, p < .01, d = .44) and the number of design moves (t (35) =-3.73, p<.001,d =
.66). However, due to counterbalancing of experimental tasks, a number of ANOVAs are
now reported to ensure additional design measures did not adversely impact upon scores on
dependent measures.

Two-way ANOVAs reconfirmed the effects of task variability on the number of
constraints satisfied (F (1, 34) = 4.63, MSE = 4.33, p < .05, f = .37), on time taken to
complete a design (F (1, 34) = 8.35, MSE = 16592.07, p < .01, f = .50), and also on the
number of design moves utilised (F (1, 34) = 16.91, MSE = 83.60, p < .001, f = .70. In
respects to constraints satisfied, there was no effect of presentation order (F (1, 34) = .04,
MSE = 5.81, p = .84) and no interaction between presentation order and task variability (F (1,
34) = 1.55, MSE = 4.33, p = .22). Likewise, for design time, there was no significant effect of
presentation order (F (1, 34) = 3.61, MSE = 22008.78, p = .07) and no interaction (F (1, 34) =
.64, MSE = 16592.07, p = .43). In respects to the number of design moves utilised, there was

no significant effect of presentation order (F (1, 34) = 2.60, MSE = 121.27, p = .12) but there
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was a significant interaction between task variability and the presentation order of these tasks
on the number of design moves utilised (F (1, 34) = 8.56, MSE = 83.60, p < .01, f = .50), as
those who performed a high variability task first used fewer design moves on this task than

those who performed the high variability task second (see Figure 4.1).
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Figure 4.1. The effect of task variability level and task presentation order on the number of
design moves utilised. Error bars are +/- 1 standard error.

4.2.3 Discussion

The present findings indicate that increasing the variability of qualitatively different
constraint types applicable to each design element results in fewer constraints satisfied,
longer design completion times and the use of more design moves. These results imply that
increases in the level of variability in general constraints surrounding each design element
(despite a constant number of specific constraints) is a source of task complexity and
subsequent task difficulty, consistent with experimental predictions. The results are consistent

with the implications of various theories of cognitive problem solving discussed in Section
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4.1. Problem spaces (Newell & Simon, 1972; Simon & Lea, 1974) may expand in complexity
due to an increase in the number of qualitatively differing types of constraint, without the
need for an expansion in the number of specific constraints imposed. In effect, a distinction is
made between a qualitative enlargement of a rule space as opposed to a quantitative one. As
such, when considering the next design move to implement, the section of the problem space
relevant to a design element is qualitatively more complex when undertaking a high
variability task.

Results are also consistent with implications of Sweller and colleagues’ (Paas et al.,
2004; Sweller, 1988; Sweller, 1994; Sweller et al., 1990; van Merriérboer & Sweller, 2005)
interactivity theory of cognitive load, and Halford and colleagues’ (Halford et al., 2005;
Halford et al., 2007; Halford et al., 1998) theory of relational complexity. Both theories
suggest that in situations where multiple pieces of related information need to be considered
or appraised in parallel, task complexity will increase. In interactivity theory related
information may refer to the differing sources of informational input (i.e., combining
information from diagrams with textual explanations; Sweller et al., 1990). In relational
complexity theory, related information could refer to qualitatively different relationships. The
commonality is that increases in the qualitatively different, but relevant information items is a
source of cognitive complexity. Within the present constraint satisfaction context, qualitative
increases in the number of constraint types applicable to each design element constitutes
increased interactivity, or increased relational complexity, and leads to greater complexity
when searching for efficient design moves when developing a design.

Additional findings indicate that there were no direct effects of task presentation order
on any of the design performance measures. There was, however, an interaction between task
variability and task presentation order when examining the number of design moves utilised.

Participants who encountered a low variability task first used more design moves on the
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subsequent high variability task than those who completed the high variability task first. This
asymmetric transfer, between tasks may be indicative of different strategies. Perhaps when
completing a low variability task first, the relative ease of the task may mean that participants
formulate a strategy whereby they consider each constraint, or general constraint, separately.
Whilst this may prove a successful strategy for a low variability task, however, should
participants attempt to transfer this strategy to the high variability task, the strategy should
prove less efficient. This may result in the need to use additional moves in an attempt to
satisfy more constraints.

A methodological consideration should be acknowledged as it may affect the
interpretation of present results. Whilst the overall number of specific and general constraints
were equivalent for both experimental tasks, the allocation of design elements among general
constraints differed between tasks. Whilst it was intended that a differing subset of
constraints types be applicable to each design element in the low variability task, an artefact
of this was that only four design elements were subjected to each general constraint (see
empty cells in Table 4.1), but all eight design elements were subjected to each constraint type
in the high variability task (see Table 4.2). This may be a confounding form of interactivity,
or relational complexity, that may contribute to the pattern of results obtained. Nevertheless,
it still constitutes a form of variability among general constraints and design elements.

In conclusion, the present experiment indicates that variation in the number of
differing constraint types applicable to design elements has an effect on design efficiency in a
constraint satisfaction paradigm. In particular, the greater the variability between design
elements and the various general constraint types present within a task, the greater the
difficulty in incorporating all of those design elements and constraints into a satisfactory end
design. The variability between the number of constraint types and design elements

introduced presently could be described as the number of constraint types per design element,

69



or the number of design elements per constraint type. This distinction may be important. As
such, the following experiment aims to provide converging evidence that variation and
interrelations between the number of qualitatively different constraint types per design
element (but not in the number of design elements per constraint type) affects design
performance.
4.3 Experiment 4
The results of Experiment 3 supported predictions derived from problem solving theories
concerning increased element interactivity (Paas et al., 2004; Sweller, 1988; Sweller, 1994;
Sweller et al., 1990; van Merriérboer & Sweller, 2005) and greater relational complexity
(Halford et al., 2005; Halford et al., 2007; Halford et al., 1998) as sources of task difficulty.
It also provided some support for the proposition that navigation of the part of the problem
space devoted to each design element becomes more complex in line with increasing the
applicable number of differing constraint types (despite a constant amount of specific
constraints). The present experiment aims to further investigate the notion that increasing the
number of differing constraint types applicable to each design element increases task
complexity and should result in deterioration in design performance. Further, the present
experiment aims to overcome a limitation of the previous experiment whereby the effects of
varying both the number of differing constraint types per design element, and the number of
design elements per constraint type, were intractable. This will be attempted by varying the
number of constraint types applicable to each design element whilst keeping the number of
design elements falling under each different constraint type constant.

A between-subjects design was used. One group of participants completed an office
design task with three qualitatively different types of constraint, another group completed a
task with six constraint types. In both instances, the constraint types stipulated were

applicable to all eight design elements and the quantitative number of constraints, the specific
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constraints remained constant. Design performance measures collected included the number
of constraints satisfied and design completion times. As in Experiment 3, deterioration in
both product measures is expected as a result of the presence of a greater number of
constraint types interacting with each design element.

4.3.1 Method

Participants

Thirty students, aged between 18 and 24, with an average age of 19.93 years (SD 1.35) took
part in Experiment 4 in return for payment. Nineteen were Psychology students, 11 others
studied a variety of disciplines. The sample contained 27 females and three males. None had
any experience with the experimental task. Participants were randomly allocated to one of
two experimental conditions.

Materials

The two office tasks developed for the purposes of the present experiment had the same
representational format as those used in Experiment 3. Each office task, programmed in Java,
contained 24 specific constraints and eight employees labelled A-H. Office tasks varied in the
number of differing general constraints. The low variability tasks contained three general
constraints, whereas the high variability task contained six general constraints. Within tasks,
each design element was subject to six specific constraints distributed evenly among the
differing general constraints. Table 4.4 displays descriptions of the general constraint types
used, as well as the distribution of general constraint types and specific constraints among
design elements for both experimental tasks. CamStudio was used to record on screen actions
whilst participants produced their office designs.

Design

A between-subjects design was used in order to reduce the number of general constraint types

required, as developing new constraints raises the possibility that idiosyncrasies may result in
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some general constraints being harder to implement than others. The independent variable,

level of variability between the differing constraint types and design elements, had two

levels; low (3 general constraints) and high (6 general constraints). An equivalent number of

specific task constraints were divided evenly among general task constraints (see Table 4.4).

Dependent measures were the number of constraints satisfied in each participants’ end design

and time taken to complete the design.

Table 4.4. The division of general and specific constraints per design element for low and
high variability tasks

Low High
variability  variability
task task

General Status: An employee who is higher in status 2 specific 1 specific

constraint 1 should have_ an office positioned closer to the constraints constraint
central corridor

General Compatibility: Employees who are compatible 2 specific 1 specific

constraint 2 should be positioneq in adjac_ent offices, constraints constraint
employees who are incompatible should not

General Work area: Employees who use a particular 2 specific 1 specific

constraint 3 work area more often than another should have  constraints constraint
an office positioned closer to that area.

General Noise: Employees who require a quieter office 1 specific

constraint 4 should have an officg positioned further away constraint
from the central corridor

General Work team: Employees who work in a 1 specific

constraint 5 particular team should have an office adjacent to constraint
another person from that work team.

General Car park location: Employees who use a 1 specific
particular car park more often than another constraint

constraint 6

employee should have their office positioned so
that they are closer to the relevant exit.

Procedure

The procedure and instructions were very similar to that of Experiment 3 with the exception

that participants completed only one experimental design task. The same practise activities

were used. Again, there was no time limit for task completion.
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4.3.2 Results

No screening issues were found. As a precautionary measure, a paired samples t-test was
used to compare general constraints 1-3 and 4-6 within the high variability task. Results were
not significant (t (14) = 1.01, p = .33). This was interpreted as an indication that differences

in the difficulty of the differing sets of general constraint types did not impact upon results.

Table 4.5. The effect of general constraint variability on performance measures in an office
layout design task

Performance measures Low variability  High variability
task task
Number of constraints satisfied  Mean 17.67 13.87
SD 2.53 2.62
Design completion time Mean 761.33 733.87
(seconds) SD 178.74 221.22

Table 4.5 displays the means on both dependent product measures as a function of the
level of variability in general constraint types. Means indicate that participants performing a
low variability task satisfied approximately four more specific design constraints than those
completing the high variability task. An independent samples t-test revealed that this
difference was significant (t (28) = 4.05, p < .001, d = 1.53). In contrast to Experiment 3,
mean time (seconds) taken to complete an office design was slightly higher in the low
constraint type task. However, these design times between the low and high variability tasks
did not differ significantly (t (28) = .37, p =.71).
4.3.3 Discussion
Results indicated participants undertaking a low variability office design task, satisfied more
specific constraints than those completing a high variability task. This result supports
experimental predictions as derived from the implications of Sweller and colleagues’ theory
of interactivity and cognitive load (Paas et al., 2004; Sweller, 1988; Sweller, 1994; Sweller et

al., 1990; van Merriérboer & Sweller, 2005), and also Halford and colleagues’ similar theory

73



of relational complexity (Halford et al., 2005; Halford et al., 2007; Halford et al., 1998). As
such, having a greater number of qualitatively different constraint types to consider when
attempting to position design elements appears to be an important source of task complexity
and subsequent design difficulty.

This result also provides further support to the notion that variation in the qualitative
complexity of the problem space surrounding each separate design element is a source of task
difficulty. Simon and Lea’s (1974) extension of problem space theory (Newell & Simon,
1972) suggested that the task problem space was made up of a state space defining all
possible task states and a rule space defining the operators and restrictions applicable within
that task. Simon and Lea also proposed that the size of these spaces and the interaction
between these spaces determine task complexity. The present experiment, and the proceeding
one, indicate that variation in the complexity of the general constraint space, or the rule
space, surrounding each design element, is also a source of performance variation. Here the
increase in complexity is achieved via the introduction of a greater number of qualitatively
differing rule dimensions rather than via an increase in the overall number of constraints
applicable.

Further results concerning time taken to complete a design task did not support
experimental predictions. It could be the case that had participants completing the high
variability task invested more time, they may have been able to improve upon the number of
design constraints that they satisfied. However, in order to do so, time efficiency would
deteriorate. The lack of a significant difference in design completion times between
experimental tasks is difficult to interpret. Payne and Duggan (2011) suggest that in uncertain
problem solving environments, when faced with a problem of considerable complexity, there
are several reasons why someone may terminate problem solving efforts whilst not having

reached a satisfactory solution. One such reason is a frustration effect. Another is an inability
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to monitor whether forward progress is being made, or the evaluation that further efforts will
not act to improve upon a problem solution. Indeed, uncertain stop-criteria are a typical
feature of design tasks with some researchers speculating that the designer will need to select
their own stop criteria (Goel & Pirrolli, 1992). It could be speculated that the added
complexity of the high variability task may lead to any of the personal stopping criteria
outlined by Payne and Duggan (2011).

As in Experiment 3, the present experiment has a methodological consideration that
should be acknowledged. Whilst the present design overcomes the limitation of having
differing numbers of design elements per general constraint type, it also has another form of
variation that may affect the interpretation of the results. Here, design elements in the low
variability task had two specific constraints falling under each of the three differing constraint
types, whereas elements in the high variability task had just one specific constraint pertaining
to each of the six general constraint types. An artefact of this was that the high variability task
contained double the number of general constraints per task than the low variability task. It
appears that both attempts to systematically introduce variability between the number of
differing constraint types applicable to each design element introduces another, unintentional
form of variation.

In summary, present results offer support to the proposal that variability in the number
of qualitatively different constraint types applicable to each design element, is a source of
performance variation in constraint satisfaction tasks. Whilst no effect of altering the
variability between design elements and the number of applicable constraint types was found
for design completion times, the number of explicit constraints satisfied decreased as

variability increased.
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4.4 Conclusions

Experiment 3 and 4 offer converging support for the notion that design element variability, as
instigated via the number of qualitatively differing constraint types applicable to each design
element, is an important determinant of task complexity and subsequent task difficulty.
Increasing variability has clear and consistent effects on the number of constraints satisfied.
However, mixed effects were found in relation to design completion times, with an effect
found in Experiment 3 but none in Experiment 4. For the greater part, results support
theoretical implications derived from the theory of element interactivity (Paas et al., 2004;
Sweller, 1988; Sweller, 1994; Sweller et al., 1990; van Merriérboer & Sweller, 2005) and
relational complexity theory (Halford et al., 2005; Halford et al., 2007; Halford et al., 1998).
Both imply that increasing the number of items that need to be considered in parallel will
increasingly tax and then maybe also exceed designers’ mental resources. Results also
support extensions of problem space theory concerning rule spaces. Simon and Lea (1974)
suggest that a rule space will interact with a state space to determine problem complexity. As
such the size of the rule space is a determinant of task complexity (Simon & Lea, 1974,
Zhang & Norman, 1994). The distinction made presently is that an increase in the size of the
rule space does not necessarily refer to the inclusion of more items of information; this would
constitute a quantitative enlargement, as examined in the previous chapter. Instead qualitative
enlargements, via the presence of more information dimensions, are a cause of cognitive
complexity and performance difficulties.

In relation to experimental design, both experiments had related methodological
considerations. It appears that interactivity, or relational complexity within the office design
paradigm is a delicate issue. Variation in one form of interactions necessitates another form
of variation. For instance, in Experiment 3, variability between design elements and the

number of differing constraint types relevant could be defined as the number of constraint
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types acting upon each design element, or, the number of design elements falling under each
constraint type. In Experiment 4, the number of specific constraints per general constraint
type varied. Untangling some of these forms of variation may be beyond the scope of the
office task paradigm.

An aspect that has not been discussed as yet is whether the nature of the constraint
types, rather than the number of them, is a further source of design complexity and
performance variation. It may be the case that certain constraint types are harder to
implement than others. Comparisons of the differing sets of general constraint types in
Experiments 3 and 4 did not uncover any differences in the ease of applying the sets of
general constraints utilised so far. However, it is possible that the nature of certain constraints
may still play a role in determining design difficulty. For instance, a difference may exist in
the ease of satisfying a constraint that specifies a relationship between two employees and a
physical reference point, as opposed to the ease of satisfying a constraint stipulating the
relationship between two employees in reference to those who surround them. It could be the
case that constraints containing reference points that are also design elements (with
requirements and restrictions of their own), may be harder to implement. As such, there may
be a differential ease with which certain constraint types interact with, and translate onto the
external representation. The following chapter shall focus on whether such variation in the
nature of constraints, and their interplay with the set external office representation impacts

upon design performance.
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CHAPTER FIVE

Constraints and cognitive fit

5.1  Cognitive fit between differing constraints and the external representation
There is growing interest in the interplay between problem information (here constraints), a
problem solution and a problem representation (Scaife & Rogers, 1996; Shaft & Vessey,
2006). Whilst the preceding experiments have explored variation in constraint satisfaction
performance as a result of variation in the quantitative or qualitative number of constraints,
the present discussion focuses on whether qualitative differences in the processing of certain
categories of constraints, and their interplay with the external problem representation, may be
a source of task complexity. The discussion that follows outlines how external
representations may differentially support design cognition, and introduces cognitive fit
theory (Shaft & Vessey, 2006; Vessey; 1991; Vessey & Gellata, 1991) as a theoretical
framework accounting for why an external representation may be better suited to supporting a
certain type of information, or constraint, processing. Following this, differences in constraint
processing within the office design paradigm are outlined in respects to implications derived
from cognitive fit theory.

Problem-solving is inexplicably bound to concepts of problem representation (Dym,
1992). Indeed, there is some suggestion that the structure of the external representation plays
a crucial role in directing cognitive efforts and determining cognitive efficiency (Carroll et
al., 1980; Visser, 2006; Zhang, 1997; Zhang, 2000; Zhang & Norman, 1994). Likewise, there
is also evidence suggesting that differing forms of external representation may differ in the
suitability in which they support cognitive processes (Jones & Schkade, 1995; Moreno,
Ozogul & Reisslein, 2011; Novick, 2001). Cognitive fit theory formalises and explains what
underlies variation in external representation suitability. Cognitive fit theory stipulates that

when problem information is emphasised, that is, well represented within the representational

78



or presentational format, a greater degree of fit is achieved (Shaft & Vessey, 2006; Vessey,
1991; Vessey & Gellata, 1991). When the degree of cognitive fit is high, problem solvers can
use the same cognitive strategy to process both presentation and task information, leading to
more effective problem solving (Kwon, Lee & Mustapha, 2011; Vessey, 1991). Put simply,
the presence of a greater degree of cognitive fit affords a degree of computational offloading
(Gibson, 1979; Gero & Kannengiesser, 2012) that may relieve the cognitive load experienced
by the problem solver. In contrast, when the degree of cognitive fit between task information
and the external representation is low, problem solvers may need to instigate effortful
cognitive transformations in order to assimilate problem information satisfactorily. This will
require greater cognitive effort, and may tax processing limitations leading to poorer problem
solving performance.

Given an already complex problem solving context such as constraint satisfaction
design, variation in the level of cognitive fit between the processing requirements of differing
constraints and the external representation may be a crucial determinant of task difficulty and
subsequent performance efficiency. There is some preliminary evidence to attest to the
differential ease with which certain constraints may be satisfied within constraint satisfaction
contexts. Both Carroll et al. (1980) and Visser (2004) report that spatial constraints may be
easier to satisfy than temporal constraints. Carroll et al. also touch upon ideas of cognitive fit
when proposing that spatial constraints lend themselves more easily to external spatial
representation whilst temporal constraints appear harder to represent externally. Carroll et al.
further propose that sourcing an appropriate external representation may alleviate some of the
difficulty in satisfying temporal constraints. The rest of this introduction is now devoted to
discussing underlying causes of variation in cognitive fit in the present office design

paradigm. Firstly, further distinctions, or constraint categories, are proposed. Afterwards, the

79



nature of their interplay with the external representation and the subsequent cognitive fit is
explored.

In the office paradigm, all external constraints pertain to a spatial arrangement task
and are essentially spatial in nature. However, there is a distinction to be made between
constraints that reference a fixed point (an anchor point) in the problem representation, or
constraints that simply reference other design elements. An example of a specific constraint
referencing a fixed point (forthwith referred to as fixed constraints) within the design
problem representation is, “Employee B uses the reception area more than employee G”, with
the corresponding general constraint stipulating that B should be positioned closer to this
fixed point. Other task constraints relate to the relative positioning of a design element in
relation to another element, or in relation to how many neighbouring elements it should have
(forthwith referred to as non-fixed constraints). Examples of non-fixed constraints include,
“Employee H requires a quieter office than employee C”, indicating that employee H should
be adjacent to fewer occupied offices, and, “Employee D is compatible with employee F”
indicating that they should be positioned in adjacent offices.

It is this distinction between fixed and non-fixed constraints that may be crucial in
determining the level of cognitive fit between task information and the external
representation. When attempting to satisfy a fixed constraint, an unmovable, physical anchor
point is available for use when monitoring the implementation of that constraint. As such, this
physical anchor serves as an external memory point, highlighting problem information and
affording a degree of computational offloading (Gibson, 1979; Gero & Kannengiesser, 2012).
Here a good degree of cognitive fit is achieved. However, the monitoring and implementation
of non-fixed constraints is not afforded any similar cognitive support within the present
external office representation. Here designers need to actively track the relative positioning of

design elements and perhaps also actively monitor any changes to the neighbouring design
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elements should any changes be implemented. Designers will need to source, or if not yet
assimilated into a design imagine, the positioning of other relevant design elements. An
example office design is now used to demonstrate some of these differing processing

requirements.

Figure 5.1. Example office design

Table 5.1. Examples of fixed and non-fixed constraints applicable to employee F

Fixed constraints Non-fixed constraints
1. Frequires a quieter office than C and 4. Crequires a quieter office than F and
should be positioned further from the should be positioned next to fewer
main corridor than C. adjacent offices than F.
2. His higher in status than F and should be 5. F goes out for lunch more often than H,
positioned closer to the main corridor therefore F should pass fewer other
than F. employee offices when exiting their
3. G uses the reception area more than F and corridor in comparison to H.
should be positioned closer to this area. 6. G isincompatible with B, therefore these

employees should not be adjacent.

N.B. Adjacent defined as in office directly above or below another so that they share an office wall
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Figure 5.1 displays an external representation with an office design containing eight
design elements. Consider the example fixed and non-fixed constraints, pertaining to
employee F detailed in Table 5.1. In both lists only one constraint is currently satisfied.
However, this is much easier to detect within the fixed constraints. In addition, should a
designer attempt to implement more constraints satisfactorily, sourcing design moves that
would satisfy additional fixed constraints is simpler. Here a designer need only track the two
relevant employees and assess their distance from a fixed point that is perceptually easy to
pick out in the representation. In contrast, when attempting to satisfy another non-fixed
constraint two employees and their neighbours must be considered, a more complex process
with little computational support from the external representation. Having to implement a
larger number of non-fixed constraints should serve only to compound these difficulties. As
such, the greater the proportion of non-fixed constraints, the harder it should be to
successfully implement, monitor or evaluate design progress.

5.2  Experiment 5

This experiment aimed to assess whether increasing the proportion of fixed constraints within
a task produces greater levels of cognitive fit between the constraints stipulated and the
external representation. In order to test this, four groups of participants performed differing
office design layout tasks. Each task contained a different proportion of fixed and non-fixed
constraints, all with equivalent numbers of specific constraints and general constraints. It was
expected that the greater the proportion of fixed constraints, the greater the degree of
cognitive fit (Shaft & Vessey, 2006; Vessey, 1991; Vessey & Gellata, 1991). This greater
cognitive fit should afford a degree of computational offloading (Gibson, 1979; Gero &
Kannengiesser, 2012) not available when processing non-fixed constraints. The outcome of

improved cognitive fit should be better design performance.
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5.2.1 Method

Participants

Forty-five psychology students, aged between 18 and 24 (mean 19.07 years, SD 1.17) took
part in Experiment 5 in return for course credit. The sample consisted of six males and 39
females. None had any experience with the experimental task. Participants were randomly

assigned to one of four experimental conditions.

Materials

Six office design tasks were developed for the purposes of the present experiment. All were
programme in Java with the same presentational format as that used in previous office design
tasks. Each office task allowed the participants to view a set of 27 specific constraints,
relating to eight design elements (employees labelled A-H), that were divided equally
amongst three general constraints. The number of fixed and non-fixed constraints varied.
Table 5.2 displays the combinations of fixed and non-fixed general constraints used in each
experimental task. Cam Studio was used to record participants on screen actions throughout
each.

Design

A between-subjects design was used with one independent variable, proportion of fixed and
non-fixed general constraints; all fixed, 2/3 fixed, 1/3 fixed & No fixed. As a precautionary
measure, tasks comprising both fixed and non-fixed constraints had two versions (labelled A
& B). In these tasks, the general constraint type (fixed or non-fixed) in the minority was
varied in order to reduce the possibility that the idiosyncrasy of this qualitative change may
effect dependent measures. Once again, the dependent measures were the product measures

number of constraints satisfied and time taken to complete the design.
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Table 5.2. General constraints used in each experimental task

All fixed 2/3 fixed 1/3 fixed No fixed
constraint constraints constraints constraints
(version A) (version A)
General Fixed - Work Fixed - Work Fixed? - Work Non-fixed -
constraint &% employees area; employees area, employees  Noise; an
using a work using a work area using a work area employee who
1 area more often  more often than ~ more often than  requires a quieter
than another another should another should office than
should have an have an office have an office another
office positioned positioned closer  positioned closer employee should
closer to that to that area to that area have fewer
area adjacent
neighbours
General Fixed - Status; Fixed - Status; Non-fixed - Non-fixed -
constraint empl_oyees_who emplpyees_who Noise; an Compatibility;
are higher in are higher in employee who employees who
2 status should status should requires a quieter are compatible
have an office have an office office than should have
closer to the closer to the another adjacent offices,
central corridor.  central corridor. ~ employee should employees who
have fewer are incompatible
adjacent should not.
neighbours
General Fixed - Car park  Non-fixed! - Non-fixed - Non-fixed -
constraint location; Compatibility; Compatibility; Lunch
employeeswho  employeeswho  employees who  arrangement ; an
3 use a car park are compatible are compatible employee who

more often than
another should
have an office
closer to that side
of the building.

should have
adjacent offices,
employees who
are incompatible
should not.

should have
adjacent offices,
employees who
are incompatible
should not.

goes out for
lunch more often
than another
walk past fewer
other offices
when exiting
their corridor

1 Version B of this condition substituted this non-fixed general constraint for the non-fixed constraint, noise (an
employee who requires a quieter office than another employee should have fewer adjacent neighbours).
2 Version B of this condition substituted this fixed general constraint for the fixed constraint, status (employees
who are higher in status should have an office closer to the central corridor).

Procedure

The procedure and instructions were very similar to that of Experiment 4. Participants
completed only one experimental design task and the same practise activities were used.

Again, there was no time limit for task completion.
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5.2.2 Results

One participant was excluded as they failed to follow experimental instructions. High levels
of kurtosis were found within the 1/3 fixed constraint condition. However, transformations
were not applied as they may alter the interpretation of the data (Tabachnick & Fidell, 2007).
In order to check whether there were any idiosyncratic differences as a result of the differing
versions of general and specific constraints within the 2/3 and 1/3 fixed constraints
conditions, independent samples t-tests were conducted. For the 2/3 fixed constraint
condition, there was no difference of task version (A or B) on the number of constraints
satisfied (t (9) = .81, p = .44) or design completion time (t (9) = -.84, p = .42). For the 1/3
fixed constraint condition, there was also no effect of task version on the number of

constraints satisfied (t (9) = -1.79, p = .12) or design time (t (9) = 1.56, p = .15).

Table 5.3. The effect of varying proportions of fixed constraints on office design
performance measures

All fixed 2/ 3 fixed 1/3 fixed No fixed
constraints  constraints constraints  constraints
(n=12) (n=11) (n=10) (n=11)
Number of Mean 19.33 17.64 13.60 11.00
constraints satisfied SD 2.53 2.16 2.07 3.38
Design completion Mean 1231.17 1093.09 1163.40 1088.64
time (seconds) SD 323.88 366.93 282.87 291.48

Means for both dependent measures are displayed in Table 5.3. These indicate that
participants completing an office design task entailing only fixed constraints satisfied the
highest number of design constraints. In contrast, those undertaking an office design task
entailing only non-fixed constraints satisfied the fewest task constraints. Participants
completing tasks entailing combinations of these constraints (2/3 & 1/3 fixed constraint
conditions) showed intermediate performance in terms of the number of constraints satisfied

(see Figure 5.2)
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A one-way, between-subjects ANOVA revealed a significant effect of the proportion
of fixed constraints on the number of constraints satisfied (F (3, 40) = 24.00, MSE = 6.74, p <
.001, f = 1.34). Bonferroni comparisons indicated that participants in the All fixed condition
satisfied more constraints than both the 1/3 fixed condition and the no fixed constraint
condition (ps < .001) but not significantly more than the 2/3 fixed constraint condition (p =
.75). In addition, participants in the 2/3 fixed constraint condition satisfied more constraints
than those in the 1/3 fixed constraint condition (p < .01) and the no fixed constraint condition
(p <001). Performance between the 1/3 fixed constraint condition, and the no fixed constraint
condition did not significantly differ (p = .16). A further linear analysis was conducted. A
significant linear effect was found (F (1, 40) = 70.51, MSE = 6.74, p < .001). Deviation from
this linear effect was not significant (F (1, 40) = .75, MSE = 6.74, p = .48). As indicated in
Table 5.3, there was no apparent trend in the design completion times. A one-way between-
subjects ANOVA confirmed that there was no significant differences between experimental

conditions for design completion times (F (3, 40) = .52, MSE = 101749.54, p = .68).
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Figure 5.2. The effect of the proportion of fixed constraints on the number of design
constraints satisfied. Error bars are +/- 1 standard error.
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5.2.3 Discussion and conclusions

The present results indicate that varying the proportion of fixed and non-fixed constraints,
both quintessentially spatial constraints, has an effect on the number of constraints satisfied,
arguably the most important indicator of design efficiency. A linear effect of greater fixed
constraints was established, with no significant deviation from this trend detected. These
results support the idea that there exists differences in the ease of satisfying differing types of
spatial constraint (i.e., Carroll et al., 1980). Further, evidence that the interplay between these
differing forms of constraint and the external representation is provided. This interplay is
explained by cognitive fit theory (Kwon et al., 2011; Shaft & Vessey, 2006; Vessey, 1991;
Vessey & Gellata, 1991). When problem information is emphasised within the external
representation, the representation will afford a degree of computational offloading (Gibson,
1979; Gero & Kannengiesser, 2012), as the same processing strategies, revolving around a
fixed representational reference point, can be used to process constraint information and
assimilate constraints into the external representation. Presently, good cognitive fit is evident
between fixed spatial constraints. The lack of an equivalent representational affordance, or
match, results in reduced cognitive fit when processing non-fixed constraints. Here, designers
are likely to experience substantially more cognitive load. Put simply, within the present
experiment, design constraints are more readily implemented when cognitive activity can be
anchored around an easily recognised feature within the external solution representation.

An alternative explanation of the results concerning the number of constraints
satisfied is possible. It may be the case that having a greater proportion of non-fixed
constraints results in greater task complexity for other reasons. In order to implement a non-
fixed constraint, at least some of the constraint-relevant design elements must already be
positioned within the external office representation. This is also true of fixed constraints, but

to a lesser extent as typically there are fewer design elements to consider when implementing
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a fixed constraint. Nevertheless, this may be another way in which reduced cognitive fit is
demonstrated, as a certain level of transformational cognitive processing is needed before a
non-fixed constraint can be implemented (Kwon et al., 2011). This may have resulted in
more design moves being needed to cope for the dynamically changing patterns of
implemented constraints in tasks with greater proportions of non-fixed constraints. No firm
conclusions can be made. Transcribing of design videos could be attempted to find out if this
suggestion is valid.

Results concerning time taken to complete a design task did not support experimental
predictions, as there was no clear ascending pattern of results in line with decreasing
proportions of fixed constraints. As in Experiment 4, these results are difficult to interpret.
Possible variation in task completion times may be due to frustration effects, differences in
the belief that further progress can be made or difficulty to monitor further design moves
(Payne & Duggan, 2011). What is apparent is that stop criteria may vary between individuals
both between, and within conditions.

There are a couple of methodological considerations that should be acknowledged as
they may affect the interpretation of present findings. Firstly, the designers used here were all
psychology undergraduates. None had any formal design training or any previous experience
with the experimental task. As such, it may be the case that an increased importance was
assigned to the presentational format as a basis for task exploration and subsequent cognitive
activity (cf., Scaife & Rogers, 1996). The presentational format used here was an external
representation of the office space, with some fixed features. Should the novelty of the task
make these fixed features more salient, then differences in cognitive fit between the external
representation and the differing subtypes of constraints may become exaggerated. Visser
(2004) reported that despite initial difficulty incorporating temporal (as opposed to spatial)

constraints in a travelling salesman paradigm, this abated somewhat as the designers gained
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more task experience. It could be the case that differences in the ease of implementing non-
fixed constraints may diminish with more experience. As such, some caution should be
advised when generalising the present results to more experienced designers.

In summary, the present experiment indicates that performing an office design task
containing greater proportions of non-fixed spatial constraints leads to deterioration in the
number of constraints satisfied, an important determinant of performance efficiency. This is
attributed to a reduced degree of cognitive fit between the task constraints and the
representational format provided, as the representation affords cognitive benefits only when

processing fixed spatial constraints.
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FOREWORD TO FOLLOWING EXPERIMENTAL CHAPTERS

Attention so far has remained focused upon performance variation as a result of systematic
changes in explicit design constraints. The remaining experimental work is now devoted to
examining whether training interventions may prove beneficial in improving design
performance in constraint satisfaction contexts. In particular, the following chapters will
focus on practice and also on metacognitive training interventions. The following discussion
provides a brief introduction to the training literature.

Training refers to a systematic approach to induce learning and development (Aguinis
& Kraiger, 2009; Goldstein & Ford, 2002). The overall goal of training is to enhance
individuals’ knowledge, skills and abilities (Holladay & Quifiones, 2003; Yamnill &
McLean, 2001). Within occupational and organisational training domains, training has been
accredited with individual, team and organisational performance benefits (Goldstein & Ford,
2002; Patrick, 1992). Presently, focus is placed on the training and acquisition of constraint
satisfaction skills on an individual basis. At this level of analysis, documented benefits of
training interventions include the acquisition of declarative, procedural and strategic
knowledge (Aguinis & Kraiger, 2009). However, not all training schemes are guaranteed to
produce such benefits. The effectiveness of training may vary depending on the design and
delivery of the training, and also depending on the complexity and requirements of the task
being learned (Aguinis & Kraiger, 2009; Arthur, Bennett, Edens & Bell, 2003; Salas &
Cannon-Bowers, 2001; Tannenbaum & Yukl, 1992). Salas and Cannon-Bowers’s (2001)
narrative review of the training literature concluded that the most effective training strategies
present relevant information to be learned, create opportunities for practice, and provide

feedback.
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Further important distinctions can be made between certain types of feedback
(Patrick, 1992). Intrinsic feedback is the information that a problem solver can gleam simply
from simple task exposure. The level of intrinsic feedback may vary according to the task.
For instance, in motor learning tasks such as darts, with increasing levels of practice learners
would be able to judge what adjustments may be needed, and change their strategy
accordingly in order to hit the target (Annett, 1991). However, in complex cognitive tasks,
the utility of environmental feedback may be unclear. Here, the intrinsic feedback gained
from task exposure may be hard to process. In contexts such as constraint satisfaction,
intrinsic feedback may be of use in familiarising designers with the application of task rules.
Whether intrinsic feedback would be of further benefit is unknown. Extrinsic feedback is the
provision of task relevant information above what may be gained from simply practicing a
task. Here, additional information on task strategies and progress is provided in order to hone
cognitive processes. There are typically two sources of extrinsic feedback: that provided by a
trainer, or that elicited from the problem solver. Such feedback may be quickly assimilated
and utilised. Whilst the use of intrinsic feedback accumulated via practice alone may produce
slow learning effects, practice with extrinsic feedback achieves more rapid improvements
through initiating cognitive changes (Annett, 1991; Lussier & Shadrick, 2006).

Whilst a combination of the training design features suggested by Salas and Cannon-
Bowers (2001) should lead to the optimal design performance, instructional designs may
focus more closely on particular elements. For instance, practice is both simple and easy to
administer. Lussier and Shadrick (2006) suggest a key feature of practice is that it may help
performance to speed up. However, an extensive amount of training may be required in order
to achieve this. Nevertheless, practice may allow individuals to assimilate intrinsic feedback
and spontaneously improve. As such, the possibility that practice may lead to performance

benefits without the need to engage in more effortful training interventions aimed at changing
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behaviour cannot be ruled out. Chapter 6 examines whether the intrinsic feedback available
via practice, and variability in the amount of such practice, can lead to spontaneous
improvements in constraint satisfaction design.

Following on from the examination of practice and intrinsic feedback, Chapter 7
examines the utility of additional, extrinsic feedback. Extrinsic feedback comes in many
forms and varieties. Examining the utility of all forms of extrinsic constraint satisfaction
feedback would be a mammoth undertaking and is beyond the scope of this thesis. Presently,
a couple of select interventions are examined. Feedback involving self-explanation, a source
of self-generated metacognitive feedback, is gaining increasing attention as a method of
inducing performance improvements on cognitive tasks. Shin et al. (2003) suggest that
solving ill-structured problems may require metacognitive activities such as self-justification.
Given the little empirical evidence concerning constraint satisfaction in humans, it is not
surprising that metacognition has yet to be examined as a potential constraint satisfaction aid.
Chapter 7 aims to address this gap in the literature.

A final notable feature of training interventions is the method by which performance
improvements are measured. The effectiveness of training is typically assessed via
comparative performance on transfer tests (Schmidt & Bjork, 1992) relative to a control
condition (and relative to any other training conditions of interest). These transfer tasks
typically fall into two categories; near transfer and far transfer. In a near transfer task, task
features are similar to that used in the training phase, whereas in far transfer tasks task
features differ to some degree (Holladay & Quifiones, 2003; Yamnill & McLean, 2001). The
degree of similarity between training and transfer tasks may be based upon multiple task
characteristics, including the breadth of domain knowledge, the performance context and the
functionality of the task solution (Barnett & Ceci, 2002). Positive transfer on a near transfer

task may indicate a task-specific form of skill acquisition or learning, whereas, positive
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transfer on a far transfer task may be indicative of the acquisition of more general skills and
strategies (Gray & Orasanu, 1987; Healy, Wohldmann, Sutton & Bourne, 2006). Whilst, task-
specific learning may be relatively easy to achieve, these benefits are typically outweighed by
the acquisition of general skills. When general transfer is achieved, flexibility in the

application of learnt skills is demonstrated.
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CHAPTER SIX

Practice, practice schedules and intrinsic feedback

6.1  Practice as training

Theories of skill acquisition have outlined the various mechanisms and processes through
which skilled performance may be encouraged. Arguably the most influential theory,
Anderson’s (1982, 1987, 1993, 1996) theory of skill acquisition, proposes that skill is
underlined by the accumulation of declarative and procedural knowledge, that is, knowing
how to apply task knowledge in a timely manner in order to achieve a desired goal. Such
activities should lead to rule familiarisation and schema development (Paas, 1992; Pashler,
Johnston & Ruthruff, 2001). An integral part of accumulating procedural and declarative
knowledge is engaging in task practice.

The experiment detailed in this chapter focuses solely on the impact of intrinsic
feedback, accumulated solely through simple task practice, on constraint satisfaction
performance. In addition, the effects of repeated practice trials are also scrutinised. Intrinsic
feedback refers to the task-relevant learning that occurs via simple exposure to a task
(Patrick, 1992). Intrinsic feedback can encompass environmental feedback and improved
memory for task features. Such feedback has been sufficient enough to produce some
performance benefits in motor tasks, however, improvements in other forms of skill
acquisition is usually only seen once extensive practice has been undertaken. (i.e., Annett,
1991; Newell & Rosenbloom, 1981). Nevertheless, it is important to gauge whether the
intrinsic feedback available through practice can lead to better design performance in
constraint satisfaction contexts. Should any performance advantages be gained by practice
alone, it may be the case that additional performance benefits are gained via engaging in

repetitive practice trials.
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Presently, there is a diminishing body of empirical evidence surrounding practice
without further instruction in complex cognitive problem solving. Most of the recent
literature documents training developments that incorporate some form of additional training
instruction and are not relevant to the present discussion. The empirical studies that do
document practice without extrinsic feedback have turned their attention to exploring how
practice schedules may affect task performance. Evidence concerning practice schedules is
now reviewed briefly.

There is some suggestion that increasing amounts of practice result in reduced
cognitive load and fewer performance errors (Carlson, Sullivan & Sneider, 1989; Lussier &
Shadrick, 2006; Wickens & Hollands, 1999). Shute, Gawlick and Gluck (1998) found that
learners in a computer-based statistics course performed better on a performance test if they
had engaged in more practice problems per topic tested. Likewise, Yeo and Neal (2004)
found that participants given multiple practice trials on an air traffic control task showed
increasingly higher performance. Whether such improved performance transferred to other
tasks was not tested. Both of these studies indicate that repeated opportunities to practice
have beneficial effects for learning in complex problem-solving domains. Newell and
Rosembloom (1981) proposed a relationship between practice and performance such that the
speed of skilled performance should be dependent upon the number of practice trials,
performance on the first practice trial and the learning rate. Essentially, when performing
repetitive tasks, performance should improve substantially after the first trial, but subsequent
improvements will decrease exponentially until performance plateaus (Patrick, 1992).
Intuitively, increasing the number of practice trials should result in improved performance,
above and beyond that apparent after one practice trial. Whether this is true on constraint

satisfaction design shall be the focus of the experiment that follows.
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In order to assess whether there are any beneficial effects of the intrinsic feedback
available via simple task exposure, or via greater levels of such practice trials, evaluation
criteria need to be established. The potential beneficial effects of any skill acquisition
acquired via practice or training interventions are typically measured via the amount of
positive transfer between training and transfer tasks. Positive transfer between any training
intervention and a transfer task often depends upon the similarity between the skills, the
description of the task and contextual factors (Yamnill & McLean, 2001). Greater transfer is
often accredited to greater similarity (Holding, 1965) although gauging similarity may be
problematic. Yamnill and McLean (2001) distinguish between near and far post-training
performance. Near transfer tasks require the application of trained/practiced skills to similar
tasks. Here positive transfer may be expected to be greater. Far transfer tasks are dissimilar
from the tasks encountered in the training stage. Barnett and Ceci (2002) argue that
descriptions of near and far transfer vary widely in the training literature. They propose that
near and far can refer to various features of a transfer task such as the knowledge
domain/discipline, contextual factors or the timing of transfer tasks. Presently, a near transfer
task is defined as a task with the same structure, carried out in the same context and within
the same discipline. Far transfer is a task within the same discipline and context, but
possessing a differing, enlarged task structure making the task more complex (see
Experiment 1). If positive transfer is shown on a far transfer task (as would be indicated by
more efficient performance for the practice conditions in contrast to a control condition), this
may be taken as evidence that generic skills or heuristics, are acquired during practice
(Schmidt & Bjork, 1992).

6.2  Experiment 6
The previous section indicated that the intrinsic feedback available via practice without

further instruction may be of benefit should multiple practice trials be undertaken. Whilst
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there is a distinct lack of empirical evidence attesting to any cognitive benefits of a single
task exposure, there is some indication that engaging in multiple practice trials may invoke
memory traces and quicken performance (Yeo & Neal, 2004; Shute et al., 1998).

In the present experiment, groups of participants were subjected to differing practice
schedules (1 practice trial, 5 practice trials or no practice). Practice was accompanied by no
further instruction or extrinsic feedback. Only intrinsic feedback was available. Practice tasks
were followed by a near transfer task, whereby the same task structure (the same general and
specific explicit constraints) was applicable. However, superficial differences were
introduced by renaming the classes, teachers, rooms and facilities. In addition, all participants
completed a far transfer task. Here, the task differed not only in superficial differences, but
also in task structure (as induced by increasing the number of general constraints).

Given the complexity of the timetabling constraint satisfaction paradigm utilised here,
it is expected that the intrinsic feedback available via repeated practice trials should result in
improved performance in a near transfer task, with fewer errors shown by those participants
undergoing multiple practice trials in comparison to participants with no prior experience and
those undergoing only one timetabling practice trial. Due to the lack of evidence concerning
the value of intrinsic feedback from single practice trials, differences between the 1 trial
group and the control group are not hypothesised. Whether practice and intrinsic feedback
will result in the acquisition of generic timetabling abilities, as would be indicated via more
efficient design performance on the far transfer task in comparison to a control group,
remains unclear. Issues surrounding the specificity of skills acquired during such practice
activities may limit the transfer of these skills. However, should transfer be evident, a greater
level of positive transfer would be expected from those undergoing five, as opposed to one,

practice task.
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6.2.1 Method

Participants

Forty-eight psychology undergraduates, aged between 18 and 25, with an average age of

20.00 years (SD 2.09) took part in the experiment in return for course credit. The sample

consisted of 10 males and 38 females. None had any experience with the experimental task.

Participants were randomly allocated to one of the three experimental conditions.

Materials

Experimental materials comprised of three experimental timetabling tasks: a practice task, a

near transfer task and a far transfer task. These tasks contained 20 classes (design elements)

to be scheduled into a five day timetable, each day containing four hour-long class timeslots

(falling between 9am & 1pm). In addition, a small timetabling copying task and

accompanying print-out of a completed timetable containing 12 classes, was used to

familiarise participants with the interface used. Each timetabling task was programmed in

Java, had accompanying instruction files, and was compiled into the differing running orders

required for each experimental group. Two PC monitors were used to display the two

experimental screens (an information screen displaying timetabling rules and availability and

also a timetabling screen displaying an empty timetable and the classes to be scheduled, see

Figures 2.1 & 2.3). Seven types of general constraint, presented as timetabling rules, were

displayed in every timetabling task. These were:

1. Classes must be scheduled in chronological order (i.e., Biology | must precede Biology
1)

2. Classes must be scheduled so that theory classes precede practical classes (i.e., Music
Theory must precede Music Practical)

3. The same teacher cannot be scheduled into consecutive timeslots if the classes are taking

place in different locations
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4. Teachers should not be scheduled for periods when they are not available
5. Rooms should not be scheduled for periods when they are not available
6. The number of students per class should not exceed the capacity of the room allocated

7. The required class facilities must be met by the room allocated to that class

In the practice and the near transfer tasks only 5 general constraints were applicable.
These were timetabling rules 1, 2, 4, 5, and 6. In addition, the same number of specific
constraints, 67 (inferred from the potential number of task errors that could be made), were
derivable from the timetabling rules stipulated. As such, practice and near transfer tasks were
similar in underlying task structure. Surface differences were introduced by using different
class subjects and by renaming all teachers, facilities and class room names. The far transfer
task contained seven general constraints, namely all of the timetabling rules listed above, and
97 derivable specific constraints. Surface differences were also utilised. As such the far
transfer task was relatively dissimilar both structurally and superficially from the practice and
near transfer tasks. A PowerPoint mathematics task containing multiple numeric equations
was also used. Each equation, presented for 20 seconds, required the multiplication, division,
addition or subtraction of two numbers, each with two digits.
Design
A between-subjects design was used with three levels of the independent variable, practice
schedule; five practice trials, one practice trial, or no practice (henceforth referred to as the 5
trial group, the 1 trial group and the control group respectively). The practice task was not
accompanied by any extrinsic information concerning task progress. A transfer task with the
same underlying task structure as the practice task acted as the near transfer task. A relatively
more complex task, incorporating more general and specific constraints acted as the far
transfer task. Positive transfer on a far transfer task should be harder to achieve as it indicates

that some general task principles, or heuristics, have been acquired. Positive near transfer
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performance is indicative of a degree of task-specific learning and should be easier to
achieve. Dependent measures included the number of classes placed that do not violate any of
the applicable timetabling rules (referred to as successful class placements) and the number
of classes not scheduled at all (referred to as omissions) in both the near and far transfer task.
All experimental tasks were given a time limit of 12 minutes. This was done to
control for the large variation in design time seen in some of the previous experiments (i.e.,
Experiment 1), so that each practice trial was approximately equivalent in the amount of task
experience garnered. This factor also led to the emergence of the new dependent variable,
class omissions. Counterbalancing of the near and far transfer tasks was not deemed
appropriate here. It was considered impractical to have participants perform a task of greater
complexity and then switch back to a simpler task, as this may lead to asymmetrical transfer
effects. A possible outcome of this may be that task presentation order becomes confounded
with the nature of the transfer task. Nevertheless, it seems practical to assess the closer form
of transfer, near transfer performance, before assessing far transfer performance. An
irrelevant mathematics task was used in place of a practice trial for the control group to
ensure these participants did not have an undue advantage due to lack of experimental
fatigue.
Procedure
The control group were instructed on the nature of the mathematics task and then left to
correctly record the answer to as many equations as they could in 12 minutes, with the time
limit here matched to the maximum time allocated to each timetabling task to maintain an
equivalent fatigue effect. Following this procedure, they were familiarised with the
timetabling interface and instructed how to place classes by copying the small timetable from

paper to the screen. Then control participants performed the near and far transfer task.
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Both experimental practice groups were first familiarised with the experimental
interface using the copying task. The 5 trial group then performed the practice task five times
whilst the 1 trial group performed it only once. Following this, both groups performed the
near and far transfer tasks. For all practice, near and far timetabling tasks, participants were

given 12 minutes to schedule as many classes as they could, as accurately as possible.

6.2.2 Results
In order to assess whether practice, and amount of practice, had an effect on timetabling
performance, it was important to assess whether dependent measure scores differed between
the different practice schedules for each transfer task. However, first it is important to
determine whether, during the first practice trial, those in the practice groups had
approximately equivalent levels of performance as would be expected by random allocation
of participants. Independent samples t-tests were performed on scores for both dependent
performance measures on the first practice task undertaken. No significant difference in
successful class placements between the 1 trial group (mean = 11.63, SD = 4.03) and the 5
trial group (mean = 12.43, SD = 4.19) was evident, t (30) = -.56, p = .58. A further t-test
indicated no significant difference for omissions on the first practice task, t (30) =-1.39, p =
.17 (mean = 3.43, SD = 3.88, and mean = 5.13, SD = 2.89, for the 1 trial group and 5 trial
group respectively). Whilst not indicating equivalent performance on first exposure to the
practice task, these results indicate that performance was comparable statistically. As such,
any differences in transfer task performance may be attributed to differing practice schedules.
Table 6.1 displays the mean successful class placements and omissions for all
experimental groups on both transfer tasks. Table 6.1 indicates that the mean number of
successful class placements in the near transfer task was higher for those who had undertaken

timetabling practice previously. No similar trend was found for the number of successful
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placements in the far transfer task. In regards to omissions, those in the control group made

consistently greater omissions in both the near and far transfer tasks.

Table 6.1. The effect of practice schedule on near and far transfer tasks

Control 1 trial group 5 trial group
(n=16) (n=16) (n=16)
Near Successful class  Mean 10.88 16.06 16.62
transfer  placements SD 5.32 2.62 3.84
Task Omissions Mean 4.62 1.00 1.50
SD 5.12 1.15 2.53
Far Successful class  Mean 13.56 12.94 14.00
transfer  placements SD 5.82 3.5 2.73
Task Omissions Mean 2.75 1.69 1.31
SD 4.55 241 2.18

In order to determine whether statistical differences exist, between-subjects one-way
ANOVAs were carried out. In regards to the near transfer task, there was a significant effect
of practice schedule on the number of successful class placements, F (2, 45) = 9.64, MSE =
16.68, p < .001, f = .17. Bonferroni post-hoc tests revealed that the control group achieved
significantly lower successful class placements than both the 1 trial group (p < .01) and the 5
trial group (p < .001). The two practice groups did not have significantly different scores (p =
1.00) here. In regards to class omissions for the near transfer task, there was also a significant
effect of practice schedule, F (2, 45) = 5.45, MSE = 11.33, p < .01, f = 93. Bonferroni post-
hoc tests indicate that the control group made significantly more omissions than both the 1
trial group (p < .05) and the 5 trial group (p < .05). Again, practice groups did not differ
significantly from each other (p = 1.00).

In respects to the more complex, far transfer task, there was no apparent effect of

practice schedule on successful class placements, F (2, 45) = .25, MSE = 17.93, p = .78.
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Neither was there an effect of practice schedule on the number of omissions, F (2, 45) = .85,

MSE = 10.44, p = .43).
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Figure 6.1. The effect of practice on successful class placements for the 5 trial group. Error
bars are +/- 1 standard error.

Further analyses were carried out to assess whether performance improvements were
evident across practice trials for those in the 5 trial group, as would be indicated by
increasing number of successful class placements and fewer omissions. Figure 6.1 displays
the mean successful class placements across practice trials in the 5 trial group. A trend
towards increasing numbers of successful places is indicated. A within-subjects one-way
ANOVA indicated a significant effect of practice trial on successful class placements, F (4,
15) = 12.76, MSE = 4.56, p < .001, f =.74. Further Bonferroni post-hoc comparisons revealed
that significantly more classes were successfully placed in practice trials 3, 4 and 5 in
comparison to the first practice trial (ps < .01, < .05 & < .001 respectively). Successful
placements in practice trial 2 were significantly lower than successful placements in practice

trial, 3 (p < .01) and 5 (p < .001). Successful placements in practice trials 4 and 5 were not
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significantly different (p = 1.00). In regards to omissions, Figure 6.2 indicates that the mean
number of omissions fell across the first three practice trials before assymptoting. A within-
subjects one-way ANOVA indicated a significant effect of practice trial for omissions made,
F (4, 15) = 14.79, MSE = 3.65, p <.001, f = .99. Bonferroni post-hoc comparisons revealed
that significantly more omissions were made in the first practice trial in comparison to the 3
(p < .001), 4" (p <.01) and 5t (p < .001) practice trials. Omissions made in practice trial 2, 3

and 4 did not significantly differ from omissions in any subsequent practice trials.
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Figure 6.2. The effect of practice on omissions for the 5 trial group. Error bars are +/- 1
standard error.

6.2.3 Discussion and conclusions

Results indicate that undertaking any practice on a constraint satisfaction task, where only
intrinsic feedback was available, led to improved performance on a near transfer task in
comparison to a control group. This was true of both successful class placements and class

omissions. Performance on a far transfer task did not significantly differ amongst the
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differing practice schedules for either dependent measure. These results suggest that transfer
of skills acquired during practice stages may only occur when tasks are structurally similar to
tasks performed in training (Holding, 1965; Yamhill & McLean, 2001). As such, a practice-
task, transfer-task specificity is likely to be occurring. Subsequently, acquisition of generic
timetabling skills or heuristics, applicable to far transfer tasks varying only in the
incorporation of a more complex task structure, are not evident here (Schmidt & Bjork,
1992). Extrapolating from this, should a far transfer task with even greater task dissimilarity
(Barnet & Ceci, 2002), such as an office design task that features both contextual and
structural differences, little beneficial performance effects may be expected.

Whilst no solid conclusions can be made regarding the underlying mechanisms
supported via practice, it is presently suggested that the process of engaging in practice may
lead to reduced cognitive resource demands in the near transfer task resulting in performance
benefits. Here, practice has enabled participants to familiarise themselves with the task rules
(constraints) and the task environment. As such, participants need not expend cognitive
resources gauging task requirements. This supposition is in line with the theoretical
propositions of Paas (1992), and Paas et al. (1994) who suggest that practice may act to focus
information on crucial task information.

Other experimental results indicate, contrary to expectations, that the number of
practice trials undertaken (1 versus 5 trials) had little effect on any of the dependent
performance measures. Therefore, in regards to performance in the near transfer task, simply
being exposed to just one practice task was sufficient enough to bring about the significant
improvements in performance in comparison to performance shown by the control group.
However, there was some evidence indicating that those undertaking five practice trials
showed improvements in performance as a function of subsequent practice trials. Within

successive practice task trials, statistical improvements were seen across the first three trials
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for both successful class placements and omissions. Schmidt and Bjork (1992) suggest that
blocked practice, such as that experienced by the 5 trial group, may lead to temporary
performance improvements that disappear once test conditions change. It is presently
proposed that the performance improvements seen across practice trials may be the result of
enhanced memory for the specific task components. When test conditions alter, the enhanced
memory for the practice task should afford no additional benefit when performing the near
transfer task. This enhanced memory may constitute a further form of task-specific learning.
It is possible that multiple practice trials may be of benefit in a constraint satisfaction context
should it entail introducing more variability into the practice tasks (Holladay & Quifiones,
2003). Such variability should discourage specific task learning and may encourage the
development of general, and more widely applicable, constraint satisfaction strategies.

There are a couple of methodological limitations within the present experiment that
could potentially impact upon the conclusions drawn here and should therefore be
acknowledged. Firstly, the lack of counterbalancing of the transfer tasks could be
problematic. Counterbalancing was considered impractical given the increasing task
complexity of the far transfer task, and the potential for asymmetrical transfer effects.
However, the lack of counterbalancing may have raised the possibility of an effect of
presentation order. It may be the case that performance decrements in the last task, the far
transfer task, shown by both of the conditions undertaking practice trials, may be due to
fatigue. However, performance for the transfer tasks indicated the reverse pattern of
performance for the control group. As such, no consistent effects of presentation order can be
concluded.

To summarise, it appears that within a timetabling constraint satisfaction task,
exposure to a practice task, and the intrinsic feedback made available, leads to some

improved design performance outcomes. Multiple practice trials may lead to better
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performance during the practice phase but does not appear to offer any additional
performance increments in transfer tasks. However, performance in the near transfer task for
those who had undertaken any practice, improved in comparison to those with no previous
task exposure. This trend did not extend to the far transfer task where practice offered no
advantage. Here, the control group, having simply been exposed to the near transfer task
performed just as well as participants with more extended practice. It may be that the
similarity between the practice and near transfer task, both incorporating the same set of
applicable general constraints, underlies the performance improvements seen in the near, but
not the far transfer task. Hence a level of task-specific learning is demonstrated. As such, it
may be the case that short term practice interventions are not sufficient enough to produce
beneficial far transfer effects. The following chapter aims to investigate whether
metacognitive training interventions can offer advantages above those gleaned through
practice. Here, in addition to intrinsic task feedback, designers will be prompted to evaluate
their design strategies explicitly. In doing so, the extrinsic feedback generated should prompt
the evaluation of cognitive strategies. This change in cognitive behaviour should result in

performance benefits outweighing those seen by those produced via intrinsic feedback.
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CHAPTER SEVEN

Metacognitive training

The previous chapter indicated that intrinsic feedback, provided by practice as a stand-alone
training intervention, is of limited benefit within constraint satisfaction contexts. Lussier and
Shaddick (2006) propose that the processes engaged in during practice are distinct from those
instigated through practice plus training instructions. Training involves additional explicit
instruction aimed at eliciting cognitive activity that isolates and improves upon problematic
aspects of performance. Lussier and Shaddick further suggest that practice without additional
training procedures, may not be an effective method of inducing performance improvements.
This reflects the distinction that can be made between intrinsic feedback that is available in
any practice activity, and the extrinsic feedback that arises due to explicit instructions to
engage in additional performance enhancing processes (Patrick, 1992). In accordance,
attention in the present chapter focuses on more strategic training interventions eliciting
extrinsic feedback. Pashler, Capeda, Wixted and Rohrer (2005) suggest that providing
feedback concerning progress towards a task goal during a practice or learning phase may
improve performance above and beyond that shown via practice alone. The experiments that
follow examine whether metacognitive interventions aimed at prompting participants to
explicitly self-explain aspects of their performance may improve constraint satisfaction
design.

7.1 Introduction to metacognitive training

Metacognition has received growing attention in the field of problem solving. In order to
assess the potential impact metacognitive training interventions may have within design
constraint satisfaction problems, it is first important to discuss what is meant by the term,

metacognition.
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Metacognition is the application of metacognitive knowledge, that is, knowledge
about one’s own cognitive processes, to a goal-directed activity (Ainsworth & Burcham,
2007; Veenman, Van Hout-Wolters & Afflerbach, 2006). Various forms of metacognitive
activity are detailed in the psychological literature. These include but are not limited to, self-
explanation, monitoring, self-observation, self-regulation, critical thinking, error
management, reflection and evaluation (Ainsworth & Burcham, 2007; Helsdingen, van den
Bosch, van Gog, & van Merriénboer, 2010; Keith & Frese, 2008; Meijer, Veenman, & van
Hout-Wolters, 2006; Pintrich, Wolters & Baxter, 2000; Wetzstein & Hacker, 2004). There
appears to be some conceptual overlap between some of these activities. Some of these
constructs encompass a number of distinguishable metacognitive processes. Ainsworth and
Burcham (2007) describe self-explanation as the process of generating additional knowledge
beyond what is laid out in the task specification, a process involving a degree of monitoring,
reflection and evaluation. Critical thinking is the process of testing for missing or conflicting
information and evaluating options (Helsdingen et al., 2010), which also entails monitoring
and reflection. Likewise, error management cognition involves encouraging
learning/performance improvements through encouraging errors and rectifying them (Keith
& Frese, 2008), again requiring active monitoring and reflection. Indeed, various differing
descriptions of metacognition have been offered since Flavell’s (1979) original explanation
of metacognition. Flavell (1979) distinguished between the metacognitive activities of
planning, monitoring and evaluation that may be utilised before, during or after task
performance. Despite differing and often overlapping terminology, it is apparent that
metacognition is a multi-faceted construct (Veenman et al., 2006) that can entail a mixture of
processes that may be difficult to distinguish. As such, it is important, when referring to
metacognitive training, to attempt to identify which of its many processes may be being

undertaken.
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Some preliminary research attests to the positive influence of metacognition in design
contexts. Wetzstein and Hacker (2004) found that having designers explain their strategies by
describing, justifying and evaluating them to a naive partner produced better quality designs
than a control group. Here Wetzstein and Hacker (2004) provided one of the first examples of
the beneficial effects of metacognition in design contexts.

Elsewhere, evidence of the positive effects of metacognition (in various forms) is
well-documented, especially in learning and problem solving contexts. Some examples are
now discussed. Ahlum-Heath and Vesta (1986) found that naive problem solvers forced to
justify (design, explain and evaluate) their moves on Tower of Hanoi (ToH) problems did
better on further, extended ToH tasks. Here problem solvers, having justified previous
performance were less likely to make excess moves, a further sign of more efficient
performance. Keith and Frese’s (2008) meta-analysis of error management training (EMT)
found that across the 24 studies surveyed the mean effect of EMT was significant in a
positive direction (d = .44), with evidence of larger effect sizes for transfer performance
rather than within task performance. Keith and Frese suggest that EMT promotes
metacognitive activity as it encourages individuals to reflect upon the processes that lead to
errors. As such the individual is encouraged to evaluate and revise strategies. Tajika,
Nakatsu, Nozaki, Neumann and Maruno (2007) found that children solving mathematical
word problems utilising self-explanation techniques, whereby they had to explain every
problem solving step, outperformed control and self-learning groups (instructed to attempt to
understand every problem step rather than explain it). Finally, Pennequin, Sorel, Nanty and
Fontaine (2010) studied children undergoing metacognitive training for maths problems
where they had to evaluate the importance of various problem solving strategies such as
repeating calculations, or ranking information, when reaching solutions. Pennequin et al.

found that those undergoing this form of metacognitive training had better awareness of their
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own skill use subsequently and achieved better problem-solving scores. They further found
that this metacognitive training was especially beneficial for previously low maths achievers.
Collectively, the evidence cited here indicates that metacognitive training exerts positive
effects in multiple problem-solving and learning contexts. It also indicates that metacognitive
training can have positive effects for individuals of all ages, particularly when expertise is
lacking, as may well be the case in novel design tasks.

There is some suggestion that metacognitive skill(s) may not be domain specific but
may be generic (Veenman et al., 2006; Wetzstein & Hacker, 2004). Indeed, the small range
of studies cited above indicate that metacognition may be beneficial across a range of tasks of
differing complexity, from structured mathematical problem solving, to ill-structured design
problems. Meijer et al. (2006) acknowledge that metacognition plays an important role in
problem solving as it may aid in the successful deployment of appropriate strategies.
Therefore, metacognitive training may be expected to also exert some beneficial effects when
attempting to reach solutions in constraint satisfaction paradigms. The question left
unanswered, is how metacognitive methods may lead to improvements in constraint
satisfaction performance, and what methods are best for eliciting metacognitive activity.

Various explanations of the underlying processes through which metacognition
produces beneficial effects have been proposed. Ainsworth and Burcham (2007) suggest that
active construction of knowledge is vital for understanding. Metacognitive techniques may
encourage such active engagement through internalising task principles by supporting the
revision of relevant knowledge and by stimulating inference generation. Tajika et al. (2007)
suggest that certain metacognitive instructions (self-explanation and self-examination) may
act to determine problem misunderstandings and generate more relevant problem
information. Wetzstein and Hacker (2004) offer three ways in which metacognition may lead

to improved performance. It may act to induce a more systematic and analytic way of
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thinking that may result in an expansion of the problem space. It may direct attention to
relevant problem features and evoke new problem representations. Finally, it may be a crucial
feedback procedure that may motivate a problem solver to extend extra effort in reaching a
solution. Alternatively, it may be a mixture of multiple beneficial effects producing
performance improvements. Overall, in order to bring about positive effects, metacognition
must somehow encourage the revision of faulty mental models (Ainsworth & Burcham,
2007; Keith & Frese, 2008). This is in line with action theory that stipulates that adequate
mental models can only be acquired by actively engaging and dealing with relevant subject
matter (Keith & Frese, 2008).

In order for any metacognitive training intervention to be successful within constraint
satisfaction contexts, the evaluative processes evoked must help to encourage an accurate and
comprehensive mental representation of task relevant information. Appropriate methodology
is crucial. Veenman et al. (2006) propose that a fundamental principle for successful
metacognitive instruction is that problem solvers should be instructed as to the usefulness of
metacognitive processes to encourage them to exert the additional effort needed to benefit
from metacognitive instruction. Also, prolonged training is advised to elicit maintained
metacognitive activity. Various methods have been used to train and elicit metacognitive
processes including questionnaires, interviews, think-aloud protocols, observations,
stimulated recall, mental integration, questioning and also self-explanation (Pannequin et al.,
2010; Veenman et al., 2006). To induce concurrent metacognition whilst undergoing some
form of practice task, think-aloud, questioning and self-explanation methods appear most
appropriate (Ericsson & Simon, 1998; Tajika et al., 2007). Think-aloud processes involve the
voicing of thoughts out loud without the need for any explanation of the content, a technique
believed to be non-intrusive, needing no additional effort to produce (Ericsson & Simon,

1993, Hacker & Dunlosky, 2003). These techniques are used to gain insight into an
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individuals’ natural thought processes as they perform a cognitive task. As such, think-aloud
techniques should not be expected to spontaneously induce metacognitive activity unless
accompanied by further instruction to self-explain. Neuman and Schwarz (1998) suggest that
whilst metacognitive methods such as self-explanation and think-aloud may appear only
marginally different, self-explanation involves the active and symbolic processing of
information in working memory, whereas think-aloud is simply a passive commentary. More
strategic self-explanation methods, such as questioning (originating from self or other),
prompt the problem solver to evaluate crucial task rules and encourages critical evaluation of
strategic progress in the search for solution. As the paradigms used here are heavily
dependent on rule and constraint satisfaction, self-explanation should be the most appropriate
way to elicit metacognition. Having participants self-explain the potential presence of any
constraint violations should cause participants to reflect and evaluate upon their progress.
Any errors uncovered should lead participants to re-evaluate the accuracy of their task
representation and task strategy.

The experiments that follow investigate whether participants undergoing a
metacognitive training intervention utilising prompted, self-explanation techniques, can
outperform those with no such training (control groups) and those simply given practice with
no further instruction. It is expected that the process of being required and prompted to self-
explain, and the metacognitive content this will elicit, will encourage problem solvers to
adopt a more analytic approach, to more accurately address conflicting information and
identify errors, to internalise constraint rules more constructively, and to develop a more
accurate understanding of the task (Ainsworth & Burcham, 2007; Keith & Frese, 2008;
Tajika et al., 2007; Wetzstein & Hacker, 2004). This is expected to result in improved
performance in a transfer task in line with some of the empirical evidence cited above (i.e.,

Ahlum-Heath & Vesta, 1986; Keith & Frese, 2008).
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7.2 Experiment 7

Experiment 6 indicated that simple practice, but not repetitive practice, leads to some
improvements in performance on a structurally similar, near transfer task, but not a
structurally dissimilar, far transfer task. It was concluded that practice provides only intrinsic
feedback which may be of little utility in regards to the acquisition of flexible constraint
satisfaction strategies. As such, without further training instruction, practice may not be most
effective way to improve general constraint satisfaction performance. The present experiment
now examines whether metacognitive training interventions, in the form of reflective self-
explanation, where designers are required and prompted to explicitly monitor and evaluate
task progress, may offer performance benefits above and beyond those gained from having
engaged in practice alone.

As discussed in the previous section, metacognition is a multifaceted construct that
may entail many processes aimed at improving performance in cognitive tasks.
Metacognition may aid the active construction of task knowledge (Ainsworth & Burcham,
2007), may help to highlight any misconceptions (Tajika et al., 2007), and is generally
thought to induce more analytical, systematic and effective strategies (Wetzstein & Hacker,
2004). Growing bodies of research attest to the beneficial effects of metacognition in a
variety of contexts, including ill-structured design (i.e., Wetzstein & Hacker, 2004). The
question left unanswered is can metacognitive training interventions prove beneficial within
constraint satisfaction design?

In the present experiment, three groups of participants were each presented with an
office design task which was preceded by either an irrelevant task (control group), a practice
task without further training instruction (practice group) or a practice task accompanied by
metacognitive instructions to reflectively self-explain the utility of the previous design move

(the reflective self-explanation group). More specifically, following each design move,
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participants were asked to consider which of the specific constraints stipulated were satisfied,
any that may have been undone, and those yet to be considered. Such a metacognitive self-
explanation training intervention should prompt participants to adopt a more analytic style, to
proceed more strategically, and to implement explicit constraints more accurately. Self-
explanation should also prompt participants to check for any faulty assumptions concerning
the implementation of explicit constraints. As such, it is expected that performance on a
subsequent transfer task, would be improved for the reflective self-explanation group in
comparison to the performance shown by both the practice and control groups. The transfer
task selected currently was an enlarged version of the training task. It differed by
incorporating different general constraints but also in that it incorporated another design
element and a greater number of specific constraints. In addition, designers were required to
complete the transfer task as quickly and accurately as they could, whereas, training tasks
were terminated after a set number of design moves. As such, the transfer task was dissimilar
in a number of ways to the task used during training. Therefore, positive transfer here would
be indicative of the acquisition of more general, widely applicable skills, considered a feature
of far transfer (i.e., Barnett & Ceci, 2002).

7.2.1 Method

Participants

Seventy-two psychology undergraduates, aged between 18 and 31, with an average age of
19.78 (SD 1.95) took part in the experiment in return for course credit. The sample consisted
of 14 males and 58 females. None had any experience with the experimental task.
Participants were randomly allocated to one of the three experimental conditions.

Materials

Two office layout tasks adapted from Carroll et al. (1980) and programmed in Java were

used. Both had the same representational format as previous office experiments. The task
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used for practice and training purposes enabled participants to view a set of 18 specific
constraints, and seven employees (design elements). Constraints were evenly distributed
among three general constraints. The particular constraint types used stipulated requirements
of the positioning of employee offices based on car park location, lunch arrangements and
noise levels, identical to general constraint set B used previously in Experiment 3. The office
task used for the far transfer task contained 27 specific constraints, eight employees (design
elements) and three differing general constraints concerning compatibility, status and the use
of work areas, identical to constraint set A used in Experiment 3. CamStudio was used to
record onscreen actions whilst participants produced their office designs. A Powerpoint
maths presentation was created to act as an irrelevant task in place of practice or training
trials for the control condition. Maths equations requiring the multiplication, subtraction,
division or addition of two numbers (“40 + 73”, “28 x 4”, etc.) were formatted in such a way
as to display each equation for 20 seconds.

Design

A between-subjects design with three levels of the independent variable, pre-task training,
was used. A control group received no training in the task of interest, but performed an
irrelevant maths task instead. Of the remaining two intervention conditions, a practice group
received a brief practice task on a simplified office task with no explicit feedback provided.
Finally, those in the metacognitive self-explanation group received the same practice task
with additional instructions to explicitly and audibly monitor and evaluate changes in the
constraints satisfied following each design move made. In particular, following each
placement, or relocation of an employee’s office, the experimenter instructed participants to
consider which of the specific constraints stipulated were satisfied, any that may have been

undone, and those yet to be considered. Participants voiced their explanations aloud. In doing
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S0, they were required to check for any faulty assumptions concerning the implementation of
explicit constraints and also evaluate the effectiveness of their present strategy.

All participants completed the far transfer task. The dependent variables of interest
from this task were product measures, the number of constraints satisfied at the end of the
design process and the design completion time (seconds). As a precautionary measure,
participants’ experience of the office task used in the experimental conditions involving
practice or metacognition was kept approximately equivalent by limiting both tasks to 10
moves (as indicated by the placement, relocation or removal of a design element within the
workspace). In addition, the time each participant in the practice and questioning group spent
completing their training task, was yoked to the time each participant in the control group
spent performing their irrelevant maths task. This was done to ensure a conservative estimate
of potential fatigue effects from the first experimental task.

Procedure

Before the presentation of the first office design task participants were familiarised with the
interface and instructed how to generate design features and the nature of the constraint types
they may encounter. During the training task, those in the practice group were instructed to
make ten moves (ten employee office placements). Those in the reflective self-explanation
group were instructed to also make ten moves and assess the consequences of each move
against the explicit constraints stipulated. In particular, participants were asked to consider
which of the specific constraints stipulated were satisfied, any constraints that may have been
undone, and those they had not yet considered. For the first five moves the experimenter
actively prompted participants to engage in this process, and guided them through the process
with further prompts and questioning whenever necessary. For the last five moves the
experimenter simply prompted the self-explanation process and identified any constraints not

categorised should the designer fail to acknowledge it in their explanation. The control group
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simply performed the maths task. Following on from training, all participants were instructed
to try to complete the transfer task as quickly and accurately as possible. No time limit was
set.

7.2.2 Results

Table 7.1 displays the mean scores on each dependent measure as a function of training
condition. This table indicates that those in the control group took the longest to complete
their design and also scored the lowest in terms of constraints satisfied. Those in the
reflective self-explanation group had the highest average score for number of constraints
satisfied and achieved this in the shortest average design time. Those in the practice group
were intermediaries, falling between the control and the practice and questioning groups on

both scores and completion times.

Table 7.1. The effect of training condition on number of constraints satisfied and design
completion times

Control Practice Reflective self-
explanation
(n=24) (n=24) (n=24)
Number of Mean 17.75 18.87 20.42
constraints satisfied SD 2.40 2.53 1.35
Design completion Mean 853.83 755.75 781.38
time (seconds) SD 368.08 280.93 242.12

A one-way ANOVA revealed an effect of training condition on the number of
constraints satisfied, F (2, 69) = 9.25, MSE = 4.65, p < .001, f = .52. Post-hoc Bonferroni
comparisons revealed that the control and practice group did not differ from each other
significantly (p = .23). However, the reflective self-explanation group satisfied significantly
more constraints than both the control (p <.001), and the practice (p < .05) groups.

A further one way ANOVA indicated no effect of training condition on design

completion times (F (2, 69) = .68, MSE = 91009.47, p = .51). However, in response to the
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assertions of Norman and Bobrow’s (1975) resource theory which proposes that as task
complexity increases, speed-accuracy trade-offs should decrease, additional correlational
analysis was undertaken. Should a task become more complex, progress towards task goals
should be harder to monitor. This should act to increase variation in time taken to complete
tasks. Birney and Halford (2002) propose that should a task prove to be more complex, the
correlation between performance scores and times should diminish in comparison due to the
greater variation in time. Therefore, correlations between time and constraints satisfied were
calculated for the present experimental groups. Whilst there was a significant association
between the number of constraints satisfied for the reflective self-explanation group (r = .61,
p < .01), the correlation was not significant for those in the practice (r = .19, p = .37) or
control group (r = .19, p = .38). This indicates that there was a clear pattern of increasing
design times resulting in increasing numbers of constraints satisfied for the reflective self-
explanation group only. In other groups, expending a greater amount of design time did not
necessarily result in more constraints satisfied.

7.2.3 Discussion

Present results indicate a beneficial effect of undergoing a metacognitive self-explanation
intervention, over and above the effects of simple practice in relation to the number of
constraints satisfied. Whilst results indicated a trend for decreasing completion times as
practice, and then practice combined with metacognitive self-explanation, was introduced, no
significant effect was established. However, further examination of correlations between the
number of constraints satisfied and design completion times indicated that these measures
were only significantly associated in the reflective self-explanation condition. According to
Birney and Halford (2002), correlations of greater magnitude, and greater significance, are
found between time and score for tasks that are of lower complexity. Indeed, Norman and

Bobrow (1975) suggest higher variability in task time may result from tasks with greater
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complexity. As such, speed-accuracy trade-offs, evident in many cognitive tasks, become less
evident. As all participants completed the same transfer task, the positive and significant
association between time and score for the metacognitive group is an indication that those
undertaking practice with metacognitive self-explanation found the transfer task less complex
than their counterparts in the practice and control conditions.

Results offer support to experimental predictions and are in line with previous
evidence concerning the beneficial effects of metacognitive interventions (e.g., Ahlum-Heath
& Vesta, 1986; Pennequin et al., 2010; Wetzstein & Hacker, 2004). Further to this, present
results offer an initial indication that metacognition may have a beneficial role to play within
constraint satisfaction design. This builds upon the research of Wetzstein and Hacker (2004)
who found metacognitive interventions to be beneficial in the related domain of ill-structured
or creative design.

Why and how reflective self-explanation improves subsequent performance on a
transfer task is not clear cut. Suggestions as to how metacognitive interventions exert
beneficial effects vary. Some suggest metacognition may provoke the active construction of
knowledge or encourage the internalising of task principles, vital for understanding
(Ainsworth & Burcham, 2007). Others propose that metacognition may act to highlight
problem misunderstandings and generate more relevant problem information (Tajika et al.,
2007). Alternatively, metacognition may direct attention to relevant problem features, may
allow the generation of crucial task feedback, and may evoke new, more accurate, mental
models (Wetzstein & Hacker, 2004). Whilst the present experiment cannot differentiate or
disentangle all of these proposed effects, it can deduce that one benefit of metacognitive self-
explanation training is that it acts to reduce task complexity. In order to do so, the

metacognitive intervention must have acted in such a way so as to make participants focus
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their attention on crucial task features allowing them to be more systematic, as suggested by
Wetzstein and Hacker (2004).

As in previous experiments (see Experiments 4 & 5) the lack of a difference in design
time between experimental conditions is inconclusive. Whilst notions of frustration effects
and the like (Payne & Duggan, 2011) may have applied to some designers, speculation of this
nature does not support any firm conclusions. It may be the case that timing alone is not
always a reliable indicator of performance. It may also be the case that should time limits
have been imposed, exaggerations in the differences in constraints satisfied, between
conditions, may have been found. Further studies would be needed to confirm this
suggestion.

Presently, and akin to conclusions drawn in Experiment 6, it appears that practice
alone is not sufficient to bring about beneficial performance increments in tasks that differ
structurally from those used during practice. Constraint satisfaction, whilst containing a
certain degree of structure compared to more creative and ill-structured design tasks, remains
cognitively complex. The complexity may result in participants being unable, or not
motivated, to utilise the intrinsic feedback available from engaging in practice without further
instruction. Indeed, Beradi-Coletta, Buyer, Dominowski, and Rellinger (1995) suggest that
individuals not in metacognitive treatments may rely on environmental feedback rather than
self-monitor. Given the complexity of the current paradigm, and the dynamically changing
task environment, environmental feedback and other potential sources of intrinsic feedback
may prove hard to decipher and interpret in any beneficial way. What appears evident, due to
the lack of differences between the control and practice group, is that trainees undergoing
simple practice do not spontaneously improve.

A feature of the current experiment that should be acknowledged is the nature of the

transfer task. Here, transfer was tested via performance on a task relatively dissimilar to the
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practice task. Both the foreword to the training experiments, and Experiment 6 discussed the
features of transfer tasks that have been used to distinguish between near and far transfer
(Barnett & Ceci, 2002). The transfer task used here was structurally different and also
superficially different, as was the far transfer task in Experiment 6. As such, the reflective
self-explanation techniques used presently produced a positive degree of far transfer.
Whether positive transfer would also be shown in a structurally similar, near transfer task, is
not clear from the present results.

The present experiment also has a couple of methodological considerations to be
taken into account. As in previous experiments, the sample was psychology students,
therefore results may not generalise well to experienced designers. Nevertheless, results
highlight that metacognitive self-explanation may be of particular benefit within the training
of novice designers. A further consideration is the use of verbalisation. Participants
undergoing metacognitive training were asked to pause following each move during practice
and explain their previous move in terms of changes in the satisfaction status of the specific
constraints stipulated. It may the case that the act of verbalising, rather than the content
elicited may have been what initiated the beneficial effects. In the introduction to this chapter,
it was argued that self-evaluation techniques involve the active, symbolic processing of
information in working memory, whereas think-aloud is simply a passive commentary
(Neuman & Schwarz, 1998). However, others have argued that the act of verbalisation in
experimental laboratory settings, where participants may expect such information to be
scrutinised more closely, may be enough to alter cognitive processes (Bernadini, 2001) and
induce more self-monitoring. As a practice accompanied by think-aloud condition was not
included in the present experimental design, the possibility that the act of verbalisation itself,
rather than the actual content elicited, may have led to some of the performance effects

cannot be ruled out.
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In conclusion, the present experiment indicates that metacognitive training, in the
form of reflective self-explanation, can have a beneficial impact upon subsequent task
performance in a constraint satisfaction context. Here, simply having participants pause after
each design move and audibly evaluate how that move has aided their progress towards task
goals, aids the transfer of skills acquired to a more complex task. One possibility not yet
addressed is the timing of the metacognitive interventions. Whilst the retrospective, reflective
intervention used presently exerted beneficial effects, whether a prospective metacognitive
intervention would exert similar effects is unclear. It is expected that the present reflective
intervention would prompt designers to adopt a degree of prospective planning, in order to
produce a design move that they could favourably self-evaluate. However, a degree of
prospective strategising, and the possible beneficial effects, can only be speculated. The
experiment that follows aims to investigate more specifically whether prospective
metacognitive methods can be advantageous in a constraint satisfaction context.

7.3 Experiment 8

The previous experiment indicated that retrospective self-explanation in training an office
design task resulted in improved transfer of skills to a more complex task, in comparison to a
simple practice and a control group. It was concluded that the process of engaging in reflective
self-explanation resulted in effective metacognitive activity. Results indicated that this activity
may have acted to reduce the cognitive complexity of the transfer task, either via the process of
helping focus attention towards relevant problem information (i.e., Tajika et al., 2007), and/or
by invoking the development of a more efficient constraint satisfaction strategy (Wetzstein &
Hacker, 2004). The present study aims to discover whether an explicit prospective
metacognitive training, aimed at eliciting planning strategies and evaluating them aloud, may

also prove beneficial when performing a subsequent transfer task. A subsidiary aim of the
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current experiment was to disentangle the effects of simple think-aloud verbalisations from
metacognitive verbalisations, a limitation noted in the previous study.

Flavell (1979) distinguished between the metacognitive activities of planning,
monitoring and evaluation that may be utilised before, during or after a task. These processes
may not be mutually exclusive. Ideally they should be combined for more efficient
metacognitive activity. However, the timing of such processes may vary throughout the
problem-solving process. Intuitively, the act of planning aligns with a more prospective
strategy whereas reflective evaluation would constitute a more retrospective strategy. This
distinction raises the possibility that the timing of concurrent metacognitive self-explanation
interventions may induce differing strategies. The metacognitive intervention in Experiment 7
was enacted after each design move and was reflective, and therefore retrospective, in nature.
Should a metacognitive intervention prompt participants to review and revise their strategy
before implementing a design move, a prospective strategy would be further encouraged, with
attention focused on planning processes.

There is some evidence to attest to the beneficial effects of prospective metacognitive
training interventions in the field of structured problem solving. Beradi-Coletta et al. (1995)
conducted a couple of experiments whereby they interrupted problem solvers before they made
a move in order to prompt metacognition. In their first study, groups of participants performed
Tower of Hanoi (ToH) tasks. A metacognitive group received verbalisation instructions in the
form of questions that had to be answered before each move (i.e., “How are you deciding
which disk to move next? How are you deciding where to move the next disc? Do you know
how good a move this is?”). Subsequent task performance was improved for this group in
comparison to a think-aloud condition and control conditions. In a follow-up study, a silent
metacognitive group were introduced. Here participants were asked to answer the same

questions used previously in their heads. A six second delay was enforced before any move
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could be implemented to encourage metacognitive activity. Results indicated that despite the
lack of vocalisation, the metacognitive group still evidenced improved performance over other
conditions. The authors reported that performance for the silent metacognitive group was
equivalent to that of the verbalised metacognition group produced in their first study.

As yet, no empirical evidence of prospective metacognitive interventions, aimed at
encouraging planning, is available in the constraint satisfaction literature. It is possible that the
complex nature of constraint satisfaction tasks may hinder any motivation to plan. Ormerod
(2005) suggests that problems without a clearly defined structure (ill-structured, complex
problems) do not lend themselves easily to planning due to the lack of a clear pathway to
solution. There is also some suggestion that planning is not easily undertaken in an unfamiliar
problem context (Delaney, Ericsson & Knowles, 2004). Within the present office design
paradigm, planning may not occur due to the perception that it is computationally costly.
Alternatively, attempts to plan may fail. Nevertheless, Ormerod (2005) implies that people are
able to plan in complex situations. It may be the case that planning processes can become more
comprehensive and more effective should problem solvers be forced to focus on planning and
to make their planning strategy explicit. It is here that metacognitive interventions may prove
beneficial and this is the focus of the following experiment.

One final feature of metacognitive studies remains unaddressed, the nature of
verbalisations. Verbalisations can be elicited via simple think-aloud methods, or can entail
verbalisations of metacognitive self-explanations. Ericsson and Simon (1998) concluded from
a review of 30 studies that verbalisations elicited via think-aloud methods without any further
training instruction do not systematically affect the thought processes of participants. However,
no control for verbalising was incorporated into Experiment 7. Here, it may have been the case
that the act of verbalising, rather than the process of verbalising metacognitive content, resulted

in a change in cognitive processes (Smagorinsky, 1998). Such unintentional effects may be
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especially true of situations where participants perceive they are interacting with an
experimenter (Bernadini, 2001), as would be likely in a laboratory situation, where a
participant may feel their efforts are under scrutiny. As such, it is important that the effects of
verbalisation and verbalisation plus metacognitive content, here centred on planning processes,
be incorporated into Experiment 8.

In the present experiment, four groups of designers were assigned to differing training
schedules. Participants either underwent no practice (the control group), practice without
further instruction, practice plus concurrent think-aloud procedures (henceforth referred to as
the verbalisation group), or practice plus a metacognitive intervention aimed at eliciting
prospective planning via prompted self-explanation (referred to as the metacognitive planning
group). The metacognitive intervention required participants to state their next proposed
move, to consider whether a better move exists, and finally to justify what move they were
implementing next. Dependent measures obtained were the number of constraints satisfied
and the time taken to complete the design. It was expected that those in the metacognitive
planning group would show the most favourable performance in a transfer task.

7.3.1 Method

Participants

Sixty-five psychology undergraduates, aged between 18 and 26, with an average age of 19.08
(SD 1.48) took part in the experiment in return for course credit. The sample consisted of five
males and 60 females. None had any experience with the experimental task. Participants were
randomly allocated to one of the four experimental conditions.

Materials

Materials used were identical to those used in Experiment 7.
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Design
A between-subjects design with four levels of the independent variable, pre-task training was
used. Training levels were no practice (controls), practice without further instruction, practice
with verbalisation, and practice with metacognitive planning. The control group received no
training in the task of interest, but instead performed an irrelevant maths task. Of the
remaining three intervention conditions, a practice group undertook practice on a simplified
office task (as used in Experiment 7). A verbalisation group performed this practice task
whilst concurrently performing think aloud procedures. Finally, those in the metacognitive
planning group received the same practice task with additional instructions to pause before
each move and justify or adjust their proposed moved in order to maximise the number of
constraints satisfied. In particular, before each design move, participants were required to
state their proposed move, to consider whether they could propose a better move that satisfied
more constraints, and then to justify the move they had decided to implement. Here, as in
Experiment 7, experimenter prompted self-explanation techniques are used to elicit
metacognitive activity. All participants completed the far transfer task used in Experiment 7.
The dependent variables obtained were the number of constraints satisfied at the end
of the design process and the design completion time. As in Experiment 7, participants’
experience of the task in intervention/training conditions was kept approximately equivalent
by limiting both tasks to 10 moves (as indicated by the placement, relocation or removal of a
design element within the workspace). In addition, the time each participant in the practice
and metacognitive planning group spent completing their training task was yoked to the time
each participant in the control group spent performing their irrelevant maths task. This was
done to ensure a conservative estimate of potential fatigue effects from the first experimental

task.
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Procedure
Participants were familiarised with the interface and instructed how to generate design
features. During the training task, those in the practice group were instructed to make ten
design moves. Those in the verbalisation group were instructed to think aloud as they made
10 moves. Ericcson and Simon’s (1993) think aloud protocol procedure was followed. This
involved administering think aloud practice activities until participants were comfortable with
verbalising. An example activity was to think aloud whilst describing the number of windows
in ones home. Those in the practice and metacognitive planning group were instructed to also
make ten moves but were required to pause before each one to answer questions aimed at
eliciting and evaluating their planning strategy. These participants were required to explain
their choice of move and potential alternative move, then justify which move they chose to
implement. The control group simply performed the maths task. Afterwards, all participants
were instructed to complete the extended transfer task as quickly and accurately as possible.
No time limit was set.
7.3.2 Results
One participant failed to complete the task and was excluded from analysis. Table 7.2
displays the means and standard deviations for all dependent variables. More constraints were
satisfied in conditions where there was prior exposure to the office design paradigm. In
addition, participants undergoing the metacognitive planning intervention satisfied the most
design constraints. Design time evidenced a high level of variation. However, design time
was quickest in the metacognitive planning group.

A one-way between-subject ANOVA revealed a significant effect of training
condition on the number of constraints satisfied, F (3, 60) = 5.66, MSE = 4.45, p < .01, f =
.53. Ponferroni post-hoc comparisons revealed differences between the metacognitive

planning condition and all other experimental conditions (ps < .05, < .01, & < .01 for the
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control, practice and verbalisation group respectively). There were no significant differences
among any other conditions. A further one-way ANOVA indicated no significant effect of

time taken to complete the design, F (3, 60) = 1.29, MSE = 152449.22, p = .29.

Table 7.2. The effect of training condition on number of constraints satisfied and design
completion times

Control Practice Verbalisation Metacognitive
(n=15) (n=16) (n=17) planning
(n=16)
Number of Mean 17.93 18.00 18.59 20.62
constraints SD 1.98 2.56 2.15 1.63
satisfied
Design Mean  827.80 927.25 992.65 743.13
completion SD 283.61 451.97 439.42 352.83

time (seconds)

As in Experiment 7, correlations between design time and the number of constraints
satisfied were calculated. Should a task prove to be more complex, the greater likeliness of
speed-accuracy trade-offs, and the subsequent increase in design time variation, should result
in reduced correlations (Birney & Halford, 2002; Normon & Bobrow, 1975). The correlation
between time and constraints satisfied was strongest for the practice and metacognitive
planning condition, r = .49, p = .06, however this result did not quite reach statistical
significance. Correlations for the other experimental conditions were, r = .01, p = .96 for the
verbalisation condition, r = -.36, p = .17, for the practice condition, and r = .22, p = .43, for
the control condition.

Finally, as a crude indicator that participants in the metacognitive planning condition
were engaging in the metacognitive training activities, the number of alternative moves
proposed, as a result of the question, “can you propose a better move that satisfies more

constraints?”, and the number of alternative moves implemented were examined. On average,
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participants proposed 1.53 alternative moves (SD 1.23). Of the ten training moves made by
each participant, .88 (SD .99) were alternative moves that were implemented. Simply put, just
over half of the alternative improved moves that were proposed were implemented. Whilst
standard deviations indicate a lot of variation, these results indicate that the metacognitive
intervention did impact upon design decisions.

7.3.3 Discussion

Results imply that undertaking a metacognitive training activity, aimed at prompting more
effective planning via self-explanation techniques, led to a greater number of constraints
satisfied in a transfer task than all other training schedules. Performance among the control,
practice and verbalisation conditions did not significantly differ. This result offers further
support to the proposal that specific forms of metacognition training can be beneficial in
constraint satisfaction settings.

The mechanisms proposed to underlie the cognitive advantages offered via
metacognition have varied in the literature. It may be that metacognition here has acted to
highlight misunderstandings and generate more task relevant behaviour (Tajika et al., 2007).
Metacognition may aid the construction of knowledge and the internalisation of crucial task
principles (Ainsworth & Burcham, 2007). Alternatively metacognition may elicit a more
analytic approach where feedback concerning task understanding is sought (Wetzstein &
Hacker, 2004). Whilst these results cannot conclusively distinguish between these
mechanisms, the results do attest to the usefulness of metacognition for eliciting efficient
planning strategies that may not be automatically undertaken by those performing complex
tasks such as constraint satisfaction (Beradi-Colleta et al., 1995). Planning is acknowledged
to be difficult in ill-structured (Ormerod, 2005) and unfamiliar (Delaney et al., 2004) tasks.
Nevertheless, the present metacognitive intervention prompted planning behaviour. It did so

by forcing participants to consider the ramifications of a proposed design move, to consider
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that an alternative more efficient move may exist, to propose such a move should one be
found, and then to justify the move implemented. As a result a number of design moves were
revised and positive transfer was evident.

As in Experiments 6 and 7, the practice group evidenced no beneficial effects of task-
relevant experience on performance on a dissimilar, expanded transfer task. As a reminder,
the transfer task used presently, whilst similar in context and administered in close temporal
proximity, was also structurally different. This particular dissimilarity (Barnett & Ceci,
2002), along with the increased level of specific constraints (in comparison to the
training/practice task, cf. Experiment 2), constitute a more complex, far transfer task. There is
some suggestion that far transfer is harder to achieve than near transfer (Barnett & Ceci,
2002; Healy et al., 2006). As such, it may be speculated that beneficial effects of this
metacognitive training intervention would produce similar, or perhaps greater, beneficial
effects in a near transfer task where the underlying task structure and task complexity are
equivalent to that used during training. No conclusions on this subject are possible until the
merits of transfer to a near transfer task are tested empirically.

The present results overcome a limitation of the previous experiment. Here, a simple
think-aloud verbalisation group was also examined, based on the notion that the act of
verbalising, rather than the metacognitive content elicited, may be enough to produce the
cognitive changes underlying task performance (Smagorinsky, 1998). Presently, despite the
laboratory setting that could cause the perception that an interaction is taking place between a
designer and experimenter (which Bernardini (2001) believes may spontaneously prompt
metacognitive explanations), and despite the use of student participants who may be sensitive
to monitoring behaviour in experimental settings (Ericsson & Simon, 1998), there was no
beneficial effect of think-aloud. As such, it may be concluded that the improved performance

of the metacognitive training group is due to the metacognitive content of the verbalisations
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elicited rather than the act of verbalising. Ericsson and Simon (1993) argue that
metacognitive interventions require the active symbolic processing of information in working
memory, in effect the introduction of a secondary processing level. On the other hand, simply
verbalising is a passive activity of commenting on the information in working memory. It is
unlikely to be a coherent or comprehensive account of the depths of processing engaged in,
rather a simple commentary on momentary thoughts (Ericsson & Simon, 1998). Cooper,
Sandi-Urena and Stevens (2007) distinguish between metacognition that is necessary for task
understanding and cognition that is necessary for task performance. As there is evidence that
individuals may not spontaneously engage in metacognitive activities (Gama, 2004), it seems
likely that the think-aloud procedures used presently tapped into performance cognition
rather than metacognitive task understanding.

Once again, no significant effect of training condition on design time was found.
Design times varied considerably. It may be that the lack of a stringent criterion to attain
before terminating design attempts may lead to the variation. As such, the decision to stop
designing could have been based on multiple task aspects such as motivation to continue,
frustration effects, the reduced ability to monitor progress, or the belief that progress has
peaked (Payne & Duggan, 2011). Akin to Experiment 7, it is speculated that imposing a time
restriction may exacerbate some of the differences in the number of constraints satisfied
between conditions. Further empirical research would be needed to make conclusions
regarding this supposition.

In addition to the non-significant effect of training schedule on design time, no
significant correlations were found between the number of constraints satisfied and design
times. However, the association between these measures approached significance for the
metacognitive planning group. Birney and Halford (2002) suggest that positive correlations

of a greater magnitude are indicative that the task was experienced as less complex. It may be
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insinuated, cautiously, that the metacognitive training undertaken by the metacognitive group
acted to reduce the complexity of a subsequent transfer task.

As in previous experiments, the sample may be a limitation. Here designers may not
be considered naive, as all will have had some experience of layout design. However none
were expected to have any formal design experience. As such, these results may not
generalise to expert designers. There is some suggestion that domain experts can be
distinguished from those with less experience based on their verbalisations, as these experts
tend to spontaneously produce verbalisations with metacognitive content (Etel&pelto, 1993;
Veenman et al., 2006). Should the present study be replicated using a sample of more
experienced designers, the effects found may be expected to be smaller in magnitude. Further
research would be needed to verify this proposition.

In conclusion, the present experiment has indicated that metacognitive activity
concerning prospective performance can prompt planning activity in unfamiliar and complex
constraint satisfaction tasks. Engaging in such self-explanation processes produces benefits in
performance on a subsequent, and more complex, transfer task. Comparable effects are not
seen in those conditions in which participants experience practice or think-aloud training
methods. Whilst the exact mechanisms by which metacognition exerts effects are not known
with any certainty, various processes such as focusing attention on crucial task features and
inducing a more systematic approach have been proposed (i.e., Veenman et al., 2006;
Wetzstein & Hacker, 2004). It appears that the ease of application, and the generic
applicability of metacognitive techniques to multiple tasks, makes it a prime candidate for
further exploration in constraint satisfaction domains.

7.4  Conclusions
Experiments 7 and 8 have presented converging support for the notion that metacognition can

play a beneficial role in improving constraint satisfaction performance. In particular,
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Experiment 7 indicated that reflective self-explanation, a retrospective intervention, whereby
participants are forced to explicitly evaluate their progress so far, results in more constraints
satisfied on a subsequent transfer task. Experiment 8 changed focus by examining whether
prospective metacognitive interventions, involving experimenter-prompted self-explanation,
could be used to elicit effective planning, a process that may not automatically be adopted
given the degree of ill-structure and the unfamiliarity of constraint satisfaction tasks (Delaney
et al., 2004; Ormerod, 2005). Evidence of revised (but also explicit) planning was generated
and it was concluded that the change in cognitions underlay increased performance on a
transfer task. Experiment 8 further sought to disentangle the effects of simple think-aloud
techniques from a metacognitive intervention. Here, simply verbalising thoughts aloud did
not appear to alter cognitive processes, as indicated by non-significant differences between a
verbalisation and a practice condition. Suggestions as to how metacognitive interventions
exert beneficial effects vary. Wetzstein and Hacker (2004) suggest that engaging in
metacognition induces a more analytic style. Constraint satisfaction tasks, such as that used
presently, involve the application of logical rules and a good deal of decision making. A more
analytic style should indeed be of benefit when undertaking such activities.

Both experiments in this chapter have found no advantage of simply having engaged
in practice in an office design task. The previous chapter indicated that practice may aid
performance on near rather than far transfer tasks. This difference may be due to the level of
feedback afforded by practice without further instruction. Here, only intrinsic feedback is
available. Within complex, constraint satisfaction contexts, it appears that environmental or
contextual feedback is of little utility. It may be that this feedback is not helpful, or that it is
unclear how to interpret such feedback in a useful way. In contrast, metacognitive self-
explanation interventions provide useful extrinsic feedback. Here, a much more enriched

form of feedback is available. The relevance of this metacognitive feedback is readily
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apparent as it informs the designer as to their current performance progress and also
highlights any task misunderstandings. As a result, design strategy is improved when
compared to those receiving only intrinsic feedback.

Much of the transfer literature attests to the difficulty of achieving far transfer (i.e.,
Barnett & Ceci, 2002). Definitions of what constitute a near and far transfer task differ.
Presently, a near transfer task is defined as a task with the same structure, carried out in the
same context and within the same discipline, here constraint satisfaction. Far transfer is a task
within the same discipline and context, but possessing a differing, more complex structure.
Therefore, the transfer task used in the present chapter would fall under the definition of a far
transfer task. This may explain the lack of any beneficial effects of simple practice
interventions. Nevertheless, the utility of metacognitive interventions in attaining a degree of
far transfer (relative to training tasks) is demonstrated.

A methodological consideration of the present studies is the lack of the inclusion of a
near transfer task. Both Experiments 7 and 8 suggest, due to evidence of the transfer of
metacognitive skills to a far transfer task, that it is both probable and likely that beneficial
performance effects should be expected for near transfer tasks. However, these speculative
effects were not tested. There were a couple of methodological reasons for this omission.
Firstly, as indicated in Experiment 4, there were a limited number of general constraints
developed for use in the office task paradigm. As each office design task typically
incorporates three, and repetition of participant exposure to these general constraints was
avoided, a new set of general constraints would need to be developed. This would have
required time-consuming validation effects in order to prove that any one set of general
constraints were not idiosyncratic. Alternatively, a near transfer task could have been
produced by constructing a reduced version of the far transfer task. Here the number of

specific constraints and the number of design elements may have been kept constant relative
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to the practice task. This would reduce the differences between these transfer tasks to the
various types of general constraints applied, and the need to complete the task rather than
perform a subset of task moves. However, this would also act to reduce the level of
dissimilarity between the near and far transfer tasks (due to re-use of the same general
constraints), resulting in a less stringent test of far transfer. Therefore, for practical purposes,
and in order to preserve and implement the most conservative far transfer test, no near
transfer test was used.

A further methodological consideration is the lack of design time limits. Both
Experiments 7 and 8 indicated no significant effects of training schedule on design time due
to large variation in time taken to complete designs (although both studies indicated stronger,
but not necessarily significant associations between time and score in metacognitive training
conditions). Therefore, the usefulness of using design time as a dependent measure is called
into question. An alternative approach, that may have produced a more sensitive test of
training schedule on more important measures of design efficiency, most notably the number
of constraints satisfied, may have been to impose a time limit on each design task.

As throughout this thesis, conclusions are limited by the nature of the samples. Here
designers, although not necessarily naive, will have little formal design experience. Due to
the suggestion that domain experts tend to spontaneously produce verbalisations with
metacognitive content (Eteldpelto, 1993; Veenman et al., 2006), present results may not
generalise to expert designers. Nevertheless, results indicate that metacognitive training may
be of particular benefit to those beginning their training for careers in design. Here
educational programs may benefit from incorporating metacognitive teaching interventions.

Despite these methodological considerations, the present experiments have
methodological plus points that should also be acknowledged. Presently, little research has

examined metacognitive interventions in design contexts. One exception is Wetzstein and
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Hacker (2004), who had designers self-explain and justify their designs to another person
after which they could chose to revise their design. Here, a differing, more fine-grained,
move-by-move metacognitive intervention has been examined. The advantage of doing so
may be to prevent any need for complete design revision, as design strategies, and subsequent
design progress, is honed on a more regular basis.

To conclude, both retrospective and prospective metacognitive interventions have
proved beneficial in respects to the number of constraints satisfied on a subsequent far
transfer task. In both instances, metacognition was elicited via experimenter-prompter, self-
explanation. Both of these metacognitive interventions have been carried out at the design
move level of analysis, that is, before or after a design move was implemented. Flavell (1979)
highlighted that metacognitive activities can occur before, during or after an activity. As
such, the present studies take a close-up examination of prospective and retrospective
techniques used during training. A possibility not yet explored is whether retrospective or
prospective techniques before or after a training task could induce similar beneficial effects.
Whilst such techniques may be prone to memory inaccuracies, Wetzstein and Hacker (2004)
have indicated that a reflective intervention of this nature aided designers in an ill-defined
design context. Future research could explore whether these effects may generalise to

constraint satisfaction contexts.
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CHAPTER EIGHT

General discussion

8.1  Summary of experimental findings

The current series of experiments has addressed two qualitatively different aspects of
performance in constraint satisfaction paradigms. The first series of experiments,
Experiments 1-5, investigated whether constraint satisfaction performance was affected by
variation in the number and nature of constraints, with some further distinctions made
between the numbers of constraint, the number of differing general constraint types and the
interplay between constraints and the external representation. A summary of these
experiments is now given (see Table I in Appendices for an overview of experimental aims,
design and results).

Experiments 1 and 2 examined whether variation in the number of constraints
produced performance differentiation using both the timetabling and office design paradigm.
Both experiments reported that a higher number of constraints led to deterioration on a
number of important measures of design efficiency. Experiments 3 and 4 investigated
whether variability among design elements, and the number of differing types of general
constraint applicable to them, produced differences in design efficiency within the office
design paradigm. Here, detrimental effects of having a greater number of constraint types
applicable to each design element were found on the number of constraints satisfied. There
was also some evidence that greater variability had a detrimental effect on design completion
times. Experiment 5 investigated whether distinctions between the nature of certain
constraints, and their interplay with the external representation, effects design performance.
Here, performance with differing levels of fixed and non-fixed constraints was contrasted.

Results indicate that participants undertaking an office design task with a greater proportion
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of fixed spatial constraints satisfied more of those constraints. A linear effect, with little
deviation was apparent. No such effect was found for design time.

A second theme to the experimental work within this thesis was constraint satisfaction
training (see Table 1l in Appendices for an overview of experimental aims, design and
results). Given the paucity of empirical evidence concerning human cognition in constraint
satisfaction contexts, but the extensive documentation of the utility of metacognitive
interventions in various contexts (i.e., Veenman et al., 2006), including some preliminary
evidence in design contexts (i.e., Wetzstein & Hacker, 2004), metacognitive interventions
aimed at inducing more analytic and systematic approaches to constraint satisfaction design
were explored. However, before this was attempted, the potential for individuals to
spontaneously improve was investigated. Experiment 6 explored whether designers show
improvements in constraint satisfaction performance via practice without further instruction
using the timetabling paradigm. Here, only intrinsic feedback is available to inform cognitive
strategy. Results indicate that one practice trial was enough to produce a beneficial result on a
near transfer task but not far transfer. Indeed, no positive far transfer was achieved.

Experiments 7 and 8 then documented attempts to improve office design performance
through the introduction of metacognitive training interventions in comparison with control
and practice interventions. Here, experimenter prompted self-explanation techniques were
implemented. Experiment 7 contrasted a control group and a practice group with a group
performing reflective metacognitive training. Experiment 8 aimed to investigate whether
prospective metacognitive training is also beneficial in constraint satisfaction design. Here,
an additional verbalisation group was included to control for potential effects of simply
voicing thoughts aloud. Both experiments found benefits of metacognitive interventions on
the number of constraints satisfied in a following far transfer task. In both instances, control

and practice (and in Experiment 8 also verbalisation) groups did not differ. There was no
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effect of training on design time. However, correlations indicated a greater association
between time and constraints satisfied for the metacognitive interventions, indicative that
designers undertaking metacognitive training found the transfer task that followed to be less
complex than their counterparts in other conditions.

8.2  General conclusions and implications

The research carried out presently was a preliminary attempt to address a gap in the design
literature concerning human performance in constraint satisfaction contexts. Whilst not a new
area of human endeavour, much of the published research document attempts to automate the
process, and focus mainly upon the utility and development of computer algorithms (i.e.,
Burke & Petrovic, 2002; Burke et al., 2006). The experimental work documented here
highlights a number of useful and informative cognitive effects within the domain of human
constraint satisfaction design. Several aspects of task constraints have been explored allowing
a number of conclusions to be drawn. As such, some headway has been made into uncovering
the difficulties entailed in constraint satisfaction.

Collectively, Experiments 1 to 4 indicate that increasing the number of constraints, or
the number of qualitatively differing types of constraints, produces performance
deterioration. Here, the size of the rule space increases (Simon & Lea, 1974; Zhang &
Norman, 1994). This rule space then interacts with the state space to determine the overall
size of the problem space (Newell & Simon, 1972) and the complexity entailed in navigating
through it. Experiments 3 and 4 also highlight that the consideration of multiple rule types
can be problematic. Theories of interactivity (i.e., Sweller et al., 1990) and relational
complexity (i.e., Halford et al., 1998) suggest that it may not be the number of items that
need to be processed that impact upon task difficulty, but the number of differing items that
relate to a decision and need to be considered in parallel. Therefore, the interrelations

between qualitative dimensions of the rule space are also a source of performance variation.
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Experiment 5 added a little to what can be deduced about the rule space. The distinction
between fixed and non-fixed constraints interacted with the level of affordance offered by the
external representation (i.e., Gero & Kannengiesser, 2012). The result was differing levels of
cognitive fit (i.e., Vessey, 1991). Experiments 1-5 collectively indicate that constraints do
matter. Constraint information can affect design performance in various ways, from taxing
mental resources, introducing additional complexity, or by being differentially supported by
external representations.

All of these findings may have implications for the teaching of constraint satisfaction
design. Teaching strategies involving the introduction of subsets of constraints may be
expected to alleviate the cognitive load that arises from higher number of constraints. It is
unclear whether such a strategy may alleviate the cognitive complexity that arises due to the
number of differing constraint types. Here, introducing subsets of constraints may only
alleviate task complexity should the differing constraint types be introduced incrementally.
This is unlikely to alleviate the overall task relational complexity once all general constraints
are revealed. Nevertheless, an incremental increase in relational complexity and also
cognitive load may be preferable to an overload of both from the outset. In addition,
knowledge and awareness of the difficulties that may be encountered when multiple
constraint types apply to a design element may help novice designers to more systematically
identify where difficulties are likely to arise and may provoke them to proceed with more
caution. In respects to the implications of differential cognitive fit (Experiment 5), design
students may benefit from tuition concerning the differences in constraint processing
demands and the affordances of differing forms of external representation. They may further
benefit from instruction and training in how to transform an external representation into a

format that best supports design cognition (Jones & Schkade, 1995).
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Experiments 6 to 8 examined whether differing training schemes could bring about
improvements in constraint satisfaction performance. Results between differing training
groups were interpreted in light of the distinction between intrinsic and extrinsic feedback
(Patrick, 1992), and also via the properties of near and far transfer (cf. Barnett & Ceci, 2002).
Presently, practice with only intrinsic feedback and no further instruction, proffered
performance benefits on near transfer tasks only. As such, it appears brief practice
interventions produced a relatively specific form of task learning. No evidence of the
acquisition of general, flexible learning was shown. As such, practice alone may not be a
suitable training intervention should flexible and adaptive design behaviour be desired.
Experiments 7 and 8 focused on metacognitive self-explanation techniques that provide
additional extrinsic feedback aimed at strategically changing cognitive behaviour. The
growing field of research documenting the utility of metacognitive interventions appeared a
promising field. These interventions are relatively easy to develop and implement (as an
experimenter is not required to manually and effortfully compute task progress), and appear
to prompt individuals to approach and carry out their tasks more strategically and more
effectively (i.e., Wetzstein & Hacker, 2004). Both reflective self-explanation and self-
explanation of prospective planning strategies produced beneficial constraint satisfaction
when contrasted with control, practice or verbalisation conditions. The proposed mechanisms
by which metacognition exerts beneficial effects vary within the literature. Whilst the exact
micro processes involved may be specific to the intervention and the task undertaken, a
generic outcome of engaging in metacognitive activity is that a more analytic and systematic
approach is induced whereby feedback concerning task understanding is utilised productively
(Wetzstein & Hacker, 2004). Present metacognitive interventions forced participants to

scrutinise their strategies on a move by move basis. In doing so, attention was focused on
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computing task progress as the design was compiled. Here any faulty reasoning assumptions
would have been highlighted and adjusted early on.

The training section of this thesis indicates that designers can be trained to perform
constraint satisfaction to better effect, and highlights metacognitive activity as an efficient
method of achieving this. This conclusion may have implications for the training of novice
designers. Designers should be familiarised with metacognitive techniques such as explicit
self-explanation, and also taught the potential benefits of its application. Indeed, Ainsworth
and Burcham (2007) indicated that informing problem solvers of the benefits of
metacognition should encourage the uptake of metacognitive strategising. In addition,
metacognitive strategies should focus attention on the most complex aspects of task
performance. Given the semi-structured nature of constraint satisfaction, planning and
performance monitoring are the most complex and effortful processes. As such, the
metacognitive interventions examined presently have entailed explicit monitoring and
planning. However, in design contexts where structure is lacking (see Table 1.2), problem
structuring (i.e., Restrepo & Christiaans, 2004) may need to take precedence over subsequent
planning and progress monitoring. In such contexts, prospective metacognitive interventions
may need adjusting accordingly.

8.3  Limitations and methodological considerations

The present stream of research has some limitations that need to be acknowledged. One,
already discussed previously in depth, that may not require repeat description here, is the
utilisation of undergraduate students as experimental participants. Other limitations are now
addressed.

The use of design completion time as a dependent measure did not prove as
informative as initially expected. Indeed, results concerning design times were somewhat

disappointing. It was expected that greater task difficulty/complexity would result in longer
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design times, as participants would need to invest more time to reach a satisfactory solution.
At the very least, clearer speed-accuracy trade-offs were expected. This was not often the
case. The lack of clear stopping criteria, a typical feature of design tasks (Goel & Pirrolli,
1992) may have resulted in the absence of findings in completion times. In uncertain problem
solving environments, when faced with a problem of considerable complexity, there are
several reasons why an individual may terminate problem solving efforts whilst having not
reached a satisfactory solution (Payne & Duggan, 2011), or without demonstrating a
preference for speed over accuracy. One such reason may be an inability to monitor whether
forward progress is being made, or the evaluation that further efforts will not succeed in
improving problem solutions. This could lead to frustration effects and individuals may be
unmotivated to expend more energy in working towards task goals. It could be speculated
that the inherent complexity of human constraint satisfaction activities may lead to such
effects. It is believed that allowing individuals to select their own stop criteria, based on
affective reasons or cognitive considerations may have led to the lack of interpretable results
concerning time. Future research may consider the utility of using fixed time limits during
which to examine design performance. Doing so, whilst losing design time as a dependent
measure, may have the added benefit of reducing the level of noise caused in other
performance measures by the large variability in design completion times.

Another methodological consideration that should be acknowledged is the difficulty
of isolating effects concerning variation between the number of qualitatively different
constraint types and their applicability to the design elements. The experiments documented
in Chapter 4, concerning relational complexity of the type and number of interactions
between design elements and general constraints, had some methodological issues. It appears
that introducing variation in one form of relational complexity, necessarily introduces

another, unintentional form of interactivity. In Experiment 3, variation in the number of
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general constraint types applicable to each design element also introduced variation in the
number of design elements subject to each general constraint type. Likewise, in Experiment
4, variability between design elements and the number of differing constraint types also
introduced variation between the numbers of specific constraints falling under each general
constraint. It appears that within the office constraint paradigm, as utilised presently,
relational complexity may vary on multiple dimensions. It is hoped that the strength of
conclusions made are permissible given the converging evidence of Experiments 3 and 4.

A related limitation concerns the utility of the constraint satisfaction paradigms used
presently. Both the office task and the timetabling task were developed specifically for the
purpose of providing an experimental platform that allowed human constraint satisfaction to
be examined. However, unforeseen limitations of these paradigms limited the scope of some
experiments undertaken. As well as issues concerning intractable forms of relational
complexity, a limited number of general constraints were available within each paradigm.
Experiments 7 and 8 used two office designs tasks, utilising the majority of general
constraints presently available. One version was utilised for practice and training purposes,
the other as a type of far transfer task. A far transfer task was selected over a near transfer for
reasons discussed in Section 7.4 (reasons centred on the idea that the acquisition of flexible,
generic skills are of greater desirability). Whilst far transfer is believed to be harder to
achieve (Barnett & Ceci, 2002; Gray & Oransanu, 1987), the achievement of any degree of
far transfer does not necessarily allow the assumption that beneficial effects in near transfer
will also be seen. Had more general constraints been developed it may have been possible to
have both a near and a far transfer task, and this may have allowed more comprehensive
conclusions to be drawn. However, the development of new general constraints, if possible,
would have required an extensive amount of calibration. With the exception of Experiment 5,

all office tasks contained two fixed and one non-fixed general constraint, as modelled on
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Carroll et al.’s (1980) original use of the paradigm. The development of any new general
constraints would require a rule with contextual face validity. Fixed constraints would also
require the general rule to focus upon one of the few fixed representational anchors. It was
felt that such an endeavour would not yield results.

Despite the limitations and methodological nuances noted above, the present
experimental paradigms have provided a good basis for a preliminary investigation of
constraint satisfaction cognition. Advantages of the current experimental platforms included
their wide-applicability to everyday design situations. This allowed the examination of
constraint satisfaction cognition without the need for great technical knowledge or extensive
task familiarisation. Further practical benefits included the ability to examine the design
process in a relatively compact design episode (with participation times varying from 30 to
75 minutes). Nevertheless, other methodologies may prove useful in furthering what may be
examined in everyday constraint satisfaction contexts. Logistics, the organisation of supply or
delivery networks, is also a constraint satisfaction activity. Such activities combine route-
planning involving spatial and temporal constraints, with resource restrictions. Such a context
allows a variety of constraint types and distinctions to be introduced and may alleviate some
of the restrictions found within the current paradigm.

A final limitation is noted in regards to the conclusions made concerning the utility of
undergoing multiple practice trials. In Experiment 6, blocked practice was used. Whilst this is
not in itself problematic, the repeated use of the same practice task might be. It may be that
the intrinsic feedback available through five practice trials is no greater than that offered by
one. Holladay and Quifiones (2003) suggest that variability in practice is more beneficial in
contributing to positive transfer. Variable practice was not examined presently. On the basis
of results concerning non-variable blocked practice (that five trials has no benefit beyond that

gained from one trial), subsequent training experiments incorporated practice conditions
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entailing only one practice task exposure. This may have precluded the possibility that
variable blocked practice may produce improved performance than that seen after one
practice trial.

8.4  Recommended future directions

The research detailed presently covers only a small aspect of human constraint satisfaction
performance. As such there are many other avenues with the potential to offer further insight.
Some avenues of discovery have already been alluded to in the previous section of this
chapter. Firstly, one could examine whether performance on complex tasks, containing many
constraints, may be improved by breaking the task constraints into subsets. These sets of
constraints could then be introduced gradually. This should act to alleviate the cognitive load
experienced in comparison to the load experienced when all constraints are presented
simultaneously. Secondly, more research could be aimed at discovering whether alternative
external representational formats are more advantageous when tackling office design tasks
with a greater proportion of non-fixed spatial constraints. Graphical representations such as
network maps may prove useful here. Alternatively, research could focus on the utility of
using intermediate representations as a cognitive aide memoire. Indeed, in the field of
structured problem solving, Jones and Schkade (1995) found that some individuals undergo
the costly efforts of translating a problem representation to better capture problem
information. A further recommendation for future research may aim to overcome one of the
present limitations concerning the contents of practice trials. Comparing the benefits afforded
by variable blocked practice with that of identical blocked practice may offer further insight
into whether practice may induce some degree of far transfer. In addition, should greater
advantage be offered by variable blocked practice, it would be prudent to examine whether
training interventions such as the metacognitive ones used presently still produce more

advantageous performance then variable practice. Another recommendation involves the
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greater use of qualitative data. For instance, think aloud protocols could be of greater use than
distinguishing between passive commentary and active examination of cognitive strategies
(see Experiment 8). Think aloud could be further utilised to identify heuristics used by those
undertaking constraint satisfaction design. Analysis of such content may be useful in
determining effective and ineffective constraint satisfaction strategies.

Finally, a number of other avenues may allow further insight into factors affecting
transfer of training strategies. Whilst the present metacognitive training interventions have
demonstrated positive effects, whether these effects are transient in nature is unclear. It may
be that the training is a crutch for performance, an effect that may be compounded by the lack
of any change in experimental context between training and transfer tests. Should this be the
case, performance benefits may be expected to dwindle as the time between training and
transfer tests increases. Further research would benefit from testing the longevity of
performance benefits. A final, related line of enquiry may offer a way of enhancing the
longevity of training interventions. Interest is growing in the role social media may play in
enhancing the transfer of training (i.e., Volet, 2013). Given the complex nature of design
tasks, even those with a greater degree of task structure such as constraint satisfaction design,
training top-ups administered via social media may prove swift and cheap to develop. Here
trainers could be available to recap on brief metacognitive interventions. Alternatively, group
forums could be set up to allow trainees to act as both designer and experimenter. Whilst
such initiatives would bring about issues concerning the motivation to use such a system, its

uptake rate may act to moderate the association between training and retention.
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APPENDIX

Table I. Performance variation in constraint satisfaction due to systematic manipulation of constraints

Experimental aims

Design

Results & conclusions

Exp1l
Timetabling task

To establish whether the
number of task constraints
affects design performance.
Hypothesis: Higher numbers of
constraints lead to reduced
design efficiency.

Within-subjects design.

Participants completed three timetabling tasks that
varied in the number of constraints:

Low: 3 general & 48 specific constraints

Medium: 5 general & 67 specific constraints
High: 7 general & 97 specific constraints

Product measures obtained: classes successfully
placed, design time, end constraint violations.
Process measures obtained: design moves, error
violations throughout.

High constraint tasks resulted in significantly fewer classes placed successfully and in
more errors (constraint violations during and at the end of the design process) from
other experimental tasks. Performance between the low and medium constraint tasks
did not differ significantly on these measures. In addition, significantly faster design
completion times and a lower number of design moves were evident in the low
constraint task. Here performance on the medium and high constraint task did not
differ significantly.

These results are consistent with notion that having a larger problem space containing
more constraint information results in increased task complexity and a greater degree
of cognitive load. Within each performance measure, there was no strict, linear decline
in performance deterioration along with increasing numbers of constraints. Instead,
threshold effects were apparent.

Caveat: number of general and specific constraints co-varied.

Exp 2
Office design task

To investigate whether the
number of specific task
constraints affect design
performance.

Hypothesis: Higher numbers of
specific constraints lead to
reduced design efficiency.

Between-subjects design.

Participants completed one of three office design
tasks that varied only in the number of specific
constraints (all had 3 general constraints):

Low: 12 specific constraints

Medium: 24 specific constraints

High: 36 specific constraints

Performance measures obtained: proportion of
constraints satisfied, design time, the proportion of
time taken to satisfy each constraint and design
moves.

Participants in the high constraint condition satisfied a significantly lower proportion
of their task constraints and took longer to complete their designs than participants in
the medium or low constraint conditions. High constraints also utilised more design
moves than the low constraint condition. However this effect only approached
significance.

Performance between the low and medium constraint conditions did not differ
significantly, indicating that there may be a threshold beyond which further constraints
become problematic.

Contrary to expectations, participants in the low constraint condition expended the
most time satisfying each constraint. This result cannot be explained by problem space
theory but may be indicative of the lack of stringent stop criteria.

These results provide further support to the argument that having more information to
contend with when searching the problem space leads to deterioration in design
efficiency.
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Table I. continued...

Exp 3
Office design task

To investigate whether
variation in the number of
differing constraint types,
but not specific
constraints, affects design
performance.

Hypothesis: Greater levels
of variability between
design elements and the
number of applicable
general constraint types
will result in deterioration
in design performance.

Mixed within- & between-subjects design.
Participants completed two office design tasks.
Tasks contained 3 general constraint types and 18
specific constraints but differed in the interactions
between design elements and general constraints.
Low variability: each design element subject to 1
or 2 general constraint types

High variability: each design element subject to all
3 general constraint types.

Ordering of tasks was fully counterbalanced.

Performance measures obtained include the
number of constraints satisfied, the design
completion time and the number of design moves
made.

Performance in the high variability task was consistently worse. The number
of constraints satisfied was significantly lower in this high variability task. In
addition, the design time and the number of design moves utilised was
significantly higher in the high variability task.

Presentation had no effect on performance measures with the exception that
there was an interaction between task variability and presentation order for the
number of design moves utilised. Those who had completed a low variability
task first required more design moves to complete a high variability task.
Whilst no firm conclusions can be made, it could be suggested that strategies
effective in the low variability task may not effectively transfer to the high
variability task, but not vice versa.

These results indicate that despite having an equivalent amount of specific and
general constraint types per task, the interactions between a design element
and the differing general constraints is a source of performance variability.

Caveat: Co-variation of the number of differing constraint types per design
element and the number of design elements per general constraint type.

Exp 4
Office design task

To further investigate
whether variation in the
number of differing
constraint types and
design elements affect
performance.

Hypothesis: Greater
variation will result in
deterioration in design
performance.

Between-subjects design.

Participants completed either a low or a high
variability task, each containing 24 specific
constraints.

Low variability: 3 differing general constraints
High variability: 6 differing general constraints

Performance measures obtained include the
number of constraints satisfied and the design
completion time.

Participants performing the high variability task satisfied significantly fewer
constraints than those performing the low variability task. This supports the
notion that the greater the interactivity, or relational complexity, between the
number of differing constraint types and design elements, the more complex
the design task becomes.

No significant differences were found in the time taken to complete an office
design. This result may have been indicative of a lack of clear stopping
criteria but no firm conclusions can be made.

Caveat: As in Experiment 3, there are alternative forms of variation (such as
the number of general constraint types per task, or the number of specific
constraints per general constraint) that may have contributed to the patterns of
results.
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Table I. continued...

Exp5
Office design task

Investigating whether the
proportion of constraints
referencing a fixed

representation point, and the

interplay with the external

design representation, affects

design performance.

Hypothesis: Increasing the
proportion of fixed

constraints leads to improved

cognitive fit resulting in
greater design efficiency.

Between-subjects design.

Participants completed one of four office design
tasks. All contained 27 specific and 3 general
constraints. The following proportions of fixed
and non-fixed constraints were used:

All fixed: 3 fixed general constraints

2/3 fixed: 2 fixed, 1 non-fixed general constraints
1/3 fixed: 1 fixed, 2 non-fixed

No fixed: 3 non-fixed general constraints

Performance measures included the number of
constraints satisfied and the design completion
time.

Results indicated that those undertaking an office design task with greater
proportions of fixed constraints satisfied more of their task constraints. A linear
effect with little deviation was apparent, indicating that task performance
increased along with the proportion of fixed constraints.

Results support the proposition that fixed points within the external problem
representation may afford some computational offloading when implementing
and monitoring sets of fixed specific constraints. As such, greater cognitive fit
results when performing office design tasks containing mainly fixed constraints.
The representational format provides no similar support when implementing and
monitoring non-fixed constraints that stipulate the positioning of two employees
based on neighbouring or surrounding offices.

As in Experiment 4, no significant differences were found in the time taken to
complete an office design. Again this may have been indicative of a lack of clear
stopping criteria but no firm conclusions can be made.

Table Il. Training and performance within constraint satisfaction tasks

Experimental aims

Design

Results & conclusions

Exp 6
Timetabling paradigm

Investigating whether
simple practice, and the
repetition of it, has an
effect on performance on
near and far transfer tasks.

Hypothesis: Practice
should lead to improved
constraint satisfaction
performance, with greater
benefits shown by those
undergoing multiple
practice trials

Between-subjects design.

Experimental tasks undertaken differed according to
experimental condition:

A 5 trial group performed a practice task 5 times. A
1 trial group performed a practice task once. A
control condition performed an irrelevant maths
task.

All participants then completed a near (similar to
the practice task but with superficial differences)
and far transfer task (different structurally).

All tasks were limited to a maximum of 12 minutes.

Performance measures included the number of
successful class placements and the number of
omissions (classes not scheduled).

For the near transfer test, the control group placed significantly fewer classes
successfully, and omitted more classes from the end design than practice groups
(who did not differ from each other). For far transfer, there were no significant
group differences. In respect to the 5 trial condition, analysis of performance
throughout practice trials indicated that significantly more classes were placed
sutccessfully and fewer omissions were made in the 5™ trial in comparison to the
1% trial.

Practice without further instruction offers only intrinsic feedback. It appears that
such feedback and any learning or skills acquired during the practice phase may
be specific to the structure of the task. As the structure of the near transfer task
was identical, performance on this task improved as a function of practice.
Multiple practice trials did not offer any advantage above that gained from one
practice task. The lack of any beneficial effects of practice in the far transfer task
indicates that no general timetabling skills were acquired.
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Table Il. continued...

Exp7
Office design task

Investigating whether a
reflective metacognitive
self-explanation method
can produce beneficial
transfer effects in
comparison to a practice
only intervention and a
control condition.

Hypothesis: A
metacognitive self-
explanation group will
show higher levels of
performance on a transfer
task.

Between-subjects design.

Experimental tasks undertaken differed:
A reflective self-explanation group
performed a simplified practice task with
self-explanation prompts following design
moves.

A practice group performed the practice task
without further instruction.

A control group performed an irrelevant
maths task.

All participants performed a far transfer
task.

Performance measures included the number
of constraints satisfied and the time taken to
complete the transfer task. Additional
measures involved the correlation between
these measures.

Results indicated that the reflective self-explanation group satisfied more constraints than those in
the practice or control group (who did not differ). No differences were found in design time.
Correlational analysis of number of constraints satisfied and design times indicated a significant
positive association for the reflective self-explanation group only. Here, stronger correlations are
attributed to a clear speed-accuracy trade-off function, enabled by the lower task complexity
experienced by the self-explanation group, relative to other experimental groups.

Practice alone, did not produce any performance benefits compared to the control group.
Collectively, results indicate that self-explanation techniques aimed at prompting metacognitive
activity has beneficial effects on constraint satisfaction; it appears to improve performance and
reduce perceived complexity relative to conditions where participants have undergone either
practice without further instruction, or performed an irrelevant task. In order to achieve this, the
present metacognitive intervention produced additional extrinsic feedback helpful in improving
cognitive strategy and becoming more systematic.

The lack of differences in design time may be indicative of the lack of clear stopping criteria.

Caveat: Whilst the act of verbalisation is not expected to have induced the beneficial effects in the
reflective self-explanation group, this cannot be ruled out.

Exp 8
Office design task

Investigating whether a
prospective metacognitive
planning method can
produce beneficial
transfer effects in
comparison to a practice
only intervention and a
control condition

Hypothesis: A
metacognitive planning
group will show the
highest levels of
performance on a transfer
task.

Between-subjects design.

A metacognitive planning group performed
a simplified practice task with prompts to
evaluate and potentially alter proposed
moves before they are implemented.

A verbalisation group performed the
practice task whilst thinking aloud.

A practice group performed the practice task
without further instruction.

A control group performed an irrelevant
maths task.

All participants performed a far transfer task

Performance measures included the number
of constraints satisfied, the time taken to
complete the transfer task and correlations
between these measures.

The metacognitive planning group satisfied more constraints than other experimental groups (who
did not differ). Correlational analysis found no associations between number of constraints satisfied
and design completion times. However, the association within the metacognitive planning group
approached significance and was the largest in magnitude. This may indicate that those undertaking
the metacognitive training found the transfer task simpler in comparison to participants in other
conditions.

These results indicate that prospective metacognitive strategies are beneficial in eliciting planning
strategies that are not automatically engaged in complex or unfamiliar tasks. As in Experiment 7,
the mechanism by which metacognitive planning may produce benefits involves the production of
useful extrinsic feedback acting to make participants focus their attention more systematically on
crucial task features.

As in Experiment 7, there was no effect of training schedule on time taken to complete a design,
which may be indicative of the lack of clear stopping criteria. Once again, practice without further
instruction was not sufficient to produce performance benefits on a far transfer task. In addition,
thinking aloud during the practice task did not offer any benefits in terms of transfer performance.
It appears that the present act of verbalising did not alter designers’ thought processes.
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