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control and habit formation, while its ventral extension, the nucleus 
accumbens (NAc), has been implicated in the reward mechanisms 
to natural and drug reinforcers. The few studies examining the nor-
mal function of CREB in the dorsal striatum have confi rmed a role 
in striatum-dependent learning and memory (Hernandez et al., 
2002; Pittenger et al., 2006; Lee et al., 2008). We previously found 
that expression of a dominant negative mutant of CREB, KCREB, 
in the dorsal portion of the striatum causes a bidirectional loss 
of long-term corticostriatal plasticity and a concomitant impair-
ment in procedural memory formation (Pittenger et al., 2006). In 
contrast, CREB in the NAc is upregulated by treatment with psy-
chostimulants and appears to homeostatically oppose some of their 
effects (Carlezon et al., 1998, 2005; Pliakas et al., 2001; Barrot et al., 
2002; Sakai et al., 2002; McClung and Nestler, 2003; Dong et al., 
2006; Dinieri et al., 2009). Overexpression of dominant- negative 
versions of CREB in the NAc lead to increased sensitivity to both 
psychostimulants and opiates, while ectopic expression of wild-
type (WT) CREB inhibits the behavioral responses to drugs of 
abuse. This cumulative evidence suggests a rather complex drug-
dependent adaptive response to an altered CREB activity in this 
brain structure.

Previously, the effect of CREB blockade in the striatum on drug-
related behaviors has only been evaluated in the NAc. Here we 
show, in a mouse line that predominantly expresses KCREB in 
the dorsal striatum but little in the ventral portion (str-KCREB), 
that blockade of CREB activity results in an enhancement of the 
rewarding effects of cocaine and morphine, indicating that CREB 
in the dorsal striatum plays a similar role in antagonizing the effects 
of psychostimulants.

MATERIALS AND METHODS
ANIMALS
We have previously described the generation and initial characteri-
zation of str-KCREB transgenic mice (Pittenger et al., 2002, 2006). 

INTRODUCTION
Transcription factors of the cyclic-AMP response element binding 
protein (CREB) family, and the signaling cascades that regulate 
them, have been shown to importantly contribute to memory 
formation and long-term synaptic plasticity both in inverte-
brate systems and in several areas of the mammalian brain (Dash 
et al., 1990; Bourtchuladze et al., 1994; Yin et al., 1994; Bartsch 
et al., 1998; Ahn et al., 1999; Josselyn et al., 2001, 2004; Barco et al., 
2002, 2005; Kida et al., 2002; Pittenger et al., 2002, 2006; Han et al., 
2007, 2009; Lopez de Armentia et al., 2007; Lee et al., 2008; Jancic 
et al., 2009; Mamiya et al., 2009; Viosca et al., 2009a,b). Inhibition 
of this class of transcriptional activators leads to memory impair-
ments, while their potentiation can facilitate memory consolida-
tion (Barco et al., 2003; Carlezon et al., 2005; Josselyn and Nguyen, 
2005). Dysregulation of memory formation may contribute to 
neuropsychiatric diseases – either to memory impairments, or 
to maladaptive, inappropriate, or infl exible patterns of behavior 
or thought. In one prominent example, the underlying molecu-
lar mechanisms implicated in drug addiction have been found 
to overlap with mechanisms involved in memory formation in 
many respects (Berke and Hyman, 2000; Fasano and Brambilla, 
2002; Chao and Nestler, 2004; Kelley, 2004; Hyman et al., 2006). 
Addiction is characterized by a transition from reward-based 
substance consumption for recreational reasons to compulsive, 
pathological drug use that is resistant to voluntary control. The 
cognitive basis of this transition has been linked to the forma-
tion of maladaptive habits, in which aberrant stimulus-response 
associations, normally acquired through multiple repetitions of 
goal directed learning processes, become independent of the rein-
forcing properties of the drug in question (Everitt and Robbins, 
2005; Belin et al., 2009).

A key brain region involved in procedural learning, habit for-
mation and drug addiction is the striatum. The dorsal portion of 
this brain region is generally considered to have a role in motor 
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str-KCREB mutants and littermate controls used in behavioral 
experiments were backcrossed for more than seven generations 
onto the C57BL/6 congenic strain. Behavioral studies and animal 
care were conducted according to protocols approved by the Animal 
Care and Use Committee of the Fondazione San Raffaele del Monte 
Tabor (IACUC 229) and communicated to the Ministry of Health 
and local authorities.

IMMUNOHISTOCHEMISTRY
CREB immunostaining
str-KCREB mice and WT littermates were perfused transcardially 
with ice-cold 4% PFA dissolved in 0.1 M Na

2
HPO

4
/NaH

2
PO

4
 buffer, 

pH 7.4. Brains were postfi xed overnight and transferred to 25% 
buffered sucrose for 24 h. Coronal sections were cut at 30 µm 
 thickness on a freezing microtome and stored in a cryoprotective 
solution at −20°C until they were processed for immunohistochem-
istry as previously described (Fasano et al., 2009). Free-fl oating 
sections were rinsed in TBS and incubated in TBS containing 3% 
H

2
O

2
 and 10% methanol for 15 min. After rinsing in fresh TBS, 

sections were blocked in 5% normal goat serum and 0.1% Triton 
X-100 in TBS for 1 h. Anti-CREB primary antibody (1:200; Cell 
Signaling Technologies) was used overnight at 4°C to detect protein 
expression. Tissue sections were further processed using Vectastain 
Elite ABC kit (Vector Labs) and DAB detection. For analysis, great 
care was taken to match sections through the same region of brain 
at the same level. All visible positive nuclei or cell bodies within a 
10 × 10 fi eld were counted and expressed as number of cells per 
square millimeter of tissue for each brain site. For a single brain site, 
counts were averaged from three sections from each animal and six 
animals were analyzed for each genotype. Quantifi cation of CREB 
positive neurons was counted from dorsal striatum (CPu) and its 
ventral portion (NAc). Sample areas were visualized under a 10× 
objective in a Leica DM IRB microscope by a blind investigator to 
condition and genotype and analyzed using the ImageJ software.

Cholinesterase staining
It was carried out on 30 µm fresh frozen sections of dissected 
mouse brain. They were lightly fi xed with 2% PFA (5 min, room 
temperature) and then stained with a 9:1 mixture of solution A 
(0.5 mg/ml acetylthiocholine, 0.5 mM sodium citrate, 3 mM 
CuSO

4
, 0.1 M acetate buffer, pH 6.0) and solution B (5 mM potas-

sium  ferricyanide), heated to 37° and mixed immediately before 
use. Slides were incubated at 37° for 5 min and then rinsed gently 
with tap water. They were then developed with 0.6 mg/ml chloro-
naphthol in PBS/0.025% H

2
O

2
.

D1 and D2 binding
Fresh-frozen dissected mouse brains were sliced at 30 µm on a 
microtome. Unfi xed slides were washed for 30 min in 50 mM 
Tris–Cl (pH 7.4), 120 mM NaCl, 5 mM KCl, 2 mM CaCl

2
, 1 mM 

MgCl
2
, and 0.3% BSA (for D1 binding) or in 50 mM Tris–Cl 

(pH 7.4), 100 mM NaCl, and 0.3% BSA (for D2 binding). Slides 
were then incubated at room temperature in the same buffer plus 
50 nM ketanserin/2 nM 3H-SCH23390 (for D1 binding) or 100 nM 
ketanserin/1 nM 3H-spiperone (for D2 binding). Negative con-
trols (not shown) for nonspecifi c binding were performed with 
the same incubation buffer plus 5 µM butaclamol (which binds 

both D1 and D2 receptors). After ligand binding, slides were rinsed 
twice for 10 min in the same buffer, allowed to dry, and exposed to 
3H Hyperfi lm (Amersham) for 4 weeks.

Measurement of the hybridization signal was carried out on 
three coronal sections using ImageJ software. Optical density value 
relative to each receptor was reported after subtraction of the tissue 
background (as determined on the cortex in each section).

HPLC assay of monoamines and their metabolites
Anesthetized mice were perfused with ice-cold PBS. Hippocampi 
and striata were rapidly dissected from 10 transgenics and 10 con-
trols and frozen on dry ice/ethanol. Monoamines were extracted 
and analyzed by high-performance liquid chromatography as 
described (Pittenger et al., 2002).

BEHAVIORAL ANALYSIS
Locomotor activity
Mice were placed in individual locomotor activity monitoring boxes, 
consisting of a plastic, transparent rectangular area (Ugo Basile, 
Comerio, Italy) equipped with infrared light photocell beams, as 
previously described (Mazzucchelli et al., 2002; Fasano et al., 2009). 
Horizontal activity was recorded during 10 min test session for three 
consecutive days in a low luminosity environment (20 lx).

Rotarod
Mice were placed on an accelerating rotarod (Ugo Basile, Comerio, 
Italy) at a slow rotation speed (4 rpm) and must continuously walk 
to keep from falling off the cylinder. Rotational speed was grad-
ually increased to a maximum of 40 rpm over a 5-min session. 
Performance was measured as latency to fall and was monitored 
during three daily sessions for two consecutive days (Fasano et al., 
2009).

Morris water maze
The water maze experiment was carried out in a 122-cm diameter 
mouse Morris water maze apparatus and analyzed using Hvswater®, 
as previously described (Pittenger et al., 2002). Mice were trained 
for 10 consecutive days with a hidden platform (four trials/day, 
20 min ITI) prior to a probe trial on day 11.

Conditioned place preference
An unbiased place conditioning procedure was performed as pre-
viously described (Mazzucchelli et al., 2002; Fasano et al., 2009). 
The place preference apparatus consisted of two different Plexiglas 
compartments separated by a central neutral area. It was located in 
a sound proof testing room with low luminosity (25 lx). No group 
showed initial preference for any chamber. Treatments were coun-
terbalanced between compartments. The schedule consists of three 
different phases: pre-conditioning phase: mice were placed in the 
middle of the neutral area and their location recorded for 18 min; 
conditioning phase: mice were treated for six consecutive days with 
alternate drug (days 1, 3, and 5) or saline (days 2, 4, and 6) injec-
tion, each paired with one of the two compartments. Two different 
doses of cocaine were used 5 and 15 mg/kg, i.p. and one dose of 
morphine (5 mg/kg, s.c.). Saline treated mice received saline on all 
6 days; post-conditioning phase: the test was conducted 24 h after 
the fi nal conditioning session. Place preference was quantifi ed in 
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terms of time spent in drug-paired side. A score was calculated for 
each mouse as the difference between post-conditioning and pre-
conditioning time spent in drug-paired compartment.

Locomotor sensitization
Locomotor sensitization to repeated cocaine administration (5 and 
15 mg/kg, i.p.) was measured as previously described (Fasano et al., 
2009). For the fi rst 3 days mice were placed in the locomotor activity 
boxes immediately after saline injections and horizontal locomotor 
activity was measured during 10 min. On day 4 mice were divided 
into groups that received daily cocaine or saline injections as indi-
cated. On day 11 (for the 5 mg/kg cocaine protocol) or on day 9 
(for the 15 mg/kg cocaine protocol), all the mice received saline 
injections and placed for 10 min in the test boxes in order to evalu-
ate the conditioned locomotor activity. After 10 days of drug-free 
state mutants and sibling controls received a challenge of cocaine 
and locomotor activity was assessed.

STATISTICAL ANALYSIS
Behavioral data were analyzed using two-way ANOVA with geno-
type, time or drug as factors of variation. Subsequent one-way 
ANOVAs were calculated after signifi cant main effects of the two-
way ANOVA followed by Scheffé post hoc test for specifi c compari-
sons. Statistical analysis was performed with SPSS. t-Test was used 
to assess the lack of difference for HPLC samples.

RESULTS
STRIATAL LOCALIZATION OF THE KCREB TRANSGENE
We previously reported that in the str-KCREB line transgene ex-
pression is largely confi ned to the dorsal portion of the striatum, 

as demonstrated by in situ hybridization and western blotting 
(Pittenger et al., 2006). In order to determine more precisely KCREB 
protein localization, we performed immunohistochemical analysis 
using specifi c antibodies against CREB. By comparing str-KCREB 
and control mice we confi rmed a signifi cant increase in the number 
of CREB positive cells associated to the dorsal portion of the stria-
tum in the transgenic mice, with no changes of immunoreactivity 
in the NAc (Figures 1A–D). Quantifi cation of CREB positive cells 
(Figure 1E) confi rms that in this mouse line, expression of KCREB 
is striatal specifi c, with a marked localization to the dorsal portion 
of this brain region.

NORMAL NEUROCHEMICAL ORGANIZATION IN THE str-KCREB MICE
Previous reports indicate that loss of CREB activity may cause 
neurodegeneration (Mantamadiotis et al., 2002). Our earlier 
observations indicate that synaptic plasticity is lost in the dorsal 
portion of the striatum, in marked contrasts with normal responses 
in both the hippocampus and the NAc and that may impact on 
the observed loss of long-term memory in instrumental learning 
(Pittenger et al., 2006). Therefore, we were concerned that some 
minor anatomical alterations in the dorsal striatum may be caused 
by a chronic inhibition of CREB in the str-KCREB line, possibly 
causing complications in the interpretation of the behavioral and 
electrophysiological results. Thus, we used cholinesterase staining, 
which detects anatomical differences in the striatum. The striatum 
can be neurochemically divided in two district regions, termed 
“striosomes” and “matrix”, which have different connectivity and 
functional relevance. Striosomes appear in cholinesterase staining 
as pale patches dispersed in the dark background represented by 
the matrix.

FIGURE 1 | Immunohistochemical characterization of KCREB expression in 

str-KCREB mice. Sections from str-KCREB and control mice stained with an 
anti-CREB antibody, which recognizes both endogenous CREB and KCREB, 
showed increased CREB immunoreactivity in the nuclei of dorsal striatum (str) 
neurons of str-KCREB mice (A) relative to wild-type (WT) controls (B). In the 
accumbens region (NAc), of str-KCREB animals (C) the levels of the transgene 
were much lower than in dorsal portion, and CREB immunoreactivity was 

comparable relative to control mice (D). There was no signifi cant increase in 
CREB immunoreactivity in the cortex (cx) or in the hippocampus or amygdala 
(not shown). (E) Quantifi cation of CREB positive cells in the dorsal portion of the 
striatum (str) and its ventral area, the nucleus accumbens (NAc). Data are 
expressed as mean ± SEM. Two-way ANOVA showed a signifi cant effect of the 
brain region in str-KCREB animals (n = 6) in comparison to WT controls (n = 6). 
*P < 0.01.
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As shown in Figures 2A,B, str-KCREB mice show normal 
striatal morphology when stained with thiocholine iodide to 
identify acetylcholinesterase. Higher magnifi cation images also 
detect striosomes, both in the transgenic and in the control striata 

(Figures 2C,D), confi rming that the general architecture of the 
striatum is not altered in the str-KCREB animals.

Next, we performed an in situ binding study with specifi c radio-
ligands for both D1- and D2-like receptors, in order to determine 
potential alterations in the dopaminergic system of the str-KCREB 
mice. As reported in Figure 3, no major differences in the bind-
ing were found between transgenic (A and C) and control striata 
(B and D), suggesting that at the dopamine receptor level KCREB 
expression appears normal (see quantifi cation in panel E). Finally, 
as indicated in Figure 4, levels of dopamine and other monoamines, 
as well as their metabolites, were not signifi cantly different between 
str-KCREB mice and their controls, either in the striatum (A) or 
in the hippocampus (B).

Altogether, these results indicate that str-KCREB mice are fairly 
intact at the neurochemical level.

str-KCREB ANIMALS SHOW NORMAL BASAL ACTIVITY, MOTOR 
COORDINATION, SPATIAL LEARNING, AND OTHER CONTROL BEHAVIORS
We tested a number of control behavioral parameters and found 
them to be normal. Transgenic mice showed no abnormalities in 
a general neurological screen (Table 1). Though male transgenic 
mice have previously been shown to exhibit increased locomotion 
in the open fi eld when backcrossed only a few generations on to 
the C57BL/6 congenic line (Pittenger et al., 2002), further back-
crossing (seven generations) eliminated this difference, and the 
mice used in the behavioral experiments described here showed 
normal locomotion and habituation in activity boxes, a test similar 
to the open fi eld (Figure 5A). In addition, motor coordination and 
motor learning as assayed in the rotarod were found to be normal 
(Figure 5B).

We previously showed that spatial memory is intact in these mice, 
consistent with the lack of expression of the transgene in the hippoc-
ampus (Pittenger et al., 2002, 2006). We have performed the Morris 
water maze after several backcrosses in the C57  background and we 

FIGURE 2 | str-KCREB mice have normal striatal morphology as revealed 

by acetylcholinesterase staining. Fresh frozen brain sections from 
str-KCREB mice and wt controls were stained with thiocholine iodide to 
identify acetylcholinesterase. Cholinesterase staining shows normal striatal 
anatomy (A) and preserved striosomes (C) in str-KCREB transgenic mice and 
wt littermate controls, respectively (B,D).

FIGURE 3 | str-KCREB animals show normal D1 and D2 receptor binding 

patterns, as visualized by radioligand binding. Slices from fresh frozen 
brains of str-KCREB and control mice were probed with D1 (A,B) and 
D2 radioligands (C,D). (E) Optical density (OD) value relative to each 

receptor was expressed as mean ± SEM (n = 3,3). No quantitative 
differences are evident in either receptor class, indicating that the 
postsynaptic component of the nigrostriatal dopaminergic modulatory 
system is normal in these animals.
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FIGURE 4 | str-KCREB animals have normal levels of dopamine, its 

metabolites, and other monoamines, in striatum and hippocampus. Striata 
and hippocampi were dissected from str-KCREB and littermates controls, and 
the tissue was assayed by HPLC for modulatory monoamine transmitters and 
their metabolites. No signifi cant differences were seen between str-KCREB 

mice (n = 10) and controls (n = 10) in striatum (A), in which dopamine is 
abundant (t-test P = 0.68) or in hippocampus (B) in which norepinephrine (t-test 
P = 0.51) and serotonin (t-test P = 0.15) are present. NE, norepinephrine; 
DOPAC, 3,4-dihydroxyphenylacetic acid; DA, dopamine; HVA, homovanillic acid; 
5-HT, 5-hydroxytryptophan; 5-HIAA, 5-hydroxyindole acetic acid.

Table 1| Str-KCREB mice showed no abnormalities in a general 

neurological screen.

Variable str- SEM Ctrl SEM Uncorrected

 KCREB     P value

Weight (g) 17.3 0.90 16.5 35 0.433

Body position 4.0 0.32 4.2 0.37 0.694 

Locomotion 3.0 0.32 3.2 0.58 0.771

Respiratory rate 5.6 0.51 7.0 0.55 0.098

Arousal 3.4 0.24 4.0 0.41 0.227

Spatial exploration 3.0 0.71 3.4 0.87 0.731

Piloerection 2.2 0.37 2.0 0.45 0.740

Startle response 2.2 0.73 2.2 0.58 1.000

Pelvic elevation 3.0 0.55 3.6 0.24 0.347

Tail elevation 2.9 0.33 1.9 0.24 0.042

Visual reach 6.4 0.24 5.6 0.40 0.126

Grip strength 5.4 0.24 4.8 0.80 0.494

Body tone 5.6 0.24 5.4 0.24 0.580

Pinna refl ex 3.8 0.49 4.4 0.51 0.421

Cornea refl ex 5.0 0.55 3.7 0.30 0.071

Struggle 3.0 0.63 3.6 0.24 0.402

Wire grip 1.4 0.75 2.6 1.44 0.480

Hang time (sec) 54.6 5.40 35.4 12.24 0.189

Smooth incline 3.2 0.73 3.2 0.20 1.000

Skin color 4.0 0.32 4.2 0.49 0.740

Limb tone 3.2 0.66 3.8 0.48 0.544

Abdominal tone 5.2 0.20 4.2 0.37 0.046

Pupil size 1.8 0.20 2.1 0.24 0.371

Provoked biting 2.6 1.08 2.4 0.98 0.894

Tail pinch response 3.1 0.46 3.8 0.58 0.373

Biting tendency 0.3 0.20 0.8 0.20 0.115

Provoked freezing 0.4 0.19 0.6 0.19 0.471

Vocalizations 0.4 0.40 1.6 0.87 0.246

Urination/defecation 4.0 0.55 2.8 0.92 0.294

found no differences in the learning profi le between  transgenic and 
control animals (Figure 6A). When a probe trial was performed at 
the end of the learning procedure, as indicated in Figure 6B, both 
animal groups show a strong selectivity for the target quadrant. 
There was no signifi cant difference between genotypes further 
confi rming that spatial memory in the str-KCREB mice can be 
consolidated.

Altogether these data indicate that str-KCREB mice are normal 
in a number of neurological parameters, as well as in locomotor 
behavior, motor coordination and spatial memory.

str-KCREB MICE SHOW ENHANCED REWARD-RELATED LEARNING
Previous studies have shown that reduction of CREB function spe-
cifi cally in the NAc shell enhances the rewarding effects of cocaine 
and morphine in the place preference test – that is, animals with 
reduced CREB activity spend more time in the drug-paired com-
partment than control littermates (Carlezon et al., 1998; Barrot 
et al., 2002). This stands in marked contrast to the role of CREB 
demonstrated in our previous publication on the str-KCREB mice, 
in which a reduction in dorsal striatal CREB function impairs stria-
tum-dependent learning (without any drug reinforcement) – that 
is, that str-KCREB animals, with reduced CREB activity in the 
striatum, learn less well than littermate controls (Pittenger et al., 
2006).

To assess the rewarding properties of cocaine in str-KCREB 
mice, we tested them in conditioned place preference (CPP, 
Maldonado et al., 1997; Mazzucchelli et al., 2002; Ferguson et al., 
2006; Fasano et al., 2009). In this task, animals repeatedly receive 
drug injections in a specifi c context; their subsequent preference 
for that context refl ects its association with the drug reward. When 
given a low dose of cocaine (5 mg/kg i.p.), str-KCREB showed 
a clear preference for the cocaine-paired context than control 
mice (two-way ANOVA, genotype effect, F

1,28
 = 21.37, P < 0.0001, 

Figure 7A). When given a higher dose of cocaine (15 mg/kg i.p.), 
both genotypes again showed clear preference for the drug-paired 
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FIGURE 5 | Normal locomotor activity and coordination in str-KCREB 

mice. (A) Transgenics and littermate controls (n = 40,40) were 
examined for locomotor behavior in activity boxes. str-KCREB mice and 
wild-type controls were monitored in activity boxes equipped with 
infrared photocell beams (10 min exploratory sessions on three 
consecutive days). str-KCREB mice habituated normally to the test 
environment, manifesting a signifi cant decrease in spontaneous 

locomotion (#P < 0.0001 main effect of day). No difference was seen 
between str-KCREB mice and sibling controls. (B) str-KCREB mice 
showed normal motor learning and coordination on accelerating rotarod, 
three trials/day, 2 days. Mice walked forward on a rotating cylinder at 
speeds increasing from 4 to 40 rpm over a 5-min test session. str-KCREB 
mice and sibling controls (n = 21,21) showed equivalently improved 
latency to fall (mean ± SEM) across trials.

FIGURE 6 | Normal spatial memory in Morris water maze in 

str-KCREB mice. Animals were trained in the hidden-platform Morris 
water maze for 10 consecutive days (four trials/day; 20 min ITI) and then 
tested with a probe trial on day 11. (A) str-KCREB mice showed normal 
acquisition curve during the training days. ANOVA for repeated 
measures, revealed main effect of day P < 0.001, no effect of genotype 

P = 0.985 and no genotype × day interaction P = 0.912. (B) Spatial memory is 
shown as % of quadrant occupancy time during the probe trial measured 
24 h after training. Both genotypes spent most of the time in the goal 
quadrant (ANOVA repeated measures, spatial effect, P < 0.01), with no 
signifi cant differences between genotypes (n = 10,10), group effect on goal 
occupancy, P > 0.1.

context (F
1,46

 = 83.52, P < 0.0001), but str-KCREB and control 
mice showed equivalent learning (F

1,28
 = 0.60, P = 0.44); this 

may represent a ceiling effect at the higher drug concentration. 
Inhibition of striatal CREB therefore enhances reward-related 
learning. This fi nding is consistent with previous data on CREB 
inhibition in the accumbens shell, but it stands in marked contrast 
to our demonstration that disruption of striatal CREB impairs 
procedural learning and bidirectional long-term synaptic plastic-
ity in the same animals.

To test the generality of this result, we tested CPP in response 
to morphine. Initial reports in global CREB hypomorph mice 
 indicated enhanced CPP to cocaine but impaired CPP to mor-

phine (Walters and Blendy, 2001). However, disruption of CREB 
function by other means has shown an enhancement of mor-
phine CPP, suggesting that the dissociation between cocaine and 
morphine effects in the original hypomorph mice derives from 
compensatory or developmental effects (Barrot et al., 2002). 
Consistent with these latter results, we found a marked enhance-
ment in sensitivity to the rewarding properties of morphine 
(5 mg/kg, s.c.) in str-KCREB transgenic mice, relative to sibling 
controls (genotype effect, F

1,23
 = 9.76, P < 0.01, Figure 7B). This 

supports a role for striatal CREB in downregulating the capac-
ity of both psychostimulants and opiate drugs to act as primary 
rewards in CPP.
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DISCUSSION
We have previously shown that disruption of striatal CREB-regulated 
transcription results in impairments of corticostriatal LTP and 
LTD in the dorsal striatum (but not in the NAc) and of several 
 striatum-dependent memory tasks (Pittenger et al., 2006). In con-
trast, with the present work we demonstrated that the same genetic 
manipulation enhances CPP to cocaine and morphine as well as 
locomotor sensitization to repeated cocaine administration, two 
behavioral paradigms commonly used to study early phases of drug 
addiction.

Our new fi ndings raise at least two important issues. The fi rst 
is about the contrasting action of CREB in “normal” striatum-
dependent memory and in reward-related learning. The second 
concerns the role of CREB in the dorsal striatum vs the NAc.

A large body of evidence accumulated in the past decade has 
clearly indicated that drugs of abuse exploit intracellular signal-
ing pathways normally implicated in memory formation. One of 
the best characterized examples is the Ras-ERK pathway, which 
is required in a number of brain regions to convert short-term 
memory traces into their long-term, protein-dependent forms 
(Orban et al., 1999; Adams and Sweatt, 2002; Sweatt, 2004; Davis 
and Laroche, 2006). Pharmacological blockade of ERK signaling 
with SL327 in vivo leads not only to memory impairments but 
also to inhibition of locomotor sensitization and CPP to cocaine 
(see the original reports in Atkins et al., 1998; Valjent et al., 2000). 
In addition, genetic experiments in the mouse, using for instance 
ERK1 and Ras-GRF1 mutant mice, has revealed that the potentia-
tion of the ERK pathway in the striatum leads not only to a facili-
tation of procedural learning but also to an increase sensitivity to 
psychostimulants and opiates, suggesting that the same signaling 
alteration promotes both behaviors. Conversely, genetic alterations 
that impair procedural memory also inhibit responses to drugs 
(Brambilla et al., 1997; Mazzucchelli et al., 2002; Ferguson et al., 
2006; Fasano et al., 2009).

Since the ERK pathway is a key activator of CREB-dependent 
transcription in the brain (Xing et al., 1996), it is therefore sur-
prising that CREB inhibition in the str-KCREB mice causes con-
trasting effects on memory formation and responses to drugs. 
One explanation for such a paradoxical difference may be that 

str-KCREB MICE SHOW ENHANCED SENSITIZATION OF THE LOCOMOTOR 
RESPONSE TO REPEATED ADMINISTRATION OF COCAINE
Acute cocaine administration increases locomotion. This response 
increases when cocaine is administered on consecutive days, a 
phenomenon known as sensitization of the locomotor response 
(Robinson and Berridge, 1993; Mazzucchelli et al., 2002; Ferguson 
et al., 2006; Fasano et al., 2009). Previous studies have suggested that 
manipulations of CREB can infl uence sensitization (Sakai et al., 
2002). We measured sensitization to repeated cocaine injections, 
using the activity boxes previously used to track the habituation of 
basal activity. str-KCREB mice and sibling controls both showed 
increasing locomotor sensitization across several days of cocaine 
at a dose of 5 mg/kg i.p. (Figure 8A). ANOVA for repeated meas-
ures revealed signifi cant main effects of genotype (F

1,55
 = 11.92, 

P < 0.001), and treatment (F
1,55

 = 242.25, P < 0.0001) and a sig-
nifi cant genotype-treatment interaction (F

1,55
 = 12.64, P < 0.001). 

str-KCREB mice showed markedly increased sensitization relative 
to controls, with a difference fi rst becoming apparent on the second 
day of drug exposure and persisting throughout fi ve consecutive 
sessions (Scheffé test, str-KCREB vs WT on day 5: P < 0.01; from 
days 6 to 10: P < 0.0001). After 7 days of cocaine the animals were 
injected with saline (day 11); no difference between mutant and 
control mice was seen. When re-exposed to cocaine 10 days later, 
all mice continued to show a facilitated response, with str-KCREB 
mice remaining more active than controls (day 12, Scheffé test 
P < 0.05).

When we used a higher dose of cocaine (15 mg/kg, i.p.) 
we observed a signifi cantly increased level of activity due to 
chronic treatment (ANOVA for repeated measure, F

3,51
 = 110.37, 

P < 0.001) but the difference between transgenics and controls 
was no longer apparent (Figure 8B). As with cocaine CPP, this 
may be due to a ceiling effect; indeed, transgenics and controls 
achieved a near-maximum level of activity on the fi rst day 
of this higher dose of cocaine, with little or no sensitization 
thereafter.

Altogether, these results indicate that inhibition of CREB 
activity in the dorsal portion of the striatum signifi cantly elevates 
the behavioral sensitivity to drugs of abuse such as cocaine and 
morphine.

FIGURE 7 | Enhanced reward-related learning in str-KCREB mice. 

(A) str-KCREB mice showed enhanced conditioned place preference to 
cocaine. Conditioned place preference is expressed as difference between 
post-and pre-conditioning time spent in the drug-paired compartment of 
the training apparatus (n: saline 10,10; 5 mg/kg i.p. cocaine 15,15; 15 mg/kg i.p. 

cocaine 15,15; all values mean ± SEM). (B) str-KCREB mice showed 
enhanced conditioned place preference to morphine (5 mg/kg, s.c., 
n = 13 transgenic, 12 control) or saline (n = 11 transgenic, 12 control; all 
values mean ± SEM). Two-way ANOVA, genotype effect: **P < 0.01; 
**P < 0.0001.
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a marked and chronic inhibition of CREB, as in the str-KCREB 
mice, could lead to unique cellular adaptations in response to 
strong environmental stimuli such as drug administration. This 
in turn may preferentially affect genes that normally constrain 
drug- mediated behavioral responses, thus increasing sensitivity 
to drugs. One class of such CREB-regulated genes may well be 
that of opioid peptides, including dynorphin whose increased 
expression in the NAc may contribute to the aversive-like symp-
toms observed in transgenic mice overexpressing WT CREB 
(Carlezon et al., 2005). Interestingly, we previously observed a 
reduced basal expression of the proenkephalin gene, another 
opiod peptide, in the dorsal striatum of our str-KCREB animals 
(Pittenger et al., 2002). Indeed genes regulated by CREB activity 
are different when acute cocaine vs chronic cocaine treatments 
are compared (McClung and Nestler, 2003). Therefore, it is likely 
that CREB inhibition observed during either a pharmacogenetic 
blockade of ERK signaling or during normal procedural learn-
ing in the str-KCREB mice may not be suffi cient to affect the 
same genetic programs altered upon chronic drug treatment, 

thus producing only a general shutdown of genes involved in 
synaptic plasticity and memory mechanisms. In this respect it 
is important to note that previous evidence strongly  supported 
the idea that some drugs of abuse, including those used in this 
study, increase intracellular signaling in the striatum, thereby 
increasing CREB levels (for review see Carlezon et al., 2005). 
This CREB upregulation may function as a homeostatic mecha-
nism. According to this view, increased CREB activation may 
contribute to habituation: it leads to a reduction in some drug 
responses upon subsequent drug exposure (Carlezon et al., 1998; 
Barrot et al., 2002; Sakai et al., 2002). It is thus conceivable that 
CREB inhibition in the str-KCREB mice prevents such drug-
dependent upregulation of CREB, leading to facilitated behav-
ioral responses.

The dorsal and ventral striatum differ not only in their con-
nectivity and neurochemistry but also in their involvement in 
different behavioral responses (Voorn et al., 2004; Everitt and 
Robbins, 2005). Traditionally the ventral portion of the striatum, 
including the NAc has been associated with the reward aspects of 

FIGURE 8 | Enhanced locomotor sensitization induced by cocaine in 

str-KCREB mice. (A) str-KCREB mice showed enhanced locomotor 
sensitization to 5 mg/kg cocaine. After 3 days of habituation, str-KCREB 
mice show increased locomotor sensitization across 7 days of cocaine 
(n = 16 transgenic, 18 control) or saline (n = 12 transgenic, 15 control; 

all values mean ± SEM). (B) Locomotor sensitization was normal with a 
higher dose of cocaine (15 mg/kg), possibly representing a ceiling effect 
(n = 12 transgenic, 16 control) or saline (n = 12 transgenic, 15 control; all 
values mean ± SEM). Genotype effect: *P < 0.05; **P < 0.01; 
**P < 0.0001.
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457–460.
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Hsiang, H. L., Buch, T., Waisman, A., 
Bontempi , B . ,  Ne ve , R . L . , 
Frankland, P. W., and Josselyn, S. A. 
(2009). Selective erasure of a fear 
memory. Science 323, 1492–1496.

Hernandez, P. J., Sadeghian, K., 
and Kelley, A. E. (2002). Early 

learning and of drug administration, while the dorsal portion of 
the  striatum has been implicated in motor control and “skills and 
habits.” Habit learning has been invoked to explain certain aspects 
of drug addiction involved in the transition from goal-directed 
behavior to compulsive habit formation. This transition is supposed 
to be accompanied by temporally distinct synaptic modifi cations in 
both ventral and dorsal striatum, which lead to a progressive ventral 
to dorsal dominance shift (Robbins and Everitt, 1999; Cardinal 
et al., 2002; Cardinal and Everitt, 2004; Belin and Everitt, 2008; 
Belin et al., 2008, 2009).

One of the prediction of such model would be that while altera-
tions in the NAc should affect early phases of the addiction process, 
in which a compulsive habit has not been yet established, synaptic 
modifi cations in the dorsal portion should only impact of later 
phases. Indeed specifi c CREB manipulations in the NAc affect 
cocaine and morphine CPP (Carlezon et al., 1998, 2005; Pliakas 
et al., 2001; Barrot et al., 2002; Dinieri et al., 2009), which results 
from only a few drug treatments.

Our results suggest for the fi rst time that inhibition of CREB in 
the dorsal portion of the striatum may signifi cantly contribute to 
changes in the rewarding properties of both cocaine and morphine, 
as well as to cocaine sensitization, in a manner which appears to 
be similar to what observed with the NAc manipulations. This 
observation suggest that CREB activity in the dorsal striatum may 
share common functions with those observed in the NAc,  pointing 
to a more integrated role of both striatal regions in the early phases 
of drug addiction.
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