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SUMMARY

Cell fate determination in the progeny of mammary
epithelial stem/progenitor cells remains poorly un-
derstood. Here, we have examined the role of the
mitotic kinase Aurora A (AURKA) in regulating the
balance between basal and luminal mammary line-
ages. We find that AURKA is highly expressed in
basal stemcells and, to a lesser extent, in luminal pro-
genitors. Wild-type AURKA expression promoted
luminal cell fate, but expression of an S155R mutant
reduced proliferation, promoted basal fate, and
inhibited serial transplantation. The mechanism
involved regulation of mitotic spindle orientation by
AURKA and the positioning of daughter cells after
division. Remarkably, this was NOTCH dependent,
as NOTCH inhibitor blocked the effect of wild-type
AURKA expression on spindle orientation and
instead mimicked the effect of the S155R mutant.
These findings directly link AURKA, NOTCH sig-
naling, and mitotic spindle orientation and suggest
a mechanism for regulating the balance between
luminal and basal lineages in the mammary gland.

INTRODUCTION

The mammary epithelium consists of two main lineages: luminal

epithelial cells, and basal myoepithelial cells. The former line the

ducts and form the milk-secreting cells of the alveoli, whereas

the latter are contractile and squeezemilk along the ducts during

lactation. The luminal cells are themselves either estrogen recep-

tor a positive (ER+) or negative (ER�). ER+ cells are hormone
sensing and transduce systemic hormonal signals into localized

control of epithelial function through paracrine interactions. The

ER� cells include the milk secretory cells (Regan et al., 2012;

Richert et al., 2000).

The myoepithelial, hormone-sensing ER+ and secretory ER�
cells are considered to be the main differentiated populations

in the mammary epithelium. Stem and progenitor cells have

also been identified by functional assays and/or lineage tracing.

Functional assays (the ability of stem and progenitor cells to

transplant in vivo and proliferate in vitro, respectively) support

a model in which stem cells are found in the basal layer, together

with the myoepithelial cells, whereas cells with progenitor func-

tion are highly enriched in the luminal cell layer (Shackleton et al.,

2006; Sleeman et al., 2007; Taddei et al., 2008; Stingl et al.,

2006). Luminal progenitors are mainly ER�, but a small subfrac-

tion of ER+ cells also have progenitor features (Regan et al.,

2012; Beleut et al., 2010). During early mammary development

and also when purified stem and progenitor subpopulations

are transplanted, the basal stem cells have the potential to

generate all the other cell types in the mammary epithelium

with high efficiency (Shackleton et al., 2006; Sleeman et al.,

2007; Stingl et al., 2006; Regan et al., 2012). In contrast, in situ

lineage analysis of normal adult tissue suggests that in the

resting postpubertal gland, the basal and luminal cell layers are

maintained as separate lineages (Van Keymeulen et al., 2011;

van Amerongen et al., 2012). These findings argue that themyoe-

pithelial and luminal lineages are maintained by separate stem/

progenitor populations in the adult gland. However, at some

adult stages, including alveolargenesis, basal stem cells may

contribute to generating the luminal layer (van Amerongen

et al., 2012). Furthermore, analysis of cap cells, the outermost

cell layer of the specialized growth structure that drives ductal

growth during puberty (the terminal end buds or TEBs), has sug-

gested that they can contribute to both the myoepithelial and
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luminal lineages (Srinivasan et al., 2003; Williams and Daniel,

1983).

Stem cells are defined by their potential to self-renew and to

generate a defined set of differentiated progeny (Lechler and

Fuchs, 2005). Stem cell homeostasis involves asymmetric

divisions, with one daughter cell differentiating and one self-

renewing. For stem cell expansion, cell divisions must be

symmetric, with both daughters of the dividing cell assuming

stem cell fate. The balance between asymmetric and sym-

metric division is regulated by both intrinsic and extrinsic

mechanisms (Horvitz and Herskowitz, 1992). The former de-

pends on the partitioning of determinants prior to mitosis that

promote the stem cell fate, with equal distribution of the deter-

minants between daughter cells leading to stem cell expansion,

and unequal distribution to the daughters adopting different

fates and stem cell homeostasis (Betschinger and Knoblich,

2004). In contrast, extrinsic mechanisms depend on interac-

tions between stem cells and their daughters and the micro-

environment or niche (Li and Xie, 2005). In this case, the position

of postdivisiondaughter cells, in or out of the niche,will determine

whether they assume stem cell identity or an alternative fate.

Aurora A (AURKA) is a centrosomal and mitotic spindle-asso-

ciated kinase that coordinates mitotic events, regulates centro-

some maturation and bipolar spindle formation, and may be

involved in both stem cell fate control mechanisms. In

Drosophila, AURKA can establish polarity during asymmetric

cell division in a BORA-dependent manner (Hutterer et al.,

2006), thus determining the position of daughter cells with

respect to the microenvironment. AURKA also regulates the

partitioning of NUMB, an important cell fate determinant and

negative regulator of NOTCH signaling, within the cytoplasm

prior to division (Cayouette and Raff, 2002).

Here, we examine the role of AURKA as a regulator of mam-

mary stem/progenitor cell behavior and cell fate determination.

We show that AURKA can regulate the balance between the

luminal and basal myoepithelial cell lineages by regulating the

orientation of themitotic spindle and thus the location of the post-

mitotic daughter cells. This mechanism is directly dependent on

NOTCH signaling but is independent of NUMB localization.

Rather, it requires activity of the NOTCH signaling pathway itself.

These findings directly link AURKA, NOTCH signaling, and

mitotic spindle orientation and suggest a mechanism for regu-

lating the balance between mammary cell lineages.

RESULTS

AurkA Is Highly Expressed in Mammary Epithelial Stem
and Progenitor Cells
To determine the pattern of AurkA expression in stem, progeni-

tor, and differentiated mammary epithelial cells, these subpopu-

lations were freshly isolated by flow cytometry from 10-week-old

virgin mice (Figures 1A, 1B, S1, and S2A) according to previously

defined markers (Regan et al., 2012) and AurkA gene expression

levels determined by quantitative real-time reverse-transcription

PCR. AurkA was expressed at significantly higher levels in the

stem cells (CD45� CD24+/Low Sca-1� CD49fHigh c-Kit�) and

luminal ER� progenitors (CD45� CD24+/High Sca-1� c-Kit+)

compared to both the myoepithelial (CD45� CD24+/Low Sca-1�
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CD49fLow c-Kit�) and differentiated luminal ER+ (CD45�

CD24+/High Sca-1+ c-Kit�) populations. Furthermore, expression

of AurkA was significantly (p < 0.05) (Cumming et al., 2007)

higher in the stem cells compared to the progenitors (Figure 1C).

AurkA expression correlated with expression ofCyclin B (a G2/M

cyclin) but not Cyclin D1 (a G1 cyclin), consistent with its role in

mitosis (Figure 1C).

To test comparative AURKAprotein expression in the four pop-

ulations, fresh samples were isolated by flow cytometry, fixed,

stained for AURKA expression, and then analyzed again by flow

cytometry in five independent experiments. Percentages of

AURKA-positive cells across the experiments varied quitewidely;

however, in all experiments, the stem cell population contained

the highest percentage of AURKA positive cells (Figure S2).

S155R AURKA Reduces Proliferation of Mammary
Epithelial Cells in Monolayer Culture and Promotes
Their Differentiation into Myoepithelial Cells
To investigate the function of AURKA in mammary epithelial cells

in vitro, freshly harvested primary mammary epithelial cells were

transduced with lentiviruses driving expression of GFP only

(empty vector control; EV), wild-type AURKA plus GFP (WT), or

a mutant form of AURKA plus GFP (S155R) and placed in mono-

layer culture at identical plating densities. S155R cannot bind to

its regulator TPX2 nor can it be targeted by PP1 phosphatase. As

a result, it forms a constitutively, but weakly, active protein that

associates only with the centrosomes of mitotic cells and not

the mitotic spindles (Bibby et al., 2009). The TPX2-AURKA inter-

action is required to form mitotic spindles of the correct length

(Bird and Hyman, 2008).

To confirm that the expressed proteins localized as expected,

epithelial cell colonies were fixed after 10 days and stained for

AURKA, TPX2, and EG5, which associates with the AURKA-

TPX2 complex on mitotic spindles (Ma et al., 2011) (Figure S3).

As expected, TPX2 could be seen decorating the mitotic spin-

dles of dividing cells in all cultures. AURKA and EG5 also deco-

rated the mitotic spindles in EV- and WT-transduced cultures.

However, in S155R-transduced cells, both AURKA and EG5

were restricted to the centrosomal region, demonstrating that

their localization to the mitotic spindle was dependent on the

TPX2-AURKA interaction.

Next, transduced colonies were fixed and stained for the basal

lineage marker keratin 14 (K14) and the luminal lineage marker

keratin 18 (K18) (Figure 2A). For each sample, the mean number

of GFP+-transduced cells per field of view was determined (Fig-

ure 2B). There was no significant difference in the number of

GFP+ cells in WT cultures compared to EV-transduced cells

(mean ± SD, 83.22 ± 2.75 versus 76.4 ± 8.5 GFP+ cells per field,

respectively). However, the mean number of GFP+ S155R cells

was significantly lower (46.42 ± 11.83 GFP+ cells per field; p <

0.05 t test versus EV and WT-transduced cells).

When primarymousemammary cells are isolated and grown in

short-termcultureunder standardconditions, themajority of cells

that proliferate are derived from the luminal ER� progenitor pop-

ulation (Sleeman et al., 2007; Regan et al., 2012). In monolayer

culture, these luminal cells,whichexpress low levelsofK14 in vivo

(Regan et al., 2012), upregulate K14 expression and acquire a

K14+K18+phenotype (Sleemanet al., 2007). To examinewhether



Figure 1. AurkA Is Expressed in Mammary Epithelial Stem Cells

(A) Isolation of the luminal ER� and luminal ER+ cell populations by flow cytometry on the basis of CD24 and Sca-1 expression followed by c-Kit as previously

described (Regan et al., 2012).

(B) Isolation of basal myoepithelial andmammary stem cells (MaSCs), from the same sort data as in (A), on the basis of CD24 and CD49f expression as previously

described (Regan et al., 2012). Only epithelial cell data are shown. See Figure S1 for the full-gating cascade and Figure S2A for postsort purity analysis. The

proportion of the total mammary epithelium formed by each of the gated sorted regions is indicated (mean ± SD; n = 4 independent tissue preparations).

(C) Expression of AurkA, Ccnd1, and Ccnb1 in mouse mammary subpopulations determined by quantitative real-time reverse-transcription PCR analysis. Data

are expressed as mean fold expression (±95% confidence intervals) over comparator population (the luminal ER+ differentiated cells) in three independent

isolates of each cell population. Statistical significance was determined according to Cumming et al. (2007). *p < 0.05 relative to comparator; **p < 0.01 relative to

comparator; +p < 0.05 in MaSCs relative to progenitors; ++p < 0.01 in MaSCs relative to progenitors. See Figures S2B and S2C for analysis of AURKA protein

staining in sorted subpopulations.

See also Figures S1 and S2.
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Figure 2. AURKA Regulates Proliferation and Differentiation of Mammary Epithelial Cells In Vitro

(A) Immunofluorescence staining of primary mouse mammary epithelial cells transduced with control EV (top row), S155R (middle row), or WT (bottom row)

lentivirus that also express GFP. Cells were stained for the basal marker K14 (red) and the luminal marker K18 (gray) and counterstained with DAPI (blue) (scale

bars, 30 mm). Arrowheads indicate K14+-only cells. See Figure S3 for localization of AURKA to mitotic spindles of transduced cells and Figure S4 for examples of

staining with the additional basal/myoepithelial markers K5 and a SMA.

(B) Mean (±SD) number of transduced GFP+ mammary epithelial cells per field of view. Data are from three independent cell preparations after 10 days in culture

(each of which had ten fields of view from three separate coverslips counted). Identical numbers of cells were plated per well in all cultures. *p < 0.05 (t test)

showing a significantly lower cell number in S155R cultures versus control (EV) and WT cells.

(C) Mean (±SD) number of GFP+ and K14+, GFP+ and K18+, or GFP+ and K14+ K18+ mammary epithelial cells per field of view. Data are from three independent

cell preparations after 10 days in culture (each of which had ten fields of view over three separate coverslips counted). Identical numbers of cells were plated per

well in all cultures. *p < 0.05 (t test on Log10-transformed data).

See also Figures S3 and S4.
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AURKA expression affected this promiscuous expression of

lineage markers, the number of cells expressing K14 only, K18

only, or coexpressing both K14 and K18 in the lentivirus-trans-

duced cultures was determined (Figure 2C). A total of 95.32% ±

3.79% (mean ± SD) of EV- and 99.15% ± 1.47% of WT-trans-

duced cells stained for both K14 and K18. However, only

68.18% ± 8.23% of S155R-transduced cells were double

positive for K14 and K18 (p < 0.05 t test on Log10-transformed

data versus EV and WT-transduced cells). The remaining

S155R-transduced cells were K14+ only (32.9% ± 10.07%) and
4 Cell Reports 4, 1–14, July 25, 2013 ª2013 The Authors
had a more flattened, spread appearance than K14+/K18+ cells

(Figure 2A, arrowheads). Furthermore, staining of the cultures

with two markers of mammary myoepithelial cells, keratin 5 (K5)

and a-isoform smooth muscle actin (SMA), demonstrated that

whereas S155R-transduced cells could express both K5 and

SMA, EV and WT-expressing cells were K5 and SMA negative

(Figure S4). Therefore, these data not only demonstrated that

S155R AURKA reduced proliferation of mammary epithelial

progenitors in vitro but also suggested that it promoted differen-

tiation along the basal myoepithelial lineage.
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In Vivo Expression of S155R in the Mouse Mammary
Epithelium Causes Cells to Accumulate in the
Myoepithelial Lineage
To examine the role of AURKA in mammary epithelial cell fate

determination in vivo, freshly harvested primary mouse

mammary epithelial cells were transduced with the EV,

S155R, or WT lentiviruses and transplanted at equal numbers

into cleared mammary fat pads of syngeneic mice. Eight weeks

after transplantation, the fat pads were removed and examined

(Figures 3A and 3B). GFP-labeled mammary epithelial out-

growths were observed in 10 out of 30 fat pads transplanted

with EV or WT-expressing cells and in 9 out of 30 fat pads

transplanted with S155R-expressing cells. However, whereas

EV and WT outgrowths were extensive and filled R50%

of the fat pad in six and seven outgrowths, respectively,

S155R outgrowths were rudimentary (Figure 3A). Analysis of

sections of EV, WT, and S155R outgrowths stained for myo-

epithelial (K5 and SMA) and luminal (K18 and K19) markers

also revealed morphological differences (Figures 3C–3E, S5A,

and S5B). EV and WT outgrowths displayed a typical normal

mammary epithelial morphology with distinct myoepithelial

(K5 and SMA positive) and luminal (K18 and K19 positive)

layers. In contrast, the S155R outgrowths typically consisted

of only a single layer of myoepithelial cells that expressed little

or no luminal keratin.

The limited extent of the outgrowths produced by the S155R-

transduced cells suggested that whereas these cells were as

transplantable as the control cells, their ability to proliferate

and/or properly differentiate was impaired. To further charac-

terize differentiation defects in the outgrowths, cells isolated

from transplanted fat pads were analyzed by flow cytometry to

determine the proportions of the different mammary epithelial

cell types (Figures 3F–3I). GFP+ cells isolated from control fat

pads (Figure 3G) had a flow cytometric profile similar to GFP�

cells from the same preparations or to transplanted nontrans-

duced epithelial cells (Figure 3F). However, GFP+ cells isolated

from S155R fat pads (Figure 3H) were significantly shifted into

the CD24+/Low Sca-1� basal myoepithelial population (which

formed 9.3% ± 1% of the GFP+ control cells but 40.4% ± 5.4%

of theGFP+S155Rcells;mean±SD, n= three independent trans-

plant experiments; p < 0.0001 t test on Log10-transformed data)

(Figure 3J).

There was no significant difference between the size of the

basal myoepithelial GFP+ populations isolated from WT (Fig-

ure 3I) and control fat pads. However, the size of the differenti-

ated luminal CD24+/High Sca-1+ population was significantly

decreased in the WT outgrowths compared to EV controls

(42.13% ± 1.35% of GFP+ EV cells and 20.33% ± 0.58% of

GFP+WT cells; mean ± SD, n = three independent transplant ex-

periments; p < 0.0001 t test on Log10-transformed data), and the

size of the luminal CD24+/High Sca-1� progenitor-enriched popu-

lation was significantly increased (32.36% ± 4.07% of GFP+ EV

cells and 43% ± 4.8% of GFP+ WT cells; mean ± SD, n = three

independent transplant experiments; p < 0.05 t test on Log10-

transformed data) (Figure 3J).

Next, to determine whether AURKA not only regulated the fate

of differentiating mammary cells but also self-renewal of mam-

mary stem cells, serial transplants were carried out. Primary
mammary epithelial cells were isolated from mice carrying a

red fluorescent protein (RFP) transgene driven by the K14 pro-

moter (K14-RFP). These were transduced with the EV, S155R,

or WT lentiviruses and transplanted into cleared mammary fat

pads. After 8 weeks, the fat pads were harvested, successful

RFP+ transplants were scored, and the extent of theGFP expres-

sion within each RFP+ outgrowth was determined (Figure S5C).

Frozen sections taken from small biopsies of the outgrowths

were used to confirm coexpression (Figures S5D and S5E).

Having scored RFP and GFP staining in the unfixed tissue, the

transplanted fat pads were digested to single cells, and the cells

were retransplanted into cleared fat pads at equal numbers.

Note that cells were not sorted to purify out the GFP+ cells

from the first round of transplantation because this can have

deleterious effects on transplant potential.

In the first round of transplants, as previously, no differences in

the number of EV, S155R, or WT outgrowths were observed,

suggesting that there was no effect on initial engraftment. Again,

however, the S155R outgrowths were less extensive. In the

second round of transplants, whereas both the EV and WT-ex-

pressing cells engrafted successfully and with equal potency,

only a single rudimentary S155R outgrowth formed (Figure 3K),

suggesting that the self-renewal of mammary stem cells ex-

pressing S155R in the primary graft had been inhibited. Overall,

therefore, these data supported a model in which WT AURKA

activity enriched for cells with a luminal progenitor phenotype,

whereas expression of mutant S155R AURKA promoted the

basal myoepithelial cell fate while suppressing stem cell self-

renewal.

AURKA Regulates Mitotic Spindle Orientation in the
Mammary Epithelium
Next, we addressed potential mechanisms by which AURKA

may regulate mammary epithelial cell fate and differentiation.

In Drosophila neuroblasts, AURKA regulates asymmetrical divi-

sions and cell fate by promoting alignment of the mitotic spindle

with the cortical polarity axis (Lee et al., 2006). We therefore

investigated a role for AURKA in regulating the orientation of

the mitotic spindle in the cap cells of TEBs.

We examined mitotic spindle orientations in cap cells of the

unmanipulated developing pubertal mammary gland (Figure 4A)

and in the invading ductal ends of outgrowths developing from

transplanted mammary epithelial cells transduced with EV, WT

(Figures 4B and 4C), or S155R lentiviruses. Spindle orientations

were classed as parallel or perpendicular to the border of the

basal cell layer with the stroma. The total number of mitotic fig-

ures in each TEBwas also determined. In unmanipulated glands,

36.6% of mitoses observed in TEBs were at the epithelium-

stroma border (393 mitoses observed in total, 144 at the border).

Mitoses aligned parallel to the border formed 21.97% ± 1.71%of

the total number observed, whereas mitoses aligned perpendic-

ular to the border formed 14.8% ± 1.06% of the total number.

Fewer mitoses were observed in control EV-transplanted glands

(97 mitoses, of which 31 were at the border), but the proportion

of parallel (16.71% ± 6.54% of the total number) and perpendic-

ular (16.65% ± 1.78%of the total number) divisions at the epithe-

lium-stroma border was not significantly different from the

unmanipulated gland. However, in WT glands, there was an
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Figure 3. AURKA Regulates Mammary Epithelial Differentiation In Vivo

(A) Transplant ofmammary epithelial cells transducedwith EV, S155R, orWT viruses from three independent transplant sessions. The number of successful GFP+

outgrowths as a fraction of the number of transplanted fat pads is given. The extent to which each outgrowth filled the fat pad is indicated by the ‘‘pie chart’’

symbols.

(B) Whole mount of fat pad transplanted with WT-transduced cells. Scale bar, 3 mm.

(C–E) Sections through cleared fat pad outgrowths transduced with EV (C), S155R (D), or WT (E) viruses. Sections were double stained for K5 and K19 expression

and counterstained with DAPI. Note the predominantly single layer of K5-positive/K19-negative epithelium in the S155R outgrowth. Scale bars, 40 mm. See

Figure S5 for additional sections stained for K18 and SMA expression.

(legend continued on next page)
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increase in the proportion of divisions occurring perpendicular to

the epithelium-stroma border (26.65% ± 1.57% of the total

number) and a decrease in parallel divisions (6.22% ± 3.34%;

125 mitoses, of which 41 were at the border; Figure 4C; Table 1).

Unfortunately, no mitoses could be observed in sections from

the small S155R outgrowths. Therefore, to determine how

S155R AURKA might influence the direction of cell divisions,

we used an in vitro three-dimensional (3D) culture model that

mimics the in vivo morphology of the mammary epithelium

(Bissell et al., 2003). Freshly isolated EV-, S155R-, andWT-trans-

duced mammary epithelial cells were plated at low density, at

equal numbers, on growth factor-reduced Matrigel and cultured

for 4 days to allow growth of 3D colonies (Figure 4D). Cultures

were then fixed, stained for tubulin and with DAPI, and the orien-

tation of cell divisions was determined. In colonies derived from

control cells, 42.46% ± 2.85% of divisions were parallel, and

57.53% ± 5.47% were perpendicular to the basement mem-

brane (mean ± SD, n = 73). Strikingly, however, S155R promoted

more parallel and fewer perpendicular divisions (68.11% ±

2.21% and 31.88% ± 3.01%, respectively; mean ± SD, n = 69),

whereasWT AURKA had the opposite effect, increasing perpen-

dicular divisions and decreasing parallel divisions (84.21% ±

4.22% and 15.78% ± 2.27%, respectively; mean ± SD, n = 76)

(Figure 4E).

To determine whether expression of S155R altered prolifera-

tion in these cultures as in monolayer cultures and in vivo

outgrowths, 10-day-old Matrigel cultures of EV-, S155R-, and

WT-transduced cells were assayed for differences in final cell

numbers. As expected, there were significantly fewer cells in

cultures obtained from S155R-expressing cells than EV or WT

cultures (Figure 4F). This was not a result of an increase in

apoptosis in these cultures because there was no observable in-

crease in the number of pyknotic nuclei in the S155R colonies

(Table S1).

To analyze whether AURKA-dependent alterations in mitotic

spindle orientation correlated with altered mammary epithelial

differentiation in vitro as it did in vivo, we examined the expres-

sion of genes associated with the myoepithelial (Acta2, Fzd1,

Fzd2, Itga6, Kitl, Krt14, Snai2, Trp63, DNp63, and Vim) and

luminal (Cd14, Erbb3, Esr1, Kit, Krt18, Lyn, Pgr, and Prlr) line-

ages, together with three genes that are not differentially ex-

pressed in the mammary epithelium (Brca1, Gata3, and Itgb1)

(Kendrick et al., 2008; Regan et al., 2012) (Figure S6). Overall,

S155R transduction resulted in a reduction in transcriptional

activity relative to control-transduced cells, consistent with ter-

minal differentiation, whereas WT AURKA transduction resulted

in an overall increase in transcriptional activity. Notably, how-
(F–I) Flow cytometric analysis of cells prepared from fat pads transplanted with vi

Sca-1 staining to determine the population distributions of GFP� and GFP+ cells

GFP+ cells in the representative experiment shown are indicated, together with th

Note that the relatively low percentages of GFP+ cells may be a result of an immun

unpublished data). (F) Untransduced cells. (G) GFP+ EV-transduced cells. (H) S1

(J) Data from (G)–(I) on the distribution of GFP+ cells in the three main epithelial pop

indicate significant changes (t test on Log10-transformed data) in size of each po

(K) Rates of transplantation and extent of GFP+/mRFP+ outgrowths across two rou

images of outgrowths.

See also Figure S5.
ever, expression of DNp63, a key regulator of the basal epithelial

lineage (Romano et al., 2009; Carroll et al., 2006), was upregu-

lated in S155R-expressing cells. Furthermore, the two most

highly upregulated genes in WT-transduced cultures were Prlr

and Cd14, both of which are markers of luminal progenitors

(Kendrick et al., 2008).

These data demonstrate that AURKA regulates mitotic spindle

orientation in themammary epithelium. High AURKA activity pro-

motes divisions perpendicular to the basement membrane and,

consistent with this, leads to an increase in the proportion of

luminal progenitor cells. The S155R mutant, in contrast, pro-

motes divisions parallel to the basement membrane, resulting

in an increase in differentiated basal myoepithelial cells.

AURKA Regulates NOTCH Signaling in Mammary
Epithelial Cells
In Drosophila sensory organ precursor cells, AURKA regulates

daughter cell fate both through mitotic spindle alignment and

asymmetric intracellular localization of NUMB, a negative regu-

lator of NOTCH signaling (Lee et al., 2006). NOTCH signaling is

also a key regulator of mammary stem/progenitor cells and pro-

motes luminal differentiation in the mammary epithelium (Bouras

et al., 2008; Buono et al., 2006; Harrison et al., 2010). We there-

fore examined whether there was a relationship between

AURKA, mitotic spindle orientation and NOTCH signaling in the

mammary epithelium.

We initially examined NUMB localization. However, in 4-day-

old 3D cultures of EV-, S155R-, and WT-transduced primary

mammary epithelial cells, no correlation was observed between

endogenous NUMB localization or expression and either S155R

or WT AURKA (Figure S7).

To determine whether AURKA may regulate NOTCH signaling

independently of NUMB, expression levels of the ligands (Dll1,

Jag1, and Jag2) and the receptors (Notch1–Notch4) were exam-

ined in EV-, S155R-, and WT-transduced mammary epithelial

cells in 3D culture (Figure 5). Signaling through the pathway

was monitored through target gene (Hes1, Hes6, Hey1, Hey2,

and Twist1) expression. S155R expression resulted in decreased

Dll1, Jag1, Jag2, Notch1, Notch3, and Notch4 levels, whereas

WT expression increased expression of Notch1, Notch2, and

Notch3. These differences were reflected in profound changes

in expression of NOTCH target genes. S155R expression re-

sulted in a strong suppression ofHes1,Hes6, and Twist1 expres-

sion, whereas WT expression resulted in a strong increase in

expression of all five target genes tested. Consistent with the

NUMB protein expression data, there were no differences in

Numb gene expression between EV-, S155R- and WT-
rus-transduced cells. Cells were gated on GFP expression and then CD24 and

(indicated by the ‘‘Basal,’’ ‘‘ER�,’’ and ‘‘ER+’’ regions in F). The percentages of

e mean (±SD) percentages of GFP+ epithelial cells from all three experiments.

e response to GFP by the syngeneic transplant hosts (J.L.R., K.S., and M.J.S.,

55R-transduced cells. (I) WT-transduced cells.

ulations expressed as a bar chart (mean ± SD) for direct comparison. Asterisks

pulation relative to EV transplant (gray bars). *p < 0.05; ***p < 0.001.

nds of serial transplantation of virus-transducedmRFP+ cells. See Figure S5 for
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Figure 4. AURKA Regulates Mitotic Spindle Orientation

(A) H&E TEBs showing divisions parallel and perpendicular to the border with the mammary stroma. Scale bar, 35 mm.

(B) DAPI-stained section of TEB from WT-transplanted fat pad showing examples of parallel and perpendicular mitoses. Scale bar, 8 mm.

(legend continued on next page)
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Table 1. Mitotic Spindle Counts

Mouse N

Stroma Border

Others TotalPara Perp

1 4 28 19 93 140

2 6 34 23 92 149

3 4 24 16 64 104

393

Virus Tx

EV 1 3 5 4 13 22

2 3 4 7 30 41

3 3 6 5 23 34

S155R AURKA 1 3 0 0 0 0

2 3 0 0 0 0

3 3 0 0 0 0

WT AURKA 1 3 1 9 22 32

2 3 3 13 36 52

3 3 4 11 26 41

222

Number, localization, and orientation of mitoses counted in biopsies of

unmanipulated tissue (upper) and virus-transduced transplantedmaterial

(lower). ‘‘N’’ indicates number of fat pads examined in each of three

unmanipulated mice (upper) or in material derived from each of three

independent transplant sessions (Tx) (lower). Para, parallel divisions.

Perp, perpendicular divisions.

Figure 5. AURKA Regulates NOTCH Signaling

Relative expression by quantitative real-time reverse-transcription PCR of

NOTCH ligands (Dll1, Jag1, and Jag2), receptors (Notch1–Notch4),Numb, and

target genes (Hes1, Hes6, Hey1, Hey2, and Twist1) in EV, S155R, and WT-

transduced 3D cultures. Data are presented as mean fold expression (±95

confidence limits) relative to comparator sample (EV-transduced cells). Data

are from three independent experiments. Significant differences are *p < 0.05

and **p < 0.01 and were determined by inspection of error bars as described

by Cumming et al. (2007). See Figure S7 for analysis of NUMB localization and

expression levels and Figure S8 for analysis of expression of Hedgehog

signaling pathway components in response to AURKA expression.
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transduced cultures (Figure 5). In contrast, Hedgehog signaling

(a second pathway important for mammary development and

cancer) (Kasper et al., 2009; Visbal and Lewis, 2010) showed

no change in activity in response to either S155R or WT expres-

sion (Figure S8).

AURKA Regulation of Mitotic Spindle Orientation Is
NOTCH Dependent
Our results placed both mitotic spindle orientation and NOTCH

signaling downstream of AURKA. However, they did not estab-

lish a direct link between spindle orientation and NOTCH

signaling. To determine whether such a link existed, we first es-

tablished whether NOTCH signaling was active in the developing

TEBs by staining sections for the active cleaved fragment of the

NOTCH1 receptor, the Notch intracellular domain 1 (NICD1).

NOTCH1 activity in particular is correlated with poor prognosis

breast cancer (Parr et al., 2004; Reedijk et al., 2005). Serial sec-

tions through TEBs were stained for NICD1 and the basal marker
(C) Orientation of mitoses (parallel, perpendicular, or ‘‘Other’’) in TEBs as a percen

pads (n = 7mice), 9 fat pads transplanted with cells transduced with EV virus (n = 3

transplant sessions). See Table 1 for details.

(D and E) Primary mammary epithelial cells were transduced with EV, S155R, or W

stained with anti-a-tubulin (red) and DAPI (blue) and orientations of mitoses dete

matrix for 3D virus-transduced colonies. Data are expressed as the percentag

examined eight separate wells for each virus) of parallel and perpendicular division

on Log10-transformed data).

(F) Cell number in 3D cultures after transduction with EV, S155R, or WT viruses. D

experiments) of viable cells relative to EV-transduced 3D cultures. *p < 0.05 (t test o

associated genes in 3D cultures following virus transduction.

See also Figure S6.
K5. General cytoplasmic NICD1 staining was observed in the

TEBs, together with brightly punctate nuclear staining in a subset

of cells. Both luminal and basal cells were stained (Figures 6A

and S9A).

To directly test whether inhibition of NOTCH pathway activity

would affect mitotic spindle orientation in the TEBs, 3-week-

old mice were treated with the g secretase inhibitor (GSI)

RO4929097, or with vehicle only, daily for 5 days. Mammary

fat pads were then harvested and either fixed for histological

analysis, or mammary epithelial cells were processed for extrac-

tion of RNA. To confirm that GSI treatment had suppressed

NOTCH signaling, sections through TEBs were stained for

NICD1 expression, and Hes1 gene expression was analyzed

by quantitative real-time reverse-transcription PCR. As ex-

pected, GSI-treated animals had weaker NICD1 staining and

lower levels of Hes1 gene expression than control animals, con-

firming suppression of NOTCH signaling (Figures 6B, S9B, and

S9C). Next, mitotic spindle orientations were counted as previ-

ously in the vehicle- and control-treated TEBs. Remarkably,
tage of the total number of mitoses counted in 14 unmanipulated mammary fat

separate transplant sessions), and 9 fat pads transplanted withWT virus (n = 3

T viruses and cultured as 3D colonies. (D) Colonies were fixed after 4 days and

rmined. Scale bars, 20 mm. (E) Mitotic orientations relative to the extracellular

e (mean ± SD; data are from three independent experiments, each of which

s observed in each set of virus-transduced cultures. *p < 0.05, **p < 0.01 (t test

ata are expressed as percentage (mean ± SD; data are from three independent

n Log10-transformed data). See Figure S6 for analysis of expression of lineage-
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Figure 6. AURKA Regulation of Mitotic Spindle Orientation Is Dependent on NOTCH Signaling

(A) Localization of the NICD1 in the TEBs of 4-week-old mouse mammary epithelium. Punctate NICD1 staining was observed in a subset of cells in the TEBs,

including the basal cell layer (magnified regions i and ii). Scale bar, 50 mm. Scale bars in magnified regions, 4 mm.

(B) NICD1 staining of TEBs from 4-week-old mice treated with vehicle only (top) or the GSI RO4929097 (bottom). Scale bars, 60 mm. See Figure S9 for additional

images and for quantitative real-time reverse-transcription PCR analysis of Hes1 gene expression in tissue taken from vehicle- and GSI-treated mice and 3D

cultures.

(legend continued on next page)
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GSI-treated TEBs showed a shift from perpendicular to parallel

divisions in the outer layer of cells of the TEBs, bordering the

stroma, mimicking the effects of S155R (Figures 6C and S9D).

Next, we examined the relationship between AURKA and

NOTCH in the 3D in vitro culture system. Western blot analysis

of NICD1 and AURKA levels in cultures transduced with EV,

S155R, or WT viruses demonstrated that S155R suppressed

NICD1 levels and therefore NOTCH signaling (Figure 6D), con-

sistent with the quantitative real-time reverse-transcription

PCR data (Figure 5). Finally, we determined whether NOTCH

signaling was required for the effects of AURKA on spindle orien-

tation. 3D cultures transduced with either EV or WT virus were

treated with vehicle or GSI. As previously, WT transduction

resulted in a shift from similar numbers of perpendicular and

parallel divisions in control cultures to a significant increase in

the proportion of perpendicular divisions. In contrast, as was

observed in vivo, GSI treatment of control cells resulted in a sig-

nificant increase in the proportion of parallel divisions, mimicking

the effects of S155R. Furthermore, GSI treatment of WT-trans-

duced cells blocked the increase in perpendicular divisions

seen with WT alone (Figure 6E). These findings provide strong

evidence that AURKA regulates mitotic spindle orientation in

the mammary epithelium, in particular in TEBs in the developing

gland, and that this regulation is mediated directly through

NOTCH signaling.

DISCUSSION

We have demonstrated a role for AURKA in regulating cell fate in

the mammary epithelium. AURKA regulated mitotic spindle

orientation in the TEBs and thus governed the position of

daughter cells and their interactions with the microenvironment.

The regulation of mitotic spindle orientation was NOTCH

signaling dependent because, first, in a 3D model culture sys-

tem, WT AURKA overexpression activated the NOTCH signaling

pathway, whereas expression of S155R AURKA suppressed

NICD1 levels. Second, use of the GSI RO4929097 in vitro and,

notably, in vivo mimicked the effects of S155R AURKA ex-

pression, promoting cell divisions that were parallel to the base-

ment membrane and blocking perpendicular divisions. Third,

combining the GSI with WT AURKA overexpression rescued

the effects of WT AURKA alone and restored the balance

between perpendicular and parallel divisions. We therefore

suggest a model in which AURKA activity in the cap cells of

the TEBs promotes divisions perpendicular to the border with

the mammary stroma and that this is mediated through active

NOTCH signaling. Such perpendicular divisions will result in

one daughter cell that enters the body cell/luminal lineage and

one daughter cell that stays basal. In contrast, if AURKA activity

does not activate NOTCH signaling, then the divisions will be
(C) Location and orientation of mitoses in TEBs as a percentage of the total numb

and ten fat pads from five GSI-treated mice. See Figure S9 for details.

(D) Western analysis of NICD1 and AURKA expression in 3D cultures transduced

(E) Mitotic orientations relative to the extracellular matrix for 3D colonies transdu

pressed as the percentage (mean ± SD; data are from three independent experim

and perpendicular divisions observed under each condition. **p < 0.01, ***p < 0.

See also Figure S9.
parallel to the border: both daughter cells will stay in the basal

layer and enter the myoepithelial lineage. Exactly how AURKA

couples to the NOTCH pathway remains to be determined, how-

ever. Although there are caveats associated with overexpression

of mutant proteins such as the S155R, the facts that it is amutant

associated with human cancer (The Cancer Genome Project,

http://www.sanger.ac.uk/genetics/CGP/cosmic/) and that use

of a small molecule NOTCH inhibitor phenocopied the effects

of S155R overexpression both in vitro and in vivo strongly sup-

port the physiological relevance of our findings.

Spindle alignment depends on myosin motors in the cortex

and astral microtubules (MTs), which link the centrosomes to

the cell cortex during mitosis (Siller and Doe, 2009). Astral MT

function is regulated by the PAR polarity complex (McCaffrey

and Macara, 2011) and also depends on AURKA because the

astral MTs are short and sparse when AURKA is disabled (Giet

et al., 2002). It is likely that AURKA - astral MT - myosin motor

mechanisms position centrosomes not only with respect to

each other but also in response to external cues. The nature of

these external cues is unknown, but it is intriguing that targeted

deletion of the b1-integrin to the basal compartment of the

mouse mammary gland resulted in a change in spindle orienta-

tions in the basal cell layer of the intact gland during preg-

nancy-driven proliferation from parallel to the basement

membrane to random orientations. Furthermore, there was a

decrease in stem cell self-renewal as demonstrated by loss of

potency in serial transplantation (Taddei et al., 2008). Taken

together, these findings support a model in which mitotic spindle

orientation, regulated by AURKA, NOTCH, and b1-integrin, is a

key mechanism of mammary stem cell self-renewal and cell

fate determination. Further studies will be needed to determine

how AURKA activates NOTCH signaling and how NOTCH

signaling regulates centrosomal positioning and thus spindle

orientation. It is also unclear at this time whether the AURKA -

NOTCH - mitotic spindle orientation pathway is specific only for

basal cells or is potentially active in both basal and luminal cells.

Recent lineage analysis of the mouse mammary gland has

suggested that from 4 weeks postpartum onward (approxi-

mately 1 week into puberty), the basal and luminal epithelial

lineages are separate and maintained by their own stem and/or

progenitor compartments (Van Keymeulen et al., 2011). How-

ever, it is unclear to what extent the labeling strategies used in

these studies labeled cap cells of the TEBs. Although our in vivo

studies were carried out on slightly younger animals (3–4 weeks

old), they demonstrated that cap cells in the TEBs can contribute

to either the basal cells of the subtending duct or to the body

cells (and thus to the luminal layer). Whether or not the daughter

cells contributed to the luminal or basal lineages was determined

by spindle orientation. Notably, our findings provide mechanistic

insights into previous observations that cap cells can contribute
er of mitoses counted in ten mammary fat pads from five vehicle-treated mice

with EV, S155R, or WT virus.

ced with EV or WT virus and cultured with either vehicle or GSI. Data are ex-

ents, each of which examined 16 separate wells for each condition) of parallel

001 (t test on Log10-transformed data).
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to both cell lineages (Srinivasan et al., 2003; Williams and Daniel,

1983).

Our findings support the model that the TEBs do contain a

common stem cell for both the luminal and basal cell layers

and that the balance between the lineages is regulated by the

orientation of the divisions of the cap cells, under the control of

AURKA and NOTCH signaling. Once the ducts have properly

formed, maintaining the basal and luminal epithelial cells as

separate lineages requires cell divisions in the basal layer to be

parallel to the basement membrane, which will occur if NOTCH

signaling is blocked. However, during alveolargenesis, basal

cells may contribute to the luminal layer (van Amerongen et al.,

2012). Our findings show that this could be achieved by acti-

vating NOTCH signaling in dividing basal cells, causing orienta-

tion to switch from parallel to perpendicular.

NOTCH signaling is an important pathway inmammary epithe-

lial development and regulates mammary epithelial cell fate

(Bouras et al., 2008; Buono et al., 2006). Expression of

Notch1–Notch3 is associated with luminal cells (Bouras et al.,

2008; Kendrick et al., 2008), but Notch4 expression has been

associated with stem cells and the regulation of self-renewal

properties in cancer cells (Harrison et al., 2010). In human breast

cancer, NOTCH1 expression correlates with poor prognosis and

‘‘basal-like’’ breast cancers but NOTCH2 with good prognosis

and the luminal ER+ phenotype (Parr et al., 2004; Reedijk

et al., 2005; Lee et al., 2008).

A number of primary human tumors have been identified car-

rying AURKA mutations (S155R in colon, H86Y in breast, L318V

in ovary, and S398L and S361* nonsense in lung) (Bibby et al.,

2009) (The Cancer Genome Project, http://www.sanger.ac.uk/

genetics/CGP/cosmic/), and AURKA is expressed at high levels

in a range of tumors (Bischoff et al., 1998; Torchia et al., 2009;

Zhou et al., 1998). In primary breast cancer samples, high

AURKA expression is usually associated with the basal-like sub-

type (Yamamoto et al., 2009). This subtype tends to develop in

carriers of mutations in the BRCA1 tumor suppressor gene (Da

Silva and Lakhani, 2010). Intriguingly, mutations in the BRCA1

RING domain are associated with centrosomal amplification in

breast cancer (Kais et al., 2012), and AURKA activity is required

not only for centrosome amplification (Leontovich et al., 2013;

Zhou et al., 1998) but also for ILK-dependent centrosomal clus-

tering and the formation of pseudobipolar mitotic spindles in

cells with amplified chromosomes (Fielding et al., 2011). If

NOTCH pathway activity is required for AURKA-dependent

centrosome clustering in tumors, then the use of GSIs in

BRCA1 tumors has potential as a therapy to inhibit clustering

and drive mitotic catastrophe as a result of multipolar divisions.

Our findings also suggest that AURKA/NOTCH-dependent regu-

lation of spindle orientation could contribute to the recently

proposed cell translocation mechanism that allows tumor cells

to evade microenvironments that suppress neoplastic activity

(Leung and Brugge, 2012).

Finally, both AURKA and NOTCH signaling have attracted

much interest in recent years as potential therapeutic targets

in cancer. Our results suggest that combination therapies of

AURKA inhibitors and GSIs may offer synergistic results.

Whether these results will be synergistic benefits or toxicities,

however, remains to be determined.
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EXPERIMENTAL PROCEDURES

Preparation of Mammary Epithelial Cells for Flow Cytometry

All animal work was carried out under UK Home Office project and personal

licenses following local ethical approval and in accordance with local and

national guidelines. Single cells were prepared from fourth mammary fat

pads of 10-week-old virgin female FVB mice (Regan et al., 2012) and stained

with anti-CD24-FITC, anti-Sca-1-APC, anti-CD45-PE-Cy7, anti-CD49f-PE-

Cy5, and anti-c-Kit-PE. Mammary epithelial cell subpopulations were defined

as shown in Figures 1 and S1.

Gene Expression Analysis by Quantitative Real-Time Reverse-

Transcription PCR

Freshly sorted primary cells were lysed in RLT buffer (QIAGEN) and stored at

�80�C. Total RNA was extracted using an RNeasy MinElute Kit (QIAGEN),

according to the manufacturers’ instructions. For cultured cells, RNA was

isolated with TRIzol (Invitrogen). Quantitative real-time reverse-transcription

PCRs were performed as previously described (Kendrick et al., 2008).

For comparison of AurkA, Ccnd1, and Ccnb1, a SYBR Green-based

method with custom-designed primers (Primer3v.0.4.0; http://frodo.wi.mit.

edu/primer3) was used. All results were calculated using the D-DCt method.

Data were expressed as the mean fold gene expression difference in three

independently isolated cell preparations over a comparator sample with

95% confidence intervals.

Lentivirus Production and Transduction of Primary Cells

Lentiviruses were produced using the Tronolab (http://tronolab.epfl.ch/) pWPI

system. For two-dimensional culture and transplantation assays, primary

mammary cells were transduced with virus using the suspension method as

described (Kendrick et al., 2008). For 3D Matrigel culture, primary mammary

cells were suspended in viral supernatants and seeded in wells containing pre-

pared Matrigel gels (as above). After 16 hr, wells were washed and refed and

then transferred to low-oxygen culture conditions.

Mammary Epithelial Cell Transplantation

Transplantation of lentivirus-transduced primary mouse mammary epithelial

cells isolated from FVB and K14-mRFP mice (a kind gift of Elaine Fuchs,

Rockefeller University) (Zhang et al., 2011) into cleared fat pads of 3-week-

old syngeneic FVB and athymic Nude mice, respectively, was carried out as

described by Sleeman et al. (2007). For analysis of GFP/RFP serial transplants,

10 mm frozen sections were fixed, incubated with DAPI, and then postfixed

before being mounted. Sections were viewed on a Leica TCS SP2 confocal

microscope.

Histological Analysis

The 3-week-old intact WT FVB mouse mammary fat pads were whole

mounted and fixed. They were then cut transversely into four strips that

were paraffin embedded by standard methods. H&E sections of each

strip were used to locate the TEBs for mitotic figure counting. Parallel divisions

were defined as those at the reference surface that would leave both daughter

cells in the same position relative to that surface. Perpendicular divisions were

defined as those at the reference surface that left one daughter cell closer to

and one further from that surface. Mitotic figures that could not be related to

a reference surface (‘‘other mitoses’’) were simply counted.

Use of GSIs

For in vivo use, the GSI RO4929097 was formulated as a suspension in 1.0%

(hydroxypropyl)methyl cellulose (HPMC) (Sigma-Aldrich) in water with 0.2%

Tween 80 for oral administration. RO4929097 was dosed once daily at

10 mg/kg for 5 days. After 5 days, fourth mammary fat pads from vehicle-

treated and RO4929097-treated groups were whole mounted and fixed in

4% formalin overnight, processed, paraffin embedded, and serial sectioned

prior to immunostaining for NICD1 (Abcam; ab8925) and DAPI. Mitotic spindle

orientations were counted as above.

Third mammary fat pads from vehicle-treated and RO4929097-treated

groups were processed to single cells and stained for CD45-PE-Cy7, CD24-

FITC, and Sca-1-PE. Total epithelial cells were collected and processed for

http://www.sanger.ac.uk/genetics/CGP/cosmic/
http://www.sanger.ac.uk/genetics/CGP/cosmic/
http://frodo.wi.mit.edu/primer3
http://frodo.wi.mit.edu/primer3
http://tronolab.epfl.ch/
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RNA to determine levels of Hes1 gene expression by quantitative real-time

reverse-transcription PCR.

For in vitro studies, cells were seeded in 3D Matrigel culture in 8-well cham-

ber slides. After 12 hr, cultures were treated with 5 nM RO4929097 or vehicle

(DMSO) for 4 days. Cells were fixed, permeabilized, and DAPI stained prior to

quantification of orientations. RNA was collected using TRIzol for assessment

of Hes1 expression by quantitative real-time reverse-transcription PCR. See

Extended Experimental Procedures for more information.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, nine

figures, and two tables and can be found with this article online at http://dx.

doi.org/10.1016/j.celrep.2013.05.044.
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