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We report a simple, rapid, and quantitative wide-field technique to measure the optical extinction rext

and scattering rsca cross-section of single nanoparticles using wide-field microscopy enabling

simultaneous acquisition of hundreds of nanoparticles for statistical analysis. As a proof-of-principle,

we measured gold nanoparticles of 40 nm and 100 nm diameter and found mean values and standard

deviations of rext and rsca consistent with the literature. Switching from unpolarized to linearly

polarized excitation, we measured rext as a function of the polarization direction and characterized

the nanoparticle asphericity. The method can be implemented cost-effectively on any conventional

wide-field microscope and is applicable to any nanoparticles. VC 2013 American Institute of Physics.

[http://dx.doi.org/10.1063/1.4800564]

Metallic nanoparticles (NPs) exhibit morphology-

dependent localized surface plasmon resonances (LSPRs),

which couple to propagating light and manifest as an

increased particle polarisability at the LSPR frequency.

Besides fundamental interest, these local optical resonances

can be exploited to image metallic NPs with high sensitivity

and to probe nanoscale regions in the NP vicinity via the

local field enhancement effect, with possible applications

ranging from sub-wavelength optical devices,1 catalysis2 and

photovoltaics3 to biomedical imaging4,5 and sensing.6–8

Important physical quantities characterizing the linear opti-

cal properties of a NP are the absorption cross-section rabs, the

scattering cross-section rsca, and the resulting extinction cross-

section rext ¼ rabs þ rsca. Beyond traditional ensemble average

measurements, a number of approaches have been developed

recently to measure rext at the single particle level, showing that

the optical properties of individual NPs can significantly differ

from the ensemble average owing to inhomogeneities in NP

size and shape. It is, therefore, particularly important to develop

a technique that is able to rapidly quantify the cross-sections at

the single NP level and to perform a statistical analysis over

many NPs, providing a relevant sample characterization.

Quantitative values of rext, rabs, and/or rsca of single NPs have

been reported using dark-field micro-spectroscopy,9 photother-

mal imaging,10 and spatial modulation micro-spectroscopy.11

However, in order to provide cross-section values in absolute

units, dark-field micro-spectroscopy and photothermal imaging

require a calibration reference (e.g., by comparison with rext

known from theory), while spatial modulation micro-

spectroscopy needs a precise measurement of the beam profile

at the sample. Moreover, photothermal imaging and spatial

modulation micro-spectroscopy are beam-scanning techniques,

therefore, costly and less amenable to the rapid characterization

of a large number of NPs compared to wide-field techniques.

Additionally, they are modulation-based which requires special-

ized equipments such as acousto-optical modulators and lock-in

detection.

In this work, we report a simple and quantitative wide-

field technique to measure rext and rsca on single NPs using

conventional bright and dark-field microscopy without the

need for calibration standards and with a field of view ena-

bling simultaneous acquisition of hundreds of NPs.

The experimental set-up consists of an inverted microscope

(Nikon Ti-U) equipped with a white-light illumination (halogen

lamp 100 W with Nikon neutral color balance filter), a oil con-

denser of 1.4 numerical aperture (NA) with a removable home-

built dark-field illumination of 1.1-1.4 NA, a 40� 0.95 NA dry

objective, a 1.5� intermediate magnification, and a Canon EOS

40D color camera attached to the left port of the microscope.

Images were taken in Canon 14-bit RAW format with 10.1

megapixel resolution. The RAW images were converted using

the DCRAW plugin in IMAGEJ, providing 16 bit RGB images

with a linear response to intensity and no color balancing. The

investigated samples were gold NPs (GNPs) of nominal 40 nm

and 100 nm diameter (BBInternational) covalently bound onto a

glass coverslip functionalised with (3-mercapto) triethoxysilane,

covered in silicone oil (refractive index n¼ 1.518) and sealed

with a glass slide.

Dark-field microscopy was performed initially to con-

firm the presence of metallic NPs appearing as colored scat-

terers, distinguishable from the white scattering of other

debris or glass roughness. The color camera enables a coarse

spectroscopic detection separating the three wavelength

ranges of red (R) 570–650 nm, green (G) 480–580 nm, and

blue (B) 420–510 nm. Once a suitable region was located

and focussed, a dark-field image was taken. Subsequent

bright-field microscopy was performed by removing the dark

field ring and adjusting the condenser numerical aperture

NAc to match the objective NA. To quantitatively measure

the extinction cross-sections, two bright-field transmission

images were taken, one with the NPs in the objective focus

and the second one out-of-focus, moving the objective by

approximately d ¼ 15 lm axially away from the sample.

Background images were taken for blocked illumination. To

achieve the lowest shot noise, the lowest camera sensitivity

was used (100 ISO), for which the full-well capacity of thea)Electronic address: BorriP@cardiff.ac.uk
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pixels of about Nfw ¼ 4� 104 electrons occurs at 70% of the

digitizer range (3.4 electrons/count). The exposure time in

the order of 10 ms was chosen to reach Nfw. Averaging over

Na ¼ 36 acquisitions was performed for each image set.

Let us call the background-subtracted transmitted inten-

sity of the bright-field image with NPs in focus If and the

defocused intensity Id. In the defocused image, a NP distrib-

utes its effect over a radius of about rd ¼ NAd making Id

similar to the intensity If in the absence of the NP. The

extinction cross-section of a NP located within the area Ai in

the image can then be expressed as rext ¼
Ð

Ai
DdA with the

relative extinction D ¼ ðId � IfÞ=Id. An example of a full

color dark-field image and the corresponding D image for

gold NPs of 40 nm diameter is shown in Fig. 1. To account

for the slight mismatch between Id and If without NP due to

the defocusing, drift of the illumination intensity, and the re-

sidual influence of the NP, we determine a local background

extinction Db ¼ Ab
�1
Ð

Ab
DdA in the area Ab between the ra-

dius ri and 2ri, as sketched in Fig. 1(d), yielding the

background-corrected rext ¼
Ð

Ai
ðD� DbÞdA. The correction

area Ab is within the defocused image of the NP, i.e.,

2ri < rd, ensuring a homogeneous influence of the NP over

Ai and Ab. The dependence of the measured rext on ri is

shown in the inset of Fig. 1(b) for the G channel, using a

constant Db from ri ¼ 1:5 lm. A saturation of rext is

observed for ri > 800 nm � 3k=ð2NAÞ, approximately at the

second airy ring of the objective point-spread function. This

behavior can be qualitatively understood considering that D
is the result of the interference between the scattered field of

the NP and the illumination field. For a spatially coherent

illumination, this interference would lead to fringes in rext

decaying as 1=
ffiffi
r
p

. However, the short spatial coherence

length dc � k=NAc of the illumination is suppressing these

fringes for r > dc.

In order to determine rext of many particles from an

extinction image, we developed an image analysis pro-

gramme written in IMAGEJ macro language. We split the raw

images into RGB channels, subtract the background, average

the multiple acquisitions of If and Id, and calculate D. We

then determine the particle locations as the maxima of D
with values in a range adjusted to reject noise and large

aggregates. For each maximum, we choose Ai given by a

centered disk of radius ri ¼ 3k=ð2NAÞ ¼ 837 nm and calcu-

late rext.

We select individual NPs using their extinction color,

retaining NPs with rext largest in the color channel corre-

sponding to the expected plasmon resonance, i.e., green (red)

for 40 nm (100 nm) spherical GNPs having a LSPR at

540 nm (590 nm) in a surrounding medium of 1.5 refractive

index. NPs which likely correspond to aggregates, debris, or

largely non-spherical GNPs are excluded in this way. The

statistical results over 104 individual GNPs of nominally

40 nm diameter are summarised in Fig. 2. The distribution of

rext in the G channel corresponding to the plasmon reso-

nance has a mean of �rext ¼ 4000 nm2, which is consistent

with experimental and theoretical values found in the

literature.11–14 The standard deviation r̂total ¼ 1300 nm2 of

rext contains a part r̂noise due to measurement noise. This

part is determined from the distribution of rext in image

regions not containing NPs, which has a zero mean and a

standard deviation r̂noise. We find r̂noise ¼ 590 nm2 for the G

channel. The standard deviation r̂ext arising from the NPs is

accordingly determined by r̂2
ext ¼ r̂2

total � r̂2
noise, resulting in

r̂ext ¼ 960 nm2 for the G channel. r̂ext can be attributed to a

size distribution of the GNPs as follows. The scaling of

rext / Rc for spherical particles of radius R is known from

Mie theory.15 In the dipole approximation, c � 3 for small

particles, where the extinction is dominated by absorption

and increases towards c ¼ 6 for larger particles, where the

extinction is dominated by scattering. We found c � 3 for

40 nm diameter at 532 nm wavelength using calculated

absorption and scattering cross-sections.12 This scaling allows

FIG. 1. (a) Full color (FC) dark-field image of 40 nm diameter gold NPs. (b)

Corresponding FC extinction image D from 0 (black) to 0.043 (white). (c)

Zoom of dark-field image. Corresponding zoom of the FC bright-field trans-

mission with NP in focus If (d) and out-of-focus Id (e). (f) Zoom of FC

extinction image.

FIG. 2. Distributions of rext for 104 GNPs of nominal 40 nm diameter in the

R, G, and B color channels as indicated. The grey histograms show the noise

distribution obtained by measuring rext in 183 randomly selected regions

without NPs.
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us to estimate the relative standard deviation of the radius

dR=R ¼ r̂ext=ð�rextcÞ � 0:08. The manufacturer specifies

dR=R < 0:08 for 40 nm and 100 nm particles determined by

electron microscopy. Thus, r̂ext is on the upper limit of what

expected from the size distribution of spherical particles in a

constant dielectric environment. It has been shown in the

literature that additional factors influencing r̂ext might be the

NP non perfect sphericity,10 as well as fluctuations in the

local dielectric environment and the electron-surface scatter-

ing damping parameter.11 Measurements of rext for 100 nm

GNPs (not shown) in the red channel yield �rext ¼ 41 000 nm2

and r̂ext ¼ 5847 nm2, resulting in dR=R ¼ 0:032 with

c ¼ 4:5. These values are consistent with the literature11–14

for spherical 100 nm GNPs and meet the manufacturer’s size

specifications.

Using the scattered intensity Idf measured in dark-field

microscopy integrated over the same spatial area Ai as rext,

we obtain the detected power scattered by the NP which is

proportional to the scattering cross-section rsca. Normalizing

the scattered intensity to Id, we can write rsca ¼ g
Ð

Ai
IdfdA=Id

with the constant g determined only by the condenser NAc

ranges in bright field and dark field and the objective NA. If

g is known, rsca can be quantified in absolute units. We

determined g as follows. We compared rsca with rext on each

NP of the ensemble, as shown in Fig. 3. GNPs with rext well

below a certain cut-off value (rc) are dominated by absorp-

tion with cross-section rabs scaling like R3. Since rsca is pro-

portional to R6 in this regime, we expect rscarc ¼ r2
ext.

Conversely, scattering dominates for larger particles such

that rext ’ rsca. This trend is indeed observed in Fig. 3, and

a fit of the interpolation 1=rsca ¼ rc=r2
ext þ 1=rext allows us

to infer rc ¼ 34 000 nm2 and g ¼ 26, both with about 10%

error. The resulting rsca of the GNPs is consistent with the

literature.14 Furthermore, we can deduce the absorption

cross-section rabs ¼ rext � rsca, which is also shown in

Fig. 3. Using the calibrated rsca, we find a detection limit for

rsca of about 100 nm2 limited by the background scattering

contributing to Idf in our samples. Increasing the exposure

time allows in principle to detect rsca < 1 nm2 considering

the camera dark noise. For the dark-field data shown in Fig.

3, we used exposure times in the order of 5 s.

While the detection limit for rsca is given by the sample

background scattering, the detection limit for rext is given by

the shot noise in the measured transmitted intensity. The rel-

ative shot noise is given by 1=
ffiffiffiffiffiffiffi
Nph

p
with the detected num-

ber of photons Nph, which is determined by the number of

acquisitions Na, the full-well capacity Nfw of the camera pix-

els, the number of pixels Npx in the area Ai, and the fraction

� of pixels used for the color channel (for the Bayer color fil-

ter of our camera � ¼ 1=2 for G and � ¼ 1=4 for R, B),

yielding r̂noise ¼ Ai=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NaNfw�Npx

p
. With the pixel size dpx,

the area Ai ¼ pri
2 with ri ¼ 3k=ð2NAÞ, and the magnifica-

tion M onto the camera, we find

r̂noise ¼
3kdpx

2MNA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p

NaNfw�

r
: (1)

For the green channel of Fig. 2, we have Nfw ¼ 4� 104;
Na ¼ 36, M¼ 60, dpx ¼ 5:7 lm; NA ¼ 0:95; k ¼ 0:53 lm,

and � ¼ 1=2, yielding r̂noise ¼ 589 nm2, in agreement with

the measured noise. The blue and red channels have a factor

of
ffiffiffi
2
p

larger noise due to the smaller �. This detection limit

could be improved by using an oil immersion objective with

1.45 NA, M¼ 150, and Na ¼ 1800 possible in a 60 s video,

for which Eq. (1) yields r̂noise ¼ 43 nm2, which would allow

measuring single GNPs down to 10 nm diameter.

We note that the finite angular range of the objective

implies that it collects also a fraction of the scattered light,

leading to an underestimate of the extinction. The solid angle

in the sample with 1.5 refractive index collected by the

objective is 1.6 sr, which for isotropic scattering is 13% of

the scattered light. We could correct for this by adding 13%

of the measured rsca to rext. We also note that rsca is deter-

mined using the scattering of the dark-field excitation into

the objective, which also has a certain angular range that

needs to be considered if the scattering is sufficiently

anisotropic.

Furthermore, we measured the dependence of rext on the

linear polarization angle h of the excitation light, which is a

sensitive probe of NP asphericity, by inserting a linear polar-

iser in the illumination beam path before the condenser. The

resulting rextðhÞ is shown in Fig. 4 (right) for h between 0�

and 180� in steps of 10� for two selected GNPs in the

red channel. We analyze these results by fitting the expres-

sion rextðhÞ ¼ r0ð1þ a cosð2ðh� h0ÞÞÞ, where r0 is the

polarization-averaged rext; a � 0 is the amplitude of the

polarization dependence, and 0 � h0 � p is an angular

offset, indicating the direction of the NP asymmetry. To esti-

mate the influence of the measurement noise on the fit pa-

rameters, we calculated their distribution over Gaussian

random fluctuations of the fitted rextðhÞ with a standard devi-

ation r̂noise. GNP1 has a fitted a ¼ 0:07, and its distribution

has a mean value �a ¼ 0:15 and a standard deviation

FIG. 3. Scattering cross-section rsca (stars) measured in dark-field images

versus rext measured in extinction images for 40 nm GNPs and 100 nm

GNPs in the green channel. The deduced absorption cross sections rabs are

given as circles. The dotted line gives the fitted scaling as labeled. The limit-

ing behaviour for small rext (dashed line) and large rext (solid line), and the

expected absorption cross-section (short-dashed) are also shown.
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â ¼ 0:08. GNP2 instead is significantly non-spherical with a

fitted a ¼ 0:75 and a distribution with �a ¼ 0:75 well above

â ¼ 0:06. The red channel is used here, as it is most sensitive

to LSPR shifts due to asphericity.

The distribution of a over the NP ensemble is shown in

Fig. 4 (left) for 40 nm and 100 nm GNPs for different color

channels. For comparison, the simulated distribution of a
for GNPs having rextðhÞ given by the fit function is shown

for a ¼ 0; 0:1; 0:2; 0:5; 0:8 in Fig. 4 as black lines using

r0 ¼ �rext of the color channel. The comparison shows that

the polarization dependence can identify non-spherical

GNPs through the distinct values of a. To further infer the

NP geometrical aspect ratio from these data, a comparison

with theory is needed which will be reported in a forthcom-

ing work.

In conclusion, we have shown that conventional wide-

field microscopy can be implemented with a consumer cam-

era to extract quantitative values of polarization-resolved

extinction, scattering, and absorption cross-sections of indi-

vidual nanoparticles and generate histograms for statistical

characterization of large numbers of particles. Although

quasi-spherical gold nanoparticles of 40 nm and 100 nm

diameter were used in this work for proof of principle, the

technique is applicable to any nanoparticles, with a detection

sensitivity limit in the order of 100 nm2. Importantly, this

technique can be adopted by any laboratory equipped with

conventional wide-field microscopy as a tool to quantify the

linear optical response of a statistically significant number of

individual nanoparticles.
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FIG. 4. Left column: Distributions of the amplitude a for 150 GNPs of 40 nm

diameter in the R, G, and B color channels, and 320 GNPs of 100 nm diameter

in the R channel. The distributions due to r̂noise for GNPs of a ¼ 0; 0:1;
0:2; 0:5; 0:8 are given as black lines using �rext as given in Fig. 2. Right col-

umn: rextðhÞ in the R channel with fits for two 40 nm GNPs, and distribution

of the deduced amplitude parameter a by the measurement noise r̂noise.
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