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Summary

In this thesis we consider the problem of a falling sphere within a fluid. We are pri-

marily interested in incompressible fluids exhibiting so-called viscoelastic properties in

which a range of phenomena have been observed experimentally. These phenomena

are typically manifest in the presence of a negative wake, an overshoot of the velocity

of the falling sphere and drag reduction as well as enhancement in some cases. We

consider fluid models which have been designed to capture these effects and use them

to simulate the flow numerically with the intention of gaining an insight into the ob-

served phenomena.

We begin with the most basic fluid models in order to validate our scheme, considering

both Stokes and Newtonian fluids before progressing to viscoelastic fluid models in a

range of problems to ensure the robustness of our solver. Our scheme ultimately utilises

the Spectral Element Method(SEM) combined with a Discontinuous Galerkin(DG)

treatment of the constituitive equation along with a DEVSS-G stabilisation term in

the momentum equation. We employ an Arbitrary Lagrangian Eulerian(ALE) scheme

when simulating a falling sphere.

Our simulations successfully capture the drag reduction when moving fluid past a

fixed sphere as well as velocity overshoot for the sedimenting sphere, although we

have failed to capture the presence of a negative wake thus far. Excellent agreement

with the literature is demonstrated for the benchmarks considered in both planar and

axisymmetric geometries.
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Chapter 1

Introduction

This thesis is concerned with the sedimentation of a spherical particle in a viscoelastic

fluid. This chapter contains a brief history of considerations of the problem, beginning

with the initial efforts in the field, followed by experimentally observed phenomena as

well as efforts to capture them.

Subsequent chapters follow our efforts to understand the problem. Chapter 2 deals

with the mathematical formulation of the equations we shall be considering to model

the fluid, ranging from Stokes flow, Newtonian flow and more complicated viscoelastic

models such as Oldroyd B. Chapter 3 details our numerical methods with which we shall

attempt to compute an approximate solution to these models. Chapter 4 details our

efforts to validate our scheme for Stokes flow and compute solutions to the benchmark

of a fixed sphere in uniform flow which serves as validation of our spatial discretisation.

Chapter 5 is concerned with the Newtonian fluid and provides further validation of our

scheme with the introduction of time-dependence.

In Chapter 6 we consider viscoelastic flows for fixed domains. Validation on the scheme

is performed using available analytical solutions and we continue with the benchmarks

used for Stokes and Newtonian flow. The viscoelastic models considered are the Ol-

droyd B and Giesekus fluids. Finally, Chapter 7 introduces our scheme for the falling

sphere problem and details some results from initial numerical experiments using the

scheme.
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1.1 Motivation

The study of fluid flow past a sphere is of great interest in fluid dynamics. The problem

has a long history and the problem of flow past a sphere fixed inside a cylinder is a useful

benchmark problem for numerical schemes. It also has applications in the settling of

suspensions and in sedimentation. In industrial settings, the transport of particles in

mineral and chemical processing, for example, may be modelled by a sphere in motion

through an incompressible fluid. Particles are also present in processes such as engine

combustion. This makes the understanding of the effect of the sphere’s presence on

the flow important in the study of these processes.

1.2 History

Flow past a sphere (in particular at a low Reynolds number) has a long history in fluid

dynamics, dating back to at least 1845 when work was published (and later in 1851)

by G. G. Stokes. Stokes studied the problem of a sphere moving at some constant

velocity, V , in an infinite expanse of fluid [56]. Taking a frame of reference which

follows the sphere, he was able to find a steady solution to the equations of motion

he had formulated a few years earlier [55]. We follow the essay of Lindgren [31] who

explored the history of the problem beginning with Stokes’ work. Stokes started with

what are now known as the Navier-Stokes equations for an incompressible viscous fluid,

(u · ∇) u = −∇p
ρ

+ ν∇2u, (1.1)

∇ · u = 0 (1.2)

where u is the flow velocity, p the pressure, ρ the density and ν = η
ρ

the kinematic

viscosity (η being the dynamic viscosity). Also note that (1.2) is the continuity equation

for incompressible fluids.

Stokes’ analysis was performed under the assumption that inertial forces may be ne-

glected as they are dominated by the viscous forces. He argued that this assumption

holds as long as the motion of the sphere is relatively slow. This meant that ρ (u · ∇) u

12



is assumed to be zero in an inertial frame of reference. The result is that (1.1) becomes,

0 = −∇p+ η∇2u. (1.3)

The solution is obtained in terms of what is now known as Stokes’ stream function,

given in spherical co-ordinates by

ψ(r, θ) = ±V
2
r2 sin2 θ

(
1− 3a

2r
+

a3

2r3

)
(1.4)

for a uniform velocity V past a fixed sphere of radius a so that ur = −V cos θ and

uθ = V sin θ at r = ∞. One may extract a velocity field from the stream function

using

ur =
1

r2 sin θ

∂ψ

∂θ
, (1.5)

uθ = − 1

r sin θ

∂ψ

∂r
(1.6)

giving,

ur(r, θ) = V cos θ

(
1− 3

2

a

r
+

1

2

a3

r3

)
,

uθ(r, θ) = −V sin θ

(
1− 3a

4r
− 1

4

a3

r3

)
. (1.7)

An example of the steady flow field at low Reynolds number can be seen in Figure

1.1(a). The flow is both axisymmetric and laterally symmetric about the sphere.

By superimposing a uniform velocity field of−V , the “unsteady” solution may be found

which corresponds to the physical problem of a sphere moving through an otherwise

stationary fluid, rather than a fixed sphere with fluid moving around it. The stream

function is given by

ψ(r, θ) =
3

4
V ar sin2 θ

(
1− 1

3

a2

r2

)
(1.8)

with the corresponding velocity solution given by

ur(r, θ) = V cos θ

(
3

2

a

r
− 1

2

a3

r3

)
,

uθ(r, θ) = −V sin θ

(
3

4

a

r
+

1

4

a3

r3

)
. (1.9)
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(a) Stokes(laterally symmetric) (b) Oseen/Lamb

Figure 1.1: Streamlines for the stationary sphere problem, Re = 0.01. The flow is from

left to right.

An example of the unsteady flow field at both short and long distances may be seen

in Figure 1.2. As with the stationary sphere case, the flow is axially and laterally

symmetric. One can see that at a increasing distance from the sphere its presence is

still clearly influencing the flow which demonstrates that the validity of the solution is

restricted to some radial distance from the sphere. The conditions for the validity of

Stokes’ approximation is that the Reynolds number Re = V a
ν
� 1.

Finally, Stokes found that the drag force upon the sphere while travelling through an

otherwise undisturbed fluid under the above assumptions is

F = 6πηaV. (1.10)

An objection to Stokes’ analysis was made by Oseen [40, 41] and independently by

Noether [38]. Their objections were based on the arguement that the inertial forces at

long distances from the sphere were not negligible. Further to this, it was argued that

Stokes’ approximation produced an inertia term which reaches arbitrarily large values

as r increases. These objections of long-range dependence are valid, not for the above

reasons, however, but related to a transformation between inertial frames.

Oseen’s work also introduced an innovation in the formulation of the problem. Specify-

ing the velocity components of the flow as the addition of the uniform velocity field (of

14



Figure 1.2: Streamlines at small and large scales of Stokes’ solution for the moving

sphere problem at Re = 0.01. The sphere is moving from right to left, although the

flow is laterally symmetric.

speed V ) and the velocity perturbations, due to the sphere’s presence, one can refor-

mulate the problem. By neglecting second order quantities in the perturbed variables,

Oseen introduced linearised inertia terms via a partial convective acceleration, for the

force equations. The result is a system of PDEs in only the perturbed variables,

V
∂u

∂x1

= −∇p
ρ

+ ν∇2u, (1.11)

∇ · u = 0

where ∂u
∂x1

is the partial convective acceleration.

The transformation into an equation in only the perturbed variables allows the un-

steady flow problem to be solved in the format of a steady solution if the boundary

conditions are satisfied. This transformation can also be made for Stokes’ formulation

and is equivalent to setting the left-hand side to be zero in (1.11).

A further contribution was made by Lamb [28] who presented a more condensed, clearer

analysis using Oseen’s equations in 1911. Lamb noted that the conditions on the

validity of Oseen’s model were the same as Stokes’ theory, Re = V a
ν
� 1. Oseen did

15



not extract a stream function from his analysis, but his calculations allow a prediction of

the general character of the flow field which differs from Stokes’ flow field considerably -

this was in agreement with Lamb’s own findings for the flow field. The stream function

extracted by Lamb for the steady case is given by,

Ψ (r, θ) =
3

2
νa (1 + cos θ)

(
1− e−(V r/2ν)(1−cos θ)

)
− V

2

(
1 +

1

2

a3

r3

)
r2 sin2 θ (1.12)

which results in the flow field,

vr = V cos θ

(
1 +

1

2

a3

r3

)
+

3

2

a

r
ν

[
1

r
−
(
v

2ν
(1 + cos θ) +

1

r

)
e−(V r/2ν)(1−cos θ)

]
, (1.13)

vθ = −V sin θ

[
1− 1

4

a3

r3
− 3

4

a

r
e−(V r/2ν)(1−cos θ)

]
. (1.14)

The unsteady velocity field may be found by superimposing the uniform velocity field V

on the above solutions. Figures 1.1(b) and 1.3 show the steady and unsteady stream-

lines respectively. At short distances the difference is not so apparent, but at long

distances however, the effect of the inertia terms is seen. The lateral symmetry of the

solution is broken and the sphere is seen to have a large impact on the flow at long

range. Lamb also concluded that Oseen and Stokes’ models must result in the same

drag force (1.10). Oseen’s own work agreed with this view at the time, and the same

conclusion was reached by Noether.
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Figure 1.3: Streamlines at small and large scales found by Lamb using Oseen’s formu-

lation for the moving sphere problem, Re = 0.01. The flow is from right to left.
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Chapter 2

Mathematical Formulation

In the following chapter we dicuss the mathematical formulation governing our fluid

models. In Section 2.1 we outline the general framework of the models used and in

Section 2.2 we outline some specified models for viscoelastic fluids. An alternative

formulation of one of the governing equations is covered in Section 2.3. We discuss the

boundary conditions applied to our equations in Section 2.5. A statement of our final

equations is found in Section 2.6.

2.1 Governing Equations

The equations which govern fluid flow are based upon simple principles, viz.

• Momentum is conserved,

• Mass is conserved,

• Energy is conserved.

However, in this thesis we consider only isothermal flows so do not consider the con-

servation of energy. Using the first two of these principles, the Navier-Stokes equations

18



for an incompressible fluid may be derived, and stated as

ρF

(
∂u

∂t
+ u · ∇u

)
= ∇ · σ + f (2.1)

∇ · u = 0 (2.2)

in some domain Ω with boundary ∂Ω. Here u is the flow velocity, ρF is the fluid

density, σ is the Cauchy stress tensor and f represents external forces (per unit volume).

This system is closed by boundary conditions and a so-called constitutive equation

relating the Cauchy stress to the rate-of-deformation tensor, d = 1
2

(
∇u + (∇u)T

)
.

This relationship effectively defines the characteristics of the fluid being modelled.

Boundary conditions will be discussed in Section 2.5. We define the gradient of a

vector field, u, as

(∇u)ij =
∂uj
∂xi

, (2.3)

and the divergence of a tensor field, σ, as

(∇ · σ)i =
∑
j

∂σji
∂xj

. (2.4)

It is standard to split the Cauchy stress tensor into pressure, p, and extra-stress tensor,

T, parts

σ = −pI + T. (2.5)

This allows the constitutive relationship to be defined which relates the tensors T and

d. We also define the material derivative of a general tensor G by

DG

Dt
=
∂G

∂t
+ u · ∇G. (2.6)

Substituting these definitions, equations (2.1)-(2.2) become

ρF
Du

Dt
= −∇p+∇ ·T + f (2.7)

∇ · u = 0 (2.8)

2.1.1 Newtonian Fluids

A range of constitutive relationships will be discussed in Section 2.2 but for now we

shall focus on the model for a Newtonian fluid. A Newtonian fluid is characterised by a
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linear, isotropic relation between extra-stress and strain rate (or rate of deformation).

The constitutive relation is given by

T = 2η0d (2.9)

where η0 is the zero shear rate viscosity of the fluid.

We may eliminate T by substituting (2.9) into (2.7). We apply the definition of d

and then use the fact that ∇ · (∇u)T = ∇ (∇ · u). Finally, we use (2.8) to obtain the

velocity-pressure formulation for a Newtonian fluid

ρF
Du

Dt
= −∇p+ η0∇2u + f

∇ · u = 0 (2.10)

Dimensionless Equation

It is standard to define dimensionless variables in order to allow comparisons between

studies. We define our length, velocity and time scales as, L, U and L/U , respectively,

and pressure and stress by η0U/L. We typically choose a length and velocity scale

according to the characteristics of a given problem such as the width of a channel or

terminal velocity of a falling sphere. The dimensionless equations corresponding to

(2.10) are then

Re
Du

Dt
= −∇p+∇2u + f

∇ · u = 0 (2.11)

where the non-dimensional group,

Re =
ρFUL

η0

(2.12)

is called the Reynolds number. This dimensionless group gives a measure of the ratio

of inertial forces to viscous forces. At low Reynolds numbers, viscous forces dominate

and the flow tends to be laminar and smooth. Conversely, at high Reynolds numbers,

inertial forces dominate and the flow tends to be turbulent with instabilities occurring.

The range of Reynolds numbers for laminar or turbulent flow depend on the geometry

in which the fluid is flowing. In the context of the present work, we are interested in

laminar flow past a sphere and so only low Reynolds numbers, Re < 50, are considered.
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In the special case of Re = 0 we obtain the steady-state Stokes’ problem. Fluid flows

with Re� 1 are referred to as creeping flows for which the governing equations are

∇2u−∇p = f

∇ · u = 0 (2.13)

We shall use the Stokes’ problem as a means of validating part of our numerical scheme

(see Chapter 4).

2.2 Constitutive Models

So far we have considered the model for a Newtonian fluid, which features purely viscous

fluid behaviour. Now we will build upon the Newtonian model and include other types

of behaviour. A fluid which does not obey the linear relation between stress and strain

rate is termed Non-Newtonian. This term covers a wide range of different fluids. For

example, one may be interested in fluids which show an increase (shear-thickening)

or decrease (shear-thinning) in viscosity as the shear rate experienced by the fluid is

increased. We are particularly interested in viscoelastic fluids where, along with viscous

effects, elastic behaviour is exhibited by the fluid, which may manifest itself in a variety

of observable traits.

Viscoelastic fluids typically have two different characteristic times associated with

them. Firstly, the time taken for the fluid to reach a state of equilibrium after a

stress has been applied. This is termed the relaxation time, λ1. The second is the time

taken for at least partial elastic recovery to be felt by the fluid after a deformation.

This is termed the retardation time, λ2. In the case of a Newtonian fluid, these times

are equal and so effectively their effects are cancelled out.

Viscoelastic fluids also tend to have a non-zero first, and sometimes second, normal

stress difference. For a Newtonian fluid, both are zero-valued. These properties will

be investigated for our viscoelastic models in Section 2.2.3.

Treating a fluid as containing both viscous and elastic contributions to its proper-

ties we separate the zero shear rate viscosity, η0, into solvent(ηs) and polymeric(ηp)
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contributions so that

η0 = ηs + ηp. (2.14)

We may define the retardation time in terms of these viscosities and the relaxation

time by the relationship

λ2 =
ηsλ1

(ηp + ηs)
. (2.15)

We may also apply the same concept of solvent and polymeric contributions to the

extra-stress tensor, so that

T = 2ηsd + τ (2.16)

where τ is called the elastic stress tensor.

We substitute this expression into (2.7) to obtain the conservation equations for a

general incompressible viscoelastic fluid

ρF
Du

Dt
= −∇p+ ηs∇2u +∇ · τ + f (2.17)

∇ · u = 0 (2.18)

since ∇ · (2d) = ∇2u, using ∇ · ∇uT = 0 from the continuity equation.

Dimensionless Equation

For the dimensionless form of these equations we introduce a dimensionless parameter,

β, defined by

β =
ηs

ηs + ηp
(2.19)

which is termed the viscosity ratio. Using this alongside our previous dimensionless

variables, (2.16) becomes

T = 2βd + τ . (2.20)

and we obtain the dimensionless conservation equations for a general incompressible

viscoelastic fluid

Re
Du

Dt
= −∇p+ β∇2u +∇ · τ + f ,

∇ · u = 0. (2.21)
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We note that this system is not closed, since we still require a constitutive equation

as we did for a Newtonian fluid. We define this through the relationship between the

elastic-stress, τ , and the rate-of-deformation, d. The choice of model will dictate the

fluid properties which may be captured.

At this point, it is also convenient to define the upper-convected derivative of a general

tensor field, G, by

O
G =

DG

Dt
−G · ∇u− (∇u)T ·G. (2.22)

2.2.1 Oldroyd B Model

The constitutive equation for the Oldroyd B model [39] is given by

T + λ1

O
T = 2η0

(
d + λ2

O
d

)
(2.23)

However if we substitute (2.16) into (2.23), then we obtain the Oldroyd B constitutive

equation for the elastic stress tensor

τ + λ1
O
τ = 2ηpd (2.24)

Dimensionless Form

Applying the previous dimensionless scales, we arrive at a dimensionless constitutive

equation for the Oldroyd B model,

τ +We
O
τ = 2 (1− β) d (2.25)

where the dimensionless group, We, is termed the Weissenberg number, and is defined

by

We =
λ1U

L
(2.26)

This dimensionless group may be interpreted as a measure of the amount of recoverable

strain in the fluid [64] or more simply (and crudely) as a measure of the elasticity in

the fluid.
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The Oldroyd B model does not capture all the features of a general viscoelastic fluid and

in fact displays some very unphysical behaviour under certain conditions, as we shall see

in section 2.2.3. However, it has been used to reproduce a wide range of experimentally

observed phenomena and is therefore a good starting point when attempting to model

viscoelastic fluids.

Upper-Convected Maxwell (UCM)

In the case of a purely elastic fluid, with no solvent contribution to the stress or

viscosity, then we may take the limiting case of ηs → 0. This means that T ≡ τ

for (2.24). This leads to the Upper-Convected Maxwell model. It is considered to

be the simplest model capable of capturing viscoelastic behaviour. We shall not be

considering this model in the current work.

2.2.2 Giesekus Model

There are many models which involve the addition of extra terms to the Oldroyd B

constitutive equation, but they may all be captured in the following general formulation

τ + λ1
O
τ + f (τ ,d) = 2ηpd (2.27)

where f is a function specific to the particular model in question.

One such model which fits this form is the Giesekus model [18]. Using a kinetic theory

description of the polymer dynamics, Giesekus [18] introduced the idea of an anisotropic

drag on the beads. Introducing a tensor drag coefficient, the constitutive equation for

the elastic stress is given by

τ + λ1
O
τ +

αλ1

ηp
τ 2 = 2ηpd (2.28)

with α > 0 being known as the mobility parameter and where τ 2 = τ · τ . For this

model, the second normal stress difference is non-zero (negative) in shear and the

extensional viscosity asymptotes to a constant value for large λ1η̇.
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Applying our usual dimensionless scales, we obtain a dimensionless constitutive equa-

tion for the Giesekus model,

τ +We

(
O
τ +

α

(1− β)
τ 2

)
= 2 (1− β) d (2.29)

The value of the mobility parameter is restricted to values in the range 0 ≤ α ≤ 0.5 in

order for the model to remain physically realistic. Its value determines the extent of the

behaviour captured by the model. In particular, α has an impact on both the shear and

extensional behaviour of the model. It plays a significant role in extension hardening

and shear-thinning as well as the convergence of both first and second normal stress

differences with increasing shear-rate. A detailed look at the change with variation of

the mobility parameter can be seen in Section 2.2.3.

An alternative non-dimensionalisation uses ηpU

L
as the characteristic scale for the elastic

stress. In this case the dimensionless form of the Giesekus constitutive equation is

τ +We
(

O
τ + ατ 2

)
= 2d. (2.30)

The corresponding conservation equations are,

Re
Du

Dt
= −∇p+ β∇2u + (1− β)∇ · τ + f (2.31)

∇ · u = 0. (2.32)

2.2.3 Viscometrics

When investigating the suitability of a model for a fluid, it is important to look at its

behaviour under simple types of flow. These flows enable one to compare characteristics

of models against each other. The shear viscosity (or shear-rate dependent viscosity),

ηshear(γ̇), is given by the ratio of the shear stress to the shear rate, γ̇, i.e.

ηshear (γ̇) =
σxy
γ̇
. (2.33)

The zero shear-rate viscosity is given by

η0 = lim
γ̇→0

ηshear (γ̇) . (2.34)

The shear viscosity for many non-Newtonian fluids is observed to be monotonically de-

creasing for increasing shear-rate, γ̇, to some limit, η∞, as the shear-rate gets very large.
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This behaviour is known as shear-thinning, as mentioned earlier. There are examples of

fluids which display the opposite behaviour, known as shear-thickening. Further, yield-

ing fluids exist which only begin to deform after a threshold of shear stress is reached,

after which it may display any of the properties previously mentioned. Another type

would be rheopectic and thixotropic fluids, where there is a time-dependence on the

shear viscosity with respect to the shear stress. Our focus shall be on fluids exhibiting

shear-thinning behaviour.

The first and second normal stress differences are the independent differences

N1 (γ̇) := σxx − σyy (2.35)

N2 (γ̇) := σyy − σzz. (2.36)

The presence of (non-zero) normal stress differences is very important in viscoelastic

fluids and experimental evidence suggests that they are responsible for many of the

observed distinctive phenomena. It is generally expected that N1 is positive and larger

in magnitude than N2. Experimental evidence suggests that N2 is negative, especially

in polymeric liquids [45].

The extensional viscosity at some extension rate, ε̇, is given by

ηext (ε̇) =
σxx − σyy

ε̇
, (2.37)

which is the contribution to viscosity as a result of the material being stretched and

is an important feature in many flows involving non-Newtonian fluids. For polymeric

fluids ηext is typically seen to increase with increasing extension rate. This is termed

extension-hardening with the reverse (decreasing extensional viscosity with increasing

extension rate) is termed extension-softening. It has been noted that the extensional

properties of a fluid may turn what is otherwise a relatively simple problem into one

which is incredibly complex and difficult to model. Choosing a model which behaves

well under extension is therefore a consideration when studying flows where regions of

extensional flow are to be expected.

The Trouton ratio is the ratio between the extensional viscosity and the zero-shear-

rate viscosity, so it is dependent on the The reason for a fluid having a large Trouton

ratio may come from the effect of shear-thinning (polymer melts for example) or from

extensional viscosities which increase greatly with the extension rate, ε̇.
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Simple Steady Shear Flow

Consider a shearing flow with a constant shear rate, γ̇ in the Cartesian x-direction.

The resulting flow field is u = (γ̇y, 0, 0) which gives a pressure, p = C (where C is

some constant). By substituting the velocity field into the constitutive equation we

find that the stress tensor, σ, has components which satisfy the following

σxy = ηshear(γ̇) γ̇ (2.38)

σxx − σyy = N1 (γ̇) (2.39)

σyy − σzz = N2 (γ̇) (2.40)

σxz = σyz = 0 (2.41)

which gives us the means to calculate the shear viscosity and first and second normal

stress differences for this simple flow.

The Newtonian model predicts a constant shear viscosity (i.e. ηshear (γ̇) = η0) and zero

first and second normal stress differences, as is clear from (2.9).
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Figure 2.1: Shear viscosity behaviour for the Oldroyd B and Giesekus models. Param-

eters: λ = 1, ηp = 1
2
, η0 = 1
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Figure 2.1 and Figures 2.2(a)- 2.2(b) show graphs of the shear viscosity and nor-

mal stress differences as a function of shear rate, respectively, for the Oldroyd B and

Giesekus models. Like the Newtonian case, the Oldroyd B model predicts a constant

shear viscosity and therefore would not be a suitable choice of constitutive equation

in modelling a shear-thinning fluid. However, they do capture a non-zero first normal

stress difference, given by

N1 (γ̇) = 2λη0γ̇
2, (2.42)

which is a common viscoelastic property, although neither model predicts a non-zero

second stress difference.
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Figure 2.2: Normal stress difference behaviour Oldroyd B and Giesekus models. Pa-

rameters: λ1 = 1, ηp = 1
2
, eta0 = 1.

Finally, the Giesekus model predicts shear-thinning behaviour as well as non-zero first

and second normal stress differences. We may refer to Renardy [49], where a detailed

analysis of the flow is found, to obtain the shear behaviour in the limits of large and

small shear rates

γ̇ → 0, ηshear (γ̇) = η0, N1 (γ̇) = 0, N2 (γ̇) = 0, (2.43)

γ̇ →∞, ηshear (γ̇) = ηs, N1 ∼
√
γ̇, N2 (γ̇) = −ηp

λ
. (2.44)

The second normal stress difference takes a negative value and is smaller in magnitude

than the first, which matches experimentally observed results [45]. The choice of α
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plays a role in the each of the viscometric functions for this flow where we observe

that the model becomes increasingly shear-thinning with increasing α and that both

the first and second normal stress differences decrease. However, the large shear rate

behaviour is not dependent upon α with the exception of N1 which decreases with α

at a fixed shear rate.

Uniaxial Extensional Flow

We now consider a fluid being extended in opposite directions along a chosen axis. For

this case, uniaxial extensional flow, we have the velocity field, u =
(
ε̇x,− ε̇y

2
,− ε̇z

2

)
. Solv-

ing the Navier-Stokes equations for this velocity field gives p = −ρ
8
ε̇2 (4x2 + y2 + z2)+C

(where C is some constant) and the following form for the stress tensor,

σxx − σyy = ε̇ηext(ε̇) (2.45)

σxx − σzz = ε̇ηext(ε̇) (2.46)

σij = 0, i 6= j (2.47)

which gives us the means to calculate the extensional viscosity.

The Newtonian model predicts a linearly increasing extensional viscosity with increas-

ing extension rate

ηext (γ̇) = 3η0. (2.48)

Figure 2.3 shows the extensional viscosity for the Oldroyd B model for a chosen set of

parameters. The extensional viscosity is given by

ηext (γ̇) =
3η0 (1− λ2ε̇− 2λλ2ε̇

2)

(1− 2λε̇) (1 + λε̇)
. (2.49)

where λ2 = ηsλ
η0

. It is clear from both the figure and the expression above that the

Oldroyd B model predicts a infinitely large extensional viscosity at a finite extension

rate ε̇ = 1
2λ

. This is certainly not a desirable feature and is a result of the underlying
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Figure 2.3: Extensional viscosity, ηext (ε̇) for the Giesekus model. Parameters: λ = 1,

ηp = 1
2
, η0 = 1.

assumption of a Hookean spring. This means that Oldroyd B models are a not sound

choice for flows involving extension.

The Giesekus model, however, does not suffer from this problem and predicts finite

values of ηext at all extension rates. Figure 2.4 show the extensional viscosity for the

model at selected values of α where we can see that extension hardening is predicted.

We see that a constant value is reached as the extension rate is increased and we find

reaching a limiting value [49] of

ηext (ε̇) = 3ηs + 2
ηp
α

(2.50)

as ε̇→∞, meaning that the extensional viscosity decreases with increasing α. At values

of α > 0.5 the model exhibits non-monotonic behaviour of the extensional viscosity

and so it may be considered to be unphysical. Other authors have limited their range

to 0 < α ≤ 0.5 [36] and we shall consider values in this range too.
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2.3 Alternative Continuity Equation

In the previous sections, we have considered the usual continuity equation for an incom-

pressible fluid, ∇·u = 0. In 2006, Gwynllyw and Phillips [50] considered an alternative

formulation of the Stokes’ problem where the continuity equation is replaced by

∇ · u = −µ
∫

Ω

pdΩ (2.51)

where µ is some positive constant.

The statement remains equivalent to the original equation because the pressure has a

vanishing mean over the domain, Ω. This may be seen by integrating (2.51) over Ω

and applying Green’s theorem. The benefit is that the vanishing mean property is not

guaranteed to be satisfied within a single element of the domain, but this alternative

formulation guarantees that the pressure possesses the vanishing mean over the domain

and so we can be sure that p ∈ L2
0 (Ω). That is to say that we may determine a unique

solution for the pressure, rather than a solution up to a constant for the traditional

formulation. While this formulation was originally used for the Stokes’ problem, the
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alternative formulation is clearly valid for the Navier-Stokes equations.

There is also an additional benefit for the spectral element method, in that there is

some improvement in the conditioning of the linear system arising from the spatial

discretisation. This will be investigated further in the results chapters.

From this point on, we use the alternative form of the continuity equation, (2.51), with

the knowledge that we may recover the original formulation by setting µ = 0.

2.4 Expression for Drag

We shall be considering flows where we wish to calculate the drag which is found by

integrating σ · n over the surface of the body we wish to calculate the drag upon. For

a cylinder in planar co-ordinates, the drag is given by

D = 2

∫ π

0

((
p− 2β∇uxx − τxx

)
cos θ +

(
β(∇uxy +∇uyx) + τxy

)
sin θ

)
dθ, (2.52)

and for a sphere in an axisymmetric geometry

D = 2πR2
S

∫ π

0

((
p− 2β∇uzz − τzz

)
cos θ +

(
β(∇urz +∇uzr) + τrz

)
sin θ

)
sin θdθ.

(2.53)

2.5 Boundary Conditions

To solve the governing equations we require boundary conditions. The choice of bound-

ary conditions determines the flow, so they are extremely important. We must first

consider the geometry of the problem. We denote the boundary of some bounded

domain, Ω, as Γ, and further we split the boundary into sections so that

Γ = Γ− ∪ Γ+ ∪ ΓW ∪ ΓC ∪ ΓS (2.54)

where Γ− and Γ+ are inflow and outflow boundaries, ΓW and ΓC are wall and circular

wall boundaries and ΓS is a boundary on the axis of symmetry.
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We prescribe a velocity at inflow and outflow, apply no-slip conditions on wall bound-

aries and axisymmetric boundary conditions along the axis of symmetry

u = uin on Γ−, (2.55)

u = uout on Γ+, (2.56)

u = 0 on ΓW , (2.57)

u = 0 on ΓC , (2.58)

u · n = 0 on ΓS. (2.59)

where uin and uout are known and are chosen according to the geometry and problem

of interest.

Further, we must prescribe a boundary condition on the elastic stress at inflow

τ = τin on Γ−, (2.60)

where τin is typically found by substituting the known velocity solution into the con-

stitutive equation and solving for τ . This is fairly trivial for the majority of boundary

conditions we shall be considering. There are solutions available for a limited range of

complicated boundary conditions, such as transient pipeflow.

2.5.1 Types of boundary on Subdomains

Suppose we have Ωe, some subdomain of Ω, with boundary Γe. We define an inflow

boundary, Γ−e of this subdomain with respect to a given velocity, u, as,

Γ−e = {x ∈ Γ | u(x) · n(x) < 0} , (2.61)

where n is the outward normal to Γe. We define the outflow boundary on this subdo-

main to be Γ+
e ≡ Γe\Γ−e .
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2.6 Statement of Equations

Before continuing, we restate the final system of dimensionless equations which we use

to model fluids in the subsequent chapters. The most general form of this system is

Re
Du

Dt
= −∇p+ β∇2u +∇ · τ + f , (2.62)

∇ · u = −µ
∫

Ω

pdΩ, (2.63)

τ +We

(
O
τ +

α

(1− β)
τ 2

)
= 2 (1− β) d. (2.64)

We may recover the Oldroyd B model (2.25) by setting the mobility parameter, α = 0.

Following this, we recover the UCM model by setting β = 0. Alternatively to UCM,

we recover the Newtonian model (2.11) by setting β = 1 and We = 0. Finally, we

arrive at the Stokes’ problem (2.13) by setting Re = 0.

We may choose to use the alternative formulation of the continuity equation, or the

original form by setting the parameter, µ = 0.

2.6.1 Strong Component Form of Equations

In the coming section, we state our equations in component form for the co-ordinate

systems of interest, namely 2-D Cartesian and 3-D axisymmetric cylindrical polar co-

ordinates.

First we state the components of the velocity gradient in Cartesian co-ordinates

(∇u)xx =
∂ux
∂x

, (2.65)

(∇u)xy =
∂uy
∂x

, (2.66)

(∇u)yx =
∂ux
∂y

, (2.67)

(∇u)yy =
∂uy
∂y

, (2.68)

where u = (ux, uy) and the non-zero components of the velocity gradient in axisym-
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metric cylindrical polar co-ordinates

(∇u)rr =
∂ur
∂r

, (2.69)

(∇u)rz =
∂uz
∂r

, (2.70)

(∇u)zr =
∂ur
∂z

, (2.71)

(∇u)zz =
∂uz
∂z

, (2.72)

(∇u)θθ =
ur
r
. (2.73)

where u = (ur, 0, uz).

Momentum and Continuity Equations

We state the strong formulation of the conservation of momentum and mass for an

incompressible viscoelastic fluid, (2.18)-(2.17), in both (2-D) Cartesian co-ordinates

Re

(
∂ux
∂t

+ ux
∂ux
∂x

+ uy
∂ux
∂y

)
= β

(
∂2ux
∂x2

+
∂2ux
∂y2

)
− ∂p

∂x
+
∂τxx
∂x

+
∂τyx
∂y

+ fx, (2.74)

Re

(
∂uy
∂t

+ ux
∂uy
∂x

+ uy
∂uy
∂y

)
= β

(
∂2uy
∂x2

+
∂2uy
∂y2

)
− ∂p

∂x
+
∂τxy
∂x

+
∂τyy
∂y

+ fy, (2.75)

∂ux
∂x

+
∂uy
∂y

= −µ
∫

Ω

pdΩ. (2.76)

and given in axisymmetric cylindrical polar coordinates

Re

(
∂ur
∂t

+ ur
∂ur
∂r

+ uz
∂ur
∂z

)
= β

(
1

r

∂

∂r

(
r
∂ur
∂r

)
+
∂2ur
∂z2

− ur
r2

)
− ∂p

∂r

+
1

r

∂

∂r
(rτrr) +

∂τzr
∂z
− τθθ

r
+ fr, (2.77)

Re

(
∂uz
∂t

+ ur
∂uz
∂r

+ uz
∂uz
∂z

)
= β

(
1

r

∂

∂r

(
r
∂uz
∂r

)
+
∂2uz
∂z2

)
− ∂p

∂z

+
1

r

∂

∂r
(rτrz) +

∂τzz
∂z

+ fz, (2.78)

1

r

∂

∂r
(rur) +

∂uz
∂z

= −µ
∫

Ω

pdΩ. (2.79)

and note that in the axisymmetric cylindrical polar coordinates, dΩ = rdrdz.
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Constitutive Equation

We state the strong formulation of the Giesekus model in both (2-D) Cartesian co-

ordinates

τxx +We

(
∂τxx
∂t

+ ux
∂τxx
∂x

+ uy
∂τxx
∂y

−2

(
τxx

∂ux
∂x

+ τxy
∂ux
∂y

)
= 2 (1− β)

∂ux
∂x

+
α

1− β
(
τ 2
xx + τ 2

xy

))
(2.80)

τxy +We

(
∂τxy
∂t

+ ux
∂τxy
∂x

+ uy
∂τxy
∂y

−τxx
∂uy
∂x
− τxy

(
∂ux
∂x

+
∂uy
∂y

)
− τyy

∂ux
∂y

= (1− β)

(
∂ux
∂y

+
∂uy
∂x

)
+

α

1− β
τxy (τxx + τyy)

)
(2.81)

τyy +We

(
∂τy
∂t

+ ux
∂τyy
∂x

+ uy
∂τyy
∂y

−2

(
τxy

∂uy
∂x

+ τyy
∂uy
∂y

)
= 2 (1− β)

∂uy
∂y

+
α

1− β
(
τ 2
xy + τ 2

yy

))
(2.82)
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and in axisymmetric cylindrical polar co-ordinates

τzz +We

(
∂τzz
∂t

+ uz
∂τzz
∂z

+ ur
∂τzz
∂r

−2

(
τzz

∂uz
∂z

+ τzr
∂uz
∂r

)
= 2 (1− β)

∂uz
∂z

+
α

1− β
(
τ 2
zz + τ 2

zr

))
(2.83)

τzr +We

(
∂τzr
∂t

+ uz
∂τzr
∂z

+ ur
∂τzr
∂r

−τzz
∂ur
∂z
− τzr

(
∂uz
∂z

+
∂ur
∂r

)
− τrr

∂uz
∂r

= (1− β)

(
∂uz
∂r

+
∂ur
∂z

)
+

α

1− β
τzr (τzz + τrr)

)
(2.84)

τrr +We

(
∂τrr
∂t

+ uz
∂τrr
∂z

+ ur
∂τrr
∂r

−2

(
τzr
∂ur
∂z

+ τrr
∂ur
∂r

)
= 2 (1− β)

∂ur
∂r

+
α

1− β
(
τ 2
zr + τ 2

rr

))
(2.85)

τθθ +We

(
∂τθθ
∂t

+ uz
∂τθθ
∂z

+ ur
∂τθθ
∂r
− 2τθθ

ur
r

+
α

1− β
τ 2
θθ

)
= 2 (1− β)

ur
r

(2.86)
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Chapter 3

Numerical Method

We are interested in solving both steady and transient problems. Therefore the equa-

tions are discretised in both time and space. This chapter will describe this process in

detail. The temporal discretisation is covered in Section 3.1 and the spatial discreti-

sation is covered in Section 3.2. Details of the spectral element method used for the

spatial discretisation are given in Section 3.3.

3.1 Temporal Discretisation

3.1.1 Timestepping

We choose a uniform discretisation in time with timestep ∆t so that tn = n∆t. When

referring to our outer timesteps, or solutions to the problem at particular timesteps,

this is the time between any two consecutive steps. However, we may also employ

intermediate timesteps for the various methods to deal with temporal derivatives. Fur-

ther, we decouple the solution of the velocity and pressure part of our system from

the elastic stress. This is achieved by solving the velocity-pressure problem at timestep

tn+1 with an approximation of elastic stress using information from previous timesteps.

The elastic stress at timestep tn+1 is then calculated using this velocity solution.
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Coefficient J = 1 J = 2 J = 3

γ0 1 3/2 11/6

α0 1 2 3

α1 - −1/2 −3/2

α2 - - 1/3

β0 1 2 3

β1 - −1 −3

β2 - - 1

Table 3.1: Table of coefficients for both J th-order linear multistep approximations, such

as the backward difference formula and Adams-Bashforth, and extrapolation methods.

Typically, if we have a function defined in both space and time, f(x, t), then we denote

the function at a particular timestep tn by,

fn = f(x, tn) . (3.1)

3.1.2 Backward Difference Formula (BDF) Approximation

We need to approximate the temporal derivative at a particular timestep, tn+1. One

suitable scheme is to use the family of implicit linear multistep methods known as the

backward differentiation formula (BDF). The J th-order approximation of the temporal

derivative of some arbitrary function, f , at timestep tn+1 is,

∂f

∂t

n+1

≈ 1

∆t

(
γ0f

n+1 −
J−1∑
q=0

αqf
n−q

)
(3.2)

where γ0 and {αq}J−1
q=0 are the BDF coefficients chosen such that the method achieves

the prescribed order, J . Table 3.1 contains the coefficients for J = 1, 2, 3. We typically

use J = 2.

3.1.3 Extrapolation (EX) of Explicit Terms

When we treat terms within our equations explicitly, using values computed at previous

timesteps to approximate a value at the current timestep, we may improve accuracy
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by using an extrapolation. As in Section 3.1.2, if we let the order of extrapolation be

some integer, J , then we may write the J th order extrapolation of some variable x as,

xn+1 ≈
J−1∑
q=0

βqx
n−q, (3.3)

where {βq}J−1
q=0 are the extrapolation coefficients. Table 3.1 contains the coefficients for

J = 1, 2, 3 [27].

3.1.4 BDF/EX Approximation

We combine the BDF and EX approximations from Sections 3.1.2- 3.1.3 to discretise

a differential equation of the form

∂X

∂t
= F(X) , (3.4)

with an arbitrary function F(X) = F1(X)+F2(X), where F1(X) is explicitly known at

timestep tn+1 and F2(X) is known only at timesteps tn and below. We may approximate

this function as

γ0X
n+1 −

∑J−1
q=0 αqX

n−q

∆t
= F1

(
Xn+1

)
+

J−1∑
q=0

βqF2

(
Xn−q) (3.5)

3.1.5 Operator-Integration-Factor Splitting Scheme

Rather than approximate the temporal and convective derivatives separately, we may

use the Operator-Integration-Factor Splitting (OIFS) method [35] to calculate an ap-

proximation for the material derivative. In general, the J th-order OIFS (OIFSJ) ap-

proximation is given by

DG

Dt
=
∂G

∂t
+ u · ∇G ≈ 1

∆t

(
γ0G

n+1 −
J−1∑
q=0

αqG̃
n+1
q

)
, (3.6)

where the coefficients, γ0 and αq, are the same as those given in the BDFJ approxi-

mation and G̃q is the solution to the pure-advection initial value problem,

∂G̃q

∂t
= −u∗ · ∇G̃q, t ∈

[
tn−q, tn+1

]
, G̃q

(
x, tn−q

)
= Gn−q (x) , (3.7)
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and where u∗ is the piecewise linear approximation of velocity given by

u∗(t) =

(
t− ti−1

∆t

)
ui +

(
1−

(
t− ti−1

∆t

))
ui−1, ui = u

(
x, ti

)
, (3.8)

where i = n for t ∈ [tn−1, tn+1] and i = n− q for t ∈ [tn−q−1, tn−q], q > 1.

We solve these advection problems numerically using a 4th-order Runge-Kutta (RK4)

method with M inner timesteps. Typically a value M = 4 or 8 is used.

For example, at second-order (OIFS2) the material derivative of some arbitrary func-

tion, G, is approximated at time t = tn+1 by,

DG

Dt
=
∂G

∂t
+ u · ∇G ≈ 1

2∆t

(
3Gn+1 − 4G̃n+1

0 + G̃n+1
1

)
(3.9)

where G̃ and G̃ are the solutions of the two pure-advection initial value problems,

∂G̃0

∂t
= −u∗ · ∇G̃0, t ∈

[
tn, tn+1

]
, G̃0 (x, tn) = Gn (x) , (3.10)

∂G̃1

∂t
= −u∗ · ∇G̃1, t ∈

[
tn−1, tn+1

]
, G̃1

(
x, tn−1

)
= Gn−1 (x) . (3.11)

3.1.6 Semi-Discrete System

Using the previously described approximations in time we present our semi-discrete

equations. For the momentum and continuity equations, (2.62)-(2.63), we use the

OIFS approximation for the material derivative of velocity and EX on the explicitly

treated elastic stress terms, both at order J . This results in the following OIFSJ/EXJ

semi-discrete velocity-pressure system,

Reγ0

∆t
un+1 − β∇2un+1 +∇pn+1 = fn+1 +

J−1∑
q=0

(
Re

∆t
αqũ

n+1
q + βq∇ · τ n−q

)
, (3.12)

∇ · un+1 + µ

∫
Ω

pn+1dΩ = 0. (3.13)

The spatial discretisation of this system of equations will be discussed in the following

Section 3.2.

For the constitutive equation, (2.64), we use an explicit treatment of the velocity and

velocity gradients, using the previously computed solution from the velocity-pressure
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system. We apply the BDF approximation at order J to the temporal derivative

and treat the convective terms explicitly using EX, also at order J . The resulting

BDFJ/EXJ semi-discrete constitutive equation is,(
1 +We

γ0

∆t

)
τ n+1−τ n+1 · ∇un+1 −

(
∇un+1

)T · τ n+1

= 2 (1− β) dn+1 +We

J−1∑
q=0

(αq
∆t

τ n−q − βqun+1 · ∇τ n−q
)

−We α

(1− β)

J−1∑
q=0

βq
(
τ n−q

)2
. (3.14)

The spatial discretisation of the constitutive equation will be discussed in Section 3.5.

Semi-Implicit Fixed Point Iteration Scheme

The explicit treatment of the convection terms within (3.14) could prove to be a cause

of numerical instability. An alternative method is to use a fixed-point iteration (FPI)

in the solution of the constitutive equation to replace the explicit (EX) terms with

the goal of achieving a semi-implicit treatment of them. Further, we may include the

non-linear Giesekus term in this iteration.

For this scheme we use the BDF treatment, at order J , of the temporal derivative com-

bined with an iterative scheme to determine, τ . We set τ̃ 0 = τ n and then repeatedly

solve the following BDFJ/FPI semi-discrete system for τ̃ i+1,(
1 +We

γ0

∆t

)
τ̃ i+1 − τ̃ i+1 · ∇un+1 −

(
∇un+1

)T · τ̃ i+1

= 2 (1− β) dn+1 +We

(
J−1∑
q=0

(αq
∆t

τ n−q
)
− un+1 · ∇τ̃ i

)
−We α

1− β
(
τ̃ i
)2
. (3.15)

until |τ̃ i+1 − τ̃ i| < δ, where δ is some chosen tolerance. Once the tolerance is reached,

we set τ n+1 = τ̃ i+1.
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3.1.7 Stopping Criteria

When computing numerical time-dependent solutions we must set the criteria ter-

minating the simulation. The choice will depend on the flow being simulated. For

example, when comparing to a known solution one set of criteria will be used whereas

a benchmark will have another.

For known solutions, we have a good idea of the behaviour of the flow, and when a

steady state might be reached, so we set absolute time-limits on the simulations. For

the Newtonian flows, this is set at 10 time units and for viscoelastic flows this is set

to 40 time units, which for all problems considered, is more than adequate to reach

a steady state solution. In some cases this may be more time than required, but the

additional time to run is a test of longer term stability of the scheme. This allows us to

test that once the steady state solution has been reached, the numerical scheme does

not diverge from that state.

For the other simulations where the time to reach a steady state is unknown, we employ

a different criterion, although we do impose an absolute time limit of 50 time units. At

any timestep we store the values of the field variables, at least, at the previous timestep,

so it is easy to measure the point-wise (on the GLL grid, detailed in Section 3.3) change

of a variable between timesteps. However to be useful we require a way of quantifying

these differences using a single measure. A suitable measure for this is the L2-norm,

which we also use for error quantification. Details on how this is computed are given

in Section 3.4.

For a Newtonian flow, the quantity, Snewt, is calculated via the following

Snewt(p,u) =

√√√√‖pn − pn−1‖2
L2(Ω) + ‖un − un−1‖2

L2(Ω)

‖pn‖2
L2(Ω) + ‖un‖2

L2(Ω)

, (3.16)

and for a viscoelastic flow, the quantity, Svelast, is calculated via the following

Svelast(p,u, τ ) =

√√√√‖pn − pn−1‖2
L2(Ω) + ‖un − un−1‖2

L2(Ω) + ‖τ n − τ n−1‖2
L2(Ω)

‖pn‖2
L2(Ω) + ‖un‖2

L2(Ω) + ‖τ n‖2
L2(Ω)

. (3.17)

This quantity is compared to a threshold value, Scrit, and if it is less, and meets any

other criteria set, the simulation is stopped. The value of Scrit is typically set at 10−7.
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A final criteria set on simulations involving the calculation of the drag, D, is that the

change in drag must also meet the Scrit criteria. So

Dchange =

∣∣∣∣Dn −Dn−1

Dn

∣∣∣∣ (3.18)

must be less than Scrit too.

3.2 Spatial Discretisation

To solve the field equations in space we use the spectral element method (SEM) which

requires their weak formulation. We solve the constitutive equation spatially in strong

form. In the following section we shall detail the steps required before applying the

SEM to the momentum and continuity equations. The spectral element method itself

is detailed in Section 3.3.

3.2.1 Weak Form of Equations

We consider equations (2.62)-(2.63), the general dimensionless equations for a viscoelas-

tic fluid. Firstly, we define the following spaces of functions

L2 (Ω) :=

{
u : Ω→ R |

∫
Ω

u2 dΩ <∞
}
, (3.19)

L2
0(Ω) :=

{
p ∈ L2(Ω) |

∫
Ω

p dΩ = 0

}
, (3.20)

H1(Ω) :=
{
u : Ω→ R | u,∇u ∈ L2(Ω)

}
. (3.21)

We define so-called trial and test spaces,

V :=
{

v ∈
[
H1(Ω)

]2 | v = w on ∂ΩD

}
(3.22)

W :=
{

v ∈
[
H1(Ω)

]2 | v = 0 on ∂ΩD

}
(3.23)

where a trial function is one satisfying the prescribed boundary conditions which may

be used to make up the solution we seek and a test function is one which takes a zero

value on Dirichlet boundaries.
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Multiplying the momentum equation in (2.62) by some velocity test function v ∈ W ,

integrating over Ω and applying Green’s 2nd identity we obtain an expression containing

contributions from the boundary. For our sphere in a cylinder geometry all of these

boundary terms are zero valued due to a combination of the zero value of v on ∂ΩD

and that our boundary conditions are the equivalent of u ·n = 0 on ∂ΩN . We multiply

the continuity equation in (2.63) by some pressure test function q ∈ L2
0 (Ω) and again

integrate over Ω. The resulting weak form is,

Find u ∈ V and p ∈ L2
0(Ω) such that,

Re

∫
Ω

v · Du

Dt
dΩ + β

∫
Ω

∇u :∇v dΩ−
∫

Ω

p∇ · v dΩ

=

∫
Ω

f · v dΩ−
∫

Ω

τ :∇v dΩ ∀ v ∈ W (3.24)∫
Ω

q∇ · u dΩ = −µ
∫

Ω

q dΩ

∫
Ω

p dΩ ∀ q ∈ L2
0(Ω). (3.25)

We write equations (3.24)-(3.25) in component form for 2-D Cartesian coordinates,

Re

∫
Ω

v
Du

Dt x
dxdy −

∫
Ω

p
∂v

∂x
dxdy + β

∫
Ω

(
∂ux
∂x

∂v

∂x
+
∂ux
∂y

∂v

∂y

)
dxdy

=

∫
Ω

vfx dxdy −
∫

Ω

τ xx
∂v

∂x
+ τ yx

∂v

∂y
dxdy, (3.26)

Re

∫
Ω

v
Du

Dt y
dxdy −

∫
Ω

p
∂v

∂y
dxdy + β

∫
Ω

(
∂uy
∂x

∂v

∂x
+
∂uy
∂y

∂v

∂y

)
dxdy

=

∫
Ω

vfy dxdy −
∫

Ω

τ xy
∂v

∂x
+ τ yy

∂v

∂y
dxdy, (3.27)∫

Ω

q

(
∂ux
∂x

+
∂uy
∂y

)
dxdy + µ

∫
Ω

q dxdy

∫
Ω

p dxdy = 0. (3.28)

and for the axisymmetric cylindrical polar coordinate case

Re

∫
Ω

v
Du

Dt r
r drdz −

∫
Ω

p

(
r
∂v

∂r
+ v

)
drdz + β

∫
Ω

[
r

(
∂ur
∂r

∂v

∂r
+
∂ur
∂z

∂v

∂z

)
+
vur
r

]
drdz

=

∫
Ω

vfrr drdz −
∫

Ω

[
r

(
τ rr

∂v

∂r
+ τ zr

∂v

∂z

)
+ vτ θθ

]
drdz, (3.29)

Re

∫
Ω

v
Du

Dt z
r drdz −

∫
Ω

p
∂v

∂z
r drdz + β

∫
Ω

(
∂uz
∂r

∂v

∂r
+
∂uz
∂z

∂v

∂z

)
r drdz

=

∫
Ω

vfzr drdz −
∫

Ω

(
τ rz

∂v

∂r
+ τ zz

∂v

∂z

)
r drdz, (3.30)∫

Ω

rq

(
∂ur
∂r

+
∂uz
∂z

)
+ qur drdz + µ

∫
Ω

qr drdz

∫
Ω

pr drdz = 0. (3.31)
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3.2.2 Bilinear Forms

It is common to define bilinear forms for the terms within the weak form for ease of

notation. We define them as follows

m(u,v) :=

∫
Ω

u · v dΩ (3.32)

a(u,v) :=

∫
Ω

∇u :∇v dΩ (3.33)

b(p,v) :=

∫
Ω

p∇ · v dΩ (3.34)

b∗(u, q) :=

∫
Ω

q∇ · u dΩ (3.35)

c(p, q) := z(p) z(q) (3.36)

e(τ ,v) :=

∫
Ω

τ :∇v dΩ (3.37)

where

z(q) :=

∫
Ω

q dΩ. (3.38)

We also introduce the subscript notation, mi(u,v), to indicate when we are referring

to the ith component of a bilinear form assuming that there is more than one. For

example, in axisymmetric cylindrical polar co-ordinates, the r-component of (3.33),

would be

ar(u,v) =

∫
Ω

[
r

(
∂ur
∂r

∂v

∂r
+
∂ur
∂z

∂v

∂z

)
+
vur
r

]
drdz. (3.39)

We use these definitions to rewrite our weak form, (3.24)-(3.25), as

Find u ∈ V and p ∈ L2
0(Ω) such that,

Re m

(
v,
Du

Dt

)
+ βa(u,v)− b(p,v) = m(f ,v)− e(τ ,v) ∀ v ∈ W (3.40)

b∗(u, q) + µc(p, q) = 0 ∀ q ∈ L2
0(Ω). (3.41)

where we may set µ = 0 to use the standard continuity equation, or a non-zero value for

the alternative continuity equation. This is done under the condition that we instead

seek a pressure solution p ∈ L2(Ω).
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3.2.3 Semi-Discrete Weak Formulation

Applying the temporal discretisation as described in Section 3.1 to our final weak

formulation, (3.40)-(3.41), we arrive at the semi-discrete weak formulation for our field

equations, which for some n = 1, 2, 3, .. is given by

Find un+1 ∈ V and pn+1 ∈ L2
0(Ω) such that,

Re
γ0

∆t
m
(
un+1,v

)
+ βa

(
un+1,v

)
− b
(
pn+1,v

)
= m

(
fn+1,v

)
+

J−1∑
q=0

(
Re

αq
∆t
m
(
un−q,v

)
− βqe

(
τ n−q,v

))
∀ v ∈ W, (3.42)

b∗
(
un+1, q

)
+ µc

(
pn+1, q

)
= 0 ∀ q ∈ L2

0(Ω), (3.43)

It remains to discretise the variables in space and perform the integration numerically

using quadrature. The method for this is described in Section 3.3.

3.3 Spectral Element Method

The weak formulation of the governing equations is discretised using the Spectral Ele-

ment Method (SEM), which is similar in many respects to the Finite Element Method

(FEM). However, the basis functions are carefully chosen polynomials which have use-

ful properties when combined with an appropriately chosen mesh within each spectral

element. The ultimate goal of the SEM, like most numerical methods of this type, is

to obtain a linear system of equations from the discrete approximations made, which

can then be solved via available numerical linear algebra techniques.

As a basic overview of the method, the premise is to decompose the physical domain

into a finite number of elements (as one would do in the FEM). These elements are then

mapped onto a parent domain such that, via this mapping, every local point within the

parent domain is associated with a global point within a particular element. Within this

parent domain the field variables are then discretised using a polynomial representation.

The discrete versions of the weak form are then approximated using a Gauss-Lobatto-
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Legendre(GLL) quadrature rule. This results in a linear system of equations which is

solved using standard numerical linear algebra methods. The method is detailed in the

following sections.

3.3.1 Domain Decomposition

Suppose we have a physical domain, Ω. We decompose Ω into K non-overlapping

spectral elements such that Ω =
⋃K
k=1 Ωk. We may write a general integral of some

arbitrary function f (x) over Ω as,∫
Ω

f(x) dΩ =
K∑
k=1

∫
Ωk

f(x) dΩ. (3.44)

Contrary to the FEM, elements are chosen to be relatively large with refinement per-

formed within the element on a mesh-level by “polynomial enrichment”. We gain

higher mesh resolution by choosing smaller spectral elements in areas of the domain

where, for example, high velocity gradients are expected. We choose to restrict our

spectral elements to quadrilaterals, although triangles are also a suitable choice.

When considering variables, integrals, etc. within the whole domain, we typically refer

to these as “global” and conversely refer to variables, integrals, etc. within a single

spectral element as “local”. For example, we could consider an integral over the whole

domain as a global integral or we could consider a sum of contributions from local

integrals over all spectral elements.

We make use of this domain decomposition within the bilinear forms, defined in Sec-

tion 3.2.2. Local versions of the bilinear forms are identified by a superscript, k. For

example, (3.32) on the local spectral element, Ωk, is denoted by,

mk(u,v) :=

∫
Ωk

u · v dΩ. (3.45)

Further, we define a restriction operator, Rk for each element, Ωk. This so-called

global-to-local map which acts as a means of restricting from a global integral over Ω

to one over the local spectral element, Ωk. We use this restriction operator to write

(3.45) as

mk(u,v) = Rkm(u,v) . (3.46)
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is serving as link between local and global integrals. Note that the action of the restric-

tion operator is explicitly on the bilinear form and shorten (Rkm)(u,v) to Rkm(u,v)

for ease of notation. This notation is continued for the reverse mapping below.

We denote the reverse mapping RT
k , and call it a prolongation operator which is used

to take a local integral to one over the global domain. This is referred to as the local-

to-global map. For example, we may write (3.32) as a sum of contributions from the

local bilinear form as follows

m(u,v) =
K∑
k=1

RT
km

k(u,v) =
K∑
k=1

∫
Ωk

u · v dΩ (3.47)

While these maps essentially serve as an alternative way of writing the decomposition

in (3.44), their use at a discrete level becomes important in a practical sense when

implementing the method computationally. Details of the construction of the map are

given in Section 3.3.7

3.3.2 Transfinite Element Mapping

The physical domain has now been decomposed into K quadrilateral elements, al-

though, depending on the geometry of the domain and the problem to be solved, they

will not necessarily be uniform. It is useful to define a reference element in which com-

putational work is performed. This requires a mapping between the computational

and physical domain. As we are dealing with quadrilateral elements it is typical for

the reference element, D to be the square occupying [−1, 1] × [−1, 1]. An integral in

an arbitrarily chosen element is transformed in the following way,∫
Ωk

f(x) dΩ =

∫
D

f
(
xk(ξ, η)

)
det(Jk)dξdη, (3.48)

for some function f(x), with xk(ξ, η) the global co-ordinate mapped from the local

variables and where Jk is the Jacobian of the transformation for that element,

Jk(ξ, η) =


∂x

∂η

k ∂x

∂ξ

k

∂y

∂η

k ∂y

∂ξ

k

 . (3.49)

49



Jk can be used to determine expressions for a spatial derivative within an element with

respect to the global variables in terms of derivatives of the transformed variables as,

∂

∂x

k

=
1

det(Jk)

(
∂y

∂η

k ∂

∂ξ
− ∂y

∂ξ

k ∂

∂η

)
,

∂

∂y

k

=
1

det(Jk)

(
∂x

∂ξ

k ∂

∂η
− ∂x

∂η

k ∂

∂ξ

)
(3.50)

where the factors involving the partial derivatives of x and y with respect to ξ and

η come from the entries of the Jacobian matrix of the mapping operator which is

discussed below.

We now are looking for continuous transformations which map the reference square one-

to-one onto an arbitrary, simply connected and bounded region Ωk ∈ R2. We assume

that the determinant of the Jacobian, det(J) is finite and non-zero, and secondly, that

the transformation maps the boundary of D onto the boundary of Ω. Further, while it

is possible to choose transformations which result in det(J) being negative, we do not

choose to use them for the purposes of this thesis.

A suitable means to achieve this (see [45]) is to use the transfinite element mappings

introduced by Gordon and Hall [19], which use a parametric representation of the

boundaries. These methods were first introduced into SEM by Schneidesch and Dev-

ille [54] combined with domain decomposition. They introduced a general transfinite

operator which allows for varying orders of the polynomial spaces used in the mapping.

The one chosen for the current work is the bi-linear transfinite element mapping, which

we will term U.

Firstly, we define the so-called blending functions, φ1 and φ2

φ1(s) =
1

2
(1− s), φ2(s) =

1

2
(1 + s), −1 ≤ s ≤ 1. (3.51)

Using these blending functions, we may build the transfinite element mapping. Firstly

the four edges of the quadrilateral need to be parameterized in the ranges of the

reference square

Fk
1(s) = φ1(s)Vk

1 + φ2(s)Vk
2

Fk
2(s) = φ1(s)Vk

2 + φ2(s)Vk
3

Fk
3(s) = φ2(s)Vk

3 + φ1(s)Vk
4

Fk
4(s) = φ2(s)Vk

4 + φ1(s)Vk
1 (3.52)
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where Fk
i is the ith edge and Vk

i is the co-ordinate of the ith corner of the spectral

element Ωk.

If we create a function which uses all of these edge functions and blends them, then

every point within the quadrilateral may be mapped into the parent square, however

there will be a double counting of the vertices themselves, therefore we must remove

these in the final transfinite element mapping,

Xk(ξ, η) =φ1(ξ)Fk
1(η) + φ2(ξ)Fk

2(η)

+ φ1(η)Fk
3(ξ) + φ2(η)Fk

4(ξ)

− φ1(ξ)φ1(η)Vk
1 − φ1(ξ)φ2(η)Vk

2

− φ2(ξ)φ1(η)Vk
3 − φ2(ξ)φ2(η)Vk

4 (3.53)

This is the general form of this type of mapping, the choice of edge parametrisation

generates the desired map. Substutiting (3.52) into (3.53), we obtain the bi-linear

transfinite element mapping for a general quadrilateral with straight edges,

Xk(ξ, η) =φ1(ξ)φ1(η)Vk
1 + φ2(ξ)φ1(η)Vk

2

+ φ2(ξ)φ2(η)Vk
3 + φ1(ξ)φ1(η)Vk

4 (3.54)

where Xk(ξ, η) is the global spatial co-ordinate corresponding to the local co-ordinates

(ξ, η) in the spectral element Ωk.

Using these definitions we apply partial differentiation to find the Jacobian of the

transfinite map

Jk(ξ, η) =
1

4



(1− η)(xk2 − xk1)

+(1 + η)(xk3 − xk4)

(1− η)(yk2 − yk1)

+(1 + η)(yk3 − yk4)

(1− ξ)(xk4 − xk1)

+(1 + ξ)(xk3 − xk2)

(1− ξ)(yk4 − yk1)

+(1 + ξ)(yk3 − yk2)


(3.55)

where the xki and yki refer to the x and y co-ordinates of the ith vertex in the spectral

element Ωk.

Using this mapping together with the elemental decomposition of the physical domain,

we are able to solve for each spectral element on the same reference square.
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Circular Transfinite Mapping

If we include circular boundaries for the global domain we will need to include the

possibility of circular edges. These must be mapped onto the parent square too, so the

appropriate Fk
i must be defined for the general transfinite map (3.53).

By replacing the parametrisation of a straight edge with an arc, we may include a

circular edge for any given element. We adopt the convention that the first and second

vertices of a particular element will always contain the circular edge, which simplifies

the implementation in computer code due to a reduction in possible scenarios. The

parametrisation of the arc may be performed using two angles associated with element

Ωk, θ
k
1 and θk2 . We define θk1 to be the angle between Vk

2 and the horizontal line passing

through the origin of the circle of which the arc is a part and θ2 is defined to be angle

between the vertex Vk
2 and the same line.

This allows us to parametrise the arc between the two vertices with position vectors

Vk
1 and Vk

2 as follows,

λk(s) = θk1φ1(s) + θk2φ2(s) (3.56)

Using this we may modify the previously defined Fk
1(s) in (3.52) so that

Fk
1(s) =

(
a+R cos(λk(s))

b+R sin(λk(s))

)
(3.57)

where R is the radius of the circle of which the arc is a part and (a, b) are the co-

ordinates of the centre of that circle.

Substituting (3.57) into (3.53) and simplifying, we obtain the transfinite element map-

ping for a quadrilateral with a single circular edge

Xk(ξ, η) =

(
φ1(η)

(
a+R cos(λk(ξ))

)
+ φ2(ξ)φ2(η)xk3 + φ1(ξ)φ2(η)xk4

φ1(η)
(
b+R sin(λk(ξ))

)
+ φ2(ξ)φ2(η)yk3 + φ1(ξ)φ2(η)yk4

)
(3.58)

where the xki and yki refer to the x and y co-ordinates of the ith vertex. The resulting
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Jacobian evaluated using (3.58) is

Jk(ξ, η) =
1

2



φ2(η)(xk3 − xk4)

−Rφ1(η)(θk2 − θk1) sin(λk(ξ))

φ2(η)(yk3 − yk4)

+R(θk2 − θk1)φ1(η) cos(λk(ξ))

φ2(ξ)xk3 + φ1(ξ)xk4

−
(
a+R cos(λk(ξ))

) φ2(ξ)yk3 + φ1(ξ)yk4

−
(
b+R sin(λk(ξ))

)


(3.59)

3.3.3 Parametrisation of Boundary Integrals

Suppose that we wish to map a boundary integral of some function f(x), over the

spectral element Ωk onto a boundary integral over the parent element, D. We use the

edge parametrisations defined in (3.52) so that a boundary integral becomes,∫
Γk

f(x) dΩ =
4∑
i=1

∫ 1

−1

f
(
Fk
i (ξ)

)
det
(
J
(
Fk
i

))
dξ, (3.60)

where the set of Jacobians resulting from the transformation of variables is given by

J
(
Fk

1

)
=

1

2

(
Vk

2 −Vk
1

)
,

J
(
Fk

2

)
=

1

2

(
Vk

3 −Vk
2

)
,

J
(
Fk

3

)
=

1

2

(
Vk

3 −Vk
4

)
,

J
(
Fk

4

)
=

1

2

(
Vk

4 −Vk
1

)
, (3.61)

3.3.4 Spectral Representation

The unknown variables, velocity, stress and pressure, in (2.21) are approximated within

the parent domain (mapped from a particular spectral element) using Lagrange inter-

polants based on a chosen set of nodal points, called Gauss-Lobatto-Legendre (GLL)

points. Inside any element, in 2-D (or equally for axisymmetric 3-D), we may write
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[20],

uka(ξ, η) =
N∑
i=0

N∑
j=0

(
ukij
)
a
hi (ξ)hj (η) , (3.62)

pk(ξ, η) =
N−1∑
i=1

N−1∑
j=1

pk
ĩj
h̃i (ξ) h̃j (η) , (3.63)

(3.64)

where a denotes the component of velocity and
(
ukij
)
a

and pk
ĩj

are approximations to the

field variables, ua(ξ, η) and p(ξ, η) at the GLL node point (ξi, ηj) within the spectral

element Ωk. The subscript notation ij refers to a single GLL node point referenced via

the formula,

ij = i+ j (N + 1) , for 0 ≤ i, j ≤ N, (3.65)

and for the internal GLL nodes for the pressure via the formula

ĩj = i+ (j − 1) (N − 1) , for 1 ≤ i, j ≤ N − 1. (3.66)

The velocity basis functions, hi(ξ) are the set of Lagrange interpolants of the GLL

points given by

hi(ξ) = − (1− ξ2)L′N(ξ)

N(N + 1)LN(ξi)(ξ − ξi)
, 0 ≤ i ≤ N, (3.67)

and the pressure basis functions are given by

h̃i(ξ) = − (1− ξ2
i )L

′
N(ξ)

N(N + 1)LN(ξi)(ξ − ξi)
, 1 ≤ i ≤ N − 1, (3.68)

where LN (x) is the Legendre polynomial of degree N , and ξp is the pth GLL point in

any one grid direction.

Note that there are no pressure basis functions associated with GLL points lying on

the boundary of the spectral elements. This is because we must ensure that the

Ladyzhenskaya-Babuška-Brezzi (LBB) compatibility condition is satisfied by our ap-

proximation spaces for the problem to be well-posed. This has been shown [34] to be

satisfied if the velocity test space is contained in the space of polynomials of order N ,

while the pressure test space is contained in the space of polynomials of order N − 2.

For the pressure representation, the choice of the Lagrange interpolant h̃i (ξ), while

meeting the LBB condition, also ensures that the discrete pressure nodes lie on the
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internal nodes of the whole GLL grid as they do for the velocity nodes. The pressure

value on an element boundary may be extrapolated from the internal element nodes.

Continuity of pressure between elements is not guaranteed, but in practice this does

not cause problems.

We introduce the notation, hpi = hi (ξp) and h̃pi = h̃i (ξp). These Lagrange interpolants,

by design, satisfy the Kronecker-Delta property on the whole GLL grid for the velocity

basis functions and on the internal grid points for the pressure. That is,

hpi = δpi =

{
0, p 6= i

1, p = i
(3.69)

for i = 0, .., N and p = 0, .., N . For ease of notation we also define

δ̃pi =

{
δpi, i = 1, .., N − 1, p = 1, .., N − 1

h̃pi. i = 1, .., N − 1, p = 0 or p = N
(3.70)

for i = 1, .., N − 1 and p = 0, .., N .

For the pressure test functions, while we do not have a test function corresponding

directly to a node on the boundary of a spectral element as we would for the velocity,

we must still evaluate the internal test functions on this boundary and it does not

necessarily take the values 0 or 1. We must take these additional boundary values

into account when discretising operators on the pressure or involving the pressure test

function.

We introduce the notation, dpi = h′i (ξp). One may use the properties of Legendre

polynomials to show that,

dpi =



LN (ξp)

LN (ξi)

1

ξp − ξi
, p 6= i,

−N (N + 1)

4
, p = i = 0,

N (N + 1)

4
, p = i = N,

0, p = i, 1 ≤ i, j ≤ N − 1.

(3.71)

This is known as the Legendre pseudospectral differentiation matrix.
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From our spectral representations, we can define the velocity and pressure test functions

in terms of the Lagrange interpolants within any particular spectral element. Assuming

that the grid point does not correspond to a Dirichlet boundary node (in which case

an associated test function is identically zero), we choose our set of test functions to

be associated with a particular GLL node point, (ξi, ηj) ,

vij (ξ, η) = hi (ξ)hj (η) , i, j = 0, .., N, (3.72)

qij (ξ, η) = h̃i (ξ) h̃j (η) , i, j = 1, .., N − 1. (3.73)

where vij (ξ, η) is a velocity test function (for both components) and qij (ξ, η) is a

pressure test function.

In applying our approximations to the weak form of our field equations, we note that

the derivatives with respect to the global spatial variables are required. By applying

(3.50) to the partial derivatives, with respect to x and y, of a velocity test function we

obtain expressions in terms of local spatial variables

∂vij
∂x

k

(ξ, η) =
1

det (Jk)

(
∂y

∂η

k

h′i (ξ)hj (η)− ∂y

∂ξ

k

hi (ξ)h
′
j (η)

)
, (3.74)

∂vij
∂y

k

(ξ, η) =
1

det (Jk)

(
∂x

∂ξ

k

hi (ξ)h
′
j (η)− ∂x

∂η

k

h′i (ξ)hj (η)

)
. (3.75)

Evaluating these derivatives at GLL points (ξp, ηq) and using the previously defined

notation, we denote the partial derivatives of a velocity test function at a particular

GLL node point as

(
Dk
x

)
ij,pq

=
∂vij
∂x

k

(ξp, ηq) =
1

det (Jk)pq

(
∂y

∂η

k

pq

dpiδqj −
∂y

∂ξ

k

pq

δpidqj

)
, (3.76)

(
Dk
y

)
ij,pq

=
∂vij
∂y

k

(ξp, ηq) =
1

det (Jk)pq

(
∂x

∂ξ

k

pq

δpidqj −
∂x

∂η

k

pq

dpiδqj

)
, (3.77)

with the subscript denoting which global spatial variable the derivative is with respect

to.

When considering axisymmetric cylindrical polar co-ordinates we use the equivalent

expressions for Dk
r and Dk

z to represent the partial derivatives of a velocity test function

with respect to r and z. Under the assumption that the axes are chosen so that they

coincide, we consider that the r-direction is equivalent to the Cartesian y-direction and

that the z-direction is equivalent to the x-direction.
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By substituting the spectral representation of velocity into (2.65)-(2.68) or (2.70)-(2.73)

and using the above notation we get the following expressions for the ab-component of

the local velocity gradient at the GLL point (ξp, ηq)

(
∇uk(ξp, ηq)

)
ab

=
N∑
i=0

N∑
j=0

(
ukij
)
b

(
Dk
a

)
ij,pq

, (3.78)

for a = x, y and b = x, y in Cartesian co-ordinates and a = r, z and b = r, z in

axisymmetric cylindrical polar co-ordinates with the additional component,

(
∇uk(ξp, ηq)

)
θθ

=

(
ukpq
)
r

rpq
. (3.79)

We note here that if rpq = 0 then we have a division by zero. However, we see that in

the axisymmetric case, r = 0 corresponds to an axisymmetric boundary, where ur = 0.

This allows us to use L’Hôpital’s rule to write,

lim
r→0

ur
r

= lim
r→0

∂ur
∂r

, (3.80)

so we may allow for the calculation of the gradient on the axis of symmetry by instead

using

(
∇uk(ξp, ηq)

)
θθ

=


(
ukpq
)
r

rpq
if rpq 6= 0,(

∇uk(ξp, ηq)
)
rr

if rpq = 0.

(3.81)

3.3.5 Numerical Quadrature

Given the choice of grid points within the reference element where the computational

work is performed, we use Gauss-Lobatto(GL) quadrature to perform the numerical

integration. For a 1-D integral of some function f(ξ) defined on [−1, 1] such as we see

in the parametrised boundary integral in (3.60) the the GL integration is given by∫ 1

−1

f(ξ) dξ ≈
N∑
p=0

f(ξp)wp. (3.82)

where {wi}Ni=0 are the numerical weights which are calculated by integrating the La-

grange interpolants of the GLL points over [−1, 1], wi =
∫ 1

−1
hi (ξ) dξ, which gives

wi =
2

N(N + 1)LN(ξi)
2 , (3.83)
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for the GLL points. This rule is exact when f is a polynomial of order ≤ 2N−1 in each

independent variable. This may be extended to 2-D, with the general Gauss-Lobatto

integration over the reference square of some function f(ξ, η) defined on D given by∫ 1

−1

∫ 1

−1

f(ξ, η) dξdη ≈
N∑
p=0

N∑
q=0

f(ξp, ηq)wpwq, (3.84)

with the weights given as in the 1-D case.

3.3.6 Discretised Bilinear Forms

In Section 3.2.2 we defined bilinear forms for the weak formulation of the governing

equations. We apply the SEM to these bilinear forms to obtain a discrete approx-

imation. Through use of the domain decomposition introduced in Section 3.3.1 we

need only consider the bilinear forms on a single, locally labelled, spectral element, Ωe

(note switch of element index to e). We may reassemble the global integral using the

local-to-global mapping discussed in the same section.

We apply the transfinite element mapping for the integral as in (3.48) and the spec-

tral representations of our variables, (3.62)-(3.63), and using the defined test func-

tions, (3.72)-(3.73). After approximating the integral according to the Gauss-Lobatto

quadrature, (3.84), we obtain the following local spectral element approximations of

the bilinear operators. We write the approximations as a matrix-vector multiplication.

The entries of each matrix for 2-D Cartesian co-ordinates are given by

(M e)kl,ij = δikδjl det (Je)kl wkwl, (3.85)

(Ae)kl,ij =
N∑
p=0

N∑
q=0

(
(De

x)ij,pq (De
x)kl,pq +

(
De
y

)
ij,pq

(
De
y

)
kl,ij

)
det (Je)pq wpwq, (3.86)

(Ee
x)kl,ij = (De

x)kl,ij det (Je)ij wiwj, (3.87)(
Ee
y

)
kl,ij

=
(
De
y

)
kl,ij

det (Je)ij wiwj, (3.88)
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for 0 ≤ i, j, k, l ≤ N , and,

(Be
x)kl,ĩj =

N∑
p=0

N∑
q=0

δ̃piδ̃qj (De
x)kl,pq det (Je)pq wpwq, (3.89)

(
Be
y

)
kl,ĩj

=
N∑
p=0

N∑
q=0

δ̃piδ̃qj
(
De
y

)
kl,pq

det (Je)pq wpwq, (3.90)

(Ze)ĩj =
N∑
p=0

N∑
q=0

δ̃piδ̃qj det (Je)pq wpwq, (3.91)

for 1 ≤ i, j ≤ N − 1 and 0 ≤ k, l ≤ N . We then write the SEM approximation of each

bilinear operator as a matrix-vector product as follows,

me
x(u,v) ≈M euex, me

y(u,v) ≈M euey, (3.92)

aex(u,v) ≈ Aeuex, aey(u,v) ≈ Aeuey, (3.93)

be(p,v) ≈ Be
xp

e +Be
yp

e, (3.94)

be∗(u, q) ≈ (Be
x)
T uex +

(
Be
y

)T
uey, (3.95)

ze(p) ≈ Zepe, (3.96)

eex(τ ,v) ≈ Ee
xτ

e
xx + Ee

yτ
e
xy eey(τ ,v) ≈ Ee

xτ
e
xy + Ee

yτ
e
yy (3.97)

where uei is the vector of velocity values for the ith-component at local GLL points, τ eij

is the vector of stress values for the ijth-component at local GLL points and pe is the

vector of pressure values at the internal GLL points all within the spectral element Ωe.

The lengths of the vectors uei and τ eij are (N + 1) whereas the length of the vector pe

is (N − 1)2.

The approximation of the bilinear form (3.36) is not constructed in the same way as the

others, as it requires two integrations across the whole domain, Ω. The construction

of this approximation is detailed in the last subsection of Section 3.3.7.

Axisymmetric Cylindrical Polar Co-ordinates

By comparison, we can see that the component-wise weak forms in 2-D Cartesian co-

ordinates, (3.26)-(3.28), and axisymmetric 3-D co-ordinates, (3.29)-(3.31) have many

terms in common except that in the latter case are multiplied by r(ξ, η). Under the as-

sumption that the axes are chosen so that they coincide, we consider that the r-direction

59



is equivalent to the Cartesian y-direction and that the z-direction is equivalent to the

x-direction. The resulting matrices for axisymmetric cylindrical polar co-ordinates are,

(M e)kl,ij = δikδjl det (Je)kl rklwkwl, (3.98)

(Aer)kl,ij =
N∑
p=0

N∑
q=0

((
(De

z)ij,pq (De
z)kl,pq + (De

r)ij,pq (De
r)kl,ij

)
det (Je)pq rpqwpwq

)
,

(3.99)

(Aeθ)kl,ij =
1

rkl
δikδjl det (Je)kl wkwl, (3.100)

(Aez)kl,ij =
N∑
p=0

N∑
q=0

(
(De

z)ij,pq (De
z)kl,pq + (De

r)ij,pq (De
r)kl,ij

)
det (Je)pq rpqwpwq, (3.101)

(Ee
r)kl,ij = (De

r)kl,ij det (Je)ij rijwiwj, (3.102)

(Ee
θ)kl,ij = δikδjl det (Je)kl wkwl, (3.103)

(Ee
z)kl,ij = (De

z)kl,ij det (Je)ij rijwiwj, (3.104)

(3.105)

for 0 ≤ i, j, k, l ≤ N , and,

(Be
r)kl,ĩj =

N∑
p=0

N∑
q=0

(
δ̃piδ̃qj (De

r)kl,pq det (Je)pq rpqwpwq

)
(3.106)

(Be
θ)kl,ĩj = δ̃kiδ̃lj det (Je)kl wkwl, (3.107)

(Be
z)kl,ĩj =

N∑
p=0

N∑
q=0

δ̃piδ̃qj (De
z)kl,pq det (Je)pq rpqwpwq, (3.108)

(Ze)ĩj =
N∑
p=0

N∑
q=0

δ̃piδ̃qj det (Je)pq rpqwpwq, (3.109)

for 0 ≤ i, j ≤ N and 1 ≤ k, l ≤ N−1 and where rpq = r(ξp, ηq), the r co-ordinate of the

global node found via the transfinite element mapping. Similarly to the Cartesian case,

we write the SEM approximation in axisymmetric polar co-ordinates of each bilinear
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operator as a matrix-vector product as follows,

me
r(u,v) ≈M euer, me

z(u,v) ≈M euez, (3.110)

aer(u,v) ≈ (Aer + Aeθ) uer, , aez(u,v) ≈ Aezu
e
z, (3.111)

be(p,v) ≈ (Be
r +Be

θ) pe +Be
zp

e, (3.112)

be∗(u, q) ≈ (Be
r +Be

θ)
T uer + (Be

z)
T uez, (3.113)

ze(p) ≈ Zepe, (3.114)

eer(τ ,v) ≈ Ee
rτ

e
rr + Ee

zτ
e
rz + Ee

θτ
e
θθ eez(τ ,v) ≈ Ee

rτ
e
rz + Ee

zτ
e
zz (3.115)

with the vectors, uei , τ
e
ij and pe as outlined in the Cartesian case.

Numerical Treatment of Possibly Singular Point

In (3.100) there is a potential singularity if rkl = 0. This will occur for node points

along the axis of symmetry. To deal with this, we look back at the strong formulation

from which it arises from in (2.77): The problem term in this form is ur
r2

.

We know that ur = 0 when r = 0 from the axisymmetric boundary conditions and that

v = 0 when r = 0 due to the choice of test spaces (v = 0 for Dirichlet boundaries). We

also know that the first derivatives with respect to r exist, so we again use L’Hôpital’s

rule.

We apply L’Hôpital’s rule twice to the strong form term to see that,

lim
r→0

ur
r2

= lim
r→0

∂ur
∂r

1

2r
=

1

2

∂2ur
∂r2

(0, z) . (3.116)

We expect ∂2ur
∂r2

to exist and to be finite, so expect that this term need not be a problem

and that we simply need a method to incorporate it into our numerical quadrature.

If we use the former limit from (3.116) and assume that ∂2ur
∂r2

exists and is finite then

the term is cancelled out by the multiplication by r in the integral. In this instance

there is no contribution from the problem term in the sum when rkl = 0 and so we

simply set the term to be zero in this case.

Alternatively, if we consider the term arising from the weak form of ur
r2

then we can
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also use L’Hôpital’s rule to see that

lim
r→0

urv

r
= lim

r→0

∂
∂r

(urv)
∂
∂r

(r)
= lim

r→0

(
v
∂ur
∂r

+ ur
∂v

∂r

)
, (3.117)

which gives us an idea of one way to get around the problem in (3.100) when rkl = 0.

If we let Rε be a horizontal strip of height ε > 0 along the axis of symmetry then we

may write the weak form of the problem term as,∫
Ω

urv

r
dΩ =

∫
Ω\Rε

urv

r
dΩ +

∫
Rε

urv

r
dΩ, (3.118)

and taking limits we get

lim
ε→0

(∫
Ω\Rε

urv

r
dΩ +

∫
Rε

urv

r
dΩ

)
= lim

ε→0

(∫
Ω\Rε

urv

r
dΩ +

∫
Rε

v
∂ur
∂r

+ ur
∂v

∂r
dΩ

)
.

(3.119)

We use this to justify a change to (3.100),

(Aeθ)kl,ij =


1
rkl
δikδjl det (Je)kl wkwl, if rkl & rij 6= 0

Dr
ij,kl det (Je)kl wkwl, if rkl = 0 & rij 6= 0

Dr
kl,ij det (Je)ij wiwj, if rkl 6= 0 & rij = 0

Dr
ij,kl det (Je)kl wkwl +Dr

kl,ij det (Je)ij wiwj, if rkl & rij = 0

(3.120)

Note that while we could consider different values of ε and include this approximation

to any node points lying a small distance away (i.e. when r < ε) from the axis of

symmetry, in practice we only apply this approximation to points lying directly on the

axis of symmetry (i.e. when r = 0).

3.3.7 Global System Assembly

If we wish to construct the global spectral element matrix approximation we must sum

over all elements and take contributions from the local matrices. We do this using

the prolongation operator defined earlier in Section 3.3.1. In discrete form the map,

RT
e (pq), takes the locally labelled point xepq = (ξp, ηq) on a particular element Ωe and

maps it to a globally labelled point xg. It is possible, and intended, that this operator
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may map local node points from different elements onto the same global node point.

This occurs when the global point lies on a shared boundary or interface between two

spectral elements. The following section details how this mapping is constructed in

practice.

Discrete Mapping

In this section we detail how the global and local mapping are constructed. Examples

of the global and local numbering for a domain made up of two elements are shown in

Figures 3.1 and 3.2, respectively. Suppose we have a domain made up of K spectral

Figure 3.1: Example of the global node numbering for a domain made up of two

elements. The element labels are circled.

elements as described in Section 3.3.1. We label each element from 1 to K arbitrarily.

The discrete form of the local-to-global map is constructed in three stages.

1. Starting at V1
1 (vertex 1 of element 1), we give global labels, beginning at 1, to all

vertices of Ω1 in an anti-clockwise direction. For each locally numbered vertex, we log

the global numbering to our local-to-global map.

For example: the local number of V1
1 is 0 (putting i=0, j=0 into (3.65)) and it has global

number 1, so R1(1) = 0 and RT
1 (0) = 1, V1

3 has local number (N + 1)2 − 1 (i=N, j=N

into (3.65)) and global number 3, so R1(3) = (N + 1)2 − 1 and RT
1

(
(N + 1)2 − 1

)
= 3

and so on. Note that from this point we will only give the global-to-local mapping, Rk,
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in examples since it is now clear how to construct the local-to-global map RT
k using

Rk.

We repeat this process for all spectral elements according to the arbitrarily decided

element ordering. If a vertex has already been globally labelled (due to lying on a

shared boundary between elements) then we skip this vertex until we reach the next

unlabelled vertex. At the end of the global labelling of all element vertices we will

have labelled Nvert points which is dependent upon the connectivity of the spectral

elements.

Figure 3.2: Example of the local node numbering for a domain made up of two elements.

The element labels are circled.

2. We next label the edge nodes of each element starting at F1
1 (edge 1 on Ω1) beginning

at the first node along the edge from V1
1 until we reach the last non-vertex point

on the edge. The local number is 1 (i=1, j=0 into (3.65)), so R1(Nvert + 1) = 1,

R1(Nvert + 2) = 2 and so on until the local node N−1 (i=N−1, j=0 into (3.65)) is

reached and labelled globally as Nvert+N−1. We then work anti-clockwise around the

edges in the same manner so that R1(Nvert +N) = 2N +1, .., R1(Nvert + 2 (N − 1)) =

N + (N − 1) (N + 1), etc.

As before, we repeat the process for each spectral element in order and similarly to the

numbering of the vertices, we skip any edge points which have already been labelled

due to shared boundaries. At this point, we will have labelled Nvert + Nedge global

points. This leaves only the internal node points.
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3. We finally number each of the internal node points. This is done easily since we do

not have any nodes which are shared between elements left to number. This is done

by simply following the way in which local internal node points are labelled for the

pressure. We fill in the rest of the local-to-global mapping using

RT
e (ij) = Nvert +Nedge + (e− 1) (N − 1)2 + ĩj, (3.121)

for 1 ≤ i, j ≤ N − 1 using the notation from (3.66). The total number of global nodes

is Ntot = Nvert +Nedge +Nint, where Nint = K (N − 1)2.

The value of g = RT
e (ij) gives which global node that local node, ij, corresponds to

in element Ωe. Conversely, the discrete global-to-local map, Rk(g), gives the locally

numbered node in element Ωk corresponding to global node g.

Discrete Pressure Mapping

While the pressure is approximated on the internal set of GLL points, shared with the

velocity node points, we need a separate global numbering for these internal pressure

nodes.

We simply offset the local-to-global mapping for these points by taking away the num-

ber of non-internal global points away from the mapping value, so an internal point

ij maps to RT
e (ij) for a velocity test or trial function, but to R̃T

e

(
ĩj
)

= RT
e (ij) −

(Nvert +Nedge) for a pressure test or trial function. This means that our global num-

bering of internal pressure nodes begins at 1 and ends at Nint as desired. The discrete

global-to-local map for the pressure follows the same notation and is written R̃e(g).

Construction of a Global Matrix

We assemble a global matrix from the contributions of the local matrices. For example,

the global mass matrix, M , is assembled as follows,

Mgi,gj =
K∑
k=1

Mk
Rk(gi),Rk(gj)

. (3.122)
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for 1 ≤ gi, gj ≤ Ntot. The global matrix approximations of all the bilinear forms,

(3.32)-(3.37), are assembled in the same manner with obvious notation. We use the

appropriate velocity or pressure mapping depending on the global matrix to be assem-

bled. For example, Bx,

(Bx)gi,g̃j =
K∑
k=1

(
Bk
x

)
Rk(gi),R̃k(g̃j)

, (3.123)

for 1 ≤ gi ≤ Ntot and 1 ≤ g̃j ≤ Nint.

Zero Integral of Pressure Approximation

The one exception which requires a slightly different assembly is the construction of the

global matrix representing the zero integral of pressure from the alternative formulation

(3.36). Since there are two integrals over the whole domain required to compute this

quantity, we cannot represent it locally. Instead we must sum both of the integrals and

combine them in the global system. The global matrix is assembled using

Cg̃i,g̃j =
K∑

e1=1

Ze1
R̃e1(g̃i)

K∑
e2=1

Ze2
R̃e2(g̃j)

(3.124)

for 1 ≤ g̃i ≤ Nint and 1 ≤ g̃j ≤ Nint.

We now have a means to construct the global discretised system which is detailed in

Section 3.3.8. We may also write it as a linear system, which is shown in Section 3.3.9.

3.3.8 Fully Discretised Global System

With all of the global matrices assembled using the local-to-global mapping as described

in Section 3.3.7 we may now write our fully discretised system of equations following

from (3.43)-(3.42), as,

Re
γ0

∆t
Mun+1 + βAun+1 −Bpn+1 = Mfn+1 +

J−1∑
q=0

(
Re

αq
∆t

Mũn+1
q + βqEτ n−q

)
,

(3.125)

−BTun+1 + µCpn+1 = 0. (3.126)
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where the matrices in bold denote that they contain all components. For example

the global mass matrix in Cartesian co-ordinates is constructed from the x and y

components and the vector un+1 is matched accordingly as follows

M =

(
Mx 0

0 My

)
, un+1 =

(
un+1
x

un+1
y

)
. (3.127)

with un+1
x and un+1

y being vectors of length equal to the number of global node points.

The elastic stress tensor, τ , is found separately via the decoupled constitutive equation

using the previously computed velocity solutions from past timesteps. The method for

the solution of the constitutive equation is detailed in Section 3.5.

3.3.9 Linear Global System

We may write the fully discretised velocity-pressure problem as a linear system to be

solved at each timestep.

Cartesian Linear System

In the Cartesian case,
Reγ0
∆t

Mx + βA 0 −Bx

0 Reγ0
∆t

My + βA −By

−BT
x −BT

y µC




un+1
x

un+1
y

pn+1

 =


f̂n+1
x

f̂n+1
y

ĝn+1

 (3.128)

with the matrices as defined in Section 3.3.7 and where f̂i and ĝ contain all the known

terms from the right hand side of the discrete equations

f̂n+1
x = M fn+1

x +
J−1∑
q=0

(
Re

αq
∆t
M ũn+1

xq + βq
(
Exτ

n−q
xx + Eyτ

n−q
xy

))
, (3.129)

f̂n+1
y = M fn+1

y +
J−1∑
q=0

(
Re

αq
∆t
M ũn+1

yq + βq
(
Exτ

n−q
xy + Eyτ

n−q
yy

))
, (3.130)

ĝn+1 = 0. (3.131)
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Axisymmetric Cylindrical Linear Polar System

In the axisymmetric cylindrical polar case, we have
Reγ0
∆t

Mr + β (Ar + Aθ) 0 − (Br +Bθ)

0 Reγ0
∆t

Mz + βAz −Bz

− (Br +Bθ)
T −BT

z µC




un+1
r

un+1
z

pn+1

 =


f̂n+1
r

f̂n+1
z

ĝn+1


(3.132)

with

f̂n+1
r = M fn+1

r +
J−1∑
q=0

(
Re

αq
∆t
M ũn+1

rq + βq
(
Erτ

n−q
rr + Ezτ

n−q
rz + Eθτ

n−q
θθ

))
, (3.133)

f̂n+1
z = M fn+1

z +
J−1∑
q=0

(
Re

αq
∆t
M ũn+1

zq + βq
(
Erτ

n−q
rz + Ezτ

n−q
zz

))
, (3.134)

ĝn+1 = 0. (3.135)

Application of Boundary Conditions

The final step in preparing the linear system for solution at any timestep is to apply

the boundary conditions. We eliminate any rows and columns which correspond to a

Dirichlet node in the global matrix. We then substitute the known values into solution

at these nodes and perform the matrix-vector calculations with the corresponding rows

in the global matrix, which gives a contribution to take away from the right hand side

of our linear system. These are incorporated into f̂n+1
i and ĝn+1.

Our linear system may now be solved using the numerical linear algebra methods

detailed in Section 3.8.

3.4 Approximation of Spatial Measures

We will require the use of some spatial measures in various ways, such as when analysing

results. The two main measures we use are the L2-norm and the H1-norm which are
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defined as,

‖x‖2
L2(Ω) =

∫
Ω

|x|2 dΩ (3.136)

‖x‖2
H1(Ω) = ‖x‖2

L2(Ω) + ‖∇x‖2
L2(Ω) =

∫
Ω

|x|2 + |∇x|2 dΩ (3.137)

for some variable x, which may be scalar, vector or tensor valued and the measure | · |
is the appropriate norm analogous to the l2 vector norm.

We decompose the domain into spectral elements as done in the SEM and perform the

integration using GL quadrature so that (3.136) is approximated by

‖s‖2
L2(Ω) ≈

K∑
e=1

N∑
p=0

N∑
q=0

(
sepq
)2

det (Je)pq wpwq, (3.138)

‖v‖2
L2(Ω) ≈

K∑
e=1

N∑
p=0

N∑
q=0

((
(vex)pq

)2

+
((
vey
)
pq

)2
)

det (Je)pq wpwq, (3.139)

‖T‖2
L2(Ω) ≈

K∑
e=1

N∑
p=0

N∑
q=0

((
(T exx)pq

)2

+
((
T exy
)
pq

)2

+
((
T eyx
)
pq

)2

+
((
T eyy
)
pq

)2
)

det (Je)pq wpwq, (3.140)

for a scalar, s(x), a vector, v(x), and a second-order tensor, T(x), and where the

superscript k on a variable within the sum denotes the spectral element, and the

subscript pq denotes the local GLL point. These approximations of the L2-norms can

be combined to obtain to the approximation of the H1-norm given in (3.137), noting

that we do not make use of the H1-norm for tensor valued variables.

The axisymmetric cylindrical polar co-ordinate equivalents of (3.138)-(3.140) are given

by

‖s‖2
L2(Ω) ≈

K∑
e=1

N∑
p=0

N∑
q=0

(
sepq
)2

det (Je)pq r
e
pqwpwq, (3.141)

‖v‖2
L2(Ω) ≈

K∑
e=1

N∑
p=0

N∑
q=0

((
(ver)pq

)2

+
(

(vez)pq

)2
)

det (Je)pq r
e
pqwpwq, (3.142)

‖T‖2
L2(Ω) ≈

K∑
e=1

N∑
p=0

N∑
q=0

((
(T err)pq

)2

+
(

(T erz)pq

)2

+
(

(T ezr)pq

)2

+
(

(T ezz)pq

)2

+
(

(T eθθ)pq

)2
)

det (Je)pq r
e
pqwpwq, (3.143)

where repq is the radial co-ordinate at the local GLL point pq in spectral element e.
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3.5 Discretisation of the Constitutive Equation

As described in Section 3.1, we have two temporal schemes, (3.14) and (3.15), both

of which require spatial discretisation. If we consider an arbitrary single point within

the domain, due to the decoupling from the velocity and explicit treatment of the

convection and Giesekus terms in both schemes, we may rewrite the equations at

timestep tn+1 as a linear system.

3.5.1 BDF/EX Linear System

For scheme (3.14), the linear system may be written,

Aττ
n+1 = bτ , (3.144)

where Aτ is a 3 by 3 matrix with non-zero entries given by

(Aτ )11 = 1 +
γ0We

∆t
− 2We

(
∇un+1

)
11
, (3.145)

(Aτ )12 = −2We
(
∇un+1

)
21
, (3.146)

(Aτ )21 = −We
(
∇un+1

)
12
, (3.147)

(Aτ )22 = 1 +
γ0We

∆t
−We

( (
∇un+1

)
11

+
(
∇un+1

)
22

)
, (3.148)

(Aτ )23 = −We
(
∇un+1

)
21
, (3.149)

(Aτ )32 = −2We
(
∇un+1

)
12
, (3.150)

(Aτ )33 = 1 +
γ0We

∆t
− 2We

(
∇un+1

)
22

(3.151)

and the values of the components of the elastic stress at the chosen point in the domain

written in vector form,

τ =


τ11

τ12

τ22

 (3.152)

where the subscript refer to the components of τ , with τ12 = τxy in Cartesian co-

ordinates and τ12 = τrz in axisymmetric cylindrical polar co-ordinates. The entries of

the vector, beτ , containing all known terms from the right hand side of the equation is
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given by

(bτ )1 = 2 (1− β)
(
∇un+1

)
11

+We

J−1∑
q=0

(αq
∆t
τn−q11 − βq

(
un+1 · ∇τ n−q

)
11

)
−We α

(1− β)

J−1∑
q=0

βq

((
τn−q11

)2
+
(
τn−q12

)2
)
, (3.153)

(bτ )2 = (1− β)
((
∇un+1

)
12

+
(
∇un+1

)
21

)
+We

J−1∑
q=0

(αq
∆t
τn−q12 − βq

(
un+1 · ∇τ n−q

)
12

)
−We α

(1− β)

J−1∑
q=0

βq
(
τn−q11 τn−q12 + τn−q12 τn−q22

)
, (3.154)

(bτ )3 = 2 (1− β)
(
∇un+1

)
22

+We
J−1∑
q=0

(αq
∆t
τn−q22 − βq

(
un+1 · ∇τ n−q

)
22

)
−We α

(1− β)

J−1∑
q=0

βq

((
τn−q12

)2
+
(
τn−q22

)2
)

(3.155)

Additional Equation for Axisymmetric Cylindrical Polar Co-ordinates

In the case of axisymmetric cylindrical polar co-ordinates, we have an additional com-

ponent of elastic stress, τθθ, to be found. This component does not depend on any of

the others, so we may calculate it separately via,

τn+1
33 =

(bτ )4

(Aτ )44

(3.156)

where co-ordinate 3 corresponds to the θ-component and,

(Aτ )44 = 1 +
γ0We

∆t
− 2We

(
∇un+1

)
33
, (3.157)

(bτ )4 = 2 (1− β)
(
∇un+1

)
33

+We
J−1∑
q=0

(αq
∆t
τn−q33 − βq

(
un+1 · ∇τ n−q

)
33

)
−We α

(1− β)

J−1∑
q=0

βq
(
τn−q33

)2
(3.158)
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3.5.2 Semi-Iterative BDF/FPI Linear System

When using the BDF/FPI scheme, (3.15), after the previously explained setup stage

at each timestep, for each inner iteration over i we solve the linear system,

Aτ τ̃
i+1 = biτ̃ , (3.159)

with Aτ unchanged from (3.145)-(3.151) and the entries of biτ̃ given by(
biτ̃
)

1
= 2 (1− β)

(
∇un+1

)
11

+We

(
J−1∑
q=0

αq
∆t
τn−q11 −

(
un+1 · ∇τ̃ i

)
11
− α

(1− β)

((
τ̃ i11

)2
+
(
τ̃ i12

)2
))

, (3.160)

(
biτ̃
)

2
= (1− β)

((
∇un+1

)
12

+
(
∇un+1

)
21

)
+We

(
J−1∑
q=0

αq
∆t
τn−q12 −

(
un+1 · ∇τ̃ i

)
12
− α

(1− β)

(
τ̃ i11τ̃

i
12 + τ̃ i12τ̃

i
22

))
, (3.161)

(
biτ̃
)

3
= 2 (1− β)

(
∇un+1

)
22

+We

(
J−1∑
q=0

αq
∆t
τn−q22 −

(
un+1 · ∇τ̃ i

)
22
− α

(1− β)

((
τ̃ i12

)2
+
(
τ̃ i22

)2
))

. (3.162)

For the axisymmetric cylindrical polar co-ordinate case then we iteratively solve

τ̃ i+1
33 =

(biτ̃ )4

(Aτ )44

(3.163)

with (Aτ )44 as in (3.157) and,(
biτ̃
)

4
= 2 (1− β)

(
∇un+1

)
33

+We

(
J−1∑
q=0

αq
∆t
τn−q33 −

(
un+1 · ∇τ̃ i

)
33
− α

(1− β)

(
τ̃ i33

)2

)
(3.164)

3.5.3 Spatial Discretisation of Elastic Stress

Following Sections 3.5.1 and 3.5.2 we now have a method for solving the constitutive

equation at a chosen point within our domain. We are left with a choice of which set

of points on which to approximate the elastic stress. The logical choice, given that we

already have a method of calculating the velocity and pressure solution on it, is the

global GLL grid.
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We use the domain decomposition described in Section 3.3.1, and so approximate the

elastic stress locally within each element on the GLL grid. Similarly to the velocity

and pressure in equations (3.62)-(3.63), we adopt a spectral representation of each

component, ab, of elastic stress on each spectral element, Ωe,

τ eab(ξ, η) =
N∑
i=0

N∑
j=0

(τ eab)ij hi(ξ)hj(η) , (3.165)

with hi(ξ) being the Lagrange interpolant as defined in (3.67) and where (τ eab)ij is the

approximation for the elastic stress component ab at the GLL point (ξi, ηj). We may

now use (3.144) or (3.159) to find a solution for each 1 ≤ e ≤ K and each 0 ≤ i, j ≤ N

independently.

Continuity of Stress

The SEM only gives us a way of calculating derivatives with respect to global variables

in a local manner which means that it is possible that for two neighbouring spectral

elements, Ωe1 and Ωe2 , (∇ue1) and (∇ue2) may have different values at a shared bound-

ary point when approximated via SEM within their respective elements. Similarly, the

value of the convection term, u · ∇τ e1 and u · ∇τ e2 may also differ. This could lead to

a loss of continuity in stress across elements.

One option is to simply allow the elastic stress to be discontinuous at these shared

boundary points. An alternative is to enforce continuity across spectral elements by

taking the average (or some weighting) of the two at the shared point and using it for

the approximation of the elastic stress at these points. Another option is to allow for a

discontinuous stress, but communicate information across the boundary in some way.

A method for this last option is discussed in Section 3.6.
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3.6 Discontinuous Galerkin Treatment of Constitu-

tive Equation

The discontinuous Galerkin (DG) method was first introduced in the 1970s for use with

the neutron transport equation by Lesaint and Raviart [29], but was eventually used for

the simulation of viscoelastic fluid flows by Fortin and Fortin [17]. In their method, the

stress approximation was made discontinuous across elements. This allowed the stress

to be solved on an element-by-element basis which can heavily reduce computational

costs. A further advantage, when compared to continuous Galerkin interpolations,

is that the velocity-stress compatibility condition is satisfied easily. In the following

description we follow Owens and Phillips [45].

3.6.1 Derivation of DG Treatment of Convection Term

Supposing we have decomposed our domain, Ω, into K non-overlapping elements, Ωk,

k = 1, . . , K. We can then use a streamline upwinded Discontinuous Galerkin (DG)

treatment of the constitutive equation. We allow stress to be discontinuous across

elements. The stress between elements then only interacts in operations involving the

shared elemental boundaries. We reconsider the convective derivative, multiplying by

an appropriate stress test function S ∈ Σ and integrating over Ω. The weak form of

the convective derivative may be written in the form∫
Ω

(u · ∇τ ) : S dΩ =
K∑
k=1

∫
Ωk

(u · ∇τ ) : S dΩk, (3.166)

which we may rewrite as

K∑
k=1

∫
Ωk

(u · ∇τ ) : S dΩk =
K∑
k=1

∫
Ωk

∇ · (u (τ : S)) dΩk −
K∑
k=1

∫
Ωk

(u · ∇S) : τ dΩk.

(3.167)

Applying the divergence theorem to the first term on the right-hand side, we obtain,

K∑
k=1

∫
Ωk

(u · ∇τ ) : S dΩk =
K∑
k=1

∫
Γk

(n · u) τ : S dΓk −
K∑
k=1

∫
Ωk

(u · ∇S) : τ dΩk.

(3.168)
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Considering a particular element, Ωk, suppose that there is a point, x, on the edge of

that element, Ω̄k which is shared with the edge of a neighbouring element, Ω̄l. Since

our stress is allowed to be discontinuous across elements, the value of the elastic stress

is not necessarily the same at x when evaluated within each element.

With this in mind, we denote by τ e(x) the value of the elastic stress at x ∈ Ω̄l and

by τ i(x) the value at x ∈ Ω̄k. We call these the external and internal stress tensors

respectively. We now let

τ =

{
αDGτ

e + (1− αDG) τ i on Γ−k \ Γ−,

αDGτ
i + (1− αDG) τ e on Γ+

k \ Γ+,
(3.169)

for some upwinding parameter associated with our DG formulation, αDG ∈ [0, 1] where

αDG = 1 corresponds to a fully upwinded formulation.

Substituting the expression(3.169) into (3.168) we obtain,

K∑
k=1

∫
Ωk

(u · ∇τ ) : S dΩk =
K∑
k=1

∫
Γ−
k ∩Γ−

(n · u) τ inflow : S dΓk

+
K∑
k=1

∫
Γ−
k \Γ−

(n · u)
(
αDGτ

e + (1− αDG) τ i
)

: S dΓk

+
K∑
k=1

∫
Γ+
k \Γ+

(n · u)
(
αDGτ

i + (1− αDG) τ e
)

: S dΓk

+
K∑
k=1

∫
Γ+
k ∩Γ+

(n · u) τ i : S dΓk

−
K∑
k=1

∫
Ωk

(u · ∇S) : τ dΩk. (3.170)

Applying integration by parts a second time and using the divergence theorem on the

last term with τ ≡ τ i on Γk \ Γ− we obtain,

K∑
k=1

∫
Ωk

(u · ∇τ ) : S dΩk =
K∑
k=1

∫
Ωk

(u · ∇τ ) : S dΩk

+ αDG

K∑
k=1

∫
Γ−
k \Γ−

(n · u) Jτ K : S dΓk

+ (1− αDG)
K∑
k=1

∫
Γ+
k \Γ+

(n · u) Jτ K : S dΓk (3.171)
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where Jτ K ≡ τ e − τ i represents the jump in stress between elements. By replac-

ing the convected derivative in our constitutive equation with (3.171) we get the DG

formulation.

3.6.2 Discretisation Of Convective Term by DG Method

Up to this point, our discretisation of the constitutive equation has been carried out in

strong form, so we have not had to integrate. The DG method requires integration in

order to create the jump term, so we require a way to incorporate this change without

impacting on the previously described calculation of elastic stress. This can be done if

we calculate the DG convection term separately. First, we introduce the notation,

τ̂ = u · ∇τ . (3.172)

Given that, at any particular timestep, we treat the convection terms explicitly, when

applying this method we do not have any other unknowns, so we calculate an approx-

imation of τ̂ given a velocity and elastic stress field.

Following from (3.171), we set αDG = 1 and note that we may calculate τ̂ on an

element-by-element basis. Dropping the summation over all elements, we write the

SEM approximation of each component, ab, of the LHS of the DG system, locally, as

the matrix-vector multiplication,(∫
Ωk

τ̂ (x) : SdΩ

)
ab

=

(∫
D

τ̂ k(ξ, η) : S det Jk dξdη

)
ab

≈Mkτ̂ kab (3.173)

where entries corresponding to a global inflow node must be set to zero and removed

from the linear system.

Next, each non-zero component of the integral on the RHS of (3.171) may be expressed

locally by the matrix-vector multiplication,(∫
Ωk

(u · ∇τ ) : S dΩ

)
ab

=

(∫
D

(
uk · ∇τ k

)
: S det Jk dξdη

)
ab

≈ Êkτ kab (3.174)

where (
Êk
)
kl,ij

=
(
ukx
)
kl

(
Ek
x

)
ij,kl

+
(
uky
)
kl

(
Ek
y

)
ij,kl

, (3.175)(
Êk
)
kl,ij

=
(
ukr
)
kl

(
Ek
r

)
ij,kl

+
(
ukz
)
kl

(
Ek
z

)
ij,kl

, (3.176)
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for the Cartesian and axisymmetric cylindrical polar co-ordinate cases, respectively.

This leaves only a term for the boundary integral, which may be expressed by,(∫
Γ−
k \Γ−

(n · u) Jτ kK : S dΓ

)
ab

=

(
4∑

m=1

∫
D−
m\Γ−

(
nkm · uk

)
Jτ kK : S det Jkmdξ

)
ab

≈
(
Bk
DG

)
ab
, (3.177)

where the sum over m refers to the four edges of the parent element and Jkm is the

Jacobian of the edge mapping from edge m of element Ωk to the parent edge. The

entries of
(
Bk
DG

)
ab

are given by[(
Bk
DG

)
ab

]
ij

=
∑

(ξi,ηj)∈D−
m

((
ukx
)
ij

(
nkmx

)
ij

+
(
ukmy
)
ij

(
nkmy

)
ij

)
Jτ kabKij det

(
Jkm
)
mij

wmij , (3.178)

(3.179)

for planar co-ordinates and[(
Bk
DG

)
ab

]
ij

=
∑

(ξi,ηj)∈D−
m

((
ukz
)
ij

(
nkmz

)
ij

+
(
ukmr
)
ij

(
nkmr

)
ij

)
Jτ kabKij det

(
Jkm
)
mij

wmij (3.180)

for axisymmetric co-ordinates, with 0 ≤ i, j ≤ N for the planar and axisymmetric

geometry, respectively, and where mij is the 1-D GLL edge point corresponding to the

2-D GLL grid point (ξi, ηj). Note that the value is zero unless the GLL node ij lies on

an elemental inflow interface.

The DG contribution of each component of elastic stress, τ̂ kab on each element Ωk may

then be calculated by solving the following linear system

Mkτ̂ kab = Êkτ kab +
(
Bk
DG

)
ab
. (3.181)

This system is trivial to solve for the choice of stress test function, with the matrix

Mk being diagonal. The contribution of each component is then included on the

appropriate right-hand side of the constitutive equation. When using the semi-iterative

scheme, the DG contribution is updated at every iteration.
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3.7 Elastic Viscous Split Stress (EVSS)-type Meth-

ods

When computing flows of fluids with viscoelastic properties, the constitutive equation

used will typically change the elliptic problem encountered for Newtonian flows, into a

set of PDEs of mixed elliptic-hyperbolic type [45]. It is important that the numerical

methods used to solve the equations preserve the ellipticity of the saddle point problem

formed by the momentum and continuity equations. When considering flows at medium

to high Weissenberg numbers, the ellipticity of the equations reduces which can lead

to numerical instabilities when computing a solution and ultimately lead to divergence

of iterative techniques. The numerical instabilities have often been attributed to a

solution which is under-diffused, and success has been found by introducing artificial

diffusion to the momentum equation [7, 24].

One such technique to stabilise the calculations is the Elastic Viscous Split Stress(EVSS)

method first introduced by Perera and Walters[46]. This technique was used for second-

order fluids by Mendelson et al.[37] and with viscoelastic fluids by Beris et al.[3]. This

is achieved via a change of variables involving the rate-of-strain tensor, which leads to

a modification of the governing equations. Furthermore, Sun et al.[57] introduced an

adaptive version of the scheme, termed AVSS, and the EVSS-G scheme of Brown et

al.[8] used the velocity gradient instead of the rate-of-strain tensor as a stabilisation

term. While these methods have proven to be successful in simulating flows at higher

Weissenberg numbers the change of variables means that one cannot apply the tech-

nique to all constitutive equations. In addition, this technique requires second-order

spatial derivatives of the velocity and time derivatives of the velocity gradients due to

the need to take the upper-convected derivative of D.
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3.7.1 DEVSS Methods

DEVSS

The limitation to particular constitutive models for use with EVSS/AVSS led to

Guénette and Fortin [21] to introduce the Discrete EVSS (DEVSS) method, which

does not require a change of variables. Artificial diffusion is added to the momentum

equation for stabilisation through an L2-projection of the rate-of-strain tensor, which

we shall denote by D. We may rewrite the momentum and continuity equations (for

some constitutive equation) as follows,

Re
Du

Dt
− (β + θ)∇2u + θ∇ ·D +∇p = ∇ · τ , (3.182)

∇ · u + µ

∫
Ω

pdΩ = 0, (3.183)

D−
(
∇u + (∇u)T

)
= 0, (3.184)

where θ is the DEVSS stabilisation parameter. At the continuous level, it is clear that

(3.182)-(3.184) is equivalent to (2.17) because ∇ ·D = ∇2u when combined with the

knowledge that∇·∇uT = 0 from the continuity equation. However, at the discrete level

this is not the case, providing stabilisation to our numerical scheme. The stabilisation

parameter, θ, is typically chosen to be equal to (1− β) which fixes the multiplier of

∇2u to be 1. This increases the elliptic nature of the momentum equation for any

viscosity ratio.

DEVSS-G

Similar in idea to the EVSS-G method of Brown et al. [8], Liu et al. [32] proposed an

alternative option using an L2-projection of the velocity gradient, which we denote by

G, rather than the rate-of-strain tensor. This method is known as DEVSS-G. There are

two ways in which to include the stabilisation term into the momentum equation. The

first, as used by Liu et al. [32] is to follow DEVSS and use G to form the rate-of-strain
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tensor as follows

Re
Du

Dt
− (β + θ)∇2u + θ∇ ·

(
G + GT

)
+∇p = ∇ · τ , (3.185)

∇ · u + µ

∫
Ω

pdΩ = 0, (3.186)

G−∇u = 0. (3.187)

Alternatively, we may stabilise the momentum equation using only the velocity gradient

projection, as used in the method of Bogaerds et al. [6], so that the field equations

become

Re
Du

Dt
− (β + θ)∇2u + θ∇ ·G +∇p = ∇ · τ , (3.188)

∇ · u + µ

∫
Ω

pdΩ = 0, (3.189)

G−∇u = 0. (3.190)

This method complements our enforcement of ∇·∇uT = 0 in the momentum equation

and we proceed with equations (3.188)-(3.190) as the basis of the stabilisation scheme

for our numerical method. The differences between these two formulations of DEVSS-G

are more clearly seen when written in their corresponding weak forms.

Should we wish to control the coefficient of the elliptic operator directly, we introduce

an additional parameter

βs = β + θ, (3.191)

so that (3.188) becomes

Re
Du

Dt
− βs∇2u + (βs − β)∇ ·G +∇p = ∇ · τ . (3.192)

3.7.2 Discretisation of DEVSS-G Terms

Similarly to the elastic stress, we use a spectral representation of the velocity gradient

G within a spectral element. However, contrary to the elastic stress we represent G on

the internal nodes of an element in the same way as we treat the pressure. Using only

the internal nodes means that we solve for G in each element independently and so

do not need to construct the global matrix to solve for G, reducing the computational
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effort required. This treatment also means that G is discontinuous across elements.

While improving the computational efficiency this has also been found [2] to improve

stability and accuracy when used in other numerical schemes.

Therefore, the spectral representation of G is given by

Ge
ab(ξ, η) =

N∑
i=0

N∑
j=0

(
Ge
ij

)
ab
h̃i (ξ) h̃j (η) , (3.193)

where ab denotes the component of the tensor and
(
Ge
ij

)
ab

= Ge
ab (ξi, ηj).

Multiplying (3.190) by an appropriate test function, φ ∈ [L2 (Ω)]
4

(or φ ∈ [L2 (Ω)]
5

for

axisymmetric geometries), integrating over the whole domain and applying the domain

decomposition in (3.44) we get,(
K∑
e=1

∫
Ωe

G : φ dΩ

)
ab

=

(
K∑
e=1

∫
Ωe

(∇u) : φ dΩ

)
ab

. (3.194)

Mapping into the parent domain, applying the spectral representation of G and using

the GL quadrature in (3.84) yields a linear system which may be expressed locally in

each component, ab,

M̃ eGe
ab = d̂eab (3.195)

where d̂ab is the local vector containing the ab component of the velocity gradient at

each GLL point. These velocity gradient components may be calculated using (3.78)

and (3.79). The entries of M̃ are those of the pressure mass matrix. By solving this

linear system we obtain the local values of G at each internal GLL node. We then use

(3.193) to extrapolate the values on the boundary of each element.

Once calculated, these values are incorporated in the current discretisation of the mo-

mentum equation by adding the following approximation of the integral of ∇ · G to

the known RHS terms given in (3.129) and (3.130),

f̂n+1
x = f̂n+1

x +
J−1∑
q=0

βq
(
ExG

n−q
xx + EyG

n−q
xy

)
, (3.196)

f̂n+1
y = f̂n+1

y +
J−1∑
q=0

βq
(
ExG

n−q
xy + EyG

n−q
ty

)
, (3.197)
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respectively for the Cartesian case.

For the axisymmetric case, we add the following approximation to the RHS terms given

in (3.133) and (3.134),

f̂n+1
r = f̂n+1

r +
J−1∑
q=0

βq
(
ErG

n−q
rr + EzG

n−q
rz + EθG

n−q
θθ

)
, (3.198)

f̂n+1
z = f̂n+1

z +
J−1∑
q=0

βq
(
ErG

n−q
rz + EzG

n−q
zz

)
. (3.199)

3.8 Solution of the Linear System

The solution of the linear system arising from the temporal and spatial discretisation of

the conservation of momentum and mass equations is performed using a direct method.

We use the PARDISO* [53] solver, part of the Intel MKL library of mathematical

functions. This is a shared-memory (OpenMP) parallel sparse solver, which we use to

solve the global velocity-pressure system. In our case we are able to use the symmetric,

indefinite, version of the solver. The solution is broken down into three parts. First,

an analysis and re-ordering of the matrix. Second, a factorisation step, constructing

an LDLT factorisation using pivoting. Finally, the solution is found by forward and

backward substution. The solver also provides iterative refinement of the solution at

the final stage.

The construction of the global system is an expensive operation and we wish to avoid

this in the case of a deforming mesh. Instead we set up a local element to global sparse

matrix map, avoiding the need to build the global matrix at all. This map is created

at a preprocessing stage and is expensive, but only needs to be performed once. This is

done by scanning across each row of the global matrix via the local to global map. We

then store the location of non-zero entries in each local element matrix associated with

that global node. The number of non-zeroes encountered is stored, and the location

within each local element matrix is then mapped to that part of the sparse storage

vector.

Once this map has been constructed, the vector of values for the sparse storage may

be constructed by a local element-wise operation. This also means that any nodes
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not associated with deforming elements need not be updated. After the sparse matrix

vector has been updated, a new factorisation may be computed for the next solving of

the linear system. If there is no mesh deformation, such as when we consider flow past

a fixed sphere, then the factorisation need only be computed once throughout a whole

simulation. This reduces the number of operations per timestep quite considerably.

3.9 Domains and Spectral Meshes

The application of the numerical scheme will require two main sets of meshes. We

define these below.

3.9.1 Infinite Channel and Cylindrical Pipe

The first set, labelled T1-T4, are used in Poiseuille flow simulations, consisting of a

straight channel of length L and height H. These meshes, with a typical GLL-mesh

within each spectral element, are shown in Figure 3.3. Depending on the co-ordinate

system (2-D planar or 3-D axisymmetric), the bottom of the domain may be a wall

boundary or a wall of symmetry. Each mesh has points A, B and C marked on the

penultimate node in the positive x- or z-direction at the top, middle and bottom of

the channel. These points will serve as test points when comparing numerical with

analytical solutions. These meshes will be primarily used to investigate the start-up of

Poiseuille flow for Newtonian and Oldroyd B. fluid models in Sections 5.1.1- 5.1.2 and

6.1.1-6.1.2.

3.9.2 Fixed Cylinder and Sphere

The second set, labelled M1-M5, are used for the benchmarks of 2-D planar flow past

a fixed cylinder in an infinite channel and 3-D axisymmetric uniform flow past a fixed

sphere in a cylinder. In the context of the planar benchmark, we consider a cylinder

of radius RC in a channel of height HC giving a so-called blockage ratio defined as
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(a) T1 (b) T2

(c) T3 (d) T4

Figure 3.3: Meshes T1-T4. Test points marked with a red dot at A, B and C. Each

spectral element contains the local GLL-mesh with N = 8.

RC/HC . In the context of the axisymmetric benchmark we consider a sphere of radius

RS in a cylinder of radius RC giving a blockage ratio defined as RS/RC .

Each mesh, with a typical GLL-mesh within each element is shown in Figure 3.4. We

focus on refinement around the surface of the cylinder/sphere as in the benchmark

flows we are investigating we expect large boundary layers to form in these areas.

We a refine from the very coarse M1, up to 3 progressively tighter layers around the

cylinder/sphere in M4. Each mesh consists of a central section running from −4 to

4 in the horizontal direction, with additional elements added to either end in order

to create a domain of the desired length. In the majority of calculations, and unless

otherwise stated, we set the length to be 40 (note that the circle in the mesh of radius

1), extending the meshes to −20 and 20 in the horizontal direction.

To get from M1 to M2 we add a layer of elements at a radius of 1.25 from the centre of

the circle. While the mesh appears overly thin where it nears the surface of the circle,

we found that this made little difference in practice. Mesh M3 divides each element,

radially from the circle, in half to produce 20 elements. Finally, for M4 we move the

layer of elements out to a radius of 1.5 and add an additional layer at a radius of 1.125

to giving a total of 26 elements.

Boundary layers in the wake of the cylinder/sphere have been also been observed for

viscoelastic flows so we also consider refinement in the wake, by adding an additional

layer of elements with the first elemental inclined at a 15◦ angle from the centre of the
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(a) M1, K = 7 (b) M2, K = 10

(c) M3, K = 20 (d) M4, K = 26

(e) M5, K = 31

Figure 3.4: Meshes M1-M5. Each spectral element contains the local GLL-mesh with

N = 8.
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cylinder/sphere in the downstream direction and with the remaining elements added

parallel to the downstream direction until we reach the end of the domain, giving us

mesh M5 with 31 elements.
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Chapter 4

Stokes Flow

A very important aspect of implementing a numerical scheme is benchmarking and

validation of the results it produces. We begin with the basis of our numerical solver,

the steady-state Stokes problem (Re = 0, We = 0, β = 1). We validate using analytical

solutions. In Section 4.1 using a velocity solution which satisfies the continuity equation

along with a body force in the momentom equation which accounts for the chosen

velocity and pressure solutions. In Section 4.2 we use a model solution for that of flow

past a cylinder. In Sections 4.3 and 4.4 we calculate solutions to some benchmark

problems which we compare with results in the literature, specifically that of flow past

a cylinder in an infinite channel and uniform flow past a sphere, which are both highly

relevant in the context of this thesis.

In all cases the importance of convergence with increasing order of approximation must

be observed. In the case of our spectral element method, this means we must look for

convergence in both mesh refinement, increasing K, and in polynomial order, increasing

N .

When considering errors, we typically present these in either the H1-norm or L2-norm

which involve integration over the domain. This integration is performed using Gauss-

Lobatto quadrature as given in (3.84) on the same GLL grid as is used for the SEM

itself.
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4.1 Model Solution

To validate that our method converges for both increasing N and K, we seek an

analytical solution which is not trivial in the sense that it is not a polynomial. If we

choose functions for both the velocity and pressure fields along with the appropriate

body force term, then we may find a more complex solution which should not be so

easy to approximate using polynomials. We consider a solution to the Stokes problem

in 2-D cartesian co-ordinates

u (x, y) = sin (πx) cos (πy) ,

v (x, y) = − cos (πx) sin (πy) ,

p (x, y) = sin (πx) sin (πy) . (4.1)

The resulting body force, f = (fx, fy), is given by

fx (x, y) = 2π2 sin (πx) cos (πy) + π cos (πx) sin (πy) ,

fy (x, y) = −2π2 cos (πx) sin (πy) + π sin (πx) cos (πy) . (4.2)

The use of trigonometric functions is suitable as we expect a more accurate approxi-

mation with increasing polynomial order, N , as they may be expressed as an infinite

sum of polynomials of increasing order.

4.1.1 Domain and Elemental Meshes

We approximate the solution to (4.1) on the parent domain Ω = [−1, 1] × [−1, 1].

We may exactly mesh this domain using a single spectral element. However we are

interested in the convergence with increasing numbers of elements as well as with

polynomial order so we make use of 5 meshes.

We begin with a single parent-sized element, and for each refinement we double the

number of elements, keeping them equally-sized. The result is 4 meshes with K =

1, 2, 4, 16. For each of these meshes, the edges are all aligned with the co-ordinate

system which means that many of the geometric factors arising from the transformation

to the parent element used for SEM are zero.
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To test the robustness of the solver in preparation for using non-rectangular elements,

we also use a non-uniform mesh with K = 16 by slightly perturbing the vertex nodes

of each element which are internal to the global domain. This mesh is referred to as

the “non-uniform mesh” in our figures.
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4.1.2 Results
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Figure 4.1: Dependence of the H1-norm of the velocity error on N and K, for the

model problem given in (4.1).

For the following results, the alternative formulation of the Stokes problem was used

with µ = 1.

Figures 4.1 and 4.2 show the convergence with polynomial order, N , of the log of

velocity error in the H1-norm and log of pressure error in the L2-norm. The zig-zag

pattern seen in these figures is due to the nature of the solution we are approximating.

Since the trigonometric functions may be represented as sums of either odd or even

polynomials it is expected that the approximation using odd or even polynomial bases

will have different rates of convergence. This effect is lessened as more elements are

used.
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The small rise after seemingly reaching the bottom of the graph is due to the limit of

machine accuracy on the computer used to compute the results. After this point, the

error will always be around this order of magnitude, but due to an increased number

of points within the Gauss-Lobatto quadrature for the calculation of the norm, we see

a slight rise.

Spectral convergence up to machine accuracy is achieved with increasing N for each of

the meshes and elemental mesh refinement results in convergence to machine accuracy

at lower polynomial order, N . These results confirm that the method and solver

are working as expected and that we may place confidence in the approximations it

produces.

It is also worth noting that the non-uniform mesh performs far worse than the equiva-

lent mesh which is aligned with the co-ordinate axes and in fact performs at a similar

level to the uniform 4-element mesh. Convergence to machine accuracy is still reached,

but not at the same rate at the aligned meshes. This is something to bear in mind

when working with more complicated domains where it may not be possible to use

rectangular elements.

Figure 4.3 shows the log of CPU time taken for each computation shown in the previous

two figures. The function called to calculate this time only gives a time to 2 decimal

places, so the lower values of N should be expected to be fairly inexact. As is intuitively

obvious, more elements at equal polynomial order takes more time - roughly an order

of magnitude more when doubling the number of elements. The effect of increasing the

polynomial order has a more dramatic affect, although this is offset by the improvement

in accuracy with increasing N .
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Figure 4.2: Dependence of the L2-norm of pressure error on N and K, for the model

problem given in (4.1).

4.2 Model flow past a Cylinder

To validate the accurate handling of the circular edge which will feature in our simu-

lations involving sphere and cylinders we consider a 2-D validation problem for Stokes

flow past a cylinder. We consider a problem with analytical solutions given, in polar

co-ordinates by [61]:

u (x, y) =

(
R2
C

r2
− 1

)(
1

2
cos 2θ

)
+ ln

(
r

RC

)
,

v (x, y) =

(
R2
C

r2
− 1

)
cos θ sin θ,

p (x, y) = −2 cos θ

r
. (4.3)

In order to implement this solution into our 2-D code we convert from Cartesian co-

ordinates where appropriate, such as when computing values for boundary conditions.
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Figure 4.3: Dependence of the CPU time taken on N and K, for the model problem

given in (4.1).

4.2.1 Domain and Mesh

The domain is a channel of length 8 radii and of height HC = 2 radii, with a cylinder

of radius RC = 1 centred in the middle of the channel at (0, 0). We apply the known

solution on the entire boundary. There is no body force term, i.e. f = 0.

We have 4 levels of mesh refinement for this domain. We make use of the central sections

of meshes M1, M2, M3 and M4 seen in Figures 3.4(a)-3.4(d) but discard the elements

which extend the length of the domain. This gives us meshes with K = 5, 8, 10, 16.
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4.2.2 Results

Figures 4.4 and 4.5 show the convergence of velocity error in the H1-norm and pressure

error in the L2-norm, respectively. We observe excellent agreement with the known

solution as well as spectral convergence to machine precision with increasing N . We

also observe higher accuracy due to elemental mesh refinement with increasing K.

However, we note that the limit of machine precision for this problem is roughly an

order of magnitude higher than that of the uniform meshes in Section 4.1. We may put

this down to the fact that we have non-rectangular elements making up each of our

meshes in this case, due to the nature of the geometry. As such we should not expect to

reach such levels of accuracy as that of our model problem on the rectangular domain

due to the introduction of geometric factors in the transfinite element mapping. These

are likely to degrade the accuracy of the quadrature rules employed in the discretisation

of the bilinear forms.

Figure 4.6 shows the log of CPU time taken for increasing N and gives a very similar

picture to that of Figure 4.3 in Section 4.1, and confirms that there is little computa-

tional impact in using the circular-edged elements over straight-edged elements.

Combined with the results found in Section 4.1, we can be confident that the Stokes

solver is performing as expected and that the circular elements of our domain are being

treated appropriately.
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Figure 4.4: Dependence of the H1-norm of velocity error on N and K for the model

cylinder problem given in (4.3).

4.3 Flow past a Fixed Cylinder in a Channel

After confirming that our Stokes solver is working using analytical solutions, we move

onto benchmarking. We begin with the benchmark of flow past a fixed cylinder in

an infinite channel. Due to symmetry, this may be posed as a 2-D problem and so is

appropriate for our 2-D solver.

In this benchmark, planar Poiseuille flow is applied at inflow and outflow, both of which

are an appropriate distance from the cylinder. The velocity profile is given by

ux =
3

2
Uav

(
1− 4

H2
C

y2

)
,

uy = 0, (4.4)

where Uav is the average velocity and HC is the height of the channel. It is typical to
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Figure 4.5: Dependence of the L2-norm of pressure error on N and K for the model

cylinder problem given in (4.3).

choose Uav = 1 for this benchmark. No-slip and no penetration conditions are applied

at the top wall and on the surface of the cylinder and symmetry boundary conditions

are applied along the axis of symmetry.

4.3.1 Domain and Mesh

The domain for this benchmark is a channel of length 40 radii and height HC = 4 radii

with the cylinder of radius RC = 1 centred in the middle at (0, 0), inflow at x = −20RC

and outflow at x = 20RC . This means that our inflow and outflow velocity profile is

ux = 3
8

(4− y2).

We use meshes M1-M4, similarly to Section 4.2, but instead use the full length versions
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Figure 4.6: Dependence of the CPU time taken on N and K, for the model cylinder

problem given in (4.3).

as seen in Figure 3.4(a)- 3.4(d) in Section 3.9.2. So our 4 meshes have K = 7, 10, 20, 26

with refinement concentrated around the areas where large velocity gradients are to be

expected close to the surface of the cylinder. We do not expect high gradients outside

of this area, so refinement in the regions away from the cylinder is kept to a minimum.

4.3.2 Results

We begin by looking at the convergence of the calculated drag with increasing N .

Table 4.1 shows drag values for each value of K up to the value of N for which drag

convergence had been reached for that mesh to 4 decimal places. We do indeed reach

convergence for the drag in all cases and we see that elemental mesh refinement does

result in convergence to that value at lower polynomial order. The converged value for
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N on M1 Drag N on M2 Drag N on M3 Drag N on M4 Drag

3 132.4059 3 129.2897 3 131.4683 3 131.5703

4 132.3801 4 131.3939 4 132.3226 4 132.3053

5 132.6531 5 132.3265 5 132.3538 5 132.3522

6 132.445 6 132.3509 6 132.3574 6 132.3573

7 132.381 7 132.3578 7 132.3575 7 132.3575

8 132.3636 8 132.3575 8 132.3575 8 132.3575

9 132.3592 9 132.3575 - - - -

10 132.3579 - - - - - -

11 132.3576 - - - - - -

12 132.3575 - - - - - -

13 132.3575 - - - - - -

Table 4.1: Dependence of the drag on N and K for Stokes flow past a fixed cylinder

in a channel. Results shown for increasing N up to the point the drag had converged

to 4 decimal places.

each mesh is 132.3575 which compares favourably to the literature such as that found

by Vargas et al. [60] who state a value of 132.3507 and Hulsen et al [25] who state a

value of 132.3584.

Further, we also find that there is very little mesh dependence on the value to which

each set of results is converging. To demonstrate this more thoroughly, Figure 4.7

shows the apparent error of the calculated drag for each value of K and N when

compared to the most refined result we could reach which was K = 26, N = 19 at which

point the PARDISO linear solver experienced memory allocation problems. We achieve

convergence up to what seems to be the limit of machine precision (around 10−10) for

K = 10, 20, 26 by a value of N = 14, whereas the coarser mesh, M1 is nearing that

point by N = 20. The limit of precision being slightly higher than seen previously can

be explained by the use of non-rectangular shaped elements meaning that the majority

of the local SEM matrices are fuller than their rectangular counterparts. However, this

level of accuracy is more than acceptable.
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Figure 4.7: Dependence of the error in the drag calculated on N and K when compared

to the converged value (result from K = 26, N = 19) for Stokes flow past a fixed

cylinder.

In the context of the drag calculation, it is clear that there is very little difference

between the three finest meshes used here. K = 10 appears to be adequate in resolving

the solution and refinement with polynomial order is more important in reaching a

converged solution, while K = 7 has a more consistent but slower rate of convergence

towards machine precision. This was not observed in the convergence of the error

norms for the model problems, which suggests that drag approximation may not be a

definitive measure of overall convergence.

Finally, the CPU times for each calculation are given in Figure 4.8 and show that

performance is largely on par with the results seen in Sections 4.1 and 4.2, as is to be

expected.
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Figure 4.8: Dependence of the CPU time taken on N and K for Stokes flow past a

fixed cylinder in a channel.

4.4 Flow past a Fixed Sphere

To validate within an axisymmetric 3-D domain we consider the benchmark problem

of a fixed sphere in uniform flow. We use the axisymmetric geometry of a sphere on the

central axis of a cylinder as given in Section 3.9. The quantity of interest, as with the

fixed cylinder in a channel benchmark, is the drag force experienced by the sphere. It

is generally accepted that the Drag Correction Factor, D∗, is used to normalise results

for this benchmark. This is the ratio of the drag in the current flow against that which

would be experienced by the same sphere in an unbounded expanse of Newtonian fluid
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of the same viscosity

D∗ =
D

6πη0RSVS
. (4.5)

where RS is the sphere radius and VS is the sphere velocity, with the drag, D, calculated

using (2.53)

4.4.1 Domain and Mesh

The domain for this benchmark is the axisymmetric analogue of that used in Sec-

tion 4.3, with the pipe of length 20 radii and height 2 radii with the sphere of radius

RS = 1 centred at (0, 0). As before, inflow is at z = −20RS and outflow is at z = 20RS.

Uniform flow in the axial direction is imposed on both of these boundaries. Axisym-

metric boundary conditions are imposed along the axis of symmetry and wall boundary

conditions are imposed on the surface of the sphere. Finally, moving wall boundary

conditions are applied along the top wall matching the inflow and outflow velocity

where a velocity VS = 1 is used.

We use the same set of meshes, in cylindrical co-ordinates, as those for the cylinder

benchmark as high gradients for this flow may be expected in similar areas.

4.4.2 Results

As with to the cylinder benchmark problem we are interested in the convergence of

drag with mesh and polynomial refinement. Table 4.2 shows the convergence of the

drag factor, D∗, with increasing N up to the point where the drag has converged to 4

decimal places for that mesh. We see convergence with lower polynomial order as the

elemental mesh is refined and no evidence of mesh dependence for the Drag Factor,

with convergence to the value 5.9474 for each mesh. This value agrees well with those

found in the literature which are assembled in Table 4.3.

Figure 4.9 shows the apparent error when compared to the most refined results we

were able to compute, again reaching memory limits with the PARDISO linear solver

at K = 26, N = 19 - this comes as no surprise given that we have the same number
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N on M1 D∗ N on M2 D∗ N on M3 D∗ N on M4 D∗

3 5.8037 3 5.8564 3 5.9173 3 5.9183

4 5.9353 4 5.8978 4 5.9475 4 5.9459

5 5.9695 5 5.9464 5 5.9473 5 5.9471

6 5.9567 6 5.947 6 5.9474 6 5.9474

7 5.9506 7 5.9474 7 5.9474 7 5.9474

8 5.9484 8 5.9474 - - - -

9 5.9477 - - - - - -

10 5.9475 - - - - - -

11 5.9474 - - - - - -

12 5.9474 - - - - - -

Table 4.2: Dependence of the drag factor on N and K for uniform Stokes flow past a

fixed sphere in a cylinder. Results shown for increasing N up to the point the drag

had converged to 4 decimal places.

Authors D∗

Present Work 5.9474

Vargas et al. (2009) [60] 5.9474

Owens and Phillips (1996) [44] 5.9474

Lunsmann et al. (2003) [33] 5.9472

Table 4.3: Comparison of computed drag factor for uniform Stokes flow past a fixed

sphere in a cylinder with those found in the literature.
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of degrees of freedom as in the cylinder benchmark. We find that there is, again,

convergence to what appears to be machine precision of around 10−10 with the refined

elemental meshes performing slightly better in terms of increasing polynomial order.

When considering the drag, there appears to be little difference between the K = 20

and K = 26 meshes and we may conclude that this level of elemental mesh refinement

is unncessary for the solution of the Stokes problem in this geometry. The nature of the

velocity gradients within this benchmark appear to not require such intense refinement

around the surface of the sphere. We note that there is a gain in using the 20 element

mesh over the 10 element mesh, which was not required for the cylinder benchmark

problem.

Finally, the CPU times taken for each calculation are shown in Figure 4.10 and again

performance is comparable to the previous simulations, although there is a slight

penalty in the axisymmetric cylindrical co-ordinate system.

4.5 Summary

The main part of our computational solver has been validated thoroughly through both

analytical solution and benchmarking in both the 2-D Cartesian co-ordinate system and

3-D axisymmetric cylinderical polar co-ordinate system. The use of circular edges for

our spectral elements has been verified. Convergence with both mesh refinement and

polynomial refinement has been observed in all cases. With all of this in mind, we may

be reasonably confident in the accuracy, robustness and stability of the Stokes solver

at this stage.
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Figure 4.9: Dependence of the drag factor error on N and K when compared to the

converged value (result from K = 26, N = 19) for uniform Stokes flow past a fixed

sphere.
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Figure 4.10: Dependence of the CPU time taken on N and K for uniform Stokes flow

past a fixed sphere.
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Chapter 5

Newtonian Flow

Having performed validation and benchmarking of the numerical scheme for the Stokes

problem in Chapter 4, we now repeat the exercise for the incompressible Newtonian

fluid flow detailed in Section 2.1.1. We begin with start-up (or transient) Poiseuille

flow for which there are analytical solutions for both the planar channel flow [62] and

axisymmetric pipe flow [63] cases. These solutions allow us to carefully investigate the

accuracy of our numerical approximations in a time-dependent flow in Sections 5.1.1

and 5.1.2 for the 2D Cartesian and 3D axisymmetric schemes respectively.

We also continue in benchmarking our scheme using the flow past a fixed cylinder in an

infinite channel for the Cartesian geometry and flow past a fixed sphere in a cylinder

for the cylindrical axisymmetric geometry. These are found in Sections 5.2 and 5.3

respectively.
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5.1 Transient Poiseuille Flow for an Incompressible

Newtonian fluid

5.1.1 Planar Geometry

We test the validity of the numerical solution for the Cartesian Newtonian scheme using

the time-dependent analytical solution for start-up of Poiseuille flow. This is achieved

by prescribing a constant pressure gradient across the channel. The non-trivial parts

of the solution for a channel of height H are given by,

ux(x, t) = A(y)− 32
∞∑
n=1

sin (νy/H)

ν3
exp

(
−ν2t/Re

)
, (5.1)

(∇u)yx = A′(y)− 32
∞∑
n=1

cos (νy/H)

ν2
exp

(
−ν2t/Re

)
, (5.2)

p(x, t) = − 8

H
x (5.3)

where ν = ν (n) = (2n− 1) π and A(y) = −4y (y − 1).

We impose zero initial conditions along with boundary conditions for the velocity at

inflow and outflow using the analytical solution and wall conditions at the top and

bottom of the channel. No conditions are imposed on the pressure. The simulation is

terminated after 10 time units.

When computing the analytical solution we must truncate the infinite sum in (5.1).

We choose to use the first 20 terms when truncating this sum because for values of

t > 10−3, the terms in the sum quickly reach the limit of machine precision, and are

converging to values around and below 10−7 for ∆t = 10−4, which is the lowest value

of ∆t used for these simulations. Note, we do not consider t = 0 using this solution as

we know u(0) = 0).

Domain, Mesh and Timestepping

The domain is chosen to be a channel of length L. The value of L is fixed at L = 8

(we saw no change in results with a change in length of the channel for the Newtonian
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fluid). The height of the channel is fixed at H = 1. We use 4 different elemental meshes,

T1-T4, which are shown in Figure 3.3 in Section 3.9.1, ranging from a single element

up to 4 elements. Timesteps ranging from ∆t = 10−1 to ∆t = 10−4 are considered.

Results

Test points at the penultimate GLL-node nearest the outflow boundary are chosen in

the centre of the channel (where y = 0.5) and on the lower wall (where y = 0) for the

non-zero velocity and velocity gradient component, respectively. Figures 5.1(a) and

5.1(b) show a typical comparison between the actual solution and that computed by

the numerical scheme at these test points. We see that even on a single element with

a modest polynomial order of N = 6 and timestep of ∆t = 10−2 we obtain a numerical

solution which is barely discernible from the actual solution to the eye and reaches the

appropriate steady-state velocity.
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Figure 5.1: Comparison of numerical and analytical solutions for at the chosen test

point for planar Newtonian start-up of Poiseuille flow for Re = 0.001, 0.01, 0.1, 1.0, 10.0.

Parameters used are ∆t = 10−2, K = 1 (mesh T1), N = 6.

A more appropriate metric is a time-averaged error, given by,

Eu =

∫
|unumerical − uanalytical|dt

Total time
. (5.4)

where the unumerical and uanalytical are the values at the test point. We do not expect

that the time-averaged error will be a smooth function so use the composite Simpson’s
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Mesh ∆t N = 4 N = 6 N = 8 N = 12 N = 16

T1

10−1 1.5712×10−4 1.4424×10−4 1.2775×10−4 6.7742×10−5 3.0286×10−5

10−2 2.5887×10−5 9.5223×10−6 8.6610×10−6 4.5430×10−6 2.1020×10−6

10−3 3.2371×10−5 8.9735×10−7 1.6314×10−7 7.1161×10−8 3.3383×10−8

10−4 3.2442×10−5 9.9041×10−7 7.4702×10−8 2.5366×10−9 5.1796×10−10

T2

10−1 1.5119×10−4 1.4547×10−4 1.2857×10−4 6.8123×10−5 3.0544×10−5

10−2 1.0777×10−5 9.9705×10−6 8.6519×10−6 4.5449×10−6 2.1036×10−6

10−3 5.9189×10−7 1.4197×10−7 1.2862×10−7 7.1416×10−8 3.3415×10−8

10−4 4.5851×10−7 1.1870×10−8 1.9001×10−9 9.2743×10−10 5.4484×10−10

T3

10−1 1.5747×10−4 1.5560×10−4 1.5567×10−4 1.5207×10−4 1.5194×10−4

10−2 2.6240×10−5 1.0428×10−5 1.0786×10−5 1.0529×10−5 1.0515×10−5

10−3 3.2845×10−5 9.7822×10−7 1.9424×10−7 1.5320×10−7 1.5312×10−7

10−4 3.2918×10−5 1.0706×10−6 7.5230×10−8 3.3606×10−9 1.6351×10−9

T4

10−1 1.5105×10−4 1.5563×10−4 1.5550×10−4 1.5206×10−4 1.5194×10−4

10−2 1.1064×10−5 1.0873×10−5 1.0755×10−5 1.0529×10−5 1.0515×10−5

10−3 6.1512×10−7 1.5339×10−7 1.5662×10−7 1.5344×10−7 1.5312×10−7

10−4 4.7980×10−7 1.3165×10−8 2.3842×10−9 1.7305×10−9 1.7150×10−9

Table 5.1: Time-averaged velocity error, Eu, at the test point, for planar start-up flow

of a Newtonian fluid, Re = 1.

rule to approximate the integral using the errors at the test point at each timestep,

tn. Table 5.1 shows these values for Re = 1 on each mesh varying ∆t and N . We are

especially interested in the performance of the temporal discretisation of the momentum

equation.

At N = 4 and on meshes T1 and T3, the improvement with refinement in time is

not clear, and there is little to no improvement with refinement of the mesh in the

x-direction. However, we see an improvement with meshes T2 and T4, which can

be explained by the refinement in the y-direction achieved by effectively doubling the

number of node points in this direction. One would expect this to improve results

due to the nature of the analytical solution. This also indicates that spatial error is

the dominating contribution to the error at orders of ∆t < 10−2. To investigate the

temporal discretisation we must therefore consider results which are more spatially

refined. The rest of the table supports this and we see that by N = 8 we have largely
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Mesh ∆t time = 0.1 time = 0.2 time = 0.4 time = 0.8

T1

10−1 2.8622×10−1 2.8688×10−2 1.6710×10−2 2.0468×10−4

10−2 7.5317×10−4 4.1812×10−4 5.8075×10−5 1.1207×10−6

10−3 8.0063×10−6 4.0625×10−6 5.6448×10−7 1.0893×10−8

10−4 1.3907×10−6 1.1142×10−6 1.5481×10−7 2.9872×10−9

T4

10−1 2.8598×10−1 2.8455×10−2 1.6615×10−2 2.0488×10−4

10−2 7.5964×10−4 4.1681×10−4 5.7896×10−5 1.1172×10−6

10−3 7.7357×10−6 3.8971×10−6 5.4153×10−7 1.0449×10−8

10−4 9.0668×10−8 4.4741×10−8 6.2167×10−9 1.2002×10−10

Table 5.2: Velocity error in the H1-norm of the numerical solution at selected points

in time for planar start-up Poiseuille flow of a Newtonian fluid for N = 8.

eliminated this domination by spatial error for meshes T3 and T4 and for all meshes

by N = 12. Continuing with the results for N = 12 and N = 16 then we can see there

is a clear demonstration of the 2nd-order accuracy of our temporal scheme and that the

temporal error is the dominating factor up to orders of error that approach machine

accuracy.

This demonstrates the accuracy of the scheme at a selected point, but it is also inter-

esting to look at errors across the whole domain. We consider the velocity error in the

H1-norm for fixed N = 8 in Table 5.2 at selected points in time at Re = 1. The first

observation is that the error in our numerical solution is higher at the beginning of

the simulation. This is to be expected since the nature of the solution in time is that

the rate of change in velocity is highest at these points. Furthermore, we see that the

2nd-order accuracy is demonstrated at t = 0.8, for mesh T1, and for all time points for

mesh T4, although this suggests that spatial error may still be beginning to dominate

as we refine in time. Table 5.3 shows the same information for N = 16 where we see

that 2nd-order accuracy is maintained with refinement and that the spatial error no

longer dominates the results generated with ∆t = 10−4. It is also enough refinement

in the polynomial order in order to see agreement in the error measure between the

single element mesh, T1, and the 4-element mesh, T4.

These results demonstrate that our numerical scheme is performing at the expected

order of accuracy in terms of both spatial and temporal discretisation for a time-
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Mesh ∆t time = 0.1 time = 0.2 time = 0.4 time = 0.8

T1

10−1 2.8603×10−1 2.8419×10−2 1.6577×10−2 2.0501×10−4

10−2 7.6209×10−4 4.1634×10−4 5.7829×10−5 1.1159×10−6

10−3 7.7465×10−6 3.8926×10−6 5.4089×10−7 1.0437×10−8

10−4 7.7849×10−8 3.8667×10−8 5.3729×10−9 1.0359×10−10

T4

10−1 2.8608×10−1 2.8504×10−2 1.6589×10−2 2.0620×10−4

10−2 7.6186×10−4 4.1636×10−4 5.7832×10−5 1.1159×10−6

10−3 7.7463×10−6 3.8928×10−6 5.4092×10−7 1.0438×10−8

10−4 7.7897×10−8 3.8669×10−8 5.3733×10−9 1.0376×10−10

Table 5.3: Velocity error in the H1-norm of the numerical solution at selected points

in time for planar start-up Poiseuille flow of a Newtonian fluid for N = 16.

dependent problem for a Newtonian fluid. This has been shown for both a single point

of interest and in an error measure across the whole domain. It should be noted that

the convective term within the material derivative is not present in Poiseuille flow, so

while the OIFS scheme dealt with this part being zero, it is essentially reduced to a

BDF scheme in this type of flow.

5.1.2 Axisymmetric Geometry

Analogously to the planar problem, we test the validity of the axisymmetric scheme for

a Newtonian fluid against the analytical solution for start-up of Poiseuille in a cylinder.

As in Section 5.1.1 this is flow is characterised by a constant pressure gradient. The

non-trivial parts of the solution for a pipe of radius RC are given by,

uz(x, t) = A(r)− 8
∞∑
n=1

J0(rZn/RC)

J1(Zn)Z3
n

exp
(
−Z2

nt/Re
)
, (5.5)

(∇u)rz = A′(r) + 8
∞∑
n=1

J1(rZn/RC)

J1(Zn)Z2
n

exp
(
−Z2

nt/Re
)
, (5.6)

p(x, t) = − 8

H
x (5.7)

where, Zn is the nth real and positive root of the Bessel function of zero order, J0, and

A(r) = 1− r2.
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As before, we impose zero initial conditions along with boundary conditions for the

velocity at inflow and outflow using the analytical solution, no-slip and no-penetration

conditions are imposed on the wall of the pipe. Axisymmetric boundary conditions are

imposed along the central axis of the pipe. No conditions are imposed on the pressure

or pressure gradient. The simulation is terminated after 10 time units.

As in the analytical solution in Section 5.1.1 we must truncate the infinite sum and we

include the first 20 terms, as we did in the planar solution.

Domain, Mesh and Timestepping

The domain chosen is a cylinder of radius RC = 1, and length L = 8, analogous to

the planar geometry in Section 5.1.1. We use the same meshes T1 − T4 shown in

Figure 3.3. Timesteps ranging from ∆t = 10−1 to ∆t = 10−4 are considered.

Results

The chosen test points are the penultimate GLL-node nearest the outflow boundary

in the centre of the channel (i.e. on the axis of symmetry, r = 0) and on the upper

wall (where r = 1) for the velocity and velocity gradient respectively. As with the

planar geometry, even on a single element with a modest polynomial order of N = 6

and timestep of ∆t = 10−2 we obtain a numerical solution which is barely discernible

from the actual solution.

We continue to use the time-averaged error (5.4) as a more appropriate metric. Ta-

ble 5.4 shows Eu for a each combination of mesh, N and ∆t at Re = 1. Fixing a coarse

value of ∆t such as ∆t = 10−1 we see that there is little improvement in the numerical

solution with polynomial or mesh refinement. We can conclude that temporal discreti-

sation error is the dominating factor here. By decreasing the timestep to ∆t = 10−4

we see, by fixing N = 4 and comparing T1 and T3 with T2 and T4 that spatial error

is the dominating factor, since mesh refinement in the r-direction results in a lower

time-averaged error. Varying the polynomial refinement for a fixed mesh, T4, we see

further decrease in error up to N = 8, by which time further spatial refinement yields
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Mesh ∆t N = 4 N = 6 N = 8 N = 12 N = 16

T1

10−1 5.1180×10−4 4.3616×10−4 3.0554×10−4 1.0530×10−4 4.1938×10−5

10−2 3.4128×10−5 1.1495×10−5 8.1820×10−6 2.8931×10−6 1.1344×10−6

10−3 2.9005×10−5 1.0018×10−6 1.2556×10−7 3.2473×10−8 1.2687×10−8

10−4 2.9003×10−5 9.2898×10−7 7.7034×10−8 6.0085×10−9 4.1644×10−9

T2

10−1 4.9704×10−4 4.3563×10−4 3.0569×10−4 1.0543×10−4 4.2066×10−5

10−2 1.2870×10−5 1.1506×10−5 8.2313×10−6 2.8936×10−6 1.1350×10−6

10−3 3.8246×10−7 1.3195×10−7 9.3387×10−8 3.2797×10−8 1.2733×10−8

10−4 4.0177×10−7 1.0350×10−8 6.4100×10−9 4.6189×10−9 3.9967×10−9

T3

10−1 5.4018×10−4 5.2569×10−4 5.1328×10−4 5.0940×10−4 5.0941×10−4

10−2 3.4671×10−5 1.3757×10−5 1.3413×10−5 1.3338×10−5 1.3340×10−5

10−3 2.9118×10−5 1.0291×10−6 1.7221×10−7 1.5046×10−7 1.5132×10−7

10−4 2.9108×10−5 9.3251×10−7 7.6588×10−8 8.6687×10−9 6.9938×10−9

T4

10−1 5.2187×10−4 5.2497×10−4 5.1325×10−4 5.0939×10−4 5.0941×10−4

10−2 1.3571×10−5 1.3770×10−5 1.3464×10−5 1.3338×10−5 1.3340×10−5

10−3 3.8717×10−7 1.5755×10−7 1.5270×10−7 1.5134×10−7 1.5136×10−7

10−4 4.0917×10−7 1.1494×10−8 7.9906×10−9 7.1496×10−9 7.1789×10−9

Table 5.4: Time-averaged velocity error, Eu, at the test point, for axisymmetric start-

up flow of a Newtonian fluid, Re = 1.

no improvement, meaning that temporal discretisation error is dominating once again.

Using these observations we confirm that the temporal scheme is 2nd-order as pre-

scribed. Focusing on the results for N ≥ 8, we see that each decrease in timestep order

results in a reduction of the time-averaged error 2 orders of magnitude. This continues

up to ∆t = 10−4 where we converge to an error of order 10−9, which is approaching

machine accuracy. Further to this point, we note that the truncation of the infinite

sum within the first few timesteps at ∆t = 10−4 may be responsible for our analytical

solution being prone to error of this order.

We also consider the error in the H1-norm at select points in time in Table 5.5 for

N = 8 with Re = 1. The error is higher during the transitional phase of the start-up

of Poiseuille flow as is demonstrated by the order of the error being higher at t = 0.1
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Mesh ∆t time = 0.1 time = 0.2 time = 0.4 time = 0.8

T1

10−1 1.0348×10−1 5.4345×10−2 8.6269×10−3 1.1949×10−3

10−2 1.7630×10−3 9.8749×10−5 7.8477×10−5 7.9521×10−6

10−3 1.6571×10−5 8.5548×10−7 7.5577×10−7 7.6505×10−8

10−4 5.0555×10−6 2.1372×10−7 1.1130×10−7 1.1050×10−8

T4

10−1 1.0347×10−1 5.4043×10−2 8.6536×10−3 1.1877×10−3

10−2 1.7488×10−3 9.9773×10−5 7.8042×10−5 7.9054×10−6

10−3 1.5630×10−5 8.5520×10−7 7.4450×10−7 7.5366×10−8

10−4 2.9638×10−7 1.3039×10−7 4.0323×10−8 3.9894×10−9

Table 5.5: Table showing velocity error in the H1-norm of the numerical solution at

points in time for axisymmetric start-up Poiseuille flow for varying ∆t on the T1 and

T4 meshes at polynomial order N = 8.

compared to t = 0.8 for all values of ∆t and for both meshes shown. This is to be

expected due to the nature of the solution as the change in velocity and gradients

are most extreme in this period. For mesh T1 we see an improvement in error in

line with the 2nd-order temporal scheme, but this breaks down between 10−3 and 10−4

when it seems that spatial error begins to dominate. There is a slight improvement in

convergence with refinement in time discretisation when using mesh T4, which supports

this.

Table 5.6 shows the same information for increased polynomial order N = 16. This

appears to improve things slightly, at least for mesh T1, but there is no discernible

improvement for mesh T4. This is an interesting result as, combined with the time-

averaged error in Table 5.4, it appears to show a limit in the achievable accuracy using

our numerical scheme is of order 10−9. This is still a high degree of accuracy, but we

were able to reach higher levels of accuracy when computing solutions for the Stokes

problem. It is also slightly lower than that seen for 2D planar start-up of Poiseuille flow

in a channel. The source of this additional error may be explained by the additional

component of the velocity gradient, (∇u)θθ which we must rewrite using L’Hôpital’s

rule in (3.81) in order to evaluate it on the axis of symmetry. Overall, however, we

have demonstrated that the temporal scheme is indeed 2nd-order and we see excellent

agreement with an analytical solution in axisymmetric 3D.
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Mesh ∆t time = 0.1 time = 0.2 time = 0.4 time = 0.8

T1

10−1 1.0351×10−1 5.4001×10−2 8.6456×10−3 1.1873×10−3

10−2 1.7474×10−3 9.9722×10−5 7.8014×10−5 7.9022×10−6

10−3 1.5618×10−5 8.5557×10−7 7.4429×10−7 7.5341×10−8

10−4 2.8090×10−7 1.3490×10−7 4.1896×10−8 4.1450×10−9

T4

10−1 1.0352×10−1 5.4017×10−2 8.6460×10−3 1.1874×10−3

10−2 1.7475×10−3 9.9743×10−5 7.8026×10−5 7.9038×10−6

10−3 1.5621×10−5 8.5648×10−7 7.4446×10−7 7.5362×10−8

10−4 2.9472×10−7 1.4005×10−7 4.3492×10−8 4.3029×10−9

Table 5.6: Velocity error in the H1-norm of the numerical solution at selected points

in time for axisymmetric start-up Poiseuille flow of a Newtonian fluid for N = 16.

5.1.3 Summary

In both the planar 2D and axisymmetric 3D versions of our numerical scheme we have

demonstrated convergence with refinement in both time and space to a high degree

of accuracy. Appropriate refinement in both aspects has been demonstrated to be

important since the error may become dominated by either so a balance should be

reached in order to avoid wasted computational time. We also observed that the

axisymmetric scheme may suffer slightly more error due to the extra terms present in

the velocity gradient.

5.2 Flow past a Fixed Cylinder in a channel

In Section 4.3 we benchmarked our numerical scheme using Poiseuille flow past an

infinite cylinder in an infinite channel, and continue to do so for the Newtonian scheme.

While the focus of this thesis is flows at Re < 1, it is still worthwhile to validate the

solver at moderate Reynolds numbers, Re < 50, but we must be wary of where the

assumption of axisymmetry is valid.

As before, we prescribe the inflow and outflow velocity conditions as given in (4.4) along

with no-slip wall conditions at the top and symmetric wall conditions at the bottom
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of the channel. We impose zero initial conditions and stop the simulation according

to the stopping criteria described in Section 3.1.7. A range of Reynolds numbers from

Re = 10−3 up to Re = 10, in orders of 10, are considered in detail along with additional

results up to Re = 40.

5.2.1 Domain, Mesh and Timestepping

We make use of the fixed cylinder in an infinite channel domain and benchmarking

meshes, M1-M4, seen in from Figures 3.4(a)- 3.4(d). Unlike the Stokes flow version of

this benchmark, we use the full length of the meshes shown in Section 3.9.2. Timesteps

ranging from ∆t = 10−1 to ∆t = 10−4 are considered.

5.2.2 Results

Table 5.7 shows the collected results up to Re = 10 at fixed ∆t = 10−4. We focus

on these results, at the highest level of refinement in time, with the assumption that

this would eliminate as much temporal discretisation error as possible. Convergence

is seen for all meshes between N = 12 and N = 16 with the exception of Re = 10,

which has not fully converged to a drag value with refinement in polynomial order or

mesh. There is no indication that, with further refinement, convergence to a drag value

would not be reached, although this is beyond the range of Reynolds numbers we are

interested in and so these have not been performed. At Re ≤ 1, we see convergence

to within 4-5 decimal places which, while not confirming that the solution reached is

correct, places confidence in the stability of the solution produced by our numerical

scheme. A final observation is that for these calculations all of our meshes were able to

reach agreement with enough polynomial refinement with the exception of mesh M1

at Re = 10, which disagrees to some degree with the drag compared to the other 3

meshes.

We now move our focus to refinement in time. Table 5.8 show the collected results

up to Re = 10 at fixed polynomial order, N = 16, a value chosen to eliminate spatial

discretisation error as much as possible. At the lowest timestep, ∆t = 10−1, some

results are missing due a breakdown in the numerical scheme usually resulting in blow-
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Drag

Mesh N Re = 0.001 Re = 0.01 Re = 0.1 Re = 1 Re = 10

M1

4 132.382481 132.403986 132.628584 135.818530 192.138158

8 132.365687 132.384961 132.585676 135.382445 206.542116

12 132.359612 132.378818 132.578893 135.373688 200.094315

16 132.359576 132.378782 132.578853 135.373692 200.252481

M2

4 131.395930 131.414305 131.606066 134.319850 198.709973

8 132.359609 132.378814 132.578885 135.373703 200.411425

12 132.359576 132.378782 132.578853 135.373691 200.438695

16 132.359576 132.378781 132.578853 135.373686 200.423101

M3

4 132.324715 132.343917 132.543934 135.337998 201.843848

8 132.359609 132.378814 132.578886 135.373763 200.381844

12 132.359576 132.378782 132.578853 135.373695 200.439184

16 132.359576 132.378781 132.578853 135.373695 200.427622

M4

4 132.307419 132.326587 132.526259 135.316213 199.612814

8 132.359608 132.378814 132.578886 135.373761 200.408090

12 132.359576 132.378782 132.578853 135.373692 200.425943

16 132.359576 132.378781 132.578853 135.373695 200.427681

Table 5.7: Dependence of computed Drag, D on each mesh on N for fixed ∆t = 10−4

for Newtonian flow past a fixed cylinder in a channel for different values of Re.
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Drag

Mesh ∆t Re = 0.001 Re = 0.01 Re = 0.1 Re = 1 Re = 10

M1

10−1 132.359833 132.381361 132.605446 135.702159 193.997078

10−2 132.359578 132.378796 132.579010 135.377324 200.604820

10−3 132.359576 132.378785 132.578888 135.375214 200.611932

10−4 132.359576 132.378782 132.578853 135.373692 200.252481

M2

10−1 - - - - -

10−2 132.359577 132.378795 132.579010 135.377323 -

10−3 132.359576 132.378784 132.578888 135.375213 200.788063

10−4 132.359576 132.378781 132.578853 135.373686 200.423101

M3

10−1 - - - - -

10−2 132.359577 132.378795 132.579010 135.377324 200.832718

10−3 132.359576 132.378784 132.578888 135.375214 200.787934

10−4 132.359576 132.378781 132.578853 135.373695 200.427622

M4

10−1 - - - - -

10−2 132.359577 132.378795 132.579010 135.377324 200.832890

10−3 132.359576 132.378784 132.578888 135.375214 200.787933

10−4 132.359576 132.378781 132.578853 135.373695 200.427681

Table 5.8: Convergence of Drag, D, with refinement in timestep and at N = 16 for

Newtonian flow past a fixed cylinder in a channel.

up of the solution. The majority can be explained easily since we are using a highly

refined GLL grid with very small spacing, which would require a smaller timestep in

order to meet the CFL condition. The missing result for Re = 10.0 on mesh M2 at

∆t = 10−2 is less easily explained because on the other, more refined meshes, we were

able to compute a solution - we are forced to put this down to a software glitch as

it was possible to compute the solution by changing parameters in the linear solver.

It serves as a warning that direct methods for solving these types of matrices require

care.

In terms of convergence, we see good agreement again at low values of Re, with some

change as we reach Re = 1. By Re = 10, we would need to perform further refine-

ment to confirm whether our numerical scheme is convergent with temporal refinement,

although since this is outside the focus of this thesis, we do not perform it.
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Figure 5.2: Evolution of the drag for Newtonian flow past a fixed cylinder in a channel.

Calculations performed on mesh M4 at polynomial order N = 16 and timestep ∆t =

10−4.

Figure 5.2 shows the evolution of the drag in time for each calculation performed at the

highest refinement in all of our numerical parameters for a range of Reynolds numbers.

The simulation is stopped once our stopping criteria has been reached, so the smaller

Reynolds number simulations complete far sooner than those at higher Re. The reason

for the dip and then increase is because of the velocity profile at inflow and outflow

being Poiseuille flow and, in effect, we go through the transition phase from start-up

to steady flow.

The lack of convergence observed at Re = 10 sustained at larger Reynolds numbers
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Figure 5.3: Streamlines for Newtonian flow past a fixed cylinder in a channel at (a)

Re = 10 (b) Re = 15 (c) Re = 40. Calculation performed on mesh M4, N = 16 and

∆t = 10−4

where we see there is a visible increase in the drag towards the end of the simulation for

both Re = 30 and Re = 40. Looking at the streamlines at the supposed steady-state

solution for Re = 40 in Figure 5.3 (c), a possible reason for this may be the presence

of a recirculation zone in the wake of the cylinder. These vortices may indicate an

unsteady flow which could cause the drag value to fluctuate. Figures 5.3 (a) and (b)

show the streamlines for Re = 10 and Re = 15, respectively. We see that the formation

of the circulation zone happens between these two Reynolds numbers. After looking

into the literature we find that this fits well with the critical value of Re = 24.3 as

detailed by Chen et al. in 1995 [11] for this blockage ratio where the flow changes from

steady to unsteady, although the assumption of symmetry is maintained for Reynolds

numbers upwards of 200. At first glance our results may appear odd, but the non-

dimensionalisation employed by Chen et al. [11] used the height of the channel as

their length scale, whereas we use the radius of the cylinder meaning their Reynolds

number is larger by a factor of 2 compared to our computations. This serves as an

additional validation of our scheme for this benchmark with our results predicting a

change from steady to unsteady flow between Re = 20 and Re = 30 in terms of their

non-dimensionalisation. While we could push the Reynolds number higher to look for

the break down in symmetry, this is far beyond the intents of our research, and we do

not investigate it further.
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Figure 5.4: Dependence of the drag on the Reynolds Number, Re, for Newtonian flow

past a fixed cylinder in a channel. Calculations performed on mesh M4 with N = 16

and ∆t = 10−4.

Finally, Figure 5.4 shows the steady drag value computed at all Reynolds numbers

tested using our numerical scheme, although the validity of the results beyond Re = 10

can certainly be questioned with the breakdown of axisymmetry discussed above. The

general trend is as expected with increasing Re, in that the drag increases from the

Stokes limit. This is fairly intuitive since the flow rate is increased which is usually the

dominating factor on the drag force experienced by the cylinder.
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5.2.3 Summary

While moderate Reynolds numbers are not the focus of this thesis we have demon-

strated that the 2nd-order OIFS scheme performs well under these conditions and pro-

duces convergent results with refinement up to Re = 1. Additionally we are able to

observe phenomena in our simulations which match those found by other studies in

the literature on the topic.

5.3 Flow past a Fixed Sphere

We now consider the Newtonian model for a fixed sphere in uniform flow, continuing

the benchmark used in Section 4.4. As with the cylinder benchmark in Section 5.2,

we consider a range of low to moderate Reynolds numbers while bearing in mind our

assumption of axisymmetry.

Uniform flow conditions are imposed at inflow, outflow and on wall boundaries, and

symmetric wall conditions are applied along the axis of symmetry. We prescribe zero

initial velocity conditions and stop the simulation according to the usual stopping

criteria given in Section 3.1.7. Reynolds numbers from Re = 10−3 up to Re = 10, in

orders of 10, are considered in detail along with additional values up to Re = 40.

5.3.1 Domain, Mesh and Timestepping

We make use of the fixed sphere in a cylinder domain and benchmarking meshes, M1-

M4, shown in from Figures 3.4(a)- 3.4(d). As with the cylinder benchmark problem,

we use the full axial extent of the meshes in Section 3.9.2. We use the same domain and

meshes, M1-M4, as used in the Stokes validation. Timesteps ranging from ∆t = 10−1

to ∆t = 10−4 are considered.
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Drag Factor

Mesh N Re = 0.001 Re = 0.01 Re = 0.1 Re = 1 Re = 10

M1

4 5.935352 5.935777 5.940200 6.000944 7.746503

8 5.948412 5.948800 5.952820 6.006720 7.543457

12 5.947425 5.947808 5.951777 6.005155 7.472311

16 5.947417 5.947800 5.951769 6.005143 7.478621

M2

4 5.897876 5.898250 5.902128 5.954719 7.442873

8 5.947412 5.947795 5.951764 6.005136 7.478656

12 5.947417 5.947800 5.951769 6.005143 7.478658

16 5.947417 5.947800 5.951769 6.005144 7.478664

M3

4 5.947514 5.947897 5.951872 6.005367 7.496324

8 5.947417 5.947800 5.951769 6.005142 7.478713

12 5.947417 5.947800 5.951769 6.005142 7.478661

16 5.947417 5.947800 5.951769 6.005145 7.478663

M4

4 5.945974 5.946356 5.950319 6.003622 7.463581

8 5.947417 5.947800 5.951769 6.005142 7.478661

12 5.947417 5.947800 5.951769 6.005143 7.478663

16 5.947417 5.947800 5.951769 6.005142 7.478663

Table 5.9: Dependence of the computed Drag Factor, D∗ on each mesh on N with

∆t = 10−4 for uniform Newtonian flow past a fixed sphere.
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5.3.2 Results

We first look at convergence with spatial refinement. Table 5.9 shows the collected

results in terms of the drag factor up to Re = 10 with spatial refinement at fixed

timestep ∆t = 10−4. We choose this small timestep with the hope that it will remove

as much temporal discretisation error as possible. Convergence of the drag factor is

reached for each value of Re with both mesh and polynomial refinement. Looking at

mesh refinement, we see that when fixing N = 12 we reach convergence for all values

of Re on each mesh. In particular, mesh M2 is typically enough to resolve the drag

on the sphere. At lower polynomial order, N = 4 we find that further elemental mesh

refinement is likely needed to reach a converged drag factor value.

Moving on to polynomial order, as we increase Re, more polynomial refinement is

needed to reach the converged value with mesh M1 not quite reaching as good agree-

ment at Re = 10 and mesh M2 requiring N = 16 to agree with meshes M3 and M4

requiring N = 12 and N = 8, respectively. Generally speaking, further polynomial

refinement above N = 16 does not appear to be required for this range of Reynolds

numbers, apart from when using the coarse mesh, M1. Overall, these results show

excellent convergence in the drag factor with spatial refinement.

We now focus on refinement in temporal discretisation. Table 5.10 shows collected

results up to Re = 10 with varying timestep on each mesh at fixed polynomial N = 16,

hoping to minimise spatial discretisation error. We note that for timestep ∆t = 10−1

a solution could only be computed on mesh M1 since the CFL condition was not met

when using any of the finer elemental meshes at this polynomial order. Overall we see

a good agreement for all timesteps, noting that the choice of mesh makes no difference

until Re ≥ 1, where the differences are spatial, as seen above.

At Re = 0.1 and Re = 1, there is a slight discrepancy between results obtained with

∆t = 10−4 and the other timesteps. At first this may provide a cause for concern since
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Drag Factor

Mesh ∆t Re = 0.001 Re = 0.01 Re = 0.1 Re = 1 Re = 10

M1

10−1 5.947418 5.947813 5.951905 6.006850 7.479327

10−2 5.947417 5.947799 5.951758 6.005021 7.478857

10−3 5.947417 5.947799 5.951758 6.005015 7.478623

5× 10−4 5.947416 5.947799 5.951759 6.005025 7.478621

10−4 5.947417 5.947800 5.951769 6.005143 7.478621

M2

10−1 - - - - -

10−2 5.947417 5.947799 5.951758 6.005021 7.478875

10−3 5.947417 5.947799 5.951758 6.005015 7.478666

5× 10−4 5.947416 5.947799 5.951759 6.005025 7.478664

10−4 5.947417 5.947800 5.951769 6.005144 7.478664

M3

10−1 - - - - -

10−2 5.947417 5.947799 5.951758 6.005021 7.478874

10−3 5.947417 5.947799 5.951758 6.005015 7.478665

5× 10−4 5.947416 5.947799 5.951759 6.005025 7.478663

10−4 5.947417 5.947800 5.951769 6.005145 7.478663

M4

10−1 - - - - -

10−2 5.947417 5.947799 5.951758 6.005021 7.478874

10−3 5.947417 5.947799 5.951758 6.005015 7.478665

5× 10−4 5.947416 5.947799 5.951759 6.005025 7.478663

10−4 5.947417 5.947800 5.951769 6.005142 7.478663

Table 5.10: Convergence of Drag Factor, D∗, with refinement in timestep and atN = 16

for uniform Newtonian flow past a fixed sphere.
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Figure 5.5: Evolution of the drag factor for Newtonian flow past a fixed sphere in a

cylinder. Calculations performed on mesh M4 with N = 16 and timestep ∆t = 10−4.

convergence with timestep refinement is not being demonstrated. However, it is only at

the 5th decimal place. Furthermore the time when the simulation had been terminated

for these results was different for different timesteps. This is beccause the simulation

met the stopping criteria (notably that set on the L2-norm of the difference between the

field variables between consecutive timesteps) in fewer time units, in fact the ∆t = 10−4

took around half the time units to complete as ∆t = 10−2 at Re = 1. The reason for

this is an oversight in setting a fixed value of the tolerance on a quantity which is

essentially a rate of change. We note that by forcing the simulation to terminate after

a set number of timesteps that convergence to a drag value certainly improves these

results. We conclude that the numerical scheme has been demonstrated to converge

with decreasing timestep for the sphere benchmark. In future simulations we make a

change so that the threshold is set using tol
∆t

, where tol is a chosen tolerance, to take

the difference in timesteps into account.
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Figure 5.6: Dependence of the drag factor on Re for Newtonian flow past a fixed

sphere in a cylinder. Calculations performed on mesh M4 with N = 16 and timestep

∆t = 10−4.

Figure 5.5 shows the evolution of the drag factor in time for each calculation performed

at the highest refinement in all numerical parameters for a wider range of Reynolds

numbers than considered above. As with the cylinder benchmark, the simulations are

stopped according to our stopping criteria, so higher Re simulations take long to reach

convergence in terms of the field variables and the drag. Unlike the cylinder benchmark

there are no indications of instability in the evolution of the drag.

After reviewing some of the literature on Newtonian flow past a sphere we find that

this behaviour is to be expected as detailed, for example, in the paper by Johnson

and Patel [26]. There is a subtle difference between the wake behind the sphere and
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Figure 5.7: Streamlines for uniform Newtonian flow past a fixed sphere at (a) Re = 20

(b) Re = 30 (c) Re = 40. Calculation performed on mesh M4, N = 16 and ∆t = 10−4

the cylinder. For a sphere, while there is still a separation from the boundary layer,

it remains a steady flow to Reynolds numbers upwards of 200, therefore our results

up to Re = 40 should be expected to be stable and reach a steady drag value. This

is exactly what we observe, which serves as some validation of the results obtained.

Figure 5.7 shows the streamlines for the sphere benchmark at 3 different Reynolds

numbers. Figure 5.7(c) clearly shows the separation from the boundary layer at Re =

40. Further the separation in the wake of the sphere happens between Re = 20 in

Figure 5.7(a) and Re = 30 in Figure 5.7(b), which agrees well with the Re = 24 value

found numerically and experimentally in the literature.

Finally, Figure 5.6 shows the steady drag factor value computed at all Reynolds num-

bers tested using the numerical scheme. As with the cylinder benchmark, we see a

general trend of increasing drag factor with Re, which makes intuitive sense due to the

increased flow rate.

5.3.3 Summary

As for the cylinder benchmark problem, while moderate Reynolds numbers are not

the main focus of this thesis we have demonstrated that the 2nd-order OIFS scheme

performs well for moderate values of the Reynolds number and produces convergent
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results with refinement for the parameter values tested. Additionally, our results match

observed phenomena found in the literature on the topic.
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Chapter 6

Viscoelastic Flows

Following the successful validation of our numerical scheme for a Newtonian fluid at

low Reynolds number in Chapter 5, we now consider the viscoelastic flow of an Oldroyd

B model fluid. The model was described in Section 2.2.1. We again use the start-up of

Poiseuille flow in order to gauge the error incurred by our numerical scheme using the

analytical solution for planar channel flow [62] and axisymmetric pipe flow [63]. These

may be found in Sections 6.1.1 and 6.1.2, respectively.

We also continue to benchmark using the flow past a cylinder in an infinite channel

for the planar geometry and flow past a fixed sphere in a cylinder for the cylindrical

axisymmetric geometry, which may be found in Sections 6.2 and 6.3.

6.1 Start-up Poiseuille Flow for an Oldroyd B Fluid

6.1.1 Planar Geometry

We may validate our scheme for an Oldroyd B fluid using the analytical solution for

start-up Poiseuille flow derived by Waters and King [62]. The non-trivial component
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of velocity at time t is given by,

u (x, t) = A(y)− 32
∞∑
n=1

sin (νy/H)

ν3
exp

(
−ανt
2El

)
Gν (t) , (6.1)

with ν = ν (n) = (2n− 1) π, A(y) = −4y (y − 1) and where,

Gν (t) =


1
2

(aν exp (pνt) + bν exp (qν)) if βν ≥ 0

exp
(−αν

2El

) (
cos
(
βν
2El

)
+ γν

βν
sin
(
βνt
2El

))
if βν < 0

(6.2)

with,

A (y) = −4y (y − 1) , ν = (2n− 1) π, El =
We

Re
,

αν = 1 + βElν2, βν = α2
ν − 4Elν2, γν = 1 + ν2El (β − 2) ,

aν = 1 +
γν
βν
, bν = 1− γν

βν
, pν = − αν

2El
+

βν
2El

, qν = −
(
αν
2El

+
βν

2El

)
. (6.3)

Analytical expressions for the components of stress may be found in detail within the

appendix of the 1992 paper by Carew, Townsend and Webster[9] or in the 2004 paper

of Van Os and Phillips[59] with whom we draw comparisons.

Care must be taken with the infinite sums when implementing this solution in code.

Following Van Os and Phillips, we choose to include a fixed number of terms, typically

chosen to be 20 in our computations. Choosing more terms can have a negative impact

on the performance of our solver, with the analytical solution taking longer to compute

than that produced by our numerical scheme, although this is something we wish to

address in the future.

We impose zero initial conditions for stress and velocity and apply the known analytical

solution for velocity at both inflow and outflow and for stress only at inflow. No-slip

and no-penetration conditions are imposed on the walls at the top and bottom of the

channel.

In order to push the limits of our scheme we consider a fixed value of Re = 1.0 and,

with the ratio of We to Re being an important factor, we vary We. The viscosity ratio

is fixed at β = 1
9

and we consider We = 1, 10, 100. We note that the original solution

is valid for creeping flow (i.e. small Re). However, we wish to compare directly to the

work of Van Os and Phillips[59], so we match their choice of parameter and hence use

Re = 1.
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Domain, Mesh and Timestepping

We choose the same domain, of length L and fixed height H = 1 as for the Newto-

nian counterpart to this problem. Similarly, meshes T1-T4 shown in Figure 3.3 are

used. However, contrary to the Newtonian fluid, we vary the value of L for this model.

Values L = 8, 16, 32, 64 are used in order to investigate dependence of L on the tem-

poral stability of our scheme. Timesteps ranging from ∆t = 10−1 to ∆t = 10−4 are

considered. A time limit of 40 time units is imposed, assuming the simulation has not

already diverged, at which point the simulation is terminated.

Results

We use the same test points as in the Newtonian simulation, marked in Figure 3.3,

with the velocity measured at the penultimate GLL-node in the centre of the channel

(point B in the figure) and the stress measured on the penultimate GLL point on the

lower wall (point C in the figure). We begin by considering the maximum channel

length, L = 64 where we expect the most stability for our numerical scheme.

Figures 6.2(a)- 6.2(c) show the non-zero velocity and stress values at their respective

test points for a moderate choice of ∆t, K and N for We = 1. We see an almost

indistinguishable difference between the computed and analytical for velocity, but slight

over- and under-shoots for τxx, as well as small visual disagreement with the solution

for τxy. The differences at the first peak, where our solution overshoots, are 3.056×10−4

(0.011%) for ux, 0.7511 (2.3631%) for τxx and 0.0174 (0.3875%) for τxy. These results

match closely with those of Van Os and Phillips.

We note that the analytical expression for the τxx component of elastic stress contains

multiple infinite sums, so one would expect this to differ most from the true solution

when the infinite sum is truncated. Further, those sums dominate the solution at

lower values of t as seen in Figure 6.1 which shows the difference between the τxx

solution using 20 terms against using 100 at the stress test point. We can see that it

is clear that the largest difference is to be seen in the first 5-10 time units, peaking

at a difference of almost 0.09. Since the stress is prescribed only at inflow, this could

be a possible cause of instability or additional numerical error, particularly during the
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transient stage of the flow, due to a mismatch with the error-prone solution set at

inflow and that computed by the scheme at outflow which may be closer to the true

solution. This may warrant further investigation at a later time, but we continue to

investigate the error and stability of our solutions.
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Figure 6.1: Difference of the value of analytical τxx using a truncated sum of 20 terms

from that computed using 100 terms at the stress test point. Performed at We = 1,

β = 1
9
, Re = 1.0.

Following the narrative from the Newtonian results, we investigate the error in more

detail by looking at the instantaneous error in the H1-norm at particular points in

time and time-averaged error defined in (5.4). Concentrating on the effect of temporal

refinement, Table 6.1 shows the velocity error at 4 points in time for We = 1 for varying

∆t. We see improvement up to ∆t = 10−3 for each time point and a reduction in the
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error as the flow nears its steady state, with the more refined mesh performing slightly

better. However, the convergence to the analytical solution appears to stagnate at

∆t = 10−4. We consider N = 16 in Table 6.2 with the intention of eliminating

spatial error as the dominating contribution. Unfortunately, the results are very similar

showing minimal improvements in places which indicates that temporal discretisation

error is the culprit. However, the error is consistently worse for values of ∆t ≤ 10−3

on T4.

This makes it difficult to obtain the 2nd-order accuracy of our numerical scheme al-

though we may observe some positives in Table 6.3 which shows the time-averaged

errors. Mesh T1 shows improvement with 2nd-order convergence to the solution from

a timestep of 10−1 to 10−3 for sufficiently refined values of N . However, the problem

of reaching a limit of error convergence around an order of 10−7 is still present.

When considering spatial refinement, keeping focus on Table 6.3, we see a similar

picture. The improvement from N = 4 to N = 8 is clear for all values of ∆t, but we

quickly hit the same wall in error. The mesh plays a role in what this limit may be, for

example, fixing ∆t = 10−4 for meshes with refinement in the x-direction, T3 and T4,

we see a vast improvement from N = 4 to N = 8 to an order of 10−6, but any further

polynomial refinement results in growth of the error. This behaviour is not seen with

T1 and T2, which features no additional elements in the x-direction, although it also

appears to be nearing a limit at an order of 10−7. We assume that these observations

are related to the inherent instability of the solution, particularly with refinement in

the x-direction as mentioned by Van Os and Phillips. They did not present any errors

with which we can directly compare.

We can, however, compare with work in the thesis of Lind [30] who obtained results

for these fluid parameters using a 2× 2 (T4) mesh with N = 6 and ∆t = 10−2 with an

implicit Euler scheme. His Eu values were 1.44× 10−4 for L = 16 and 3.92× 10−4 for

L = 8. While we did not obtain results for N = 6 for our tables, we did match these

parameters and got Eu = 1.34 × 10−4 for L = 16, although the solution diverged for

L = 8. Using N = 4 we got Eu = 1.058× 10−4 for L = 8 and 1.37× 10−4 for L = 16.

The rise in error is slightly unexpected, but it is a small amount, and with increasing L,

it reduces below the L = 8 value. Overall though, these results match well with those

of Lind, with the 1st-order scheme providing slightly more stability than our 2nd-order
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scheme.

Van Os and Phillips also looked at the sensitivity of the length of the channel, as well as

the number of downstream elements. Table 6.4 shows the approximate time at which

our solution diverged for each numerical parameter at We = 1. Van Os and Phillips did

not consider values of N > 6 and used a fixed value of ∆t = 10−2, whereas we consider

up to N = 16 and ∆t = 10−4 which is due to the additional computing power available

today. Discounting the ∆t = 10−1 results, which are arguably under-refined in time, we

see that there is little difference in the stability of the solution with increasing temporal

refinement, with very small gains to be found for those which diverged and no gains in

terms of convergence.

For a single element, we don’t see the onset of divergence until the higher values of

N > 12, and only for the L = 8 and L = 16 cases, which suggests that there is more

to the instability than transmission across spectral element boundaries. Van Os and

Phillips suggested that there was a weak influence on divergence from refinement in

the cross-stream direction, and our results do support that. Firstly, with twice as

many cross-stream points in T2 than T1 for any value of N , we see that the onset of

instability occurred earlier for T2. Further, comparing T2 against T3 in the cases of

divergence we see that the onset of instability occurred later on for T2 than T3. In

comparison to Van Os and Phillips’ scheme, we see that the use of the DG method

appears to offer some gains, which is expected if the spectral element interfaces are the

primary cause of instability. For example, for N = 6, they see divergence on mesh T4

at t ≈ 4.1 at L = 8 and t ≈ 10.8 at L = 16 whereas for the same values of L, using

N = 8, we reach t ≈ 12.6 and reach convergence, respectively. Note that, while our

values of N are different, we’d expect using a larger value to cause diverge in a shorter

timespan.

For We > 1.0, Figures 6.3 and 6.4 show solutions computed for We = 10 and We =

100. For We = 10, we see excellent agreement for velocity and τxy, but there is a

clear difference for τxx. Comparing to the same result from Van Os and Phillips,

we see a similar discrepancy. Interestingly, Lind’s results match far better using the

implicit Euler scheme, which leads us to believe that keeping the numerical method as

implicit as possible is important at higher We in terms of accuracy of the computed

solution. The We = 100 result looks to be an improvement on the We = 10 result,
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although the solution is far from steady by the time the simulation was terminated. It

is quite possible that it would diverge given a longer time limit. However, these results

demonstrate that our scheme is capable of reaching high values of We. The time of

divergence for these values of We are provided in Tables 6.5 and 6.6 and will be used

to compare the performance of the DEVSS-G stabilisation.
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Figure 6.2: Comparison of numerical and analytical solutions at the chosen test points

for planar Oldroyd B start-up of Poiseuille flow for β = 1
9
, Re = 1.0, We = 1. Param-

eters used are ∆t = 10−3, mesh T1, L = 64, N = 8.
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Figure 6.3: Comparison of numerical and analytical solutions at the chosen test points

for planar Oldroyd B start-up of Poiseuille flow for β = 1
9
, Re = 1.0, We = 10.

Parameters used are ∆t = 10−3, mesh T1, L = 64, N = 4.
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Figure 6.4: Comparison of numerical and analytical solutions at the chosen test points

for planar Oldroyd B start-up of Poiseuille flow for β = 1
9
, Re = 1.0, We = 100.

Parameters used are ∆t = 10−3, mesh T1, L = 64, N = 4.
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Mesh ∆t time = 0.5 time = 1 time = 2.5 time = 5

T1

0.1 1.9234e+00 5.4556×10−1 5.8893×10−2 8.6976×10−3

0.01 1.4328×10−2 1.3427×10−2 5.1813×10−3 8.7647×10−4

0.001 5.5575×10−3 2.2255×10−3 4.9186×10−4 9.6148×10−5

0.0001 5.3467×10−3 1.9444×10−3 4.6784×10−5 1.8231×10−5

T4

0.1 - - - -

0.01 1.7814×10−2 1.4254×10−2 9.0536×10−3 3.2135×10−4

0.001 6.8002×10−3 1.9647×10−3 9.8241×10−4 3.0958×10−5

0.0001 6.4042×10−3 2.1602×10−3 2.2386×10−4 1.8125×10−5

Table 6.1: Dependence of the H1-norm of velocity error at select points in time for

planar start-up Poiseuille flow of an Oldroyd B fluid, We = 1, β = 1
9
, Re = 1.0, on ∆t

on the meshes T1 and T4, L = 64, and N = 8.

Mesh ∆t time = 0.5 time = 1 time = 2.5 time = 5

T1

0.1 1.9388e+00 5.4622×10−1 8.6683×10−2 2.7280×10−3

0.01 1.7233×10−2 1.2979×10−2 8.1965×10−3 1.3048×10−4

0.001 7.4869×10−3 3.7036×10−3 8.4833×10−4 6.3372×10−5

0.0001 7.1595×10−3 4.1586×10−3 4.4874×10−4 6.5569×10−5

T4

0.1 - - - -

0.01 2.0090×10−2 1.4643×10−2 4.8301×10−3 1.2055×10−3

0.001 9.5687×10−3 8.3320×10−3 1.8916×10−3 5.1125×10−4

0.0001 9.0707×10−3 8.3535×10−3 1.9071×10−3 4.8524×10−4

Table 6.2: Dependence of the H1-norm of velocity error at select points in time for

planar start-up Poiseuille flow of an Oldroyd B fluid, We = 1, β = 1
9
, Re = 1.0, on ∆t

on the meshes T1 and T4, L = 64, and N = 16.
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Mesh ∆t N = 4 N = 8 N = 12 N = 16

T1

0.1 1.6674×10−3 1.4122×10−3 1.3808×10−3 1.3622×10−3

0.01 6.5458×10−4 2.8546×10−5 1.8176×10−5 1.7107×10−5

0.001 6.8430×10−4 4.6869×10−6 1.6276×10−6 9.2953×10−7

0.0001 6.8792×10−4 3.5243×10−6 1.2631×10−6 7.0806×10−7

T2

0.1 1.7092×10−3 1.4213×10−3 - -

0.01 7.7812×10−5 2.8622×10−5 1.8334×10−5 1.6965×10−5

0.001 2.1108×10−5 3.0018×10−6 1.3423×10−6 8.8657×10−7

0.0001 1.6373×10−5 1.6347×10−6 9.6615×10−7 8.4297×10−7

T3

0.1 2.0271×10−3 1.4068×10−3 - -

0.01 6.6418×10−4 3.5897×10−5 1.8356×10−5 2.3833×10−5

0.001 6.6918×10−4 5.7246×10−6 3.7385×10−6 7.7544×10−6

0.0001 6.7599×10−4 3.6682×10−6 3.7231×10−6 7.4788×10−6

T4

0.1 2.0985×10−3 - - -

0.01 1.2460×10−4 3.5864×10−5 1.8104×10−5 2.4329×10−5

0.001 2.6861×10−5 4.3832×10−6 3.3609×10−6 8.2395×10−6

0.0001 1.7959×10−5 2.4162×10−6 3.3652×10−6 7.9071×10−6

Table 6.3: Time-averaged velocity error, Eu, at the test point for planar start-up flow

of an Oldroyd B fluid, We = 1, β = 1
9
, Re = 1.0, L = 64.
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DEVSS-G Results

Now that we have investigated the performance of our numerical scheme using DG, we

look at the effect of stabilisation using the DEVSS-G scheme. We consider two values

of the stabilisation parameter, βs = 0.5, 1.0. Tables 6.7 and 6.8 show the time-averaged

errors, Eu, which can be directly compared to the DG-only results in Table 6.3. At

βs = 0.5 we can see clearly that there is a fairly consistent rise in the error of order 10 in

each result, particularly at lower values of N where the issue of the analytical solution

being under resolved is not present. Increasing to βs = 1.0, the error increases slightly,

but only at the trailing digit. This is in line with the results of Fiétier and Deville [16]

who employed a DEVSS method for start-up of Poiseuille flow (folllowed by a decay),

and found an error increase during the transient phase of their simulations.

We are now interested in any improvement in stability through the use of the DEVSS-

G method. Tables 6.9 and 6.10 show the approximate time of divergence for We = 1

for βs = 0.5 and βs = 1.0 respectively. These should be directly compared with

Table 6.4. In both cases we see a vast improvement in the time taken before the

approximation diverges as well as reaching a converged solution for higher values of

N and lower values of L which we interpret as additional stability. Using βs = 1.0

instead of 0.5 gives additional stability in all cases except ∆t = 10−1(which we have

previously discounted as insufficient). On mesh T4, where we saw the most instability

in the DG-only results, we are able to reach convergence for all values of N up to 16

above L = 32 using βs = 1.0, although for βs = 0.5, we are unable to reach convergence

for L = 32 at N = 16. This again agrees with the results of Fiétier and Deville[16].
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Mesh ∆t N = 4 N = 8 N = 12 N = 16

T1

0.1 3.2766×10−3 - - -

0.01 3.9348×10−3 1.2778×10−4 1.0007×10−4 9.2719×10−5

0.001 3.9239×10−3 4.2070×10−5 2.5716×10−6 1.7565×10−6

0.0001 3.9223×10−3 4.1317×10−5 1.7292×10−6 1.1060×10−6

T2

0.1 - - - -

0.01 2.3421×10−4 1.0084×10−4 1.0005×10−4 9.2866×10−5

0.001 1.2309×10−4 2.1952×10−6 1.7103×10−6 2.0865×10−6

0.0001 1.2279×10−4 1.2682×10−6 8.9690×10−7 1.6561×10−6

T3

0.1 3.4935×10−3 - - -

0.01 3.9371×10−3 1.4151×10−4 1.0502×10−4 1.0965×10−4

0.001 3.9080×10−3 4.1836×10−5 3.8382×10−6 9.6380×10−6

0.0001 3.9047×10−3 4.0678×10−5 3.5824×10−6 8.9456×10−6

T4

0.1 - - - -

0.01 3.0139×10−4 1.1343×10−4 1.0465×10−4 1.1031×10−4

0.001 1.4774×10−4 2.8551×10−6 3.0706×10−6 1.0666×10−5

0.0001 1.4733×10−4 1.7071×10−6 2.8276×10−6 9.9305×10−6

Table 6.7: Time-averaged velocity error, Eu, at the test point using DEVSS-G, βs = 0.5,

for planar start-up flow of an Oldroyd B fluid, We = 1, β = 1
9
, Re = 1.0, L = 64.
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Mesh ∆t N = 4 N = 8 N = 12 N = 16

T1

0.1 3.9655×10−3 - - -

0.01 4.7237×10−3 2.4111×10−4 2.1382×10−4 1.8631×10−4

0.001 4.7195×10−3 4.8280×10−5 3.5762×10−6 2.7629×10−6

0.0001 4.7184×10−3 4.7202×10−5 1.9020×10−6 1.5647×10−6

T2

0.1 - - - -

0.01 3.4911×10−4 2.1343×10−4 2.1324×10−4 1.8637×10−4

0.001 1.3382×10−4 2.8955×10−6 2.7163×10−6 3.4120×10−6

0.0001 1.3222×10−4 1.1926×10−6 9.2307×10−7 2.4785×10−6

T3

0.1 4.0972×10−3 - - -

0.01 4.7230×10−3 2.7323×10−4 2.3756×10−4 2.4209×10−4

0.001 4.7063×10−3 4.7841×10−5 4.8958×10−6 1.3980×10−5

0.0001 4.7040×10−3 4.6498×10−5 3.7612×10−6 1.2540×10−5

T4

0.1 - - - -

0.01 4.6785×10−4 2.4211×10−4 2.3610×10−4 2.4255×10−4

0.001 1.7187×10−4 3.4428×10−6 4.1322×10−6 1.5402×10−5

0.0001 1.7003×10−4 1.5661×10−6 2.7697×10−6 1.4043×10−5

Table 6.8: Time-averaged velocity error, Eu, at the test point using DEVSS-G, βs = 1.0,

for planar start-up flow of an Oldroyd B fluid, We = 1, β = 1
9
, Re = 1.0, L = 64.
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Further evidence of the improvement in stability using DEVSS-G can be observed in

the results for We = 10 and We = 100, which can seen in Tables 6.11 and 6.12,

respectively, for βs = 0.5 and in Tables 6.13 and 6.14, respectively, for βs = 1.0.

These are to be compared with the DG-only results in Tables 6.5 and 6.6, respectively.

Starting from We = 10, with DG-only attempting to reach convergence for any values

beyond N = 4, 8 was fairly fruitless and times taken for the approximation to diverge

are all fairly low, even when increasing L. Using βs = 0.5 we see a small improvement

in some of the N = 4, 8 results, but little gain elsewhere. Similarly, βs = 1.0 provides a

small improvement on top of those already seen, and allows us to reach convergence for

N = 4 on mesh T3. The We = 100 results tell a similar story, with further convergence

reached for N = 4, L = 32 for both values of βs over the DG-only scheme, as well as

pushing the T4 mesh for N = 4, L = 64 over the 40 time limit. Although, it is quite

possible these would diverge if left to run longer given that the steady state has not

been reached, even for the velocity as seen in Figure 6.4.

These results appear disheartening for the DEVSS-G stabilsation scheme but the solu-

tion is known to suffer from the problem of spurious oscillations. This is noted by Van

Os and Phillips[59] where attention is drawn to the thesis of Fiétier[15] who showed

that mesh discretisation has a strong impact on the location of the eigenvalues of the

associated generalised eigenvalue problem, which can cause numerical instability. They

further note that this fits well with other points made in the literature about the gen-

eration of spurious oscillations due to inadequate spatial resolution of the continuous

spectrum. Despite these problems, we certainly achieved some improvement in terms

of additional stability for the scheme, and the trade-off in error is certainly manageable.
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6.1.2 Axisymmetric Geometry

As for the planar case, there is an analytical solution for the analogous axisymmetric

problem, start-up Poiseuille flow in a straight pipe of circular cross-section. Therefore

we consider an Oldroyd B fluid using the analytical solution for start-up Poiseuille flow

derived by Waters and King [63]. The non-trivial component of velocity at time t is

given (in our non-dimensionalisation, adapted from [65]) by,

uz(r, t) = A(r)− 8
∞∑
n=1

J0 (rNn)

J1 (Zn)Z3
n

exp

(
−αnt

2El

)
Gn (t) , (6.4)

where Zn the nth real and positive root of the Bessel function of zero order, J0, El = We
Re

is the elasticity number, A(r) = 1− r2,

GN(t) = cosh

(
βnt

2El

)
+

[
1 + Z2

nEl (β − 2)

βn

]
sinh

(
βnt

2El

)
(6.5)

and,

αn = 1 + ElβZ2
n, βn =

[
(1 + ElβZn)2 − 4ElZ2

n

]1/2
. (6.6)

While the planar solution to this problem has been widely used as a validation tool for

numerical schemes, the axisymmetric version has received less attention with the only

statement of the stress components of the problem to be found in the 1981 paper by

Ryan and Dutta [51] who derived the shear stress. The solution may be derived in a

similar fashion to that for the planar case. However, the solution is equally complicated

and challenging to implement numerically so we instead choose to compute the velocity

and its non-zero gradient component directly using the truncated sum of 20 terms,

but approximate the constitutive equation using a BDF2 treatment of the temporal

derivative in order to avoid having to compute the multiple infinite sums involved in

the stress components.

At timestep tn+1, assuming that we know un+1
z and ∂uz

∂r

n+1
, we have,(

1 +
Weγ0

∆t

)
τn+1
rz = (1− β)

∂uz
∂r

n+1

+
We

∆t

J−1∑
q=0

αqτ
n−q
rz , (6.7)

(
1 +

Weγ0

∆t

)
τn+1
zz = 2We

∂uz
∂r

n+1

τn+1
rz +

We

∆t

J−1∑
q=0

αqτ
n−q
zz . (6.8)
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We compare our approximated analytical solution to that of Bodart and Crochet [4],

who provide profiles of velocity and stress components, and get excellent agreement.

Our approximated solution for τzz at the wall has been overlayed on their solution at

the same point in Figure 6.5 to demonstrate this.

Figure 6.5: Overlay of our analytical approximation of τzz, in blue, on that of Bodart

and Crochet [4]. The slight discrepancy is most likely due to the scan of the original

paper rather than differences in the solution itself.

We proceed with confidence that our analytical solution is correct. We impose zero

initial coniditions for stress and velocity and apply the analytical solution for velocity at

inflow and outflow and for stress only at inflow. No-slip and no-penetration conditions

are imposed on the wall at the top of the cylinder and symmetry wall conditions are

applied at the centre of the cylinder, which is the bottom of our domain.
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We fix the values of Re = 1.0 and β = 1
9

and use values We = 1, 10.0, 100.0 in order to

investigate the stability of our scheme for this flow.

Domain, Mesh and Timestepping

We use the same domain of length L and height H = 2 as used in the Newtonian

counterpart to this problem in Section 5.1.2 although we vary the length of the cylinder,

using L = 8, 16, 32, 64 as we did in the planar Oldroyd B study in Section 6.1.1.

Timesteps ranging from ∆t = 10−1 to ∆t = 10−4 are considered and a time limit of 40

time units is imposed at which point the simulation is terminated if it has not already

diverged.

Results

We measure the values of velocity and stress at the test points marked in Figure 3.3

using C (centre of cylinder) and A (top wall) respectively. Figure 6.6 shows the com-

puted non-zero values of velocity and stress at their respective test point at We = 1.

As with the planar case, there is excellent agreement at We = 1 and while the com-

puted value of τzz still overshoots the analytical solution, it is less pronounced than the

planar solution seen in Section 6.1.1, although the value of the stress is comparatively

lower due to the diameter of the cylinder being twice that of the height of the channel

considered in the planar case. On a single element, mesh T1, with N = 8, L = 16 and

∆t = 10−3 the difference between our solution and the computed analytical solution at

the first peak is −3.7764 × 10−5 (−0.00154%) for velocity, 0.0708 (0.88%) for τzz and

0.0086 (0.4%). This compares very well with our planar results with τxy having roughly

the same percentage error and a reduction in the magnitude of the percentage error

for both velocity and τzz when compared to their planar counterparts. This difference

may be due to the calculation of the analytical solution being more accurate using the

BDF2 approximation over the truncation of the sums used in the planar version of the

problem, although to confirm it would require comparison using the same method, or

increasing the number of terms in the truncated sums. In terms of looking at the errors,

we generally see a very similar picture to that seen in the planar case in Section 6.1.1.

Tables 6.15 and 6.16 show the velocity in the H1-norm at the same points in time as
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Figure 6.6: Comparison of numerical and analytical solutions at the chosen test point

for start-up of axisymmetric Poiseuille flow of an Oldroyd B fluid with β = 1
9
, Re = 1.0,

We = 1. Parameters used are ∆t = 10−3, mesh T1, L = 64, N = 8.
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we considered in the planar error analysis. We can observe a hint at 2nd-order conver-

gence with temporal discretisation, but we generally see the same problem as before,

with a limit being quickly reached in terms of accuracy. We do note, however, that the

error at time t = 0.5 is lower than was seen in the planar case. We note that the peak

in the velocity value occurs later in the axisymmetric solution, but this does not fully

explain the difference. Figure 6.7 shows the percentage errors for the velocity and τzz

solutions for the planar and axisymmetric cases. We see that there is a large decrease

in the velocity error just before t = 0.5 for uz, so this difference seen in the table is

not as important as it may first appear and we can see that both suffer from increased

error for both velocity and stress in the transient stage of the flow. We also observe the

same issue with refinement past a certain point in the downstream direction as seen

in the planar version, although it appears to occur at higher levels of refinement. For

example, using mesh T4, ∆t = 10−4 has a slightly smaller error at t = 5 using N = 8

compared to N = 16, whereas the same change in N results in a slight improvement

in the error on mesh T1. The difference in H may explain this.
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Figure 6.7: Comparison of percentage error between the solutions produced by our

numerical scheme for the planar and axisymmetric versions of start-up Poiseuille flow

of an Oldroyd B fluid.

Table 6.17 shows the time-averaged error where we again see a clear limit in the error

of order 10−6. With this in mind, we see that refinement in the cross-stream direction

improves the error with meshes T1-2 an order of magnitude behind T3-4 at N = 4, 8.

For all meshes, ∆t = 10−3 is sufficient to reach the error limit, and we see a hint of
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Mesh ∆t time = 0.5 time = 1 time = 2.5 time = 5

T1

0.1 4.2402×10−2 3.4836×10−2 5.3466×10−3 1.2472×10−3

0.01 4.6637×10−4 7.5318×10−4 4.5947×10−4 1.2513×10−4

0.001 8.0499×10−5 8.5364×10−5 5.0167×10−5 1.2970×10−5

0.0001 6.9789×10−5 3.5814×10−5 9.0072×10−6 1.7281×10−6

T4

0.1 - - - -

0.01 6.6074×10−4 1.0691×10−3 5.1508×10−4 1.5676×10−4

0.001 6.2744×10−5 1.0026×10−4 4.7249×10−5 1.4903×10−5

0.0001 5.7232×10−5 3.9113×10−5 2.3235×10−6 6.5977×10−7

Table 6.15: Dependence of velocity error in the H1-norm of the numerical solution at

points in time of axisymmetric start-up Poiseuille flow of an Oldroyd B. fluid, We = 1,

β = 1
9
, Re = 1.0, on ∆t on the meshes T1 and T4, length L = 64, and N = 8.

Mesh ∆t time = 0.5 time = 1 time = 2.5 time = 5

T1

0.1 4.8281×10−2 2.9312×10−2 3.9284×10−3 2.4587×10−4

0.01 5.3062×10−4 8.4458×10−4 9.2086×10−5 3.1260×10−5

0.001 7.2432×10−5 1.0501×10−4 7.3388×10−6 2.2486×10−6

0.0001 7.6528×10−5 5.7313×10−5 4.7334×10−6 1.0801×10−6

T4

0.1 - - - -

0.01 5.2440×10−4 7.2511×10−4 3.4853×10−4 1.8653×10−5

0.001 4.8364×10−5 8.5291×10−5 3.2412×10−5 2.7098×10−6

0.0001 4.9336×10−5 3.3508×10−5 2.6067×10−6 1.5069×10−6

Table 6.16: Dependence of velocity error in the H1-norm of the numerical solution at

points in time of axisymmetric start-up Poiseuille flow of an Oldroyd B. fluid, We = 1,

β = 1
9
, Re = 1.0, on ∆t on the meshes T1 and T4, length L = 64, and N = 16.
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Mesh ∆t N = 4 N = 8 N = 12 N = 16

T1

0.1 3.3430×10−3 2.7823×10−3 2.7930×10−3 2.5022×10−3

0.01 5.8104×10−4 3.2769×10−5 2.8758×10−5 2.9895×10−5

0.001 5.6018×10−4 1.0696×10−5 7.9993×10−6 7.0197×10−6

0.0001 5.6073×10−4 1.0002×10−5 7.8672×10−6 6.8087×10−6

T2

0.1 2.7517×10−3 2.7583×10−3 - -

0.01 5.7401×10−5 3.2894×10−5 2.8496×10−5 3.0387×10−5

0.001 1.5475×10−5 8.6948×10−6 6.5359×10−6 7.0126×10−6

0.0001 1.3921×10−5 7.9267×10−6 6.4594×10−6 6.5222×10−6

T3

0.1 3.3579×10−3 2.5572×10−3 - -

0.01 5.7927×10−4 3.0557×10−5 2.6619×10−5 2.1289×10−5

0.001 5.5076×10−4 1.0779×10−5 8.7400×10−6 6.7602×10−6

0.0001 5.5198×10−4 9.7969×10−6 7.9539×10−6 6.3403×10−6

T4

0.1 2.8533×10−3 - - -

0.01 8.5332×10−5 2.9977×10−5 2.6037×10−5 2.1398×10−5

0.001 1.7493×10−5 8.9277×10−6 7.2045×10−6 7.3109×10−6

0.0001 1.4020×10−5 8.2697×10−6 6.4914×10−6 6.4838×10−6

Table 6.17: Time-averaged velocity error, Eu, at the test point for axisymmetric start-

up flow of an Oldroyd B. Fluid, We = 1, β = 1
9
, Re = 1.0, L = 64.

2nd-order convergence from ∆t = 10−1 to 10−2. This is very much in line with the

planar results.

Results for We > 1 are shown in Figures 6.8 and 6.9. We are able to compute the

solution at We = 10 to a fairly high degree of accuracy with some visual differences

from the solution, although the solution has not yet fully converged to the steady state

within the time limit set. We also demonstrate the ability to compute a solution at

We = 100 where the simulation has clearly not converged to the steady state, although

it has reached the time limit set. It is possible the scheme would diverge from the

analytical solution if we were to increase this time limit, however it demonstrates that

our scheme is, at least, capable of simulating such values of We in both the planar and

axisymmetric cases.

In terms of stability At We = 1, for ∆t ≥ 10−2 the solution was stable up to the
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specified time limit for all values of L and N on every mesh, which can be seen in

Table 6.18. For the larger values of We, this was not the case so we will discuss the

improvements using the DEVSS-G scheme at We = 10, 100 in the following section.
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Figure 6.8: Comparison of numerical and analytical solutions at the chosen test point

for start-up of axisymmetric Poiseuille flow of an Oldroyd B fluid with β = 1
9
, Re = 1.0,

We = 10. Parameters used are ∆t = 10−3, mesh T1, L = 64, N = 8.
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Figure 6.9: Comparison of numerical and analytical solutions at the chosen test point

for start-up of axisymmetric Poiseuille flow of an Oldroyd B fluid with β = 1
9
, Re = 1.0,

We = 100. Parameters used are ∆t = 10−3, mesh T1, L = 64, N = 4.
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DG/DEVSS-G Scheme

We now consider the same simulation when using the DEVSS-G scheme. Tables 6.19

and 6.20 show the time-averaged errors for velocity using βs = 0.5 and βs = 1, re-

spectively. As with the planar case we see a small increase in error which is more

exaggerated as N decreases, this is in line with what we would expect since the ap-

proximation space for G is of order N − 2 whereas the velocity is N , so at low levels

of refinement the error caused by using DEVSS-G grows particularly large, especially

in areas of high velocity gradient. A good example of this can be seen on meshes T1

and T3 for N = 4 where the refinement in the cross-stream direction is particularly

low and the error is a full order of magnitude larger than the DG-only scheme. Dou-

bling the number of cross-stream elements or the polynomial order counteracts this

although the requirement of ∆t = 10−3 to reach sufficient temporal accuracy becomes

more important, with the ∆t = 10−2 errors being an order of magnitude larger than

their DG-only equivalents. This is also present in the planar results, although not

noted in the discussion. The EX2 treatment of the DEVSS-G terms is most likely the

cause of this. Coupling the gradient projection equation with the momentum equation

would likely improve this, although there would be a deterioration in performance for

the linear solver. This is an option we will consider in the future as it may further

improve stability.

Turning our attention to improvements in the stability of our scheme, Table 6.21 shows

the times of divergence for the DG-only scheme at We = 10.0 where we see similar

issues as encountered in the planar case, with the length of the cylinder as well as

refinement in the downstream direction playing a crucial role. Tables 6.22 and 6.23

show the results using βs = 0.5 and βs = 1.0. A small improvement in the time to

divergence is generally observed and it allows us to reach a converged solution at higher

values of N on meshes T3 and T4 which feature additional downstream elements for

L = 64 and L = 16. Using βs = 1 instead of 0.5 brings about a small improvement

in stability. Results for We = 100 are shown in Tables 6.24- 6.26, which show similar,

albeit smaller, improvements. These results are very much in line with what was

observed for the planar case and demonstrate that the scheme works equally well for

both co-ordinate systems. The scheme is certainly not a remedy for overcoming these

stability problems, but can push the results further along in terms of time to diverge
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Mesh ∆t N = 4 N = 8 N = 12 N = 16

T1

0.1 1.1834×10−1 - - -

0.01 2.5692×10−3 1.8626×10−4 1.3495×10−4 1.1368×10−4

0.001 2.3904×10−3 4.1372×10−5 7.9518×10−6 7.0379×10−6

0.0001 2.3883×10−3 4.0193×10−5 7.6029×10−6 6.2258×10−6

T2

0.1 - - - -

0.01 1.4313×10−4 1.3454×10−4 1.3364×10−4 1.1369×10−4

0.001 8.3276×10−5 8.0613×10−6 7.0577×10−6 7.1768×10−6

0.0001 8.2314×10−5 7.6079×10−6 6.0154×10−6 6.1471×10−6

T3

0.1 1.5132×10−1 - - -

0.01 2.7630×10−3 2.0162×10−4 1.4110×10−4 1.3909×10−4

0.001 2.5366×10−3 4.2423×10−5 8.2835×10−6 7.6572×10−6

0.0001 2.5336×10−3 4.1126×10−5 8.0250×10−6 6.8868×10−6

T4

0.1 - - - -

0.01 1.9478×10−4 1.4267×10−4 1.4014×10−4 1.3908×10−4

0.001 8.8710×10−5 8.8425×10−6 7.4089×10−6 7.7155×10−6

0.0001 8.6186×10−5 8.2366×10−6 6.6584×10−6 7.1156×10−6

Table 6.19: Time-averaged velocity error, Eu, at the test point using DEVSS-G, βs =

0.5, for axisymmetric start-up flow of an Oldroyd B. Fluid, We = 1, β = 1
9
, Re = 1.0,

L = 64.
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Mesh ∆t N = 4 N = 8 N = 12 N = 16

T1

0.1 - - - -

0.01 3.0658×10−3 3.8300×10−4 2.6086×10−4 2.0473×10−4

0.001 2.6895×10−3 4.8375×10−5 9.3640×10−6 7.6030×10−6

0.0001 2.6857×10−3 4.6010×10−5 7.4053×10−6 6.1005×10−6

T2

0.1 - - - -

0.01 2.5098×10−4 2.7530×10−4 2.6250×10−4 2.0469×10−4

0.001 1.0347×10−4 8.7187×10−6 8.0995×10−6 7.7975×10−6

0.0001 1.0297×10−4 7.3983×10−6 5.8806×10−6 6.1266×10−6

T3

0.1 - - - -

0.01 3.4506×10−3 4.2757×10−4 3.0421×10−4 3.0489×10−4

0.001 2.9456×10−3 5.0135×10−5 1.0230×10−5 9.5129×10−6

0.0001 2.9402×10−3 4.7455×10−5 8.0047×10−6 7.3162×10−6

T4

0.1 - - - -

0.01 3.4725×10−4 3.0445×10−4 3.0533×10−4 3.0443×10−4

0.001 1.0810×10−4 9.7587×10−6 9.0657×10−6 9.2622×10−6

0.0001 1.0637×10−4 8.2214×10−6 6.8879×10−6 7.7592×10−6

Table 6.20: Time-averaged velocity error, Eu, at the test point using DEVSS-G, βs =

1.0, for axisymmetric start-up flow of an Oldroyd B. Fluid, We = 1, β = 1
9
, Re = 1.0,

L = 64.
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which can be beneficial for our simulations.
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6.1.3 Summary

We have shown that our DG-SEM scheme is capable of a high level of accuracy for the

Oldroyd B model, and is capable of handling transient flows with a small amount of

error. We have validated our results with other work and matched their accuracy or

improved upon it in some cases. Further, the DEVSS-G scheme has been demonstrated

to provide additional stability for flows which are known to cause divergence problems

when solved numerically. While it does not remedy the problems, it can provide the

means to run a simulation for a longer time period and can certainly be used to obtain

a solution which is convergent to the degree of accuracy we require.

6.2 Flow past a Fixed Cylinder

We consider the planar geometry benchmark of flow past a fixed cylinder in an infinite

cylinder for an Oldroyd B fluid, continuing from the Newtonian fluid in section 5.2.

Following the majority of the literature we fix Re = 0 and β = 0.59 in order to draw

direct comparison.

We prescribe the velocity given in (4.4), with HC = 4 and Uav = 1, at inflow and

outflow and prescribe the elastic stress at inflow given by,

τxx = 2We (1− β)

(
∂ux
∂y

)2

, (6.9)

τxy = (1− β)
∂ux
∂y

, (6.10)

τyy = 0 (6.11)

where ∂ux
∂y

= −3
4
y for the chosen velocity profile. No-slip and no penetration conditions

are set at the channel walls and symmetry boundary conditions are set on the axis of

symmetry. Zero initial conditions are set for all variables.

The value of We will be increased as high as possible using our numerical scheme.
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Timestep Drag

10−2 123.19613707

10−3 123.19613634

10−4 123.19613628

10−5 123.19613627

Table 6.27: Temporal convergence of drag for flow past a fixed cylinder in an infinite

channel of an Oldroyd B fluid with Re = 0.0, β = 0.59, We = 0.3. Peformed on mesh

M3 with N = 8.

6.2.1 Domain, Mesh and Timestepping

We use the same meshes as seen in the Newtonian fluid benchmark, shown in Figure 3.4,

but also include mesh M5 which features additional refinement in the wake of the

cylinder. The length of the mesh is again fixed at 40 radii and the height fixed at 2

radii, with RC = 1.

We consider timesteps ∆t = 10−1, 10−2, 10−3, 10−4 and impose a time limit of 50 time

units, at which point the simulation is terminated if it has not met our convergence

criteria or otherwise diverged.

6.2.2 Results

The main results for the drag are presented in Table 6.33, but we first confirm that

we see convergence with respect to temporal and spatial refinement. Starting with

temporal refinement, Table 6.27 shows the computed drag (using the DG-only scheme)

for a moderate value of We = 0.3 for a moderate spatial refinement, to a high number

of decimal places. We see that there is little variance of the drag for any of these

timesteps, although we do see convergence at 7 decimal places with increasing timestep.

We checked that this was also true for a more refined mesh and larger N , and found

the same result. We choose to use ∆t = 10−4 for our main simulations.

Table 6.28 shows the computed drag for the DG-only scheme at We = 0.3 using ∆t =

10−4. We observe a steady convergence with mesh refinement at fixedN , which suggests
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Mesh N = 4 N = 8 N = 12 N = 16

M1 123.374545 123.014923 123.194371 123.185684

M2 121.079170∗ 123.197103 123.192201 123.191168

M3 122.757546 123.196136 123.190978 123.191207

M4 123.078513 123.191297 123.191216 123.191247

M5 123.078626 123.191294 123.191216 123.191246

Table 6.28: Spatial convergence of drag for flow past a fixed cylinder in an infinite

channel of an Oldroyd B fluid with Re = 0.0, β = 0.59, We = 0.3. Performed with

timestep ∆t = 10−4. Results which had not met the convergence criteria are marked

with an asterisk.

that mesh dependence is minimal, at least for this value of We. Refinement in N yields

convergence of the drag by N = 12 where we are satisfied with agreement up to 5

decimal places in the computed drag.
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Timestep Drag

10−2 123.19531615

10−3 123.19531543

10−4 123.19531535

10−5 123.19531534

Table 6.30: Temporal convergence of drag for flow past a fixed cylinder in an infinite

channel of an Oldroyd B fluid with Re = 0.0, β = 0.59, We = 0.3. Peformed on mesh

M3 with N = 8 using DEVSS-G, βs = 1.0.

Table 6.29 shows the computed drag with increasing We using our DG-only scheme

on our most refined meshes at the highest attainable values of N . We see excellent

convergence of the drag with increasing N up to We = 0.5. At We = 0.6 there is

an issue with the numerical scheme reaching a fully converged steady-state solution.

While the simulation does not diverge, the time limit was reached before the field

variables had reached threshold set with regard to their change over time, although

the change in drag over time does appear to have reached the required threshold. At

values higher than We = 0.6 we find that the drag may appear to have converged, but

the simulation later diverges and does not reach the steady state.

Table 6.32 shows the computed drag factor when employing the DEVSS-G scheme to

stabilise our results. We only consider βs = 1, as using anything below the value of

β = 0.59 would not be expected to stabilise the simulation (θ would become negative,

see (3.191)). Table 6.30 shows the convergence of the drag with temporal refinement,

which shows a similar rate of convergence to the DG-only scheme.

The values for the drag in Table 6.30 differ at the 3rd decimal place when compared

to those for the DG-only scheme (Table 6.27), which is a slight cause for concern.

Table 6.31 shows the computed drag factor with spatial refinement which brings the

drag values back into line with the DG-only scheme with increased refinement in N .

We note the additional error introduced by the DEVSS-G scheme impacts on the

computed drag, although additional spatial refinement appears to alleviate this. This

is fairly intuitive given that we only calculate the value of G on the internal nodes

and then extrapolate the value onto a mesh boundary node. Given that the drag is

computed along element boundaries on the surface of the cylinder we would expect to
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Mesh N = 4 N = 8 N = 12 N = 16

M1 125.647513 123.118874 123.197836 123.185491

M2 123.947735 123.197671 123.192282 123.191161

M3 122.882292 123.195315 123.190915 123.191211

M4 123.145048 123.191222 123.191220 123.191247

M5 123.144690 123.191218 123.191219 123.191246

Table 6.31: Spatial convergence of drag for flow past a fixed cylinder in an infinite

channel of an Oldroyd B fluid with Re = 0.0, β = 0.59, We = 0.3. Performed with

timestep ∆t = 10−4 using DEVSS-G, βs = 1.0.

see any error introduced by the DEVSS-G scheme exaggerated.
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We Present Work Claus et al.[12] Alves et al.[1] Fan et al.[14] Owens et al.[43]

0.1 130.363 130.364 130.355 130.36 -

0.2 126.625 126.626 126.320 126.62 -

0.3 123.191 123.192 123.210 123.19 -

0.4 120.591 120.593 120.607 120.59 -

0.5 118.826 118.826 118.838 118.83 118.827

0.6 117.775 117.776 117.787 117.77 117.775

0.7 117.306∗ 117.316 117.323 117.32 117.291

0.8 - 117.352 117.357 117.36 117.237

Table 6.33: Comparison of computed drag for flow of an Oldroyd B fluid past a fixed

cylinder in an infinite cylinder at Re = 0, β = 0.59 against those found in the literature.

Results which had not met the convergence criteria are marked with an asterisk.

The computed drag for increasing We is shown in Table 6.32. We are able to achieve

converged results for We = 0.6 and reach the time limit without convergence of the

field variables at We = 0.7. This is a small improvement, but a search of the liter-

ature reveals that others have encountered problems reaching steady-state solutions

at We > 0.6. For example, Sahin et al. [52] experienced the same issue, although

they were able to compute solutions above We = 0.7. Additionally, recent work by

Claus and Phillips [12], who also employ a SEM DG/DEVSS-G scheme but using a

modal, rather than nodal, basis conclude the same. This serves as excellent validation

of our results and gives us confidence that our solver is performing well. We provide a

comparison of our results with a selection found in the literature in Table 6.33, which

shows excellent agreement for our computed drag values. A plot of the data is shown

in Figure 6.10, which suggest that our computations are accurate as well as capturing

observed phenomena.

Contour plots at various values of We are shown in Figures 6.12- 6.14 which are able to

compare directly with Claus and Phillips [12], where we see excellent agreement with

our maximum and minimum velocity and stress values at We = 0.1 and We = 0.5,

although we see slight disagreement for the maximum axial stress value at We =

0.7. Given that our results were not fully converged for this We value, this is not

surprising. Our contour plots show an increasingly thin boundary layer forming on the

surface of the cylinder with increasing We, with the axial stress growing in magnitude
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considerably.
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Figure 6.10: Comparison of drag predictions for the flow past a fixed cylinder in an

infinite channel benchmark for an Oldroyd B fluid with other results in the literature.

Values taken from Table 6.33

Plots of the stress along the central axis and along the surface of the cylinder are

provided in Figure 6.11, which show a large growth of normal stress (and 1st normal

stress difference) in the wake of the cylinder with increasing We, as seen in the contour

plots. This provides a possible explanation of the breakdown of the simulations. Claus

and Phillips [12] suggest that this growth cannot be captured by a polynomial basis

alone, and that an improvement may be found by using the log conformation approach.

Our results support this.
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Figure 6.11: Components of elastic stress along the axis of symmetry for flow of an

Oldroyd B fluid past a fixed cylinder in an infinite channel. Model parameters β = 0.59,

Re = 0.0. Numerical parameters, ∆t = 10−4, N = 16 on mesh M5 using DEVSS-G

with βs = 1.0.
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(a) p We = 0.1 min: −36.9475 max: 36.815 (b) ux We = 0.1 min:0 max: 2.95473

(c) p We = 0.5 min:−35.5411 max: 35.05 (d) ux We = 0.5 min:0 max: 2.98041

(e) p We = 0.7 min:−35.4732 max: 34.7949 (f) ux We = 0.7 min:0 max: 2.98829

Figure 6.12: Contours of pressure and velocity for flow past a fixed cylinder in an

infinite channel of an Oldroyd B fluid, Re = 0, β = 0.59.
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(a) τxx We = 0.1 min: −1.31655 max: 18.2175 (b) τyy We = 0.1 min:−4.62589 max: 6.34348

(c) τxx We = 0.5 min:−0.45124 max: 80.1919 (d) τyy We = 0.5 min:−14.8892 max: 18.176

(e) τxx We = 0.7 min:−0.367768 max: 115.8 (f) τyy We = 0.7 min:−21.0719 max: 24.5473

Figure 6.13: Contours of normal stress components for flow past a fixed cylinder in an

infinite channel of an Oldroyd B fluid, Re = 0, β = 0.59.
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(a) τxy We = 0.1 min: −4.62589 max: 8.65696

(b) τxy We = 0.5 min:−14.8892 max: 26.9793

(c) τxy We = 0.7 min:−21.0719 max: 37.0622

Figure 6.14: Contours of shear stress for flow past a fixed cylinder in an infinite channel

of an Oldroyd B fluid, Re = 0, β = 0.59.
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6.2.3 Summary

We have performed the flow past a cylinder benchmark widely used in the literature

to validate our numerical scheme for the Oldbroyd B fluid and have found excellent

agreements with the results found in the literature. We agree with recent work on the

benchmark that there is a limit around We = 0.7 where the flow appears to have some

kind of inherent instability. Further work is certainly warranted, and is ongoing by

others. Although the focus of this thesis is on the sedimentation of a sphere, this has

piqued our interest and provided a stern test of our numerical scheme. This serves as

an excellent validation of our scheme’s ability to handle viscoelastic flows in a planar

geometry.

6.3 Flow past a Fixed Sphere

We now consider the benchmark of uniform flow past a fixed sphere on the central axis

of cylinder for an Oldroyd B fluid, continuing from the Newtonian fluid in section 5.3.

We set Re = 0.01, in order to draw direct comparison with Bodart and Crochet [5].

Two prominent values of β have been considered in the literature, β = 1
9

and β = 1
2
.

We consider these two values as well as β = 8
9

and increase We as high as possible

using our numerical scheme.

We set zero initial conditions and apply the uniform velocity profile at inflow, outflow

and along the wall of the cylinder. No-slip and no penetration conditions are prescribed

on the surface of the sphere and axisymmetric boundary conditions are applied along

the axis of symmetry.

6.3.1 Domain, Mesh and Timestepping

We use the same meshes as seen in the Newtonian fluid benchmark, shown in Figure 3.4,

but also include mesh M5 which features additional refinement in the wake of the

sphere. The length of the mesh is fixed at 40 radii and the radius of the cylinder is

fixed at 2 radii, with RS = 1. This gives a blockage ratio of 0.5, we do not consider
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Timestep β = 1
9

β = 1
2

β = 8
9

10−2 - 5.69440080 5.89271973

10−3 5.48345697 5.69440069 5.89271963

10−4 5.48345697 5.69440068 5.89271963

10−5 5.48345697 5.69440065 5.89271958

Table 6.34: Temporal convergence of drag factor for flow past a fixed sphere in a

cylinder of an Oldroyd B fluid with Re = 0.01 and We = 0.3. Performed on mesh M3

with N = 8.

other blockage ratios in the present work.

We consider timesteps ∆t = 10−1, 10−2, 10−3, 10−4 and impose a time limit of 50 time

units, at which point the simulation is terminated if it has not met our convergence

criteria or otherwise diverged.

6.3.2 Results

Our collected results of the computed drag factor for each value of β are shown in

Table 6.47, with comparison to results found in the literature shown in Tables 6.45 and

6.46 for β = 1
9

and β = 1
2
, respectively.

We begin by considering the DG-only scheme. Convergence with temporal refinement

at each value of β for We = 0.3 is shown in Table 6.34 with agreement in the drag

factor to 7 decimal places demonstrated, noting that the simulation diverged at for in-

sufficient temporal refinement at β = 1
9
. We choose to fix ∆t = 10−4 for all simulations.

Convergence of the drag factor with spatial refinement is shown in Table 6.35, again

at We = 0.3. We see excellent convergence for β = 8
9

but problems with divergence ap-

pear for β = 1
2

with mesh M3 being required for any meaningful results and additional

refinement in N required to reach agreement with meshes M4 and M5. For β = 1
9

we have poor results at this moderate value of We, with only mesh M5 providing a

converged value of the drag with sufficient N . This highlights the importance of mesh

refinement at low values of β where the additional refinement in the wake appears to

yield some success in mesh M5.
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Mesh M4 Mesh M5

We N = 15 N = 16 N = 17 N = 18 N = 13 N = 14 N = 15 N = 16

0.1 5.872271 5.872271 5.872271 5.872271 5.872271 5.872271 5.872271 5.872271

0.2 5.693800 5.693800 5.693800 5.693800 5.693800 5.693800 5.693800 5.693800

0.3 - - - - 5.483275 5.483275 5.483275 5.483275

0.4 - - - - 5.280605 5.280605 5.280604 5.280604

0.5 - - - - 5.101475 - - -

Table 6.36: Drag for uniform flow of an Oldroyd B fluid past a fixed sphere in a cylinder

with Re = 0.01 and β = 1
9
. Performed with timestep, ∆t = 10−4.

The disappointing results with the DG-only scheme at β = 1
9

are continued in Ta-

ble 6.36. Convergence of the drag factor is reached on mesh M4 up to We = 0.2, with

M5 providing results up to We = 0.4, although the convergence of the value is excellent

for those computed. Increasing to β = 1
2
, Table 6.37 shows similar mesh dependence

suggesting that capturing the behaviour of the flow in the wake is still a cause of in-

stability for the simulations. Convergence up to We = 0.9 can be reached on mesh M5

compared to We = 0.5 for M4, although convergence with refinement in N remains

excellent for all results. Finally, Table 6.38 shows results for β = 8
9

with a reduction in

the dependence on the mesh, suggesting that flow behaviour in the wake is no longer

dominating to the extreme it was for lower values of β. We reach convergence up to

We = 0.9 for M4 and We = 1 for M5 as well as computing some unconverged (with

respect to the stopping criteria) values at slightly higher We which do not diverge.

We now consider the DEVSS-G scheme and attempt to increase the attainable We for

each value of β. We begin by considering β = 1
9

with βs = 0.5, which we would expect

to roughly match the attainable We reached by the DG-only scheme with β = 1
2
, with

the computed drag factor shown in Table 6.39. We see a small increase on mesh M4,

although not quite matching the attainable We of β = 1
2
, further suggesting that the

wake is an important factor to account for when attempting to reach higher We at

this value of β. However, we see a dramatic improvement for the results on mesh M5,

with convergence in the drag factor up to We = 0.8 as well as a converged result at

We = 0.9 although we cannot verify it with further refinement in N .

With this success in mind, we increase the stabilisation parameter to βs = 1. Conver-
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Mesh M4 Mesh M5

We N = 15 N = 16 N = 17 N = 18 N = 13 N = 14 N = 15 N = 16

0.1 5.906026 5.906027 5.906027 5.906026 5.906026 5.906027 5.906026 5.906027

0.2 5.808245 5.808245 5.808245 5.808245 5.808245 5.808245 5.808245 5.808245

0.3 5.694340 5.694340 5.694340 5.694340 5.694340 5.694340 5.694340 5.694340

0.4 5.586113 5.586113 5.586113 5.586113 5.586113 5.586113 5.586113 5.586113

0.5 5.491800 5.491800 5.491800 5.491800 5.491800 5.491801 5.491800 5.491800

0.6 - - - - 5.413131 5.413133 5.413134 5.413133

0.7 - - - - 5.349202 5.349210 5.349213 5.349213

0.8 - - - - 5.298235 5.298250 5.298258 5.298261

0.9 - - - - 5.258298 5.258318 5.258334 5.258343

Table 6.37: Drag for uniform flow of an Oldroyd B fluid past a fixed sphere in a cylinder

with Re = 0.01 and β = 1
2
. Performed with timestep, ∆t = 10−4.

Mesh M4 Mesh M5

We N = 15 N = 16 N = 17 N = 18 N = 13 N = 14 N = 15 N = 16

0.1 5.938663 5.938663 5.938663 5.938663 5.938663 5.938663 5.938663 5.938663

0.2 5.917382 5.917382 5.917382 5.917382 5.917382 5.917382 5.917382 5.917382

0.3 5.892718 5.892718 5.892718 5.892718 5.892718 5.892718 5.892718 5.892718

0.4 5.869454 5.869454 5.869454 5.869454 5.869454 5.869454 5.869454 5.869454

0.5 5.849474 5.849474 5.849474 5.849474 5.849474 5.849474 5.849474 5.849474

0.6 5.833280 5.833280 5.833280 5.833280 5.833279 5.833280 5.833280 5.833280

0.7 5.820817 5.820817 5.820817 5.820817 5.820816 5.820817 5.820817 5.820817

0.8 5.811850 5.811851 5.811851 5.811851 5.811847 5.811849 5.811850 5.811851

0.9 5.806112 5.806115 5.806116 5.806117 5.806110 5.806113 5.806115 5.806117

1 5.802177∗ - - - 5.803367 5.803369 5.803373 5.803375

1.1 - - - - 5.803401∗ 5.803407 - -

Table 6.38: Drag factor for uniform flow of an Oldroyd B fluid past a fixed sphere in

a cylinder with Re = 0.01 and β = 8
9
. Performed with timestep, ∆t = 10−4. Results

which had not met the convergence criteria are marked with an asterisk.
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Mesh M4 Mesh M5

We N = 15 N = 16 N = 17 N = 18 N = 13 N = 14 N = 15 N = 16

0.1 5.872271 5.872271 5.872271 5.872271 5.872271 5.872271 5.872271 5.872271

0.2 5.693800 5.693800 5.693800 5.693800 5.693800 5.693800 5.693800 5.693800

0.3 5.483275 5.483275 5.483275 5.483275 5.483275 5.483275 5.483275 5.483275

0.4 - 5.280604 - 5.280604 5.280605 5.280604 5.280604 5.280604

0.5 - - - - 5.101474 5.101473 5.101472 5.101471

0.6 - - - - 4.949510 4.949508 4.949505 4.949504

0.7 - - - - 4.823299 4.823296 4.823292 4.823289

0.8 - - - - 4.719717 4.719712 4.719705 4.719700

0.9 - - - - 4.635265∗ 4.635348 - -

Table 6.39: Drag factor for uniform flow of an Oldroyd B fluid past a fixed sphere in

a cylinder with Re = 0.01 and β = 1
9
. Performed with timestep, ∆t = 10−4 using

DEVSS-G, βs = 0.5. Results which had not met the convergence criteria are marked

with an asterisk.

gence of the drag factor with temporal refinement at each value of β for We = 0.3 is

shown in Table 6.40, where we see excellent convergence by ∆ = 10−3, although we

note that the converged value at this spatial refinement does not agree perfectly with

the DG-only scheme in Table 6.34, which was also observed in the flow past a cylinder

benchmark in Section 6.2. However, when considering convergence of the drag factor

with spatial refinement in Table 6.41 we see that with sufficient refinement in space,

the computed drag factor does agree with that found by the DG-only scheme shown in

Table 6.35. Spatial convergence at β = 1
9

is also demonstrated from mesh M3 onwards

with increasing N , which is a vast improvement on the DG-only scheme. In terms of

mesh refinement it is clear that meshes M1 and M2 are not suitable for this benchmark

even with the additional stabilisation provided by DEVSS-G.
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Timestep β = 1
9

β = 1
2

β = 8
9

10−2 - 5.69436872 5.89271937

10−3 5.48335220 5.69436861 5.89271927

10−4 5.48335220 5.69436861 5.89271926

10−5 5.48335218 5.69436857 5.89271922

Table 6.40: Temporal convergence of drag factor for flow past a fixed sphere in a

cylinder of an Oldroyd B fluid with Re = 0.01 and We = 0.3. Performed on mesh M3

with N = 8 using DEVSS-G, βs = 1.0.
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Table 6.42 shows the drag factor computed for attainable We with β = 1
9
. We again

see mesh dependence with M5 still vastly outperforming M4 and are able to obtain

converged results up to We = 0.9 with convergence with refinement in N and additional

unconverged results up to We = 1.1. Drag factors for β = 1
2

are shown in Table 6.43

where we are able to obtain converged results up to We = 1 and unconverged results at

We = 1.1. Once again, the additional refinement in the wake for mesh M5 is shown to

produce a vast improvement in the attainable We. Finally, the computed drag factor

at β = 8
9

is shown in Table 6.44, where we are able to obtain results up to We = 1.0

and some additonal results at We = 1.1. There is an improvement in the attainable

We value for mesh M4 as observed in the DG-only scheme.

Table 6.47 shows the collected results from the DEVSS-G scheme using βs = 1. In

terms of the behaviour of the drag, we see a drag reduction with increasing We. With

decreasing β we observe an increase in the rate of drag reduction with We. This is

consistent with the literature. Tables 6.45 and 6.45 show some comparison against

those found in the literature and Figure 6.15. We see excellent agreement at β = 1
9

with Bodart and Crochet [5] as well as at β = 1
2

with both Lunsmann et al. [33] and

Chauvière and Owens [10], although we fail to attain the values of We obtained by

any of these studies. We suspect this may be due to the strict convergence criteria

applied to the drag and field variables with respect to their change between timesteps.

In many cases the drag appeared to have converged without the field variables meeting

the stopping criterion followed by divergence of the solution at some point in time

before the set time limit. Additional investigation would be warranted and we may be

able to match the drag factor values found by these authors by relaxing the stopping

criterion applied to the field variables. There are no available results in the literature

at β = 8
9

although Tamaddon-Jahromi et al. [58] provide results at β = 0.9 which we

may compare with. While they do not provide the full data set in the paper, we see a

similar trend to our results up to about We = 0.8 where they predict a larger reduction

in the drag factor. We do not predict this reduction, which could be due to insufficient

mesh refinement in the wake of the sphere, although their results at β = 1
9

also predict

a reduction in the drag factor which disagrees with the results of Bodart and Crochet

[5].
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Mesh M4 Mesh M5

We N = 15 N = 16 N = 17 N = 18 N = 13 N = 14 N = 15 N = 16

0.1 5.872271 5.872271 5.872271 5.872271 5.872271 5.872271 5.872271 5.872271

0.2 5.693800 5.693800 5.693800 5.693800 5.693800 5.693800 5.693800 5.693800

0.3 5.483275 5.483275 5.483275 5.483275 5.483275 5.483275 5.483275 5.483275

0.4 5.280604 5.280604 5.280604 5.280604 5.280605 5.280604 5.280604 5.280604

0.5 5.101432∗ - 5.101471 5.101471 5.101474 5.101472 5.101471 5.101471

0.6 - - - - 4.949510 4.949507 4.949505 4.949504

0.7 - - - - 4.823299 4.823296 4.823292 4.823289

0.8 - - - - 4.719717 4.719711 4.719705 4.719700

0.9 - - - - 4.635359 4.635348 4.635335 4.635326

1 - - - - 4.567070∗ 4.567052∗ - -

1.1 - - - - 4.519212∗ 4.502012∗ - -

Table 6.42: Drag factor for uniform flow of an Oldroyd B fluid past a fixed sphere in

a cylinder with Re = 0.01 and β = 1
9
. Performed with timestep, ∆t = 10−4 using

DEVSS-G, βs = 1.0. Results which had not met the convergence criteria are marked

with an asterisk.
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Mesh M4 Mesh M5

We N = 15 N = 16 N = 17 N = 18 N = 13 N = 14 N = 15 N = 16

0.1 5.906026 5.906027 5.906027 5.906027 5.906026 5.906027 5.906027 5.906027

0.2 5.808245 5.808245 5.808245 5.808245 5.808245 5.808245 5.808245 5.808245

0.3 5.694340 5.694340 5.694340 5.694340 5.694340 5.694340 5.694340 5.694340

0.4 5.586113 5.586113 5.586113 5.586113 5.586113 5.586113 5.586113 5.586113

0.5 5.491800 5.491800 5.491800 5.491800 5.491801 5.491801 5.491800 5.491800

0.6 5.413134 5.413133 5.413133 5.413132 5.413131 5.413134 5.413134 5.413133

0.7 5.349204∗ 5.349213 5.349213 5.349212 5.349203 5.349211 5.349213 5.349213

0.8 - - - - 5.298236 5.298250 5.298259 5.298262

0.9 - - - - 5.258296 5.258318 5.258334 5.258343

1 - - - - 5.227584 5.227611 5.227635 -

1.1 - - - - 5.204528∗ 5.204543∗ - -

Table 6.43: Drag factor for uniform flow of an Oldroyd B fluid past a fixed sphere in

a cylinder with Re = 0.01 and β = 1
2
. Performed with timestep, ∆t = 10−4 using

DEVSS-G, βs = 1.0. Results which had not met the convergence criteria are marked

with an asterisk.
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Mesh M4 Mesh M5

We N = 15 N = 16 N = 17 N = 18 N = 13 N = 14 N = 15 N = 16

0.1 5.938663 5.938663 5.938663 5.938663 5.938663 5.938663 5.938663 5.938663

0.2 5.917382 5.917382 5.917382 5.917382 5.917382 5.917382 5.917382 5.917382

0.3 5.892718 5.892718 5.892718 5.892718 5.892718 5.892718 5.892718 5.892718

0.4 5.869454 5.869454 5.869454 5.869454 5.869454 5.869454 5.869454 5.869454

0.5 5.849474 5.849474 5.849474 5.849474 5.849474 5.849474 5.849474 5.849474

0.6 5.833280 5.833280 5.833280 5.833280 5.833279 5.833280 5.833280 5.833280

0.7 5.820817 5.820817 5.820817 5.820817 5.820816 5.820817 5.820817 5.820817

0.8 5.811850 5.811851 5.811851 5.811851 5.811847 5.811849 5.811850 5.811851

0.9 5.806113 5.806116 5.806117 5.806117 5.806110 5.806113 5.806115 5.806117

1 5.800868∗ - - - 5.803367 5.803369 5.803373 5.803375

1.1 - - - - 5.803404∗ 5.803408 - -

Table 6.44: Drag factor for uniform flow of an Oldroyd B fluid past a fixed sphere in

a cylinder with Re = 0.01 and β = 8
9
. Performed with timestep, ∆t = 10−4 using

DEVSS-G, βs = 1.0. Results which had not met the convergence criteria are marked

with an asterisk.
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Present Work Bodart & Crochet (1994)[5]

We Drag Factor We Drag Factor

0 5.9478 0 5.9475

0.1 5.8723 0.131875 5.8224

0.2 5.6938 0.2078125 5.6775

0.3 5.4833 0.3078125 5.4666

0.4 5.2806 0.4078125 5.2655

0.5 5.1015 0.5078125 5.0885

0.6 4.9495 0.6078125 4.9388

0.7 4.8233 0.7078125 4.8147

0.8 4.7197 0.8078125 4.7131

0.9 4.6353 0.9078125 4.6306

1 4.5671∗ 1.0078125 4.5642

1.1 4.5192∗ 1.1078125 4.5112

1.2 − 1.2078125 4.4697

Table 6.45: Drag factor for uniform flow of an Oldroyd B fluid past a fixed sphere in

a cylinder with Re = 0.01, β = 1
9
. Comparison of best results taken from Table 6.42.

Results which had not met the convergence criteria are marked with an asterisk.
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We Present work Chauviere & Owens (2000)[10] Lunnsmann et al. (1993)[33]

0 5.9478 5.9475 5.94716

0.1 5.906 − −
0.2 5.8082 − −
0.3 5.6943 − 5.69368

0.4 5.5861 − −
0.5 5.4918 5.4852 −
0.6 5.4131 5.4009 5.41225

0.7 5.3492 5.3411 −
0.8 5.2983 5.2945 −
0.9 5.2583 5.2518 5.25717

1 5.2276 5.224 −
1.1 5.2045 5.2029 −
1.2 − 5.1842 5.18648

1.3 − 5.1421a −
1.4 − 5.1240a −
1.5 − − 5.15293

Table 6.46: Drag factor for uniform flow of an Oldroyd B fluid past a fixed sphere in

a cylinder with Re = 0.01, β = 1
2
. Best results taken from Table 6.43.
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We β = 8
9

β = 1
2

β = 1
9

0 5.9478 5.9478 5.9478

0.1 5.9387 5.9060 5.8723

0.2 5.9174 5.8082 5.6938

0.3 5.8927 5.6943 5.4833

0.4 5.8695 5.5861 5.2806

0.5 5.8495 5.4918 5.1015

0.6 5.8333 5.4131 4.9495

0.7 5.8208 5.3492 4.8233

0.8 5.8119 5.2983 4.7197

0.9 5.8061 5.2583 4.6353

1 5.8034 5.2276 4.5671∗

1.1 5.8034 5.2045∗ 4.5192∗

Table 6.47: Collected results for uniform flow of an Oldroyd B fluid past a fixed sphere

in a cylinder showing the drag factor. All results computed at Re = 0.01 using the

DG/DEVSS-G scheme with βs = 1.0, using ∆t = 10−4. Results which had not met

the convergence criteria are marked with an asterisk.
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Figure 6.15: Collected results for the benchmark of flow past a fixed sphere in a

cylinder for an Oldroyd B fluid comparing the present study against values found in

the literature. Values taken from Table 6.47
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Figures 6.16- 6.17 show the stress along the axis of symmetry and along the surface of

the sphere at β = 1
2
. We indeed see a large increase in the axial stress in the wake of

the sphere with increasing We, which supports the observations with mesh refinement.

As well as an increase in magnitude, we also see that the length which the stress rise

propagates downstream is increased with rising We. All of our meshes had a central

mesh extending to a length of 4 in each direction from the centre of the sphere, at

which point a single long element makes up the rest of the channel. The fact the the

axial stress has not fully relaxed beyond z = 5 is a good reason to extend the central

mesh beyond z = 4 when attempting to obtain solutions at higher values of We. There

is also a significant growth in both the radial and shear stress on the surface of the

sphere with increasing We, with a slight shift downstream of the second peak on the

surface of the sphere for the radial stress seen at We = 1. The value of τθθ grows in the

stagnation zone in front of the sphere with increasing We and we predict a decrease

in magnitude in the wake as We increases but with a propagation downstream before

relaxing fully. Finally, a growth of the N1 on the surface of the sphere and the wake

with increasing We is predicted, with a significant increase in the wake in comparison

to that on the surface as well as an increase in magnitude in the stagnation zone in

front of the sphere.

We provide contour plots of pressure, velocity and stress at β = 1
2

in Figures 6.18-

6.20. With increasing We we predict an increasing pressure reduction in the wake of

the sphere closest to the surface. While the maximum velocity of the fluid remains

fairly constant, there is a clear reduction in velocity in the wake of the sphere, with its

influence on the flow downstream becoming greater as We increases. The axial stress

contour shows an increasingly thin boundary layer developing on the surface of the

sphere and in the wake with increasing We Another notable feature is the propagation

of τθθ downstream and near to the surface of the sphere with increasing We.

Figures 6.21- 6.22 show the stress along the axis of symmetry and along the surface of

the sphere at We = 1 with increasing β. The growth in axial stress on the surface and

in the wake of the sphere is not as dramatic when compared with increasing We and

we predict a reduction in axial stress and N1 in the wake when decreasing β from 1
2

to 1
9
. It is possible this is a spurious result and we predict the opposite at We = 0.9,
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Figure 6.16: Components of elastic stress along the axis of symmetry for uniform flow

of an Oldroyd B fluid past a fixed sphere in a cylinder. Model parameters β = 0.5,

Re = 0.01.
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Figure 6.17: First normal stress difference, N1 = τzz−τrr, along the axis of symmetry for

uniform flow of an Oldroyd B fluid past a fixed sphere in a cylinder. Model parameters

β = 0.5, Re = 0.01.

shown in Figure 6.23. Contrary to the less dramatic axial stress growth, we predict a

large growth in radial stress, shear stress and τθθ with decreasing β which may be a

cause of the instabilities above We = 1.

Figures 6.24- 6.26 show the contour plots at We = 1 with decreasing β. As observed

with increasing We, there is a pressure drop in the wake, close to the sphere when

increasing from β = 8
9

to β = 1
2
. There is a slight increase at β = 1

9
, although this

could be spurious as noted above in relation to the difference between We = 0.9 and

We = 1 at this viscosity ratio. Looking at the axial velocity, the maximum value is

slightly increasing with decreasing β and we observe an increase with respect to the
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(a) p ,We = 0.1 min: −10.7618 max: 10.4764 (b) ux, We = 0.1 min:0 max: 1.66064

(c) p, We = 0.5 min:−11.5311 max: 9.76056 (d) ux, We = 0.5 min:0 max: 1.66344

(e) p, We = 1.0 min:−17.7909 max: 9.3244 (f) ux, We = 1.0 min:0 max: 1.66116

Figure 6.18: Contours of pressure and velocity for uniform flow of an Oldroyd B fluid

past a fixed sphere in a cylinder, Re = 0.01, β = 0.5.

influence of the sphere, downstream. We observe a large increase in the axial and radial

stress boundary layer on the surface of and in the wake of the sphere as β decreases,

which is similar in effect to an increase in We. While the magnitude of the shear stress

certainly increases with decreasing β we see very little change in the thickness of the

boundary layer, with a small growth in thickness as β decreases. This differs from the

effect of increasing We. This suggests that shearing effects are minimal with increasing

polymeric viscosity. Similarly, the value of We appears to be more important than β

for the τθθ component of elastic stress too, with only subtle thinning of the boundary

layer around the surface of the sphere with decreasing β.

6.3.3 Summary

We have performed the flow past a fixed sphere benchmark for an Oldroyd B fluid

which has been widely used in the literature and found excellent agreement for the

attainable values of We in terms of the computed drag factor. The usage of DEVSS-G
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(a) τzz, We = 0.1 min: −1.23186 max: 7.02587 (b) τrr, We = 0.1 min:−1.71574 max: 3.39268

(c) τzz, We = 0.5 min:−0.509219 max: 29.5602 (d) τrr, We = 0.5 min:−0.501814 max: 7.38626

(e) τzz, We = 1.0 min:−0.33593 max: 58.3747 (f) τrr, We = 1.0 min:−0.30457 max: 13.1167

Figure 6.19: Contours of stress components for uniform flow of an Oldroyd B fluid past

a fixed sphere in a cylinder, Re = 0.01, β = 0.5.

as a stabilisation scheme appears to be very successful in increasing the attainable

We, particularly as β decreases with little loss in the apparent accuracy of our results.

However, a limit of We = 1.1 was found for all values of β, although it is increasingly

difficult to find a steady solution as β decreases.

It’s possible that our meshes are responsible for this relatively low limiting value of

We and that refinement in the wake of the sphere may allow us to reach higher values.

We intend to perform additional simulations in order to investigate further, and hope

to attain values in line with those of Chauvière and Owens [10] who reach a value in

excess of We = 1.3 at β = 0.5. However, they postulate that the large growth of the

axial stress in the wake of the sphere above We = 1.3 means results above this value

are highly susceptible to error. This limiting value of We = 1.3 was also reported by

Fan [13]. Our results support this claim with a strong growth in the axial stress in the

wake with increasing We and comparatively little influence with decreasing β.

It would also be interesting to compare the extension rate in the wake of the sphere.

This is a region of pure (although not steady) elongation meaning the infinite exten-
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(a) τrz, We = 0.1 min: −1.47365 max: 4.63417 (b) τθθ, We = 0.1 min: −0.454302 max: 0.570813

(c) τrz, We = 0.5 min:−4.98889 max: 10.6292 (d) τθθ, We = 0.5 min: −0.310987 max: 0.873459

(e) τrz, We = 1.0 min:−11.6732 max: 19.7696 (f) τθθ, We = 1.0 min: −0.22202 max: 1.29901

Figure 6.20: Contours of stress components for uniform flow of an Oldroyd B fluid past

a fixed sphere in a cylinder, Re = 0.01, β = 0.5.

sional viscosity associated with the Oldroyd B model is likely to be a cause of the

breakdown of our numerical scheme. The reason being that a node being placed on

or near a region where the elongation rate is close to the finite value causing the in-

finite extensional velocity then this would cause serious problems for our numerical

scheme. This is an issue that we shall consider in the future when investigating the

mesh refinement.

Tamaddon-Jahromi et al. [58] predict a local minimum of the drag factor between

We = 1 and We = 1.1 at β = 0.9. Our results at β = 1
9

also hint at the presence of

a local minimum around this value although we are unable to confirm it due to not

being able to attain a converged solution at high enough We.

In summary, this serves as a strong validation of our DG/DEVSS-G scheme on what is

widely considered to be a testing benchmark, despite its deceptive simplicity in terms

of geometry.

208



−5 0 5 10
−10

0

10

20

30

40

50

60

70

80

x

τ zz

 

 

β = 1
9

β = 1
2

β = 8
9

(a) τzz

−5 0 5 10
−20

−10

0

10

20

30

40

x

τ rz

 

 

β = 1
9

β = 1
2

β = 8
9

(b) τrz

−5 0 5 10
−5

0

5

10

15

20

25

30

x

τ rr

 

 

β = 1
9

β = 1
2

β = 8
9

(c) τrr

−5 0 5 10
−0.5

0

0.5

1

1.5

2

2.5

3

x

τ θθ

 

 

β = 1
9

β = 1
2

β = 8
9

(d) τθθ

Figure 6.21: Components of elastic stress along the axis of symmetry for uniform flow

of an Oldroyd B fluid past a fixed sphere in a cylinder. Model parameters We = 1,

Re = 0.01.
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Figure 6.22: N1 = τzz− τrr, along the axis of symmetry for uniform flow of an Oldroyd

B fluid past a fixed sphere in a cylinder. Model parameters We = 1, Re = 0.01.
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Figure 6.23: Axial stress and first normal stress difference along the axis of symme-

try for uniform flow of an Oldroyd B fluid past a fixed sphere in a cylinder. Model

parameters We = 0.9, Re = 0.01.
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(a) p, β = 8
9 min: −13.8022 max: 10.3799 (b) ux, β = 8

9 min:0 max: 1.65954

(c) p, β = 1
2 min:−17.7909 max: 9.3244 (d) ux, β = 1

2 min:0 max: 1.66116

(e) p, β = 1
9 min:−17.3712 max: 8.96045 (f) ux, β = 1

9 min:0 max: 1.67972

Figure 6.24: Contours of pressure and velocity for uniform flow of an Oldroyd B fluid

past a fixed sphere in a cylinder, Re = 0.01, We = 1.0.
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(a) τzz, β = 8
9 min: −0.0736256 max: 15.5234 (b) τrr, β = 8

9 min:−0.0678164 max: 2.60096

(c) τzz, β = 1
2 min:−0.33593 max: 58.3747 (d) τrr, β = 1

2 min:−0.30457 max: 13.1167

(e) τzz, β = 1
9 min:−0.620205 max: 77.2469 (f) τrr,β = 1

9 min:−0.538143 max: 28.127

Figure 6.25: Contours of stress components for uniform flow of an Oldroyd B fluid past

a fixed sphere in a cylinder, Re = 0.01, We = 1.0.
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(a) τrz, β = 8
9 min: −3.24058 max: 4.09651 (b) τθθ, β = 8

9 min: −0.0562914 max: 0.267076

(c) τrz, β = 1
2 min:−11.6732 max: 19.7696 (d) τθθ, β = 1

2 min:−0.22202 max:1.29901

(e) τrz, β = 1
9 min:−17.4909 max: 35.5741 (f) τθθ, β = 1

9 min: −0.372593 max: 2.86695

Figure 6.26: Contours of stress components for uniform flow of an Oldroyd B fluid past

a fixed sphere in a cylinder, Re = 0.01, We = 1.0.
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6.3.4 Giesekus Model

For the fixed sphere benchmark we also consider the Giesekus model as described in

Section 2.2.2. We use the same meshes, timestep and initial and boundary conditions

as the Oldroyd B fluid and only consider the DG/DEVSS-G scheme with βs = 1. We

consider values α = 0.001, 0.01 and 0.1 and investigate the effect on the drag factor

and flow properties.

Table 6.48 shows the collected results from Tables 6.49- 6.57, which show the spatial

convergence for each set of parameters, with increasing We.
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In general we see an improvement on the Oldroyd B fluid in terms of attainable We with

increasing α. A comparison may be seen in Figure 6.29. We also see a vast decrease in

the drag factor with increasing α. The shear-thinning property of the Giesekus model

is the dominating factor for this decrease. Figure 6.27 shows the influence on the axial

component of elastic stress of α at fixed We = 1 and β = 1
2
. We observe a large decrease

in axial stress on the surface of the sphere and, interestingly, a decrease in the axial

stress in the wake. The peak of the stress in the wake and on the surface of the sphere

at α = 0.1 are almost equivalent, which is quite different to the values at lower values

of α and for the Oldroyd B fluid. There is a similar decrease for the radial stress, with

the peaks on the surface of the sphere becoming closer in magnitude, and for the shear

stress. The effect on τθθ is less dramatic, however. Figure 6.28 shows the normal stress

differences with a reduction in N1 at the stagnation point in front of the sphere with

increasing α. The main mechanism for the drag reduction with increasing α appears

to be the decrease in the axial and shear stress, with the axial stress undergoing the

largest reduction.

Figure 6.30 shows a plot of the drag factor for Giesekus fluid model parameters con-

sidered. There is little sign of a local minimum for the drag factor at β = 1
9

for any

value of α. However, for the other two values of β the drag factor is showing signs of

nearing a minimum, although further investigation would be required. When running

the simulations we only considered values up to We = 2 and it would clearly be pos-

sible to increase this for β = 1
2

and β = 8
9
. This will be left as future work, although

it is important that we first compare the current results with those available in the

literature in order to validate the scheme for the Giesekus model.
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Figure 6.27: Components of elastic stress along the axis of symmetry for Giesekus

fluid flow past a fixed sphere in a cylinder. Model parameters β = 0.5, Re = 0.01 and

We = 1. Numerical parameters, ∆t = 10−4, N = 15 on mesh M5 using DEVSS-G with

βs = 1.0.
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Figure 6.28: Normal stress differences along the axis of symmetry for Giesekus fluid

flow past a fixed sphere in a cylinder. Model parameters β = 0.5, Re = 0.01 and

We = 1. Numerical parameters, ∆t = 10−4, N = 15 on mesh M5 using DEVSS-G with

βs = 1.0.

Mesh M4 Mesh M5

We N = 15 N = 16 N = 17 N = 18 N = 13 N = 14 N = 15 N = 16

0.1 5.854544 5.854544 5.854544 5.854544 5.854544 5.854544 5.854544 5.854544

0.2 5.662541 5.662541 5.662541 5.662541 5.662541 5.662541 5.662541 5.662541

0.3 5.442417 5.442417 5.442417 5.442417 5.442417 5.442417 5.442417 5.442417

0.4 5.232558 5.232558 5.232558 5.232558 5.232558 5.232558 5.232558 5.232558

0.5 5.047486∗ 5.047523 5.047524 5.047524 5.047524 5.047524 5.047523 5.047523

0.6 - - - - 4.890278 4.890277 4.890277 4.890276

0.7 - - - - 4.759031 4.759029 4.759029 4.759029

0.8 - - - - 4.650445 4.650436 4.650435 4.650437

0.9 - - - - 4.560987 4.560963 4.560955 4.560957

1 - - - - 4.487441∗ 4.487404∗ - -

1.1 - - - - 4.426899∗ 4.428358∗ - -

Table 6.49: Drag for flow past a fixed sphere in a cylinder for a Giesekus fluid with

Re = 0.01, β = 1
9
, α = 0.001. Performed with timestep, ∆t = 10−4 using DEVSS-G,

βs = 1.0.
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Figure 6.29: Comparison of drag factor for an Oldroyd B fluid and a Giesekus fluid

with α = 0.1 for flow past a fixed sphere in a cylinder.
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Figure 6.30: Drag factor for all parameters considered for Giesekus fluid flow past a

fixed sphere in a cylinder.
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Mesh M4 Mesh M5

We N = 15 N = 16 N = 17 N = 18 N = 13 N = 14 N = 15 N = 16

0.1 5.895991 5.895991 5.895991 5.895991 5.895991 5.895991 5.895991 5.895991

0.2 5.790225 5.790225 5.790225 5.790225 5.790225 5.790225 5.790225 5.790225

0.3 5.670226 5.670226 5.670226 5.670226 5.670226 5.670226 5.670226 5.670226

0.4 5.557056 5.557056 5.557056 5.557056 5.557056 5.557056 5.557056 5.557056

0.5 5.458406 5.458406 5.458406 5.458406 5.458407 5.458406 5.458406 5.458406

0.6 5.375679 5.375678 5.375678 5.375678 5.375680 5.375679 5.375679 5.375678

0.7 5.307763∗ 5.307771 5.307770 5.307770 5.307772 5.307772 5.307771 5.307771

0.8 - - - - 5.252767 5.252767 5.252766 5.252766

0.9 - - - - 5.208631 5.208628 5.208627 5.208626

1 - - - - 5.173485 5.173475 5.173470 5.173470

1.1 - - - - 5.145696∗ 5.145677∗ - -

1.2 - - - - 5.123895∗ 5.123866∗ - -

Table 6.50: Drag for flow past a fixed sphere in a cylinder for a Giesekus fluid with

Re = 0.01, β = 1
2
, α = 0.001. Performed with timestep, ∆t = 10−4 using DEVSS-G,

βs = 1.0.
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Mesh M4 Mesh M5

We N = 15 N = 16 N = 17 N = 18 N = 13 N = 14 N = 15 N = 16

0.1 5.936420 5.936420 5.936420 5.936420 5.936420 5.936420 5.936420 5.936420

0.2 5.913297 5.913297 5.913297 5.913297 5.913297 5.913297 5.913297 5.913297

0.3 5.887168 5.887168 5.887168 5.887168 5.887168 5.887168 5.887168 5.887168

0.4 5.862658 5.862658 5.862658 5.862658 5.862658 5.862658 5.862658 5.862658

0.5 5.841519 5.841519 5.841519 5.841519 5.841519 5.841519 5.841519 5.841519

0.6 5.824153 5.824153 5.824153 5.824153 5.824153 5.824153 5.824153 5.824153

0.7 5.810420 5.810420 5.810420 5.810420 5.810420 5.810420 5.810420 5.810420

0.8 5.799998 5.799998 5.799998 5.799998 5.799998 5.799998 5.799998 5.799998

0.9 5.792519 5.792520 5.792520 5.792520 5.792521 5.792520 5.792520 5.792520

1 - 5.787449∗ - - 5.787618 5.787616 5.787615 5.787616

1.1 - - - - 5.784906 5.784902 5.784901 -

1.2 - - - - - 5.783934∗ - -

Table 6.51: Drag for flow past a fixed sphere in a cylinder for a Giesekus fluid with

Re = 0.01, β = 8
9
, α = 0.001. Performed with timestep, ∆t = 10−4 using DEVSS-G,

βs = 1.0.

222



Mesh M4 Mesh M5

We N = 15 N = 16 N = 17 N = 18 N = 13 N = 14 N = 15 N = 16

0.1 5.719759 5.719759 5.719759 5.719759 5.719759 5.719759 5.719759 5.719759

0.2 5.435936 5.435936 5.435936 5.435936 5.435936 5.435936 5.435936 5.435936

0.3 5.160942 5.160942 5.160942 5.160942 5.160942 5.160942 5.160942 5.160942

0.4 4.915557 4.915557 4.915557 4.915557 4.915557 4.915557 4.915557 4.915557

0.5 4.704150 4.704150 4.704150 4.704150 4.704150 4.704150 4.704150 4.704150

0.6 - - - - 4.524464 4.524466 4.524467 4.524466

0.7 - - - - 4.372123 4.372131 4.372134 4.372133

0.8 - - - - 4.242519 4.242529 4.242536 4.242539

0.9 - - - - 4.131514 4.131517 4.131529 4.131536

1 - - - - 4.035636∗ - - 4.035642

1.1 - - - - 3.952059∗ 3.952021∗ - -

Table 6.52: Drag for flow past a fixed sphere in a cylinder for a Giesekus fluid with

Re = 0.01, β = 1
9
, α = 0.01. Performed with timestep, ∆t = 10−4 using DEVSS-G,

βs = 1.0.
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Mesh M4 Mesh M5

We N = 15 N = 16 N = 17 N = 18 N = 13 N = 14 N = 15 N = 16

0.1 5.821879 5.821879 5.821879 5.821879 5.821879 5.821879 5.821879 5.821879

0.2 5.666142 5.666142 5.666142 5.666142 5.666142 5.666142 5.666142 5.666142

0.3 5.515299 5.515299 5.515299 5.515299 5.515299 5.515299 5.515299 5.515299

0.4 5.380966 5.380966 5.380966 5.380966 5.380966 5.380966 5.380966 5.380966

0.5 5.265572 5.265572 5.265572 5.265572 5.265572 5.265572 5.265572 5.265572

0.6 5.167812 5.167812 5.167812 5.167812 5.167813 5.167813 5.167812 5.167812

0.7 5.085201 5.085200 5.085200 5.085200 5.085199 5.085202 5.085201 5.085200

0.8 - - - - 5.015107 5.015115 5.015116 5.015114

0.9 - - - - 4.955176 4.955189 4.955195 4.955194

1 - - - - 4.903433 4.903450 4.903462 4.903463

1.1 - - - - 4.858294 4.858309 4.858328 4.858335

1.2 - - - - 4.818513 4.818520 4.818544 -

1.3 - - - - 4.783122 4.783112 4.783137 -

1.4 - - - - 4.751367∗ 4.751331∗ - -

1.5 - - - - 4.722632∗ 4.722584∗ - -

Table 6.53: Drag for flow past a fixed sphere in a cylinder for a Giesekus fluid with

Re = 0.01, β = 1
2
, α = 0.01. Performed with timestep, ∆t = 10−4 using DEVSS-G,

βs = 1.0.
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Mesh M4 Mesh M5

We N = 15 N = 16 N = 17 N = 18 N = 13 N = 14 N = 15 N = 16

0.1 5.920253 5.920253 5.920253 5.920253 5.920253 5.920253 5.920253 5.920253

0.2 5.886227 5.886227 5.886227 5.886227 5.886227 5.886227 5.886227 5.886227

0.3 5.853158 5.853158 5.853158 5.853158 5.853158 5.853158 5.853158 5.853158

0.4 5.823647 5.823647 5.823647 5.823647 5.823647 5.823647 5.823647 5.823647

0.5 5.798275 5.798275 5.798275 5.798275 5.798275 5.798275 5.798275 5.798275

0.6 5.776795 5.776795 5.776795 5.776795 5.776795 5.776795 5.776795 5.776795

0.7 5.758697 5.758697 5.758697 5.758697 5.758697 5.758698 5.758697 5.758697

0.8 5.743438 5.743438 5.743437 5.743437 5.743437 5.743438 5.743438 5.743438

0.9 5.730519 5.730518 5.730518 5.730517 5.730515 5.730518 5.730519 5.730518

1 5.719512 5.719512 5.719510 5.719510 5.719504 5.719510 5.719512 5.719512

1.1 5.710061 5.710062 5.710061 5.710060 5.710051 5.710058 5.710062 5.710063

1.2 5.701852∗ 5.701876 5.701879 5.701879 5.701868 5.701874 5.701881 5.701884

1.3 5.694574∗ - - - 5.694724 5.694728 5.694737 5.694743

1.4 - - - - 5.688438 5.688437 5.688447 5.688455

1.5 - - - - 5.682864 5.682855 5.682864 5.682875

1.6 - - - - 5.677886 5.677866 5.677873 -

1.7 - - - - 5.673408 5.673378 - -

1.8 - - - - 5.669367∗ 5.669322∗ 5.669313 -

Table 6.54: Drag for flow past a fixed sphere in a cylinder for a Giesekus fluid with

Re = 0.01, β = 8
9
, α = 0.01. Performed with timestep, ∆t = 10−4 using DEVSS-G,

βs = 1.0.
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Mesh M4 Mesh M5

We N = 15 N = 16 N = 17 N = 18 N = 13 N = 14 N = 15 N = 16

0.1 5.204770 5.203281 5.201625 5.200093 5.205620 5.205684 5.204770 5.203281

0.2 4.585723 4.585723 4.585723 4.585723 4.585723 4.585723 4.585723 4.585723

0.3 4.201197 4.201197 4.201197 4.201197 4.201197 4.201197 4.201197 4.201197

0.4 3.918241 3.918241 3.918241 3.918241 3.918241 3.918241 3.918241 3.918241

0.5 3.692446 3.692446 3.692446 3.692446 3.692446 3.692446 3.692446 3.692446

0.6 - 3.504897 3.504897 - 3.504897 3.504897 3.504897 3.504897

0.7 - - - - 3.345382 3.345381 3.345381 3.345381

0.8 - - - - 3.207566 3.207566 3.207566 3.207566

0.9 - - - - 3.087154 3.087156 3.087156 3.087155

1 - - - - 2.981042 2.981044 2.981045 2.981045

1.1 - - - - 2.886877 2.886879 2.886881 2.886881

1.2 - - - - 2.802817 2.802819 - -

1.3 - - - - 2.727382∗ - - -

1.4 - - - - 2.659361∗ - - -

Table 6.55: Drag for flow past a fixed sphere in a cylinder for a Giesekus fluid with

Re = 0.01, β = 1
9
, α = 0.1. Performed with timestep, ∆t = 10−4 using DEVSS-G,

βs = 1.0.
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Mesh M4 Mesh M5

We N = 15 N = 16 N = 17 N = 18 N = 13 N = 14 N = 15 N = 16

0.1 5.604715 5.604715 5.604715 5.604715 5.604715 5.604715 5.604715 5.604715

0.2 5.243307 5.243307 5.243307 5.243307 5.243307 5.243307 5.243307 5.243307

0.3 5.027768 5.027768 5.027768 5.027768 5.027768 5.027768 5.027768 5.027768

0.4 4.866674 4.866674 4.866674 4.866674 4.866674 4.866674 4.866674 4.866674

0.5 4.737520 4.737520 4.737520 4.737520 4.737520 4.737520 4.737520 4.737520

0.6 4.630335 4.630335 4.630335 4.630335 4.630335 4.630335 4.630335 4.630335

0.7 4.539481 4.539481 4.539481 4.539481 4.539482 4.539482 4.539481 4.539481

0.8 4.461322 4.461321 4.461321 4.461322 4.461322 4.461322 4.461322 4.461321

0.9 4.393316 4.393316 4.393316 4.393316 4.393316 4.393316 4.393316 4.393316

1 4.333598 4.333597 4.333597 4.333597 4.333597 4.333597 4.333598 4.333597

1.1 4.280744 4.280744 4.280744 4.280743 4.280744 4.280744 4.280744 4.280744

1.2 4.233647 4.233647 4.233647 4.233646 4.233648 4.233647 4.233647 4.233647

1.3 4.191423 4.191423 4.191424 4.191423 4.191424 4.191424 4.191423 4.191423

1.4 4.153361 4.153361 4.153361 4.153361 4.153362 4.153363 4.153361 4.153361

1.5 4.118879 4.118878 4.118878 4.118878 4.118878 4.118881 4.118879 4.118878

1.6 4.087496 4.087495 4.087495 4.087495 4.087493 4.087499 4.087497 4.087495

1.7 - 4.058812 4.058812 - 4.058807 4.058817 4.058816 4.058814

1.8 - - 4.032496 - 4.032487 4.032500 4.032502 4.032500

1.9 - - - - 4.008251 4.008266 4.008272 4.008270

2 - - - - 3.985858 3.985876 3.985885 3.985884

Table 6.56: Drag for flow past a fixed sphere in a cylinder for a Giesekus fluid with

Re = 0.01, β = 1
2
, α = 0.1. Performed with timestep, ∆t = 10−4 using DEVSS-G,

βs = 1.0.
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Mesh M4 Mesh M5

We N = 15 N = 16 N = 17 N = 18 N = 13 N = 14 N = 15 N = 16

0.1 5.876479 5.876479 5.876479 5.876479 5.876479 5.876479 5.876479 5.876479

0.2 5.796995 5.796995 5.796995 5.796995 5.796995 5.796995 5.796995 5.796995

0.3 5.748641 5.748641 5.748641 5.748641 5.748641 5.748641 5.748641 5.748641

0.4 5.712294 5.712294 5.712294 5.712294 5.712294 5.712294 5.712294 5.712294

0.5 5.683145 5.683145 5.683145 5.683145 5.683145 5.683145 5.683145 5.683145

0.6 5.658991 5.658991 5.658991 5.658991 5.658991 5.658991 5.658991 5.658991

0.7 5.638558 5.638558 5.638558 5.638559 5.638559 5.638559 5.638558 5.638558

0.8 5.621015 5.621015 5.621015 5.621015 5.621015 5.621016 5.621015 5.621015

0.9 5.605777 5.605777 5.605777 5.605777 5.605777 5.605777 5.605777 5.605777

1 5.592415 5.592415 5.592415 5.592415 5.592415 5.592415 5.592415 5.592415

1.1 5.580602 5.580602 5.580602 5.580602 5.580602 5.580602 5.580602 5.580602

1.2 5.570086 5.570086 5.570086 5.570086 5.570086 5.570086 5.570086 5.570086

1.3 5.560666 5.560666 5.560666 5.560666 5.560667 5.560666 5.560666 5.560666

1.4 5.552181 5.552181 5.552181 5.552181 5.552182 5.552182 5.552181 5.552181

1.5 5.544501 5.544500 5.544500 5.544500 5.544501 5.544502 5.544501 5.544500

1.6 5.537517 5.537517 5.537516 5.537516 5.537517 5.537518 5.537517 5.537517

1.7 5.531141 5.531140 5.531140 5.531140 5.531139 5.531142 5.531142 5.531140

1.8 5.525298 5.525297 5.525296 5.525296 5.525294 5.525298 5.525298 5.525297

1.9 5.519924 5.519923 5.519922 5.519921 5.519918 5.519923 5.519924 5.519923

2 5.514965 5.514965 5.514963 5.514963 5.514957 5.514963 5.514966 5.514965

Table 6.57: Drag for flow past a fixed sphere in a cylinder for a Giesekus fluid with

Re = 0.01, β = 8
9
, α = 0.1. Performed with timestep, ∆t = 10−4 using DEVSS-G,

βs = 1.0.
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Chapter 7

Motion of Sphere Falling in

Viscoelastic flow

In this chapter we extend the numerical scheme described earlier in this thesis to the

situation where the sphere is moving or sedimenting in a viscoelastic fluid.

7.1 Equation of Motion for Falling Sphere

In the case of a falling sphere, we require an additional governing equation for its

motion. We consider the axisymmetric case of a sphere falling along the centreline

of a cylinder, so the sphere will only have a non-zero velocity component in the axial

direction of the cylinder. We assume that there is no rotation of the sphere. Using

Newton’s 2nd Law, we obtain an equation of motion for a sphere of radius RS falling

under gravity through fluid within a cylinder

4π

3
R3
SρS

∂VS

∂t
ez =

4π

3
R3
S (ρS − ρF ) g + D (7.1)

where VS is the velocity of the sphere, ρS is the density of the sphere, g is the ac-

celeration due to gravity and D is the drag on the sphere. As we have presented all

of our equations in non-dimensional form, we apply the same dimensionless scaling to
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this equation of motion. The resulting dimensionless equation is

∂VS

∂t
ez =

(
1− ρF

ρS

)
g +

(
L

RS

)3
3

4π

ρF
ρS

1

Re
D. (7.2)

The term in front of the drag, D, provides motivation for the choice of the characteristic

length, L. In the case of a falling sphere we choose L = RS so that (7.2) depends on

only two dimensionless groups, the Reynolds number, and the ratio of fluid-to-sphere

density. Our final non-dimensionalised equation of motion for the falling sphere is then

∂VS

∂t
ez =

(
1− ρF

ρS

)
g +

3

4π

ρF
ρS

1

Re
D. (7.3)

where ez is the unit vector in the vertically downwards direction. Thus we consider a

falling (rather than rising) sphere to have positive velocity.

7.2 Solution of the Equation of Motion of a Falling

Sphere

The current sphere velocity, VS, is found by solving the equation of motion for the

sphere, which depends on the drag at the current time. The drag is calculated from

the solution of the conservation and constitutive equations. We employ a J th-order

Adams-Bashforth (AB) numerical scheme to calculate VS. At time tn+1, the sphere

velocity is approximated by

Vn+1
S = Vn

S + ∆t

(
γ0f

S (tn)−
J∑
q=1

αq−1f
S
(
tn−q

))
(7.4)

where γ0 and {αq}J−1
q=0 are given in Table 3.1 and fS (ti) is the RHS expression in the

equation of motion of the sphere evaluated at the ith timestep, given by

fS (t) =

(
1− ρF

ρS

)
g − 3

4πRe

ρF
ρS

D (t) (7.5)

where D (t) is the non-dimensional drag computed at time t.
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7.3 Mesh Deformation

In the field of fluid dynamics, the ability to accurately model the interaction between

a fluid and a solid boundary is very important. In the case of a fixed boundary, this is

accomplished through the imposition of boundary conditions. If the boundary can also

move or react to the fluid in some way then handling the boundary can prove to be

difficult. Numerical methods for solving moving boundary problems may be broadly

classified into two categories, moving mesh methods, or fixed mesh methods. There

are advantages and disadvantages for each.

In the case of a fixed grid method, there are many different techniques that can be

employed to deal with moving boundaries. For example, there are methods which

track the surface of the boundary, such as marker particle methods and the level-set

method [42]. There are also methods which track volume, for example the volume of

fluid method [23]. These methods are capable of modelling very complex interfaces

and motion. However, they require careful treatment of boundary conditions because

one cannot guarantee that the boundaries will be accurately resolved. This is due to

the boundaries not necessarily lying on the numerical grid, meaning their position can

be subject to numerical error.

In the case of moving mesh methods it is usual to have the boundary fitted to the mesh

which then moves with it. This means that enforcement of the boundary conditions is

no different to a stationary boundary from timestep to timestep. The downside in this

method is that the geometry of the problem changes regularly which usually requires

remeshing. Dealing with remeshing and the resulting change in the linear system from

the geometry-related terms can mean a large amount of additional computational effort

if not handled carefully.

Due to the simplicity of the geometry, the current work will focus on moving mesh

methods. In the case of the sphere falling along the central axis of a cylinder, we will

only see a change in the z-coordinates of the mesh points, which may be exploited to

avoid computational effort in recalculating geometry-related terms in the weak formu-

lation.

Moving the mesh accurately with the movement of the sphere is an important element
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in the numerical simulation of the flow. We employ various schemes to achieve this.

Firstly, we must calculate the speed of the sphere by solving equation (7.3), which will

require the computed drag on the sphere at each timestep. Secondly, we must adjust

the mesh to follow the location of the sphere. The fact that the mesh may not be fixed

from one timestep to the next must be taken into account.

From this point on we assume that the sphere velocity is of the form VS(t) = (0, VS(t))

with VS being the velocity in the z-direction.

7.3.1 Accordion Mesh Scheme

As we are modelling a solid sphere we assume that the spherical boundary does not

deform, so we wish to ensure that the mesh around the sphere does not change. This

requires a method which imposes this rigidity from one timestep to the next. Following

Bodart and Crochet [5], we decompose the mesh into three main sections. We set up

a sliding central section of elements which follows the sphere and moves as a rigid

body translation, without deformation. This section is connected at each end to two

deformable sections which compress and elongate, respectively, as the central portion

of the mesh moves towards or away from them at the velocity of the sphere. One may

liken this to the deformation of an accordion as it is played. See Figure 7.1 for a

schematic of the evolution of the mesh.

There are, of course, alternatives to dealing with a mesh which tracks the sphere.

Rasmussen and Hassager [48] employed a Lagrangian approach and a finite element

method on a deforming mesh. In their work the sphere moves (deforming the mesh

around it) for certain periods of time, depending on the density of the sphere, before

remeshing is performed. Another example is the deformation field approach adopted

by Hulsen et al. [47]. These works have been applied to integral constitutive equations

rather than the differential constitutive equations used in the current work, although

in former case, it would be applicable to our equations. However, we shall focus on

and adapt the technique described by Bodart and Crochet [5] who fix the position of

the sphere and translate the mesh around it.

The sphere velocity is used to move the central section of our accordion mesh.
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Figure 7.1: Simple schematic diagram of an accordion mesh, showing a single element

undergoing elongation on the left, the rigid central mesh around the sphere, and a

single element undergoing compression on the right.

Mesh Velocity

We move the central portion of the mesh using the calculated sphere velocity, Vn+1
S .

Each of the four vertex nodes of each central mesh element is moved according to a

2nd-order Adams-Bashforth scheme

Xn+1
i = Xn

i +
∆t

2

(
3Vn

S −Vn−1
S

)
(7.6)

This also gives us the axial extent of the two accordion zones, respectively, and the

quantitative information required to expand and compress the zones.

When each accordion zone is made up of more than one element in the z-direction,

we may distribute the deformation either equally, or according to some prescribed

weighting. This may be done at chosen ratios. For example, we may have 2 elements

in each of the two accordion sections and we may want the elements which are closer

to the central section to deform less than those further away. Alternatively, we may

wish the extended section to account for more of the deformation of the meshes than

the compressing section.

Once the accordion element vertex nodes have been moved according to the criteria

set, we have the positions of the elements for the next time step. This means that the

Gauss-Lobatto grid may be generated on each element, and we may now calculate the

mesh velocity for each node point in our grid using

vn+1
i =

1

∆t

(
γ0X

n+1
i −

J−1∑
q=0

αqX
n−q
i

)
. (7.7)
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7.3.2 Arbitrary Lagrangian Eulerian Scheme

In the case of a deforming mesh containing a moving boundary we combine our OIFS

scheme with the Arbitrary Lagrangian Eulerian (ALE) technique [22]. This accounts

for the inertia introduced to the system by the moving nodal points.

Modification to Convective Derivatives

We account for the movement of the mesh points by modifying the convective deriva-

tive contained within the material derivative. A general material derivative of some

arbitrary function, G, previously defined in (2.6) becomes

DG

Dt
=
∂G

∂t
+ (u− v) · ∇G. (7.8)

This is reflected in both the DG treatment of convective terms in the constitutive

equations as well as within OIFS treatment of the material derivative in the momentum

equation.

Modification to OIFS Problems

The OIFS approximation, at time t = tn+1, of the material derivative, of some gen-

eral function G, given by (3.9) does not change itself. However, the pure advection

problems, to which
{

G̃q

}J−1

q=0
are the solutions, previously given in equation (3.10) now

reflect that the mesh is moving

∂G̃q

∂t
= − (u∗ − vn) · ∇G̃q, t ∈

[
tn−q, tn+1

]
, G̃

(
x, tn−q

)
= Gn−q (x) . (7.9)

7.4 Boundary and Initial Conditions

Figure 7.2 shows a simple schematic of the domain we consider. In the case of a

fixed sphere in space with a flow moving past it, we apply no-slip and no penetration

conditions on the surface of the sphere. However, when the sphere is moving through
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the fluid we make a new assumption. Under our assumption of no slip on stationary

walls, it is reasonable to assume that the thin layer of fluid touching the sphere’s surface

will move with it. Therefore, the boundary condition on the surface of a fixed sphere

u = 0 is replaced by u = VS on the surface of a moving sphere. We also consider

the sphere to be fully enclosed within the cylinder, so we set zero inflow and outflow

conditions and no-slip and no-penetration conditions on the walls. Figure 7.3 shows a

schematic of the boundary conditions for the falling sphere problem.

Figure 7.2: Schematic of the 3-dimensional domain.

Even though we consider a sphere starting from rest, we apply a very small initial

velocity for the sphere typically V 0
S = 10−6, while setting zero initial conditions for

the fluid. This is done in order to avoid problems experienced with zero boundary

conditions at our first timestep. The sphere starts at the centre of our domain, at

position (0, 0), while the cylinder extends 20 radii in each axial direction. We fix the

radius of sphere, RS = 1 and the cylinder, RC = 2. Blockage ratios other than 0.5 are

not currently considered.
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Figure 7.3: Diagram showing axisymmetric boundary conditions for the case of a sphere

falling along the central axis of a cylinder filled with fluid. Here u represents velocity

in the axial direction and v represents velocity in the radial direction.

7.5 Results

As a test of our scheme we follow Bodart and Crochet [5] and choose a fluid density

of ρf = 0.868 g cm−3 who chose properties similar to that of an M1 Boger fluid. In

their test case, Bodart and Crochet chose a sphere of density ρs = 3.581 g cm−3, which

gives us a density ratio of
ρf
ρs

= 0.2424. We fix this value in all of our simulations. The

gravity constant is set to be g = 9.807 ms−2 with gravity considered to be acting in

the positive axial direction.

In all simulations we use a timestep of ∆t = 10−4 with a time limit of 20 and all are

performed on either mesh M4 or M5 with the outer set of elements set to be of accordion

type. The additional refinement in the wake of M5 is switched to the opposite side

of the mesh in order to align with gravity acting in the positive axial direction. All

simulations are performed at N = 12 or N = 8 when not possible.

During initial testing we found that matching the fluid parameters to the work of

Bodart and Crochet caused a lot of stability problems with the scheme. This is most

likely due to the differences in our choice of dimensionless form. This is something

which we aim to improve upon in the future and hope to validate against their results

directly. In the meantime, the fluid parameters considered are Re = 0.01 and 0.1,

β = 1
9

and 1
2

and α = 0 (Oldroyd B) and 0.1 (Giesekus).

During the simulation we keep track of the sphere velocity and stop the simulation
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when the change between timesteps is less than a chosen threshold, Scrit. That is

when,

Ssphere =

∣∣∣∣V n
S − V n−1

S

V n
S

∣∣∣∣ < Scrit, (7.10)

the simulation is terminated. We typically set Scrit = 10−6

∆t
.

All results presented were obtained with the DG-only scheme. We were unable to obtain

results using the DEVSS-G scheme as all attempts resulted in divergence. We suspect

this is due to the explicit treatment of the ∇ ·G terms in the momentum equation.

It is likely that the moving mesh scheme possibly requires an implicit treatment to

remain stable. It would be possible to include the velocity gradient projection into

coupled system in order to solve this issue, although there would be a large penalty in

terms of performance of the linear solver. Due to these issues, the DEVSS-G scheme

was disabled for the following simulations.

We begin with results at Re = 0.01 showing results for an Oldroyd B fluid with β = 1
9

in Figure 7.4 with the Newtonian result shown for comparison where we observe a

monotonic increase to the settling velocity. At low We we see a large overshoot, followed

by undershoots which dampen towards the final settling velocity. As We increases the

initial overshoot increases but there is no observable undershoot. Figure 7.5 shows the

results for β = 1
2
. We observe no undershoots after the initial overshoot at this value of

β, which suggests that the effect is due to the polymeric viscosity. The overshoots are

also smaller in magnitude in comparison to those at β = 1
9

with the settling velocity

being very similar. However the time taken to reach the settling velocity is significantly

higher than for β = 1
9
. At this value of Re there is no visible difference between the

results for the Oldroyd B model and the Giesekus model using α = 0.1.
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Figure 7.4: Evolution of velocity of a sphere falling in an Oldroyd B fluid withRe = 0.01

and β = 1
9
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In considering the overshoots it is useful to look at the overshoot coefficient defined by

Covershoot = max
t

(
VS(t)

V F
S

)
, (7.11)

where V F
S is the final settling velocity. In order to compare results at different values

of Re we also present normalised V F
S using the Newtonian value of V F

S .

Table 7.1 show the values of the normalised settling velocity and overshoot coefficients

for the Re = 0.01 results obtained up to We = 2. For both values of β we see a

steady, if very subtle, increase in the settling velocity indicating drag reduction with

increasing We. There is a large increase of the overshoot coefficient with We, but it

appears to tend towards a local minimum as We increases towards 2. The influence

of the viscosity ratio is also very much apparent in terms of the relative size of the

overshoot with β = 1
9

resulting in almost 4 times the size of the coefficient. This result

supports the fairly intuitive idea that the overshoot is very much an elastic effect. We

also observe a subtle difference for the Giesekus fluid, with a slightly increased settling

velocity, resulting in a slightly smaller overshoot coefficient.

Finally at Re = 0.01, we note that we are able to obtain solutions up to We = 2

without divergence and so have not found a maximum attainable value for Re = 0.01

at this point. Higher values of We will be considered in the future in order to find a

limiting value of We. We also note that we do not observe any suggestion of a negative

wake in any of these results.

We now consider Re = 0.1 where we did find a limiting value of We as well as some

small differences between the Oldroyd B and Giesekus fluid models. Results at β = 1
9

proved particularly unstable and we can only assume that the problems in obtaining a

solution in the fixed sphere benchmark which were improved using DEVSS-G are also

present here. The Oldroyd B fluid was only stable up to We = 0.1 and the Giesekus

fluid stable up to We = 0.2. Results at β = 1
2

proved to be more stable with a limit of

We = 0.6 reached for the Oldroyd B fluid and We = 0.5 for the Giesekus fluid, although

in both cases we were only able to find a convergent solution by reducing N at the

limiting values of We. The limited result for β = 1
9
, α = 0.1 may be seen in Figure 7.6
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Figure 7.6: Evolution of velocity of a sphere falling in an Oldroyd B fluid with Re = 0.1,

β = 1
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.
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with the We = 0.1 result for Oldroyd B being visually the same as that shown in the

figure. The presence of large overshoots and undershoots is at least encouraging.
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Figure 7.7: Evolution of velocity of a sphere falling in an Oldroyd B fluid with Re = 0.1,

β = 1
2
.

Figure 7.7 shows the Oldroyd B results for β = 1
2
, with the Giesekus results being

visually indistinguishable. The increase in β again leads to a vast reduction in the

undershoot and increasing We appears to remove them entirely. The trend of increasing

overshoot with increasing We is observed as was the case for Re = 0.01 as well as an

increased settling time.

A comparison of overshoot coefficient and settling velocity values are presented in Ta-

ble 7.2 which shows a fairly large reduction in the size of the overshoot when compared

to the Re = 0.01 results. This suggests that Newtonian effects can limit the overshoot
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phenomena. We also see some small differences for the Giesekus fluid which causes a

reduction in overshoot for the considered value of α. When comparing the normalised

settling velocity values with those for Re = 0.01 we see an increase of more than an

order of magnitude. Further, the Giesekus model appears to have an effect on the

settling velocity, with a large percentage increase compared to the Oldroyd B fluid

at equivalent β. The increase in settling velocity again suggests drag reduction as

viscoelastic effect.
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Due to the limited values of We we can reach at Re = 0.1, we compare the evolution of

sphere velocity at We = 0.1 in Figure 7.8. We note the large oscillations with increasing

Re and β, as well as the longer time to reach a settled velocity.
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Figure 7.8: Evolution of velocity of a sphere falling in an Oldroyd B fluid and a Giesekus

fluid at We = 0.1.

Figure 7.9 shows the axial stress at the point of convergence for all simulations at

We = 0.1. where we see a large increase with Re as well as with decreasing β. The

effect of the Giesekus mode on a reduction of the overall axial stress is also observed.

This explains the increase in settling velocity for the Giesekus fluid to some degree

because a decrease in the axial stress across the surface of the sphere will result in a

drag reduction, as can be seen from the expression for the drag in (2.53).
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Figure 7.9: Axial stress at steady state for the falling sphere in an Oldroyd B fluid and

a Giesekus fluid at We = 0.1.
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For the choice of parameters there is little to compare the results with available in

the literature. However, we may compare more generally with the results of Bodart

and Crochet [5] who calculated overshoot coefficients. At Re = 0.01053, We = 0.364,

β = 1
9

and equivalent density ratio, they calculate a overshoot coefficient of 2.85, which

compares to a value of 2.57 for We = 0.2 for the Giesekus fluid when we take into

account that the Oldroyd B fluid has shown an increase in Covershoot compared to the

Giesekus fluid and we expect an increase in the coefficient with increasing We. Further,

at Re = 0.000822, We = 0.071, β = 19 they predict an Covershoot = 6.99 at equivalent

density ratio. From our results, this would appear to be in line with our prediction

of at Re = 0.01. While this does not serve as full validation of the predictions of the

current work it does add some confidence to their validity.

One criticism is the criteria we set on terminating the simulation, which only featured

convergence of the sphere velocity. In most cases this meant that the simulation was

thought to have converged at the bottom of the first shallow undershoot, while the

drag had not yet reached a fully stable state. This was an oversight on our part and

we intend to re-run the simulations with drag convergence in time taken into account.

The result of this will likely be to increase the predicted settled velocity values, which

would lower the predicted overshoot coefficient by a small amount.

7.6 Summary

We have presented results for a small range of Re for both Oldroyd B and Giesekus

fluids and obtained results to a relatively high value of We for Re = 0.01. It remains

to obtain a limiting value of We for this Re. At Re = 0.1 it is clear that additional

stabilisation is required to obtain results for high and even moderate values of We.

This may be achieved using the DEVSS-G scheme, although we believe it will require

including the velocity gradient projection in the coupled section of our solver. This will

lead to a decrease in performance due to the large number of extra degrees of freedom,

but the reward in stability would be large if the fixed sphere benchmark results are an

indication.

We have captured experimentally observed phenomena in velocity overshoot and un-
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dershoot as well as drag reduction. However, we have not captured the negative wake.

This may be achievable with improvements to our scheme and we intend to pursue this

in the future. However, before this we must perform a more thorough validation of

predictions by making direct comparisons with work in the literature such as that by

Bodart and Crochet [5].
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Chapter 8

Conclusions

With the aim of studying sedimentation in viscoelastic flow, we have successfully imple-

mented a decoupled numerical scheme utilising SEM to perform spatial discretisation

and a fixed timestep using a combination of OIFS and BDF at second order to perform

temporal discretisation and have included an alternative formulation of the continuity

equation. The constituitive equation has been handled using a DG treatment of convec-

tion and stabilisation of the momentum equation has been performed using DEVSS-G.

We have also implemented the possibility of a moving mesh using an ALE scheme. This

has been implemented into a numerical code using PARDISO from the Intel MKL li-

brary as the primary linear solver. The scheme is capable of handling both planar and

axisymmetric cylindrical geometries.

In the construction of this numerical code we have attempted to validate each module at

every step, beginning with the spatial discretisation of the Stokes problem in Chapter 4.

We validated using a combination of a known model solution and benchmarks found

in the literature which are relevant to sedimentation. The addition of the temporal

scheme was first validated for a Newtonian fluid in Chapter 5 at low to moderate Re

using a both a known analytical solution and a continution of popular benchmarks

found in the literature. Excellent agreement was found at all levels.

In Chapter 6 we validate our implementation of the decoupled constuitive equation

using the analytical solutions of Waters and King [62, 63] where we demonstrate similar

agreement with those solutions as others using similar methods from the literature. We
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performed benchmarks on both flow past a fixed cylinder and flow past a fixed sphere

and for the attainable range of We achieve excellent agreement with authors from the

literature. We also implemented an additional viscoelastic model in the Giesekus model

in Section 6.3.4 where we performed an investigation of the effect of the additional

parameter α which introduces shear-thinning and extension-thinning behaviour and

allowed us to obtain results at higher We.

Finally in Chapter 7 we describe and implement a method for the falling sphere prob-

lem and were able to perform some initial numerical experiments. While the results

do not match exactly with those that we found in the literature, they appear to offer

reasonable predictions of known phenomena and give justifiable agreement with nu-

merical simulations using parameters close to those used in our work. There is much

improvement to be made on our results and the fact that the use of the explicit imple-

mentation of DEVSS-G results in divergence is one such area in which we could make

a change.

Further work will involve additional validation of the Waters and King solution with

more effort to investigate the inherent instability in the solution when using spectral

methods. Additional mesh refinement and other methods of stabilisation shall be

investigated for the fixed sphere benchmark, as well as a continuation of work on

the Giesekus model and others which exhibit stable behaviour in extensional flow.

Efforts to improve the results already attained for the falling sphere problem are a

high priority and making parts of the scheme more implicit are one possible avenue

to this. Additionally, the performance in terms of computational cost when using the

moving mesh need to be optimised. It is possible that we may avoid recomputing the

factorisation for the majority nodes which are within the central moving mesh, which

could provide a vast improvement in computational speed. Iterative methods, which

have traditionally been popular in computational fluid dynamics may also have been

a better option, although there is computational performance to be found in the use

of the sparse methods available through PARDISO.
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