
Investigation into Heuristic

Methods of Solving Time Variant

Vehicle Routing Problems

Kieran G Harwood

Cardiff School of Computer Science & Informatics

Cardiff University

A thesis submitted in partial fulfilment of the requirement for the degree of

PhilosophiæDoctor (PhD)

October 2012

mailto:kyrionus@yahoo.co.uk
http://www.cs.cf.ac.uk/
http://www.cf.ac.uk/

ii

Declaration
This work has not previously been accepted in substance for any degree and is not

being concurrently submitted in candidature for any degree.

Signed . (candidate)

Date .

Statement 1
This thesis is being submitted in partial fulfillment of the requirements for the

degree of PhD.

Signed . (candidate)

Date .

Statement 2
This thesis is the result of my own independent work/investigation, except where

otherwise stated. Other sources are acknowledged by explicit references.

Signed . (candidate)

Date .

Statement 3
I hereby give consent for my thesis, if accepted, to be available for photocopying and

for inter-library loan, and for the title and summary to be made available to outside

organisations.

Signed . (candidate)

Date .

iii

Abstract

Traditionally, Vehicle Routing Problems (VRPs) are modelled with fixed

traversal times. The amount of time it takes to drive from one end of

a road to the other is unchanged throughout the day. Nearly always,

the reality of the situation that is being modelled is very different, with

road speeds varying heavily, especially with “rush hour” traffic. Modelling

VRPs with time varying congestion means that even slight changes early

in a vehicle tour can have major knock-on effects that are hard to predict.

Recalculating the total traversal time of vehicles whenever their tours are

changed drastically increases metaheuristic calculation times compared to

non-time varying models.

In this thesis we use a simple technique of calculating the localised change

and inferring the global effects resulting from neighbourhood moves. Only

if the localised change suggests that the global result is satisfactory do we

then calculate the actual global result. Inevitably using these estimates does

not give as accurate results as always calculating the changes, but we aim

to show that the loss of solution quality is overshadowed by the significant

savings in calculation time. We present a series of experiments comparing

simple metaheuristics with and without using estimates and show consistent

savings in calculation time whenever estimates are used compared to when

they are not. These savings shown to increase as the size of the problem

(in terms of the number of customers) increases.

In addition to synthetic problems, we also present a problem based on

real world vehicle traversal times and show that our estimates prove just

as accurate, if not more so, at retaining solution quality as the synthetic

methods. Lastly, we briefly discuss further methods of solving VRPs that

could also benefit from our work here.

To Lianne,

WUB

Acknowledgements

First and foremost I would like to acknowledge my supervisor, Dr. Christine

Mumford, for her healthy mix of support and criticism, without which none

of this would have been possible. Her insight and continued encouragement

has helped me to vastly improve the quality of my writing style, which

is hopefully evidenced by this thesis (’though not necessarily by these

acknowledgements).

I must obviously thank the Green logistics and EPSRC for providing me

with funding for this thesis, without which I would not have been able to

accomplish anything.

I would like to thank the hordes of friends and associates who asked “what

is your thesis about?”. Even though I’m sure most didn’t realise it, the

constant need to relate to a wide range of knowledge levels what it is that

I have been spending my time researching has helped me to truely know

what it is I have been researching.

I would like to extend my thanks to Prof. Richard Eglese, Will Maden,

Alan Slater and Dan Black for making this possible with their work on time

variant VRPs and the Road Timetable upon which much of this work relies.

I would like to thank my parents for raising me well and introducing me to

the wonder of computers at a young age, were my formative years different

I’m sure none of this would have been possible. Thank you.

Most of all I would like to thank my girlfriend for sticking with me, her

unwavering faith in my ability and her advanced knowledge of how, to use

commas, properly. Particularly that last one.

Contents

List of Figures ix

List of Tables xi

Glossary xiii

1 Introduction 1

1.1 Background . 1

1.2 Motivation for this Study . 4

1.3 Contribution of this Thesis . 6

1.4 Structure of this Thesis . 7

2 An Introduction to the Vehicle Routing Problem 9

2.1 A Brief Explanation of NP . 9

2.2 Graph Terminology . 11

2.3 Arc Routing Problems . 13

2.3.1 Chinese Postman Problem . 14

2.3.2 New York Street Sweeper Problem 15

2.3.3 Min k-Chinese Postman Problem 15

2.3.4 Rural Postman Problem . 15

2.4 Node Routing Problems . 16

2.4.1 The Travelling Salesman Problem 16

2.4.2 Vehicle Routing Problems . 16

The Single Vehicle Routing Problem 17

Capacitated Vehicle Routing Problems 17

2.5 Mathematical Model of a CVRP . 18

iii

CONTENTS

2.6 Possible Objectives of a VRP . 19

2.6.1 Multiple Objectives . 19

2.7 Constraints . 21

2.7.1 Hard and Soft Constraints . 22

2.7.2 Time Windows . 23

2.7.3 Capacity . 24

2.7.4 Driver Time . 24

2.7.5 Vehicle Specifics . 25

2.8 Advanced Problems . 25

2.8.1 Multi-Depot VRP . 25

2.8.2 Pickup and Delivery . 26

2.8.3 Static & Dynamic Problems . 27

2.9 Conclusion . 27

3 Solving the VRP 29

3.1 Introduction . 29

3.2 Exact Methods . 29

3.2.1 Brute Force Search . 30

3.2.2 Dynamic Programming . 30

Dynamic Programming Example 31

3.2.3 Branch and Bound . 33

3.3 Heuristic Methods . 35

3.4 Solution Construction Heuristic Algorithms 37

3.4.1 Random Start . 37

3.4.2 Nearest Neighbour Algorithm . 38

Example Algorithm . 39

3.4.3 Clarke & Wright . 40

Parallel and Sequential . 41

Clarke & Wright Example . 42

3.4.4 Two Phase Solutions . 45

Cluster Method 1: Sweep . 45

Cluster Method 2: Fisher and Jaikumar Algorithm 47

Route-First Cluster-Second . 47

iv

CONTENTS

3.5 Solution Improvement Heuristic Algorithms 49

3.5.1 Single Vehicle Neighbourhood Moves 50

2-Opt . 50

3-Opt . 52

Delete & Insert . 54

Swap . 56

3.5.2 Multiple Vehicle Neighbourhood Moves 56

CROSS . 56

Merge . 57

Split . 58

3.6 Metaheuristic Frameworks . 58

3.6.1 Hill Climber . 58

3.6.2 Simulated Annealing . 61

3.6.3 Tabu Search . 63

3.6.4 Genetic Algorithms . 66

3.6.5 Other Metaheuristics and Similar 68

3.7 Conclusion . 68

4 An Explanation of Time Variance 71

4.1 Modelling Time Variance . 71

4.2 The First-In First-Out (FIFO) Problem 75

4.3 Introduction to Solving Time Variant VRPs 77

4.3.1 Shortest Paths . 77

4.4 TVVRP Solution Techniques . 80

4.4.1 Methods Based on Dynammic Programming 80

4.4.2 Time Variance and Solution Construction Heuristics 83

Nearest Neighbour . 83

Clarke & Wright . 85

4.5 Conclusion . 86

5 The Estimation Tool 89

5.1 Introduction . 89

5.2 What is the Estimation Tool? . 90

5.3 Overview of SVRP Quadrant and SVRP Hill Climbing Experiments . . 94

v

CONTENTS

5.3.1 Assessing Individual Neighbourhood Moves (Microscopic level) . 95

5.3.2 Assessment in a Metaheuristic Framework (Macroscopic Level) . 96

5.3.3 2-Opt and Other Neighbourhood Moves 96

5.3.4 Problem Instances . 97

5.3.5 Producing Congestion Values . 98

5.3.6 Starting Solution Construction 101

5.3.7 Tour Evaluation Methods . 101

Näıve . 102

Standard . 102

Estimate . 103

5.4 Experimental Work . 104

5.4.1 Assessing the use of Estimates in Individual Neighbourhood Moves105

True Negative (TN) . 106

False Positive (FP) . 106

False Negative (FN) . 107

True Positive (TP) . 107

5.4.2 Possible Scenarios . 108

5.5 Results for SVRP Quadrant Experiment 110

5.5.1 Congestion Instance: Stepped vs. Twin Peak 111

5.5.2 Congestion Type: Homogeneous (Speed1) vs. Heterogeneous

(Speed3) . 115

5.5.3 Distribution of Nodes: a280 vs. bier127 116

5.5.4 SVRP Quadrant Experiment Conclusion 116

5.6 Results for SVRP Hill Climbing Experiment 117

5.6.1 Interpreting the Results . 120

5.6.2 SVRP Hill Climbing Experiment Conclusion 121

5.7 Comparing Neighbourhood Moves and Disruption 123

5.7.1 Results for SVRP Delete & Insert Experiment 124

Congestion Instance: Stepped vs. Twin Peak 124

Congestion Type: Homogeneous (Speed1) vs. Heterogeneous

(Speed3) . 127

Distribution of Nodes: a280 vs. bier127 127

Neighbourhood Move Type: 2-Opt vs. Delete & Insert 128

vi

CONTENTS

5.8 Conclusion . 128

6 Using our Estimation Tool on Multiple Vehicle Problems 131

6.1 Overview of MVRP Quadrant Experiment 132

6.1.1 Modelling Capacity . 132

6.1.2 Starting Solution Heuristic . 133

6.1.3 Improvement Heuristic and Final Details 136

6.1.4 MVRP Quadrant Results . 139

6.1.5 ANOVA Analysis . 141

6.2 Overview of MVRP Hill Climbing Experiment 143

6.2.1 MVRP Hill Climber Results . 144

6.3 MVRP Experiment with Stepped congestion 148

6.4 Real World Experiment . 149

6.4.1 Real World Problem Instance . 149

6.4.2 Real World Quadrant Experiment Results 152

6.4.3 Real World Hill Climbing Experiment Results 154

6.5 Conclusion . 157

7 Threshold and Simulated Annealing Experiments 159

7.1 Threshold Experiment . 159

7.1.1 Parameters . 161

7.1.2 Changing the Threshold . 161

7.1.3 Threshold Results . 162

7.1.4 Summary of Findings for Threshold Experiment 165

7.2 Simulated Annealing Experiments . 165

7.3 Stages of Simulated Annealing . 166

7.3.1 Stage 1: Construction Stage . 166

7.3.2 Stage 2: Annealing Stage . 167

7.3.3 Stage 3: Hill Climber Stage . 170

7.4 Simulated Annealing vs. Hill Climber Experiment 172

7.4.1 Simulated Annealing Results for gr666 174

7.4.2 Simulated Annealing Results for Real World Problem 182

7.4.3 Summary of Findings on Simulated Annealing 183

7.5 Conclusion . 184

vii

CONTENTS

8 Analysis, Future Work and Conclusions 187

8.1 Other Works . 187

8.2 Our Contribution . 189

8.3 Further Work . 190

8.4 Further Expansion . 191

8.4.1 Arc Routing . 191

8.4.2 Larger Problem Instances . 193

8.4.3 Estimates and Tabu Search . 198

8.4.4 Compound Estimates . 199

8.4.5 Genetic Algorithms . 201

8.5 Conclusion . 203

References 209

viii

List of Figures

2.1 Example Chinese Postman Problem . 14

2.2 Unconstrained VRP Example . 22

3.1 Nearest Neighbour Example . 39

3.2 Initial Clarke & Wright Solution . 41

3.3 Final Clarke & Wright Solution . 42

3.4 Clarke & Wright Example . 43

3.5 Sweep Example . 46

3.6 Fisher and Jaikumar cost calculation . 48

3.7 RFCS Example . 49

3.8 2-Opt Demonstration . 51

3.9 3-Opt possible results . 53

3.10 Delete & Insert Demonstration . 55

3.11 Hill Climber Example . 60

4.1 Dummy Arc Example . 78

4.2 LSA Example . 78

4.3 Greedy Solution to a Time Variant SVRP 84

4.4 Example of a NN Starting Solution to a Time Variant MVRP 85

5.1 Estimation Tool Demonstration . 92

5.2 2-Opt Demonstration (cut-down) . 97

5.3 The four problem instances for our Experiments 99

5.4 The two congestion models for our Experiments 100

5.5 Quadrant Graph Example . 105

5.6 Distribution of random results for SVRP Quadrant Experiment 112

ix

LIST OF FIGURES

5.7 Distribution of non-TN greedy results for SVRP Quadrant Experiment . 113

5.8 SVRP Hill Climber Experiment Results 119

5.9 Distribution of random results for SVRP Delete & Insert Experiment . 125

5.10 Distribution of non-TN greedy results for SVRP Delete & Insert

Experiment . 126

6.1 Example CROSS moves . 138

6.2 MVRP Hill Climber Experiment Results 145

6.3 Real World Problem Instance . 151

6.4 Real World Problem Node Distribution 151

6.5 Real World Hill Climber Results . 155

7.1 Threshold Results - Start . 163

7.2 Threshold Results - End . 164

7.3 Simulated Annealing vs. Hill Climbing with and without Estimates - gr666175

7.4 Individual runs of Hill Climbing with and without Estimate - Time Taken176

7.5 Individual runs of Simulated Annealing with and without Estimate -

Time Taken . 177

7.6 Difference in Objective Value of Simulated Annealing with and without

estimates . 178

7.7 Simulated Annealing vs. Hill Climbing with and without Estimates -

Real World 400 Nodes . 180

7.8 Calculation Time of Simulated Annealing vs. Hill Climbing with and

without Estimates - Real World 400 Nodes 181

8.1 Calculation Time Graph . 195

8.2 Log(Calculation Time) Graph . 196

x

List of Tables

1.1 National Statistics for UK Road Freight 2

2.1 Example Symmetric Graph . 13

2.2 Example Asymmetric Graph . 13

5.1 Example Problem for the Estimation Tool. Arcs and Time Bins 91

5.2 Ichoua’s TSM 1: Example showing speeds on three road types at different

times of day . 99

5.3 Properties of the four quadrants . 108

5.4 SVRP Quadrant Experiment Results . 111

5.5 SVRP Hill Climber Experiment Results 1 (bayg29 and bier127) 118

5.6 SVRP Hill Climber Experiment Results 2 (a280 and gr666) 118

5.7 Average Percentage Change between Standard and Estimate on SVRP

Hill Climber . 120

5.8 SVRP Delete & Insert Experiment Results 124

6.1 CVRP Demand Assignment . 133

6.2 Random Start MVRP Quadrant Results 140

6.3 Clarke & Wright MVRP Quadrant Results 140

6.4 ANOVA Results (Random Start) . 141

6.5 ANOVA Results (Clarke & Wright) . 142

6.6 MVRP Hill Climbing Results 1 (bayg29 and bier127) 144

6.7 MVRP Hill Climbing Results 2 (a280 and gr666) 144

6.8 Average Percentage Change between Standard and Estimate on MVRP

Hill Climber . 146

6.9 Random Start MVRP Quadrant Results w/ Stepped Congestion 148

xi

LIST OF TABLES

6.10 Clarke & Wright MVRP Quadrant Results w/ Stepped Congestion . . . 148

6.11 Real World Quadrant Results . 152

6.12 Terminology Calculations . 152

6.13 Real World Hill Climber Results: 50 & 100 Nodes 154

6.14 Real World Hill Climber Results: 200 & 400 Nodes 156

6.15 Real World Average % change between Standard and Estimate 156

7.1 FSQ of Different Thresholds throughout Lifetime of Experiment 162

7.2 FSQ of SA and HC throughout Lifetime of Experiment - gr666 174

7.3 Calculation Time of SA and HC throughout Lifetime of Experiment -

gr666 . 174

7.4 FSQ of SA and HC throughout Lifetime of Experiment - Real World 400

Nodes . 182

7.5 Calculation Time of SA and HC throughout Lifetime of Experiment -

Real World 400 Nodes . 182

xii

Glossary

2-Opt A neighbourhood move proposed by

G. A. Croes. Part of the larger group

of k-Opt moves. Involves removing

two arcs and adding two new arcs to

reattach the nodes.

3-Opt A neighbourhood move proposed by

G. A. Croes. Part of the larger group

of k-Opt moves. Involves removing

three arcs and adding three new arcs

to reattach the nodes.

AIL Abnormal Indivisible Loads; UK

Classification of Vehicle loads that

will either exceed a laden weight of

44 tonnes or break size limits (2.55

metres wide, 18.75 metres long) and

cannot be practicably made to fit

these limits.

ANOVA ANalysis Of VAriance; A statistical

test comparing the means of several

groups to find whether different

attributes affect the mean, both

individually and in concert.

AOF Aggregate Objective Function; A

weighted sum of different objectives

which can then be used as a single

objective in its own right.

Arc An edge connecting two nodes.

Arc Routing A Vehicle Routing Problem

where a set of arcs must be traversed.

Generally the arcs are weighted and

the idea is to minimise costs. The

Chinese Postman Problem is the best

known example.

Billion 1,000,000,000; This is the short-scale

billion.

Boolean A data type that can have two

values: generally represented as 0/1

or TRUE/FALSE.

Branch and Bound An exact method that

relies on dividing the solution space

into subspaces and pruning those

subspaces using upper and lower

bounds in order to reduce the search

space.

Brute Force Search A simplistic approach to

finding the optimal solution to a

problem by evaluating every possible

solution.

Cartesian A coordinate system that labels

points using their distances from

fixed perpendicular lines. These

are refered to as the X and Y

axes. Distances between points

can be calculated using Pythagoras’

Theorem.

CFRS Cluster-First Route-Second; An

approach to finding a solution to

a VRP by assigning customers to

vehicles first and then creating

vehicle routes among their assigned

customers seperately.

Chinese Postman Problem An arc routing

problem. Given a set of connected,

weighted arcs, find a path which

traverses all the arcs and returns to

its starting node with a minimum

weight.

Clarke & Wright A solution construction

heuristic. In simple terms it assigns

each customer its own vehicle and

then systematically merges vehicle

routes together so as to reduce cost

as much as possible at each step.

xiii

GLOSSARY

Co-NP Co-Non-deterministic Polynomial-time;

A class of problems where there is no

known way to find a no answer in

polynomial time, but an answer can

be verified in polynomial time. cf.

NP.

Complete A graph where, for every pair of

nodes, there is an arc that links them

directly.

Connected A graph in which there is a route

(not necessarily direct) between

every pair of nodes. An unconnected

graph means that, for some pairs of

nodes, there is no way of travesing

arcs in order to get from one to the

other.

Cost The weight of an arc/node. Often

used as part of the Objective

Function.

CTC Cumulative Tour Cost; A value

held for each node representing the

traversal costs of the arcs on the

route up to that node.

CVRP Capacitated Vehicle Routing

Problem; A constrained VRP with

customers who have demand and

vehicles that have capacity. The

combined demand of a vehicle’s

customers must not exceed that

vehicle’s capacity.

DARP Dial-a-Ride Problem; A specific

example of a VRPPD which

additionally includes time windows

and multiple objectives. Based on

the Dial-a-Ride service.

Decision Problem A problem which can only

have an answer of yes or no. A simple

example is: Is x even?.

DfT Department for Transport; UK

governmental body formed in

2002 in charge of (among other

things) managing transport networks

(previously the Department for

Transport, Local Government and

the Regions).

Directed A directed graph is a graph which

contains one or more directed

edges. A directed edge is one

which can only be traversed in one

direction. Sometimes modelled with

a high/infinite cost in the other

direction.

DP Dynamic Programming; An exact

method for solving a problem by

dividing it into several subproblems

and solving them. By only solving

each subproblem once, it mitigates

the effects of an exponential

explosion.

EA Evolutionary Algorithm; A

metaheuristic optimisation

algorithm which uses nature as

inspiration. Features things

such as mutation, recombination,

fitness-based selection and Survival

of the Fittest.

Eulerian Circuit A tour on a graph which

traverses each arc exactly once and

returns to its starting node.

Exact Method An algorithm which guarantees

to find the optimal solution. Are

often limitted by a combinatorial

explosion when problems become

large.

FIFO First-In First-Out; A system where

the first item in is the first item out.

Within this thesis this is used to

represent the principle that a vehicle

that starts after another vehicle and

takes the same route should also

finish after that vehicle.

GA Genetic Algorithm; A search

heuristic that is part of the larger

xiv

GLOSSARY

group of Evolutionary Algorithms

(cf. EAs). Is based on mimicing

natural selection.

GHG Greenhouse Gas; Gases which, in

the Earth’s atmosphere, absorb and

emit thermal infrared radiation.

Primarily water vapour, carbon

dioxide, methane, nitrous oxide, and

ozone. Emissions are measured in

comparison to carbon dioxide.

Graph A set of nodes connected by arcs.

Many varieties of graph exist, even

within the realm of VRPs, cf.

Directed, Symmetric, Cartesian.

Hamiltonian Cycle A tour which visits each

node exactly once (and returns to its

starting node).

HGV Heavy Goods Vehicle; UK

Classification of vehicles with laden

weight between 3.5 and 44 tonnes.

Hill Climber A local search heuristic that

seeks an optimum by incorporating

any and all improvements found.

k-Opt A group of neighbourhood moves

including 2-Opt and 3-Opt.

LGV Light Goods Vehicle; UK

Classification of vehicles with laden

weight under 3.5 tonnes. A.K.A.

Light Commercial Vehicles. LGV

is used in the EU to refer to Large

Goods Vehicle.

LHV Longer Heavier Vehicle; Classification

of vehicles with a laden weight

between 44 and 60 tonnes.

LIFO Last-In First-Out; A system where

the only item that can be accessed at

any time is the last one that was put

in. A simple real world example is

a stack of plates, where the only one

accessible is the one that was last put

on top.

LSA Label Setting Algorithm; Refers to

Dijkstra’s LSA, an algorithm to find

the shortest path between any two

nodes.

MOO Multi-Objective Optimisation; The

process of optimising two or more

conflicting objectives simultaneously.

MVRP Multiple Vehicle Routing Problem;

A VRP that requires at least two

vehicles to solve, due to constraints

of some kind.

Neighbourhood Move A local change to a

tour by exchanging nodes and/or

arcs in some manner.

NNA Nearest Neighbour Algorithm; A

greedy heuristic used to solve or

produce a starting solution for a

VRP or TSP. At every point in the

heuristic, the next customer is chosen

as the cheapest to get to.

Node Points that are connected together

by arcs. Also referred to as

Customers or Cities.

NP-Complete Non-deterministic Polynomial-time

Complete; A class of NP decision

problems that are NP-hard and any

member of which can be converted

into any other in polynomial time.

NP-Easy Non-deterministic Polynomial-time

Easy; A set of problems that are at

most as hard as the hardest problems

in NP.

NP-Equivalent Non-deterministic Polynomial-time

Equivalent; A set of problems that

are exactly as hard as the hardest

problems in NP.

NP-Hard Non-deterministic Polynomial-time

hard; A class of problems that are at

least as hard as the hardest problems

in NP.

xv

GLOSSARY

NP problem Non-deterministic Polynomial-time

problem; A class of problems where

there is no known way to find a yes

answer in polynomial time, but an

answer can be verified in polynomial

time.

P Polynomial-time; A.K.A. PTIME or

DTIME. A class of problems where

there is a way to find a yes answer in

polynomial time.

Pareto Front A method of comparing solutions

with multiple objectives. Any

solution that is inferior at all

objectives to another solution is

dominated by it.

RFCS Route-First Cluster-Second; A

method where the order of traversal

of nodes is determined without using

multiple vehicles (as an SVRP) and

this route is then divided up among

multiple vehicles to create a valid

solution.

SA Simulated Annealing; A

metaheuristic method that uses

temperature that decreases over time

that is used to determine how poor a

change to a solution will be accepted.

STGO Special Types (General Order);

Exceptions to the general limit on

HGVs to allow transportation of

AILs.

SVRP Single Vehicle Routing Problem; A

VRP with one vehicle instead of a

fleet. Similar to a TSP.

Symmetric Arcs in which the cost of traversal

are the same, regardless of direction

of travel. Also, a graph where all the

arcs are symmetric.

Tabu Search A search technique which uses

a Tabu List which forbids certain

moves/solutions in order to reduce

the chance of looping.

Time Variant An arc where the cost of

traversal (usually time) varies

depending on what time the arc is

traversed.

Time Window A constraint where customers

(nodes) must be visited between

certain times.

TSP Travelling Salesman Problem; An

NP-Hard combinatorial optimisation

problem seeking to produce a tour

that visits all of a set of customers

VRP Vehicle Routing Problem; An

NP-Hard combinatorial optimisation

problem seeking to visit a set of

customers using a fleet of vehicles

operating from a fixed depot

VRPPD Vehicle Routing Problem with

Pickup and Delivery; A VRP with

some customers who are delivered

to and others who are collected

from. Some VRPPD have deliveries

between customers, others simply

deliver between customers and the

depot.

VRPTW Vehicle Routing Problem with Time

Windows; A Constrained VRP where

customers must be visited at certain

times.

xvi

1

Introduction

This thesis investigates methods of improving the usefulness of vehicle routing software

by taking into account varying road congestion at different times of the day, while at

the same time ensuring that the software runs quickly. This thesis is part of the Green

Logistics Research Project, which is funded by the Engineering and Physical Science

Research Council (EPSRC). In this Chapter we will start by giving a very brief overview

of the road freight transport industry in the UK at present. Next, we will explain the

motivation for this thesis and what we aim for this thesis to achieve. Lastly, we will

give an overview of the remaining Chapters in this thesis.

1.1 Background

The transportation and distribution of goods has been an industry of great importance

for many years. In the UK, over 90% of freight moved by road is delivered by Heavy

Goods Vehicles (HGVs). HGVs are defined as vehicles that, when fully loaded, have a

gross weight of between 3.5 and 44 tonnes. At the end of 2010 there were approximately

390,000 HGVs operating in the UK. Since 2010 the method of reporting statistics

has been drastically changed, slowing the release of freight statictics and making

comparisons harder, but the amount of vehicles does not fluctuate by a lot year by

year. Much of the remaining 10% of UK freight is transported by Light Goods Vehicles

(LGVs), also called Light Commercial Vehicles, which consist of transit vans, pickup

trucks and other, similar vehicles (1). Outside of these classifications are vehicles that

carry Abnormal Indivisible Loads (AILs), defined as a load that is either too large or

1

1. INTRODUCTION

too heavy to be transported by a regular HGV and that cannot be divided without

undue expense or risk of damage. These AILs are generally covered by Special Types

(General Order), or STGO Categories. There are also plans to harmonise all of Europe

to cover a third, larger vehicle, the Longer Heavier Vehicle (LHV), which has a gross

weight of up to 60 tonnes (2). Sweden and Finland use even larger vehicles than that,

referred to as megaliners, that measure 30 metres long and have a gross weight of up

to 90 tonnes (3). For simplicity we will focus our discussion on HGVs from here on, as

they represent the overwhelming majority of the freight industry of the UK.

Table 1.1 shows the domestic activity of GB-registered HGVs from the UK

Department for Transport (DfT) from 2006-2010 (as of writing, only some of the data

for 2011 has been released). The first row shows the total distance in billions1 of

kilometres that domestic freight vehicles travelled over the course of the year. The

second row gives the average (mean) distance of these trips in kilometres. Rows three

and four give the fuel consumption, in kilometres per litre, of Rigid and Articulate

vehicles (as they are listed separately by the UK DfT). The fifth row represents the

laden capacity, which is derived from the tonnes transported and theoretical maximum

(if the vehicle was always at full capacity); 100% represents each vehicle being fully

loaded all of the time that they are on the road. Lastly, the bottom row gives the total

freight transported in millions of tonnes.

Table 1.1: National Statistics for UK Road Freight

Year (2000s)

’06 ’07 ’08 ’09 ’10

Total Distance (bill km) 21.8 21.9 20.4 18.0 18.8

Average Distance (km) 86 86 87 92 93

Rigid Fuel Consum. (km/l) 3.42 3.33 3.19 3.24 3.23

Artic Fuel Consum. (km/l) 2.87 2.83 2.74 2.72 2.70

Capacity Used (%) 56 57 58 57 59

Total Transported (mill tonnes) 1,776 1,822 1,668 1,356 1,489

As of 2010 the total distance travelled per year by UK registered domestic goods

1The UK government, since 1974, uses the term “billion” to refer to the short scale (échelle courte

in French) billion, or 1,000,000,000. As this thesis uses data presented by the UK government, we will

be exclusively using short scale throughout this thesis in order to avoid confusion.

2

1.1 Background

vehicles was 18.8 billion kilometres with an average length of haul of 93 kilometres. Over

the last five years reported, the total distance travelled has been generally decreasing,

whilst the average distance travelled per trip has been increasing. These two statistics

together show that there are less vehicle trips being made, but that they are travelling

farther. The laden ratio has also risen slightly over the last five years reported, showing

that the vehicles are being used slightly more efficiently than before. However, during

this same period, the fuel efficiency of the vehicles has gone down. This may be due to

increased loads and a change in the composition of vehicle fleets.

Between 1998 (after the Kyoto Protocol was signed) and 2008, Greenhouse Gas

(GHG) emissions from road freight in the UK have fallen by 9%. This is mostly due to

a drop of around 12.6% in total distance travelled by freight over the same time period

(the laden ratio has gone up over the same time, so the 12.6% drop in distance will not

lead to a 12.6% drop in emissions). Over the recent period presented by the UK DfT

(1990-2010), 1998 sees the highest freight distance at 23.3 billion km. Despite the drop

in distance travelled, the tonnes lifted is actually higher in 2008 than in 1998 (1.67

billion tonnes compared to 1.63 billion tonnes). Since 2007, the distance travelled and

tonnage lifted have dropped noticeably (down 14.3% and 18.3% respectively), although

2010 is up again on the low of 2009. This is partly down to tougher economic times

and rising fuel prices encouraging companies to cut back on freight transportation by

road.

Between 1993 and 2003, the total tonnage transported fluctuated between 1,523 and

1,643 million tonnes. After 2003 the total tonnage increased noticeably, to the levels

seen in Table 1.1. It peaked in 2007, with over 1,822 million tonnes, before dropping

significantly. As of 2010 the tonnage has increased again and is now slightly more than

the low of 1992 (1,463 million tonnes).

To summarise this very brief look at the current situation of freight in the UK, it

seems that, although companies have been cutting back on freight, we may be seeing

the limit of that drop, as the tonnage transported and distance travelled seem to have

leveled out over the few years. Freight is still a big business, even if it is not as large

as it was six years ago. With GHG (Greenhouse Gas) emission targets and economic

drive, delivery companies are under pressure to continue to cut back on their emissions

while trying not to reduce their tonnage transported any further. One of the key ways

that emissions can be reduced is through more efficient routes for vehicle fleets. This

3

1. INTRODUCTION

used to be done by hand, but now more and more companies are seeing the advantages

of computerised vehicle routing and scheduling software. The use of computer software

packages, such as Optrak and Paragon, to automate construction of vehicle routes and

schedules has been shown many times to save companies time and money (for example,

Argos Direct predicted achieving a seven month payback on its investment in Paragon

(4)).

1.2 Motivation for this Study

While many large companies are using vehicle routing software, a study in the UK

(5) showed that 100% of directors/managers and vehicle schedulers and 66% of drivers

interviewed gave one of the top five issues that they had with vehicle scheduling software

to be significant inaccuracies in the routing system due to the credibility of forecast

times. In other words, the predicted travel times are regarded as unreliable by the users,

which is seen by them as leading to inferior routes being presented by the software. Of

those who identified forecast times as being a problem, 85% chose “traffic congestion

as a result of peak traffic volumes or road works” as the main reason. The conclusion

is that the people in business who use this software find it unreliable when it comes to

avoiding rush hour traffic jams and road works.

In recent years, average road speeds have been being collected and recorded by

companies such as INRIX Holdings UK Ltd (formerly ITIS Holdings plc) (6) and

NAVTEQ (7) and now enough of this historical data has been collected for it to be

used to more accurately predict travel times than the current models. With this data

it will be possible to take into account variation based on the time of day or day of the

week. The models created using this data should be more accurate but, at the same

time, are going to be more complicated.

By looking at speeds on roads in the past, it is hoped that it will be possible to

accurately predict the effects of rush hour congestion in vehicle routing models and use

this information to produce more accurate and reliable vehicle schedules.

While it is true that the idea of time variant problems (that is, problems which

vary depending on time) have been studied by many authors (which we will discuss

further in Chapter 4), the scope of these studies are generally limited to fairly simplistic

models, involving just a few roads on which vehicles may change speed once during the

4

1.2 Motivation for this Study

problem’s lifetime. In contrast, we are aiming to model networks where a vehicle’s

speed on each and every road could potentially change multiple times in an hour.

When the time taken to travel the length of a specific road can change frequently, it

is invariably harder to predict how apparently minor changes may affect the overall

travel time of the relevant vehicle. These apparently minor changes can have an

escalating effect; as the traversal of each arc is delayed, the traversal of the next arc

in the tour is delayed further, making an even larger delay and so on. Thus every

change that is made results in all of the arcs from that change onwards having to be

recalculated nearly every time. When an improvement algorithm tests millions of small

changes, each of which requires hundreds of recalculations rather than a couple, then

the total calculation time invariably suffers dramatically.

Based on our findings, which we will present later in this thesis (see Chapter 3), we

have found that there is little research that has been done on using heuristic methods to

solve Time Variant Vehicle Routing Problems, where severe increases in calculation time

arise due to varying congestion at different times of the day. We see this lack of research

being due to the less competitive run times that the current metaheuristic methods of

solving these problems have when compared to other methods. Even ignoring the time

variance, and instead using time invariant traversal times, is a viable alternative that,

while less accurate, is much faster. Thus our motivation in this thesis is to present

methods of speeding up these run times significantly, making these approaches a viable

alternative to other methods of solving vehicle routing problems, such as dynamic

programming which, although slow in general, is not that much slower when run on

time variant problems.

Overall, this thesis aims to see whether the calculation times when using a Road

Timetable can be reduced. We will explain the Road Timetable in much more detail in

Section 4.1, for now it is sufficient to know that it is based on historical data on travel

times collected by companies such as INRIX and is used to model a varying congestion

level on roads dependent on the time of day that the road is traversed.

Assuming that calculation times can be reduced, we further are interested in

knowing how much they can be reduced, how these reductions vary with different

problems and what the drawbacks are of the methods we will use to save calculation

time (such as loss of solution quality). We are also interested in how the calculation

times scale with problem size. Generally, heuristic methods scale well with problem

5

1. INTRODUCTION

size compared to other approaches, such as exact methods, but the introduction of

time variance makes the default method of calculation take much longer with larger

problems.

1.3 Contribution of this Thesis

While it is the case that companies with predictable distribution needs can spend

significant amounts of time finding near optimal routes for distributing their goods,

other companies are not able to predict well ahead of time what demands their

customers may have. For instance, a distribution company may only know what stock

is needed from their depot a few hours before the deliveries need to start and thus

cannot rely on pre-planned routes. In this case it is very important to keep calculation

times low, while also endeavouring to find efficient routes.

My contribution presented here is to investigate how the use of simple techniques can

significantly speed up the calculation times of heuristic and metaheuristic approaches

used on time varying data to solve Vehicle Routing Problems (VRPs), in this case by

quickly estimating changes using readily available information and using these results

as a guide. We are not looking to find a new and exciting method for finding good

or optimal routes, instead we are focusing on how to improve on existing methods to

make them run faster.

Part of the work presented in Chapter 5 of this thesis has been published in a

Journal of the Operational Research Society (JORS) paper (8), we plan to submit the

further work carried out in Chapters 5 and 6 for another paper, demonstrating that the

methods used in an experimental environment in Chapter 5 also work on real problems.

We intend for this paper to also be published in JORS.

We will look at some simple experiments (in Chapter 5) that are designed to

show the effectiveness of our method to predict, with reasonable accuracy, the results

of neighbourhood moves on the objective value of a solution. We then show these

improvements to the standard algorithm at work in a metaheuristic, demonstrating the

comparable quality of final solutions and the substantial savings in calculation time.

We show (in Chapter 6) that our methods also work within more complicated

models with multiple vehicles and based on models created from historical data of real

road networks. We will also (in Chapter 7) show what effects result from changing the

6

1.4 Structure of this Thesis

selection criteria within our algorithm. Lastly, we will use more advanced metaheuristic

algorithms which we hope will also have good results (a minor loss of solution quality

alongside a major saving in calculation time).

1.4 Structure of this Thesis

In Chapter 2 we give an introduction to the VRP, explaining some key terms and

looking at the main features of a VRP (objectives and constraints), as well as touching

on the related Arc Routing Problems. In Chapter 3 we look at how to solve VRPs,

using exact methods (those that give the optimum solution) and heuristic methods

(that only give approximate solutions). In Chapter 4 we investigate time variance,

how it can be modelled and problems that it causes along with how to solve Time

Variant VRPs, adapting methods that authors have used on the time invariant case

and investigating how they can be updated for use in time variant situations. In

Chapter 5 we introduce our estimation tool, a simple approach that can be applied to

heuristic methods to significantly speed up calculations. In this Chapter we also test it

on simple Vehicle Routing Problems with a single vehicle. In Chapter 6 we expand the

use of the estimation tool to multiple vehicles and apply it to Real World congestion

models. In Chapter 7 we look at how modifying the threshold (how good a solution

must appear to be in order to be checked) affects the estimation tool and vice versa.

Then we look at using the estimation tool alongside Simulated Annealing. Finally in

Chapter 8, we summarise the work of other authors, detail the contribution that we

have made and briefly discuss how estimates could be used in other related situations,

such as within Tabu Searches and Genetic Algorithms. Finally, we conclude this thesis

by demonstrating the savings in calculation time that are achieved by using estimates.

7

1. INTRODUCTION

8

2

An Introduction to the Vehicle

Routing Problem

In this Chapter we introduce the Vehicle Routing Problem in more detail. First

we briefly explain some fundamental concepts, those of NP-Completeness and graph

theory. With this grounding established we will move on to examine two groups

of Vehicle Routing Problem, the arc routing problem and the more common node

routing problem, which is the focus of the rest of this thesis. We will present a

basic mathematical model of an example VRP and lastly we will look at two of the

most important aspects of a VRP: objectives (how we rate one solution as better than

another) and constraints (limitations on solutions that are valid).

2.1 A Brief Explanation of NP

A decision problem is a problem which has a boolean output: “yes” or “no”. A

simple example is “Is x even?”, another example (which is NP-Complete) is “given a

set of integers, is there a non-empty subset whose sum is zero?” (9). NP stands for

Non-deterministic Polynomial-time. A simple definition of NP is: A decision problem

where, if the answer is “yes”, there is proof that the answer is “yes” that can be

checked in polynomial time (9). More specifically, NP refers to problems where the

“yes” instances can be identified by a non-deterministic Turing Machine in a number

of steps that is a polynomial function of the input. A similar term is Co-NP, which

contains the set of decision problems where, if the answer is “no”, there is proof that

9

2. AN INTRODUCTION TO THE VEHICLE ROUTING PROBLEM

the answer is “no” that can be checked in polynomial time (10). Co-NP is not relevant

to this thesis, but is included here for completeness.

The sets NP and Co-NP are both supersets of the set P, which is the set of all

decision problems that are solvable by a deterministic Turing Machine in polynomial

time, or, more generally: a decision problem where, if the answer is “yes”, it can be

proved that the answer is “yes” in polynomial time. Note how this definition is different

to that of NP. With NP a potential positive answer can be verified in polynomial time

(for instance, testing a valid solution to the problem that results in demonstrating the

answer is “yes”), which is different to being able to verify it in polynomial time without

specific knowledge. There is much debate on whether P = NP or whether there are

problems in NP which are not in P (9). It is similarly unknown whether P = Co-NP

or whether NP = Co-NP.

NP-Hard stands for Non-deterministic Polynomial-time Hard and refers to the

set which contains all problems (not just decision problems) that are at least as hard

as the hardest problems in NP (9). Some NP-Hard problems (those that are decision

problems) are also in the set NP, these are called NP-Complete (9). Other problems

are in NP-Hard but are not in NP (9). In general, an optimisation NP-Hard problem

can be translated into an equivalent NP-Complete decision problem. For instance, an

optimisation problem could be “Find the shortest length tour on graph G that visits

all of the vertices, V”. This is equivalent to the decision problem “Does a tour on

graph G that visits all of the vertices, V exist with length no more than B?” when

B is set as the optimal value. Two related terms also exist: NP-Easy, which refers

to all problems (not just decision problems) that are at most as hard as the hardest

problems in NP (and, by definition, NP-Easy contains NP) and NP-Equivalent, that

refers to problems that are exactly as hard as the hardest problems in NP, and thus

NP-Equivalent problems are both NP-Hard and NP-Easy (9). NP-Equivalent contains

NP-Complete.

For the purposes of this thesis we are only interested in whether problems are

NP-Hard or not. When a problem is NP-Hard it means that no method is known that

is guaranteed to solve the problem in polynomial time, which leads to a combinatorial

explosion when exact methods are used. A more complete explanation of this is

presented in Chapter 3. For now it will suffice to recognise that NP-Hard problems

10

2.2 Graph Terminology

become much more difficult with increased size, such that shortcuts must be made in

order to find a solution in a sensible amount of time.

The interested reader is encouraged to read more on P, NP and the other terms

presented here. In addition to the book Computers and Intractability: A Guide to

the Theory of NP-Completeness” that has been cited above (which is definitely a good

place to start), there is also information to be found from many sources, such as the

website “A compendium of NP optimization problems” (11) or the paper by Cook (12).

2.2 Graph Terminology

A graph consists of a set of nodes, which can be referred to as points, vertices,

customers or cities. These nodes are connected to one another via arcs, which can

also be called links, roads or edges. The arcs have an associated cost or weight, which

represents the expense of traversing the arc. The nodes and arcs together form a graph.

For simplicity, the graphs that we use will not have more than one arc connecting a

particular pair of nodes, and we will not include arcs that connect any node to itself.

A graph is complete if, for every possible pairing of nodes, there is an associated arc

that directly connects them. A graph is connected if, for every pair of nodes, there

are a series of arcs that can be traversed to get from one to the other. If a graph is not

connected, then it would consist of at least two disjoint graphs. Obviously any problems

that involve completely traversing an unconnected graph are either unsolvable or can

be considered as multiple separate problems.

A Cartesian graph is one in which the nodes can be plotted using their X and Y

coordinates in a 2D space. The arcs between the nodes are all single straight lines, so

the distances between any pair of points can be calculated using Pythagoras’ Theorem.

In a purely Cartesian problem the cost of each arc is directly proportional to the

distance. By definition, such a problem is symmetric (see below). A Cartesian problem

has no need for arc lengths to be stored, as it is trivial to calculate them. Some

problems (13) have no arcs stated, assuming arcs can be formed between any two

nodes. Although within this thesis we deal exclusively with 2D (but not necessarily

Cartesian) problems, it should be noted that higher dimension problems also exist

(14). These higher dimension problems can introduce further complications, such as

incorporating gravity.

11

2. AN INTRODUCTION TO THE VEHICLE ROUTING PROBLEM

A problem is symmetric if, for all pairs of connected nodes a and b, the cost of

traversing the connecting arc from a to b is the same as traversing it from b to a.

In other words, in a symmetric system the direction of travel on an arc is irrelevant

to the cost incurred. Conversely, an asymmetric problem is a problem where this is

not always the case as there is at least one arc that is asymmetric, see Tables 2.1 and

2.2 and the associated figures. It can also be the case that an arc is one way, that is

to say that there is an arc (with a cost) from a to b but no arc from b to a. This

is sometimes modelled by applying an arbitrarily high cost on the arc from b to a in

situations where it is convenient to model a complete graph. Arcs that can only be

traversed one way are called directed. In a problem with relatively few arcs compared

to nodes, the existence of directed arcs can make routing problems unsolvable. A graph

with directed arcs is called a directed graph or digraph (15). Examples of undirected

and directed graphs are also presented in Tables 2.1 and 2.2 respectively on arc AC.

(a) Example Symmetric Graph (b) Example Asymmetric Graph

Later we will look at time variance. For now we will define a time variant graph

as one that contains at least one time variant arc, which is an arc whose cost varies

depending on when it is traversed. An important effect of time variance is that, if the

direction of travel on a series of arcs is changed, the time taken to traverse them may

change, even when they are all symmetric. This means that some of the benefits of

arcs being symmetric are lost.

12

2.3 Arc Routing Problems

Table 2.1: Example Symmetric Graph

Destination Node

A B C D

Source Node

A - 2 4 3

B 2 - 4 -

C 4 4 - 3

D 3 - 3 -

Table 2.2: Example Asymmetric Graph

Destination Node

A B C D

Source Node

A - 2 4 3

B 1 - 4 -

C - 4 - 2

D 3 - 4 -

Sometimes time variance goes beyond changing costs of traversal. Time variance

may also forbid traversing certain arcs at certain times. This can be modelled with an

arbitrarily high cost, in the same way as directed arcs. Real world examples of these

can be seen in city centres such as York (16), where areas are pedestrianised for several

hours a day.

2.3 Arc Routing Problems

Now we move on to the important definitions in this thesis, those of Vehicle Routing

Problems. There are two obvious ways to model routing problems on the type of graph

that we have described: the overall objective can be to service the nodes or to service

the arcs. We will now look briefly at arc routing before moving on to node routing,

which is more relevant to the rest of this thesis.

The idea behind arc routing problems is that arcs need to be traversed by a “vehicle”

(although it may be the case that the problem is modelling someone travelling on foot,

electrical current in wires or any number of other scenarios, the concept is the same).

An example of this kind of problem is waste collection, where each arc represents a

road, the residents of which have rubbish that needs to be picked up by a dustbin lorry.

Our work in this thesis does not investigate applications to arc routing problems, but

many of the difficulties we will look at have parallels in arc routing, and so we will

briefly look at what is involved. There are a number of variants of the arc routing

problem, the most common of which we will summarise here.

13

2. AN INTRODUCTION TO THE VEHICLE ROUTING PROBLEM

2.3.1 Chinese Postman Problem

The best known case of the arc routing problem is the Chinese Postman Problem,

also referred to as the route inspection problem or the postman tour. It was first

discussed by the Chinese mathematician Mei-Ku Kuan in 1962 (17) and Alan Goldman

coined the name in honour of this (18). The objective is to traverse every arc of an

undirected, connected graph at least once and return to the start point (which, without

time variance, can be arbitrarily chosen). Briefly speaking, if the problem contains an

Eulerian circuit - a tour that traverses each arc exactly once - then that circuit will be

the optimal solution. The existence of an Eulerian circuit is equivalent to whether all

the vertices are of an even order (each vertex has an even number of arcs connected

to it) (19). If there are vertices with an odd order then they can be paired up (there

will be an even number of odd order vertices, by Euler’s handshaking lemma (20)).

Using dummy arcs to convert each pair of odd order vertices transforms the problem

into one with an Eulerian circuit. This is equivalent to the T-join problem, which has

complexity O(n3) (21).

Figure 2.1 shows an example problem, the problem is purely Cartesian, so the

Figure 2.1: Example Chinese Postman Problem - A simple Chinese Postman

Problem. Each node has its order marked inside.

distances are the costs. As can be seen, all the nodes have even order (2 or 4) except

14

2.3 Arc Routing Problems

for two, which each have order 3. The optimal solution thus features every arc once,

plus a second traversal of arc a, which links the two odd order nodes. With a duplicate

arc a added, because the Chinese Postman Problem requires a complete tour and the

costs are static, all Eulerian Circuits will be equally valid as optimal solutions.

There are many variants on this basic model, the three most common variants are

listed below, these variants can themselves be combined with each other to form even

more complicated problems e.g. The Windy Rural Postman Problem (22).

2.3.2 New York Street Sweeper Problem

The New York street sweeper problem is similar to the Chinese Postman Problem, only

it features a directed graph, rather than an undirected one (23). This added complexity

makes the problem NP-Complete (11). This problem is also referred to as the Windy

Postman Problem.

2.3.3 Min k-Chinese Postman Problem

In this variant of the basic Chinese Postman Problem there are multiple postmen

starting at different nodes who must, between them, traverse all the arcs. With this

change it becomes necessary to explicitly state the start nodes so that each circuit has a

different start node within the tour. The objective is normally to minimise the longest

of the postmen’s routes. This variant is also NP-Complete (11).

2.3.4 Rural Postman Problem

In the rural postman problem, there is a subset of the arcs which represent those that

must be traversed, the remaining arcs are not necessary to traverse. It is common

for the necessary arcs to be disjoint (so some unnecessary arcs must be traversed).

One of the ways that this problem can be imagined is that the necessary arcs represent

streets in small rural villages and the unnecessary arcs represent roads connecting these

villages, as well as back alleys and bridges within the villages. As with the other variants

mentioned here, this problem is NP-Complete (11).

15

2. AN INTRODUCTION TO THE VEHICLE ROUTING PROBLEM

2.4 Node Routing Problems

The main focus of this thesis, and what most authors understand vehicle routing to

refer to, is node routing. The problems that we have just discussed have all been

concerned with servicing customers denoted by arcs. However, another more common

way to model customers is as nodes.

2.4.1 The Travelling Salesman Problem

The Travelling Salesman Problem (TSP) is an NP-Hard combinatorial optimisation

problem seeking to produce a tour that enables a salesman to visit all of a set of

customers at least once and return to the starting point at the end of the tour. The

problem consists of a number of nodes that are connected by arcs to form a connected

graph. Often the graph is complete, although this is not necessary. Each of the arcs has

an associated cost (or a cost for each direction of travel, if the problem is asymmetric).

A solution to a TSP is a closed tour that visits all of the nodes, in a similar way to a

Hamiltonian Cycle. The basic TSPs do not require any of the nodes to be selected as

start points or for a direction of travel to be specified.

The origins of the TSP are unclear, the earliest documentation of its discussion

appears to be in Der Handlungsreisende by B. Fr. Voigt from 1832 (24) (reprinted

by Verlag Bernd Schram in 1981), although it contains no mathematical discussion.

The TSP is closely related to the works of William Rowan Hamilton (25) and Thomas

Kirkman (26) in 1856.

As mentioned before, there is also a decision problem version of the TSP which

is “Given a length L, is there a valid tour of length less than or equal to L?”, this

problem is NP-Complete. If the answer is yes then there is a tour that can be shown,

in polynomial time, to satisfy the problem.

2.4.2 Vehicle Routing Problems

The various Vehicle Routing Problems (VRPs) are also examples of NP-Hard

combinatorial optimisation problems where a set of customers are visited by a fleet

of vehicles originating from one (or more) depot(s). It was originally proposed by

Dantzig and Ramser in 1959 (27). For the purposes of this thesis we will limit our

discussion to the single depot case, although most of what we will investigate is equally

16

2.4 Node Routing Problems

valid for multiple depots. Each vehicle starts at a depot, traversing arcs from customer

to customer forming a tour, at the end of the tour the vehicle then returns to a depot.

The customers and depot are represented by nodes and, along with the arcs between

them, form a connected graph. Each of the arcs connecting the nodes has an associated

cost, such as time or money. There are a number of different variants of the VRP (28),

generally these involve modelling the VRP with different objectives and constraints,

which we will look at in more detail later in this Chapter. For now we will briefly

introduce the Single Vehicle Routing Problem and the Capacitated Vehicle Routing

Problem, both of which are very important in this thesis.

The Single Vehicle Routing Problem

The Single Vehicle Routing Problem (SVRP) is a VRP with only one vehicle used on a

single tour (29)(30). As with most VRPs, the SVRP has a depot from which the vehicle

must visit all the customers before returning. The standard SVRP can be solved in the

same manner as a TSP with a fixed start point, and similarly results in a Hamiltonian

Cycle. The differences between a TSP and an equivalent SVRP are subtle. In general

SVRPs use some of the ideas more applicable to VRPs than TSPs, for instance, TSPs

do not require a start point or depot to be chosen. As they form a closed tour the

objective function is the same no matter where the tour is started from. In order to

distinguish between the different VRPs, we will use the term Multiple Vehicle Routing

Problem (MVRP) to refer to VRPs that have 2+ vehicles and VRP to refer to both

SVRPs and MVRPs.

Due to the simplicity of the SVRP compared to other VRPs, we will be

experimenting with it extensively later in this thesis.

Capacitated Vehicle Routing Problems

The Capacitated Vehicle Routing Problem (CVRP) is one of the many specific types

of VRP (28). The CVRP has a demand applied to the customers which the vehicles

visiting them need to cover. Each vehicle has a limited capacity, so individual vehicles

can only service some of the customers before needing to return to the depot. A similar

problem is the Distance-Constrained VRP (DCVRP) (31), where vehicles are limited

by the distance that they can travel.

17

2. AN INTRODUCTION TO THE VEHICLE ROUTING PROBLEM

We will now use the CVRP as an example of how VRPs in general work. Later in

this thesis we will also be experimenting on them extensively.

2.5 Mathematical Model of a CVRP

We will now present a mathematical model of a common VRP variant, the Capacitated

Vehicle Routing Problem (a variant where each vehicle is limited to only being able to

service a few customers, due to a limited capacity). This model is based on the model

presented by Toth and Vigo (28), but more specific to the problems that we will be

looking at.

min
∑

i∈V
∑

j∈V cijxij

subject to

1. xij ∈ 0, 1∀i, j ∈ V

2.
∑

i∈V xij = 1∀j ∈ V \ 0

3.
∑

j∈V xij = 1∀i ∈ V \ 0

4.
∑

i∈V xi0 = K

5.
∑

j∈V x0j = K

6.
∑

i/∈S
∑

j∈S xij ≥ r(S)∀S ⊆ V \ 0, S 6= ∅

Firstly, there is the objective, the aim of the problem; here the objective is to

minimise the sum of weights of arcs featured in the final tour. This objective is quite

a common objective for VRPs, but many different objectives exist, which we will cover

in the next section. cij represents the cost of traversing the arc from i to j. Condition

1 states that x takes the value 1 if the arc xij (the arc from node i to node j) is in

the optimal solution and the value 0 if it is not. V is the set of all vertices, with 0

representing the depot and the rest representing the customers.

Conditions 2 and 3 state that each customer has 1 arc entering it and 1 arc leaving

it.

Conditions 4 and 5 state that the depot has K arcs entering it and K arcs leaving

it. K represents the number of vehicles used in the solution.

Condition 6 is the capacity-cut constraint. S representing a customer set and r(S)

is the minimum number of vehicles needed to service those customers.

18

2.6 Possible Objectives of a VRP

2.6 Possible Objectives of a VRP

An objective is, quite simply, what the problem is designed to solve. An objective

function is a mathematical function that reflects the quality of the solution. Objectives

can involve either maximisation or minimisation (although, in this case, all of the

examples given are minimisations). Some examples of simple objectives for a VRP are:

• Minimise travel distance

• Minimise total travel time / driver hours

• Minimise fuel usage / environmental impact

• Minimise total monetary cost

• Minimise number of vehicles needed

• Minimise individual vehicle’s travel time

The first four of these can all be expressed the same way as in Section 2.5, varying

the cost of the arcs (cij) to represent the relevant factor. The fifth objective is simply

min K (the number of vehicles used). The final objective, minimise individual vehicle

times, means that the objective is to minimise the highest cost vehicle, so the individual

vehicle’s costs must be found and compared.

Obviously these objectives are interconnected to an extent; a solution that has a

higher travel distance will often also have a higher travel time, higher travel cost and

higher fuel usage, but that will not always be the case. Minimising fuel usage in a

standard vehicle, for example, means that it is better to drive at 90 km/h (55 mph)

than 110 km/h (70 mph) - giving a saving in fuel of around 10% - 20% (32) but this will

also mean increased travel times if the maximum speed on the road is higher. Some of

the objectives can be modelled as constraints instead, which we will cover in Section

2.7.

2.6.1 Multiple Objectives

In many cases, rather than choosing a single objective, a number of objectives are sought

after. As an example, a delivery company may state that their objective is “minimise

number of vehicles”, but this will likely have multiple solutions with an equal objective

19

2. AN INTRODUCTION TO THE VEHICLE ROUTING PROBLEM

value (the same number of vehicles used), some of which will be more preferable to the

company than others. In this example, the company actually wanted to minimise the

vehicles used and then to also try to minimise distance travelled.

Assuming that the objectives are not modelled as constraints, there are three simple

methods to model multiple objectives: in a hierarchical manner where one objective is

optimised, then if there are still multiple equally good solutions, another objective is

compared (33); as a weighted sum of individual objectives, referred to as an Aggregate

Objective Function (AOF) (33); or as a Pareto-Based Multi-Objective Optimisation

(MOO) problem (33), which results in a Pareto front: a set of solutions where, for any

pair of solutions, one will be better at one objective and the other will be better at a

different objective.

As an example: Suppose a problem has two objectives, minimise distance travelled

and minimise cost. Assume that there are 5 possible solutions, whose objective values

are:

Travel Distance (km) Total Cost (£)

20.1 60
19.0 50
17.8 72
17.2 72
16.0 141

The hierarchical method is simple: assuming that minimising Travel Distance is the

most important objective, the best solution is the last one. The total cost column is

only used as a tie-breaker for when two solutions have exactly the same Travel Distance.

For the AOF method, both these objectives are valued, but one may be valued more

than the other. Obviously either the units used must be taken into account (measuring

distance in metres, rather than kilometres, would make the distance values be much

more favoured in the AOF) or the values normalised. For this example, we will assume

that the weighting has been done already, and that we value 1 km of travel as the same

as £1 of cost. This leads to AOF values of: 80.1, 69.0, 89.8, 89.2 and 157.0 respectively,

making the second row (19.0 km & £50) the best solution.

The other method is to use Pareto-Based MOO. Here we look at each solution in

turn and see if it is dominated by any other solution, that is: does the solution fail to

be superior to another solution at all of the objectives. In our example the first solution

20

2.7 Constraints

has the greatest distance and is also more expensive than the second solution, so the

second solution dominates the first. The second solution is the cheapest, so cannot be

dominated. The third solution is dominated by the fourth, as the fourth solution is

shorter and not more expensive (as they are the same cost). The fifth solution is the

shortest, so cannot be dominated. Thus the Pareto front would consist of the second,

fourth and fifth solutions. It would be left up to the user to pick which of these solutions

to choose.

As a final point, the hierarchical method can be seen as a specific version of the

AOF method, with extremely unbalanced weighting, such that the primary objective is

weighted so highly that the secondary objective only features when there is no difference

in quality between the primary objectives of two solutions.

Although the example given involves two objectives, all these methods can be used

with any number of objectives. Additionally, it is possible to mix the methods. For

instance, minimise vehicles first (in a hierarchical manner), then solve a Pareto-Based

MOO between cost and distance.

2.7 Constraints

An SVRP works as a problem without any additional constraints required (although

some can be added, of course). When multiple vehicles are used, however, various

constraints usually apply. Without any constraints, the optimal solution to a VRP

minimising travel distance is generally to have a single vehicle servicing all the

customers. Looking closer at a solution that uses two vehicles it will generally be

the case that distance can be saved by removing a specific pair of arcs that link to the

depot and replacing them with a single arc linking the non-depot nodes, as shown in

Figure 2.2. In a purely Cartesian problem, where the 2D distances are the costs, a

saving will always be possible unless all the arcs from the depot lie on a straight line

with each other (the start and end customers are all collinear to the depot and each

other), due to the triangle inequality. With a non-Cartesian problem it may not always

be the case that using one vehicle is optimal, but usually it will be.

The conclusion that an unconstrained MVRP becomes an SVRP is not a theoretical

result; in the real world, if there were no constraints and roads were straight then this

would be the optimal route to minimise travel distance. Of course, real world VRPs

21

2. AN INTRODUCTION TO THE VEHICLE ROUTING PROBLEM

Figure 2.2: Unconstrained VRP Example - An unconstrained VRP. Any pair of

customers can be joined together to create a single vehicle tour that is shorter than the

combined length of the two vehicles. The arcs that are removed and the arc that is added

form a triangle.

will always have constraints of some sort, even if they are fairly simple ones. Some

common constraints are:

• Time windows

• Capacity

• Driver Time

• Vehicle Specifics

We will describe each of these shortly. Firstly though, we must explore the difference

between the two ways constraints can be modelled: hard and soft.

2.7.1 Hard and Soft Constraints

Constraints fall into two categories, hard constraints (constraints that a solution must

follow) and soft constraints (constraints that a solution is penalised for not meeting)

(34). Whether a constraint is soft or hard depends on how the constraint is modelled.

22

2.7 Constraints

A hard constraint, as the name suggests, is a constraint that a potential solution must

abide by if it is to be used. Solutions that do not manage to fit within the constraints

are invalid and can not be used as the final solution. A soft constraint is one that a

potential solution can fail to meet, but a penalty is added if the constraint is not met

(in its simplest form an amount is added to the objective function at the end). If hard

constraints exist, it is important to make sure that a valid solution exists, whereas only

using soft constraints means that solutions that violate some or all of the constraints

can still be used. On the other hand, if a constraint which is hard is modelled as soft,

the final solution found may be worthless, such as a solution that involves a tanker

carrying more oil than it has capacity for.

When using solution improvement heuristics (described in Chapter 3), it is

important that constraints are modelled correctly. If a soft constraint does not carry

a large enough penalty, then a solution that breaks the constraint may be used over a

solution that meets all of the constraints but has a slightly worse objective value. If the

penalty is too high, invalid solutions that can lead to valid solutions as progress is made

through the search may be ignored, narrowing the search space. Of course, constraints

can be changed over the course of an algorithm, such as modelling a constraint as soft

at the start to widen the local neighbourhood, then increasing the penalty associated

with the constraint as the algorithm progresses before finally making the constraint

a hard constraint at the end. For instance, a capacity constraint could be assigned

a small penalty for breaking in the first stages of an algorithm, but have the penalty

made larger as the algorithm closes on an optimal solution, then not accepting a final

solution until one that does not break the capacity constraint is found.

2.7.2 Time Windows

This constraint is different to the others listed here, in that it applies to the customers,

rather than the vehicles. With time windows, customers are associated with specific

times to be visited at (e.g. between 9 a.m. and 11 a.m.) (28). These may be modelled

as hard constraints, so the customer must be visited between these times, or soft

constraints, so a penalty is applied for missing the time window, sometimes a flat

amount, sometimes dependent on how far off the time window the visit is. Hard time

windows can make a problem unsolvable, so if possible it is generally better to model

hard constraints as soft and then give an arbitrarily high penalty meaning a solution

23

2. AN INTRODUCTION TO THE VEHICLE ROUTING PROBLEM

that meets the time window will generally have a better objective value than any that

do not. Time windows can often shape solutions much more than other constraints, as

it can mean one node must be visited before another or that two vehicles are needed to

visit a pair of nodes which are otherwise compatible for a single vehicle to cover both.

2.7.3 Capacity

With this constraint each customer has a demand attached to them and each vehicle

has a capacity (a fleet of vehicles may be defined as homogeneous, in which case all

the vehicles have the same capacity, or heterogeneous, which means they do not). In

a single trip a vehicle can only service customers whose combined demand does not

exceed its capacity (28). In some variations of this constraint it is possible to split

demand across two vehicles (the Split Delivery VRP (35)), in others it is possible for

a vehicle to return to the depot to resupply and then go out again. One of the big

advantages with this constraint is that a minimum number of routes can easily be

found, and this information can be used to guide some starting solutions. For example

by knowing that at least three vehicles are needed to meet the demand, the starting

solution can initially be made with at least three vehicles.

The simple implementation of this is to represent each demand and capacity with

single values, this can represent a situation where weight is the relevant factor, or

volume when transporting liquids. If space is the issue, it is more realistic to use 2D or

3D measurements (depending on if the commodity is stackable) and then use a packing

algorithm to determine if items can fit (36). Although in reality exceeding capacity

constraints is impossible, or at least illegal, during the execution of an algorithm

capacity can be modelled as soft (but must be hard at the end). A soft constraint

generally uses a penalty cost multiplied by how much the capacity is exceeded. When

packing it may be that goods need to be reorganised and this may require specific

equipment (such as loaders).

2.7.4 Driver Time

This constraint limits the length of time a driver can drive for without a break.

Sometimes another driver can continue a tour, but generally drivers are linked to

vehicles for the duration of the tour, and so this also limits the duration of individual

tours. If a problem does not feature the previous two constraints, then this one is often

24

2.8 Advanced Problems

the one that will force multiple vehicles. In Europe this is enforced by the EU Working

Time Directive (37). Obviously it is important to leave some slack with this constraint.

Failing at capacity constraints often just means leaving some goods to be picked up or

delivered at a later date, but failing this constraint means that, legally, the HGV driver

must stop driving the vehicle as soon as possible, potentially resulting in the vehicle

being stranded.

2.7.5 Vehicle Specifics

This is a wide category that covers many specific constraints. For instance, sometimes

a customer will require the vehicle servicing them to have a specific feature, such

as a certain type of pump for oil or chemical deliveries, or a certain type of loader

for supermarkets. Another problem could be that a vehicle can only carry one type

of product, such as liquid chemicals. Another common constraint is the need for

refrigerated vehicles. In this way multiple vehicles may be needed because there is

no single vehicle in the fleet that is fitted to match all of the customers’ needs.

2.8 Advanced Problems

There are VRPs for many varied problems. The list of objectives and constraints above

barely scratches the surface of the range and scope that VRPs cover. To give a small

demonstration we will now briefly look at a few more variants of the basic VRP which

do not fit into the previous discussions. We will not be aiming to solve any of these

within this thesis, but it is important to realise that they exist and think about how

they could benefit from the work presented here.

2.8.1 Multi-Depot VRP

The general VRP has only one depot, from which the vehicles originate. Of course,

in reality there can be multiple depots which service the same area, and vehicles can

originate from any of them. The Multi-Depot VRP is a generalisation of the more

common Single-Depot VRP. The most common method of implementation is to have

vehicles start and end at the same depot (38), this means that a final solution has

n separate sections, where n is the number of depots, as there is no overlap between

25

2. AN INTRODUCTION TO THE VEHICLE ROUTING PROBLEM

them. In order to reach this solution, however, it is necessary to move customers from

one vehicle (and hence from one depot) to another.

Another, more complicated, version exists where the vehicles can end at a different

depot to the one they started at (meaning that the tours are not necessarily closed

loops, as they are with other problems). An even more complicated problem arises

when split capacity/demand is introduced, which means that a single customer can be

serviced by multiple vehicles from different depots.

In general the inclusion of multiple depots does not have much effect on the use of

neighbourhood moves in the improvement heuristic. Multiple depots can have an effect

on the solution construction heuristics, however.

2.8.2 Pickup and Delivery

The VRP with Pickup and Delivery (VRPPD) (39) is another variation of the standard

VRP. With VRPPD, rather than the vehicles delivering all the items either to or

from the depot (depending on the specifics of the problem), the items need to be

delivered from one node to another. Sometimes this merely means that the depot

is both delivering and receiving goods from customers, such as delivering goods and

also collecting returns. Other times there may be goods delivered from customer to

customer, such as redistributing goods between a collection of warehouses.

The problem is modelled with the nodes in pairs, e.g. A1 is the pick-up node for an

item and A2 is the delivery node for the same item. Obviously a valid solution must

visit all the nodes, visit the pick-up nodes before their equivalent delivery nodes and

have the pairs of nodes on the same vehicle’s route.

An optional extra constraint is that the items must be delivered Last-In, First-Out

(LIFO) (40), that is, the only item that can be delivered at any one time is the last

undelivered item to have been picked up. This can be due to special equipment being

required to move items around within a lorry, thus only being able to access the most

recent addition.

The Dial-a-Ride Problem (DARP) is a specific type of VRPPD related to the

Dial-a-Ride service, where elderly and disabled people have access to a designated

minibus (or similar) (41). The customer gives a time window for either the start or

end of their journey (or both), along with where they want to be taken from and to.

Obviously vehicles have a limited capacity as well, so this problem is subject to many

26

2.9 Conclusion

separate constraints. Additionally, there are two objectives: minimise the individual

travel times and minimise the overall costs. These two objectives are often conflicting,

the ideal solution for minimising individual travel times is to have a vehicle for each

customer, so that they are all taken on the most direct route, but this obviously costs

a lot of money. Conversely, the cheapest solution is to have as few vehicles as possible,

but this means customers will often have a long detour, increasing their travel times.

2.8.3 Static & Dynamic Problems

All of the VRPs that we have discussed so far have been static, that is to say: all

aspects of the problem are known beforehand. There are also dynamic problems, in

which some details are known at the start, but details are added or changed as the

vehicles are on the move (42).

Some problems, such as parcel delivery, have their customers determined

beforehand, thus meaning that vehicles are tied to customers and the only changes

that could be made are the order that the customers are visited in. Other problems,

such as parcel collection, may have more customers added to the problem after the

vehicles have left the depot. When this happens, either an existing vehicle must be

redirected to visit the customer, or a new vehicle must be sent out. Assuming that

there are spare vehicles, it is easy to simply add another vehicle to service this new

customer, but the optimal approach will often be to re-assign customers to vehicles, in

order to balance constraints (such as capacity or driving time), it may be that many

or even all of the vehicles must have their itineraries changed.

Another dynamic effect can be a change to an arc, such as removing an arc because

of a crash on the corresponding road or maybe a change in its weight to reflect excess

congestion. The slowing or removal of an arc may make it so that a different vehicle is

better placed to serve a customer. If time windows are a constraint then a change in

arc weight may make a solution become invalid due to missing a time window.

2.9 Conclusion

The purpose of this Chapter is to introduce and explain the key terms and concepts

essential for understanding the content of the remaining Chapters. We have looked

at the differences between P and NP and have defined a number of related terms,

27

2. AN INTRODUCTION TO THE VEHICLE ROUTING PROBLEM

particularly NP-Hard, a set of problems that includes all those that we will be studying

later in this thesis. We have also defined graphs and their features, such as arcs, nodes

and costs.

We touched upon arc routing, which, while not part of the main thrust of this

thesis, is important not to leave out entirely. We will be looking further at how the

techniques that we will be using in the upcoming Chapters may be applied to arc routing

problems in the final Chapter, but for now we will be focusing on node routing problems,

specifically the Single Vehicle and Capacitated versions of the VRP, as defined earlier.

We have explained the most common objectives and constraints that are used on

TSPs and VRPs and have gone into some detail on how they can be implemented and

their effects.

At the end of this Chapter we looked at some more advanced routing problems.

As with arc routing, these are not the main focus of this thesis and are included for

completeness and to show the breadth of the field.

Now that we have laid the groundwork we shall, in the next Chapter, investigate

the various existing methods of solving VRPs. In particular, we will be focusing on

heuristic methods and their strengths and weaknesses.

28

3

Solving the VRP

3.1 Introduction

In this Chapter we take a look at the various processes involved in solving VRPs. Firstly

we introduce the basics of exact methods, methods of finding the best solutions to a

problem. Then we look at the heuristic methods, in particular construction heuristics

and improvement heuristics. Lastly, we will cover the metaheuristic frameworks that

these improvement heuristics can be incorporated into.

Many of the graphs shown here have been drawn in Matlab using an adaptation

of gplotdc v1.0, a function written by Joseph Kirk (jdkirk630@gmail.com). Arcs

are represented as dotted lines with a slight curvature to them to denote direction

of traversal (the curvature bending counter-clockwise moving away from the point).

Where an arc is traversed in both directions (such as when a vehicle goes from the

depot to a single customer and then returns to the depot), a single solid, straight line

is used. The depot is represented with a circle around the node.

3.2 Exact Methods

Exact methods are approaches to solving VRPs (and problems in general) that aim to

give an exact solution, that is, the best solution possible. A variety of exact methods

for the VRP exist, many having been inherited from work on the TSP. In general, when

used on NP-Hard problems, exact methods scale poorly with problem size, taking a

lot of computational time, a lot of computational space or both. Some exact methods

29

3. SOLVING THE VRP

have been the basis for other, non-exact, algorithms, one of which we will investigate

later.

All of the exact methods mentioned here are approaches that can be applied to a

variety of problems, not just TSPs and VRPs. To keep this concise, we are only going

to discuss these methods in the context of solving TSPs and VRPs.

3.2.1 Brute Force Search

The simplest exact method, which will (if given enough time and memory) get an

answer to any solvable VRP, is brute force search, also known as exhaustive search.

The brute force approach is to systematically look at every possible solution, keeping

track of the best one found. For an SVRP this involves calculating every possible

ordering of customers (of which there are n!, where n is the number of customers). At

n = 60 the number of possible solutions is approximately the number of atoms in the

universe. This is known as the combinatorial explosion effect. A VRP has even more

solutions than a corresponding SVRP (as the SVRP solutions can be categorised as the

subset of solutions to the VRP that use only one vehicle); for exactly v vehicles the

number of solutions is n!(n−1)!/(n−v)!(v−1)!1. If the number of vehicles is not fixed,

the number is
∑U

v=L n!(n− 1)!/(n− v)!(v− 1)! where L is a lower limit (≥ 1) and U an

upper limit (≤ n) on the number of vehicles. Brute force searches can be optimised to

reduce the solution space, particularly with constrained problems (for instance, using

capacity constraints will invalidate a lot of solutions straight away), and a brute force

search is sometimes a valid method to use when the solution space has been reduced

to a manageable size using other methods. In general, however, the brute force search

is not a good choice for solving a VRP.

3.2.2 Dynamic Programming

A more advanced method of solving problems than the brute force approach is Dynamic

Programming (DP). DP is an “umbrella term” that covers a lot of ideas and techniques.

Dynamic Programming has been used to solve many problems. The TSP was first

solved using Dynamic Programming by Bellman (43) and Held & Karp (44), both in

1Organise the nodes in order (n! combinations). Then insert v− 1 splits between nodes, where one

vehicle stops and another starts. There are (n− 1)!/(n− v)! ways to do this. The order the splits are

in does not matter, so divide by (v − 1)!.

30

3.2 Exact Methods

1962. The general DP method for the SVRP is as follows: a solution is constructed

step by step, where each partial solution has two features: the customer it is currently

at and the customers that it has visited. If no constraints are applied, then two partial

solutions that have visited the same set of customers and are at the same customer can

be compared, and if one is ahead of the other, then it is superior. In this way, partial

solutions can be built up while only keeping those that have the potential to lead to

the best solution. A comparison of the reduction of solutions compared to brute force

search when run on SVRPs shows that DP, with its runtime complexity of O(n22n)

(43), has significantly fewer solutions. DP reaches the “atoms in the universe” at 250

customers, compared to 60 for basic brute force search. The execution time of the

DP can be further improved using inclusion-exclusion, reducing its runtime to O(2n)

while using polynomial computing space (45). This increases the customer count to

265 before hitting the atoms in universe point. A demonstration of how excess tours

can be removed follows.

Dynamic Programming Example

We will solve a symmetrical SVRP with four customers and a depot and the following

distance matrix:

Depot a b c d

Depot - 14 12 7 5
a 14 - 10 5 7
b 12 10 - 8 2
c 7 5 8 - 4
d 5 7 2 4 -

The tours are built up a node at a time. After the first step there are four partial

tours (from the depot to each of the customers). After the second step there are 12

partial tours (ab, ac, ad, ba, bc, bd, ca, cb, cd, da, db, dc), the third step is where the

improvements over brute force search come in. With brute force search there are 24

partial tours. They can be sorted into pairs as follows:

• abc = 32 & bac = 27

• abd = 26 & bad = 29

• acb = 27 & cab = 22

• acd = 23 & cad = 19

31

3. SOLVING THE VRP

• adb = 23 & dab = 22

• adc = 25 & dac = 17

• dcb = 17 & cdb = 13

• dbc = 15 & bdc = 18

• cbd = 17 & bcd = 24

• bca = 25 & cba = 25

• bda = 21 & dba = 17

• dca = 14 & cda = 18

Each member of the pair has visited the same nodes and is currently at the same

node, thus each member of the pair has the same node(s) left to visit. Therefore the

route that is the best of the pair is superior and the other can be discarded. In the case

where the two routes have the same tour length (bca and cba), both routes are going

to result in equally good answers, so either can be kept. In this way the combinatorial

explosion can be reduced; now there are only 12 partial tours, rather than 24. With

more customers the reductions become even more significant:

• At each step, brute force has n!/(n−s)! different tours, where n = total number of

customers and s = number of customers visited (which is also the step number).

• This DP method only has n!/(n− s)!(s− 1)!

• Thus at the next step brute force has 24 tours, whereas DP has 4 tours (a tour

ending at each of the 4 customers).

In total, the brute force search has 64 partial tours and DP has 32. Of course, for

such a small example the overheads involved in comparing the partial tours outweighs

the reduction in partial tour numbers. With bigger problems, DP quickly gains the

lead though.

Another improvement that can be made to the primary example is that the tour,

being on a symmetrical problem, can be constructed from both ends. For instance a 7

customer problem leads to 7! = 5040 tours for brute force search and with DP at step

4 there are 140 tours. These tours can be assigned into pairs, with each member of

the pair sharing a current node, but not any visited nodes (so abcd matches efgd, abdg

matches cefg and so on). Next, the tours are merged by inverting the second of the

pair of partial tours and conjugating them to give a set of 70 final tours (continuing the

example, we would have abcdgfe and abdgfec), these 70 tours can quickly be compared

to find an optimum.

32

3.2 Exact Methods

Moving on to multiple vehicles, in a basic and unconstrained MVRP it does not

matter which vehicles have visited which customers, only a list of customers that have

been visited is required. Time windows can affect the algorithm, particularly if they are

a soft constraint, as being behind is not an issue if you are too early for the next time

window anyway, as the vehicle that is ahead will have to spend time idle. Capacity

constraints simply require each vehicle to have a “remaining capacity”, which does not

complicate the problem very much if there is a small number of different demands (such

as an integer demand between 0 and 5). Driver time constraints mean that each vehicle

requires a track of how much it has travelled, which will add much more complexity,

especially if the fleet is heterogeneous rather than homogeneous.

We must note, however, that calculation time is not the only factor of a “good”

method. Another factor is the space requirement. Whilst brute force search only stores

one solution (the best so far), DP stores many partial solutions. With larger problems

this can become an issue.

In conclusion, Dynamic Programming can be useful, but constraints can complicate

it excessively. With a large number of customers the combinatorial explosion is still a

problem. Later we will look at a non-exact method based on this approach which has

produced good results.

3.2.3 Branch and Bound

Branch and bound is a two stage process for finding a solution first proposed by Land

and Doig (46). The basic premise is that the solution space is split into subspaces and

the upper and lower bounds of these subspaces are calculated. Assuming the problem

to be solved is a minimisation problem, then the lower bound is the best value that a

solution within the search space can be; there is not necessarily a solution that exists

with a value of the lower bound, but none exist with better values. The upper bound

is the worst that the best solution could be, this can often be discovered by actually

finding a solution, as clearly the best valid solution cannot be worse than a known valid

solution. In the case of a maximisation problem the roles of the upper bound and lower

bound are reversed.

In TSPs, lower bounds are often found using methods such as minimum spanning

trees, these methods become more complicated with multiple vehicles. Upper bounds

represent the worst that the optimal solution within the search subspace can be. As

33

3. SOLVING THE VRP

just mentioned, a simple upper bound is the best valid solution found thus far. Note

that it is not necessary to find a solution in order to infer an upper bound, although in

addition to proving that the best solution in the solution subspace must be less than

or equal to the upper bound, it must also be shown that a valid solution exists within

the solution subspace.

If the lower bound of one solution subspace is worse than the upper bound of another

solution subspace, then the former solution subspace can be pruned from the search,

as the optimal solution cannot be found within it. The remaining solution subspaces

can then be branched further to produce more subspaces and these subspaces can then

have their bounds tested. In this way the solution space in which an optimal solution

lies can be narrowed down until either the solution is found or the number of possible

solutions is reduced to a more computationally solvable number (at which point another

method, such as brute force search, can be used).

The effectiveness of a good branch and bound generally comes down to the

“tightness” of the bounds, that is, the difference between each upper and lower bound.

If the two bounds of each subspace are close together, it generally means that more

subspaces can be pruned, which leads to the overall solution space being reduced much

faster. If the two bounds are far apart then it may be that no solution spaces can be

pruned, meaning that each solution space may need to be further divided. This can

lead to similar problems as Dynamic Programming, where excessive space is required

to keep track of all the solution subspaces being investigated. Obviously the bounds

can be tightened by either using a better method of finding lower bounds (i.e. finding

higher lower bounds) or finding better (i.e. lower) upper bounds. Finding a tighter

lower bound may lead to the subspace in which it is found in being pruned, whereas

finding a tighter upper bound can lead to multiple subspaces being pruned, sometimes

even every other subspace. It stands to reason that the lowest upper bounds are more

likely to be found in solution spaces with low lower bounds, so it is a good idea to

investigate these first (but not exclusively).

It is important to realise that, like Dynamic Programming, branch and bound is a

method of solving a variety of problems, such as the TSP and the Knapsack problem.

There is no specific way to apply it to a problem, but there are general methods that

are used. Branch and bound is most associated with the TSP. A simple lower bound

(for a symmetric problem) is 1
2

∑
v∈U a1 +a2, where a1 and a2 are the two arcs with the

34

3.3 Heuristic Methods

lowest costs adjacent to node v. A simple branch method is “contains ab” and “does

not contain ab” for an arbitrary arc ab.

Hard constraints can help with branch and bound, as a solution space which can be

shown to contain no solutions that do not invalidate a hard constraint can be pruned.

In conclusion, branch and bound, more so than either brute force search or Dynamic

Programming, requires an understanding of the problem so that useful bounds can be

found. Where difficult to meet and hard constraints exist, branch and bound can

quickly prune solution spaces, making it a useful starting point. Once the solution

space is reduced, however, branch and bound becomes less effective compared to the

other exact methods listed here, as the overheads for computing the subspaces become

more apparent as the problem is reduced in size. Lastly, due to the nature of branch

and bound, it is harder to estimate its run time, so sometimes other methods that are

poorer on average but more predictable overall are preferred.

3.3 Heuristic Methods

“The heuristic approach to problem solving consists of applying human

intelligence, experience, common sense and certain rules of thumb (or

heuristics) to develop an acceptable, but not necessarily an optimum,

solution to a problem. Of course, determining what constitutes an

acceptable solution is part of the task of deciding what approach to use; but

broadly defined, an acceptable solution is one that is both reasonably good

(close to optimum) and derived within reasonable effort, time, and cost

constraints. Often the effort (manpower, computer, and other resources)

required, the time limits on when the solution is needed, and the cost to

compile, process, and analyze all the data required for deterministic or

other complicated procedures preclude their usefulness or favor the faster,

simpler heuristic approach. Thus, the heuristic approach generally is used

when deterministic techniques or mathematical models are not available,

economical, or practical.” - Kenneth Shuster(47)

There are a number of heuristic methods to solving VRPs, but the general method

that we are focusing on in this thesis is a two stage process. Firstly, a solution

construction heuristic is used to produce a “starting solution”, then a series of

35

3. SOLVING THE VRP

neighbourhood moves are performed on the solution with the intention of improving it.

These neighbourhood moves are themselves performed within a solution improvement

heuristic algorithm.

A starting solution is, as the name suggests, a solution that acts as a start point.

In this thesis we consider a good starting solution to be one that is created quickly,

is a fairly good solution in itself and which can be improved using neighbourhood

moves. There are some quite complicated solution construction heuristics around, but

a starting solution that is not quick to create is poor for us because time is relevant

to solving VRPs. After a point, spending more time coming up with what is only

being used as a starting point for an improvement heuristic is less productive than

spending that time on the improvement heuristic stage itself. A starting solution that

is poor quality (in that it invalidates constraints or has an excessive cost) is not good

because it means there is more work that needs to be done by the improvement heuristic

(although, because of the diminishing returns that improvement heuristics give, a poor

starting solution can quickly be improved by a good improvement heuristic). Obviously

there is a trade-off between speed and quality of starting solutions, in the same way as

many heuristics have such a trade-off. There will always be a balance between time and

quality. If time were not an issue, then the solution construction heuristic may as well

try all the possibilities in order to find the optimal solution (see brute force search at

the start of this Chapter). If quality was not an issue, then you may as well assign the

vehicles to customers arbitrarily or at random. There is no “best answer” to what the

ratio of these two factors should be, it is down to what the situation requires. Lastly,

the solution generated by the construction heuristic algorithm should have the potential

to be improved by the improvement heuristic algorithm. The basic idea of this is clear,

if the improvement heuristic cannot improve on the constructed solution, then there is

no reason to use the improvement heuristic. If the improvement heuristics are used in

a simple framework, such as a Hill Climber (described later in this Chapter), then the

solution is more likely to end up at a local optimum: a situation where all the local

moves lead to poorer solutions, but the current solution is not the best possible. In

other words, in order to improve on the current solution there needs to be an overhaul

or a shake-up.

36

3.4 Solution Construction Heuristic Algorithms

3.4 Solution Construction Heuristic Algorithms

Although, for our purposes, we are using solution construction heuristic algorithms

as a starting point for a solution, the solutions that they generate can be used as

final solutions without any extra work. Because of our intention to use improvement

heuristics on the solutions after their construction, we are keeping the construction

heuristics comparatively simple. An advantage of only using these algorithms as a

starting point is that the solutions they produce need not be valid (that is, they may

break hard constraints). We will now look at some examples of solution construction

heuristics (some of which we will be using, others are just shown as further examples).

This is by no means an exhaustive list and there are many variations on the individual

algorithms.

The algorithms we will discuss, in order, are:

• Random Start

• Nearest Neighbour

• Clarke & Wright

• Cluster-First Route-Second

– Sweep

– Fisher & Jaikumar

• Route-First Cluster-Second

3.4.1 Random Start

The simplest method of creating a solution to an SVRP is to create a tour one customer

at a time, choosing the next customer to visit each time at random. Obviously this

method will not usually produce solutions that can compete with other methods in

terms of solution quality, but it is fast to execute. If there are hard constraints (such

as time windows) then this method obviously has additional problems in producing

solutions that are valid. The main reason to justify using a random starting method is

so that there is a solution to work on improving with improvement heuristic. Due to the

relative ease of using some of the simpler construction heuristics, it is still likely to be

37

3. SOLVING THE VRP

better to use another, more sophisticated method, even though sophisticated methods

will generally take more time to run.

For an MVRP, a random solution is slightly more complicated to produce, especially

when constraints that may invalidate the solutions are involved. A random solution is

still easy to produce, particularly if invalid solutions are permitted.

3.4.2 Nearest Neighbour Algorithm

The Nearest Neighbour Algorithm (NNA) was first considered for the TSP by Karl

Menger in the 1930s (48). The NNA is a greedy construction heuristic designed to

solve TSPs. A tour for a vehicle is constructed by adding customers to it one by one

in a greedy manner (in other words, by only considering the immediate implications

of adding the customer, rather than looking ahead to see what knock-on effects may

occur). The cost incurred by adding each unvisited customer to each free vehicle

is checked and the lowest customer-vehicle pair is used for each iteration. In a time

invariant symmetric problem (particularly an SVRP) a tour of customers can be formed

by adding new customers to both ends of the tour (i.e. a vehicle can have the last

customer it will visit included in the tour before some of the middle ones have been

determined). Thus for each vehicle, two disjoint routes are formed in parallel and then

joined together. This can lead to an overly long “join” between the two, as shown in

Figure 3.1. Here the arcs are added in numeric order, but will be traversed 1, 4, 5,

3, 2, which is clearly a sub-optimum route. This is because the NNA does not plan

ahead, only being concerned with the immediate effects. Generally the NNA will visit

a cluster of customers at a time, but occasionally it will miss a customer while it is

nearby and have to ‘come back’ for them later.

The NNA tends to perform better when there is a low limit on the number of

vehicles that are usable. With only one vehicle the problem becomes much like the

TSP that the NNA was originally designed for. On many TSP instances, a NNA will

produce a reasonably good solution quickly, however, it has been shown (49) that, for

any number of customers, an asymmetric TSP exists for which the NNA produces the

worst possible solution. Some constraints, such as capacity, make it hard to build a

tour from both ends, as extra effort must be made to attach halves of tours without

breaking constraints. Generally when such problems exist it is easier to build all of the

solutions from one end only.

38

3.4 Solution Construction Heuristic Algorithms

Figure 3.1: Nearest Neighbour Example - A simplified Nearest Neighbour Algorithm

applied to a simple Cartesian problem.

Example Algorithm

The basic algorithm for Nearest Neighbour (building from one end) is:

• For each unassigned customer, calculate the cost of adding them to the end

of the tour of each vehicle with enough capacity remaining (applying capacity

constraints if relevant).

• Find the lowest customer vehicle pair and assign that customer to the vehicle’s

tour.

• Repeat steps 1 and 2 until all customers are assigned.

• Complete all the tours by returning to the depot.

One potential problem is that all the vehicles may reach capacity with some

customers left to assign (for instance, all five vehicles being used may have 4 capacity

left, but there is one unassigned customer who has a demand of 5, thus the combined

capacity of the vehicles exceeds demand, but the algorithm has reached a dead end).

If the algorithm is being used as a starting point for further improvement then this

problem can be solved by allowing vehicles to exceed their capacity (modelling capacity

as a soft constraint with a fixed penalty). Another problem is knowing how many

vehicles to use. If the number of vehicles is unlimited, assigning new vehicles whenever

any saving can be achieved, then an unconstrained Cartesian VRP with five customers

39

3. SOLVING THE VRP

equally spaced in a circle around the depot leads the NNA to produce a solution with

one vehicle for each customer. A simple method to avoid this is to include an extra

cost for adding a new vehicle. A better method is to take into account a “return” cost

– how much it will be to get back to the depot from the vehicle’s current location. In

the end, in a similar way to the brute force search mentioned earlier, there are many

ways to improve on this algorithm, but if a more sophisticated method is desired then

it is often wiser to use a different algorithm that is more sophisticated to begin with

than to improve upon a relatively simple one by adding features.

In summary, the NNA is simple to understand but performs poorly compared to

many other, more advanced, approaches. It is not even particularly fast to execute,

as there are a lot of calculations to be made (there are methods to optimise this, but

then the simplicity is lost). The many “twists”, where routes cross over themselves,

make certain neighbourhood moves (performed within an improvement heuristic), such

as 2-Opt (see Section 3.5.1), apt at improving the tours that the Nearest Neighbour

Algorithm produces.

3.4.3 Clarke & Wright

The Clarke & Wright algorithm, proposed by G. Clarke and J. W. Wright in 1964 (50),

is a more sophisticated and generally better performing (28) starting solution algorithm

to use on capacitated VRPs than the NNA and other greedy approaches. It starts with

a vehicle for each customer and then removes vehicles by merging routes. The choice

of routes to merge is based on “savings”. The basic idea is that the largest savings

will be made by connecting pairs of nodes that are near each other (so the merge cost

is low) and far from the depot (so the merge saving is high). In this way a cluster of

points are all placed on one tour for standard VRPs. This process will generally result

in solutions within 10% of the optimum (51) (52).

There are two approaches to implementing the Clarke & Wright algorithm: parallel

and sequential. The two are fairly similar in execution, but differ slightly, generally

producing different results. We will first look at the parallel method, then explain how

the sequential differs.

40

3.4 Solution Construction Heuristic Algorithms

Parallel and Sequential

There are a variety of subtly different ways to implement the Clarke & Wright

algorithm. Below is an example of a parallel, time invariant version of the Clarke

& Wright algorithm.

• The algorithm first creates a number of tours equal to the number of customers,

with each vehicle going from the depot to one customer and then coming back.

The result looks like Figure 3.2.

Figure 3.2: Initial Clarke & Wright Solution - The Initial Clarke & Wright solution.

Each customer is assigned their own vehicle.

• Next it calculates the “savings”, this is the cost of going to and from the depot for

a pair of nodes minus the cost of going from one node to the other (in other words,

it is the improvement that results from merging the two tours by connecting

the two customers). All pairs of nodes are calculated and the savings sorted in

descending order.

• Lastly, the algorithm goes through the saving list applying each saving in turn.

If the two customers are already on the same tour, the saving is skipped; if the

capacity constraint is exceeded, it is skipped; if the nodes are internal (no longer

connected directly to the depot), it is skipped; else it is implemented.

41

3. SOLVING THE VRP

• When the end of the savings list is reached, the algorithm ends. At this point the

starting solution should have produced something like Figure 3.3.

Figure 3.3: Final Clarke & Wright Solution - A Clarke & Wright Solution. Note

that this solution features multiple overlapping “petals”.

The sequential method is similar, having identical steps 1 and 2. It differs in how

the savings list is used. The sequential method applies the first saving that it finds, in

the same way as the parallel, but it then only accepts savings that involve nodes on that

particular vehicle. Once the end of the savings list is reached, it then checks through it

again, ignoring the nodes that were previously assigned and attempts to merge nodes

onto a second vehicle and so on. When the end of the savings list is reached and no

more node pairs are viable, the algorithm ends.

Clarke & Wright Example

To demonstrate the Clarke & Wright fully we will now run through a very simple

example on a time invariant, symmetric CVRP, shown in Figure 3.4. The capacity of

each vehicle is 3 and the demand for each customer is 1, thus a minimum of two vehicles

are required. The objective is to minimise the total distance travelled. The distances

between customers and the Depot is shown below:

42

3.4 Solution Construction Heuristic Algorithms

Figure 3.4: Clarke & Wright Example - A simple example of a problem, with a Depot

(D) and 4 customers (a, b, c, d).

Depot a b c d

Depot - 3 5 4 5
a 3 - 5 2 8
b 5 5 - 5 2
c 4 2 5 - 8
d 5 8 2 8 -

Initially a vehicle is assigned to each of the customers, so vehicle 1 goes from the

Depot to a and then back to the Depot, with a total time of 6, similarly vehicle 2 goes

to b and back, with a time of 10, vehicle 3 goes to c and back and takes 8 and vehicle

4 goes to d and back and takes 10.

The savings of merging two customers onto one vehicle are calculated by removing

two of the arcs to the depot and adding in an arc between the customers; in other words

the saving is Depot-Customer 1 plus Depot-customer 2 minus customer 1-customer 2.

These savings are calculated thusly:

Cust1 & Cust2 Depot - Cust1 Depot - Cust2 Cust1 - Cust2 Saving

a b 3 5 5 3
a c 3 4 2 5
a d 3 5 8 0
b c 5 4 5 4
b d 5 5 2 8
c d 4 5 8 1

43

3. SOLVING THE VRP

Arranging the customer pairs in order by decreasing savings we get: bd, ac, bc, ab,

cd, ad. This is the point at which the two methods: parallel and sequential, diverge.

Keeping with parallel for the moment, we now implement the first saving by merging

customers b and d onto a single vehicle (vehicle 2), checking that constraints are not

broken (each vehicle can only service three customers). The next saving is customers

a and c, we check that the merge will not break any constraints, which it does not,

and then merge the two onto one vehicle (vehicle 1). We now look at the third merge

(bc). Merging vehicle 1 (Depot-a-c-Depot) and vehicle 2 (Depot-b-d -Depot) will result

in four customers for a single vehicle, which breaks the capacity constraint, so we skip

the merge, similarly ab, cd and ad all break the constraint. Upon reaching the end of

the savings list we have finished.

The sequential process works differently. The first step is to merge the pair of

customers with the largest saving (that does not break any constraints) as before,

which is b and d. Next we go through the savings list, only looking for savings which

involve vehicle 2 (the vehicle that was changed at the start). The next saving is ac,

which does not involve b or d, so is ignored, the next is bc, this does involve vehicle

2 and will not break the capacity constraint, so vehicle 2 is now (Depot-c-b-d -Depot).

The next pair is ab, but this merge will break the capacity constraint and involves an

internal node. After that is cd, but they are already both on the same vehicle, so the

merge is skipped, lastly is ad, which also breaks capacity constraints. Once the end of

the savings list is reached, it is traversed again in order to create another vehicle, but

in this example the vehicles are finished, and the algorithm skips all the merges, due to

the customers already being on the same vehicle or capacity constraints being broken.

The final solutions are thus:

Vehicle 1 Vehicle 2

Method Customers Distance Customers Distance Total Distance

Parallel a c 9 b d 12 21
Sequential a 6 c b d 16 22

In this example the parallel version has got the better (i.e. lower) total distance, but

this is not always the case. As can be seen, sequential fills one vehicle at a time, which

led to one vehicle having very little of its capacity used in this particular instance. In

some cases this method may save a vehicle from being needed (i.e. sequential will use

44

3.4 Solution Construction Heuristic Algorithms

less vehicles than parallel). However, it is generally the case that the parallel version

is superior (28).

In summary, Clarke & Wright was designed for MVRPs using capacity constraints,

it can work with other constraints, but performs less well. Also, directly implementing

time variance makes this algorithm much more labour intensive, as we will see in the

next Chapter.

3.4.4 Two Phase Solutions

Not all solution construction heuristics perform the two tasks of assigning customers to

vehicles and performing the routing simultaneously. Whereas algorithms such as Clarke

& Wright and Nearest Neighbour produce their routes as they go, adding the nodes to

vehicles in order, there is also the idea of a two phase solution, where the assignment of

customers to vehicles (“Cluster”) and the construction of tours (“Route”) are entirely

separated. There are two ways to do this, Cluster-First, Route-Second (CFRS) and

Route-First, Cluster-Second (RFCS).

Firstly, we will look at a couple of CFRS methods. The idea here is that customers

are grouped into clusters (capacity constraints work well here, as these can be checked

easily) and then a tour of these customers is performed (these are then SVRPs with

much smaller sets of customers than the initial problem, thus being a lot easier to

solve).

Cluster Method 1: Sweep

The sweep algorithm is a specific type of sweep line algorithm or plane sweep algorithm

that was applied by Gillett and Miller in 1974 (53) that produces visually pleasing

solutions by creating solutions resembling flower petals. This algorithm only works

well in Euclidean space when Cartesian distances and costs are involved, and copes

badly with time windows. This method works much better when there is a centrally

located depot and is generally used for capacitated problems (although it can easily be

applied to problems where the number of vehicles is limited).

Algorithm The method is fairly simple in its implementation

• Firstly, each customer is given a polar angle representing the direction it lies from

the depot.

45

3. SOLVING THE VRP

• Secondly, customers are arranged in order (ascending or descending) of their

angles.

• Next, the ordered list of customers is processed one by one, adding customers to

the current vehicle until its capacity is reached, then starting on a new vehicle.

An alternative, if capacity is not a constraint, is to start on a new vehicle when a

number of customers is reached, e.g. with 30 customers and a limit of 5 vehicles it has

6 customers on each vehicle.

The whole process can be visualised as a ray sweeping across the customers. The

direction (clockwise or anticlockwise) that the nodes are added and the start angle

changes the clustering, Figure 3.5 shows an example of the clustering resulting from

using this method. As can be seen, clustering can lead to one of the vehicles servicing

only a couple of customers. Optimisation techniques can be applied both before and

after the routing in order to improve on this method.

Figure 3.5: Sweep Example - The results of a Sweep Algorithm. The algorithm sweeps

clockwise from 12 o’ clock. Note that the X cluster is much smaller than the others, as it

picks up the last remaining customers.

46

3.4 Solution Construction Heuristic Algorithms

Cluster Method 2: Fisher and Jaikumar Algorithm

This is a much more complicated algorithm than the Sweep mentioned earlier. The

Fisher and Jaikumar Algorithm was devised by Fisher and Jaikumar in 1981 (54). The

basis of this algorithm is the Generalized Assignment Problem (GAP). Some aspects

of the problem to be solved must be known in order to set user defined parameters too.

It is designed for solving the CVRP, using demand of customer as a weighting.

• First “seeds” are selected, each corresponding to a single vehicle (so the number

of vehicles must be determined ahead of time). Fisher and Jaikumar suggested

using customer weights to pick seed locations (the seeds themselves act as dummy

nodes).

• Next calculate the cost of adding each customer to each seed node (the cost of

travelling from depot to seed to customer and back to depot or from depot to

customer to seed and back to depot minus the cost of travelling from depot to

seed and back to depot, see Figure 3.6).

• Lastly, solve a GAP using the costs calculated, vehicle capacities and customer

demands.

As mentioned by Toth and Vigo (28), the original article does not specify how

distance restrictions are handled.

Route-First Cluster-Second

With RFCS, a single vehicle is used to tour all of the customers and the depot (in

a similar manner to solving a TSP), without regard for constraints, then the tour is

split into valid individual tours. Use of this method is not very widespread. Toth and

Vigo (28) say (in 2002) that they are unaware of any computational experiences where

RFCS is competitive with other approaches. An example of RFCS can be found in a

paper by Beasley (55).

In his paper, Beasley notes that, although it is possible to find an optimal TSP

solution and it is possible to optimally split this tour to form a VRP, the resulting

VRP solution is not necessarily optimal. As a demonstration, a depot (D) is servicing

six customers (a-f), the problem is Cartesian and capacitated, with each customer

47

3. SOLVING THE VRP

Figure 3.6: Fisher and Jaikumar cost calculation - A visual demonstration of the

“cost” used in the Fisher and Jaikumar Algorithm. Left: The initial tour, from Depot (D)

to the center of the cluster (c) and back. Right: The new tour, now including node A. The

tour is traversed in a specific direction, either visiting A then c, or c then A.

having an equal demand and each vehicle able to service up to three customers. The

problem has multiple objectives, resolved hierarchically. The primary objective is to

minimise the number of vehicles (clearly the minimum possible is 6/3 = 2 vehicles), the

secondary objective is to minimise the total travel distance. The optimal TSP solution

has been found to be D,a,d,e,f,b,c,D. It is clear that the only way to split this TSP

tour and only use two vehicles is to split the solution between e and f, giving D,a,d,e,D

and D,f,b,c,D. However, it can be seen that there is at least one VRP solution with

two vehicles that has a lower total travel distance, D,a,b,c,D and D,d,e,f,D. The two

solutions to the CVRP and the initial TSP are shown in Figure 3.7.

Due to the fact that optimally solving both parts of this RFCS method does

not necessarily give an optimal solution, Beasley concludes that solving the TSP to

optimality is needlessly time consuming and instead runs the algorithm on heuristically

generated solutions a number of times (the paper uses 1, 5, 10 and 25 runs) to find a

solution. In his conclusion, however, he states that “[the results] would seem to indicate

that fewer iterations than we have used, with more computational effort put into the

construction of [the TSP], would lead to better quality results”.

48

3.5 Solution Improvement Heuristic Algorithms

Figure 3.7: RFCS Example - left: The optimal TSP solution. center: The CVRP

derived from optimally splitting the optimal TSP solution. right: An improved solution to

the CVRP.

3.5 Solution Improvement Heuristic Algorithms

While it is possible to use a solution construction heuristic algorithm to create a solution

to a problem and leave it at that, a more common approach is to try and improve on

the solution that the construction heuristic algorithm made. The basic concept behind

solution improvement heuristics is that all possible solutions reside within a “solution

space” and each solution has other solutions “nearby” which differ only slightly (e.g.

two solutions are the same except for a pair of nodes on one of the vehicles that are the

opposite way around in one of them). It is generally the case that solutions near each

other in representation space have similar objective values (i.e. are near each other in

objective space), thus it may be possible to find better solutions in the nearby area. In

simple terms, by making small changes to the solution, it may be possible to improve

its objective value. By narrowing the immediate search space from the whole of the

solution space to only nearby areas, much less computational effort is required, as only

a tiny fraction of all the solutions will be checked each iteration.

We will deal with improvement heuristics at two levels: 1) the heuristics

(neighbourhood moves) themselves and 2) the algorithmic framework in which the

heuristics are applied.

49

3. SOLVING THE VRP

3.5.1 Single Vehicle Neighbourhood Moves

The main solution improvements that we will be looking at involve local search of the

immediate neighbourhood via a variety of neighbourhood moves. Each of the moves

vary, but the general theme is that a number of customers are selected at random and

their positions in the tours are changed around. These changes will result in a new

solution that is similar to the old solution (it lies in a neighbouring solution space). By

examining lots of these changes, and saving certain solutions for which improvements

have been found, it is possible to gradually improve solution quality.

The first set of four neighbourhood moves listed here (2-Opt, 3-Opt, Delete & Insert

and Swap) were initially designed for the TSP, but can be used on the VRP with a few

modifications. They affect a number of nodes on a single vehicle, moving them around

in various ways.

2-Opt

2-Opt is a specific member of the larger group of k-Opt (56). 2-Opt was first proposed

by G. A. Croes in 1958 for solving the TSP (57).

With this move, two arbitrary (non-adjacent) arcs are selected at random and

removed, then the four nodes (two at each end of the two arcs) are reconnected to

form a single complete tour. There are three ways to connect the nodes, one leaves two

disjoint tours, one is the connection that was just removed and the third is a different

but valid way of reconnecting the arcs. This alternative way of reconnecting the tour

may or may not improve the solution by shortening the tour. The result of this is

not only that two arcs have been removed and two new arcs added, but also that the

path between these two arcs is inverted. In most time invariant scenarios on symmetric

problems, only the removal of the preceding arcs to both nodes and the addition of

the new connecting arcs will cause any change, the path inversion will have no effect.

In Time Variant or asymmetric scenarios, however, the fact that the intervening nodes

are traversed in reverse order can have a much greater effect on the solution quality.

An example of a 2-Opt move can be seen in Figure 3.8.

50

3.5 Solution Improvement Heuristic Algorithms

Figure 3.8: 2-Opt Demonstration - A visual demonstration of the stages of a 2-Opt

neighbourhood move. 1) The starting tour, arcs CD and FG are chosen. 2) CD and FG

are removed. 3) new arcs CF and DG are added (CG and FD would leave two disjoint

tours), note also that DEF is now traversed in reverse order FED. 4) The final solution.

51

3. SOLVING THE VRP

3-Opt

The other commonly used member of k-Opt is 3-Opt (56). With this move, three

arbitrary arcs (none adjacent to each other) are selected and removed and the six

nodes (one at either end of the three arcs) are reattached. Whereas in 2-Opt there

were only 3*1 ways to connect the nodes (the original way, the disjoint way and the

correct way), with 3-Opt there are 5*3*1 ways to reconnect the nodes. Figure 3.9

shows a list of all the different ways of connecting up the nodes. In this example the

original tour D-a-b-c-d -e-f -D has been split at a-b, c-d and e-f. As with 2-Opt, many

of these choices are not useful to consider. Looking at the first of the detached nodes

from the depot (a) there are five nodes that it can be joined to, one of these (b) is

the node it was previously connected to (connecting it to that node would mean that

the 3-Opt became a 2-Opt) and one of the nodes (f) results in a closed tour, so in

practical terms there are only three nodes to choose from. Of the three nodes that the

first node can be attached to, two of them (c and e) are “origin nodes”, nodes at the

origin of the removed arcs, and one (d) is an “end node”. Looking at either of the

cases where it is attached to an origin node, we can now consider either of the pair of

nodes not previously connected to either node chosen thus far (so if we connected a to

c, they were previously connected to b and d respectively, so we now look at either e

or f). They each have three choices of node to join to, one is the other of the pair,

resulting in the move being equivalent to 2-Opt, one creates a pair of disjoint closed

tours and the third creates a valid tour. If we instead look at the case where the first

node is attached to an “end node” and then focus on the pair of nodes unrelated to

those chosen (connecting a to d this means we are looking at e and f again) we find

that, once again, one of the choices (connecting e and f) results in a 2-Opt move, but

both of the other choices result in unique, valid tours.

As long as the three arcs removed are all non-adjacent to each other then the 15

possible reconnections, illustrated in Figure 3.9, will be: the original tour (1); three

valid 2-Opt moves - each omitting one of the three arcs (2-4); three invalid 2-Opt moves

- each omitting one of the three arcs and leaving 2 disjoint tours (5-7); four valid 3-Opt

moves (8-11); and four invalid 3-Opt moves - three leaving two disjoint tours (12-14)

and one leaving three disjoint tours (15).

52

3.5 Solution Improvement Heuristic Algorithms

Figure 3.9: 3-Opt possible results - A concise list of all the possible combinations of

reattaching the nodes as part of a 3-Opt neighbourhood move.

53

3. SOLVING THE VRP

There are different ways to use 3-Opt: it can be used to encompass 2-Opt (so the

three 2-Opt moves are added to the four 3-Opt moves giving seven new tours), used

alongside, where the algorithm chooses ahead of time whether to use 2-Opt or 3-Opt,

such as the Lin-Kernighan heuristic (58), or on its own (so 2-Opt moves are not used

in the algorithm, only 3-Opt moves). In addition only some of the possible moves may

be assessed (so the algorithm may pick three arcs at random, pick one of the valid

configurations at random, check whether it is an improvement and then start again),

or all of them may be considered and the new tour chosen from amongst them and the

original tour.

Delete & Insert

With 2-Opt the two arcs chosen must be nonadjacent, as otherwise there are only three

nodes and two ways to connect them (one forming two disjoint tours and the other

being the original tour). If the three arcs of 3-Opt are all adjacent there are four nodes

and six ways to connect them: one leaving the second node unconnected, one leaving

the third node unconnected, one leaving both unconnected and the three results for a

2-Opt on the first and third arcs. However, what happens if two of the arcs are adjacent

to each other and neither are adjacent to the third? It turns out that there are nine

possible ways to reattach the nodes: five leave disjoint tours, one is the original tour,

two are the result of 2-Opt moves (picking the non-adjacent arc and one of the adjacent

arcs) and the last forms a new tour not directly equivalent to a non-adjacent k-Opt

move. This move, which we shall call Delete & Insert, involves attaching the nodes at

either end of the adjacent arcs to each other and inserting the intervening node between

the nodes at either end of the non-adjacent arc, see Figure 3.10.

All of that may sound complicated, but the core idea of Delete & Insert is quite

simple. Basically, a node is chosen at random and removed, then inserted elsewhere.

This involves removing three arcs (the two attached to the node and the one attaching

the node’s soon-to-be neighbours) and then three new arcs created (attaching the node

to its new neighbours and attaching the node’s old neighbours to each other). The only

complicated part is ensuring that none of the old and new neighbours are the same

node, as this causes problems.

54

3.5 Solution Improvement Heuristic Algorithms

Figure 3.10: Delete & Insert Demonstration - A demonstration of the Delete &

Insert neighbourhood move, also called the 1-Insertion move or relocate operator.

55

3. SOLVING THE VRP

This move is also known as a relocate operator, 1-Insertion move, or simply Insertion

move (59). Sometimes it is included as a k-Opt move by relaxing the adjacent

constraint.

Swap

Another simple neighbourhood move is the swap move, also referred to as 2-swap,

2-exchange or simply exchange (59). This move takes two nodes and swaps their

positions in the tour, as an example, a tour D-a-b-c-d -e-f -D has a swap move performed

on nodes a and d, the new tour becomes D-d -b-c-a-e-f -D. The resulting move is the

same as the result of two 2-Opts (D-a and d -e along with a-b and c-d) or two Delete

& Inserts (such as a between c-d and d between D-b). Of course, it can be the case

that the intermediate tour of the two is much poorer. In addition, with 2-Opt the

intervening nodes (in the case of the example, b-c) are reversed with the first 2-Opt

and then reversed back again with the second and with Delete & Insert arcs are added

and then removed again (D-b and d -a). Thus in both cases there are calculations made

that are not needed. For these reasons, this neighbourhood move is considered separate

to them.

3.5.2 Multiple Vehicle Neighbourhood Moves

The second set of three moves are designed specifically for VRPs, although in some cases

originally based on TSP moves. They generally require multiple vehicles, moving nodes

between vehicles, or creating/removing vehicles, redistributing the nodes accordingly.

CROSS

Our next neighbourhood move is, in many ways, actually four different neighbourhood

moves. It is used by Maden et al. (60) and is based on Tailard’s CROSS exchange (61).

The basic process of this move is as follows

• Pick two vehicles.

• For each vehicle, pick two nodes on that vehicle.

• Now switch all the nodes and their connecting arcs between the two nodes chosen

(exclusive) for each vehicle to the other vehicle.

56

3.5 Solution Improvement Heuristic Algorithms

The actual process of the general CROSS thus involves removing four arcs and

adding in four more, in the process moving customers from one vehicle to another. The

order of the intervening nodes is maintained.

From this one move, three more sub-moves can be derived.

• Firstly, by allowing the two nodes picked to be consecutive, no nodes will be moved

from that vehicle. In this way we can have a one-way transfer of customers, if

only one customer is transferred from the other vehicle then this move becomes

an adapted Delete & Insert move.

• Secondly, by allowing one of the nodes for each vehicle to be the depot, we

get the one exchange operator, where there is only one exchange of customers

during the tours. This means only two arcs are removed and added, similar to a

2-Opt. Depending which nodes are the Depot this can be a direct comparison, or

equivalent to an “invalid” 2-Opt, as either one will produce two “disjoint” tours.

• Lastly, if there is only one intervening node on each vehicle we get the Swap move.

This move simply swaps the positions of two customers in their respective tours

around.

Additionally, by relaxing the first step to allow a single vehicle to be chosen, it is

possible to imitate some of the single vehicle moves of the previous Section.

Merge

Our next neighbourhood move is Merge, this move simply combines the customers of

two vehicles onto one vehicle. Both old tours are tested both in order and reverse

order. This move is the same as the merging that occurs in the Clarke & Wright

solution construction heuristic. Ignoring the potential reversal of the node order, the

merge is actually another type of CROSS move, taking the first and last nodes from

one vehicle and the penultimate and last nodes from the other. However, this move is

listed separately, as it is functionally quite different to the rest of the CROSS moves.

57

3. SOLVING THE VRP

Split

Observant readers may have noticed at this point that both the CROSS exchange and

Merge can reduce the number of vehicles used but none of the moves mentioned so

far can create tours for new vehicles. This could lead to a heuristic algorithm missing

possible solutions by forcing itself into a dead end. The split move solves this problem.

Split simply cuts a random vehicle’s tour in two at a random point and assigns the

second half to a new vehicle. This can be modelled as another version of CROSS,

where one of the vehicles has no customers beforehand.

3.6 Metaheuristic Frameworks

Without a framework the neighbourhood moves are useless, as there is no guiding force.

The framework can be anything from simple to complex, and can use only a single type

of neighbourhood move, or many. The frameworks are entirely customisable to the

problem at hand, so we will only touch upon a few of the many that people use. We

will now look at a selection of metaheuristics, which are part of the family of local

search algorithms.

3.6.1 Hill Climber

The Hill Climber is probably the simplest of frameworks, arguably only a heuristic

algorithm, rather than a metaheuristic, due to its simplicity. Like the Nearest

Neighbour construction heuristic, see Section 3.4.2, this is a greedy method, which

only focuses on the immediate benefits. A basic example of a Hill Climber works as

follows:

1. Produce a starting solution, make this the current solution.

2. Randomly apply a neighbourhood move to the current solution to produce a new

solution.

3. IF the new solution is better than the current solution THEN replace the current

solution with the new solution.

4. IF (terminal condition) THEN END, ELSE GOTO 2.

58

3.6 Metaheuristic Frameworks

Typical terminal conditions are when the Hill Climber has run for a certain amount

of time or when it has tried a predetermined number of neighbourhood moves since the

start or since an improvement has been found.

The name “Hill Climber” derives from the use of this metaheuristic on maximisation

problems of a formula on 2D and 3D graphs (which themselves are similiar to a

climber trying to reach the highest point of his surroundings). In this example the

neighbourhood move is replaced by making a small change to the value of X or Y. The

Hill Climber starts at a point and then keeps moving to higher points, eventually it will

reach a point where everywhere within its immediate search space is lower, yet there

may be higher points beyond its reach. These localised peaks are called local optima.

Even a simple problem such as maximise y where y = 10x2x3 between x = −10 and

x = 10 can lead to a Hill Climber getting stuck at a local optima, in this case x = 6

2/3 (y = 148.1̇48̇), while the highest point, the global optima, is at x = -10 (where y

= 2000), see Figure 3.11. Although visualising the Hill Climber’s search space while

running on a TSP or VRP is much harder than on a 2D graph, it is hopefully apparent

that these same local optima occur, where there are plenty of better solutions, but

they require major changes to the current solution, during which time the solution will

be worse. Sometimes it may even be the case that the optimum solution is no longer

obtainable from the current solution, no matter how many moves are performed (for

example, a Hill Climber using only 2-Opt has reduced the number of vehicles to 4, yet

the optimum solution uses 5).

The Hill Climber described above is sometimes referred to as a Stochastic Hill

Climber (62). Other types of Hill Climber exist, for instance the Steepest Ascent Hill

Climber (63) (or Steepest Descent, if it is a minimisation problem), which runs:

1. Produce a Starting Solution.

2. Systematically check all neighbouring solutions, remembering the best found.

3. IF the best neighbouring solution is better THEN replace the current solution

with it and GOTO 2 ELSE END.

Obviously, when there are a lot of different solutions in the neighbourhood of the

current solution, this method takes much more time to perform each step, but it will

59

3. SOLVING THE VRP

Figure 3.11: Hill Climber Example - A 2D Graph of 10x2x3 showing the

local maxima at x = 6 2/3 and the global maxima at x = -10. Image courtesy:

rechneronline.de/function-graphs.

60

3.6 Metaheuristic Frameworks

take comparatively few iterations to reach a local optimum compared to the stochastic

method.

The Hill Climber has some advantages. It is easy to code, easy to understand,

easy to run and will often get a reasonable solution on simple problems (generally

unconstrained problems). One way to get better results is to apply an extra

metaheuristic on top of the Hill Climber, such as Random-restart Hill Climbing, also

known as Shotgun Hill Climbing (64), where the Hill Climber is run multiple times with

different starts and the best final result of all of them is taken (in the 2D graph example

earlier, by running it with starts of, say, x = −5 and x = 5, one will be caught in the

local optima, while the other will find the global optima). Alternatively, the selection

method in step 2 of the original could be changed, having a bias towards using certain

neighbourhood moves or focusing on specific parts of the tours and changing them

between the different runs (so the first Hill Climber may favour 2-Opt, then the second

may favour Delete & Insert).

In the end, a Hill Climber is useful to test our methods upon, as it shares many

features with other, more advanced, local search methods. There are plenty of methods

to improve on the basic Hill Climber and, moreso than with the improvements that

can be made to brute force search and the Nearest Neighbour solution construction

heuristic, these improvements can lead to a reasonable algorithm.

3.6.2 Simulated Annealing

One of the common metaheuristics that can improve upon Hill Climbing is Simulated

Annealing (SA) (65) (66) (67) (68). The idea originates from a paper by Metropolis

et al. (69) in 1953 and was later expanded upon by Kirkpatrick et al. (70) and Černý

(71) in the 1980s. The term annealing is from metallurgy. In layman’s terms it involves

heating up a metal in order to break up its structure on an atomic level, then slowly

cooling it so that it can form a structure with larger crystals and lower internal energy.

SA uses a similar process, with a global parameter T, which represents the temperature

in the analogy. SA is very similar to a Hill Climber, except it uses T to govern step 4,

as follows:

1. Produce a starting solution (s) and calculate its objective value (o).

61

3. SOLVING THE VRP

2. Randomly apply a neighbourhood move to the current solution to create a new

solution (s′).

3. Calculate objective value of new solution (o′).

4. Randomly replace current solution (s) with new solution (s′) with probability

P(o,o′,T).

5. Update T.

6. IF (terminal condition) THEN END, else GOTO 2.

As T tends to zero, P(o,o′,T) tends to zero if o′ > o and tends to a positive value

(generally 1) if o′ < o. As can be seen, when T=0 this becomes a Hill Climber.

The basic principle of SA is that, early on, the solution is free to move around the

whole of the solution space, then as time passes it is encouraged to avoid the worst

solutions, then avoid the poor solutions, then only go for reasonable solutions, until it

settles down, hopefully around one of the better local optima or a global optimum.

The most important aspects of SA are the initial choice of T, how it decreases

and the method of calculating P(o,o′,T). Sometimes the initial value for T is 1 and

then whenever a comparison is needed T is multiplied by a value, but that method is

functionally the same as setting the initial value of T to the value used for multiplying.

Either way, the initial value of T is often heavily influenced by the problem that is

being solved, so we will not discuss the process further in this Section.

The choice of how to decrease T from its initial value to 0 is referred to as the cooling

schedule. There are lots of methods for doing this, some use a built-in system, where

the amount that T is lowered is based on the quality of the moves found/used, but

generally T follows a mathematical curve. Although some authors have used cooling

schedules that allow an increase in T (72) (73), most cooling schedules use a decreasing

function. There are two common methods used in the literature, although many other

curves can be used (74). The first is implementing the cooling schedule to mirror the

reality of metallurgy annealing and use e−∆/T > Rand(0, 1), where ∆ is the change

in cost and T is equivalent to the Boltzmann Constant multiplied by the absolute

temperature in Kelvin. For the SA algorithm this gives an exponential curve, with T

lowered quickly at the beginning and then slowing its descent. The second method that

62

3.6 Metaheuristic Frameworks

is used is a simple linear decrease, reducing T at a fixed rate throughout the algorithm.

The linear decrease ends more abruptly than the exponential decrease, so it is beneficial

to continue with a Hill Climber after the SA has finished in order to explore the area

that the SA finishes in more thoroughly.

However, there is more to the cooling schedule than simply choosing a curve to

use. In metallurgy the temperature decreases over time, in SA this does not need

to be the case. The temperature decrease could be based on time, such as lowering

the temperature by 1% of the initial temperature every second until 100 seconds have

passed, at which point the temperature will have reached 0. However, another method

is to decrease the temperature every time a new solution is accepted and a third method

is to decrease the temperature every time a solution is generated. Additionally, some

authors (28), rather than update the temperature at each opportunity (either every

implemented or every generated solution), instead have a stepped approach where the

temperature is changed at intervals, for instance every ten solutions.

One step that is often included in this and other metaheuristics (although not in

the original SA by Kirkpatrick) is to store a “best solution” so that if, by chance,

the metaheuristic is caught in a poor local optima (particularly one which is an invalid

solution) it can still salvage a good result which was found earlier (but then moved away

from). Obviously this method adds an overhead to calculation time, but its addition

can only improve upon the basic method in terms of solution quality. An example of

this method in use can be seen in MATLab’s SIMULANNEALBND function (75) and

is discussed by Toth and Vigo (28). We will go into more detail about SA in Chapter

7.

3.6.3 Tabu Search

Tabu search was first proposed by Fred Glover in 1986 (76) (77) and later formalised

in 1989/1990 (78) (79). Tabu search, while being a metaheuristic itself, has many

ideas and methods that can be applied to other heuristics and metaheuristics, such as

the two metaheuristics just mentioned. The main feature of Tabu search is a list of

“Tabu” items, in the case of TSPs and VRPs this can be arcs, nodes, tours or even

complete solutions. Features of a solution that are on the Tabu list are referred to

as “Tabu-active”. Whatever is stored, the method is to make something tabu after it

has just been changed, so that any near future changes are not allowed to use that

63

3. SOLVING THE VRP

particular feature. The metaheuristic also adds a duration, called the Tabu Tenure,

which dictates how long the feature remains tabu for. The Tabu Tenure can be fixed

(such as five improvements) or vary, for instance by having a low tenure at the start of

the heuristic and increasing it at the end. Authors such as Gendreau (80) use a variable

tenure by assigning members of the Tabu list with a randomly generated duration r, so

an item added at iteration t will remain tabu until iteration t+r. Gendreau explains

how this implementation virtually eliminates the chance of loops.

The standard Tabu search is run in a similar manner to the steepest ascent/descent

Hill Climber (depending on if the problem is maximisation or minimisation, see Section

3.6.1) with a Tabu list, where at each iteration all the possible changes are calculated

and the one that leads to the solution with the best objective value is used; this

is also referred to as the (steepest) descent method (when minimising, rather than

maximising) (81) (78). While this method is fine on small problems, it suffers from the

same combinatorial explosion effect that exact methods do, whilst also not having the

benefit of giving the optimal solution at the end. One solution to this is, rather than

look at all the possible neighbourhood moves, only a subset of them are investigated.

This subset could be deterministic, such as focusing on one vehicle or node and assessing

all the moves that use it, or stochastic, picking a selection of solutions at random.

As an example, say solutions are stored as tabu for six changes, the Tabu search

will look something like:

1. Produce a starting solution and an empty Tabu list, make the current solution

and best solution equal to the starting solution.

2. Calculate the quality of all neighbouring solutions to the current solution.

Organise them in descending order of quality.

3. IF best new solution is on Tabu list THEN replace new solution with next best

solution from Step 2 and REPEAT Step 3.

4. Replace the current solution with the new solution from Step 3.

5. Add new solution to Tabu list (removing oldest item if list already has six items

in).

6. IF (terminal condition) THEN END, ELSE GOTO 2.

64

3.6 Metaheuristic Frameworks

The reason for using Tabu Search is to avoid the heuristic getting caught in loops,

for instance, where there are two equally good solutions in each other’s neighbourhoods,

a Hill Climber or Simulated Annealing may move back and forth between them, not

realising it is in a local optimum (or, more accurately, two local optima). Another

problem, more associated with graphs, is a “plateau”, where all of the local search

space is the same value, so there is no sign which direction to go to find more optimal

areas, so a heuristic may just wander aimlessly, going in circles, backing up on itself,

etc.

Although the example given is of Tabu Search as an adapted Steepest Ascent Hill

Climber, the methods of Tabu Search can also be applied easily to other metaheuristics,

such as the standard (stochastic) Hill Climber. It is also possible to penalise or restrict

tabu moves rather than disallowing them, so that they can be selected if they are much

better than any other choices found. This is referred to as an “aspiration criteria”, a

typical one being “is better than the current best solution found”. Obviously when

entire solutions are tabu this cannot happen, but it is relevant when nodes or arcs are

tabu.

Arguably the simplest tabu element to implement is the objective value. This

prevents exact loops smaller than the tabu list size, but it is quite specific and does

not prevent a move being undone after another move; e.g. swap a and b, then swap e

and f, then swap a and b again, which is clearly wasting time undoing recent moves.

Another tabu element that can be used is specific nodes (or arcs). Focusing on nodes,

they can be stored either paired (so “ab” means that the nodes a and b can not be

swapped back, but can individually be swapped with other nodes) or separate (so “a

b” means neither a nor b can be involved in a swap). The former means that a swap

can still happen by swapping with other nodes (say ab, bc, ad, ac, bd, cd, which repeats

no swap pairs, but returns the nodes to their original order again). The latter means

that the tabu list must be much shorter than the number of nodes (with ten nodes the

pairs list could hold 44 moves and still leave a possible swap, whereas the individual

list would only be able to hold the nodes from four moves before preventing any further

moves). Of course, there is nothing stopping users having multiple lists of different

tabu elements, but this adds to computational overheads and uses more memory to

store.

65

3. SOLVING THE VRP

The set-up given in the example of having a list of recent solutions gives the basic

set-up for a Tabu search, creating what is called the Short-Term Memory Structure,

this can function as a metaheuristic without further additions, but it is possible to add

further memory structures. Intermediate-Term Memory Structures, which may include

prohibiting attributes of solutions or particular moves (such as undoing a move that

has just been made) can also be used. These are generally rules that guide the search in

certain directions that (hopefully) contain useful solutions. Lastly, Long-Term Memory

Structures can be used, these are rules that help diversify the search, such as resetting

in order to move the neighbourhood elsewhere when the algorithm otherwise gets stuck

around a local optima or on a plateau. We will go into further details on Tabu Search

in Chapter 8.

3.6.4 Genetic Algorithms

Genetic Algorithms (GAs) are part of a larger group of Evolutionary Algorithms (EAs).

The idea, which came to the fore with the work of Holland in 1962 (82), is to look

to nature and copy some of the methods that nature uses into the algorithm. It is

important to realise that the overall objective is still to find good quality solutions to

problems, rather than to be entirely faithful with the modelling, using nature as an

inspiration and then improving upon it within the context of the problem at hand. A

lot of the terminology used in EAs in general derives from nature, making it appear

almost alien to the rest of this section, but the actual nuts and bolts share a lot in

common with other heuristic methods. There are many ways of implementing a GA,

so we will only cover the basics here.

GAs start off with a population of chromosomes, each of which represents a

candidate solution. These chromosomes consist of a string of numbers, traditionally

depicted as a binary string of 0s and 1s (as it is stored in the computer’s memory),

although this is not always the case. The chromosomes encode the solution that they

represent. A simple encoding for an SVRP may be 315624, which would represent

visiting the nodes in the order 3, 1, 5, 6, 2, 4 and then returning to the depot.

In addition to an encoding method for the chromosomes, a GA also uses a fitness

function (equivalent to the objective function mentioned in Chapter 2), which gives

each chromosome a fitness value.

66

3.6 Metaheuristic Frameworks

At each step, a selection of the population is chosen, based on their fitness values.

These chromosomes are used to breed a new generation. This breeding is done by

using a crossover operator on pairs of parent chromosomes, which aims to combine

elements of the two and create offspring that share aspects of both. Once the children

are all generated, a mutation operator is applied randomly to some of them, this will

generally take the form of swapping a couple of the numbers in the chromosome around

or changing a single number.

As a simple example of a crossover on length-9 binary chromosomes: There are two

parents, A (001101011) and B (011001000), their strings are cut after the fourth number

and swapped, producing two children: C (001101000) and D (011001011). Child D is

then chosen for mutation, inverting one of his numbers at random, the seventh number

is chosen, so child D is now 011001111.

Once the children have been produced, their fitness values are calculated and

they are introduced to the population. Sometimes all the parents are killed off

each generation, other times the fittest parents are retained (referred to as elitism),

sometimes chromosomes are given a timer, which limits them to a certain number of

generations before being eliminated. However it is done, a new population is created,

then the cycle begins anew. This repeated selection/breeding/mutation/re-population

is continued until a terminal condition is reached, such as a number of cycles being

completed or a threshold fitness value being passed.

There are, of course, a plethora of alternatives and variations to this process (83).

For example, the selection process can be done in many different ways. One method

is Roulette Wheel selection, also called fitness proportionate selection, (84) where each

chromosome is assigned a slice of the wheel proportional to its fitness value (so that

fit solutions are more likely to be chosen than unfit ones), the wheel is then ‘spun’

enough times to produce a selection of breeders. A similar method, called Stochastic

Universal Sampling (85), creates a wheel in the same way, but then spins it once and

chooses solutions based on equally spaced pointers (so, if 60 breeders were needed,

it would pick the chromosome selected at random, then the chromosome 6 degrees

clockwise of it, the one 12 degrees clockwise and so on). A third method, called

tournament selection (86), instead chooses chromosomes at random from the entire

population (with each having an equal chance) and then pairs them against each other

in a tournament, comparing fitness values. Further variants to these appear when

67

3. SOLVING THE VRP

deciding whether a single chromosome can be selected multiple times (in the case of

Roulette Wheel selection, not allowing this means remaking the wheel after every spin).

Further methods can be found in the cited works mentioned earlier. GAs will be briefly

discussed further in Chapter 8.

3.6.5 Other Metaheuristics and Similar

The examples above only scratch the surface of metaheuristics, there are many others.

For example: Greedy Randomized Adaptive Search Procedure (GRASP), in which

the starting solutions are randomly generated in a greedy manner using a Restricted

Candidate List, where elements that have led to good solutions are more likely to be

used (87); Scatter Search, where different iterations are forced to be scattered around

the search space, increasing the chances that one can find the optimum (88); and

Iterated Local Search, where “perturbations”, large changes in the solution, are used

to force the algorithm out of local optima (89).

3.7 Conclusion

In this Chapter we have laid the groundwork for our exploration into Vehicle Routing

Problems. Building on the definitions of the previous chapter, we have looked at

a number of alternative methods that are used for solving VRPs. Initially focusing

on exact methods that will eventually find the optimal solution, from the mundane

brute force methods to the advanced Dynamic Programming and then moving on to

focus upon heuristic methods. We have established that we will be examining the

two stage method of solving VRPs, starting with a construction heuristic to produce

an initial solution and then using an improvement heuristic within a metaheuristic

framework in order to improve upon the initial solution. On the construction side we

have investigated a number of different methods that are used in the literature, ranging

from the simple Nearest Neighbour Algorithm to Cluster-First Route-Second methods.

We have looked at a range of different neighbourhood moves and how they can fit into

a selection of metaheuristics, such as Hill Climber and Tabu Search. We have also

touched upon other related solution techniques, such as Genetic Algorithms. Now that

we have established the methods for solving time invariant Vehicle Routing Problems,

68

3.7 Conclusion

we can move on in the next Chapter to see how these methods must be adapted in

order to solve Time Variant Vehicle Routing Problems.

69

3. SOLVING THE VRP

70

4

An Explanation of Time Variance

The addition of time variance to a Vehicle Routing Problem causes a number of

difficulties. This chapter aims to highlight the most important of these and look at

methods of overcoming them.

We begin by looking at the basic problem, how to model the constantly changing

speeds in a sensible and usable model. We will detail how other authors have

approached this and where we plan to expand and improve on current methods. The

method that is most commonly used has one large obstacle to overcome, that of the

First-In First-Out problem, which we will examine and resolve later in this chapter.

Finally we will look at the larger picture and how we can solve Time Variant Vehicle

Routing Problems (TVVRPs) in general.

4.1 Modelling Time Variance

Time variance is all about the weight of arcs that connect nodes in graphs varying

depending on time. It is possible for time variance to apply to problems where the

weight is a monetary cost, such as modelling roads where a toll is charged at certain

times (an example being the London congestion charge, which applies on weekdays

between 7am and 6pm) (90). However, for the rest of this thesis we will only be

focusing on problems where the arcs are weighted based on traversal time. When it is

the traversal time of arcs that varies over time, there is an obvious difficulty compared

to, for example, cost varying over time. Making a change to the traversal time can

create further changes in later traversal times, which can then create even more changes

71

4. AN EXPLANATION OF TIME VARIANCE

farther along in the tour. Evidently we need an accurate model to cope with this issue.

Looking at the real world, the traversal time of a road is a complicated issue; it is

easiest to calculate by looking at the length of the road and the average speed of the

vehicle along the road. The vehicle will inevitably vary its speed over the course of

traversing the road, so calculating the average speed is a difficult task. In a perfect

model of the real world, speed would be modelled as a continuous function of time and

location, along with direction of travel.

Whilst the problem that we are looking at is clearly impractical to model

continuously, there are problems that can be modelled with a continuous function. Such

problems may involve fluids, electrical charge or light in fibre optics. For these problems

having a calculable traversal cost derived from a known formula would significantly

change the problem of solving such a VRP. In general, solving an equation will be

computationally quicker than the value look-ups that other methods (that we will

explain later) require. Unfortunately, further investigation into this approach would be

time consuming and ultimately irrelevant to the work that this thesis covers.

Time would ideally be modelled in a continuous manner, but, unless congestion

perfectly matches a calculable mathematical formula, discretisation must occur. One

way to do this is to smooth the data between declared points. For instance, if the

traversal time at 9:00 is 10 minutes and the traversal time at 10:00 is 20 minutes, a line

could be made between them, so that at 9:30 the traversal time would be estimated at

15 minutes, whereas at 9:18 it would be 13 minutes and so on. The more points that

are used, the smoother the curve of the line. To get a truly accurate model, however,

we would need to correct the traversal time of a vehicle continuously as it is traversing

the road, so integration/differentiation must be introduced, increasing the complexity.

With a graph of speed plotted against time, the area under the curve represents distance

travelled.

Another method is to use a step function; although this is less realistic, it is much

simpler to implement. The day is divided into discretised periods, or “time bins”, and

within each time bin the traversal speed of all the roads is constant (these time bins

may be homogeneous or of different sizes). A simple way of assigning a time is to take

the average traversal time of the begining and end of the time period. Continuing the

previous example, with a one hour wide time bin, the traversal time between 9:00 and

10:00 would be stored as (10 + 20)/2 = 15 minutes throughout. Obviously this is as

72

4.1 Modelling Time Variance

accurate for journeys occurring in the middle of a time bin as the smooth curve method

mentioned earlier, but generally less accurate for those on a boundary. However, time

bins are much easier to use, requiring a single look-up from a table, rather than two

look-ups and integration.

Many authors (5) (91) (92) resolve the complexity issue by simply assuming that the

speed is the same across the entirety of a specified road section. Fortunately, providing

the road sections are not too long, this does not seem to cause too much error. Many

authors (5) (91) also discretise the time, such that the speed of a vehicle will remain

constant until a new section of road is reached or a new period of time is entered.

An alternative, which only really works with homogeneous width time bins, is to

place the boundaries of the time bins equidistant between the known times, e.g. if the

time bins are ten minutes wide and at 9:00 the traversal time is 10 minutes, then a time

bin can be made from 8:55 to 9:05 with a traversal time of 10 minutes throughout.

These two methods seem fairly similar, it is unclear whether one gives significant

advantage over the other. It would be interesting to see which of these methods is

superior, but we have not found any papers that compare them, an in-depth review of

the two methods is outside the general focus of our work. For now we will stay with

the first method, as it compares better to the aforementioned continuous method and

is more compatible with the data that we will be using.

As should be evident, both the step function method and the smooth line method

on average become more accurate representations of reality the more points that are

used. At the same time, both methods become more computationally heavy as the

number of lookups is directly proportional to the number of time bins that are entered.

Because both methods give the same answer when the entire time bin is traversed, only

differing when part of the time bin is traversed, the accuracy benefit of smooth line

over step function is diminished when the number of time bins is increased.

Overall, if many arcs are within a single time bin, the smooth line method would

seem to be the best to use as the increased calculation time would be outweighed by

the more accurate results. However, when the majority of arcs traverse multiple time

bins, the accuracy benefits are severely reduced and thus the superior calculation time

of the step function is more important.

While many of the works that we have studied use few time bins, our work will have

many, with long arcs crossing five or more. Thus we will be using the step method.

73

4. AN EXPLANATION OF TIME VARIANCE

Modelling location in a discrete manner involves having a vehicle move at the same

speed anywhere within the discretised area. If the division involves splitting down

so that each road has its own speed, it is inaccurate because the situation can arise

where there is congestion at one end of a road but not the other, and this cannot be

modelled with that level of detail. Obviously, the more narrow the divisions the closer

a model can be to the real world. Of course, a model with a high level of detail involves

having a large table of values to look-up, in addition to more look-ups needed and more

calculations to make.

The simplest method of incorporating congestion in a time variant way, which some

authors (93) (94) have used, is uniform multiplicative congestion (UMC). This is based

on two simplifying assumptions: 1) that vehicles travel at the same speed on all roads

and 2) that congestion uniformly affects all roads in exactly the same way (e.g. between

8 a.m. and 10 a.m. all roads take twice as long to traverse). If there are no time

dependent constraints (such as time windows) in the problem, it can be shown that the

comparative quality of any pair of tours on a TVVRP is unchanged from the equivalent

time invariant problem.

Both authors referenced earlier use time-based aspects, such as time windows, in

their work. Obviously UMC is a poor representation of reality, as both the simplifying

assumptions are very different to reality. It is useful as a test for solution methods,

however, as the direct relation to the Time Variant VRP means that solutions and

methods can be easily assessed and compared.

In their paper, Ichoua et al. (91) introduce and explain the concept of a Travel Speed

Matrix (TSM). The idea is similar to the uniform multiplicative approach mentioned

above, but with a heterogeneous set of roads, rather than homogeneous (so some roads

are faster to traverse than others, representing the difference between a motorway and

a minor road, for example). In the simplified TSM that Ichoua et al. use, the roads are

still affected to the same degree by congestion (so the second assumption of uniform

multiplicative congestion is retained). An in-depth review can be found in Section

1.3.5, for now it can be viewed as similar to the UMC method, with similar benefits

and drawbacks.

Lastly, Eglese et al. (5) detail the construction of a Road Timetable
TM

using

Dijkstra’s Label Setting Algorithm (LSA) (see later in this Chapter) to create a

complete graph of shortest times between the customers. They illustrate this process

74

4.2 The First-In First-Out (FIFO) Problem

using a real world example which has a base (incomplete) graph with 3,326 arcs and

1,666 nodes. Of these nodes, 18 are designated as customers and one as the depot.

Dijkstra’s LSA is used to construct the Road Timetable
TM

between these 19 primary

entities (a table with the traversal time between every pair of primary nodes during

every time bin) and then that is used to form an illustrative instance of the TVVRP.

Because the times come from samples of actual road speeds, the congestion does not

follow a simplistic multiplicative pattern. The instance features capacitated vehicles,

time windows and demand on each customer (randomly generated).

In terms of existing models, our research has found little beyond the work of the

authors that we have mentioned and the work of the authors that they based their

models on. The work done by both Ichoua et al. (91) and Malandraki and Dial (95),

who we will look at in detail later, are both randomly generated, Ichoua et al.’s based

upon the work of Solomon (96) and Malandraki and Dial’s an original work explained

by Malandraki in an earlier dissertation (97). Kok et al.’s (98) work (which we will also

touch upon later) is based on Real World road networks with calculated congestion

based on urban density. Eglese et al. (5) base their work on Real World road networks

combined with Real World traversal times.

All of these methods discretise the data which can produce a highly undesirable

effect known as the First-In First-Out (FIFO) problem.

4.2 The First-In First-Out (FIFO) Problem

Essentially, the FIFO property, also referred to as the non-passing property (NPP) by

Sung et al. (92), states that if a vehicle is traversing a link, then the later it leaves the

start node the later it will arrive at the end node, and inversely, the earlier a vehicle

leaves the start node the earlier it will arrive at the end node. Without the FIFO

property, a situation may arise, for example, where the fastest way to get from node a

to node b is to wait at a for five minutes before heading to b (so that if you leave at

8:00 the journey will take an hour, so you will arrive at 9:00, but if you leave at 8:05

the journey will only take half an hour, so you will arrive at 8:35). There are some

scenarios where this can be appropriate, as discussed by Malandraki and Dial (95)

“Minimize the total elapsed time of a tour through all the state capitals

of the US using commercial airline flights. It is possible that a flight that

75

4. AN EXPLANATION OF TIME VARIANCE

departs later has an earlier estimated arrival time than a flight that departs

earlier (because it is a non-stop flight or uses a speedier jet). (The travel

time functions would actually represent discrete choices in this case.)”

A similar situation can arise in other public transport systems, involving a slow

versus an express train, or an inter-city bus service, as opposed to a meandering rural

route. In this thesis, however, we are considering only a single type of vehicle visiting a

pre-defined set of customers via specified roads, and in this situation the FIFO property

must be maintained in any optimisation scheme. As shown by Horn (99), if the speed

of a vehicle is correctly updated whenever it enters a new time bin, then the FIFO

property is maintained. In this thesis we are interested solely in minimising the time

elapsed since the start, whereas in practice other objectives, such as “driving time” or

“vehicle idle time” may be important. Drivers and vehicles may be put to better use

than sitting in a traffic jam. Thus, it may make practical sense to schedule other tasks,

or shorten drivers’ working hours and wait for the most serious congestion to die down

before setting off.

Note that, in reality, it is possible for a vehicle leaving the depot at a later time

to completely catch-up with an earlier vehicle. However, in discretised models this can

never happen unless a road has a speed of zero because the model has only one speed

for the entire arc’s length, whereas in reality there can be traffic queued at one end

of a road and not the other. This anomaly from discretising time is similar to Zeno’s

“Achilles and the tortoise” paradox (100).

Horn (99) goes on to include several variations on the basic shortest path algorithm

of Dijkstra, one of which requires the network to have the “short links” property (simply

put, this is satisfied if no arc can be in more than two time bins, meaning that there

can be, at most, one speed change on the arc). Horn also details how to prove that the

FIFO property is held and provides a much simpler formula for checking than previous

authors.

Some authors (91) (92) (99) resolve the problem of FIFO by using a modified step

function. This method involves modelling the congestion levels by splitting the day

into discrete time bins, referred to as intervals or periods in Ichoua’s work. If a vehicle

enters a new time bin while traversing an arc, the amount of time that is spent in each

76

4.3 Introduction to Solving Time Variant VRPs

time bin is calculated separately and averaged. The result is that the FIFO property

is maintained.

Eglese et al. (5) use a method equivalent to the one used by Ichoua et al., but coded

to reduce computation time when the network is made up of many short arcs. For this

thesis we will update vehicle speeds whenever travel across an arc spans more than one

time bin in order to model the effects of the time variant congestion accurately.

4.3 Introduction to Solving Time Variant VRPs

As far as we are aware, previous research in the field of Time Variant traversal

costs is rather limited and much of this effort has concentrated on shortest path

computations (99) (101). Efficient methods for evaluating shortest paths in a Time

Variant environment can be incorporated into more complex VRPs and thus form

essential components of algorithms designed to solve real world problems. We will

start by highlighting key publications covering shortest path algorithms for time variant

travel. Next we will extend our discussion to time variant costs for TSPs and VRPs.

4.3.1 Shortest Paths

Most VRPs that we will be looking at are based on incomplete graphs. There is not

always a direct arc between any two nodes. Because of this, if a vehicle is required to get

from node a to node b when no direct arc connects them, then the vehicle will need to

travel via other nodes that it does not necessarily need to deliver to (maybe because of

capacity or time window constraints or simply because that customer has already been

visited). The final solution should not have duplicate customers, because this will make

it unclear as to whether these customers are being visited, meaning the neighbourhood

moves may switch around a “customer” that is not actually being delivered to. A

solution to this is to make the graph complete by using dummy arcs. With these

dummy arcs a vehicle tour can be listed as D-a-b-c-d -e-f -D, showing the order that the

customers are delivered to, whereas the vehicle actually goes D-a-d -b-d -c-d -e-a-f -D,

an example of a network requiring dummy arcs is shown in Figure 4.1.

A particularly important paper in the field of shortest paths is that of Dijkstra

(102), which describes the Label Setting Algorithm (LSA) for finding the shortest path

between any two nodes in a network. The basic algorithm works as follows:

77

4. AN EXPLANATION OF TIME VARIANCE

Figure 4.1: Dummy Arc Example - An example network that requires dummy arcs

to be traversed alphabetically.

• Begin at the Start Node, label this node 0.

• For each unvisited node connected to the current node, calculate the current

node’s label plus the cost of the connecting arc.

• If this value is less than the connected node’s current label (or there is no label

assigned), then assign this value as a label.

• Find the node with the next highest label, if it is the destination, you are done,

else make it the current node.

• Goto step 2.

Figure 4.2: LSA Example - An example network for an LSA, travelling from A to G.

78

4.3 Introduction to Solving Time Variant VRPs

An example LSA is shown in Figure 4.2 and explained below. The objective is to

find the shortest path from A to G.

• The LSA starts at A, it labels B and C with 5 and 7 respectively.

• B (5) is the node with the next lowest label, A has already been visited, D

becomes (5+10=) 15 and F becomes (5+25=) 30.

• C (7) is next. A’s been visited, D changes from 15 to (7+6=) 13, E becomes

(7+8=)15 and F changes from 30 to (7+20=) 27.

• D (13) now has the next lowest label. B and C have both been visited, F is not

updated because its current value of 27 is less than the new value of (13+16=)

29 and G becomes (13+20=) 33.

• E (15) is next. C has been done, G becomes (15+10=) 25.

• The next node is G (25), which is the destination node. The shortest route is

thus 25. F has a label that is greater than 25, so need not be visited.

There are two common methods for finding the nodes of the shortest path, after

having found its length. Firstly, the nodes can be given pointers to the previous node

in the path when their labels are reassigned (if all shortest paths are desired multiple

pointers may need to be used). Secondly, the network can be traversed in reverse (e.g.

in the earlier example: If G is reached at 25: E would be left at 15, D would be left at

5 and F would be left at 12. D and F have larger labels than 5 and 12 respectively, so

they cannot be part of the shortest path, then do the same from E and so on).

As long as the LSA holds, it can be used to create dummy arcs in order to make

a complete graph between all customers, provided there is a connected graph of all

customers (without which a single depot VRP would be clearly unsolvable). If a

complete graph is desired, then the algorithm simply carries on until all nodes have

been finalised with a label. Setting each node in turn as the start node gives a complete

list of shortest paths between any two nodes.

The original paper notes that the algorithm also works when the arcs are directed,

i.e. the traversal times are based on the direction of travel between the nodes. Over

the years, various researchers have adapted this algorithm. Cooke and Halsey take

a different approach (103) using an iterative formula, but their model is limited

79

4. AN EXPLANATION OF TIME VARIANCE

and time consuming (for instance, it can only deal with integer travel times). In

his memorandum, Dreyfus (104) briefly examines Cooke and Halsey’s approach and

mentions how Dijkstra’s methods can be used on time dependent problems in the same

way as time independent problems, without any changes. Expanding on this, Kaufman

and Smith (105) examine the limitations of finding the shortest path within a Time

Variant environment. They show with a simple example that Dreyfus’s use of Dijkstra’s

LSA only works when an implicit assumption is made (related to Bellman’s principle of

optimality (106), which Cooke and Halsey also rely on). In simple terms this assumption

is that each node on the optimal path is reached as soon as possible. They make the

simplifying assumption that, for any pair of connected nodes at any time of traversal,

the earlier departure (start) time cannot have a later arrival (end) time. Their paper

shows that when this assumption holds, Bellman’s Principle of Optimality holds and

Dijkstra’s LSA can be applied. This assumption is identical to having a network that

maintains the First-In First-Out (FIFO) property (as explained earlier).

4.4 TVVRP Solution Techniques

As was shown in the previous Chapter, there are various approaches to solving standard

versions of VRPs. However, it is invariably the case that nearly all of these methods

need some modification before they can be applied to VRPs with Time Variant traversal

costs. We will now look at some approaches that are possible.

4.4.1 Methods Based on Dynammic Programming

The primary exact method that we discussed earlier for solving TSPs and VRPs was

Dynamic Programming (DP). Its run time complexity of O(n22n) is a considerable

improvement over other, less sophisticated, exact techniques. Kok et al. (98) and

Malandraki and Dial (95) have both used a restricted form of DP for problems with

Time Variant traversal costs which, while no longer exact, give good results.

The two authors use different techniques for reducing the combinatorial explosion

resultant from using DP, they are both based on restricting the DP so that less memory

is required. The first, used by Kok et al. is to impose a limit, m, on the number of

customers to consider at each iteration. The first iteration only looks at the m closest

customers to the depot to give m partial tours (each a single arc from the depot to one

80

4.4 TVVRP Solution Techniques

of the customers), the second iteration looks at the m closest unvisited customers for

each of the initial m partial tours (giving m2 partial tours). From the third iteration

onwards the number of tours can be cut down by removing inferior routes, in the same

way as is done with normal DP. As an example: if there are two routes, abcd and acbd,

then they both visit the same customers and end in the same place, so the quicker route

is better and the slower route can be safely discarded. This method reduces run time,

as now each tour produces m tours, rather than n, but there is still an exponential

increase in the number of tours at each step. The second method, used by Malandraki

and Dial, instead introduces a final stage at every iteration, this involves discarding all

but the best m paths, so that at the end of each iteration there are, at most, m partial

tours. A higher value for m will generally result in a better solution, although it is

possible, but generally unlikely, that increasing m can lead to a poorer final solution.

The effectiveness of both of these methods of restricted Dynamic Programming is

drastically affected by the value chosen for m. If m = 1 then both of these methods

become a Nearest Neighbour Algorithm. With m too high, the benefit of restricted

Dynamic Programming over regular, unrestricted DP (reduced memory requirements

and improved calculation time) are mitigated. Setting m =∞ results in both methods

being equivalent to an unrestricted DP.

We will now look in more detail at the results and performance of Malandraki and

Dial’s method of discarding all but the best m tours (they use H in their paper), as this

method is closer to the approach we will be taking in terms of its objective of reducing

the combinatorial explosion. Kok’s approach reduces the size of the explosion compared

to regular DP, but it is still quite an explosion. We are interested in comparing methods

that deal well with this explosion for larger problems.

Malandraki and Dial’s algorithm was tested on 240 randomly generated problems

with between 10 and 55 nodes and an average of two to three time bins on each link

(the extremes being one to six time bins), with a constant traversal time throughout

each bin. They used four different distributions of the time bins across the links, one

deterministic and the other three probabilistic. Each time bin’s travel time lay within

20 units of the previous bin’s (so there were no massive leaps in speed). Each of the 240

problems was solved using m values of 1, 100, 1,000, 5,000 and 10,000. The problems

with up-to-25 nodes were also solved for m = 15, 000 (the larger problems were not,

due to calculation limitations).

81

4. AN EXPLANATION OF TIME VARIANCE

As could be expected, they found a large increase in solution quality between m = 1

and m = 100, 13.8% on average. Between 100 and 1,000 the improvement was only

2.7%, 1,000 to 5,000 was 1% and 5,000 to 10,000 was 0.4%. The increase to 15,000 is

not specified, but it is still an improvement.

In just below 1.14% of instances (12 out of 1056), when m was increased the solution

was worse. Malandraki and Dial see this as “not a very frequent occurrence”. This

seems quite a high proportion, and is worth bearing in mind as a comparison to our

own performances later.

Because the problems are randomly generated, Malandraki and Dial have used a

cutting plane heuristic based on mixed integer linear programming (detailed further in

a previous paper (107)) to obtain a “best known” solution and a lower bound and weak

upper bound for the optimal solution.

Perhaps the most important part of the results is the calculation times. As is

expected, increasing m and increasing the number of nodes, n, both increase calculation

times. Increasing m leads to a very slightly higher than linear increase in calculation

time. Increasing n leads to a noticeably higher than linear increase in calculation time,

but which is smooth except for a kink between n = 25 and n = 30 (where the tours

required increased storage space, thus increasing the time taken by all the read and

write operations). The deviation above a linear progression as n increases is larger

with higher m, in other words, the magnitude of the combinatorial explosion that

results from an increased number of customers is worse when the number of partial

solutions retained at each step is increased.

They conclude that, with m = 100 (the lowest of their tests that was not simply a

Nearest Neighbour Algorithm), they could solve problems with around 200 customers

within “reasonable CPU times”. Evidently, with the experiments themselves being

limited to 55 nodes and the extrapolated limit for reasonable calculation times at 200

nodes, there is definitely room for other methods that deal better with the combinatorial

explosion.

It is also important to note that this method stores m partial tours at a time; if

the tours themselves are quite detailed, this can lead to excessive space required for

storage compared to methods that only store a couple of tours, such as metaheuristic

methods.

82

4.4 TVVRP Solution Techniques

4.4.2 Time Variance and Solution Construction Heuristics

By far the most popular solution methods for VRPs involve heuristic and metaheuristic

techniques, although very little previous work has been done using these approaches

in a Time Variant environment. As we mentioned earlier, Ichoua et al. have done a

lot of work on their methods of modelling the problem, but their methods for solving

the problem are left fairly undetailed, based on the methods of Gendreau et al. (108).

Gendreau et al. use a Parallel Tabu Search deriving from a method of solving static

VRPs in order to solve dynamic VRPs, and this is their focus, rather than the focus

we have of static problems with predetermined Time Variant traversal costs. In other

words, although the problems seem similar, the methods to solve them are relatively

incompatible, thus we will not spend excessive time discussing them, although the

interested reader is encouraged to read more about this related field of dynamic VRPs.

We have already investigated the various methods of modelling the VRP without

time variance in the previous Chapter, now we shall examine how these methods may

be adapted to work with time variance by seeing the process on a pair of solution

construction heuristics, namely Nearest Neighbour and Clarke & Wright. It should be

apparent that time variance has no effect on the Random method.

Nearest Neighbour

As was mentioned before, there are methods of using the Nearest Neighbour Algorithm

(NNA) that work well with an SVRP, we will briefly explain these first, then move on

to the problems that arise with VRPs in general when using the NNA.

When time variance is added to the NNA, the tour can no longer be constructed

from the start and the end in parallel, as it will not be known in what time period the

end of the tour will be being traversed. Because of this, the final solution looks much

more messy, because the “long join” that will, on average, occur at the end of the time

invariant solution can occur more often in the tour. The majority of the tour will be

reasonable, but then the tour needs to include customers who were missed when the

other customers in their area were visited, which leads to the final few arcs leaping

around the instance. An unconstrained example of this can be seen in Figure 4.3, long

joins can be seen whenever the tour leaves a cluster.

83

4. AN EXPLANATION OF TIME VARIANCE

Figure 4.3: Greedy Solution to a Time Variant SVRP - A demonstration of the

“long joins” that the Nearest Neighbour makes on time variant VRPs.

The actual approach used for calculating which customer is “nearest” is simplified

in the method that we have used. The accurate way would be to calculate at what

time the vehicle would arrive at the customer, taking into account the start time and

any changes in speed as new time bins are entered. Instead, the method used here does

not adjust the speed on the route, assuming a constant speed equal to the speed at

the start of the traversal. Obviously this is less accurate, but it is also much quicker.

Once the next customer is chosen, the algorithm calculates the actual time taken. An

alternative method that would generally find the nearest customer would be to have a

shortlist of the five apparent nearest and then calculate the exact values of each, but

this is extra computation on what is, at heart, a poor method to use in comparison to

more “intelligent” methods, such as Clarke & Wright.

An example of a greedy starting solution to an MVRP can be seen in Figure 4.4, here

the problem has been constrained with capacity on vehicles and demand on customers.

It should be noted that the capacity constraint is modelled as soft, so that the solution

produced is using four vehicles, when there is a minimum of five needed. The invalid

route is the one in the top left, as the far left customer exceeds the capacity, however,

because it is so far from the depot, the penalty applied is less than the extra cost of

sending an extra vehicle out. The two vehicles servicing the right-hand side of the

84

4.4 TVVRP Solution Techniques

problem have produced reasonable looking results, whereas the two vehicles on the

left-hand side have produced much less efficient looking routes.

Figure 4.4: Example of a NN Starting Solution to a Time Variant MVRP -

Example of a four vehicle Starting Solution for an MVRP generated using the Nearest

Neighbour Algorithm.

Clarke & Wright

The parallel Clarke & Wright version we will be using later in this thesis is slightly

modified. First, the savings are calculated as if in a time invariant system: all the

times are taken from a snapshot of the start of the day, which may lead to some vehicle

merges being made that are sub-optimal but which drastically speed the process up.

To calculate the savings properly, the time that each of the n(n − 1)/2 savings occur

needs to be calculated, then recalculated whenever it changes, along with any knock-on

effects. Further, optimal vehicle merges may be at any time (it can be that a vehicle

merge between i and j is only a high saving at a certain time). The second difference is

that the vehicle merges are more complicated. When two tours are going to be merged,

the algorithm looks at the possibility of reversing the traversal direction of both tours

and attaching them (so the connection point could be the start of a and start of b,

start of a and end of b, end of a and start of b or end of a and end of b).

85

4. AN EXPLANATION OF TIME VARIANCE

An important point to note is that the Clarke & Wright we have used here does

not allow invalid solutions (i.e. those that exceed the capacity constraint), but the

improvement heuristic starts off by treating capacity as a soft constraint, although one

with a high penalty. It is thus possible that the improvement heuristic will find a

neighbourhood move that the Clarke & Wright had already considered and discounted.

We will detail the method that we are using for solving TVVRPs using Clarke &

Wright in more detail in Section 6.1.2.

4.5 Conclusion

In this Chapter we have looked at the various methods of modelling Time Variance

in a VRP and discussed the merits and flaws of each. While in an ideal world we

would benefit from using a continuous model, the limitations of solving Real World

problems means that we are much better off in terms of time spent solving these

problems to model them in simpler ways. We have seen that the use of time bins to

model congestion as a step model, while not ideal, only has one major problem, the

FIFO Problem. Various authors have worked to solve this, and the current methods of

recalculating traversal times whenever the situation changes (i.e. whenever a new time

bin is entered) have been shown to solve the FIFO Problem for calculating shortest

paths.

Although in this thesis we are looking to model the Real World problems by using

a model based on Real World data, the Road Timetable
TM

, we have seen that there are

many ways of modelling problems in a simpler manner. Solutions to simpler models

are invariably going to be of less use, on average, for solving real problems, potentially

producing invalid routes.

We have looked in depth at one of the more competitive alternatives to the method

that we are proposing, the use of restricted Dynamic Programming, and have seen

that it deals relatively well with the problem of the combinatorial explosion for small

scale problems, but its proponents claim a reasonable limit of 200 nodes maximum.

We hope that our method, that we will introduce shortly, will be able to deal more

effectively with the combinatorial explosion on larger problems than restricted Dynamic

Programming, thus showing its usefulness on larger VRPs.

86

4.5 Conclusion

To conclude, we have seen many other methods, but they are dealing with either

much smaller problems or much simpler problems. We aim to establish a method of

finding reasonable solutions to large problems with many time bins without excessive

calculation times, something that none of the authors that we have seen have managed.

87

4. AN EXPLANATION OF TIME VARIANCE

88

5

The Estimation Tool

5.1 Introduction

In the previous Chapter we examined how time variance can be modelled into VRPs

and briefly saw the changes that need to be made to solution construction algorithms

to account for the differences that time variance causes. The metaheuristic approaches

to solving VRPs, that we detailed in Chapter 3, all have a grounding in the use of

neighbourhood moves. Calculating the effects of these neighbourhood moves on Time

Variant VRPs (TVVRPs) is made more difficult than with time invariant problems

due to the knock-on effect of small changes. In this Chapter we will introduce a simple

approach to applying the neighbourhood moves to these time variant models, trying to

minimise how much time is spent resolving the knock-on effects of these changes. The

method that we will use makes estimates as to the effects that neighbourhood moves

will have and uses these estimates, rather than the actual values, to determine whether

to investigate the move further or to discard it.

It seems reasonable to assume that using inaccurate data in our decision making

will result in poorer solutions, but it is not known how much worse the final solutions

produced by metaheuristics using the Estimation Tool will be. It is similarly unknown

how much of a time saving using this Estimation Tool will provide. Thus we aim to

demonstrate with some experiments that the use of our Estimation Tool, which we will

describe shortly, gives a significant saving in time taken to calculate solutions, while at

the same time giving final solutions that are of a reasonably similar quality (measured

by their objective value). As with so many things, the usefulness of these estimates

89

5. THE ESTIMATION TOOL

comes down to a trade-off between run time and accuracy. In some cases people may

regard even a small loss in solution quality as being unacceptable, whilst in other cases

people may be more than willing to accept a drop in their solution’s quality if it gives

a saving in calculation time.

5.2 What is the Estimation Tool?

In simple terms our Estimation Tool compares the traversal time of arcs that are

removed from a tour via a neighbourhood move and estimates the traversal time of the

arcs that will be added by the neighbourhood move. The number of arcs removed and

added will vary depending on which neighbourhood move is used, but for our purposes

we will currently focus on 2-Opt, as described previously in Chapter 3. In the case of

2-Opt, two arcs are removed and two new arcs are added.

It should be noted at this point that, even if the estimates of the traversal times

of the new arcs are correct, the total tour length may not be, as the arcs between the

two changed areas are traversed in reverse order and at different times on the new tour

compared to the old tour.

The method that we will use to store the tours, which we explain in a little more

detail later, means that we know when one of the two new arcs will start being traversed,

as it will be the same time as one of the old arcs started being traversed, thus we can

easily calculate the traversal time of one of the two new arcs. For simplicity, the

Estimation Tool assumes that the other unknown new arc will start being traversed at

the same time as the other known old arc. Comparing the traversal time of the old

arcs with the predicted traversal time of the new arcs will give two values, which we

will call old arc and new arc. If new arc is less than old arc then the Estimation Tool

will suggest that the neighbourhood move will lead to an improvement, if it is more

then the Estimation Tool will predict that the neighbourhood move will not lead to an

improvement. We will be using the Estimation Tool as a guide, so when it suggests an

improvement, that neighbourhood move will be calculated more fully and, if it turns

out that it is an improvement, then it will be implemented, whereas if it turns out not

to be an improvement then it will be discarded.

In pseudocode, our Estimation Tool (applied to a neighbourhood move replacing

arcs A and B with C and D) runs as follows:

90

5.2 What is the Estimation Tool?

1. old arc = TraversalTime(A) + TraversalTime(B)

2. Calculate TraversalTime(C) based on starting at StartTime(A)

3. Calculate TraversalTime(D) based on starting at StartTime(B)

4. new arc = TraversalTime(C) + TraversalTime(D)

5. if new arc < old arc

6. return “Predicted Improvement”

7. else

8. return “Predicted Non-improvement”

Where TraversalTime(X) is calculated by EndTime(X) - StartTime(X)

We will now give a brief example of using the Estimation Tool and the various

results that can derive from it. A tour, shown in Figure 1.1, exists that traverses arcs

(in order) A, B, C, D, E, H. A 2-Opt has been suggested that swaps arcs B and E for

new arcs F and G (giving a tour of A, F, D, C, G, H). The traversal times for these arcs

vary depending on when they are traversed, as shown in Table 1.1, the times are given

in minutes. It is assumed that the final time bin carries on for as long as required. The

tour starts at time t=0. The objective, as with all of the problems we will see in this

Chapter, is to minimise the total travel time of the network.

Table 5.1: Example Problem for the Estimation Tool. Arcs and Time Bins

Arc t ≤ 10 10 < t ≤ 20 20 < t ≤ 35 35 < t

A 7 7 10 7

B 10 10 20 20

C 2 4 6 8

D 8 8 12 15

E 10 10 7 7

F 5 10 10 10

G 10 5 5 10

H 7 7 7 14

Before we start using the Estimation Tool it is important to ascertain the objective

value and cumulative tour costs (CTCs) of the existing tour. The cumulative tour cost

91

5. THE ESTIMATION TOOL

Figure 5.1: Estimation Tool Demonstration - An SVRP to demonstrate the

Estimation Tool. The relevant traversal times for each arc during each time bin that

the arc will be traversed during are indicated next to the arcs. The two red arcs, F and G

are proposed to be added in place of arcs B and E.

92

5.2 What is the Estimation Tool?

is the total time (cost incurred thus far) at each node. We will be using the methods

mentioned in the previous Chapter in order to maintain the FIFO property and get

accurate arc costs.

• Arc A is traversed at time 0, at this time it has a cost of 7, which does not put

it into the next time bin (at 10), thus at the end of arc A the CTC is 7 minutes.

• Arc B is thus traversed at 7, it has a cost of 10, which means during the traversal

of the arc the cost changes. In this case, however, the cost in the second time

bin is the same as the first. The time at the end (7 + 10 = 17) is not enough to

enter the third time bin, and thus the CTC at the end of arc B is 17 minutes.

• Arc C is traversed at 17, it costs 4, which puts it into the third time bin (17 +

4 = 21, which is more than the boundary of 20). In the third time bin the cost

is 6. We can see that at time t = 20 the vehicle will have travelled for 3 of the 4

minutes, thus we assume that it has travelled three quarters of the distance, and

thus the remainder of the journey will take one quarter of the total time that it

would in the third time bin, a quarter of 6 is 1.5, thus the CTC at the end of arc

C is (20 + 1.5 =) 21.5 minutes.

• Arc D will be traversed at 21.5, it takes 12 minutes, which is not enough to force

it into the last time bin, thus the CTC at the end of arc D is 33.5 minutes.

• Arc E will be traversed at 33.5, it takes 7, which means it is traversed across two

time bins, the last time bin also takes 7 though, so no corrections are needed.

The CTC at the end of E is 40.5 minutes

• Arc H is traversed at 40.5, as it is in the last time bin no change will occur, so

the CTC at the end of H, and the total tour length, is 54.5 minutes.

The CTCs at the end of the arcs of the new tour (calculated in the same way as

above) are: A(7), F(14), D(23), C(29), G(34), H(47).

So now we are ready to see how the Estimation Tool works.

• old arc = (CTC at end of B − CTC at start of B) + (CTC at end of E − CTC

at start of E) = (17− 7) + (40.5− 33.5) = 10 + 7 = 17

93

5. THE ESTIMATION TOOL

• The Estimation Tool knows that F will be traversed at time = 7 minutes, so can

easily calculate that it has cost 7. It does not know when G will be traversed, so

assumes it will be when E was traversed (33.5), thus giving a value of 1.5 + (5−
1.5) ∗ (10/5) = 8.5

• new arc = 7 + 8.5 = 15.5

• As new arc is less than old arc, the Estimation Tool accurately predicts that this

change will lead to an improvement.

It will not always be the case that the Estimation Tool is correct, simply by changing

the cost of G at time t > 35 from 10 to 15 we see that the actual cost does not change

(as G is traversed at 29 minutes, thus never uses the changed value) but the estimate

calculates the cost of traversing G as 1.5 + (5-1.5)*(15/5) = 12 and thus gets a value

for new arc of 19, which is greater than the value of old arc (17). Thus the estimate

would incorrectly predict that the neighbourhood move would result in a worse (slower)

tour.

In a similar way, changing the cost of G in the third time bin to 15 and leaving the

last time bin as 10 means the neighbourhood move will result in a worse tour, but the

Estimation Tool will predict a better tour. Changing G to 15 in both time bins will

result in the Estimation Tool correctly predicting a worse tour.

We will look in further detail at these different possible scenarios in Section 1.4.

For now, though, we will step back and detail the upcoming experiments.

5.3 Overview of SVRP Quadrant and SVRP Hill

Climbing Experiments

Now we will go into detail about the set-up for our first two sets of experiments of this

thesis. The main idea for our first set of experiments (SVRP Quadrant Experiments) is

to test how well estimates can be used to predict whether a given neighbourhood move

will produce an improvement to the current solution or not, avoiding the need for full

evaluations of a neighbourhood tour wherever possible. In the experiments, we plan to

compare estimates with full computations and measure the accuracy of our estimates

simply by counting how many times they are correct in their predictions, versus how

94

5.3 Overview of SVRP Quadrant and SVRP Hill Climbing Experiments

many times they are wrong. It is likely that estimates may work well in some situations

and not in others. Establishing some simple “rules of thumb” to provide adaptive

guidance to an iterative improvement scheme is our long term goal. In the second set

of experiments (SVRP Hill Climbing Experiments) we propose to assess the run time

versus solution quality trade-off obtained by using estimates during the execution of a

simple Hill Climbing algorithm. Put simply, the first set of experiments focus on the

microscopic level and the second set of experiments focus on the macroscopic level.

For these initial experiments, we aim to keep our scope fairly narrow, so that the

number of experiments is manageable. Our plan is to use the results of the preliminary

experiments we carry out here to guide the rest of the work. Thus for simplicity, we

will focus on just one type of neighbourhood move, limit our congestion models to two

types and our problem instances to two small ones for the first experiment, with two

extra instances added for the second experiment. Details of all of these will be given

in the upcoming sections. We will also be limiting the VRP to a single vehicle, as this

allows us to focus on the basics of the moves.

5.3.1 Assessing Individual Neighbourhood Moves (Microscopic level)

Given a particular problem instance, we will begin each experimental run by generating

starting tours that are either random or greedy (further details can be found under

Starting Construction Heuristic Algorithms in Section 3.4). The random starting

solution is included to see if using estimates will work as effectively when used on

a poor solution as it does when used on a rather better solution. Once the initial

solution is constructed, a neighbourhood move will then be performed on this starting

solution and an “estimate” of the comparative quality of the new candidate solution

will be produced. As explained in the previous Section, this estimate will be derived

from the time invariant model, that is, we simply take the cost of the arcs that are

added and subtract those that are deleted. A “cumulative tour cost” (CTC) is kept

that represents the cost of traversing the arcs up to each node, so the difference in the

CTC before and after the arc’s traversal is the cost of traversing that arc. The new arcs

that are being added are simply looked up in the cost matrix, matching the time slot

in which they are traversed. As a brief example and reminder, given a complete tour

DabcdeD, if the time taken from the start to reach node b in the tour is 104 minutes

95

5. THE ESTIMATION TOOL

and the time taken to reach node c is 152 minutes then the time taken to traverse the

arc between b and c is 152 - 104 = 48 minutes.

Once the “estimate” has been made, the program then calculates the actual change

that the proposed neighbourhood move would cause by referring to the time varying

cost matrix. In order to perform this evaluation, the travel time for every arc that

occurs in the tour following the first change is measured (clearly, the first part of the

tour is unchanged, so the CTC up until then can be used). The difference between the

original solution and the new solution’s value is then compared with the “estimate”

calculated earlier and the results are plotted on a graph (an example of such a graph

is presented in the next Section).

5.3.2 Assessment in a Metaheuristic Framework (Macroscopic Level)

When it comes to solving a VRP there will always be a trade-off between solution

quality and resource utilisation, particularly run time. In the first set of experiments,

we examine how often our Estimation Tool makes correct predictions versus how often

it is wrong. The second experiment will focus on trading off solution quality versus run

time by testing our Estimation Tool within a simple heuristic framework.

We will use a simple Hill Climber and test it with and without our Estimation

Tool. At each cycle of the Hill Climber, a neighbourhood move will be performed and

its quality estimated and (if necessary) calculated. If the tour is judged to be shorter

following the change, then the new tour will replace the current tour as the focus of

the search, otherwise the old solution will be retained.

5.3.3 2-Opt and Other Neighbourhood Moves

For both our sets of experiments this chapter we will be using only one type of

neighbourhood move: 2-Opt. As we saw in Chapter 3, in the time invariant scenario

2-Opt is simple to calculate on a symmetric, time invariant problem, by simply

calculating the overall change resulting from the removal of the preceding arcs to both

nodes and the addition of the new connecting arcs. In the time variant scenario,

however, the fact that the intervening nodes are traversed in reverse order can have a

much greater effect on the solution quality.

With a 2-Opt operation the resulting tour can be considered in three parts:

pre-change, changed and post-change. We will describe these three parts with reference

96

5.3 Overview of SVRP Quadrant and SVRP Hill Climbing Experiments

to the 2-Opt example in Chapter 3 (the before and after tours are repeated in Figure

1.2).

Figure 5.2: 2-Opt Demonstration (cut-down) - 1) Initial tour running

ABCDEFGHIA. 2) Final tour after a 2-Opt has been performed on arcs CD and FG.

pre-change: The part of the tour from the depot (A) until just before the first

change at C. The traversal times will be the same for this section of tour, as the change

only takes effect after C.

changed : This part of the tour is from C to G. This is the section of the tour which

has been modified and inverted and will thus be traversed in the opposite direction.

post-change: Assuming that the FIFO property is held, if the tour is an improvement

at node G then it will be an improvement overall and vice versa (the first to enter into

the final part of the tour (from G to A), will be the first one to complete it).

Taking into account this division of the problem, it can be seen that only the changed

section needs to be recalculated in order to find out whether the neighbourhood move

will lead to an improvement, although the post-change section must be calculated in

order to evaluate the magnitude of any improvements found.

5.3.4 Problem Instances

The problem instances that we will be using for all the experiments are based on

instances from TSPLIB (13). These instances are converted into SVRP instances by

assigning one city as a depot. Five different variants of each instance are produced by

selecting a different node as the depot in each case.

Both the experiments will use bier127 (127 beer gardens in Augsburg (Bavaria) by

Juenger/Reinelt) and a280 (drilling problem by Ludwig). For the second experiment

97

5. THE ESTIMATION TOOL

(using the hill climbing framework), we retain the two problem instances used in the

first experiment (a280 and bier127) for continuity and add two more from TSPLIB: a

much smaller problem (bayg29) featuring 29 nodes that are irregularly but fairly evenly

distributed, and a much larger problem (gr666), which is irregular and clustered, based

on the distribution of airports around the globe (but converted into a 2 dimensional

Cartesian problem).

All of the problems are symmetric SVRP instances, with the distances between the

nodes represented as the Cartesian distances between the points. For the two methods

of congestion modelling mentioned later, we will assign travel times to each link and

minimise those, rather than travel distance, in our objective function. Furthermore,

these travel times will be affected by the speed that the congestion model enforces on

the arc, so that there are different speeds on different roads at different times of the

day. The TSPLIB instances were chosen because they are quite different in appearance.

While a280 has an even distribution of nodes in neat lines, bier127 has a tight cluster

of points in the centre and then outliers spread out around the centre. Bayg29 has an

even distribution, but is irregular. Gr666 is clustered, but more spread out than the

others (see Figure 1.3).

5.3.5 Producing Congestion Values

In their paper, Ichoua et al. used a simple set-up with three different road classifications

(these represent types of road, such as “motorway” or “A roads”) and three time bins.

The congestion in the first and third time bin was the same, representing morning and

evening congestion, whilst the second time bin represented the uncongested travel in the

middle of the day. Three different scenarios using this set-up were performed by Ichoua

et al., with the ratio between the two congestion levels different for each scenario,

leading to the situations having different degrees of “time dependency”. Table 1.2

illustrates different speeds on different road types at different times of day. A high

number represents a faster (and thus preferable) route.

Table 1.2 is created by assigning speeds to each classification of road and then

applying multiplicative congestion. A simple way to show how this works is by using a

column matrix to represent the speeds and a row matrix to represent the multiplicative

congestion values:

98

5.3 Overview of SVRP Quadrant and SVRP Hill Climbing Experiments

Figure 5.3: The four problem instances for our Experiments - Each of our problem

instances, Top Left: bier127, Top Right: a280, Bottom Left: bayg29 and Bottom Right:

gr666

Table 5.2: Ichoua’s TSM 1: Example showing speeds on three road types at different

times of day

Time Bins, t

Road type, c

A 0.54 0.81 0.54

B 0.81 1.22 0.81

C 1.22 1.82 1.22

∣∣∣∣∣∣
0.81
1.22
1.82

∣∣∣∣∣∣× ∣∣ 2/3 1 2/3
∣∣ =

∣∣∣∣∣∣
0.54 0.81 0.54
0.81 1.22 0.81
1.22 1.82 1.22

∣∣∣∣∣∣
It is worth noting that, similar to the uniform multiplicative method described in

Section 4.1, in the TSM implementation used by Ichoua et al., all the roads are affected

by congestion in exactly the same way. It is only when time windows are involved that

the congestion becomes disruptive. For our experiments, the TSM will be using road

classification factors of 0.8, 1 and 1.5 to represent hypothetical B roads, A roads and

motorways, respectively. The multiplicative factor will then be applied to the roads in

99

5. THE ESTIMATION TOOL

the same way as it is in the basic, multiplicative problem.

The uniform multiplicative method uses a homogeneous set of roads, on which the

speeds are all the same, whereas the TSM introduces heterogeneous roads, upon which

there are three different speeds. Therefore from now on these methods will be referred

to as speed1 and speed3, to indicate that the roads have all one speed, or three different

speeds, respectively. Modelling like this means that the roads are symmetrical, i.e., it

takes as long to traverse them one direction as it does the other direction. Although

this is not reflective of real life situations, it does simplify these experiments.

Through our experiments, we propose to investigate the effects of congestion in

order to help model real life situations. We will focus on just two congestion models for

the first experiment set (see Figure 1.4). The first model, which we will call stepped, is

a simple stepped decrease, from 5 (high congestion) down to 1 (no congestion) over the

course of the “day”. The other one we will refer to as twin peak congestion, starting at

1 at the beginning of the “day” and changing quite rapidly throughout the day, with a

medium level of congestion in the middle of the day and two “peaks” of high congestion

(to simulate the morning and evening rush hours). Both of these congestion models

will be repeated from one day into consecutive days, although the runs should not go

very far into the second day, if at all. For the second experiment we plan to focus on

one model, twin peak, with speed3 roads, to represent morning and afternoon “rush

hour” congestion.

Figure 5.4: The two congestion models for our Experiments - Our two congestion

models, stepped on the left and twin peak on the right

100

5.3 Overview of SVRP Quadrant and SVRP Hill Climbing Experiments

5.3.6 Starting Solution Construction

For the first experiment we will produce greedy and random starting solutions as follows:

1. A greedy nearest neighbour algorithm was run on each instance, starting from the

depot. The algorithm has no random element to it, so only one tour will result

in each case. This produces a (comparatively) good solution.

2. A randomised tour was produced for each instance by randomly shuffling the

order of the non-depot nodes and then completing the tour by adding the depot

to the end. This produces a random solution.

Of particular note is that the two types of starting solution will have substantially

different tour lengths. Greedy tours are generally three times faster to traverse than

the random tours. Sometimes random solutions are so slow to traverse that travel will

overflow into a second day.

For the second experiment, random tours will be produced using the same method

as above. We will be creating 20 starting solutions, five for each of the four problem

instances that we use. For each problem instance, five different nodes will be designated

as the depot, and these will be chosen in a methodical way; e.g., with bier127 the

starting nodes will be 1, 26, 51, 76 and 101.

Clearly the effectiveness of our estimation method on greedy starting tours is likely

to be of more interest than its performance on random starting tours, given that a

heuristic or metaheuristic search spends most of its time enhancing good solutions

to make them even better, and little (or no) time at the start of the search dealing

with very poor solutions. Indeed, a greedy construction algorithm, such as the NNA,

is frequently applied to produce a starting solution for real-world problems, and the

heuristic or metaheuristic search applied to that rather than to a random starting

solution. However, we believe that it is important to assess the validity of our estimates

in a variety of situations.

5.3.7 Tour Evaluation Methods

We will now expand on the alternative methods for evaluating tour quality that we

will use in our SVRP Hill Climber Experiment, referring back to Figure 1.2. We will

consider three approaches, described below:

101

5. THE ESTIMATION TOOL

Näıve

This method is the simplest of the methods we will be using. The pre-change tour

does not need to be recalculated, so this approach starts at C and then calculates the

traversal time of each arc from C until it reaches A (i.e. all the arcs in both the changed

and the post-change sections). If the final result is an improvement on the original then

this new tour is used, otherwise it is discarded.

More formally, this method runs as follows:

1. Calculate the new tour from the start of the changed section until the end of the

tour (when the vehicle returns to the depot)

2. IF new tour’s cost < old tour’s cost THEN

3. Replace old tour with new tour

4. ELSE discard new tour

Thus, working through the example neighbourhood move performed in Figure 1.2,

AB and BC are left unchecked, as they will not have changed, CF, FE, ED, DG, GH,

HI and IA are all calculated one by one. If the new tour length is less than the old

tour length the new tour (ABCFEDGHIA) replaces the old tour (ABCDEFGHIA),

otherwise the new tour is discarded.

Standard

This method is similar to the näıve method, but with an added calculation that should

speed it up, relying on the FIFO property. It calculates every arc of the changed

section (from C to G inclusive) and then, upon reaching G, it compares the current

CTC (cumulative tour cost) to the CTC of the original tour at G. If it is an improvement

then it calculates the post-change section in order to find out the overall tour length

(and thus determine how much of an improvement it is). If it is not an improvement,

it discards it.

More formally, this method runs as follows:

1. Calculate the new tour from the start of the changed section until the end of the

changed section

102

5.3 Overview of SVRP Quadrant and SVRP Hill Climbing Experiments

2. IF new CTC(end of changed section) < old CTC(end of changed section) THEN

3. Calculate the new tour from the end of the changed to the end of the tour (i.e.

the post-change section)

4. Replace old tour with new tour

5. ELSE discard new tour

Thus, working through the example neighbourhood move performed in Figure 1.2,

AB and BC are left unchecked, as they will not have changed, CF, FE, ED and DG are

all calculated one by one. If the CTC at G is less on the new tour than it was on the old

tour then it calculates GH, HI and IA and then replaces the old tour (ABCDEFGHIA)

with the new tour (ABCFEDGHIA), otherwise the new tour is discarded.

Estimate

This method is based on the standard method, but uses the Estimation Tool first and

only calculates the changed section if the Estimation Tool suggests that it will lead to

an improvement, e.g., the method first looks at the traversal times of CD and FG in

the old tour, then calculates CF and guesses at DG (using the assumption that DG

will be traversed at the same time in the new tour as FG was in the old tour). It then

compares CD+FG to CF+DG, if the former is quicker then it calculates the changed

section exactly as the standard method does, and then the post-change section if it

turns out to be an improvement, if it is larger then it discards the new tour without

any further calculation.

More formally, this method runs as follows:

1. Calculate the traversal costs of the two old arcs being removed and assign to

oldarcs

2. Calculate traversal time of the first new arc encountered at the time it would be

encountered and estimate the traversal time of the second arc at the time that

the second old arc was traversed and assign sum to newarcs

3. IF oldarcs > newarcs THEN

103

5. THE ESTIMATION TOOL

4. Calculate the new tour from the start of the changed section until the end of the

changed section

5. IF new CTC(end of changed section) < old CTC(end of changed section) THEN

6. Calculate the new tour from the end of the changed to the end of the tour (i.e.

the post-change section)

7. Replace old tour with new tour

8. ELSE discard new tour

9. ELSE discard new tour

Thus, working through the example neighbourhood move performed in Figure 1.2,

CD and FG are calculated using their CTCs: CTC(G)−CTC(F)+CTC(D)−CTC(C),

the traversal time of CF is calculated at time = CTC(C) and the traversal time of

DG is calculated at time = CTC(F). If the new arcs appear cheaper than the odl arcs

then the tour is caclualted in the same manner as with the standard method: AB and

BC are left unchecked, as they will not have changed, CF, FE, ED and DG are all

calculated one by one. If the CTC at G is less on the new tour than it was on the old

tour then it calculates GH, HI and IA and then replaces the old tour (ABCDEFGHIA)

with the new tour (ABCFEDGHIA), otherwise the new tour is discarded.

The tests will involve random starting solutions and random choices of nodes upon

which to perform the 2-Opt operation. The Final Solution Quality (FSQ) should be

about the same for the näıve and standard solutions, as they will differ in FSQ only

due to experimental variance. We would expect the estimate to have a poorer FSQ on

average.

5.4 Experimental Work

First, we will examine the potential of using estimates, by looking in detail at how

effective they are when assessing 2-Opt moves. Next we will look at overall performance

when estimates are incorporated into a simple hill-climbing framework.

104

5.4 Experimental Work

All coding was implemented in MATLAB version 7.8.0.347 using a PC running

Linux Red Hat on an Intel Quad 2.83GHz processor with 12MB Advanced Level 2

cache, and 4Gb of 800Mhz RAM.

5.4.1 Assessing the use of Estimates in Individual Neighbourhood

Moves

Figure 5.5: Quadrant Graph Example - The four quadrants of the “estimate” vs.

“reality” graph

We use a 2D graph (Figure 1.5) to help us assess the usefulness of our estimation

method, with each of the points on the diagram representing the estimation of the

effect of a neighbourhood move compared to the actual change that is calculated using

the time variant traversal model. We have divided the diagram into four quadrants,

which correspond to true positive (TP), false positive (FP), true negative (TN) and

false negative (FN). To simplify our analysis we will focus only on membership of

the four quadrants and principally on whether or not the predictions are correct. A

neighbourhood move that is predicted as a massive improvement and turns out to be a

small improvement and a move where a small improvement is predicted that turns out

to be a massive improvement are counted in the same quadrant, whereas a move that

is predicted to lead to no change but which turns out to be slightly worse is counted

differently to if it turned out to be slightly better. By using the axes as dividers

the results directly lead to the efficiency of using a simple Hill Climber method, if a

105

5. THE ESTIMATION TOOL

solution is an improvement (of any degree) then it is “good”, otherwise it is “bad”,

what membership of each of the four quadrants means is easy to explain.

Note that in these decriptions we refer to “pessimal”, which we use as the opposite

of optimal, i.e., the worst solution (either locally or globally). Our perusal of the

literature could not find a term to describe this feature, and we felt that using maxima

and minima would lead to some confusion about what was being described, so we have

decided to use this term.

True Negative (TN)

This is the quadrant that we would like to see the majority of neighbourhood moves lie

in. This quadrant contains all the changes that would make the current solution worse

and that the Estimation Tool correctly identifies will make the solution worse. If every

change was TN then the current solution would be a local optimum, and the Estimation

Tool would correctly identify it as such (and, of course, would make the metaheuristic

reach that conclusion faster). If there were no TN changes then the Estimation Tool

would be detrimental, as the only changes that it would not spend time calculating

would be some of the improvements that could be made.

False Positive (FP)

This quadrant represents changes that will not improve on the current solution, but

which the Estimation Tool concludes will improve on the current solution. These

represent time that is spent calculating tours that do not result in an improvement,

although the calculation time is something that would need to be done if the Estimation

Tool was not used as well. Of course, the process of deriving the estimate itself takes

time, so each FP change is one where the Estimation Tool makes the metaheuristic

slightly slower. If all the changes were FP then the current solution would be a local

optimum, but the Estimation Tool would believe it to be a local pessimal, constantly

trying each change before finding that it was wrong. Thus the metaheuristic would

take longer to run using the Estimation Tool than if it was not being used, and would

still get the same result. If there were no FP changes then the Estimation Tool would

spend the vast majority of its time dealing with improvements, only glancing briefly

at the TN (and FN) results before discounting them, while focusing on the TP results.

106

5.4 Experimental Work

How many improvements it actually found would depend on the ratio of TP and FN

results.

False Negative (FN)

This quadrant represents changes that will improve on the current solution, but which

the Estimation Tool concludes will not improve on the current solution. These are the

worst result, as they represent improvements to the current solution that the Estimation

Tool wrongly believes are not improvements, and thus these improvements will be

skipped without implementation. If every change was FN then the current solution

would be a local pessimal, but the Estimation Tool would (fairly quickly) conclude

that it was a local optimum.

To reiterate, while a large number of FP changes means that the Estimation Tool

takes longer than it needs to, it will still produce the same result. With FN changes

the Estimation Tool will be quick, but will get a different (worse) result.

If there were no FN results then every improvement that was suggested would be

found, so the use of the Estimation Tool would lead to no loss in solution quality. Its

effectiveness in terms of time saving would be dependent on the other quadrants.

True Positive (TP)

This quadrant represents changes that will improve on the current solution and which

the Estimation Tool correctly concludes will improve on the current solution. These

are good results, although it is better for the Estimation Tool if the majority of true

results are true negative, with the minority (but more than none) to be true positive.

If all the changes were TP then the current solution would be a local pessimal, and

the Estimation Tool would identify it as such, but savings in time are only made when

potential changes are skipped, so the Estimation Tool would make the metaheuristic

take longer to reach the same result. If none of the changes were TP then the

Estimation Tool would find no improvements (any improvements that did exist would

be FN, and thus skipped), it would take time calculating all the FP changes fruitlessly

before concluding (wrongly, if there were any FP changes) that the current solution

was a local optimum.

107

5. THE ESTIMATION TOOL

The four quadrants and what they mean is summarised in Table 1.3.

The most important thing to take away from these brief looks at the four quadrants

is that, although the obvious ideas that true results are good for the Estimation Tool

and that false results are bad are both broadly true, it is important that both types

of true result, TP and TN, are represented. If all the true results are TN then no

improvements will be made (despite some potentially existing), and the metaheuristic

was a waste of time; if all the true results are TP then the only results that will be

being skipped are FN (some of the improvements), thus the metaheuristic is likely to

take more time when using the Estimation Tool than if it was not used, whilst also

likely getting a worse result.

Table 5.3: Properties of the four quadrants

Name Estimate

& Reality

Description

False Negative

(FN)

worse &

better

Of the most interest and worry. Beneficial solutions

that would be ignored if the “estimate” was used as

a guide. Represent lost quality

True Positive

(TP)

better &

better

Using the estimate as a guide would find these

improvements. Represent retained quality

False Positive

(FP)

better &

worse

These would be investigated fruitlessly if the estimate

was used as a guide. Represent wasted time.

True Negative

(TN)

worse &

worse

Those tours whose needless investigating is being

avoided by using the estimate as a guide, thus saving

calculation time. Represent saved time.

5.4.2 Possible Scenarios

While many of the all-or-nothing scenarios just painted sound bleak for the Estimation

Tool, only the most bizarre and specifically contrived problem would be able to result

in most of the scenarios described. The only scenario that could reasonably occur is

having no TP results, by using a metaheuristic on a (near) optimal solution. Even in

this scenario, the Estimation Tool performs well, cutting down on calculation time. The

much more likely results of using the Estimation Tool are a spread of changes across

the quadrants, with the majority being true. There are many potential scenarios that

108

5.4 Experimental Work

could arise based on the relative memberships of the four quadrants, we will now look

at more likely scenarios and what they would indicate.

The worst scenario is where the TN and TP quadrants are less populated than FN

and FP. In this case, using the Estimation Tool is worse than randomly choosing which

results to investigate. It is very unlikely for this to occur, as an example: a brief test

using congestion that was randomly chosen and with a random starting solution led to

two thirds of results in either TN or TP.

If there are few points that are TN then the use of the Estimation Tool can be

brought into question, as it is not eliminating very many of the move calculations. If

the number of results in FN is relatively high compared to TN then the benefit of not

calculating the TN points is likely to be outweighed by the loss of not calculating the

FN points.

A large amount of FN solutions means that a lot of improvements will not be

investigated because they are not predicted as being improvements. On the other

hand, if the number of solutions in TP is substantially more than those in FN then it

could be suggested that the loss of the minority in FN is acceptable when compared

with the gain in time, especially if the majority of points are in TN (which is often the

case when investigating a reasonably good solution), as this will mean a lot of solutions

will not be checked and only a small number of those will be useful.

With a lot of TN points it means that time is being saved, which is half of the

justification for using our Estimation Tool. The other half is to avoid unnecessary loss

of solution quality. Solution quality is lost through having too many FN solutions (the

improvements that are missed by using the Estimation Tool). Thus the number of FN

results, in particular compared to the number of TP results, is of great importance.

We want to see few FN results and many TN results, with a reasonable number of TP

results. A large number of FP results is annoying, as it leads to wasted time, but as

long as there are a lot of TN results the time saved over not using the Estimation Tool

will still be significant.

We can see that the sum of TN and FN is the proportion of evaluations for which

computing time is saved by using the Estimation Tool. The value of FN over TP + FN

is the proportion of good solutions that are lost using this method. A lot of comparative

values can be found by using these numbers, as we will now briefly discuss.

109

5. THE ESTIMATION TOOL

How useful is the Estimation Tool’s estimates, given the results (assuming a simple

Hill Climber)? The Estimation Tool is using TP+FP of the time to get TP/(TP+FN)

of the results compared to calculating them all. Obviously the time it takes to do the

estimating is relevant. In general the estimating requires 5 look ups (the times at the

node being moved, the nodes before and after it and the nodes before and after where

it is moving to), whereas the actual calculation requires (very approximately) 2/3 of

the tour length (as only the tour after the move takes effect needs to be calculated,

which on average is about 1/3 of the way through the tour). Thus the “Time Saving

Factor” (TSF) would be: TourLength ∗ 2/3 ∗ (TN + FN)/5.

If this TSF is > 1 then calculation time will be being saved by using the Estimation

Tool, if it is lower than 1 then the use of the Estimation Tool is actually taking more

time than simply calculating all the results fully. This is a ratio, so if it comes out as

a TSF of 3 in using the Estimation Tool then it is spending 1/3 of the time it would

have been if it calculated the reality.

The other half of the usefulness is how much is being lost. Again, assuming that

all results are either good or bad, with no variation in how good or bad, then the

“Discovery Quality” (DQ) can be seen as TP/(TP + FN), giving a fraction of good

neighbourhood moves found (1 represents finding all the good moves, 0 would represent

finding none). Then we can look at TSF ∗DQ to get a final result of quality.

As should be clear, this is by no means a scientific measure. It does give a

quantifiable value for a set of solutions quality without needing to know details about

the solutions in general though, which is useful. A more accurate value could be

calculated by keeping track of the number of look-ups made throughout the experiment,

however, these calculations are made mute by the fact that we will be running our

experiments in a metaheuristic framework anyway.

5.5 Results for SVRP Quadrant Experiment

In total we are using two customer distributions, two speed models, two congestion

models and two starting solutions (16 experiments) each with five variants based on

different choices for the depots. Giving 16 × 5 = 80 runs in total. Table 1.4 gives the

average results for runs on each of the five runs variants for the 16 different experiments.

The left half of the table represents the experiments run on a280 and the right shows

110

5.5 Results for SVRP Quadrant Experiment

Table 5.4: SVRP Quadrant Experiment Results

a280 bier127

Random Start

Congest FN TP FP TN FN TP FP TN

Speed1&Step 6.49 42.27 6.57 44.67 6.68 41.55 6.65 45.13

Speed1&Twin 4.02 45.67 4.13 46.18 5.09 44.65 5.15 45.11

Speed3&Step 5.55 46.13 5.56 42.76 6.68 41.55 6.65 45.13

Speed3&Twin 3.79 46.34 3.21 46.65 4.73 44.65 4.83 45.79

Greedy Start

Congest FN TP FP TN FN TP FP TN

Speed1&Step 0.29 0.14 0.00 99.57 0.64 0.42 0.01 98.94

Speed1&Twin 0.09 0.30 0.35 99.26 0.25 0.97 1.02 97.77

Speed3&Step 0.18 0.19 0.00 99.63 0.79 0.19 0.00 99.02

Speed3&Twin 0.07 0.36 0.25 99.32 0.24 0.65 0.74 98.38

those run on bier127. The numbers represent the percentage of total solutions that lie

in each of the four quadrants on our “estimate” versus “reality” graph. thus each half

of each row adds up to 100.

The main purpose of these experiments is to investigate to what extent an estimation

method can be relied upon. In order to help understand this, a comparison of “true”

results (those in the TP or TN quadrants, which represent the points for which the

estimate correctly predicted whether the change would be an improvement) against

“false” results (those in the FN or FP quadrants) needs to be made. A simplified view

is that FP costs calculation time, FN costs solution quality, TN saves calculation time

and TP contributes to solution quality. Other observations will also be made.

We will now look at each of the parameters in turn with reference to Table 1.4,

Figure 1.6, which shows the random results and Figure 1.7, which shows the non-TN

greedy results.

5.5.1 Congestion Instance: Stepped vs. Twin Peak

By pairing up each of the stepped results with its equivalent twin peak result we find

that, in the experimental pairs involving random starting solutions, stepped congestion

produced more FP and more FN results than twin peak. With greedy starting solutions

111

5. THE ESTIMATION TOOL

Figure 5.6: Distribution of random results for SVRP Quadrant Experiment

- A close-up of the distribution of results on random starting solutions, represented as a

percentage of the total number of results.

112

5.5 Results for SVRP Quadrant Experiment

Figure 5.7: Distribution of non-TN greedy results for SVRP Quadrant

Experiment - A close-up of the distribution of non-True Negative results on greedy

starting solutions, represented as a percentage of the total number of results.

113

5. THE ESTIMATION TOOL

however, all the pairs had more false results with twin peak than stepped (stepped had

less FN than twin peak but more FP in every instance).

As may be noticed, the “greedy stepped” combination produces few FP results. In

total four of the five runs of a280 speed1 had two FP results (out of a total of 38,781

different node pairs) and bier127 had three runs producing a single FP result (out of

8,001). For speed3 neither problem instance had any FP results.

One possible reason why the estimate has more FP on stepped congestion for random

but virtually none for greedy may be because of the initial construction algorithm used.

The low number of FP results from the greedy runs may be an artifact of the nearest

neighbour construction, which tends to use short edges at the start of the tour, and

long edges increasingly as the greedy choice is reduced towards the end of the tour.

We can see that the rapidly changing congestion of twin peak produces more False

results than the steady change of stepped when applied to our greedy solutions, but less

False results when applied to our random solutions. This difference may be due to the

nature of the two congestion models. Our greedy solution will have shorter arcs, on

average, than the random solution, so the time that an arc is traversed will, in general,

change by a smaller amount. Our random solution, on the other hand, commonly has

much longer arcs, thus the time that the arcs are traversed is likely to vary more. Now,

looking at the congestion models, it is clear that a large change in the time that an

arc is traversed will definitely result in a change in congestion for stepped, but may

not for twin peak. Conversely, a small change in the traversal time would, at worst,

lead to a small change in congestion with stepped, but could lead to a drastic change

in congestion with twin peak.

This explains the True/False nature of the results, but not why greedy twin peak

has so much more FP and so much less FN than stepped. A potential reason for why

this has occurred is that the stepped model has a high congestion at the start and low

at the end, so as a tour is made shorter it has a higher congestion, it may be the case

that reducing the average congestion means that the estimates are underestimating the

time savings resulting from neighbourhood moves, thus the increased percentage of FN

results and decreased number of FP results for stepped compared to twin peak. This

effect only occurs with greedy and not with random both because the random tours will

often see much more drastic changes and because the length of the tours for random

114

5.5 Results for SVRP Quadrant Experiment

put them over a day in length, meaning that the congestion is not always decreasing

(as it is reset to max at the start of each new day).

5.5.2 Congestion Type: Homogeneous (Speed1) vs. Heterogeneous

(Speed3)

In all the experiments with random starting solutions, the congestion model used has

little noticeable effect on the ratio of FP, FN, TN and TP obtained in our experiments,

certainly less than any of the other parameters (such as problem instance). The results

from the greedy starting solutions have more of a noticeable difference in the ratios.

However, this could be explained (at least in part) by the small sample size, as it

is much more difficult to improve a good solution than a poorer one. Thus most of

the results for the neighbourhood moves applied to the greedy starting solution are in

the TN quadrant. For the rest of this section we will be referring only to the greedy

results, as there is little difference between the two congestion modelling methods for

the random starting solutions, in a couple of cases the different methods are not even

statistically significant (for instance, a T-Test on bier127 with twin peak congestion

gives p = 0.1232).

In every case the estimates made for neighbourhood moves for heterogeneous road

networks produce less FP results than estimates made on homogeneous networks. For

the a280 results, the heterogeneous routes have a decrease in FP results and an increase

in both TP and TN results. So the estimate method is, in fact, more useful when the

roads are heterogeneous. For bier127 it is not quite as good, with less FP for the

heterogeneous routes but more FN for one of the two congestion models (the other

leads to slightly less). In both cases the ratio of FN to TP is worse for heterogeneous

(meaning that fewer of the moves that would be improvements are identified by the

estimate as being such).

With all of these trends, the differences are quite small.

In conclusion, the congestion type of the road networks had little effect in these

scenarios. It may still be the case that using a more realistic congestion model based

on actual speed measurements will result in the congestion type having more effect.

Within the structured SVRP instance of a280 it seemed to be that the more complex

congestion modelling system (with heterogeneous roads) actually worked in favour of

the estimation method.

115

5. THE ESTIMATION TOOL

5.5.3 Distribution of Nodes: a280 vs. bier127

In all of the scenarios there are more FP and more FN for bier127 than a280, except

for the occasions where neither have any FP results. For the random starts these

extra incorrect predictions seem to be at the cost of TP. For greedy starting solutions,

bier127 has more TP results for twin peak congestion, but about the same for stepped

congestion.

The ratio of FP to FN between the two problem instances for twin peak congestion

is approximately the same (bier127 has roughly three times as many results of each

compared to a280), independent of the congestion type.

From these observations, it seems clear that the problem instance has a fairly

important effect on the estimation quality. It seems plausible that the clustered nature

of bier127 is leading to the increased inaccuracy in the estimates compared to the more

ordered and evenly spread a280. A more extensive study would be needed to verify

this effect, involving many more problem instances.

5.5.4 SVRP Quadrant Experiment Conclusion

This experiment was useful in seeing how effectively the Estimation Tool could identify

TN results, which is its main benefit - removing the need to calculate changes that would

not lead to an improvement. Even on a problem with a random starting solution over

85% of the moves were identified correctly. With a more reasonable starting solution,

deriving from one of the more basic heuristics available, over 97% of moves were TN.

Looking at the different variables that we changed, we can see that the method of

modelling the congestion had little effect on the Estimation Tool. The initial solution

had the largest effect, which is unsurprising. It should be evident that the initial

solution would change the number of improvements that actually existed, thus the

ratio of TP and FN to TN and FP. Additionally, the more sizeable an improvement,

the more likely the Estimation Tool is to accurately predict it, which can be seen in

the sheer number of TN results from the greedy start. The problem instance had quite

an effect, which again is reasonable to have predicted, with bier127 so much worse for

the Estimation Tool than a280, over twice as many non-TP results for all the greedy

results. It seems that problem instance has quite an impact, and we will be observing

this more in the next experiment. Lastly, the type of congestion had an effect on the

116

5.6 Results for SVRP Hill Climbing Experiment

ratio of results, more so than the method of modelling it, but less than either the

starting solution or problem instance.

As the method of modelling the congestion had little effect on the Estimation Tool,

we will continue to model further experiments using only the more complex of the two

methods, in order to keep our research focused on more important matters. The rest

of the aspects had enough of an effect that we will focus on them more with later

experiments.

An obvious question is how repeatable the experiments are. While preparing the

experiments and testing our methods we ran a reasonable number of sample tests and,

although not scientific enough to be reported here, they gave a similar picture to the

results that we have found. Based on this and the systematic manner that all the

possible moves were tested and the non-randomness of the NNA, we believe that these

results are valid and repeatable.

There is more that could be done with this experiment and its findings, but it is

important to remain focused on the more important findings that are yet to come. We

have seen that the Estimation Tool is capable of accurate predictions for the majority of

moves, but whether this transfers across when used in a metaheuristic framework, and

what the savings in time that result in its use are like is impossible to accurately predict

from these results. Therefore, we will move on to the more important experiment in

this chapter.

5.6 Results for SVRP Hill Climbing Experiment

For these experiments there are two issues we will investigate: calculation method and

problem instance. These will be measured within a simple heuristic framework, using a

basic hill climbing algorithm. Starting with a random starting solution we will perform

1,000,000 2-Opt neighbourhood moves on random pairs of nodes/arcs, incorporating

any moves that lead to an improvement, timing the whole process and recording the

Final Solution Quality (FSQ). For each pair of calculation methods (three methods,

see Section 1.3.7) and problem instance (four instances, see Section 1.3.4) we will run

the experiment 25 times in order to get a representative spread of results.

In this section we present a comparison between the näıve, standard and estimate

methods (as defined in Section 1.3.7) for evaluating neighbourhood moves incorporated

117

5. THE ESTIMATION TOOL

within a simple hill climbing heuristic method. We examine the trade-offs between FSQ

(Final Solution Quality) and run time. Figure 1.8 illustrates the results for the Hill

Climber on the four problem instances. In all cases the estimate method is the fastest,

with the standard method second and näıve evaluation slowest.

Tables 1.5 and 1.6 give the minimum, average (mean) and maximum for both ‘FSQ’

and ‘time taken to calculate’ for each of the problems, along with the average number

of improvements (out of a possible 1,000,000). All times are measured in seconds, all

FSQs and tours have arbitrary units. Table 1.7 shows the average percentage change

between standard and estimate for each problem (note that both FSQ and time are

minimisations, so a negative number represents an improvement for the estimate over

the standard method).

Table 5.5: SVRP Hill Climber Experiment Results 1 (bayg29 and bier127)

bayg29 bier127

Näıve Standard Estimate Näıve Standard Estimate

Min FSQ 15056.86 14971.98 15000.88 220993.97 219912.75 232306.76

Avg FSQ 15338.01 15363.13 15536.61 233850.43 233742.77 244338.49

Max FSQ 15695.06 15858.51 16325.76 251247.15 250233.42 256479.54

Min Time 74.08 68.46 44.08 101.38 74.62 39.21

Avg Time 74.66 68.75 44.63 101.86 75.61 40.83

Max Time 75.47 69.01 45.50 102.35 76.75 43.06

Avg. Imps 45 43 39 401 398 357

Table 5.6: SVRP Hill Climber Experiment Results 2 (a280 and gr666)

a280 gr666

Näıve Standard Estimate Näıve Standard Estimate

Min FSQ 3655.24 3703.11 3703.39 4588.35 4592.18 4611.18

Avg FSQ 4117.28 4177.71 4168.19 4682.86 4695.77 4732.70

Max FSQ 4548.36 4768.78 5070.44 4798.69 4776.03 4933.34

Min Time 127.87 87.22 30.08 271.96 159.00 31.56

Avg Time 128.65 87.91 30.37 278.49 162.80 32.35

Max Time 129.31 88.51 30.68 283.39 171.09 32.90

Avg. Imps 1052 1065 990 3384 3357 3184

118

5.6 Results for SVRP Hill Climbing Experiment

Figure 5.8: SVRP Hill Climber Experiment Results - The results of SVRP Hill

Climbing Experiment on the four problem instances. Note that gr666 FSQ is not on a

scale from 0 for clarity reasons.

119

5. THE ESTIMATION TOOL

Table 5.7: Average Percentage Change between Standard and Estimate on SVRP Hill

Climber

bayg29 bier127 a280 gr666

Avg FSQ 1.13% 4.53% -0.23% 0.79%

Avg Time -18.73% -46.00% -65.46% -80.13%

5.6.1 Interpreting the Results

As mentioned before, there are two aspects to a successful heuristic: run time and FSQ.

We can examine this trade-off in Figure 1.8. The estimate method is very much faster on

all instances, and, with the exception of bier127, give solutions whose FSQs are within

a couple of percent of standard. It is not surprising that the standard method matches

the solution quality produced by the näıve method, given that potential improvements

are not missed by either of these methods.

Tables 1.5, 1.6 and 1.7 present the results in more detail. The benefits of using

the estimate method clearly grow as the instance size becomes larger. For bayg29 the

estimate takes 19% less time than the standard method, for bier127 it is 46% faster,

a280 sees a saving of 65% and, in the case of gr666, using the estimate method results

in a saving of 80% compared to the standard method. These are considerable savings.

One other notable aspect of these results, however, is that the run times (over näıve,

standard and estimate) grow rather more slowly than one may expect, in relation to

the size of the instance. This can be largely explained because we currently have

quite a large computational overhead in our implementation. Nevertheless, we can

observe a steady growth in computation time with an increasing number of nodes

for the näıve and standard methods. On the other hand, the run times for the

estimate method actually reduce as the number of nodes increases. This is indeed

somewhat counter-intuitive, and is in part due to a more complex (and time consuming)

computation required to implement 2-Opt when nodes adjacent to the depot are

involved. The smaller the instance, the more likely one of these nodes is selected.

In any case, given the small number of potential improvements found out of 1,000,000

neighbourhood trials in each test run, we would not expect the run time to grow very

fast with instance size (see the final row in Tables 1.5 and 1.6). Recall that the estimate

simply evaluates the difference between the cost of the two arcs added and the two arcs

120

5.6 Results for SVRP Hill Climbing Experiment

taken away, and also that this operation is performed in constant time, regardless of

the number of nodes, with very few complete tour evaluations needed.

Comparing the average FSQ for the estimate method with the FSQs for the standard

and näıve method: for bayg29 it was 1.13% and 1.29% worse than standard and näıve

respectively, which is statistically significant. A T-Test against each gives 0.03 and

0.07 respectively, so there is definitely an effect on FSQ from using the Estimation

Tool. FSQ for bier127 was 4.53% and 4.48% worse than standard and näıve with over

a third of the results for both standard and näıve giving better results than the best

of the estimate results for this instance. This instance is the most significant (T-Test

results of 0.0000034 and 0.0000093) and is clearly the worst for the estimate method

in terms of FSQ, although why this may be is not yet known. FSQ for a280 was 0.23%

better and 1.24% worse - presumably by random chance the estimate method actually

gives better results than the standard method, the Estimation Tool does not show

significant differences (T-Test results of 0.55 and 0.91). The results for bier127 and

a280 demonstrate once more that the estimate tool is more accurate when applied to a

structured problem like a280 than it is with the clustered bier127. Lastly the estimate’s

FSQ for gr666 was 0.79% and 1.06% worse than standard and näıve, with significant

T-Test results of 0.01 and 0.04.

5.6.2 SVRP Hill Climbing Experiment Conclusion

To sum up our findings, it is indeed possible to considerably reduce computation

times (from 35% with small problems up to over 80% with larger instances) without

compromising solution quality in the scenarios explored. Clearly, the standard method

can be used in circumstances where the estimate method is not sufficiently accurate,

but the time savings that we have found suggest that a better approach may be to run

multiple instances of the problem and take the best. For three of the four instances

(the exception being bier127), the lower quartile value of the estimate method was less

than the mean of either the standard or näıve methods, suggesting that, on average,

three runs of the estimate would give a better FSQ than a single run of either of the

other two methods.

Overall, it seems evident that the Estimation Tool is at its best on larger instances,

while the calculation time when using the Estimation Tool is affected little by increasing

the problem size, without its use the calculation time rapidly increases as the number

121

5. THE ESTIMATION TOOL

of customers increases. With gr666 the Estimation Tool can be used to speed up

calculation time so significantly that the same metaheuristic can be run three times (as

a Shotgun Hill Climber, explained in Chapter 3) to give (on average) a better result

in less than 60% of the time. It can be fairly safely assumed that larger problems will

result in even more significant benefits for using the Estimation Tool.

While the advantages of using the Estimation Tool are readily apparent, it is

important to look at the results in full. A number of questions arise from the results:

• How repeatable are all the results?

• Why was a280’s estimate better compared to standard and the worst (apart from

bier127) compared to näıve?

• How quickly (in terms of both moves performed and time) do the methods

converge on their “final” results?

• Why was bier127 so much worse for the estimate than the other instances? -

more than 4.5% worse FSQ compared to just over 1% worse for the next worst

The repeatability of the results is a question that can always be posed when dealing

with heuristics that have random components. For our results it seems reasonable to

conclude that there is not a great deal of variation, as in all cases the FSQ of the results

found has a variance of under 30%. The largest spread is for the estimate on a280,

which has a minimum 27% less than the maximum. In this instance there is a clear

outlier, with the majority of the points clustered together. Calculation time is even

more consistent, with the highest difference being under 9%.

The variability in the results for a280 is interesting, but a repeated experiment

suggests that this is down to random chance, with a slightly above average performance

for the näıve method and a below average performance for standard.

For the other two points: the speed at which the methods converge on their “final”

results is an interesting question which we will look at in more detail in Chapter 7;

the comparatively poor performance on bier127 is an interesting conundrum, and one

which deserves investigation, however, this thesis has much to cover, and the effects on

single vehicle problems are of less concern to us than the work in the rest of this thesis,

so for now we will move on to briefly investigate another relevant aspect of the problem

before we proceed to the more important issue of multiple vehicles.

122

5.7 Comparing Neighbourhood Moves and Disruption

5.7 Comparing Neighbourhood Moves and Disruption

In this Chapter we have so far looked at the effects of using 2-Opt on solutions and how

well the Estimation Tool deals with these changes. What we have not yet touched upon

is how the disruption that is caused by the neighbourhood move relates to the reliability

of the estimate produced by the Estimation Tool. It seems obvious enough that the

more disruptive a neighbourhood move is, the more likely the Estimation Tool is to

give an inaccurate prediction. One method of testing this hypothesis, and of finding

how the relationship works - whether there is a linear correlation or an exponential one,

or similar, is to keep track of how many nodes are between the two changed areas, i.e.

how many nodes are traversed at a different point in the tour (note here that, due to

the FIFO property being held and us currently only being concerned with whether a

move is an improvement on the existing solution, and not how much of an improvement

it may be, the effects of knock-on congestion on the tour after the final change are of

no concern, as the tour that is better before the final set of nodes will be better after

the final set of nodes as well).

Although looking at the intervening node count and comparing it to the ratio of

TN, TP, FN and FP could be interesting, the data that would be produced would be

quite difficult to draw any conclusion from, simply due to the size and scope of such a

test. A smaller problem could be used, but then the effects that were being searched

for would be less as well.

Instead, we plan to look at the disruptive effects in a different way. Recall that

we discussed a variety of Neighbourhood Moves in Chapter 3, and note that they

evidently produce different levels of disruption. The Delete & Insert method moves a

single node from one place to another, and thus it seems evident that it is, on average,

less disruptive than Swap, which moves two nodes, and in turn, Swap is less disruptive

than 2-Opt, because it only moves 2 nodes, whereas 2-Opt moves the two nodes and

also any other nodes between them.

For this brief experiment, we are going to use the same methodology as we did for

the SVRP Quadrant Experiment earlier in this Chapter, but with Delete & Insert used

instead of 2-Opt.

123

5. THE ESTIMATION TOOL

Table 5.8: SVRP Delete & Insert Experiment Results

a280 bier127

Random Start

Congest FN TP FP TN FN TP FP TN

Speed1&Step 1.25 46.58 14.08 38.09 0.76 50.44 18.18 30.62

Speed1&Twin 2.38 45.44 5.43 46.74 5.40 45.80 5.93 42.87

Speed3&Step 1.06 46.13 13.99 38.82 0.64 51.8 17.19 30.38

Speed3&Twin 3.25 43.94 5.19 47.62 3.70 48.74 6.20 41.36

Greedy Start

Congest FN TP FP TN FN TP FP TN

Speed1&Step 0.02 0.15 0.03 99.79 0.15 0.47 0.33 99.05

Speed1&Twin 0.02 0.16 0.25 99.56 0.12 0.50 0.72 98.67

Speed3&Step 0.03 0.24 0.02 99.72 0.14 0.55 0.18 99.14

Speed3&Twin 0.01 0.26 0.24 99.50 0.21 0.48 0.37 98.95

5.7.1 Results for SVRP Delete & Insert Experiment

Once again, we used two customer distributions, two speed models, two congestion

models and two starting solutions (16 experiments) each with five variants based on

different choices for the depots. Giving 16 × 5 = 80 runs in total. Table 1.8 gives the

average results for runs on each of the five run variants for the 16 different experiments.

The left half of the table represents the experiments run on a280 and the right shows

those run on bier127. The numbers represent the percentage of total solutions that lie

in each of the four quadrants on our “estimate” versus “reality” graph. thus each half

of each row adds up to 100. The results are shown in Figures 1.9 and 1.10.

Congestion Instance: Stepped vs. Twin Peak

For 2-Opt we found out many useful things from observing the results, and most of

them are mirrored with the results here. Once again, we see that the random solutions

have many more FP results for stepped than twin peak but this time there are less FN

results for stepped than twin peak. With the greedy start twin peak once again has

more FP in every instance, FN was generally similar between the two this time, with

two instances of stepped being bigger and two of twin peak being bigger (greedy speed1

a280 shows the results as the same, but going to another decimal place shows that it

124

5.7 Comparing Neighbourhood Moves and Disruption

Figure 5.9: Distribution of random results for SVRP Delete & Insert

Experiment - A close-up of the distribution of results on random starting solutions,

represented as a percentage of the total number of results.

125

5. THE ESTIMATION TOOL

Figure 5.10: Distribution of non-TN greedy results for SVRP Delete & Insert

Experiment - A close-up of the distribution of non-True Negative results on greedy

starting solutions, represented as a percentage of the total number of results.

126

5.7 Comparing Neighbourhood Moves and Disruption

is 0.022 for stepped and 0.025 for twin peak). Again the total number of false results is

more for stepped when it is random and more for twin peak when it is greedy.

To conclude, the FP results show the same trends as they did with 2-Opt, the FN

results are less numerous in general with Delete & Insert, but the results that we can

see are less affected by changing congestion instance using Delete & Insert than they

were when we used 2-Opt.

Congestion Type: Homogeneous (Speed1) vs. Heterogeneous (Speed3)

Once again, the congestion model has little effect on the random solutions, although

there is a little more of an effect than with 2-Opt, it is still the least relevant of the

different variables that we change. We also see a repeat of the reduced FP results for

greedy starts using speed3 than using speed1. The number of TP results is more with

speed3 in three of the four instances, and slightly less in the fourth. In all four cases

speed3 has more true results than speed1.

To conclude, once again Congestion Type has the least effect amongst the variables

and again the small effect that it does have suggests that the more complex modelling

system works in favour of the Estimation Tool.

Distribution of Nodes: a280 vs. bier127

Once again, bier127 produces more FP results than a280 in every instance, this time,

however, bier127 produces less FN results than a280 for the random start and stepped

congestion (in the other three scenarios it once again performs worse). Unlike before,

TP is higher with bier127 in every instance, rather than lower (for both starting

solutions). Instead, TN is lower for bier127 for all the instances. Overall bier127

has more false results than a280.

Despite the varied ways in which bier127 differs from a280 in this experiment,

compared to 2-Opt’s experiment, we once again can conclude that the Estimation Tool

performs better on a280 than on bier127. Although there are a couple of instances

where there are less FN, i.e. missed improvements, when using bier127, on average

it still has more, and substantially more on the greedy start. Although there are

more improvements in general for bier127 on the greedy start, the percentage of found

improvements is still much worse in every instance.

127

5. THE ESTIMATION TOOL

Neighbourhood Move Type: 2-Opt vs. Delete & Insert

The most important comparisons to be made are between the two experiments

themselves. Comparing the results of the SVRP Quadrant Experiment to their

counterpoint in the SVRP Delete & Insert Experiment (this comparison having 16

pairs, rather than the 8 that exist for the internal comparison made earlier) we find

some interesting results.

In 15 of the 16 comparisons, 2-Opt produces more FN results than Delete & Insert

(the one exception being bier127 random start with speed1 twin peak congestion). At

the same time, 2-Opt produces less FP results in 12 of the 16, the 4 in which is does

not are the four greedy start twin peak results.

Focusing on the greedy start and the congestion model we see that 2-Opt has more

FP and TP (i.e. predicted improvements, both accurate and inaccurate) than Delete &

Insert for every twin peak result and less FP and TP for all the stepped results. 2-Opt

has more FN and less TN for all instances of greedy start.

From this and other observations we suggest the following:

1. The extra disruption caused by 2-Opt, compared to Delete & Insert, has a

tendency to increase the number of False Negative results, in other words, more

disruptive moves lead to potential improvements being missed more often.

2. When Nearest Neighbour is used to produce a starting solution, more

improvements can be found using the more disruptive approach of 2-Opt,

compared to that of Delete & Insert.

3. The reliability of the Estimation Tool at finding improvements is dependent on the

congestion model. One of the models we used led to less predicted improvements

in every case and the other led to more in every case.

4. The less disruptive move led to more of the potential improvements being found

in the majority of cases, although this seems dependent on the problem instance.

5.8 Conclusion

In this Chapter we have introduced and explained our Estimation Tool and how it

can be applied to heuristic and metaheuristic methods. We have explained the four

128

5.8 Conclusion

quadrants that result from the Estimation Tool’s use and how membership of these

quadrants affects a solution. We have also conducted three experiments, the first and

third looking at the small scale and the second at the large scale. Our experiments,

which are concluded more fully in the relevant sections, show that the problems that

we have used are solved effectively by the Estimation Tool. As we had hoped the

Estimation Tool scales well with problem size, with comparative calculation times across

the range of problem sizes.

The results suggest that the Estimation Tool performs better on some problems and

with some neighbourhood moves than others, bier127 seems to be a little tougher for

the Estimation Tool to manage than other problems, but why this may be is unclear

as of yet. Even in this outlier case, the Estimation Tool still performs well.

Whilst these initial experiments show great promise, the most important

experiments are yet to come. Dealing with a single vehicle problem is much easier

than dealing with multiple vehicles, and so we will, in the next Chapter, see how well

our Estimation Tool deals with the more complex MVRPs.

129

5. THE ESTIMATION TOOL

130

6

Using our Estimation Tool on

Multiple Vehicle Problems

The Estimation Tool has been shown to work effectively on our synthetic SVRP

instances, giving savings in run time without significant loss of quality. The next stage

is to test our estimates on a similar set of MVRPs. In the first half of this Chapter,

we will use a similar approach to that of the previous chapter, testing the estimate’s

performance at the microscopic and macroscopic levels. The problem instances we will

use will be based on the same set of four problems from TSPLIB that we used in the

previous Chapter. In the second half of this Chapter, we will move on from our synthetic

congestion models entirely and investigate how estimates work with congestion based

on historical measurements of vehicle speeds in a Real World road network.

We hope to show that our Estimation Tool is as effective at dealing with multiple

vehicles and problems based on Real World situations as it was shown to be on the

SVRP problems of the previous Chapter. In essence, this Chapter aims to demonstrate

the same things that the previous Chapter did, only with multiple vehicles and Real

World-based models.

If the Estimation Tool proves to be as effective on Real World problems based on

actual travel times (which are stored in the Road Timetable
TM

) as it has been in the

previous Chapter then it will show that the performance of metaheuristics using the

Road Timetable
TM

in terms of calculation time can be improved by using the Estimation

Tool.

131

6. USING OUR ESTIMATION TOOL ON MULTIPLE VEHICLE
PROBLEMS

6.1 Overview of MVRP Quadrant Experiment

As was mentioned earlier (see Section 2.7), without any constraints, the optimal solution

to any Cartesian VRP, as well as most non-Cartesian VRPs, will be to use a single

vehicle. For most real world VRPs, constraints will exist that mean that the optimal

solution requires multiple vehicles and it is often the case that a single vehicle is an

infeasible solution. The constraint that we will apply to our test problems is a capacity

constraint on the vehicles, along with the demands of the customers (explained later).

Capacity constraints are a common feature of many real world VRPs, which is why we

have chosen to use them here.

We will be taking a similar approach in this Chapter to that used for the SVRP

Quadrant Experiment (Section 1.5). As before, we are interested in the accuracy of the

estimates that are made, specifically which quadrant of the estimate vs. reality graph

(TN, TP, FN or FP) they belong to. In the SVRP Quadrant Experiment, the factors

that affected the distribution of results the most were the solution construction heuristic

and the problem instance. Thus for our multiple vehicle experiments on the synthetic

data, we will not spend our time with analysing and testing on multiple congestion

instances or types, limiting our main focus to the Speed3 Twin Peak congestion model

throughout the experiments. We will also be using a different Neighbourhood Move

from that used in our earlier experiments, as each 2-Opt move only affects a single

vehicle, making it unsuitable for investigating multiple vehicle problems.

In order to validate our results, once we have finished running this set of experiments

we will then run the experiments again using Speed3 Stepped congestion and compare

the results, although this will not be a thorough analysis, as the stepped congestion

is a simpler and less realistic congestion model, and thus the results for it are of less

value to us for comparison to performance on Real World problems.

6.1.1 Modelling Capacity

For consistency we will base our first set of experiments on the same problems from

TSPLIB that we used in our SVRP experiments (see Chapter 5). Because these

problems are designed for TSPs, there is no demand provided, so we will add our

own. We will assign each customer an integer demand between 1 and 5. In order to

have an easily applied demand that is repeatable we will be basing the demand on the

132

6.1 Overview of MVRP Quadrant Experiment

node’s position in the point list from TSPLIB. Simply put, for the first experiment

the customer represented by node 1 will have a demand of 1, the second a demand of

2 etc. up to the fifth, then the sixth will have a demand of 1, the seventh 2 and so

on. Thus it can be estimated that the total demand will be approximately three times

the number of customers. For both of the problems the capacity of each vehicle (a

homogeneous fleet will be used for simplicity) will be such that the minimum number

of vehicles that could be used to service all of the customers in the ideal situation will

be nine. The capacity will be modelled as a soft constraint as we are imitating a single

neighbourhood move within a construction heuristic. We will apply a penalty of 250

for each point that the capacity is exceeded by. As a point of reference, the average

random solution quality (ignoring capacity penalties) of a280 is 50,000, so each point

of capacity equates to around 0.5% of a random solution.

In total, ten sets of test instances will be created based on the demand pattern

described above: the first half by adding an offset of 0-4 to the values and the second

half by reversing the allocation of the first half. The demands of the first five nodes

are summarised in Table 6.1, these values are then repeated throughout the rest of the

nodes in each instance (so node 6 has the same demand as node 1, node 7 has the same

demand as node 2 etc.).

Table 6.1: CVRP Demand Assignment

Normal w/ Offset(n) Reversed w/ Offset(n)

Node (0) (1) (2) (3) (4) (0) (1) (2) (3) (4)

1 1 2 3 4 5 5 1 2 3 4

2 2 3 4 5 1 4 5 1 2 3

3 3 4 5 1 2 3 4 5 1 2

4 4 5 1 2 3 2 3 4 5 1

5 5 1 2 3 4 1 2 3 4 5

6.1.2 Starting Solution Heuristic

As with the SVRP Quadrant Experiment (see Section 1.3), we will run this experiment

on a generated starting solution, systematically looking at every possible way to apply

the chosen neighbourhood move and seeing how well the Estimation Tool does when it

comes to predicting whether an improvement will occur or not. In addition to using a

133

6. USING OUR ESTIMATION TOOL ON MULTIPLE VEHICLE
PROBLEMS

random solution construction algorithm we will be using a modified Clarke & Wright

heuristic, rather than Nearest Neighbour, as a starting point for our improvement

heuristics because the Nearest Neighbour Algorithm is less suited to producing good

quality starting tours for multiple vehicles.

The standard Clarke & Wright heuristic is designed to create starting solutions

for a time invariant problem. The addition of time variance makes the whole process

much more complicated as the savings pairs need recalculating dependent on how the

pairs are merged. Because of the drastic increase in calculation times that results from

needing to do these extra calculations, we have instead used the basic Clarke & Wright

heuristic to find a solution without time variance (so it simply runs on the traversal

times for the start of the day) and then this customer assignment is applied to the

time variant version to produce an initial solution. Obviously the initial solution that

is created from this, due to the creation method ignoring time variance, is unlikely to

be of as good quality as a method that takes account of time variance, but it will be

substantially faster.

Whilst this time-invariant based method works adequately for the instances we are

using here, which only use capacity as a constraint, it should be noted that this will

not necessarily work with the inclusion of hard constraints that can make tours invalid

and are time dependent, such as time windows. Additionally, if the problem includes

roads that are only traversable at certain times then this could produce invalid starting

solutions.

If we were to adapt the Clarke & Wright heuristic for use in time invariant problems

there are a number of difficulties. The most accurate way to adapt it would be to

calculate the initial tours (from the depot to a single customer and back) and calculate

the cost of each pairing (from the depot to one customer, then to the other customer

and back to the depot). Both times taking account of time bins. Then, rather than

put them in a list, simply execute the best of them and recalculate all the pairs that

use either of those nodes, then repeat (either using all the recalculated pairs if it is

sequential or both the recalculated and original pairs if it is parallel), recalculating

each time a new arc is added.

Obviously this will take a long time to calculate fully, as early on there is not a

lot of recalculation to be made, but by the end every remaining partial tour will need

to be calculated at the end of every other partial tour. Say there are 20 vehicles left

134

6.1 Overview of MVRP Quadrant Experiment

and the optimum would be to have 10 vehicles, that means there are 20*19 = 380

potential tours to evaluate, more if you allow the second tour to be reversed before

being added. If capacity is modelled as a soft constraint then once this merge is made

it will then need to be checked with the other 18 vehicles both before and after and

this will continue as merges are made to give another 270 potential tours to calculate

before the vehicles are reduced to 10 in number.

With all these calculations necessary, it is worrying how apparently easy it can be

to have a poor solution. With this method, if there are two tours of neighbouring areas

that are quick at the start of the day and slow later they’ll likely be merged anyway,

making the calculations for merging half of them redundant (as the calculations would

have been made assuming the start of the day, and then the arcs are pushed back and

traversed later).

There are more complex ways to do the calculations that may work, but already the

method for time variant based calculations is making a lot of calculations, and we are

only using it as a starting solution. The Hill Climber that we will be using only makes

a million moves, and many of these will be being ignored by the estimate method, so

with a large enough problem the solution construction heuristic may end up taking

vastly more time than the improvement heuristic. For these reasons, we will be using

the simple approach of running the Clarke & Wright on the time invariant model that

occurs at the beginning of the day.

The random solution construction algorithm needs a little modification for multiple

vehicles. In keeping with the name, the method will select nodes in sequence, one at

a time, choosing the next node to be placed at random (as with the SVRP). The only

modification is determining which vehicle to add the selected node to. We considered

two methods, the first, which we will not be using, is to determine the desired number

of vehicles, then assign each node to one of the vehicles at random. On average, this

would lead to a roughly even spread of customers on each vehicle. Instead, we will

randomly choose at each step whether to assign it to one of the existing vehicles or a

new one, with an equal chance of each. As an example, if there are three vehicles with

customers already assigned to them, the heuristic has a 25% chance of assigning the

chosen customer to each of the three existing vehicles and to a new fourth vehicle. This

method will (very roughly) lead to a triangle distribution, with each vehicle having

(on average) one more customer than the next vehicle. This is because, looking at two

135

6. USING OUR ESTIMATION TOOL ON MULTIPLE VEHICLE
PROBLEMS

successive vehicles, once a customer has been added to the second vehicle, the chances

of a customer being added to each of the vehicles is equal, so the only difference, beyond

random chance, is the number of customers that are assigned to the first vehicle before

the second vehicle is assigned its first customer. The chances of the first vehicle being

assigned a customer before the second is 1/2, additionally there is a 1/4 chance that

a second customer will be assigned, a 1/8 chance that a third is assigned and so on.

This is an infinite geometric series which converges to
∑∞

k=0
1
2(1

2)k =
1
2

1− 1
2

= 1. As this

is shown to be a triangular distribution, the number of customers on the first vehicle

and the number of vehicles are both the triangular root of the number of customers.

The triangular root of x is −1+
√

8x+1
2 . Rounding up gives bier127 16 vehicles and a280

24 vehicles. Obviously this is merely an average estimate, as the nature of randomness

could easily produce much different numbers.

As may be apparent, this method can easily create an initial solution which breaks

capacity constraints. The capacity is modelled as soft, so this is acceptable.

There are, of course, many other methods that could be used to assign customers,

such as choosing customers at random to add to a vehicle until its capacity is reached

(this would be made easier by sorting the customers by demand, and then only choosing

from those with demand no greater than the remaining capacity), thus leading to a

near optimal number of vehicles. Because the random starting solution construction

heuristics are such poor starting solution algorithms compared to many other, more

sophisticated algorithms it is generally a waste of resources to spend any more time

on developing their methods than is necessary (as that time could be better spent on

using a more reliable algorithm).

6.1.3 Improvement Heuristic and Final Details

The important difference between using neighbourhood moves on an SVRP and an

MVRP is that, with the MVRP, a single neighbourhood move can affect which

customers multiple vehicles are servicing. With neighbourhood moves that only affect

one vehicle’s customers, the neighbourhood move’s effect will be the same on an MVRP

as for an SVRP (as the other vehicles of the MVRP are unaffected). For this reason we

will only use moves that affect multiple vehicles for our MVRP Quadrant Experiment,

as this will prevent us including duplicates of the moves covered in the previous SVRP

Quadrant Experiment.

136

6.1 Overview of MVRP Quadrant Experiment

For the neighbourhood moves themselves we will not be using the 2-Opt that was

used in the previous experiments, as it does not involve more than one vehicle in any

of the moves. Thus, all of the information that we have already gathered on the SVRP

is equally relevant for when 2-Opt is used on an MVRP, as it will only be affecting a

single vehicle at a time. As we saw, there are variants of 2-Opt (as it is only one of

the larger family of k-opt) that would affect multiple vehicles, but instead we will be

looking at CROSS moves (see Section 3.5.2). As a brief reminder, the basic CROSS

move chooses two vehicles; for each vehicle, two nodes are chosen and the intervening

nodes for each vehicle are switched with those of the other vehicle. As an example,

with two vehicles visiting the customers A-B-C-D-E-F and a-b-c-d-e-f -g, choosing B,

E, d and g will give the new vehicles as A-B-e-f -E-F and a-b-c-d-C-D-g. We will

systematically work through every possible pairing of vehicles and look at choosing

every possible combination of nodes on those vehicles in order to check every possible

move.

The full selection of CROSS moves that we will use throughout the experiments

in this Chapter will include the basic CROSS moves used in this experiment (MVRP

Quadrant Experiment), plus some adapted moves designed to work on a single vehicle

that are adapted versions of the Delete & Insert and Swap moves which we will use in

the upcoming Hill Climber Experiments. To clarify, six examples are shown in Figure

6.1. Each of the examples has four “x”s to show where arcs are to be removed, it is

possible to have both xs on the same arc, as shown in examples B, D and E. Having

two pairs of xs on separate arcs or three xs on a single arc means that no nodes would

change position. Looking in closer detail at the examples: The first three are all moves

performed on two vehicles, A shows a typical CROSS move, B shows a Delete & Insert

and C shows a Swap. D-F are all moves performed on a single vehicle, D shows a

Swap of adjacent nodes, which is also a 2-Opt move (only this minimum length 2-Opt

is possible, but this allows slight “tangles” to be removed), E shows a Delete & Insert

and F shows a typical Swap (where four arcs are removed and four added, rather than

in D, where only three are removed and three added). It should also be noted that all

of these CROSS moves are immediately reversible using the same CROSS move on the

newly inserted arcs. Of these six moves, only the first three will be being used for this

experiment.

137

6. USING OUR ESTIMATION TOOL ON MULTIPLE VEHICLE
PROBLEMS

Figure 6.1: Example CROSS moves - Six examples of CROSS moves, A-C are

preformed on two vehicles, D-F are performed on one vehicle.

138

6.1 Overview of MVRP Quadrant Experiment

For each run, as before, we will be investigating which of the four quadrants (True

Negative, True Positive, False Negative and False Positive) the CROSS move is in.

Unlike previously, this method has a variable number of runs, depending on the number

of vehicles and length of each of the tours. The total number of runs performed will be

tracked so that final percentages for each quadrant’s membership can be found.

Recall that for both of the modified TSP instances we have chosen the capacity of

the vehicles so that the minimum number of vehicles required to fulfill the capacity

constraint is nine. In the majority of experiments using Clarke & Wright the starting

solution had nine vehicles, with the remainder using ten. All of the random starting

solutions had at least ten vehicles.

Lastly, we will be running each set-up of base problem and demand assignment five

times, each with a different node chosen as the depot (with the remaining nodes as

customers). The first depot will be chosen as closest to the geographic centre (found

by averaging the highest and lowest X and Y coordinates), the second depot will be

the next nearest node to the centre, two more depots will be chosen as the nodes on

the edges of the problem (one vertically, the other horizontally) and the last depot will

be the closest node to the mean location of all the nodes (looking at the average X

and Y coordinates of all the nodes). We did not do this specific locating of the five

depots on the SVRP experiments, because the final solution was a tour, meaning that

the depot’s location was only relevant because of the time variance. With multiple

vehicles the depot location is much more important, as a depot on the edge of the map

will obviously have longer routes than one with a more central location.

6.1.4 MVRP Quadrant Results

In addition to analysing the overall results, we will also use 2-way Analysis of Variance

(ANOVA) to look at how the position of the depot and the nature of the base problem

(the clustered nature of bier127 versus the structured layout of a280) affect the accuracy

of the Estimation Tool (focusing solely on whether it is true or false), with results less

than 0.05 considered statistically significant.

The results for random (Table 6.2) and Clarke & Wright (Table 6.3) starting

solutions are quite different to one another, so we will consider them in turn.

The random starting solution results (Table 6.2) seem very accurate, with a large

proportion of true results (70-74% for a280 and 92-93% for bier127). In around 90% of

139

6. USING OUR ESTIMATION TOOL ON MULTIPLE VEHICLE
PROBLEMS

Table 6.2: Random Start MVRP Quadrant Results

a280 bier127

Depot Location FN TP FP TN FN TP FP TN

Central 16.49 35.60 12.69 35.22 5.25 45.95 1.00 47.80

Near Central 12.11 35.63 13.86 38.40 4.48 53.55 2.64 39.33

Vertical Edge 15.60 36.54 11.22 36.63 5.57 35.69 2.02 56.72

Horizontal Edge 14.57 37.70 13.91 33.82 4.69 43.74 2.05 49.52

Mean 16.93 41.23 12.82 29.01 3.50 46.74 3.14 46.62

Table 6.3: Clarke & Wright MVRP Quadrant Results

a280 bier127

Depot Location FN TP FP TN FN TP FP TN

Central 0.57 0.03 0.02 99.39 1.42 0.07 0.05 98.45

Near Central 0.48 0.04 0.03 99.45 1.24 0.09 0.07 98.6

Vertical Edge 0.42 0.02 0.44 99.13 2.66 0.77 1.26 95.31

Horizontal Edge 0.09 0.02 0.31 99.57 0.53 0.3 1.68 97.49

Mean 0.55 0.03 0.04 99.38 0.35 0.14 0.48 99.03

cases the majority of false results are FN, which is not the favourable result (as these

are missed improvements, rather than wasted time). Overall the number of potential

improvements found is 71-77% for a280 and 93-97% for bier127. While the average

number of true results for each depot allocation is impressive for bier127, two of the

individual runs only managed 70% and 71% respectively, while four runs managed to

find all the improvements. This disparate performance seems unconnected to the choice

of depot location, as two of the 100%s are on the same depot as the 70% (specifically,

the mean centre depot). Overall the estimate seems to have done reasonably well on

a280 (discounting around half the CROSS moves and still retaining three quarters of the

improvements) and very well with bier127 (again discounting around half the CROSS

moves, but retaining the vast majority of improvements).

The results using a Clarke & Wright starting solution (Table 6.3) have a different

story to tell. With both problems, but in particular a280, there are a lot of results that

are TN. With a280 it is over 99% in all cases and bier127 has over 95%. Unfortunately,

the ratio of FN to TP shows that only 5% to 10% of the improvements are being found

for a280. A similar story can be seen with bier127, only finding between 5% and 50%

140

6.1 Overview of MVRP Quadrant Experiment

of the improvements. This may be a situation where the estimate is being too harsh

with its cut-off point, maybe a lot of the improvements that were missed were only

predicted slightly worse. Regardless, it appears that, while saving a lot of calculation

time, the estimate has missed a large amount of the improvements.

Observing the effect of the depot location on the results, the depots placed on the

edges of the problem instance produced the most FP results by a large margin, around

ten times as many as the other depots on a280 and 20 times as many as two of the

other three depots on bier127. A large amount of FP results means that the estimate is

finding apparent improvements which turn out not to be improvements. This could be

as a result of longer vehicle routes, as a depot on the edge has farther for the vehicles to

physically travel than a more centrally located depot. With longer routes there is more

potential for inaccuracies in the estimate to appear. However, if inaccurate estimates

were the cause, it would stand to reason that there would also be an increase in the

number of FN results (as inaccurate calculations should lead to both over-estimates

and under-estimates). This is seen for the vertical edge depot on bier127, but a280

actually has less FN results for those depots than any of the other depots, much less

in the case of the horizontal edge depot.

Overall, we can see that the estimate can save a lot of calculation time, but solution

quality may suffer. Our next experiment will see whether this possibility becomes a

reality.

6.1.5 ANOVA Analysis

Table 6.4: ANOVA Results (Random Start)

Source SS df MS F Prob > F

Problem Instance 5603.59 1 5603.59 115.58 0

Depot Location 15.26 4 3.81 0.08 0.9884

Interaction 41.02 4 10.26 0.21 0.9305

Error 1939.38 40 48.48

Total 7599.25 49

The ANOVA test conclusively shows that the problem instance has an effect on both

the Clarke & Wright and the random start experiments. For the depot location, it seems

that there is an effect with the Clarke & Wright starting solution’s experiments, but not

141

6. USING OUR ESTIMATION TOOL ON MULTIPLE VEHICLE
PROBLEMS

Table 6.5: ANOVA Results (Clarke & Wright)

Source SS df MS F Prob > F

Problem Instance 81.4 1 81.4 23.66 0

Depot Location 44.5 4 11.1 3.23 0.016

Interaction 41.33 4 10.3 3 0.022

Error 309.6 90 3.44

Total 476.8 99

the random starting solution’s experiments. There also appears to be an interaction

between problem instance and depot location on the Clarke & Wright experiments,

although this is less statistically significant.

There are many ways that the problem instance may be affecting the accuracy of

the Estimation Tool. Firstly it could be a simple matter of size, with 279 customers

compared to 126, a280 is significantly larger. Secondly, it could be due to clustering, as

bier127 is much more clustered while a280 is much more uniformly distributed. Changes

within a cluster of customers have less opportunity for inaccuracies to occur, as the

arcs are quite short.

Depot location also has a connection to size; although there are the same number

of customers, the length of travel overall is larger, as mentioned earlier. The solutions

based on a random starting tour may not be affected as much due to the irregular

number of customers on the tours.

The interaction between Problem Instance and Depot Location for the results based

on a Clarke & Wright starting tour is also interesting. Although not as significant as

the depot location or problem instance are alone, the ANOVA results are low enough

to be significant. The interaction could be due to the clustering of bier127, which will

obviously make the depot at the mean centre be in a clustered area, whereas the depot

in the mean centre of a280 is not in a large cluster of customers (as no such cluster

exists). Being so close to so many customers means that many of the CROSS moves

will be between nearby customers, thus making very small changes to the tour length.

This in turn means that the estimate tool is much more likely to be able to predict

successfully what the effect of these changes will be as there will be less transitions

between time bins.

142

6.2 Overview of MVRP Hill Climbing Experiment

From this we can conclude that the problem instance and starting solution both

have a definite effect on the reliability of the estimate. Depot location sometimes has

an effect, but not always, depending on the size and nature of the problem instance.

6.2 Overview of MVRP Hill Climbing Experiment

As the last set of experiments were based in part on the SVRP Quadrant Experiment,

this experiment is based in part on the SVRP Hill Climbing Experiment from the

previous chapter, again with the addition of multiple vehicles. We will aim to keep most

of the features the same, to make comparisons easier. We are using the same base set

of four problem instances from TSPLIB (bayg29, bier127, a280 and gr666), running the

same number of times (1,000,000) and using the same three methods (Näıve, Standard

and Estimate). We will again be using a random starting solution, using the method

detailed in Section 6.1.2 as an update on the previous method. We will be using the

same choice of five depots as in the MVRP Quadrant Experiment. The big difference

between this experiment and the SVRP Hill Climbing Experiment is, of course, the

inclusion of multiple vehicles, capacity and demand. The capacity will be the same as

the MVRP Quadrant Experiment for a280 and bier127, with nine vehicles needed at

minimum. Similarly, gr666 will be modelled such that nine vehicles are needed. With

bayg29, nine vehicles servicing 28 customers would mean an average of (just over) three

customers per vehicle, which is not enough to have any serious effects of knock-on etc.

For this reason we will set the capacity of the vehicles for bayg29 such that five are

needed to service all the customers (giving five or six customers per vehicle, on average).

As mentioned earlier in this Chapter (see Secion 6.1.3) we will be using not only

the CROSS moves used in the previous experiment that affect multiple vehicles, but

also moves that affect a single vehicle. At each iteration, the algorithm will carry out a

vehicle selection twice, and if the same vehicle is selected both times then a single vehicle

move will be performed. This will mean that, as the Hill Climber progresses, vehicle

routes will be merged together, increasing the proportion of single vehicle moves. 2-Opt

will not be used, as it functions slightly differently to the CROSS moves (by inverting

sections of the tours). If we were looking to get the best results then 2-Opt would be

useful, but in these experiments we are instead interested in the estimate’s interactions

143

6. USING OUR ESTIMATION TOOL ON MULTIPLE VEHICLE
PROBLEMS

with multiple vehicles, rather than reiterating the findings of the SVRP Hill Climber

Experiment.

Lastly, it should be noted that these results are not readily comparable to the

results of the SVRP Hill Climber Experiment in the previous Chapter, due to the use

of multiple vehicles and penalties on capacity. These additional features mean that both

the time taken and FSQ are not comparable directly, although internal comparisons

could be made, for instance, drawing comparisons in how the time saved using the

estimate method over the standard method increases as the number of customers

increases.

6.2.1 MVRP Hill Climber Results

Table 6.6: MVRP Hill Climbing Results 1 (bayg29 and bier127)

bayg29 bier127

Näıve Standard Estimate Näıve Standard Estimate

Min FSQ 15387.86 13978.02 15308.57 206351.84 210793.99 207893.26

Avg FSQ 21364.88 20230.96 22160.12 344154.08 346965.44 338482.91

Max FSQ 28728.71 24495.59 30011.98 587490.01 611852.29 578899.21

Min Time 182.90 169.38 147.20 225.90 209.77 166.55

Avg Time 198.20 181.11 161.63 236.03 221.54 174.89

Max Time 213.07 214.67 193.69 244.32 229.77 180.52

Table 6.7: MVRP Hill Climbing Results 2 (a280 and gr666)

a280 gr666

Näıve Standard Estimate Näıve Standard Estimate

Min FSQ 8019.90 8329.04 8541.79 11111.77 9411.76 11455.48

Avg FSQ 9771.53 9865.31 10000.32 14074.30 14021.85 15659.29

Max FSQ 11225.06 11547.63 11562.36 19209.10 20401.66 27115.03

Min Time 390.07 369.92 232.22 3192.13 3160.19 974.74

Avg Time 396.99 386.09 238.26 3913.86 3272.22 1087.51

Max Time 407.41 416.67 243.18 4069.14 3542.11 1577.89

The results are much more varied than those from the SVRP Hill Climbing

Experiment. Looking at Table 6.8 and Figure 6.2 we see that using Estimate instead of

144

6.2 Overview of MVRP Hill Climbing Experiment

Figure 6.2: MVRP Hill Climber Experiment Results - The results of MVRP Hill

Climbing Experiment on the four problem instances.

145

6. USING OUR ESTIMATION TOOL ON MULTIPLE VEHICLE
PROBLEMS

Table 6.8: Average Percentage Change between Standard and Estimate on MVRP Hill

Climber

bayg29 bier127 a280 gr666

Avg FSQ 9.54% -2.44% 1.37% 11.68%

Avg Time -10.76% -21.06% -39.93% -66.77%

Standard on bayg29 sees a 10% improvement on calculation time, but nearly 10% loss

of solution quality (in that the final solution is nearly 10% higher). The small gains

in calculation time are understandable, as by using multiple vehicles it means that the

average vehicle only has five or six customers. Add to that the fact that it is likely that

only a couple of customers are actually going to be in the changed section of each vehicle

and the savings from estimating can be seen to be quite low. The FSQ being nearly

10% worse may seem poor, but this is partly due to the Standard method performing

well, rather than the Estimate performing badly. This can be shown by observing that

the Näıve method, which statistically has the same FSQ as the Standard method, is

only 3.72% better than the Estimate, which is a much more reasonable difference than

9.54%. In other words, the Näıve and Standard methods have the same chance of

getting any results as each other, so the fact that one is much different to the other can

only be explained by chance.

Overall, the change in solution quality is quite inconsistent. There is a saving in

FSQ from using the Estimate on bier127 for the Estimate of 2.44% against Standard

and 1.65% against Näıve and combined with a time saving of over 20% the Estimate

method looks impressive. With a280, the solution is reasonably comparable: 1.37%

worse than Standard and 2.34% worse than Näıve with a time saving of around 40%.

On gr666 the Estimate performs the worst for FSQ, but best for time saving, with a

loss in quality slightly more than bayg29 (just over 11% against both other methods),

but a much more substantial time saving (taking less than a third of the time that the

Standard method takes).

The Estimate method’s improvement in bier127 is odd. A repeated experiment

re-running the Estimate gave a slightly smaller improvement, but an improvement

nonetheless, with the Estimate managing to outdo both the Standard and Näıve

methods presented here. Why this would be is something of a mystery. Due to the

large spread of the FSQ compared to the small difference between the averages of

146

6.2 Overview of MVRP Hill Climbing Experiment

the three methods it could still simply be chance. Ignoring the worst result of the

Standard or Näıve methods brings their averages below (i.e. better than) that of the

Estimate. Ignoring the best result using the Estimate method and averaging the rest

gives an average 0.07% better than Näıve. Thus a single result can easily have enough

of an effect on the average. Of course, even with this possibility, the Estimate clearly

performs very well on bier127.

The FSQs for bier127 and gr666 are particularly interesting. It can be seen with

bier127 that all the FSQ results for one set of five results (which are all connected to

the vertical edge depot) are substantially higher than for any of the other solutions,

regardless of which method was used. A similar effect can be seen with gr666 (and the

horizontal edge depot). These two appear to be the only cases where there is a visibly

significant effect generated by the depot location. The other edge location for these two

instances and the edge locations for a280 and bayg29 are much less striking. With a280,

both the edge depots have higher FSQs than any other depot, but it is only slightly

higher (the lowest is 10,383.28, compared to the highest on non-edge depots, which is

10,130.71). Näıve has four of the top five from the horizontal edge depot (and the fifth

from the vertical edge), with Standard having a three/two split between the vertical

and horizontal edge depots. With bayg29, the top five are spread out amongst the two

edge depots and the mean depot. Bayg29’s spread can probably be accounted for by

its much smaller size, as with relatively few nodes there is much less of a clustering

effect compared to bier127 and gr666.

In general this effect is predictable enough. A depot on the edge of the problem

has, on average, farther to go to get to the customers, so it seems only reasonable that

the total time taken for the fleet of vehicles to complete all the tours would be more.

From these results, it can be tentatively concluded that the Estimate method

performs much more reliably on MVRPs than SVRPs. The Estimate deals very well

with an increase in nodes, suggesting that, where problems are larger, it is much more

appropriate to use estimates as guidance, as there is a substantial time saving, without

excessive loss in the quality of solutions. As could be predicted, the estimate performs

poorly when there are not many customers per vehicle.

147

6. USING OUR ESTIMATION TOOL ON MULTIPLE VEHICLE
PROBLEMS

6.3 MVRP Experiment with Stepped congestion

We have now looked at the MVRP in the same manner as the SVRP in the previous

Chapter. Unlike before we have only looked at the effects on one type of congestion,

twin peak. We will now briefly go through the quadrant experiments using stepped

congestion, modelled exactly the same way as before. These experiments will help to

confirm the results that were found from the twin peak experiments, while at the same

time showing whether the effects of changing the congestion model that were found in

the previous Chapter on SVRPs carry over to the MVRP.

The results for the MVRP Quadrant experiments with Stepped congestion are shown

in Tables 6.9 and 6.10.

Table 6.9: Random Start MVRP Quadrant Results w/ Stepped Congestion

a280 bier127

Depot Location FN TP FP TN FN TP FP TN

Central 1.54 47.20 8.62 42.64 3.06 38.38 12.72 45.84

Near Central 1.43 35.69 27.43 35.45 3.11 41.39 11.39 44.10

Vertical Edge 0.20 43.37 15.86 40.56 4.50 34.35 14.94 46.20

Horizontal Edge 4.88 36.96 20.06 38.10 7.01 35.84 10.74 46.41

Mean 3.92 38.69 21.14 36.25 0.03 51.43 8.52 40.02

Table 6.10: Clarke & Wright MVRP Quadrant Results w/ Stepped Congestion

a280 bier127

Depot Location FN TP FP TN FN TP FP TN

Central 0.00 3.00 2.19 94.80 0.02 0.01 1.30 98.68

Near Central 0.02 0.86 0.84 98.29 0.02 0.02 1.72 98.24

Vertical Edge 0.02 0.97 1.27 97.74 0.05 0.03 6.20 93.72

Horizontal Edge 0.05 2.64 2.81 94.49 0.05 0.02 1.80 98.13

Mean 0.01 0.57 1.01 98.40 0.01 0.01 7.01 92.96

Overall we see that, for the random starts, the Estimation Tool does reasonably

well, with 71-89% of the neighbourhood moves resulting in true predictions for the

Estimation Tool. The majority of incorrect predictions were FP, which is also good.

For the Clarke & Wright results we again see a large number of TN results, the lowest

148

6.4 Real World Experiment

at nearly 93% TN. The majority of the remaining results in 8 of the 10 cases were FP,

which is not as good as TP, but better for the Estimation Tool than FN.

These results are mostly similar to the results that we obtained using twin peak

congestion. In some instances the results using the stepped congestion are better, in

others they are worse. Overall the results are reasonably comparable in terms of quality,

twin peak seems to produce a few more true results, as was the case with the random

SVRP experiments in Chapter 5. The variation due to depot with the random start is

interesting, but due to the randomness of the starting solutions there is little that can

be derived from this small sample size of results. Further experimentation may be able

to draw conclusions, but the usefulness of knowing the effects of the Estimation Tool

on randomly produced solutions to MVRPs is not worth the effort involved.

The differences in our congestion models are interesting to observe but the more

important question is how well the Estimation Tool deals with a congestion model from

the Real World.

6.4 Real World Experiment

We have tested our estimation method on synthetic problems, using both SVRP

and MVRP instances, and have observed the effects at both the microscopic and

macroscopic levels. Now we are ready to analyse how the estimate works with a problem

based on Real World data. For this we will use a small sample of actual data on travel

times and create a CVRP (as described in Section 2.4.2) based on the data (by choosing

nodes to act as customers and a depot).

6.4.1 Real World Problem Instance

This problem uses 1,081 arcs, which represent sections of road. Each arc has one or

more speeds associated with it, along with a direction of travel, either one way or

both ways. The speeds also have a time period from which they commence. The day

is split into 96 time bins, each 15 minutes long. In total there are 8,792 road-speed

pairs. Rather than every node in the problem being a customer or depot, as has been

the case with the previous experiments, instead a subset of nodes are considered the

important nodes, of which one is chosen as a depot for the purpose of this thesis and

the other nodes are chosen as customers (these together form the active nodes). The

149

6. USING OUR ESTIMATION TOOL ON MULTIPLE VEHICLE
PROBLEMS

graph of active nodes is incomplete, so Dijkstra’s LSA (see Section 4.3.1) is used to

create a table of shortest paths between all of the active nodes at the start of each

time period. Each customer is given a demand, generated in the same way as was

done in the previous two experiments in this chapter. A homogeneous fleet of vehicles

is used, their capacity is such that the minimum number of vehicles needed is nine,

the same as with the previous experiment. We will use the same overall methods as

the previous experiments in this chapter. Firstly, we will investigate the membership

of quadrants for each of the possible neighbourhood moves and compare them (Real

World Quadrant Experiment), then use CROSS neighbourhood moves within a Hill

Climber metaheuristic and compare the performance of our Estimate method against

the Standard approach, comparing time taken and FSQ (Real World Hill Climbing

Experiment). Unlike in our previous experiments, we will only use Standard but not

Näıve, as we have already established the benefits of Standard over Näıve and it is

unnecessary to repeat these findings.

The arcs represent a section of road in the Bristol area of the UK. The problem is

kept to a small local area so that the sheer enormity of the Road Timetable
TM

produced

is not too overwhelming. An overhead map of the area that this data is from (from

MapMoose (109)) and a matching graph of the nodes is shown in Figure 6.3. As can be

seen, the arcs match up very well, although only the major roads are represented. This

can be conceptualised in our problem by imagining that the delivery vehicles are quite

large and thus unable to navigate narrower roads. In order to see whether the use of

estimates on Real World problems matches up with the results we found when estimates

were used on the previous synthesised experiments, we will repeat some of these tests

on problems with a variety of sizes. We will use a small 50 node problem for both the

Real World Quadrant Experiment and the Real World Hill Climber Experiment. The

Hill Climber will also be tested on larger problems with 100 nodes, 200 nodes and 400

nodes. The distribution of these nodes is shown in Figure 6.4. We hope that, as with

our previous experiments, the Quadrant Experiment will reflect a reasonable accuracy

in the estimates and the Hill Climber experiment will demonstrate that the time saved

by using estimates noticeably improves with problem size, whilst the quality of the

solution does not appreciably diminish.

150

6.4 Real World Experiment

Figure 6.3: Real World Problem Instance - A map of all the nodes and arcs of our

Real World Problem. Blue = Two-Way, Red = One-Way.

Figure 6.4: Real World Problem Node Distribution - The four problems that we

will use: 50 nodes, 100 nodes, 200 Nodes and 400 Nodes.

151

6. USING OUR ESTIMATION TOOL ON MULTIPLE VEHICLE
PROBLEMS

Table 6.11: Real World Quadrant Results

Random Start Clarke & Wright Start

FN TP FP TN Depot FN TP FP TN

0.67 29.81 26.29 43.22 Central 1.30 4.29 2.21 92.19

1.06 27.75 19.00 52.19 Near Central 2.49 6.18 2.55 88.78

0.65 11.27 15.49 72.58 Vertical Edge 2.67 6.97 3.40 86.95

0.67 34.24 22.28 42.75 Horizontal Edge 3.36 7.18 3.89 85.56

0.79 23.4 17.15 58.67 Mean 1.63 5.49 3.15 89.72

0.76 25.29 20.04 53.88 Average 2.29 6.02 3.04 88.64

Table 6.12: Terminology Calculations

Name Calculation Rand %age C&W %age

True TN + TP 79.17 94.67

Useful TP
TP+FP 55.79 72.44

Found TP
TP+FN 97.08 66.45

Skipped TN + FP 54.64 91.68

6.4.2 Real World Quadrant Experiment Results

For the random start results (left-hand side of Table 6.11) it is readily apparent that

there are a lot of False Positive results. These mean that, on average, only half the

neighbourhood moves are being skipped by using the estimate. The number of missed

improvements (FN) is quite low, which suggests that, even though the time saved will

be small (particularly as there are only 49 customers), the solution should not suffer

too much. The vertical edge depot is interesting as it has noticeably more TN results

and less TP results (having less than FP). Why this might be is not immediately

apparent, it may just be due to the particular random start that was produced. A

second experiment on the same node suggests that this is the case, with 56.39% TN.

Overall there are very few random FN results, meaning that nearly all (97.08%) of

the improvements are found. This impressive result should generally offset the fact that

only just over half (54.64%) of the potential improvements would be skipped by using

the Estimate. In general these results are not of great significance, as when solving a

Real World problem such as this, it is unlikely that a random starting solution would

be used. Therefore we will leave this half of the results now and look at the more

152

6.4 Real World Experiment

relevant half.

The first thing that is apparent from the results that use a Clarke & Wright starting

solution on the right-hand side of Table 6.11 is that there are a lot less TN results than

in the previous experiments that used Clarke & Wright. The most non-TN results in

previous experiments was an average of just under 3% for a280 with multiple vehicles,

here the average is over 11%. The majority of the non-TN results are TP, which

means that the estimate is finding improvements successfully. The “True” amount in

Table 6.12 simply represents how many solutions were correctly estimated (in terms of

whether they were improvements or not, rather than correctly determining how much

of an improvement they may have been). This is of some interest, but the rest of

the statistics are more important. Looking further at the remaining ratios, Table 6.12

shows various statistics that can be derived from the quadrants. Taking the most basic

interpretation, that immediate improvements are good and anything else is bad, we

can find the useful results amongst those that the estimate finds by comparing TP

(improvements found) to TP + FP (the total solutions the estimate checks). As these

values are all percentages, we can easily add them together and divide without difficulty.

The final result shows that almost three quarters (72.44%) of the solutions checked by

the estimation method turn out to be improvements. In a similar manner, we can

compare the number of solutions that are improvements (TP + FN) to the number of

improvements found to get a representation of the amount of potential improvements

that are found (and conversely, the amount of improvements missed). The percentage of

improvements found is almost two thirds (66.45%). Lastly the number of solutions that

were skipped, that is that did not have their exact value calculated, is a representation

of the amount of time saved. Despite being lower than any of the other experiments,

it still manages to come out at over 90%, which represents a fairly substantial saving

to be had.

The location of the depot has a noticeable effect on the distribution of points in the

quadrants, the two edge depots (Vertical and Horizontal) have the least TN results and

the most of all the other results, suggesting that the solutions that are moved from TN

are distributed across the other three quadrants. Similarly, the central depot has the

most TN results and the least of all the other quadrants. If we ignore the TN results

and compare each to the total non-TN solutions we see that TP has between 49.76%

and 55.11%, with all but the Horizontal depot being within 2% (the second lowest is

153

6. USING OUR ESTIMATION TOOL ON MULTIPLE VEHICLE
PROBLEMS

53.42%), quite a small range overall. For the others, FP ranges from 15.89% to 23.28%

and FN ranges from 22.72% to 30.69%, variances which are rather more significant

than TP (a range around 47% of the minimum for the former and 35% for the latter,

compared to 11% for TP). The depots at the geographic Centre provide the least FP

and most FN, whereas the Mean depot (the depot closest to the mean average) leads

to the least FN. From this it can be suggested that the Estimation Tool performs well

when the depot is located near the largest cluster of customers and actually performs

poorer when placed at a geographic centre. Obviously the accuracy of the estimate

method should not be used to guide the placement of a depot, but it can be the case

that the placement of the depot may be used to predict the value of using estimates.

To conclude, both starting solution heuristics provided favourable conditions for

the Estimation Tool. A messy random solution would still take time to improve using

the Estimation Tool, but very little solution quality would be sacrificed. With a much

better solution there is, as expected, much more time saved by using the Estimate –

around one in ten of the neighbourhood moves lead to further investigation. At the

same time the Estimation Tool is able to find the improvements nearly two thirds of

the time.

We will now investigate how well our Estimate method works within the context of

a Hill Climber.

6.4.3 Real World Hill Climbing Experiment Results

Table 6.13: Real World Hill Climber Results: 50 & 100 Nodes

50 Nodes 100 Nodes

Standard Estimate Standard Estimate

Min FSQ 21011.76 21706.93 32676.05 30484.60

Avg FSQ 25830.99 26271.49 41058.17 41364.53

Max FSQ 30865.24 31826.87 49358.92 50327.37

Min Time 167.45 149.84 188.00 134.72

Avg Time 169.38 151.80 189.95 135.87

Max Time 172.21 154.71 193.78 138.55

154

6.4 Real World Experiment

F
ig

u
re

6
.5

:
R

e
a
l

W
o
rl

d
H

il
l

C
li

m
b

e
r

R
e
su

lt
s

-
T

h
e

re
su

lt
g
ra

p
h

s
fo

r
th

e
fo

u
r

R
ea

l
W

o
rl

d
H

il
l

C
li

m
b

er
ex

p
er

im
en

ts
w

it
h

5
0
,

10
0,

20
0

an
d

40
0

N
o
d

es
.

155

6. USING OUR ESTIMATION TOOL ON MULTIPLE VEHICLE
PROBLEMS

Table 6.14: Real World Hill Climber Results: 200 & 400 Nodes

200 Nodes 400 Nodes

Standard Estimate Standard Estimate

Min FSQ 17572.01 20744.77 13884.03 14700.95

Avg FSQ 48387.43 48126.84 25255.10 30003.61

Max FSQ 68922.41 65476.03 74398.33 53953.79

Min Time 253.68 191.11 652.93 300.47

Avg Time 258.47 194.62 659.26 303.31

Max Time 262.13 197.65 668.10 307.86

Table 6.15: Real World Average % change between Standard and Estimate

50 Nodes 100 Nodes 200 Nodes 400 Nodes

Avg FSQ 1.71 0.75 -0.54 18.80

Avg Time -10.38 -28.47 -24.71 -53.99

Moving on to the Hill Climbing experiment, we can see from Tables 6.13, 6.14 and

6.15 and the associated Graph (Figure 6.5) that, as with the Real World Hill Climber

Experiment earlier this chapter, an increase in the number of nodes leads to greater

saving in time, but also poorer FSQ. The results for 400 nodes looks like the Estimate

has performed poorly, with results almost 20% worse than Standard, but it is worth

noting that the Max FSQ for Standard is more than 25% worse than the Max FSQ for

Estimate, so the Estimate has a much better worst case scenario, a comparable best

case scenario, and a worse average case scenario. Of course, there is also the fact that

the Estimate takes less than half the time that the Standard method took. For the

other three sets (50, 100 and 200 Nodes) the average FSQ is fairly similar, less than 2%

off for 50 Nodes and actually half a percent better with 200 nodes. The reason for this

sudden loss in quality of the final solution when the Nodes increase to 400 could be a

mixture of longer tours (giving more room for failure in the estimating) and possibly

later tour traversal. With 400 nodes the time that the latter roads on some of the tours

are traversed is often a congested time of day, meaning that time variance has more of

an effect.

Looking in more depth at the time taken to calculate the results, it can be seen that

the 100 Node problem is solved quicker by the Estimate than the 50 Node problem.

156

6.5 Conclusion

At first glance this seems odd, but it should be noted that the minimum number of

vehicles is nine, there are only 49 customers, meaning the average length of tours with

the minimum number of vehicles is just over five and the number of arcs just over six.

The Estimate has to calculate two arcs on each vehicle, so if there are only six anyway

there is little saving to be made. This justifies why there is little to be gained by using

the Estimate, but the reason that it ends up taking more time requires a further piece

of information. The problem is coming from the shortness of the vehicle tours, with

only one or two customers on some vehicles, the chances of removing vehicles is greater,

which comes with an inevitable overhead, additionally with a small number of vehicles

the chances of selecting a single vehicle for the CROSS move is greater, and if the vehicle

only has one node it can not be modified, so the algorithm starts again with selecting

vehicles. If a single vehicle has two nodes then a CROSS can be performed, but the

estimation actually takes longer than for a regular CROSS involving two vehicles.

In the end, as was seen with bayg29 earlier, with smaller problems, where optimal

vehicle lengths are five to six customers, the estimate is understandably poor, with

savings of around 10%.

6.5 Conclusion

In this Chapter we have seen that the Estimation Tool performs about as well at the

macroscopic level on problems based on Real World congestion as on problems with

synthesised congestion. The neighbourhood moves involving changing the routes of

multiple vehicles have led to good results, with impressive savings in calculation times

without undue loss of solution quality. Combined with our findings of the previous

Chapter, dealing with neighbourhood moves on single vehicles, it seems that the use of

estimates definitely has merit.

So far we have only been looking at fairly simple methods of solving VRPs and

how the estimates work with them. While we could continue with our studies on these

problems, we will instead move on over the next couple of Chapters, shifting our focus

to more advanced methods and concepts and seeing whether the estimate will continue

to provide good results.

157

6. USING OUR ESTIMATION TOOL ON MULTIPLE VEHICLE
PROBLEMS

158

7

Threshold and Simulated

Annealing Experiments

In this Chapter we begin by looking at varying the threshold at which a potential

solution is fully investigated, changing how good a new tour must appear to be before

calculating its actual objective value. We seek to find out whether simple small

changes to the criteria that we have been judging solutions on with the Estimation

Tool will have beneficial effects on its performance. Specifically we are interested in the

ratios of solution quality gained/lost to calculation time lost/gained. Next, we look in

more detail at Simulated Annealing and repeat some of our earlier experiments using

Simulated Annealing in addition to Hill Climbing, comparing the results to see how the

use of estimates is affected. We hope to show that the Estimation Tool can perform

as well on the more advanced metaheuristic of Simulated Annealing as it did on the

simpler Hill Climber.

7.1 Threshold Experiment

We have been using estimations to give an educated guess as to the quality of a

potential solution. For the Hill Climber experiments previously conducted (specifically

in Section 1.3 and Section 6.2) this guess was in the form of a simple yes/no which was

dependent on whether the neighbourhood move that had been performed seemed to be

an improvement on the current solution or not. Although many of the more advanced

metaheuristics, such as Simulated Annealing (which we will investigate later on in this

159

7. THRESHOLD AND SIMULATED ANNEALING EXPERIMENTS

Chapter), have a more complicated approach, they are all in some manner related to

this idea of a new solution meeting a certain criteria or not.

For the Hill Climber the criteria is “Does it appear that the change is less than 0?”.

That is, does the neighbourhood move that is performed appear to lead to a solution

that has a cheaper total cost than the current solution? The value of 0 is not fixed

however. By moving the boundary (the “threshold value”) from 0 we can vary the

amount of potential solutions that are investigated, and thus increase the number of

improvements that are found. In terms of the result quadrants, we will change some

TN into FP, but at the same time change FN into TP. Alternatively, we could decrease

the number of solutions investigated, changing FP to TN and TP to FN.

Changing the threshold will have an obvious effect on the Estimation Tool. Setting

it too high will mean that all the solutions are checked, which eliminates the time saving

aspect of the Estimation Tool, rendering it worthless. Setting it too low will mean that

more improvements will be missed, which will generally lead to a much poorer final

solution being produced.

In the present Chapter we plan to briefly investigate what effects changing this

threshold value will have. Although the effects on run time of extreme changes to

the threshold (accepting virtually any change for analysis or virtually none) can be

predicted with reasonable certainty and we can make reasonable predictions on how

the solution quality will vary at these extremes as well, we are much less certain about

the effects of small changes to the threshold in terms of either solution quality or run

time. We will initially look at the effect of small changes to the threshold on the

solution quality throughout the lifetime of the problem (as it is harder to track time

accurately, but easier to predict it roughly). If it appears that the solution quality

can be substantially improved by dropping the threshold or that it is not made much

worse by raising it then we will proceed with further experiments investigating the time

taken.

To clarify: we are investigating the effect on the Estimation Tool of changing the

criteria used to determine whether a potential change is worth calculating exactly.

We are not looking at changing the criteria used to decide whether a change will be

implemented. For example, a change that appears to lead to a poorer objective value

than the current solution may still be checked, but it will only be implemented if it

turns out that it actually leads to a better objective value.

160

7.1 Threshold Experiment

7.1.1 Parameters

This experiment will be conducted on an SVRP based on gr666 using 2-Opt

neighbourhood moves on a random starting solution with heterogeneous twin peak

congestion. A 125,000 iteration Hill Climber will be performed, with the best solution

plotted every 500 iterations. Note that the initial solution is not plotted, so the first

point is after 500 iterations, this is to alleviate the randomness of the starting solution

to some extent; after 500 attempts at improvement the solutions should be at roughly

similar levels. This gives 125000/500 = 250 points. Each set-up will be run 25 times,

with five different starting nodes (note that we are only using one vehicle here, so

changing the depot is unlikely to lead to huge changes in FSQ). The averages of these

25 iterations will then be plotted on a graph.

7.1.2 Changing the Threshold

In this Chapter we will experiment with the two simplest schemes that can be used for

the threshold: the first is changing it by a fixed value, such as +100. This generally

means that the threshold is more relevant towards the end of the Hill Climber, where

the tour length is lower, and less relevant at the start. The second is changing the

threshold as a percentage of the current tour length, say +1%. This is a larger amount

at the start of the Hill Climber when the tour length is quite long and less towards the

end of the tour when it is quite short. Obviously these two can also be combined (say

by having a threshold of +50 + 0.1%) so that the two balance out and are similarly

relevant throughout the Hill Climber, but for this experiment we will keep it simple

and have one each higher and one each lower than 0 for the threshold (plus run 0 for

comparison).

Note that the threshold values are referred to as the excess that there must be

before being considered, so “plus 100” means that a new tour must appear to be at

least 100 better than the current tour to be checked.

Some brief experiments, not detailed here, showed that an increase in the threshold

value was much more significant than the equivalent decrease. This is already evident

at the extremes, plus 100% means no solutions are accepted as it requires the tour

length to be 0 or less, but minus 100% does not automatically mean that all solutions

are accepted, only requiring that they are less than twice the current tour’s length.

161

7. THRESHOLD AND SIMULATED ANNEALING EXPERIMENTS

These initial tests have led to this experiment using the five different set-ups shown

below:

Normal : The threshold is set at 0, this has been the set-up for all of the previous

experiments in this thesis.

Plus 0.1 percent : Initially we planned to use plus 1% but our preliminary tests

found that this gave around 50 improvements, compared to 2,650 made with “Normal”

and 1300 with this change. Thus we are using 0.1%. The initial solutions are around

80,000, so 0.1% initially means plus 80; this will obviously decrease over time as the

solution gets shorter.

Plus 100 : This simply has a 100 margin needed before considering, meaning a lot of

good solutions are missed (particularly later in the tour, when this is a larger percentage

of the overall tour length). As this is greater than 0.1% of the initial solution we would

expect this to be the worst performing set-up in terms of Objective value.

Minus 10 percent : This is designed as the most generous. Early on it is looking at

an 8,000 margin, which is enough to get all but the most wayward of tours investigated,

later this clamps down to a more reasonable set up. As a comparison, half way through

the runs the tour length is approximately 20% higher than the final length.

Minus 100 : This is quite generous later, but early on it only picks up a few extra

solutions.

7.1.3 Threshold Results

Table 7.1: FSQ of Different Thresholds throughout Lifetime of Experiment

1st 63rd 125th 187th 250th

Normal 65992.92 13481.78 9838.97 8690.89 8038.34

Plus .1% 68571.77 17146.96 12394.24 10412.66 9294.17

Plus 100 69320.44 26909.94 22811.55 21080.45 19606.76

Minus 10% 65401.66 13147.19 9669.06 8559.16 7908.27

Minus 100 65531.67 13320.89 9726.54 8655.21 7975.13

Table 7.1 gives a small cross-section of the results for this experiment. The columns

represent the FSQ at 25% intervals throughout the lifetime of the algorithm. Because

of the drastic change in the first quarter of these results compared to the rest, it is

hard to plot the results clearly on a single graph. Thus we have split the graph in two:

162

7.1 Threshold Experiment

the first (Figure 7.1) shows the transition from the first results (after 500 iterations)

to the 63rd results (after 31,500 iterations), whereas the second (Figure 7.2) shows the

rest of the results, from the 63rd to the 250th (125,000 iterations from the beginning).

The results table and graphs clearly show that both the Plus set-ups perform worse

than the Normal set-up throughout the entire lifetime of the problem, as was expected.

Plus 0.1% may, if run long enough, catch up with the Normal set-up (after 62,500

iterations the gap is closing gradually and by 125,000 iterations 0.1% of the objective

value is only 9) but Plus 100 is over twice the FSQ of all the other set-ups (even Plus

0.1%) and appears to be levelling out. It seems, at least for this set of parameters,

that a tightening of the acceptance criteria leads to significantly poorer solutions. It

may be the case that, with suitably small changes, the solution quality will not suffer

too much, but this seems to be a lot of effort for negligible reward, plus the increased

calculation time and the initial choosing of parameters may offset any time gained.

Figure 7.1: Threshold Results - Start - The first quarter of the Threshold Experiment

results.

163

7. THRESHOLD AND SIMULATED ANNEALING EXPERIMENTS

Figure 7.2: Threshold Results - End - The final three quarters of the Threshold

Experiment results.

On the other side, the Minus set-ups performed slightly better, but the difference

is quite small. Between 7,500 and 25,000 iterations (the 15th and 50th results) the

two Minus set-ups have a noticeable improvement, but this gap is reduced after 25,000

iterations. It seems likely that after 25,000 iterations the gain in FSQ will be outweighed

by the extra calculation time. There is potential below 25,000, however. If it is desired

that a good quality solution is attained in a small number of runs, then this could be

a worthwhile improvement.

Overall, the comparison between Plus 100 and Minus 100 is striking. Relaxing

the criteria by 100 leads to a slight improvement in solution quality of around 1%.

Tightening the criteria by the same amount quickly leads to solutions twice the FSQ.

164

7.2 Simulated Annealing Experiments

7.1.4 Summary of Findings for Threshold Experiment

It appears that modifying the threshold value is not a particularly viable method of

improving the Estimation Tool. Relaxing the threshold leads to small improvements

at the cost of many more calculations (this is clear and has been shown in previous

experiments, so will not be repeated here). Tightening the threshold by any significant

amount leads to much poorer solutions; small amounts may be viable but the extra

calculation time in determining such fine tuning will, in most cases, cancel the time

saved.

This experiment was worth doing, as it is near impossible to predict how the solution

would be affected by the threshold without testing. Now that this has been determined,

it seems to be that the original threshold of 0 is sensible to use, at least in this instance.

It may be the case that, with different parameters, the problem will benefit from a

change in threshold value, but 2-Opt Hill Climber SVRP seems to have little need for

changes.

7.2 Simulated Annealing Experiments

As we saw in Chapter 3, there are many different metaheuristic methods that can be

used to solve the VRP, we are only going to be looking at one of them here, the method

of Simulated Annealing. We have chosen to examine this method exclusively, rather

than any of the other methods, because it is a reasonably popular and well-known

method which is similar enough to the Hill Climbing algorithm that we can make

comparisons and judge how the cooling of Simulated Annealing is affected by the

Estimation Tool. Other methods, such as Great Deluge (110) have a similar set-up

and are likely to be affected similarly whilst others, such as Tabu Search (which we will

be discussing further in the next Chapter) have features that should be unaffected by

our Estimation Tool, but we cannot test the Estimation Tool on all of the myriad of

different algorithms that are out there, so for now we will make do with the well-known

and well-understood methods.

We first examined Simulated Annealing (SA) in Section 3.6.2. To recap, Simulated

Annealing (SA) involves a global temperature, which is lowered from an initial starting

temperature down to 0. This temperature determines how generous the SA algorithm

is at accepting potential changes: at the start of the algorithm a new solution may be

165

7. THRESHOLD AND SIMULATED ANNEALING EXPERIMENTS

accepted even if it is somewhat worse than the current solution, as the temperature

decreases the algorithm will become less lenient, until the temperature reaches 0 and

only improvements are accepted.

The two important things to consider when using SA in an algorithm, as well as

when using many other advanced metaheuristics, are deciding exactly which version

to use and setting the parameters. We plan to have the process of parameter-setting

automated, so that we can run the same SA algorithm on a variety of problems straight

away, without having to adjust the variables manually each time. In terms of what

version to use, we need to look at exactly what features there are and how they will

work with what we are doing. There are many advanced SA algorithms that other

authors have used, but for our purposes we will be keeping it reasonably simple, so

that the effect of using our Estimation Tool on the ‘basic’ SA algorithm is clear, and

not obfuscated by a complicated algorithm.

In the rest of this Chapter we will be looking in detail at the features of Simulated

Annealing and discussing how they may interact with our Estimation Tool. Once we

have discussed all of these we will detail exactly which features we will be using and how

they will be implemented. Lastly we will run an experiments using an SA algorithm

alongside the Hill Climbing algorithm from the previous Chapter and see what effects

using the Estimation Tool has on calculation speed and quality of the final solutions.

7.3 Stages of Simulated Annealing

The SA algorithm that we will be looking at and using has three stages, the first is the

construction stage, where we will create a starting solution, the second is the annealing

stage, during which the temperature is lowered from its initial value down to 0. Once

it reaches 0 there is a Hill Climber stage which is functionally identical to a standard

Hill Climber. The first two of these three stages are generally necessary for any SA

algorithm.

7.3.1 Stage 1: Construction Stage

All SA algorithms need a starting point, a tour (not necessarily valid) upon which to

apply neighbourhood moves. Depending on how the SA algorithm is set-up, the choice

of initial tour may have a major effect on the results produced by the algorithm. If the

166

7.3 Stages of Simulated Annealing

SA algorithm cools quickly, it will not have much chance to move far from its initial

solution space. Because reasonable solutions that can be found from, for example, using

a Clarke & Wright construction heuristic, are not necessarily close to better solutions

within the solution space, it is not always advantageous to start with a particularly

good solution; sometimes a poor solution, even a random solution, may be close to a

good solution in the solution space. Of course, if the initial solution is poor, time needs

to be spent improving it to the point that it is comparable to a better quality starting

solution’s initial value. Additionally, if the improvement heuristic starts with a good

solution it should be able to at least result in a comparably good solution, whereas

when starting from a poor solution the neighbourhood moves may never lead to a good

solution.

In the end, we are not concerned with finding the best solution or even a good

solution, instead we are concerned with testing the Estimation Tool. For that reason

we will be using random starts, but we will run the improvement algorithms long enough

to test on good solutions too.

7.3.2 Stage 2: Annealing Stage

The main feature that requires thought with all SA algorithms is the temperature.

Here we will consider a temperature of 0 to represent a Hill Climber algorithm, where

only improvements on the current solution are taken, thus when the temperature in an

SA algorithm reaches 0 we will move on to stage 3. The initial temperature needs to

be set, which we plan to automate, then a method of decreasing the temperature to

0 must be used (the cooling schedule). We have already discussed the most common

mathematical curves that are used in the literature back in Section 3.6.2. In order

to keep this simple we will be using the linearly decreasing method. Many authors

use the exponential method of decreasing temperature, but it is not always the best

method, as some authors have commented (111) (112) (113), it can be that a linear

decrease produces better results. Further, the exponential method quickly lowers the

temperature from its initial value, meaning most of the time that the SA algorithm is

running it is only allowing slightly worse solutions than a Hill Climber. As we will be

observing its progress throughout, it is much more informative to have a steady change

in temperature.

167

7. THRESHOLD AND SIMULATED ANNEALING EXPERIMENTS

When we introduced Simulated Annealing (Section 3.6.2) we mentioned a selection

of variations that could be added to the basic model. Some of these we will be using

and others we will not.

A reasonably common addition to the Simulated Annealing algorithm is

incorporating the option to reheat, that is, increase the temperature occasionally to

reduce the chances of being caught in a local optimum. The method behind when

to reheat is complicated and is generally problem specific, an example of a general

Simulated Annealing algorithm using reheating can be found in a paper by Connolly

(114). It is important that a reheating schedule is made appropriate for the problem

at hand, if the reheating is too infrequent then the algorithm will likely get stuck in an

optimum anyway, if it is too frequent then the algorithm will take much longer than

necessary to run, due to constantly increasing and then decreasing the temperature.

Similarly, the amount that the temperature is changed by is important, reheating by

too small an amount will mean that the algorithm will not escape an optimum, too

much and the algorithm will take much longer to run.

In the end, we are aiming to test our Estimation Tool on a reasonably simple

Simulated Annealing algorithm so that its effects can be seen easily and not obfuscated

by the many different aspects of the algorithm. Thus, we will not be using a reheating

schedule in our algorithm.

In section 3.6.2, we mentioned three different ways to model the “time” over which

the temperature is to be decreased, using the actual time that the SA takes, decreasing

the temperature each time a new solution replaces the current solution and lowering

the temperature whenever a new solution is produced (i.e. every iteration).

The obvious advantage to basing the cooling schedule on the actual time that has

been taken is that the overall run time of the SA program is much more predictable, as

the annealing stage will have a fixed time. However, tracking time solely for this purpose

seems needlessly complicated for our experiments when the number of iterations can

be used instead.

Lowering the temperature whenever the current solution is changed means that the

temperature will decrease faster at the start of the metaheuristic, when the algorithm

is more forgiving with the quality of solutions, than at the end, when the algorithm is

stricter. This leads to a number of problems with analysis and comparison of solutions,

particularly as all the final solutions will implicitly have had the same number of

168

7.3 Stages of Simulated Annealing

improvements made to them. Also, we cannot accurately predict ahead of time how

many solutions will need to be calculated before a set number are accepted. Thus,

predicting the run-time is harder. Lastly, there is the possibility that there are not

any improvements to be found, which means a check must be included to ensure that

improvements are still being made. One approach is for the algorithm to be ended

early if no improvement has been made for a certain amount of time (seconds passed

or iterations).

The easiest method of lowering the temperature seems to be to do so each iteration

(every time a potential solution is generated). This allows a steady update of

temperature, whilst also having a reasonably predictable run time. Checks for optima

can be left out of the annealing stage, focusing only on the Hill Climber stage at the

end.

As to what the temperature represents, the idea is to accept poorer solutions to

some extent, depending on how much worse the new solution is. Rather than having

a flat chance of accepting a new solution or not, the temperature can be similar to

a threshold of acceptance, as explained in Section 7.1. For instance, at the start the

SA algorithm may accept any tour that has, at most, twice the objective value of the

current solution (i.e. 100% more). As the temperature decreases (from 1 to 0) the

threshold is reduced, until the threshold becomes 0 and the SA algorithm becomes a

Hill Climber.

A simple example of how this may be done is:

Acc = Random(0,Temp)

calculate/estimate new solution

IF new solution < current solution * (Acc + 1)

THEN accept new solution

ELSE reject new solution

Using this pseudocode, the new solution can be up to Acc worse (so if Acc is 0.5 it

will accept any result up to 50% worse than the current solution).

In this example, once the temperature calculation has been made the next line is

simply THEN accept new solution. When we use estimates this is simplifying the

problem. There are two obvious ways to implement the threshold, both methods use

the estimate to cut down the number of solutions that are checked, then work out the

169

7. THRESHOLD AND SIMULATED ANNEALING EXPERIMENTS

actual objective value of the solution. The difference is in whether a solution which

the estimate predicted would be within the threshold, but which turns out not to

be, is accepted. Accepting it anyway means that all the solutions whose changes are

calculated fully are then used, which makes the algorithm less wasteful. This is because

the main time sink, that of calculating the objective value, is already approximately

half finished, so it does not take much more time. On the other hand, these solutions

are poorer than the threshold and using them somewhat brings into question the point

of using the threshold in the first place. Overall, it seems sensible to us to discard

potential solutions that turn out not to make the threshold that SA has given.

One problem that we have mentioned before that can occur with an SA algorithm

is that a good solution can be found, but then lost again as the algorithm moves away

in search of new solutions. An obvious method for solving this is to keep a record of the

best solution found so far. This best solution can be used at the end of the annealing

stage if it is better or it can be used in place of the solution at the end of the Hill

Climber stage if it is better. Another alternative is to replace the current solution with

the stored best solution if the current solution appears to be a local optima and the

SA algorithm, even with its threshold of acceptance, cannot find a new solution good

enough. This can be implemented by keeping track of the number of rejected solutions

since a change was made and if the count reaches a certain number, say 1,000 iterations

without an improvement, the best solution is used to replace the current solution. This

replacement could be a soft reset, where the current temperature is retained, or a

hard reset, changing the temperature to what it was when the best solution was found

and hoping that the stochastic nature of the algorithm leads to a better solution than

before. A hard reset itself adds calculation time and requires more information to be

stored and would also need to be monitored, as, implemented badly, it could lead to

an infinite loop.

7.3.3 Stage 3: Hill Climber Stage

Once the annealing process is complete, we have a start point for the Hill Climber. Some

implementations of SA do not continue after the annealing stage. These methods do not

need to because they have used exponentially decreasing temperature, meaning that

the algorithm has generally had sufficient time with a low temperature to find where

the optimal point in its local neighbourhood is. With linearly decreasing temperature

170

7.3 Stages of Simulated Annealing

there is less pressure exerted on the algorithm to settle on a local optimum, thus it is

useful to have a Hill Climbing stage once the annealing has finished to give time for

finding the local optima.

Whereas the temperature could be used as the timing for the annealing stage, with

the annealing stage ending when the temperature reaches 0, with the Hill Climber

there is no implicit time limit, although obviously a terminating condition needs to be

applied, so a final solution can be produced. In a similar way to the implementation of

temperature changing, there are a variety of ways this can be achieved. One method

is to impose a time limit, which could be independent of the annealing or be based on

it. For instance, the program could check the time at the start when the algorithm is

first executed, then check again once the annealing is done and run until a preset time

has passed. For example, the algorithm could be made to run for ten minutes total

and if the initial solution generation and annealing took a total of six minutes then the

remaining four would be spent on the Hill Climber. This has the obvious advantage

that the algorithm can be made to run for a specified time (assuming the other stages

together take less time than the total assigned).

A second method is to simply perform a certain number of moves, either counting

the number of solutions generated or counting the number of improvements made.

Obviously the latter needs a secondary terminating condition in case a local optima is

reached, meaning no further improvements can be found.

A problem with both of these methods is that they do not fully take into account

the performance of the Hill Climber though. They can end the algorithm while it is

still able to improve the solution and they can spend a lot of time with a solution that

cannot be improved.

The third method, which has neither of these problems, is to terminate once a

certain number of solutions have been generated without finding an improvement.

While it is possible to create an arbitrary number of improvements needed to terminate,

it makes more sense to base this number on the performance of the SA algorithm

earlier. A simple method of doing so is to keep track of the longest run of unaccepted

solutions generated during the annealing process. Because the temperature means

that the threshold of acceptance is lower, the average number of solutions that need

to be generated before one is accepted is clearly lower, as on average there will be a

higher percentage of the possible solutions that will qualify for acceptance. For this

171

7. THRESHOLD AND SIMULATED ANNEALING EXPERIMENTS

reason, it makes sense to not use this number directly. Instead it can be, for example,

doubled so that if during the annealing process, there is a point where it takes 300

solutions generated before one is found that is accepted, then the Hill Climbing section

will continue to run until 600 solutions have been generated without an improvement

found.

7.4 Simulated Annealing vs. Hill Climber Experiment

Now that we have looked at the various Simulated Annealing algorithm parameters

in detail, we are ready to discuss how our specific Simulated Annealing will work and

compare it to our previous methods. In order to do this we will run Simulated Annealing

with and without using estimates, alongside a standard Hill Climber with and without

estimates. To give a complete picture we will track the progress of these four algorithms

in the same manner as we did with the Threshold Experiment in Section 7.1, running

each algorithm 25 times, recording the solution quality every 500 iterations of each and

taking the average. We will be using gr666 for the first set of experiments as it has

the most customers of all the TSPLIB problems we have used, so it is unlikely that

an optimal solution will be found early on in the lifetime of the algorithms. There is

much to be analysed with this experiment, comparing Simulated Annealing with a Hill

Climber both of which are run with and without using our Estimation Tool. At this

stage of this thesis we hope that it is sufficient to show this experiment on only the larger

of the instances, as the smaller problem instances are not the focus of our endeavours.

Similarly, the only artificial problem that we are planning to test this with is speed3

twin peak congestion, as it is the more complex of the congestion models, with more

varied congestion throughout the day than stepped and with the heterogeneous road

speeds that make it more complex than the homogeneous speed1 model. In addition

to our constructed problem, we will also, with our second set of experiments, test this

on a 400 node Real World problem, to ensure that our findings are valid when applied

to a real problem. We will use a single depot, centrally located, for all the runs and

experiments.

We aim to test our Simulated Annealing against the standard Hill Climber that

was used in the MVRP Hill Climber Experiment. We have modified the framework of

the Hill Climber slightly, adding in a second neighbourhood move, Split, as detailed in

172

7.4 Simulated Annealing vs. Hill Climber Experiment

Section 3.5.2. Obviously, starting from a random solution means a lot of improvements

can be made with CROSS moves compared to Split, but a few Splits can help solve

heavily overloaded vehicles and problems that may occur when there are too few

vehicles. For this reason we have made it so that an average of only one in every

100 moves is Split.

One parameter that we will set is the duration of the Simulated Annealing, which

represents the number of new solutions that will be generated. For these experiments

we will have this set to 1,000,000 for the annealing stage and another 1,000,000 for the

Hill Climber stage. The straight Hill Climber will have 2,000,000 iterations, so the two

methods will generate the same total number of neighbourhood moves.

In order to get a good idea of what the starting temperature should be we will run

a preliminary test on the starting solution. Picking 100 random swap moves and using

the Estimation Tool to calculate roughly what the change in time will be, this gives an

average value that we will use (115). This calculation will be included as part of the

overall time taken by the algorithm. The initial temperature will be set such that the

threshold will be equal to the average change so that an initial solution has, on average,

a 50% chance of being implemented.

At each step the temperature will be reduced by a millionth of the starting

temperature, thus after 1,000,000 iterations the annealing stage will end. This constant

linear decrease is simple to understand, use and implement as well as giving a reasonable

change in temperature over the course of the algorithm.

The Simulated Annealing algorithm will also keep a record of the best solution so

far. If it spends over a tenth of the total number of attempts (100,000) in a row without

finding any improvement, then it will replace the current solution with the best found

so far and continue the algorithm from there (not resetting the temperature). This is

generally unlikely to happen, especially with a random start where there are likely to

be plenty of improvements to be made, but it is good practice to include this anyway.

At the end of the Hill Climber stage it will also compare the final solution with the

best found during the annealing stage, just in case a good solution is moved away from

late on in the annealing stage.

Once the annealing stage is over, the algorithm will continue with a Hill Climber

on its found solution, running for an equal time to the annealing stage (1,000,000

iterations). Of course, this means that the SA and pure Hill Climber are using the

173

7. THRESHOLD AND SIMULATED ANNEALING EXPERIMENTS

same algorithm for the second half of the experiment. The difference is that the

SA has had the first half of the experiment to move around and hopefully find a

promising neighbourhood to work in, whereas the Hill Climber will have constantly

been improving in one area.

7.4.1 Simulated Annealing Results for gr666

Table 7.2: FSQ of SA and HC throughout Lifetime of Experiment - gr666

1st 667th 1334th 2000th 2667th 3333rd 4000th

HC with Est. 86598.92 26932.43 22170.01 19797.60 18222.58 17221.78 16487.42

HC w/out Est. 72477.97 28122.39 22158.57 19666.16 18354.24 17176.42 16559.80

SA with Est. 84614.46 19592.54 16923.55 15692.48 14913.18 14002.95 13625.98

SA w/out Est. 74633.93 16116.53 13834.93 12763.44 12015.84 11455.67 11099.81

Table 7.3: Calculation Time of SA and HC throughout Lifetime of Experiment - gr666

1-1000 1001-2000 2001-3000 3001-4000

HC with Est. 605.22 552.14 553.58 554.14

HC w/out Est. 2096.20 2055.61 2002.91 2165.08

SA with Est. 617.12 558.50 562.89 565.90

SA w/out Est. 2814.13 2649.60 2666.10 2465.73

As can be seen in Table 7.2 and Figure 7.3 the application of the Estimation Tool

on the Hill Climber (HC) has little overall effect on the objective value. Early on the

HC that uses estimates is actually doing better than the HC that does not, at the 306th

point (after around 153,000 iterations) the HC without estimates starts doing better and

continues to do so until the 1,223rd point (611,500 iterations). The two alternate which

of them has the better objective value until the 3509th point (1,754,500 iterations), at

which point the HC with estimate gains a slight lead that continues until the end of

our experiment (2,000,000 iterations).

Both the graph and table clearly show that the SA algorithm outperforms the Hill

Climber in terms of FSQ nearly immediately. SA with estimate is better than HC with

estimate at the first point (500 iterations). SA without estimate is not as good as HC

without estimate after the first 500 iterations, but is ahead after 1,000 iterations. By

7,000 iterations both the SA algorithms are beating both the HC algorithms.

174

7.4 Simulated Annealing vs. Hill Climber Experiment

F
ig

u
re

7
.3

:
S

im
u

la
te

d
A

n
n

e
a
li

n
g

v
s.

H
il

l
C

li
m

b
in

g
w

it
h

a
n

d
w

it
h

o
u

t
E

st
im

a
te

s
-

g
r6

6
6

-
A

g
ra

p
h

o
f

th
e

av
er

a
g
e

ob
je

ct
iv

e
va

lu
e

of
S

im
u

la
te

d
A

n
n

ea
li

n
g

an
d

H
il

l
C

li
m

b
in

g
a
lg

o
ri

th
m

s
ov

er
2
,0

0
0
,0

0
0

it
er

a
ti

on
s

w
it

h
a
n

d
w

it
h

o
u

t
u

si
n

g
E

st
im

a
te

s
o
n

gr
66

6.

175

7. THRESHOLD AND SIMULATED ANNEALING EXPERIMENTS

Figure 7.4: Individual runs of Hill Climbing with and without Estimate - Time

Taken - Top: Graph of the calculation time for a specific run of Hill Climbing on gr666

using the Estimation Tool. Bottom: Graph of the calculation time for a specific run of Hill

Climbing on gr666 without using the Estimation Tool.

It is similarly apparent from the graph that SA with Estimate does not give as good

an objective value as SA without estimate, although the gap is slowly decreasing, as

shown in Figure 7.6. Early on (peaking at 3,500 iterations) SA with estimates is much

worse than SA without estimates, but the gap narrows quite quickly, dropping below

4,000 after around 166,000 iterations. Despite the apparently obvious superiority of the

SA without estimates in terms of average solutions quality, the worst of the runs of the

SA without estimates has a final solution of 17,349, worse than any of the results for

SA with estimates and worse than the average of either of the Hill Climbers. Evidently,

while SA without estimates performs best on average, it does not always give the best

solution.

176

7.4 Simulated Annealing vs. Hill Climber Experiment

Figure 7.5: Individual runs of Simulated Annealing with and without Estimate

- Time Taken - Top: A graph of the calculation time for a specific run of Simulated

Annealing on gr666 using the Estimation Tool. Bottom: A graph of the calculation time

for a specific run of Simulated Annealing on gr666 without using the Estimation Tool.

177

7. THRESHOLD AND SIMULATED ANNEALING EXPERIMENTS

Figure 7.6: Difference in Objective Value of Simulated Annealing with and

without estimates - A graph of the difference in the objective value between Simulated

Annealing without Estimates and Simulated Annealing with Estimates during the lifetime

of our Simulated Annealing versus Hill Climbing Experiment.

178

7.4 Simulated Annealing vs. Hill Climber Experiment

In terms of time, we can see from Table 7.3 that using the estimate drastically

reduces the calculation time of both the SA and HC algorithms. With estimates they

are both running at roughly 500,000 iterations in 10 minutes (600 seconds), the HC

algorithm is slightly faster throughout than the SA, but the difference is quite small

compared to the difference between using the estimate and not using it. HC sees a

reduction of around seventy percent throughout, getting slightly better by the end,

(71.13% at the start, 74.4% at the end). SA has even more reduction, with 78.07%

and 78.92% savings during the SA half, the HC stage ends with 77.05%, which is more

of a saving than is gained using HC, despite (at this stage) the algorithms being the

same, this is probably due to SA having a better solution, and thus there are likely to

be less improvements to find. The less improvements there are to find, the less time

the estimate has to spend calculating them, and thus the more time is saved.

The general trend in reduced calculation time as the algorithm progresses

is understandable, as the metaheuristics improve the solution there will be less

improvements found, and thus less time taken to calculate new tours (remember that

the Standard method relies on the FIFO property in order to discount changes once

they are shown not to be improvements/within the temperature bounds).

An interesting thing to observe is the calculation times for a set of individual runs,

Figures 7.4 and 7.5 show the initial run for each of the four set-ups (the first run is

chosen arbitrarily so that there can be no chance of selecting runs that look more

interesting or show something specifically). As can be seen, in addition to the Estimate

being faster in both cases (as was to be expected), it is also more consistent in terms

of time. The HC with Estimates has a flurry of activity for the first 103 points (51,500

iterations), but then settles down to between 0.54 seconds and 0.62 seconds for the rest

of the iterations. The SA with Estimates drops quickly too, the latest point over 0.8

seconds is the 32nd (16,000 iterations) and after the 128th point (64,000 iterations) it

is does not go above 0.7 seconds (the minimum is 0.54 seconds).

Without estimations we can see that the times are much less smooth, with many

peaks and spikes. HC has these spikes in calculation time throughout, but SA has them

in two long sections and then is relatively smooth, this seems to match up with local

near optima that the metaheuristics have briefly been caught in (i.e. the long periods

of inactivity are times during which the metaheuristic has kept the same value, as there

were few improvements that would improve on the current objective value).

179

7. THRESHOLD AND SIMULATED ANNEALING EXPERIMENTS

F
ig

u
re

7
.7

:
S

im
u

la
te

d
A

n
n

e
a
li

n
g

v
s.

H
il

l
C

li
m

b
in

g
w

it
h

a
n

d
w

it
h

o
u

t
E

st
im

a
te

s
-

R
e
a
l

W
o
rl

d
4
0
0

N
o
d

e
s

-
A

g
ra

p
h

o
f

th
e

av
er

ag
e

ob
je

ct
iv

e
va

lu
e

of
S

im
u

la
te

d
A

n
n

ea
li

n
g

a
n

d
H

il
l

C
li

m
b

in
g

a
lg

o
ri

th
m

s
ov

er
2
,0

0
0
,0

0
0

it
er

a
ti

o
n

s
w

it
h

a
n

d
w

it
h

o
u

t
u

si
n

g

E
st

im
at

es
on

R
ea

l
W

or
ld

p
ro

b
le

m
w

it
h

40
0

N
o
d

es
.

180

7.4 Simulated Annealing vs. Hill Climber Experiment

F
ig

u
re

7
.8

:
C

a
lc

u
la

ti
o
n

T
im

e
o
f

S
im

u
la

te
d

A
n

n
e
a
li

n
g

v
s.

H
il

l
C

li
m

b
in

g
w

it
h

a
n

d
w

it
h

o
u

t
E

st
im

a
te

s
-

R
e
a
l

W
o
rl

d

4
0
0

N
o
d

e
s

-
A

gr
ap

h
of

th
e

av
er

ag
e

ca
lc

u
la

ti
o
n

ti
m

es
in

b
a
tc

h
es

o
f

5
0
0

it
er

a
ti

o
n

s
o
f

S
im

u
la

te
d

A
n

n
ea

li
n

g
a
n

d
H

il
l

C
li

m
b

in
g

al
go

ri
th

m
s

ov
er

2,
00

0,
00

0
it

er
at

io
n

s
w

it
h

an
d

w
it

h
o
u

t
u

si
n

g
E

st
im

a
te

s
o
n

R
ea

l
W

o
rl

d
p

ro
b

le
m

w
it

h
4
0
0

N
o
d

es
.

181

7. THRESHOLD AND SIMULATED ANNEALING EXPERIMENTS

7.4.2 Simulated Annealing Results for Real World Problem

Table 7.4: FSQ of SA and HC throughout Lifetime of Experiment - Real World 400

Nodes

1st 667th 1334th 2000th 2667th 3333rd 4000th

HC with Est. 127231.09 43639.87 37341.89 34570.90 31067.69 28845.62 28204.67

HC w/out Est. 78122.25 19103.58 16049.63 14533.77 13511.89 12874.47 12427.58

SA with Est. 119871.00 30343.03 26009.65 22630.12 21626.16 20925.25 19138.74

SA w/out Est. 67091.11 16641.64 13611.70 12108.83 11099.95 10467.54 10154.65

Table 7.5: Calculation Time of SA and HC throughout Lifetime of Experiment - Real

World 400 Nodes

1-1000 1001-2000 2001-3000 3001-4000

HC with Est. 223.86 230.29 251.52 251.28

HC w/out Est. 397.52 427.41 438.46 447.95

SA with Est. 169.19 170.92 187.68 201.74

SA w/out Est. 452.70 455.24 458.51 460.06

As can be seen in Table 7.4 and Figure 7.7 the Estimation Tool, on average, performs

worse with the Real World problem that it did with gr666, however, the individual runs

vary a lot, with some of the SA with Estimate runs with an FSQ over 30,000, and others

below 10,000. Interestingly, the HC without Estimates has performed much better in

comparison to the other metaheuristics on the Real World problem than it did with

gr666. There are a number of things that could have been the reason for this improved

performance, such as the smaller instance size or the varied congestion that meant that

the local optima which are the main reason that HC performs worse than SA were less

numerous.

The calculation time is shown in Table 7.5 and Figure 7.8. As is evident from

observing the graph, the use of estimates has a noticeable effect on the calculation

time throughout. All of the calculation times are generally steady throughout, but

interestingly they all increase over time, when the expectation from the previous

experiment was that they would decrease. Looking at the results in more detail and

Figure 7.8, it seems that there is still “activity” up to the end of the experimental

run, which was not as much the case with gr666. It could be that, because of the

182

7.4 Simulated Annealing vs. Hill Climber Experiment

more clustered nature of gr666, the neighbourhood moves found it easier to settle on a

solution that had little improvement to be found, whereas the more spread out nature

of the Real World 400 node problem may mean that there are still improvements to be

found after two million iterations.

7.4.3 Summary of Findings on Simulated Annealing

We have seen that estimates can work with a Simulated Annealing algorithm in a similar

way to their inclusion in a simple Hill Climber, the results of using estimates with a

Simulated Annealing algorithm on our artificial problem show that there is a loss in

quality of the objective value of under 20% (after the initial 320,000 iterations). Because

Simulated Annealing allows more of the neighbourhood moves to be implemented than

the Hill Climber of previous experiments, it may be sensible to assume that there will

be less time saved by the use of estimates, but as it turns out, there is more time saved

using estimates on SA compared to the saving of using estimates on HC. This is likely

due to the improved quality of the SA tours compared to HC meaning that there are

quickly less improvements to be found.

Overall, we believe that Simulated Annealing seems to benefit less from the use of

our Estimation Tool than Hill Climbing, with the loss of solution quality being slightly

more of a drawback than the improved calculation time. It may be that our use of a

linear cooling schedule gives less time saving than we might obtain from an exponential

cooling schedule, as the main savings in time come from skipping changes, and more

changes are likely to be skipped when the temperature is low. Of course, this all depends

on whether the quality of solution suffers from the accelerated cooling of the exponential

method. Over the course of the SA algorithm the temperature is, on average, lower

with an exponential cooling schedule compared to a linear cooling schedule, thus a lower

temperature means potential solutions must have better predicted objective values

before time is spent calculating them. As with the Hill Climber algorithm, whether

estimates are a good idea to implement is dependant on how valuable saving time is

compared to the quality of the solution generated, although obviously the point at which

the Simulated Annealing algorithm benefits enough to justify using the Estimation Tool

will likely be at more customers than a comparable Hill Climber algorithm, for the

reasons we just mentioned.

183

7. THRESHOLD AND SIMULATED ANNEALING EXPERIMENTS

It is also worth realising that the overall calculation time is more predictable when

using estimates than when not, and having a predictable run time may be of relevance

to some users. Further, it is important to realise that the times that we have recorded

include a lot of checks and book-keeping, and are not meant as a competitive run

time. This excess time spent recording results and the like is mostly a fixed amount,

unaffacted by the improvements found or methods used, so the percentage savings in

time should be viewed as potential underestimates. Obviously it would be ideal not to

have these overheads, but the very act of observing the times at such frequent intervals

has a detrimental effect on those times, so there is little that we can do without excessive

work.

7.5 Conclusion

In this Chapter we initially looked at changing the threshold value. We found that

relaxing the value, even by quite a margin, did not do much to improve the solutions

generated, and this would inevitably increase run-time, both needing to calculate

the threshold and by increasing the number of new tours that need calculating fully.

Tightening the threshold, even by a small amount, had a noticeable detrimental effect

on the quality of the final solution. Tightening the threshold likely will save calculation

time (the saving in time for not calculating as many tours fully would be mitigated

slightly by the extra calculations required to calculate the threshold), but from our

observations it would not be worth the loss in solution quality.

The threshold experiments that we conducted in this Chapter are by no means a

full experimental test. Instead, we set-up a simple set of small scale experiments in

order to test a perceived viability of using edited threshold values and found to our

satisfaction that the threshold was best left at 0. As we mentioned in our summary

of findings (Section 7.1.4), there may be situations where changing the threshold is a

viable method, but, if they do exist, it will likely take much more time and effort than

we are willing to devote to this musing.

In the second half of this Chapter we looked at Simulated Annealing in order to see

whether the findings that we made in the previous Chapter were as applicable to other

metaheuristics, such as Simulated Annealing, as they were for the Hill Climber. Our

findings in this Chapter are similar to those of the previous chapter, with the expected

184

7.5 Conclusion

loss of solution quality but saving in time. Our time savings are impressive, and the

final results of the individual runs differ enough from one another that we can again

recommend the use of the Estimation Tool even if a good solution is required, as it

allows multiple runs to be performed consecutively in the same space of time as a single

run without estimates, and on average three runs with an estimate will give a better

result (in terms of both FSQ and calculation time) than one without.

185

7. THRESHOLD AND SIMULATED ANNEALING EXPERIMENTS

186

8

Analysis, Future Work and

Conclusions

To conclude our investigation we will start by looking at the work that other authors

have done and how our work in this thesis fits amongst them. We will then

explain in more detail the contributions that we have made in this thesis to scientific

understanding. After that we detail future work that could be done, firstly we discuss

how we can further our understanding of the interactions that occur with the Estimation

Tool, secondly we revisit Arc Routing and see how a different problem can be solved

in similar ways, then we take a thorough look at the use of larger problems to create

more solid ideas of how the estimate scales with problem size, then we move on to look

at how the use of estimates can be incorporated into other metaheuristic and similar

methods. Lastly, we will end this thesis by collating all of the information that we

have found and forming a conclusion as to where the strengths and weaknesses of the

Estimation Tool lie.

8.1 Other Works

Back in Chapters 4 and 5 we looked in some detail at the approaches and methods

that other authors have used on this relatively unexplored field of vehicle routing.

We identified that many authors modelled congestion in simplistic ways, such as

modelling all roads with the same speed (multiplicative congestion) or classifying roads

as particular types with modifications for each (Travel Speed Matrix). We also saw

187

8. ANALYSIS, FUTURE WORK AND CONCLUSIONS

that many authors had very few time bins, often having a total of three time bins

throughout the day (morning, midday and evening).

Eglese et al. have found (5) that congestion can vary dramatically over a very short

space of time, much faster than the four to eight hours that some authors have modelled.

Obviously the overheads for calculating changes become greater the more time bins

there are, especially when the FIFO property needs to be maintained. The only other

authors who model congestion as changing as rapidly as we want is Malandraki and

Dial (95), who have an average of two to three time bin changes per arc.

This lack of research in such a useful field of vehicle routing is a problem. It may

be the additional complexity that results from such precise models, but we hope that

our contribution here will help simplify the problem, so that other authors can work

on solving these problems within reasonable times.

Of the research that has been made, Malandraki and Dial have a good algorithm for

what they are doing, using their restricted Dynamic Programming it seems likely that

they will be able to solve small problems much more effectively (in terms of time/quality

balance) than heuristic methods. We are not particularly concerned with solving small

problems, as that is not where the strength of heuristic methods lies. Instead, we are

looking at much larger problems. Although Malandraki and Dial predict that their

restricted Dynamic Programming will work with up to 200 nodes, they have only got

results for solving problems a quarter of that size. Even if their promising results

extrapolate well up to 200, that is still quite a small problem compared to the 666 node

problem that we have been using throughout Chapters 5, 6 and 7.

We are not introducing a new, fully built, method of solving these problems,

instead we are looking at how an existing class of problems, metaheuristics based on

neighbourhood moves, can be adapted to cope with these otherwise taxing problems.

For this reason we are not concerned with how well our results might compare to

existing results, as firstly, there are not any comparable results already published that

we can find, and secondly, we are experimenting and exploring how this new technique

works.

In conclusion, there is work that other authors have done in this field of vehicle

routing, but no authors that we have found have come up with methods to solve large

(500+ node) problems with many (50+ over the problem duration) time bins. There

188

8.2 Our Contribution

are methods to solve large problems with few time bins and small problems with many

time bins, but we are not concerned with these simpler problems.

8.2 Our Contribution

With the relatively small amount of work that has been done by other authors on large,

time variant VRPs with many time bins, we have spent a large amount of this thesis

setting down the problems that we are solving and the various methods that are used

for simpler (generally time invariant) problems that may be adapted to work in this

framework.

Our main contributions to scientific understanding begin in Chapter 5, where we

set out how exactly we intend to improve on the existing methods of metaheuristics

for solving Time Variant Vehicle Routing Problems. Our Estimation Tool is set out

in detail and examined in our quadrant experiments. The simplification of rating our

results purely based on which quadrant they fall into may seem simple, but it is an

effective measure of how a metaheuristic, such as Hill Climbing, uses each of the results

obtained from a neighbourhood move. We then moved on and saw how our estimation

tool functions within an actual metaheuristic and we found that it performed well,

particularly with larger problems, in comparison to the admittedly simplistic approach

of simply calculating the changes fully.

Probably the most important findings that we have come across are from using

the estimation tool on sets of problems that use Real World speeds. Although these

problems themselves are not real problems, in that the demand and customers are

invented rather than being real customers and real demands, the network of roads

and the congestion levels and speeds upon those roads are real. If our approach had

performed noticeably poorer on a model based on reality compared to our artificial

models then the findings that we made in Chapter 5 would have been relatively

inconsequential, as the estimation tool would be shown to only work on theoretical

problems, and would not be sufficiently accurate or fast to be used on a practical

problem. As it was, we found that the estimation tool performed adequately well,

giving final solutions that were of comparable quality for small and medium problems

and not drastically worse for larger problems. The use of metaheuristics can be seen

189

8. ANALYSIS, FUTURE WORK AND CONCLUSIONS

to give varied quality of results, and by cutting calculation time in half (in the case of

the 400 node problem) it allows multiple attempts to find a good solution.

Overall, we have shown that the estimation tool is an interesting approach to making

metaheuristics tenable and viable as a solution method, we have shown it being used in

a variety of situations, but there are many more that we have not got the time or space

to cover. We have shown a variety of promising avenues of exploration, some of which

we will explore further in the next Section, as well as some less promising avenues, such

as changing the threshold value.

We hope that the work that we have done here will be used by other authors to

explore further into this approach to solving time variant problems.

8.3 Further Work

While there are many ways that we can think of to carry on the work here in different

directions, which we cover in the next Section, for now we will take a moment to look

at how we can expand on what we have done here to better understand the workings

of the estimation tool.

The obvious way to further understand how the estimation tool functions is to look

at intervening nodes. It seems obvious that the more nodes that there are between

the two points on, for instance, a Delete & Insert neighbourhood move, the more

inaccurate the estimation tool is likely to be, as there are more arcs and, on average,

more distance over which errors may be made. A simple approach would be to take

the difference between the estimate and reality (as a positive number) and compare it

with the intervening nodes.

During our research, particularly the experiments of Chapter 5, we found that the

estimation tool’s predictions varied quite noticeably depending on the problem instance

that was being used. In particular, the effects on solution quality of using estimates on

a Hill Climber were different with bier127 than with either bayg29, a280 or gr666. At

the time we stated that we were more concerned with testing the estimation tool on

more complicated problems, rather than conduct a thorough investigation into different

problem instances and how they were all affected. This difference persists in the MVRP

experiments of Chapter 6. If the estimation tool is to be fully understood we will need

to determine what aspects of a problem instance make the estimation tool more or less

190

8.4 Further Expansion

accurate and account for these features in deciding whether to rely on the estimation

tool.

Evidently the estimation tool as we have presented it here is somewhat limited

in its application. As we will discuss in the next section, certain situations, such as

come up with Arc Routing problems, are less effective for the estimation tool, as they

are less orientated around modifying which arcs are traversed and more concerned

with the specific times that the arcs are traversed, which the estimation tool ignores.

The estimation tool is concerned with focusing on the likely benefits of adding in and

removing arcs, so it is only useful with neighbourhood moves that add and remove arcs,

for instance the estimation tool does nothing to help predict whether traversing a tour

in reverse order will be beneficial, as the arcs of the tour are unchanged. Similarly it

would need major adapting to help with the clustering part of a solution construction

heuristic. Where it can be useful is when a large number of solutions need comparing,

such as choosing the best solution in a steepest ascent/descent Hill Climber (which we

will talk about more in the Tabu Search part of the next Section).

8.4 Further Expansion

As we said in the previous section, there are a number of ways that we could expand

on the work presented in this thesis. We will now speculate on the effects of some of

the ways to build on the groundwork that we have presented here.

8.4.1 Arc Routing

We initially covered Arc Routing problems back in Chapter 2 (see Section 2.3). Before

considering how one might use our estimation tool to help solve Arc Routing problems,

we must first work out exactly how time variance affects them.

As we saw in Chapter 2, the basic Arc Routing problem is the Chinese Postman

Problem, which is solved by pairing up the odd degree nodes in a minimum weight

matching problem and then traversing the found arcs additional times (as dummy

arcs) in order to be able to create a complete Eulerian circuit. It was seen that the

various methods of adding complexity to the basic problem, such as the Windy Postman

Problem, made the problem NP-Complete. If the relatively simple act of making the

arcs asymmetric makes the problem NP-Complete then it is reasonable to assume for

191

8. ANALYSIS, FUTURE WORK AND CONCLUSIONS

now that adding time variant traversal costs may also make the problem NP-Complete.

This problem is relatively uninteresting though, and the authors that we have found

look at more advanced problems, such as adding time dependant traversal costs to the

Capacitated Arc Routing Problem with Time Windows (CARPTW) (116) or trying

to solve the prize-collecting Arc Routing problem. The prize-collecting Arc Routing

problem in particular has a lot of variety, Black et al. (117) cover a time variant version

of this problem and summarise another ten papers with (time invariant) prize-collecting

Arc Routing problems (varying in whether the individual papers deal with problems

that are capacitated, directed, single or multiple vehicle etc.).

As we mentioned earlier (see Section 4.1) the main difficulty with solving problems

with time-varying costs is when the cost itself is time, as this causes knock-on effects

that are the main cause of high calculation times. For this reason, we will only focus on

problems with time-varying traversal times, as problems with different costs are much

simpler to solve.

A very simplified approach to solving an Arc Routing problem in a heuristic manner

is to change the traversal order of a set of required arcs and see if it is quicker to traverse.

As with a VRP, all the arcs involved in the change and all those afterwards must be

rechecked in order to find the new total traversal time, but only those up until the end

of the last change need to be calculated in order to find out whether the change is an

improvement (assuming that the FIFO property is maintained).

Herein lies the problem. With changes made to a VRP the arcs that are being

traversed are changed while the nodes visited are kept the same, as it is the specific

nodes that must be visited. With an Arc Routing problem it is the arcs that must be

traversed, and so any changes will use a fair number of the same arcs. The savings

are primarily on when the necessary arcs are being traversed, and not, as is the case

with the VRP, primarily which arcs are being traversed and secondarily when they are

traversed. For this reason, the estimation tool is likely to be of less use on Arc Routing

problems.

Of course, each problem is different, and some problems may benefit from using

the estimation tool. For instance, the rural postman problem may consist of a large

number of unnecessary arcs, and thus it may be that the neighbourhood moves that

are used change these arcs for other arcs.

192

8.4 Further Expansion

Lastly, it should be noted that any Arc Routing problem can be transformed into a

node routing problem, in some cases it may be possible to transform a time variant Arc

Routing problem into an equivalent Time Variant Vehicle Routing Problem (TVVRP)

and then solve the TVVRP using the methods that we have presented in this thesis.

Examples of when these transformations are useful, and examples of transforming split

delivery and capacitated Arc Routing problems with and without time windows into

various VRPs, can be found in a publication by Dror (118).

8.4.2 Larger Problem Instances

We have seen a selection of problem instances and the calculation time for solving them

that is saved using estimates. These results are across multiple Chapters, so at this

point we have combined the timing results for the MVRP Hill Climber Experiment

with the timing results from the Real World Hill Climber Experiment in order to give a

more detailed picture of how much time it takes to run these algorithms as the number

of nodes increases. So that the comparisons are fair we have not included the results for

bayg29 because, unlike all the other results presented here, the optimal solution only

requires five vehicles, whereas the rest of the results require nine. In order to create a

clearer picture we have also included timing results for another problem instance based

on those from TSPLIB, ali535 (based on the locations of 535 airports around the world

by Padberg and Rinaldi) solved in the same way as the other MVRP instances.

The graph of these timing results (Figure 8.1) clearly shows that above 200 nodes

there is a clear increase in calculation time for both the standard and estimate methods.

At the lower end of the node numbers it should be noted that the calculation time for

50 nodes is more than for 100 nodes when using the estimate method. The main reason

for this is, as explained earlier (see Section 1.6.1) additional calculations are required

when the nodes selected for exchange are adjacent to the depot (this is as much the

case with CROSS as it was with 2-Opt). With very short vehicle tours (the average is

under six customers) the chances of one of the nodes that is picked being adjacent to

the depot is much higher. At the same time, the savings to be had are based on the

number of nodes between the first and last change, which is clearly going to be less, on

average, with shorter vehicle tours.

The presence of multiple effects that are based on the number of nodes means that

there is no simple line of best fit that can be made that will accurately fit both the

193

8. ANALYSIS, FUTURE WORK AND CONCLUSIONS

low end and the high end of the number of nodes. However, concerning ourselves with

the upper end of the graph, where the significant time savings are to be found, it is

apparent that both methods are taking an exponentially increasing time to solve as the

number of nodes increases. If the results are along the lines of y = axb then a graph

of log(y) versus log(x) should give a straight line, as log(axb) = log(a) + b ∗ log(x),

so log(a) is the y intercept and b is the gradient. However, the results plotted on a

log vs log graph do not form a straight line, instead appearing to form an upwards

curve. However, plotting log(y) versus x gives a graph which appears to present two

roughly linear lines for the two methods, as shown in Figure 8.2. This would imply

that log(y) = kx, if we let k = log(b) then we have log(y) = x ∗ log(b) = log(bx),

thus our original graph appears to be of the form y = abx. Reading roughly from the

log(y) versus x graph we can estimate that log(b) = 1/300 for the Estimate method

and log(b) = 1/200 for the Standard method. Taking the average values for time taken

for 50 nodes and 666 nodes and calculating the gradient from them gives 1/314 and

1/208, so these rough readings seem about right. e1/200 = 1.0050 and e1/300 = 1.0033,

we can see that t = 100 ∗ (e1/300)n where t is the time taken and n is the number of

nodes gives a reasonable line of best fit for the estimate and t = 100 ∗ (e1/200)n gives

a rough line of best fit for the Standard method. These two lines are shown in Figure

8.1.

Unfortunately, these predictions give the time taken to solve a 1291 node problem

using the Standard method at 63,587 seconds (over 17 hours). Running a brief check

on d1291 from TSPLIB gave a time of around 19,300 seconds (under five and a half

hours); around a third of our prediction. In order to find an accurate line of best fit

higher numbers of nodes would be needed. When the number of nodes is below 300

the number of nodes has little effect on the calculation times, so there are only three

or four sets of results being used to assess the growth of this function. Clearly more

research would need to be performed on a variety of larger problems in order to derive

any accurate formula for the time taken. TSPLIB provides a range of problems, the

largest being pla85900. With a (time consuming) investigation into the calculation

times of all of these problems, a more accurate reflection of the relationship between

calculation time and number of nodes could be found.

Examining why the relationship cannot be mathematically calculated easily, we can

see that the time taken is simply the time that is spent on all the iterations, so it should

194

8.4 Further Expansion

Figure 8.1: Calculation Time Graph - A graph showing the increase in calculation

time as the number of nodes increases for a 9+ vehicle MVRP.

195

8. ANALYSIS, FUTURE WORK AND CONCLUSIONS

Figure 8.2: Log(Calculation Time) Graph - A graph showing the natural log of the

time taken against the number of nodes in the MVRP.

196

8.4 Further Expansion

simply be 1,000,000 times the average time taken for a single iteration (the timer is not

running after the iterations are finished, when output is being produced, or before the

iterations start, when Road Timetables and similar matrices are being produced). A

typical iteration for the estimate method is:

• Choose two vehicles at random.

• Choose two points on each vehicle.

• Calculate the local change and recalculate capacity.

• Assess whether the change appears to lead to an improvement.

• If it does, calculate the CTCs of the nodes between the chosen points on both

vehicles.

• If it is an improvement, calculate the nodes after the final point on each vehicle.

The situation where the two vehicles chosen are actually the same vehicle is similar,

instead of calculating two sets of changed nodes, instead one set is calculated, but on

average there are likely to be more nodes in it.

The first four steps should take roughly the same time regardless of the number

of nodes, in fact, more nodes actually make it take slightly less time because the less

nodes on a vehicle, the higher the chance that the two points chosen on the vehicle are

initially the same, so an extra line of code is run. The time taken to calculate the CTCs

and the time taken to calculate the post-change nodes are both (on average) directly

proportional to n. What may be the cause of the exponential increase in time is the

chance of the estimate indicating an improvement and the chance that an improvement

is found. On average the more nodes that there are, the more improvements there may

be to find and perform, meaning that the effect of increasing the number of nodes is

twofold; more CTCs to calculate when an improvement is found and more improvements

to find.

In conclusion, we have some information on how the saving of time from

using estimates over the Standard method scales with the number of customers,

demonstrating a clear upwards trend. However, there are not enough data points

for us to determine exactly how it scales up, if indeed it is possible to do so. Obviously

197

8. ANALYSIS, FUTURE WORK AND CONCLUSIONS

the time that would need to be spent collecting data on larger problems would be much

more than the amount that was taken collecting the data already presented. Assessing

the use of estimates on larger problems is the most obvious expansion of the work

presented here.

8.4.3 Estimates and Tabu Search

We have looked in detail at how using estimates affects heuristic and metaheuristic

methods such as Stochastic Hill Climber and Simulated Annealing, where at each

iteration a single potential tour is assessed. Obviously the strength of using estimates

is dependent on how many tours must be assessed, so metaheuristics which produce

multiple tours each iteration will logically see even more benefit to using estimates than

the methods that only produce one.

We initially mentioned Tabu Search in Section 3.6.3. To recap, the idea of Tabu

Search is that it implements the best allowable solution from the selection (which can

be all neighbouring moves, a deterministic subset or a stochastic subset), regardless

of whether the best solution is an improvement or not. Solutions are not allowed if

they have a Tabu element, unless an aspiration criteria is met, typically that the new

solution found is strictly better than the current best solution (equally good is not

enough, it must be better). In this way the tabu elements stop most kinds of loop or

plateau (as a better solution must be one that has not been visited, and once it has

been visited a new better solution must be found to stop the solution moving away

again). A loop that is longer than the length of the Tabu list is still possible, however.

Within the various different methods of implementing Tabu Search, how would

the estimate method fit? When using methods of Tabu Search that produce many

potential solutions, the estimate could be used to trim down the numbers quickly

at each iteration. For instance, using steepest descent may produce ∼500 different

neighbourhood moves. Using the estimate these could be assessed and perhaps the

best five are chosen for calculating more fully. This would allow the use of the descent

method on larger problem instances without excessive calculation times. The number of

ways to implement a simple neighbourhood move such as Delete & Insert on a problem

with n customers may be roughly of order n2. Each move requires calculating roughly

between m and 2m/3 arcs (depending on if the node is moved to a new vehicle), where

m is the average number of nodes on a vehicle. The estimate reduces 2m/3 down to

198

8.4 Further Expansion

around four, depending on the move in question, so the estimate would be of most use

on problems with many customers per vehicle.

Evidently, using the objective value of a solution as the tabu element means that

the estimate would be unable to assess whether a solution was tabu, as the objective

that it found would generally be inaccurate. However, knowing whether a potential

solution is tabu is only relevant when deciding whether to use it or discard it and the

discard is overruled if the solution is an improvement on the best found so far, which

requires knowing its objective value. Using it requires knowing what its objective value

is as well, so in the end the loss of time spent calculating the exact objective value,

only to find that the solution was tabu, is of minor consequence.

Overall, it seems reasonable to conclude that the estimate could save a substantial

amount of time, if implemented to cut down all neighbouring solutions to a more

reasonable number of promising solutions. The exact number of solutions to cut down

to and investigate fully can be tuned depending on the priorities of solution quality

and calculation time, it could also be based on the total number of solutions, such

as investigating the best 1%. A full investigation into the use of estimates on Tabu

Search would involve testing how calculation time and solution quality vary through

changing how many solutions are fully calculated each iteration on a variety of problem

instances.

8.4.4 Compound Estimates

Throughout our experiments, the reliance on using estimations has been fairly similar

throughout, as a brief example: a typical heuristic has been run something like

• Take existing solution.

• Make a change.

• Estimate that change.

• Use estimate to decide on whether to ignore change.

• If estimate looks promising, calculate actual value.

• Use actual value to decide whether to use change.

199

8. ANALYSIS, FUTURE WORK AND CONCLUSIONS

The main reason for using this method is that the estimate will rarely be able to be

perfectly accurate in our tests. Of course, if the length of arcs is short and the width of

individual time bins is long then the estimate will become more accurate. With suitably

wide time bins, many of the possible small local changes, particularly towards the end

of a tour, may not shift any nodes into different time bins, meaning the estimate will

give a near exact objective value.

Assuming that the tours take place across multiple time bins, there are always going

to be some changes that will not be estimated correctly, but it is always going to be

possible to find the actual value of a tour at any point in the algorithm. Our Hill

Climbing experiments in the previous chapters have clearly shown how much time can

be saved by not calculating tours fully, so it stands to reason that the less we calculate

tours, the more time can be saved.

We are storing tours with a Cumulative Tour Cost (CTC), which was explained

in Section 1.3.1. Even if we are not concerned with calculating the exact time that

each node would be reached, the CTCs still need updating. The obvious way of

doing this is to simply add or subtract the time saved or delay that is estimated

from the changes and apply them to all the relevant nodes. Taking a Delete & Insert

CROSS move as an example, there are two areas that are changed. At the first, where

the node is removed, all the customers after it can have their CTCs reduced by the

estimated saving. At the second, where the node is inserted, all the customers can have

their CTC’s increased by the estimated delay. If a move has multiple changes on the

same tour, then the customers after the second change will have their CTCs changed

by multiple amounts. Obviously, this can be optimised so that multiple read/write

commands are not performed.

One of the obvious problems of storing estimated values for the CTCs and the

objective value is that the errors can quickly add up to the point that the values

are almost useless as an indicator of the quality of the tours. This build-up will

be less significant on problems with many vehicles, as an estimate on many kinds

of neighbourhood move (including all the ones that we have used in this thesis) will

only be affecting two of the vehicles, so if another two vehicles are changed later there

will not be an increased inaccuracy in the CTCs, although there may be increased

inaccuracy in the objective value.

200

8.4 Further Expansion

The obvious solution to this build-up of errors is to include with the solution a

count of the number of times it has been estimated rather than calculated. Once this

number reaches a certain point the solution can be calculated properly and the count

reset.

Unless a record is kept of each change made, the recalculation will need to be of

the entire solution, whereas the individual recalculations are only of the nodes after the

initial change on the affected vehicle or vehicles. It can be roughly estimated that a

randomly chosen change will be around half way through a vehicle’s tour, so (assuming

two changes are made for each neighbourhood move) the global recalculation will take

around the same amount of time as the old method of calculating each iteration when

the count limit is set at the number of vehicles used. So if a solution uses ten vehicles,

then the calculation time for the two methods will be similar if recalculations are

performed every tenth solution.

Overall, this concept of storing the solutions as an estimate for much of the time

and resetting every now and again does not seem likely to be that promising. There is

an overhead in having this counter for when a recalculation is to be performed, both in

terms of memory storage and run-time. The savings made only occur if the solutions

are left for more iterations than the number of vehicles. During the time that they are

estimated, rather than precise, errors can quickly accumulate, affecting the accuracy of

further estimates. If there is heavily fluctuating congestion or time relevant costs, such

as time windows, then the compounded estimates can easily produce wildly inaccurate

predictions. Despite all of this, there is at least one possible area that we believe that

compounded estimates may work well: Genetic Algorithms.

8.4.5 Genetic Algorithms

We covered the basics of Genetic Algorithms (GA) back in Section 3.6.4. The basic

difference we are interested in here between GAs and the standard metaheuristics that

we have been using is that GAs, rather than store an individual solution between each

iteration, instead store a population of many solutions, for example, 100 solutions, with

a new set of 100 solutions created each iteration and the best half of the 200 solutions

kept for the next iteration.

Here the benefits of using compounded estimates can easily be seen. Each iteration

there are 100 solutions created, many are unlikely to even be used in the population.

201

8. ANALYSIS, FUTURE WORK AND CONCLUSIONS

There are two simple methods of recalculation that can be used here. The first method

is to have each of the chromosomes carry a count of the number of estimates involved

in it so the child produced from each crossover has a number equal to the sum of its

parents plus one. The number is also increased whenever the chromosome undergoes

a mutation. Once this number equals or exceeds a certain value, then the solution is

calculated fully, the count reset and the fitness value updated. The second method is

to have a global count, so every x iterations all of the population is recalculated. The

second method has the advantage that less space is required to store the chromosomes

(as they do not require a counter) and it also means that, after each global recalculation,

all the chromosomes are accurate and comparable. With the first method it is possible

for multiple chromosomes in the population to have the exact same tour, but different

fitness values. Whether this is actually a problem is not certain. The first method has

the advantage that it is likely to have a lot less recalculations to perform, particularly

if the initial population are created as reasonably good solutions. This means that the

population is unlikely to change much between generations due to the high probability

that a tour created from mixing two other tours is not likely to have a competitive

fitness value.

The obvious problem is how to implement the estimates. The effect of a mutation

is similar to the effects of a neighbourhood move; removing a pair of arcs and inserting

two different arcs. The crossovers are much different though, being highly disruptive

to the tours. The obvious way to use estimates would be to assume that the traversal

times of the arcs that are swapped around do not change, but this alone introduces

many estimates at once, which cumulates with a potentially very inaccurate estimate.

Overall, it seems likely that using estimates would drastically improve the run time

of GAs such as the example given here. Even limitting the estimates to, for example,

a tournament selection stage, would likely reduce the overall runtime significantly.

How compound estimates would work is much harder to predict. The problems are

involved in how reliable such estimates would be within this framework. GAs bear some

similarities to the metaheuristic methods that we have used in this thesis, but they are

also very different, and those differences make it hard to make reliable speculation.

Thus we envisage that using estimates with a Genetic Algorithm would be more akin

to an entirely new thesis than an expansion on the work done here.

202

8.5 Conclusion

8.5 Conclusion

In our introductory Chapter we explained the main reason behind this thesis. The

majority of people who are currently using route creation software are unsatisfied with

the routes presented by the software because of the lack of implementation of congestion

in the models used. The data required to model this congestion is available, but the

models created from this data are themselves too complicated to be used quickly and

efficiently by the current software. We planned to drastically reduce the amount of

time that is required to calculate these vehicle routes, so that they could be used to

create more reliable tours for the vehicles.

Our second Chapter explained all the various terms that we have throughout our

thesis, defining exactly what we mean when we use these terms. We also detailed the

SVRP and CVRP and some of the various objectives and constraints that are used on

VRPs.

In Chapter 3 we focused in much more detail on the methods of solving VRPs. We

looked at a variety of methods, whilst the time that is taken to produce the vehicle

routes is important, it is not the only concern. Additionally, the quality of the routes

is important and the amount of computing resources used is something that must also

be borne in mind.

As we explained earlier in this thesis (see Section 3.3), a common approach to solving

these problems in a reasonable time is to create starting solutions using a construction

heuristic and then improving on these solutions using a metaheuristic framework. The

exact details vary and there is no universal answer for which metaheuristic to use, some

problems are better solved by a certain method, while others are not.

What we have aimed to do in this thesis is, rather than focus on a specific method,

such as Steepest Ascent Hill Climbing, and work to improve its performance, we have

instead aimed to develop a method that can be bolted on to most of the metaheuristic

methods with little effort and seek to improve them.

With our purpose clear we moved on, in Chapter 4, to explain time variance and

how it can be modelled, what the advantages of the different modelling techniques are

and similar important questions. We went into detail describing the adapted Dynamic

Programming of Malandraki and Dial and started to establish our own methods.

203

8. ANALYSIS, FUTURE WORK AND CONCLUSIONS

We have designed our work to fit well with the idea of using a Road Timetable, as

detailed in Section 4.1. The creation of a Road Timetable obviously takes time, but once

a timetable is created between all of the entities for each of the eight days, it does not

need to be recalculated until the data that it is based on becomes out-of-date. For this

reason it seems less of an issue to optimise the time taken to produce a Road Timetable

compared to the task of optimising the time taken to use the Road Timetable.

As a brief reminder, the idea we are proposing in this thesis is to adapt the current

methods of solving routing problems where the traversal times of arcs vary depending

on the time at which they are traversed. We are only interested in situations where an

exact value is not required and instead a reasonably good solution is adequate. What

we are more concerned with is the amount of time that it takes to get a solution. As

we have mentioned before, there is almost always a trade-off that is made between the

calculation time and the quality of the final solution gained. It can be assumed that,

if a metaheuristic solution is being used instead of an exact method, such as Dynamic

Programming, then the calculation time must have at least some significance to the

user.

We believe that the experiments that we have conducted, throughout Chapters 5,

6 and 7, show that our method of temporarily using estimates in place of calculated

values in the decision making portion of a metaheuristic saves a substantial amount of

time on problems that have more than a few customers per vehicle. The potential loss in

quality seems hard to predict, being dependent not just on the number of vehicles and

customers, but also on deeper features of the problem, such as the degree of clustering.

In general we have seen that any loss of quality derived from using estimates is, on

average, less than the observable deviation. This fact, combined with the potential

savings in calculation time of 60-70% on the largest problems that we have looked at

(gr666 and the Real World problem with 400 nodes), means that it is likely that using

estimates can give a better solution in less time by simply running the metaheuristic

multiple times (in the same manner as the random restart Hill Climber, explained in

Section 3.6.1): If the calculation time is 70% less then three different attempts can be

made and it will still be faster. Experiments on larger problems, as proposed in the

previous Section, will likely show an even greater saving in calculation time, as seems

to be the case with d1291.

204

8.5 Conclusion

It is important to remember that we have not just tested out our ideas on abstract

models unrelated to the real world. Our findings have been shown, in Chapter 6, to

be equally valid when applied to models based on historical travel times on real road

networks.

It should be evident that, although a perfect, exact solution will exist for any Vehicle

Routing Problem, in this particular area the value of finding that exact solution is not

as great as it may be in other fields of optimisation. This is because the solution that is

found is the perfect solution to our model, not the perfect solution to the problem that

we are modelling. When it comes to implementing a tour that has been calculated from

our models, there may be all sorts of unforeseen and unforeseeable differences between

the reality of the problem and our models, the most obvious problems being things

such as car accidents creating congestion that was not predicted. Therefore, there will

always be a level of uncertainty in the quality of a solution that would not be found in,

for instance, calculating the optimal design of the circuitry on a computer chip. That

is not to say that if there were an easy way to find the best solution that we should not

use it, on average the best solution to any accurately-made model should be the best

solution to the problem which is modelled, otherwise the model is not the best that it

could be. Rather we are saying that a particularly good solution could turn out as good

or better than the best solution when applied to the real world, so it makes sense not to

worry too much about the exact solution. An example of dealing with this uncertainty

can be seen in Lecluyse et al. (119), in which they look at the 95th-percentile of the

travel time.

Obviously if a company wants a solution to a routing problem that they will be using

many times, such as a daily delivery route for newspapers, it makes sense to spend a

lot of time making sure you have got a good route and you can spend much more time

improving on the solution even after it has been implemented. We are instead looking

at the instances when a route needs to be found in a reasonable space of time, such as

parcel delivery, where every day there will be a different set of customers with different

demands. Because the generation of the Road Timetable can be quite time consuming

it particularly favours a situation where the routes are between the same superset of

entities each time, meaning that an entire Road Timetable can be calculated at the

start and then the relevant rows and columns can be looked up each day.

205

8. ANALYSIS, FUTURE WORK AND CONCLUSIONS

We have seen that the average loss in solution quality is hard, if not impossible,

to predict. While with some problems there is a noticeable loss in quality overall, the

average loss of quality from using estimates is always less than the range in quality of

the non-estimated methods. At the same time, the problems that see some of the largest

losses of solution quality are also those that see a substantial saving in calculation time.

In other words, the chances are favourable that a better solution will be gained from

repeated use of the estimate method (such as using Shotgun Hill Climber) than spending

the same amount of time on non-estimate methods. As has previously been noted, using

metaheuristic methods gives no guarantee of solution quality, so if metaheuristics are

to be used then it is clear that calculation time is of more importance than perfect

results.

Whilst we cannot derive a formula for the time taken using either method from the

data we currently have, and thus cannot find a formula for the time that is saved by

using the estimation method, we can easily see from our experimental results that the

time saved increases as the number of nodes increases. Using estimates is more time

efficient when most of the neighbourhood moves lead to inferior solutions and/or there

are a large number of customers per vehicle, thus the estimate method is at its best

when used with a good starting solution on a large problem. It should be reiterated that

the experiments that have timed the performance of estimates have all used a random

starting solution, so the results that they have produced can be seen as a practical

lower bound for the savings that the estimate will produce over non-estimate methods.

Rounding up everything that we have seen together: we have shown that using

estimates to cut down on calculations within metaheuristics has a major impact

on calculation time for the time variant VRP. Recall that time variance imposes a

massive run time cost on all algorithms that employ neighbourhood moves, if iterative

improvements are to be fully evaluated. However, by the very nature of metaheuristics

we cannot guarantee how good a solution will be. For this reason the work in this thesis

has focussed on improving the run times of a range of popular improvement heuristics

in time varying scenarios, rather than to develop new state-of-the-art algorithms for

solving the time variant VRP. Only basic metaheuristic frameworks are used, and we

concentrate on reducing run times whilst maintaining the solution quality of the given

metaheuristic. Not surprisingly our experiments indicate that use of our Estimation

Tool will almost inevitably lead to a slight reduction in solution quality, for a given

206

8.5 Conclusion

number of solution evaluations, due to unavoidably failing to identify a fraction of

neighbourhood moves that lead to improvements. Nevertheless, we claim that this

is more than compensated for by the drastic reduction in calculation times that

we achieve, particularly on larger instances, giving enough time for more solution

evaluations to extend the search or apply multiple runs of the metaheuristic, if desired.

If there is a large, time variant VRP to solve then using our Estimation Tool will help

find a reasonably good solution in a fraction of the time that a metaheuristic without

these techniques would take.

207

8. ANALYSIS, FUTURE WORK AND CONCLUSIONS

208

References

[1] UK Department For Transport. 2010 Road Freight

Statistics. http://www.dft.gov.uk/statistics/releases/

road-freight-statistics-2010, 2010. 1

[2] Phil Conner. Transports Friend.

http://www.transportsfriend.org, 2012. 2

[3] Martin Roggermann. No Mega Trucks

Campaign. http://www.nomegatrucks.eu/news/2008/

90-tons-30-meters-giant-trucks-in-sweden, 2008. 2

[4] Paragon Software Systems plc. Paragon

Supports Home Delivery for Argos

Direct. http://www.paragonrouting.com/uk/news/

paragon-supports-home-delivery-for-argos-direct, 2006. 4

[5] R. Eglese, W. Maden, and A. Slater. A Road

TimetableTM to aid vehicle routing and

scheduling. Computers & Operations Research,

33(12):3508–3519, December 2006. 4, 73, 74, 75, 77,

188

[6] INRIX. INRIX Homepage. http://www.inrix.com,

2012. 4

[7] NAVTEQ. NAVTEQ Homepage.

http://corporate.navteq.com, 2011. 4

[8] K. Harwood, C. Mumford, and R. Eglese. Investigating

the use of metaheuristics for solving single

vehicle routing problems with time-varying

traversal costs. Journal of the Operational Research

Society, 64(1), January 2013. 6

[9] M. R. Garey and D. S. Johnson. Computers

and Intractability: A Guide to the Theory of

NP-Completeness. W. H. Freeman & Co., 1st edition,

1979. 9, 10

[10] J. E. Hopcraft, R. Motwani, and J. D. Ullman.

Introduction to Automata Theory, Languages, and

Computation, 2nd Ed. Addison Wesley, 2nd edition,

2000. 10

[11] P. Crescenzi, V. Kann, M. Halldrsson,

M. Karpinski, and G. Woeginger. A

compendium of NP optimization problems.

http://www.nada.kth.se/ viggo/problemlist/compendium.html,

July 2005. 11, 15

[12] Stephen A. Cook. The complexity of

theorem-proving procedures. In Proceedings

of the third annual ACM symposium on Theory of

computing, STOC ’71, pages 151–158, New York, NY,

USA, 1971. ACM. 11

[13] Gerhard Reinelt: Ruprecht-Karls-Universitt

Heidelberg. TSPLIB.

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95.

11, 97

[14] Y. Haxhimusa, E. Carpenter, J. Catrambone, D. Foldes,

E. Stefanov, L. Arns, and Z. Pizlo. 2D and 3D

Traveling Salesman Problem. The Journal of

Problem Solving, 3(2):167–193, Winter 2011. 11

[15] J. Bang-Jensen and G. Gutin. Digraphs: Theory,

Algorithms and Applications. Springer, 2nd edition,

2008. 12

[16] City of York Council. York

City Centre Pedestrian Zone.

http://www.york.gov.uk/visiting/York city centre ped zone,

2012. 13

[17] M-K Kuan. Graphic programming using odd or

even points. Acta Mathematica Sinica, 10:263–266,

1962. 14

[18] National Institute of Standards and Technology.

Dictionary of Algorithms and Data Structures.

http://xlinux.nist.gov/dads//HTML/chinesePostman.html,

February 2010. 14

[19] L. Euler. Solutio problematis ad geometriam

situs pertinentis. Commentarii academiae scientiarum

Petropolitanae, 8(1):128–140, 1736. 14

[20] L. Euler. Solutio problematis ad geometriam situs

pertinentis. Commentarii Academiae Scientiarum

Imperialis Petropolitanae, 8:128–144, 1736. 14

[21] J. Edmonds and E. L. Johnson. Matching, Euler

tours and the Chinese postman. Mathematical

Programming, 5(1):88–124, 1973. 14

[22] E. Benavent, A. Corbern, E. Piana, I. Plana, and J. M.

Sanchis. New Heuristic Algorithms for the Windy

Rural Postman Problem. Computers & Operations

Research, 32(12):3111–3128, December 2005. 15

[23] W. F. Lucas, F. S. Roberts, and R. M. Thrall. Modules

in Applied Mathematics: Volume 3: Discrete and System

Models. Springer, 1st edition, 1983. 15

[24] B. F. Voigt. Der Handlungsreisende. 1832. 16

[25] W. R. Hamilton. Memorandum respecting a new

system of roots of unity (the Icosian calculus).

Philosophical Magazine, 12:446, 1856. 16

[26] T. P. Kirkman. On the representation of polyhedra.

Philosophical Transactions of the Royal Society of

London, Series A(146):413–418, 1856. 16

[27] G. B. Dantzig and J. H. Ramser. The Truck

Dispatching Problem. Management Science,

6(1):80–91, 1959. 16

[28] P. Toth and D. Vigo. The Vehicle Routing Problem.

Siam, 1st edition, 2002. 17, 18, 23, 24, 40, 45, 47,

63

[29] H. Ś’ural and J. H. Bookbinder. The single-vehicle

routing problem with unrestricted backhauls.

Networks, 41(3):127–136, May 2003. 17

209

http://doi.acm.org/10.1145/800157.805047
http://doi.acm.org/10.1145/800157.805047

REFERENCES

[30] P. Chakroborty and A. Mandal. An asexual genetic

algorithm for the general single vehicle routing

problem. Engineering Optimization, 37(1):1–27,

January 2005. 17

[31] C-L Li, D. Simchi-Levi, and M. Desrochers. On the

distance constrained Vehicle Routing Problem.

Operations Research, 40(4):790–799, Jul-Aug 1992. 17

[32] Center for Transportation Analysis. Transportation

Energy Data Book, (29):Chapter 4, 2010. 19

[33] K. Miettinen. Nonlinear Multiobjective Optimization.

International Series in Operations Research &

Management Science, 1998. 20

[34] R. Dechter. Constraint Processing. Elsevier Science, 1st

edition, 2003. 22

[35] M. Dror. Arc Routing: Theory, Solutions, and

Applications. Springer, 1st edition, 2000. 24

[36] S. Martello and P. Toth. Knapsack Problems:

Algorithms and Computer Implementations. J. Wiley &

Sons, revised edition, 1990. 24

[37] European Parliament. Directive 2003/88/EC

concerning certain aspects of the organisation of

working time. Official Journal of the European Union,

L 299:9–19, November 2003. 25

[38] G. Laporte, Y. Nobert, and S. Taillefer. Solving

a Family of Multi-Depot Vehicle Routing and

Location-Routing Problems. Transport Science,

22(3):161–172, August 1988. 25

[39] N. H. M. Wilson. Scheduling Algorithms for a

Dial-A-Ride System. Urban Systems Laboratory TR,

70(13), 1971. 26

[40] B. L. Golden, S. Raghavan, and E. A. Wasil. The Vehicle

Routing Problem: Latest Advances and New Challenges.

Springer, 2008. 26

[41] Jean-François Cordeau. A Branch-and-Cut

Algorithm for the Dial-a-Ride Problem.

Operations Research, 54(3):573–586, May-June 2006.

26

[42] V. Pillac, M. Gendreau, C. Guéret, and A. L. Medaglia.

A Review of Dynamic Vehicle Routing Problems.

European Journal of Operational Research, 225(1):1–11,

February 2013. 27

[43] R. E. Bellman. Combinatorial processes and

dynamic programming. Proceedings of Symposia in

Applied Mathematics, 10:217–249, 1958. 30, 31

[44] M. Held and R. M. Karp. A Dynamic Programming

Approach to Sequencing Problems. SIAM Journal

on Applied Mathematics, 10(1):196–210, 1962. 30

[45] S. Kohn, A. Gottlieb, and M. Kohn. A Generating

Function Approach to the Traveling Salesman

Problem. ACM Annual Conference, pages 294–300,

1977. 31

[46] A. H. Land and A. G. Doig. An Automatic Method

of Solving Discrete Programming Problems.

Econometrica, 28(3):497–520, July 1960. 33

[47] K. A. Shuster and D. A. Schur. Heuristic Routing for

Solid Waste Collection Vehicles. U.S. Environental

Protection Agency, pages –, 1974. 35

[48] K. menger. Das Botenproblem. In Ergebnisse eines

mathematischen Kolloquiums, pages 11–12, 1932. 38

[49] G. Gutin, A. Yeo, and A. Zverovich. Traveling

salesman should not be greedy: domination

analysis of greedy-type heuristics for the TSP.

Discrete Applied Mathematics, 117:81–86, 2002. 38

[50] G. Clarke and J. W. Wright. Scheduling of

Vehicles from a Central Depot to a Number of

Delivery Points. Operations Research, 12(4):568–581,

July/August 1964. 40

[51] B. L. Golden. A Statistical Approach to the TSP.

Operations Research Center, Massachusetts Institute of

Technology, 1976. 40

[52] D. Darquennes. Implementation and Applications

of Ant Colony Algorithms. Facultées Universitaires

Notre-Dame de la Paix, Namur Institut d’Informatique,

2005. 40

[53] B. E. Gillett and L. R. Miller. A Heuristic for the

Vehicle-Dispatch Problem. Operations Research,

22(2):340–349, Mar 1974. 45

[54] M. L. Fisher and R. Jaikumar. A Generalized

Assignment Heuristic for Vehicle Routing.

Networks, 11:109–124, 1981. 47

[55] J. E. Beasley. Route First-Cluster Second Methods

For Vehicle Routing. OMEGA The Internal Journal

of Management Science, 11(4):403–408, 1983. 47

[56] S. Lin. Computer solutions of the traveling

salesman problem. The Bell System Technical

Journal, (44):2245–2269, 1965. 50, 52

[57] G. A. Croes. A Method for Solving

Traveling-Salesman Problems. Operations Research,

6(6):791–812, November 1958. 50

[58] S. Lin and B. W. Kernighan. An Effective Heuristic

Algorithm for the Traveling-Salesman Problem.

Operations Research, 21(2):498–516, March/April 1973.

54

[59] M. W. P. Savelsbergh. The Vehicle Routing

Problem with Time Windows: Minimizing Route

Duration. ORSA Journal on Computing, 4:146–154,

1992. 56

[60] W. Maden, R. W. Eglese, and D. Black. Vehicle

Routing and Scheduling with Time Varying

Data: A Case Study. Lancaster University

Management School - Working Paper, pages –, 2009. 56

[61] E. Taillard, P. Badeau, M. Gendreau, F. Guertin,

and J. Y. Potvin. A Tabu Search Heuristic for

the Vehicle Routing Problem with Soft Time

Windows. Transportation Science, 31(2):170–186, May

1997. 56

[62] B. P. Gerkey, S. Thrun, and G. Gordon. Parallel

Stochastic Hill-Climbing with Small Teams.

Multi-Robot Systems: From Swarms to Intelligent

Automata, III:65–77, 2005. 59

210

REFERENCES

[63] S. Abraham, I. Kiss, S. Sanyal, and M. Sandlikar.

Steepest Ascent Hil Climbing for a Mathematical

Problem. International Symposium on Advanced

Engineering and Applied Management, Informatics

& Computer Science, University Politehnica,

Timisoara:–, November 2010. 59

[64] S. J. Russel and P. Norvig. Artificial Intelligence: A

Modern Approach. Prentice Hall, 2nd edition, 2003. 61

[65] F. Robuste, C.F. Daganzo, and R. Souleyrette.

Implementing Vehicle Routing Models.

Transportation Research Part B. 61

[66] A. S. Alfa, S. S. Heragu, and M. Chen. A

3-OPT based simulated annealing algorithm for

vehicle routing problems. Computers & Industrial

Engineering, 21:635–639, 1991. 61

[67] I. H. Osman. Metastrategy simulated annealing

and tabu search algorithms for the vehicle

routing problem. Annals of Operations Research,

41(4):421–451, 1993. 61

[68] C. R. Reeves (K. A. Dowsland). 61

[69] N. Metropolis, A. W. Rosenbluth, M. Rosenbluth,

A. H. Teller, and E. Teller. Equation of State

Calculations by Fast Computing Machines.

Journal of Chemical Physics, 21(6):1087– 1092, 1953.

61

[70] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi.

Optimization by Simulated Annealing. Science,

220(4598):671–680, May 1983. 61

[71] V. Černý. Thermodynamical approach to the

traveling salesman problem: An efficient

simulation algorithm. Journal of Optimization

Theory and Applications, 45(1):41–51, 1985. 61

[72] I. H. Osman. Metastrategy Simulated Annealing

and Tabu Search Algorithms for the Vehicle

Routing Problem. Annals of Operational Resaerch,

41:421–451, 1993. 62

[73] D. Abramson, M. Krishnamoorthy, and H. Dang.

Simulated Annealing Cooling Schedules for the

School Timetabling Problem. Asia-Pacific Journal

of Operational Research, 16:1–22, 1999. 62

[74] Inc B. T. Luke & Associates. Simulated

Annealing Cooling Schedules.

http://www.btluke.com/simanf1.html. 62

[75] MathWorks. MATLab

Global Optimization Toolbox.

http://www.mathworks.co.uk/help/gads/examples/simulated-annealing-options.html,

Accessed April 2013. 63

[76] F. Glover. Future Paths for Integer Programming

and Links to Artificial Intelligence. Computers &

Operations Research, 13(5):533–549, 1986. 63

[77] F. Glover and C. McMillan. The General Employee

Scheduling Problem: An Integration of MS and

AI. Computers & Operations Research, 13(5):563–573–,

1986. 63

[78] F. Glover. Tabu Search - Part I. Journal on

Computing, 1(3):190–206, Summer 1989. 63, 64

[79] F. Glover. Tabu Search - Part II. Journal on

Computing, 2(1):4–32, Winter 1990. 63

[80] M. Gendreau, A. Hertz, and G. Laporte. A

Tabu Search for the Vehicle Routing Problem.

Manamegemnt Science, 40:1276–1290, 1994. 64

[81] A. Hertz, E. Taillard, and D. de Werra. A tutorial on

tabu search. In In Proc. of Giornate di Lavoro AIRO95,

Entreprise Systems: Management of Technological and

Organizational Changes, pages 13–24, 1995. 64

[82] J. Holland. Outline for a logical theory of adaptive

systems. Journal of the Association for Computing

Machinery, 3:297–314, July 1962. 66

[83] Thomas Bäck. Evolutionary Algorithms in Theory

and Practice: Evolution Strategies, Evolutionary

Programming, Genetic Algorithms. Oxford University

Press, 1st edition, 1996. 67

[84] T. Back. Evolutionary Algorithms in Theory and

Practice. Oxford University Press, 1995. 67

[85] James E. Baker. Reducing bias and inefficiency

in the selection algorithm. In Proceedings of the

Second International Conference on Genetic Algorithms

on Genetic algorithms and their application, pages

14–21, Hillsdale, NJ, USA, 1987. L. Erlbaum Associates

Inc. 67

[86] D. E. Goldberg and K. Deb. A comparative analysis

of selection schemes used in genetic algorithms.

In Foundations of Genetic Algorithms, pages 69–93.

Morgan Kaufmann, 1991. 67

[87] G. Zäpfel, R. Braune, and M. Bögl. Metaheuristic Search

Concepts: A Tutorial with Applications to Production

and Logistics. Springer, 2010. 68

[88] F. Glover, M. Laguna, and R. Mart. Fundamentals

of scatter search and path relinking. Control and

Cybernetics, 39:653–684, 2000. 68

[89] H. R. Lourenço, O. C. Martin, and T. Stützle. Iterated

Local Search. Handbook of Metaheuristics, Gary A.

Kochenberger:321–353, 2003. 68

[90] Transport for London.

http://www.tfl.gov.uk/tfl/roadusers/

congestioncharge/whereandwhen. 71

[91] S. Ichoua, M. Gendreau, and J. Y. Potvin. Vehicle

dispatching with time-dependent travel

times. European Journal of Operational Research,

144(2):379–396, January 2003. 73, 74, 75, 76

[92] K. Sung, M. G. H. Bell, M. Seong, and S. Park. Shortest

paths in a network with time-dependent flow

speeds. European Journal of Operational Research,

121(1):32–39, February 2000. 73, 75, 76

[93] M. L. Fisher, A. J. Greenfield, R. Jaikumar, and

J. T. Lester. A computerized vehicle routing

application. Interfaces, 12(4):42–52, 1982. 74

211

http://dl.acm.org/citation.cfm?id=42512.42515
http://dl.acm.org/citation.cfm?id=42512.42515

REFERENCES

[94] A. Hill, V. Mabert, and D. Montgomory. A decision

support system for the courier vehicle scheduling

problem. Omega International Journal of Management

Science, 16(4):333–345, 1988. 74

[95] C. Malandraki and R. B. Dial. A restricted dynamic

programming heuristic algorithm for the time

dependent traveling salesman problem. European

Journal of Operational Research, 90(1):45–55, 1996. 75,

80, 188

[96] M. M. Solomon. ALGORITHMS FOR THE

VEHICLE ROUTING AND SCHEDULING

PROBLEMS WITH TIME WINDOW

CONSTRAINTS. Operations Research,

35(2):254–265, March 1987. 75

[97] C. Malandraki. Time Dependent vehicle routing

problems: Formulations, solution algorithms and

computational experiments. Ph.D. Dissertation,

Northwestern University, Evanston, IL, 1989. 75

[98] A. L. Kok, E. W. Hans, and J. M. J. Schutten. Vehicle

routing under time dependent travel times: the

impact of congestion avoidance. Beta Research

School for Operations Management and Logistics, 2009.

75, 80

[99] M. E. T. Horn. Efficient modeling of travel in

networks with time-varying link speeds. Networks,

36(2):80–90, September 2000. 76, 77

[100] Aristotle. Physics. Translated

by R. P. Hardie and R. K. Gaye,

http://classics.mit.edu/Aristotle/physics.html, 350

B.C.E. 76

[101] B. Dingn, J. X. Yu, and L. Qin. Finding

time-dependent shortest paths over large graphs.

In Proceedings of the 11th international conference on

Extending database technology: Advances in database

technology, EDBT ’08, pages 205–216, New York, NY,

USA, 2008. ACM. 77

[102] E. W. Dijkstra. A note on two problems in

connection with graphs. Numerische Mathematik,

1(1):269–271, December 1959. 77

[103] K. L. Cooke and E. Halsey. The Shortest

Route through a Network with Time-Dependent

Intermodal Transit Times. Journal of Mathematical

Analysis and Applications, 14(3):493–398, June 1966.

79

[104] S. E. Dreyfus. An appraisal of some shortest path

algorithms. Operations Research 17, 17(3):395–412,

1969. 80

[105] D. E. Kaufman and R. L. Smith. Fastest paths

in time-dependent networks for intelligent

vehicle-highway systems application. Journal of

Intelligent Transportation Systems, 1(1):1–11, 1993. 80

[106] R. E. Bellman. Dynamic Programming. Princeton

University Press, 1957. 80

[107] C Malandraki and M. S. Daskin. Time Dependent

Vehicle Routing Problems: Formulations,

Properties and Heuristic Algorithms.

Transportation Science, 26(3):185–200, August 1992.

82

[108] M. Gendreau, F. Guertin, J. Y. Potvin, and E. Taillard.

Parallel Tabu Search for Real-Time Vehicle

Routing and Dispatching. Transportation Science,

33(4):381–390, November 1999. 83

[109] MapMoose. Map Contains Ordnance Survey Data,

Crown Copyright and Database Right 2011.

http://www.mapmoose.com, Accessed April 2013. 150

[110] G. Dueck. New Optimization Heuristics:

The Great Deluge Algorithm and the

Record-to-Record Travel. Journal of Computational

Physics, 104(1):86–92, January 1993. 165

[111] P. N. Strenski and S. Kirkpatrick. Analysis of

finite length annealing schedules. Algorithmica,

6(1-6):346–366, June 1991. 167

[112] M. Gendreau and J. Potvin. Handbook of Metaheuristics.

Springer, 2nd edition, 2010. 167

[113] H. Szu and R. Hartley. Fast Simulated Annealing.

Physics Letters A, 122(3-4):157–162, June 1987. 167

[114] D. Connolly. General Purpose Simualted

Annealing. The Journal of the Operational Research

Society, 43(5):495–505, May 1992. 168

[115] J. Dorband, C. L. Mumford, and P. Wang. Developing

an ace solution for two-Dimensional strip

packing. In 18th International Parallel and Distributed

Processing Symposium Workshop on Massively Parallel

Processing, 2004. 173

[116] M. Tagmouti, M. Gendreau, and J. Y. Potvin. A

Variable Neighborhood Descent Algorithm for

Arc Routing Problems with Time-Dependent

Service Costs. Computers and Industrial Engineering,

59(4):954–963, November 2010. 192

[117] D. Black, R. Eglese, and S. Wøhlk. The

time-dependent prize-collecting arc routing

problem. Computers & Operations Research,

40(2):526–535, February 2013. 192

[118] M. Dror. Arc Routing: Theory, Solutions, and

Applications. Kluwer Academic Publishers, 1st edition,

2000. 193

[119] C. Lecluyse, T. Van Woensel, and H. Peremans. Vehicle

Routing with Stochastic Time-Dependent Travel

Times. 4OR, 7(4):363–377, 2009. 205

212

http://doi.acm.org/10.1145/1353343.1353371
http://doi.acm.org/10.1145/1353343.1353371

	List of Figures
	List of Tables
	Glossary
	1 Introduction
	1.1 Background
	1.2 Motivation for this Study
	1.3 Contribution of this Thesis
	1.4 Structure of this Thesis

	2 An Introduction to the Vehicle Routing Problem
	2.1 A Brief Explanation of NP
	2.2 Graph Terminology
	2.3 Arc Routing Problems
	2.3.1 Chinese Postman Problem
	2.3.2 New York Street Sweeper Problem
	2.3.3 Min k-Chinese Postman Problem
	2.3.4 Rural Postman Problem

	2.4 Node Routing Problems
	2.4.1 The Travelling Salesman Problem
	2.4.2 Vehicle Routing Problems
	The Single Vehicle Routing Problem
	Capacitated Vehicle Routing Problems

	2.5 Mathematical Model of a CVRP
	2.6 Possible Objectives of a VRP
	2.6.1 Multiple Objectives

	2.7 Constraints
	2.7.1 Hard and Soft Constraints
	2.7.2 Time Windows
	2.7.3 Capacity
	2.7.4 Driver Time
	2.7.5 Vehicle Specifics

	2.8 Advanced Problems
	2.8.1 Multi-Depot VRP
	2.8.2 Pickup and Delivery
	2.8.3 Static & Dynamic Problems

	2.9 Conclusion

	3 Solving the VRP
	3.1 Introduction
	3.2 Exact Methods
	3.2.1 Brute Force Search
	3.2.2 Dynamic Programming
	Dynamic Programming Example

	3.2.3 Branch and Bound

	3.3 Heuristic Methods
	3.4 Solution Construction Heuristic Algorithms
	3.4.1 Random Start
	3.4.2 Nearest Neighbour Algorithm
	Example Algorithm

	3.4.3 Clarke & Wright
	Parallel and Sequential
	Clarke & Wright Example

	3.4.4 Two Phase Solutions
	Cluster Method 1: Sweep
	Cluster Method 2: Fisher and Jaikumar Algorithm
	Route-First Cluster-Second

	3.5 Solution Improvement Heuristic Algorithms
	3.5.1 Single Vehicle Neighbourhood Moves
	2-Opt
	3-Opt
	Delete & Insert
	Swap

	3.5.2 Multiple Vehicle Neighbourhood Moves
	CROSS
	Merge
	Split

	3.6 Metaheuristic Frameworks
	3.6.1 Hill Climber
	3.6.2 Simulated Annealing
	3.6.3 Tabu Search
	3.6.4 Genetic Algorithms
	3.6.5 Other Metaheuristics and Similar

	3.7 Conclusion

	4 An Explanation of Time Variance
	4.1 Modelling Time Variance
	4.2 The First-In First-Out (FIFO) Problem
	4.3 Introduction to Solving Time Variant VRPs
	4.3.1 Shortest Paths

	4.4 TVVRP Solution Techniques
	4.4.1 Methods Based on Dynammic Programming
	4.4.2 Time Variance and Solution Construction Heuristics
	Nearest Neighbour
	Clarke & Wright

	4.5 Conclusion

	5 The Estimation Tool
	5.1 Introduction
	5.2 What is the Estimation Tool?
	5.3 Overview of SVRP Quadrant and SVRP Hill Climbing Experiments
	5.3.1 Assessing Individual Neighbourhood Moves (Microscopic level)
	5.3.2 Assessment in a Metaheuristic Framework (Macroscopic Level)
	5.3.3 2-Opt and Other Neighbourhood Moves
	5.3.4 Problem Instances
	5.3.5 Producing Congestion Values
	5.3.6 Starting Solution Construction
	5.3.7 Tour Evaluation Methods
	Naïve
	Standard
	Estimate

	5.4 Experimental Work
	5.4.1 Assessing the use of Estimates in Individual Neighbourhood Moves
	True Negative (TN)
	False Positive (FP)
	False Negative (FN)
	True Positive (TP)

	5.4.2 Possible Scenarios

	5.5 Results for SVRP Quadrant Experiment
	5.5.1 Congestion Instance: Stepped vs. Twin Peak
	5.5.2 Congestion Type: Homogeneous (Speed1) vs. Heterogeneous (Speed3)
	5.5.3 Distribution of Nodes: a280 vs. bier127
	5.5.4 SVRP Quadrant Experiment Conclusion

	5.6 Results for SVRP Hill Climbing Experiment
	5.6.1 Interpreting the Results
	5.6.2 SVRP Hill Climbing Experiment Conclusion

	5.7 Comparing Neighbourhood Moves and Disruption
	5.7.1 Results for SVRP Delete & Insert Experiment
	Congestion Instance: Stepped vs. Twin Peak
	Congestion Type: Homogeneous (Speed1) vs. Heterogeneous (Speed3)
	Distribution of Nodes: a280 vs. bier127
	Neighbourhood Move Type: 2-Opt vs. Delete & Insert

	5.8 Conclusion

	6 Using our Estimation Tool on Multiple Vehicle Problems
	6.1 Overview of MVRP Quadrant Experiment
	6.1.1 Modelling Capacity
	6.1.2 Starting Solution Heuristic
	6.1.3 Improvement Heuristic and Final Details
	6.1.4 MVRP Quadrant Results
	6.1.5 ANOVA Analysis

	6.2 Overview of MVRP Hill Climbing Experiment
	6.2.1 MVRP Hill Climber Results

	6.3 MVRP Experiment with Stepped congestion
	6.4 Real World Experiment
	6.4.1 Real World Problem Instance
	6.4.2 Real World Quadrant Experiment Results
	6.4.3 Real World Hill Climbing Experiment Results

	6.5 Conclusion

	7 Threshold and Simulated Annealing Experiments
	7.1 Threshold Experiment
	7.1.1 Parameters
	7.1.2 Changing the Threshold
	7.1.3 Threshold Results
	7.1.4 Summary of Findings for Threshold Experiment

	7.2 Simulated Annealing Experiments
	7.3 Stages of Simulated Annealing
	7.3.1 Stage 1: Construction Stage
	7.3.2 Stage 2: Annealing Stage
	7.3.3 Stage 3: Hill Climber Stage

	7.4 Simulated Annealing vs. Hill Climber Experiment
	7.4.1 Simulated Annealing Results for gr666
	7.4.2 Simulated Annealing Results for Real World Problem
	7.4.3 Summary of Findings on Simulated Annealing

	7.5 Conclusion

	8 Analysis, Future Work and Conclusions
	8.1 Other Works
	8.2 Our Contribution
	8.3 Further Work
	8.4 Further Expansion
	8.4.1 Arc Routing
	8.4.2 Larger Problem Instances
	8.4.3 Estimates and Tabu Search
	8.4.4 Compound Estimates
	8.4.5 Genetic Algorithms

	8.5 Conclusion

	References

