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Abstract 

In this thesis, we investigate the relationship between the US stock returns and 

downside risk in a cross-sectional context. When the classic market model with a 

moving window approach is adopted, downside risk estimated coefficients exhibit a 

positive impact on stock returns. However, when two other non-linear time-varying 

models: the cubic piecewise polynomial function (CPPF) and the Fourier Flexible 

Form (FFF) models are adopted, downside risk estimated coefficients show a negative 

impact on stock returns. Cross-sectionally, the risk estimated coefficients of the two 

non-linear models produce a much better fit than the classic market model. The 

predictive power for future stock returns of downside risk estimated coefficients are 

found to be weak. Two more risk factors: commodity market risk and 

Aruoba-Diebold-Scotti (ADS) business condition index risk (both downside and 

upside versions thereof), are shown to have a significant effect on stock returns.  
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Introduction 

This thesis aims to examine the cross-sectional relationship between US stock returns 

and risk. The whole study is built on the classic Capital Asset Pricing Model (CAPM), 

but differentiates in a number of ways. Firstly, from Chapter 2, the constant beta 

assumption of the single market factor model is relaxed. From Chapter 2 to Chapter 4, 

the conventional beta is calculated at each point in time through this study. 

Specifically, in Chapter 3 and Chapter 4, risk premia are smoothly adjusted and beta is 

allowed to be time-varying in order to show the variation between risk and return. 

Secondly, conventional beta is not the only risk factor considered. Rather, this factor 

is intentionally divided into downside risk and upside risk factors with corresponding 

downside beta and upside beta. Thirdly, the return of the stock market portfolio is not 

the only risk factor employed in the model. Specifically, in Chapter 4, the commodity 

market price index and the Aruoba-Diebold-Scotti (ADS) business condition index are 

employed as risk factors. Fourthly, rather than treating each observation equally in the 

sample, in Chapter 3 and Chapter 4, two non-linear models are introduced: the cubic 

piecewise polynomial function (CPPF) model and the Fourier Flexible Form (FFF) 

model. With both models, risk premia are smoothly adjusted by the nature of the 

models. By doing so, the best fit of time-varying beta estimates can be decided 

according to the corresponding Akaike Information Criteria (AIC). Finally, all the risk 

factor coefficients and stock returns are examined using the Fama-Macbeth (1973) 

regression methodology to discover the cross-sectional relationship among them.  
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The thesis was initially motivated by Ang et al’s (2006) study, which examines the 

relationship between stock returns and downside beta. However, in their study, only 

the conventional single market factor model is adopted, and the data used is not 

rigorous.
1
 Apart from that, there are few studies in the literature that specifically 

focus on the cross-sectional risk and return relationship with beta broken down into 

downside and upside components. Introducing non-linear models into this study is 

another innovation. There is a long history of using non-linear models in asset pricing, 

but few studies employ them within a downside risk context.  

 

The contribution of this thesis to the asset pricing literature is that, firstly, it explores 

the alternative risk measurements of classic beta. Specifically, decomposing classic 

beta into downside and upside, and cross-sectionally examining the risk-return 

relationship can highlight the sensitivity of return to risk on both downside and upside. 

Secondly, allowing beta, downside beta and upside beta to be time-varying, and 

employing two non-linear models to give the data more flexibility can improve the 

goodness of fit, and enhance the effectiveness of the asset pricing model. Thirdly, 

rather than taking market risk as the only risk factor, two more risk factors; 

commodity market risk and real business condition risk are examined, and the impacts 

of both factors (downside or upside components thereof) on stock returns are 

documented.       

                                                        
1 In Ang et al’s (2006) study, dataset and data frequency are not consistent through the study, only 

the dataset in favor of the expected result are chosen.  
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The whole thesis focuses on the cross-sectional determinants of US stock returns. 

Each chapter of this thesis is closely linked and arranged in the following order: 

Chapter 1 contains a literature review of cross-sectional asset pricing. Chapters 2 to 4 

contain empirical work. Specifically, Chapter 2 focuses on the downside risk and 

classic market factor model with time-varying beta obtained by using a moving 

window approach. Chapter 3 introduces the two non-linear models to obtain flexible 

time-varying downside risk. Chapter 4 is based on Chapter 3 but employs commodity 

market risk and real business condition risk as additional risk factors. This thesis ends 

with a conclusion, appendix and references.               

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 1 

Literature review on cross-sectional 

asset pricing 
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1.1  Introduction 

In this chapter, a review of cross-sectional asset pricing literature is conducted.
2
 This 

starts with factor selection, and moves to cross-sectional methodologies, then the 

empirical evidence on two well-known asset pricing models, the CAPM and the 

Arbitrage Pricing Theory (APT), are reviewed. Prior to concluding, the literature on 

return anomalies is considered.  

 

1.2  Factor selection 

Choosing which specific factor to employ and how many factors to use are the 

essential steps to building an asset pricing model. Among the vast array of asset 

pricing literature, there are mainly three approaches to factor selection. According to 

Goyal’s study (2012), the first approach is by following certain theories and finance or 

economic intuition. The most well-known asset pricing model determined by this 

approach is the CAPM proposed by Sharpe (1964), Linnter (1965) and Mossin (1966). 

They predict that the market portfolio return is the only factor relating to the expected 

returns of stocks. The theory was then developed significantly by Merton (1973) when 

he proposed the intertemporal capital asset pricing model (ICAPM), which states that 

any risk factor relating to future investment can be employed as a state variable in the 

model. The advancement of theory is that asset pricing models are not limited to one 

risk factor and multivariate asset pricing models are introduced in finance literature. 

                                                        
2 The literature review covers the three main asset classes: equities, bonds and money market 

instruments, while the empirical work of this thesis focus on the equities.   



6 

 

Following Merton’s study, there are a large number of studies that focus on employing 

state variables in an asset pricing model. For instance, Breeden (1979) proposed the 

consumption based capital asset pricing model (CCAPM), which takes the covariance 

between stock returns and the marginal utility of consumption into consideration. In 

addition to the CCAPM, Lettau and Ludvigson (2001) introduce the consumption to 

wealth ratio as a state variable. Moreover, Chen et al. (1986) posit macroeconomic 

variables such as inflation, production growth and oil price as state variables in their 

asset pricing model.  

 

The second approach to factor selection is based on statistical analysis. This approach 

is motivated by Ross’s (1976) APT.
3
 The main concept of the APT is that the 

expected return of any asset can be modeled as a linear function of various risk factors, 

and each factor loading represents the sensitivity of the factor upon the expected 

return of the asset. The APT is relatively a broad concept, and difficult to apply 

without certain restrictions. Following the concept of the APT, Anderson (1984) 

proposed factor analysis, which employed the factor depending on the covariance of 

asset returns and factors. Factor analysis has been further developed and demonstrated 

by Lehmann and Modest (1988, 2005). An alternative statistical method is principal 

component analysis proposed and developed by Connor and Korajczyk (1986, 1993). 

The principal component analysis aims to extract the principal component from each 

variable, specifically to a large sample of cross-sectional returns with a short sample 

                                                        
3
 Statistically, the APT is under the 2

nd
 approach, however, a few study also apply the APT on 

factors selected by economic intuition, such as Chen (1980) and Chen et al. (1986). 
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size.  

 

The third approach to factor selection is based on firm characteristics. The motivation 

for using firm characteristics is due to the return anomalies, and the most 

representative one is the Fama-French three-factor model (1993), which is motived by 

the size and value anomalies. Moreover, Carhart (1997) argued that a momentum 

factor should be posited in the Fama-French three-factor model aiming to capture the 

momentum anomaly.
4
  

 

There is also a literature related to factor selection, which goes beyond the above 

mentioned approaches.
5
 For instance, Amihud and Mendelson (1986) point out that 

liquidity is a significant factor in asset pricing, and they find that the bid-ask spread is 

significantly priced. Chordia et al. (2000), Hasbrouck and Seppi (2001), Huberman 

and Halka (2001), Acharya and Pedersen (2005) and Korajczyk and Sadka (2008) also 

find supportive evidence that liquidity can be a factor in asset pricing. Moreover, 

Easley and O’Hara (1987) suggest that information risk can be a risk factor in asset 

pricing. Easley et al. (1996, 2002), Easley and O’Hara (2004) and Duarte and Young 

(2009) find that the probability of informed trading is priced in a cross-sectional asset 

pricing setting. Furthermore, Malkiel and Xu (1997, 2002), Bali and Cakici (2008), Fu 

(2009) and Fink et al. (2011) show that idiosyncratic volatility can explain 

                                                        
4
In Carhart (1997), the momentum factor is described as the equally weighted average of firms 

with the highest 30% lagged twelve months returns minus the ones with the lowest 30% over the 

same period.  
5 The literature relating to other factors that are priced is vast. Consequently, only a brief selection 

of examples from this literature are considered. 
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cross-sectional stock returns.  

  

1.3  Methodology 

To demonstrate the methodology of cross-sectional asset pricing, some notation has to 

be presented for the convenience of later illustration. From the asset perspective, 

denote the return of asset i at time t by Rit, then denote the number of assets by N and 

sample size by T. It is quite usual to encounter unbalanced panel data, which is for a 

large number of assets during sample size T, the return is not available for each asset 

at each point in time. In this case, sorting assets into portfolios based on certain 

characteristics is widely used by researchers, for instance, Jegadeesh (1990) sorts 

stocks into ten portfolios based on the return forecast of individual stocks. And more 

recently, Fama and French (2011) assign stocks into four portfolios according to the 

location of the stock exchange. Nonetheless, the notations defined at the beginning of 

this section are still adopted to demonstrate the methodology of cross-sectional asset 

pricing. 

 

For a multi-factor asset pricing model in general, we further denote that the return of 

risk factor k at time t by Fkt. Then define μ to be a N×1 vector of expected returns to 

the assets, and λ to be a K×1 vector of risk premia. The aim of an asset pricing model 

is to discover and explain the relationship between the risk factors and returns. 

Specifically, for cross-sectional asset pricing models, the aim is to reveal the variation 

of expected returns among all assets. According to Goyal’s survey (2012), the general 
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proposal of asset pricing model is 

                               0 B    ,                             (1.1) 

where τ is the N×1 vector of ones, λ0 is the constant, and B is the N×K factor loading 

matrix. Equation (1.1) is not only a general proposal of asset pricing, but also the 

original version of a number of multi-factor asset pricing models, for instance Ross 

(1976) APT model, and Merton’s (1973) ICAPM.  

 

Moreover, given the risk-free asset return Rf, and a K×1 vector of risk factor return μF, 

equation (1.1) can be further modified to  

( ),f F fR B R                          (1.2) 

where the well-known CAPM can be treated as a special case of equation (1.2). It can 

be written as follows: 

( ),i f i M fR R                          (1.3) 

where the return of the market portfolio μM is introduced, and the risk-free rate Rf can 

be moved to the left hand side of the equation to be expressed in a capital budgeting 

format. Notably βi is the market beta of asset i defined by  

cov( , ) / var( ).i it Mt MtR R R                     (1.4) 

Specifically for cross-sectional asset pricing, the above assumptions and notations still 

hold. Although according to Campbell et al.’s study (1997), while it is possible to use 

time-series regression to obtain coefficient estimates of risk factors and corresponding 

pricing errors, using the cross-sectional regression approach can reduce the 

complexity and simplify the whole process.  
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The main idea is a two-stage regression. In stage one, the estimates of all risk factors 

are obtained by a using time-series regression as follows: 

t t tR BF    .                          (1.5) 

In the second stage, a cross-sectional regression of average asset returns at each point 

in time upon corresponding beta estimates 

,TR B                              (1.6) 

where 𝑅𝑇
̅̅̅̅  is defined as the average asset returns over the sample size T and ϕ is the 

pricing error. It can be seen from equation (1.6) that the beta estimates from stage one 

become the independent variables in stage two.  

 

Notably, for the convenience of demonstration, there is no intercept in stage two. 

However, there could be an intercept in equation (1.6) if we assume that the zero-beta 

rate is different from the risk-free rate, and the intercept would be the difference 

between these two rates, while in equation (1.6), the null hypothesis is that the 

zero-beta rate is the same as the risk-free rate. Moreover, the cross-sectional pricing 

error, given by ϕ, is the average of the residual of the time series pricing error, but not 

the time series residual which is commonly assumed to have a mean of zero (given by 

ε). Furthermore, the estimate and variance of the factor loading λ can be obtained by 

ordinary least squares (OLS) regression as follows: 

' '
1( ) ,TB B B R                           (1.7) 

' 1 ' ' 11
var( ) ( ) ( )( ) ,B B B B B B

T
                         (1.8) 

and the estimate and variance of the pricing error ϕ are given by  

 
,TR B                             (1.9) 



11 

 

' 1 ' 1 '1
var( ) ( ( ) ) ( ( ) ) ,N NI B B B B I B B B B

T
                  (1.10) 

where Ʃε is given by 

     

' 1
( ) .E

T
                                 (1.11)  

 

1.4  Fama-Macbeth Regression 

The Fama-Macbeth (1973) regression is the most widely used cross-sectional asset 

pricing approach. This approach is motived by the two-stage regression demonstrated 

in the previous section with further modification. Following the two-stage regression, 

in stage one, all beta estimates are obtained by running the time-series regression 

t t tR BF    .                           (1.12)  

In stage two, the beta estimates obtained in stage one are treated as independent 

variables, then a cross-sectional regression of asset returns in each period upon beta 

estimates is run as follows: 

0 ,t t t tR B                             (1.13) 

where an intercept λ0t is included to represent the difference between the zero-beta 

rate and risk-free rate, and λt is the factor loading to be estimated at time t. In the 

second stage, OLS, generalized least squares (GLS) and weighted least squares (WLS) 

approaches can be applied. According to Litzenberger and Ramaswamy (1979) and 

Shanken (1985), estimates resulting from all three approaches converge to the same 

limit. The reason for that is, compared to the two-stage approach, the Fama-Macbeth 

regression runs the cross-sectional regression at each point in time, while the former 

one just runs the regression once using average asset returns in stage two.  
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Unlike the two-stage approach, the estimates of the factor loading and pricing error 

associated with the Fama-Macbeth regression are given by 

1

1
,

T

t

tT
 



                            (1.14) 

and 

1

1
,

T

t

tT
 



                                (1.15) 

where both estimates are the average of cross-sectional estimates in each period. 

Moreover, the variance of both estimates are given by 

'

2
1

1
var( ) ( )( ) ,

T

t t

tT
    



                    (1.16) 

and 

'

2
1

1
var( ) ( )( )

T

t t

tT
    



   .                    (1.17) 

Notably, by using the Fama-Macbeth regression, the variances of both estimates are 

not computed at each point in time, but computed as the variance of the average 

estimates obtained from stage two.  

 

To sum up, there are a number of advantages of using the Fama-Macbeth regression 

as the approach in cross-sectional asset pricing. First of all, the unbalanced data 

problem can be easily overcome, and it is not necessary to sort assets into portfolios. 

Secondly, it allows time-varying estimates regardless of the sample size and number 

of assets, for instance Fama and French (1992) used rolling betas in their studies and 

applied the Fama-Macbeth regression. Thirdly, the possible autocorrelation among 
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returns (and consequently in factor loading estimates) can be avoided by a number of 

econometric techniques, for instance adjusted by Newey-West (1987) robust standard 

errors which is used extensively in later chapters.   

 

1.5  Empirical evidence on asset pricing models 

1.5.1  Empirical evidence on the CAPM 

Since the 1950s, the empirical tests on asset pricing models have followed theoretical 

developments. It is sensible to begin with reviewing the tests on the CAPM, literally 

the first well-known asset pricing model.   

 

As a single factor asset pricing model, the CAPM was not widely accepted when it 

was first proposed. Right after the CAPM was published in the finance literature, 

Lintner (1965) and Douglas (1969) doubted that the market factor would be the only 

factor related to asset returns. However, with a comprehensive econometric 

demonstration, Miller and Scholes (1972) argued that the conclusion Lintner and 

Douglas made was not solid enough since their derivation of beta was not rigorous. 

Then it became the fashion in the literature to group assets into portfolios based on 

certain standards. For instance, Fama and Macbeth (1973) sorted stocks into portfolios 

based on their beta value. In their study they also found supportive evidence that asset 

returns are directly related to their beta values but not residuals, which is quite 

consistent with the initial idea of the CAPM. However, a more recent study by Ang 
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and Kristensen (2011) shows that using portfolios instead of individual betas would 

lead to the loss of information of each individual asset and result in inefficient 

estimates. The above studies also pointed out that asset returns and beta are not tightly 

related, while the Jensen’s (1968) alpha is significantly positive for low beta assets 

and negative for high beta assets.  

 

The critique to the CAPM took other forms, Roll (1977) argues that it is impossible to 

construct a real market portfolio because it is not possible to measure returns to all 

assets in the market. However, counter arguments have been presented, for instance, 

Stambaugh (1982) chooses various assets as a proxy in the CAPM and finds that the 

market proxy could be different if the target assets vary. More solid evidence was 

found by Shanken (1987) and Kandel and Stambaugh (1987). In their studies they 

show that if the market proxy and true market returns are correlated at 70%, then 

either of them in the CAPM will be equally significant. Although the controversy 

surrounding the CAPM seems to have reduced recently, as a milestone of asset pricing 

models, the challenge to CAPM will never end.   

 

1.5.2  Empirical evidence on the APT 

Compared to the single factor CAPM, the APT introduced by Ross (1976) is another 

well-known asset pricing model in the finance literature. Consistent with other asset 

pricing models, the APT agrees with the intuition behind CAPM, however, the main 

assumptions of the CAPM about utility theory and mean-variance derivation are not 
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adopted by the APT. There is no requirement in the APT that states that the market 

portfolio has to be mean variance efficient (Roll and Ross, 1980). The mean-variance 

or investors’ utility assumptions are replaced by the process of generating assets 

returns.   

 

Although there are not a great number of empirical studies on the APT compared to 

the CAPM, there still exists some empirical research related to the multiple factor 

return generating models which contribute to the formulation of the APT. Farrar (1962) 

and King (1966) conducted their research focusing on multiple factors analytic 

methods, and employed the factors based on industry influence. Although no test was 

conducted for such effects, their research still can be considered as a valuable 

rudiment of multiple generating factors. 

 

Brennan (1971) however, was truly related to the APT. Brennan (1971) adopted the 

approach that decomposes the idiosyncratic disturbance for a market portfolio 

regression. He discovered that there were two factors contributing to idiosyncratic 

disturbance, rather than one representing the true return generating process and that it 

was not possible to conduct a cross-sectional test on the CAPM due to it being a 

single factor model. Brennan’s (1971) study can be considered as the prime 

motivation for the APT. 

 

The empirical study by Gehr (1975) is the first empirical study directly related to the 

APT. He used a similar approach as the APT but with a smaller data set (24 industry 
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indices and 41 individual securities) to conduct his study. The more famous APT 

introduced later by Ross (1976) carried on and extended Gehr’s (1975) study by 

giving more accurate definitions, with more comprehensive analysis. Nevertheless, 

Gehr’s (1975) study can still be recognized as the beginning of the APT. 

 

After the APT was formulated by Ross (1976), more empirical studies were conducted 

by researchers in order to discover a deeper understanding of the multiple factor 

return generating process. Rosenberg and Marathe (1977) analyzed the so called extra 

market component of returns, and employed descriptor variables to track the change 

in the CAPM’s parameters. They found that the descriptor was equal to the factor 

loading in the multiple factors model, so it proved the single factor model is not 

powerful enough to explain the return generating process. However, Rosenberg and 

Marathe’s (1977) study did not focus on the separate influences of those factors; they 

only decompose the beta in the CAPM into several constitutive parts without a clear 

definition and test. 

 

Moreover, some more recent studies are more or less related to the multiple 

generating factors. Unfortunately, none of those studies has shown a clearer return 

generating process than the APT. Langetieg (1978) and Lee and Vinso (1980) found 

evidence that more than one market factor generates returns. Kryzanowski (1979) 

even did a formal test that showed there existed additional factors affecting the 

generation returns. However, he also found that the additional factor cannot be treated 

as equal to the market factor. More recently, Clare and Thomas (1994) found that, 
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under the APT, return on the market is only significantly priced when stocks are 

sorted into portfolio according to their market value than the value of the beta. 

Priestley (1996) argued that the conventional factor analysis in the APT may lead to 

false inference regarding to the statistical significance, and an alternative approach to 

generate the unexpected component is proposed. Nonetheless, factor analysis is still 

the main stream of factor selection of the APT.    

 

The first step to testing the APT empirically is to conduct a factor analysis to 

determine the number of factors in the APT and estimate the factor loadings. Factor 

analysis, as a statistical tool, is separate from the performance of the APT, and is used 

to obtain the estimates of coefficients in the APT. Based on previous studies by Roll 

and Ross (1980), Reinganum (1981), Weinstein and Brown (1983), the optimal 

number of factors in the APT is no more than five. Therefore, in Chen’s study (1983), 

five factors were selected to conduct the empirical test on the APT. 

 

As all factors in the APT are unobservable, OLS regression is difficult to apply in 

factor loading estimation; hence, factor analysis is adopted. Chen (1980) found that it 

is easy to estimate the factor loadings of a subset of assets by using the 

variance-covariance matrix and extend those estimates to the whole sample. The 

procedure of Chen’s method is described as follows: 

Let Ri and Rp be the ith and pth assets in the portfolio and i = 1, 2, 3….k, k+1, and p∈

i, hence, 

1 1 1( , ) ( ) .... ( )p i p i pk ik kCov R R b b Var b b Var     



18 

 

2 2

1 1 1 ....p i pk ik kb b b b    ,                   (1.18) 

and in matrix form, the above equation can be written as follows 
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,              (1.19) 

since the coefficient matrix is non-singular, so the column vector of bpj is unique and 

can be determined by taking the inverse matrix of the coefficient matrix (Chen 1980). 

Those factor loadings of a subset of assets can then be extended to the entire sample 

by mathematical programming software.  

 

In Chen (1983), the data used in the test is the simulated daily stock returns from 1963 

to 1978 provided by the Center for Research in Security Prices (CRSP). The sample 

period is divided into four subperiods: 1963-1966, 1967-1970, 1971-1974 and 

1975-1978.  

 

The regression being used for the APT in this test is: 

0 1 1
ˆ ˆ

i i k ik iR b b                             (1.20) 

Where 𝑏̂ij is the estimate of factor loadings by Chen’s method (treated as independent 

variables here). In contrast, a regression for the CAPM is also adopted 

0 1
ˆ

i i iR                                  (1.21) 

similarly, the 𝛽̂i is also taken as the independent variable (Chen 1983).  

 

The results show that the estimated 1 for each subperiod is negative, so one would 
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expect the factor loading of factor one to be negative as well. Based on Chen’s study 

(1980), the factor loadings of factor one are highly correlated with  and are all 

significantly negative, which is consistent with the result here. Notably, the estimates 

of  are only statistically significant in subperiod one and four, which is consistent 

with the results of the CAPM regression in that it only prices significantly in those 

two periods. 

 

Then, a joint test on the null hypothesis that 1=2=3=4=5=0 is applied to see if 

the APT has enough explanatory power in cross-sectional. The result shows that the F 

statistic is significant at a 10% level for each period and the null hypothesis is 

rejected. 

 

Test of the own variance effect on the APT  

A large amount of evidence shows that there is correlation between stock returns and 

its own variance. For instance, Fama and Macbeth (1973), Roll and Ross (1980), and 

Rhaiem, Ammou and Mabrouk (2007), all find that own variance had explanatory 

power as an independent variable when it comes to explaining asset returns. The 

relationship between stock returns and their own variances is defined as  the own 

variance effect. 

  

To test the own variance effect in the APT, Chen (1983) firstly computed the variance 

of each asset in the sample. The variance series was not then put into the APT as an 

independent variable due to the possible correlation between factor loadings and 
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variances. Alternatively, all the assets were divided into two groups based on their 

variances, one group consisted of the assets that had small variance (less than the 

median value of the variance), while the other group consisted of high variance assets. 

Then, a programming technique was adopted to form two portfolios, one from each 

group, which assured both portfolios possessed some factor loadings. So the null 

hypothesis of the test is if the own variance effect does appear in the APT, then those 

two portfolios should yield relatively the same return. The alternative hypothesis 

would be: 

2

0 1 1 ( )i i k ik iR b b f                          (1.22) 

where f(2
) is a function of variances, treated as an independent variable. The result 

shows that the mean difference between two portfolios is not significant and there is 

no autocorrelation between each period. Therefore, it can be concluded from the test 

that the own variance effect does not appear in the APT.  

 

Test of the firm size effect on the APT 

The firm size effect has become a benchmark of whether an asset pricing model is 

misspecified for more than thirty years. Banz (1981) found that small firms tended to 

have higher risk adjusted average returns than large firms. Moreover, Reinganum 

(1981) found that firm size effect appeared in the APT. Up to now, nobody could 

explain whether the firm size is an unobservable variable affecting asset returns or  

just a proxy for other variables not uncovered.    

 

To test the firm size effect in the APT again, Chen (1983) used the data partially from 
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Reinganum’s study and the rest from CRSP. The methodology is similar to that 

employed in testing for the own variance effect. The data were divided into two 

groups based upon the firm market value (large firms and small firms), then two 

portfolios with the same factor loadings were formed. If the firm size does not have 

explanatory power in the APT, those two portfolio should obtain the same returns, 

otherwise, the firm size effect does appear in the APT.  

 

The results of the test show that after correcting for autocorrelation, the mean 

difference for each sample period is not statistically significant. Also, for equal 

weighted portfolios and top to bottom decile firms, the mean differences are still 

insignificant after adjusting for factor loadings. So the conclusion of the test is that 

firm size does not have explanatory power in the APT. More recently, Mei (1993) find 

that the size effect can be captured by the APT by using a quasi-differencing approach 

to eliminate unobservable factors in the model. While Funga and Leug (2000), 

Fernald and Rogers (2002), Fan et al. (2009) and Abdullahi et al. (2011) find that size 

effect is not significant in emerging stock market by using the APT.   

 

Tests of other risk factors on the APT    

Apart from the empirical tests described above, some other macroeconomic variables 

are also tested in the APT to see whether they could affect asset returns. Chen et al 

(1986) took long and short interest rates, expected and unexpected inflation, industrial 

production, market returns, aggregate consumption and the oil price index as six risk 

factors, and regressed them on asset returns. Although no more than five factors are in 
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the APT’s favor, six factors is still not over the top. The results show that industrial 

production, changes in market premium, and changes in interest rates have a 

significant influence on asset returns; expected and unexpected inflation has a 

somewhat weakened effect on asset returns; finally, aggregate consumption and 

changes in oil price do not have a significant influence on asset returns. Moreover, 

Fama and French (1992) tested whether the book to market ratio (B/M) and 

earning/price ratio (E/P) could have an impact on stock prices. Their results show that 

stock returns have a positive relationship with B/M and E/P. Similar studies are 

numerous, and more and more variables which could affect asset returns are being 

uncovered by researchers. 

 

1.5.3  Empirical comparison between the APT and the CAPM 

To assess the relative quality of the APT or the CAPM, an empirical comparison is 

necessary. The easiest way would be to compare the differences between the asset 

returns priced by the APT and the CAPM. However, due to the high correlation 

between bij and , putting them in a regression as independent variables could cause 

multicollinearity. Therefore, an alternative regression by Davidson and Mackinnon 

(1981) is adopted 

, ,
ˆ ˆ(1 )i i APT i CAPM ir R R e     ,                  (1.23) 

Where ri is the actual return of the asset i, 𝑅̂i,APT and 𝑅̂i,CAPM are the expected returns 

of asset i generated by the APT and the CAPM, respectively. If the APT performance 

is better than the CAPM,  is expected to be close to 1. The results indicate that 
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although in some cases the  is not statistically significant, the point estimates of  

are supportive to the APT rather than the CAPM (Chen 1983). 

 

Moreover, according to Chen’s study, the performance measurement of the APT is 

tested. If the APT could correctly price the assets relative to the CAPM, how much 

information the APT captures in the error term of the CAPM is of interest. Hence, one 

can regress the error term of the CAPM (given by 𝜂̂) on the APT to test the 

performance of the APT 

0 1 1 2 2 3 3 4 4 5 5
ˆ ˆ ˆ ˆ ˆ

î i i i i i ib b b b b              .             (1.24) 

The error term of the APT (given by𝜀̂) is also regressed on the CAPM for the sake of 

comparison 

0 1
ˆ

î i i       .                          (1.25) 

The result of both regressions indicates that the APT is superior.  

 

1.6  Return anomalies 

Since the 1970s, return anomalies in equity market have become a key area of 

cross-sectional asset pricing research. As a number of studies have documented, most 

return anomalies demonstrate that asset returns do not follow the classic financial 

theory but are related to variables which are based on certain financial characteristics. 

Also, quite a number of return anomalies are related to cross-sectional risk and asset 

returns, therefore, it is sensible to conduct a broad review and summary. Following 

Subrahmanyam’s (2010) and Goyal’s (2012) studies, return anomalies can be 
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attributed to return-based ratios, price-based ratios and accounting-based ratios. 

1.6.1  Return-based ratios 

Lo and Mackinlay (1988) find a positive serial correlation among weekly returns of 

aggregate portfolios, and Fama and French (1988) show a negative correlation on the 

market portfolio over a three to five years span. Jegadeesh (1990) shows that winner 

stocks tend to have low returns in the following month, and Lehmann (1990) extends 

the results to weekly frequency data. And investors’ reaction to news can also cause 

return anomalies. De Bondt and Thaler (1986, 1987) propose the over-reaction 

hypothesis that loser stocks tend to perform better than winner stocks in the following 

3 to 5 years, and it is attributed to the investors’ over-reaction to recent information 

and neglect the importance to past news. Contradictory to the over-reaction 

hypothesis, Jegadeesh and Titman (1993, 2001) propose the under-reaction hypothesis 

that stock returns in the past 12 months possesses a strong predictive power to the 

return in the following year. It is attributed to that the investors would slowly adapt 

recent news and incorporate them into stock prices. Chen et al. (1996) also support the 

under-reaction hypothesis.   

 

Moreover, Rouwenhorst (1998), Griffin et al. (2003), Chui et al. (2010) and Fama and 

French (2012) all document momentum effects directly related to return anomalies, 

especially in international markets. Based on Jegadeesh’s (1990) study, Heston and 

Sadka (2008) point out that loser stocks, on average, will outperform winner stocks in 

the next twenty weeks. More recently, Asness et al. (2009) and Moskowitz et al. (2012) 
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find that momentum effects also appear in government and corporate bonds, 

commodity and currency markets. Furthermore, Hong et al. (2000) show that 

momentum profits are much stronger in small stocks in the US market, and Doukas 

and Mcknight (2005) find that Hong’s result is also valid in the European markets. 

Cooper et al. (2004) show that momentum effects tend to follow positive market 

returns rather than the negative ones. Hvidkjaer (2006) point out that for those listed 

production firms, momentum profit is related to the number of orders they receive. 

Avramov et al. (2007) state that low credit quality firms are more likely to earn 

momentum profits. However, Goyal and Wahal (2011) argue that Avramov et al.’s 

results are very much location limited.    

 

1.6.2  Price-based ratios 

Miller and Scholes (1972) find that stocks with a relatively low price will earn higher 

returns. According to Basu’s (1977) and Ball’s (1978) studies, firms with low 

price-earnings ratios tend to have high returns. Stattman (1980) and Rosenberg et al. 

(1985) point out that stock returns are positively related to book-to-market ratio. Banz 

(1981) finds that small capitalization firms earn higher returns than large ones. In 

Bhandari’s (1988) study, he shows that firms with higher leverage tend to earn higher 

returns. Moreover, Fama and French (1992) find that the stock returns are more 

related to price-based ratios rather than classic beta estimates and market portfolio, 

and they even go so far as to predict the death of beta. Their results are further proved 

in Fama and French (1996). 
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1.6.3  Accounting-based ratios  

Back in the 1960s, Ball and Brown (1968) found that stock prices were more volatile 

after a firm’s earnings were announced. Lakonishok et al. (1994) point out that there 

is a negative relationship between long term returns and a firm’s total sales and 

earnings. La Porta (1996) finds a negative relationship between the stocks’ future 

returns and a firm’s earning growth. According to Haugen and Baker’s (1996) and 

Cohen et al.’s (2002) studies, more profitable firms tend to earn higher returns than 

less profitable ones. 

 

Moreover, Chan et al. (2001) find that firms with high research and development 

expenditure have higher future returns than those with low research and development 

expenditure. However, they also point out that there is no significant difference on 

future returns between firms doing research and development and ones not doing so. 

Titman et al. (2004) find a negative relationship between a firm’s investment and 

stock returns. Cooper et al. (2008) also discover a negative relationship between a 

firm’s asset growth and stock returns. Additionally, Titman et al. (2010) and Watanabe 

et al. (2011) all show that Cooper et al.’s (2008) findings exist not only in the US 

market, but also in a number of international markets, except Japan.  

 

Furthermore, Ikenberry et al. (1995) show that, on average, there will be positive 

stock returns after repurchases. Solan (1996) finds a negative relationship between 
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accounting accruals and stock returns. According to Daniel and Titman’s (2006) and 

Pontiff and Woodgate’s (2008) studies, there is a negative relationship between long 

term stock returns and stock issues. 

 

1.7 The literature on downside risk, time-varying beta 

1.7.1 Downside risk  

The idea of downside risk is motivated by treating risk asymmetrically in asset pricing. 

According to the classic portfolio theory, risk factors symmetrically affect returns, 

while the innovation of downside risk opens a new area of the asymmetry of risks.
6
 

The downside risk is defined as the risk investors will face in a relatively falling 

market. There are quite a number of studies which document the asymmetry of risks, 

specifically to downside risk. Roy (1952), Markowitz (1959), Quirk and Saposnik 

(1962), and Mao (1970) find that rational investors care more about downside losses 

rather than upside gains by using semi-variance as a measure of risk. Moreover, Bawa 

(1975) proposed lower partial moment to measure the downside risk. Fishburn (1977), 

Bawa and Lindenberg (1977), Kahneman and Tversky (1979), Gul (1991), and Sing 

and Ong (1993) all focus on modifying the CAPM to treat the risk asymmetrically.  

 

Since the concept of downside risk was proposed, the arguments about the 

relationship between downside risk and asset returns began. According to Jahankani 

(1976) and Harlow and Rao (1989), downside risk is not significantly priced in the 

                                                        
6
 Different from prospect theory, here it is assumed that all investors are rational and risk averse. 
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CAPM. Ang and Chen (2002), and Ang et al. (2006) show that there is a positive 

relationship between downside risk and stock returns, and the downside risk premium 

is estimated to be 6% per annum. More recently, Huang and Hueng (2008) argue that 

in a downside market, there is a significant and negative risk-return relationship.  

 

1.7.2 Time-varying beta 

Allowing beta to be time-varying aims to rescue the beta estimate from the constant 

beta assumption of the CAPM and reveal the risk-relationship at each point in time. 

There are a vast number of studies using time-varying beta instead of constant beta. 

For instance, Fama and Macbeth (1973), and Ang et al. (2002) use a moving window 

approach to obtain time-varying beta. Hardel et al. (1985), Hardle (1992), Wand and 

Jones (1995), Ang and Kristensen (2011), and Li and Yang (2011) use simulation to 

generate time-varying beta. Moreover, Engle (2002), Andersen et al. (2002), 

Choudhry and Wu (2009) and Nieto et al. (2011) compute time-varying beta based on 

the generalized autoregressive conditional heteroskedasticity (GARCH) model. 

However, data are treated equally in all the above studies, and none of them allows 

beta to be time-varying with flexible adjustment to data. 

        

Although there is a comprehensive amount of literature available on downside risk 

and time-varying beta, only a few studies focus on both of them. Ang et al. (2002, 

2006) obtain the time-varying downside beta estimates by using the OLS moving 

window approach. They point out that there is a positive relationship between 
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downside beta and stock returns. While Huang and Hueng (2008) find an inverse 

relationship by using the adaptive least square (ALS) moving window approach to 

generate the time-varying downside beta estimates. Aside from the above studies, it is 

hard to find a study which focuses on the downside risk in a time-varying context.  

 

The contribution of this thesis to the literature is that it aims to reveal the 

cross-sectional risk-return relationship in both the upside and downside market in a 

time-varying context. Specifically, using the cubic piecewise polynomial function 

(CPPF) and Fourier Flexible Form (FFF) model to flexibly adjust the data and 

allowing for the beta estimates to be time-varying is an innovation to the literature.  

 

1.8  Conclusion  

As reviewed, cross-sectional asset pricing is such a wide area to explore. It begins 

with factor selection and model selection. According to different factor selection 

approaches, different models are finally built. The basic methodology of 

cross-sectional asset pricing is a two-stage approach, starting with a time-series 

regression to obtain factor loading estimates, and then a cross-sectional regression is 

applied. In this regard, the Fama-Macbeth regression methodology is the most widely 

used approach. 

 

The empirical evidence of the CAPM and the APT are reviewed in detail. The former 

model is a milestone asset pricing model with a single market factor, and the latter one 
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is well-known by proposing the idea of a multi-factor model. There are also quite a 

number of asset pricing models that have a pervasive influence in the finance 

literature, such as Fama-French’s three factor model, and Carhart’s four-factor model. 

There is never a lack of argument about which model outperforms the other, and quite 

a lot of empirical studies are not in favour of the CAPM. 

 

The innovation of downside risk challenges the classic symmetric risk portfolio theory, 

and allowing beta to be time-varying relaxes the assumption of a constant beta in the 

CAPM. There are only a few studies which focus on downside risk in a time-varying 

context, and this thesis builds on these studies by innovatively using non-linear 

models to measure beta. 
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2.1  Introduction 

This chapter investigates the relationship between the downside risk and US stock 

returns, with a comparison to UK data. Since the CAPM was first proposed, it has 

been widely believed that the expected excess return on a stock is constantly 

proportional to its market beta, irrespective of how the market excess return has 

fluctuated. However, through exploration of market movements and stock returns, 

researchers have found that stock returns did not react symmetrically to market 

movements. Some stocks tend to move upward in a rising market more than falling in 

a dropping market, while some stock returns tend to move downward in a falling 

market much more than moving upward in a rising market. It follows that such stocks 

are not as desirable as others since the average payoffs would be low. In this chapter, 

it will be demonstrated that the positive impact of downside risk is reflected in the 

cross-section of stock returns, while when beta is controlled, a downside negative 

impact on stock returns will appear on future stock returns. This chapter is arranged in 

the following order: section 2.2 introduces the literature on downside risk, section 2.3 

contains an outline of a downside risk model, section 2.4 describes the data, section 

2.5 presents the empirical results of the US data,
7
 section 2.6 and 2.7 present the 

cross-sectional relationship between downside beta and other factors, section 2.8 

examines the predictive power of downside beta, and the final section concludes the 

chapter.   

 

                                                        
7
The empirical results of the UK data are presented when a comparison is necessary. 
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2.2  Literature review 

There has been a long history of using downside risk measures in portfolio analysis, 

specifically, treating risk asymmetrically represents a vast improvement over 

traditional portfolio theory. The most commonly accepted downside risk measures are 

semi-variance and the lower partial moment (Nawrocki 1999). There are a number of 

studies that focus on the asymmetry of risks, particularly on downside losses rather 

than upsides gains. Roy (1952) pointed out that investors care more about downside 

risk than upside gains. Markowitz (1959) was the first to propose that semi-variance 

can be adopted as a risk measure instead of variance, since semi-variance draws more 

attention to downside losses. Consequently, a large number of studies in exploring the 

theoretical application of semi-variance have appeared. For instance, the theoretical 

superiority of semi-variance compared to variance is illustrated in Quirk and Saposnik 

(1962). Mao (1970) shows that investors would be more interested in downside risk 

rather than upside gains, and semi-variance is the appropriate tool to measure the 

downside risk. In the mid-1970s, another measure of downside risk, the lower partial 

moment was proposed. According to Bawa (1975) and Fishburn (1977), the lower 

partial moment can liberate investors from risk seeking to risk neutral and finally to 

risk aversion. Bawa (1975), firstly defined the lower partial moment as a below target 

semi-variance, which connects the lower partial moment with the semi-variance 

measure.  

 

Following the introduction of these two measures of downside risk, a large number of 
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empirical tests have been conducted. Among them, quite a number of researchers have 

attempted to combine the measures of downside risk with the original asset pricing 

model and the investors’ utility function. This, in turn, has led to new measures of 

downside risk. Bawa and Lindenberg (1977) suggested a modified CAPM that treats 

risk asymmetrically with respect to downside and upside sensitivities. Under the 

framework of behavioural finance, Kahneman and Tversky (1979) proposed the loss 

aversion preference. Gul (1991) advanced the disappointment aversion preference 

theory. According to disappointment aversion preference theory, risk averse investors 

would demand a premium to compensate the downside risk they are bearing when the 

market is falling. It is even more obvious in the disappointment aversion utility 

function that more weights are put on downside losses. Sing and Ong (1993) proposed 

the co-lower partial moment, and extended it to the classic CAPM. Ang and Chen 

(2002) proposed downside conditional correlations as a new measure of downside risk. 

Moreover, Nielsen et al. (2008) proposed downside realized semivariance as a new 

measure of downside risk, which is constructed using high frequency data.   

 

Even though the perception of downside risk began as early as the 1950s, there have 

been few empirical studies that focus on downside risk as being a factor rather than a 

factor loading. Early studies discovered little evidence of how downside risk is priced 

and the downside risk premium, since researchers did not pay much attention to 

evaluating the premium cross-sectionally. For instance, Jahankani (1976) failed to 

discover any enhancement on the standard CAPM with normal betas replaced by 

downside betas, however, the portfolios used in his study were sorted only by classic 
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CAPM betas. Similarly, Harlow and Rao (1989) failed to estimate the downside risk 

premium, instead, they measured the downside risk under the maximum likelihood 

framework, with only the consistency of returns to risk-free assets tested across all 

portfolios. Neither of these studies illustrated how stocks that closely co-vary with a 

declining market would obtain a corresponding risk premium. 

 

However, Ang et al. (2006) successfully demonstrated that stocks with higher 

downside risk obtain higher average returns and that downside risk is a significant risk 

factor affecting stock returns. Moreover, they estimated the downside risk premium at 

6% per annum in cross section. While Huang and Hueng (2008) argue that in a 

downside market, there is a significant and negative risk-return relationship. This 

chapter follows Ang et al.’s (2006) study by using US data, but innovates in a number 

of ways. Firstly, this chapter examines whether individual stocks that have higher 

downside beta obtain, on average, higher returns during both the current period and 

the next period. By contrast, Ang et al. (2006) show that higher returns are obtained 

only in the same period. Secondly, this chapter shows that the time-varying downside 

beta is a significant attribute to contemporaneous stock returns by using OLS 

regression with a moving window approach in a cross-sectional fashion. Thirdly, the 

downside risk premium is estimated by controlling for other coefficients such as 

coskewness. The downside beta is then employed as a risk factor in cross-sectional 

regressions, and its predictive power is tested.  
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2.3  A model of downside risk 

In order to price downside risk, on a theoretical basis, a disappointment aversion (DA) 

utility function firstly proposed by Gul (1991) is adopted. Use of the DA utility 

function effectively assumes that investors care differently about downside losses and 

upside gains, specifically caring more about the former. There are a number of other 

models existing which focus on investors’ aversion to losses, Shumway (1997) 

advanced a behavioural model according to the level of investors’ loss aversion, and 

Barberis and Huang (2001) developed a cross-sectional equilibrium model based on a 

risk averse utility function, with a mental accounting factor which formulates 

investors’ loss aversion. More recently, some improvements and constraints have been 

placed on utility functions. For instance, Chen et al. (2001) added short sale 

constraints, and Kyle and Xiong (2001) constructed wealth constraints. However, 

neither of these models directly relate the measurement of downside risk to the 

cross-sectional stock returns in a perfect market. 

 

Instead of adding too many constraints and behavioural conditions, taking the rational 

disappointment aversion utility function as a basis to treat risk asymmetrically is the 

most reasonable way to measure the downside risk in a cross-sectional fashion. The 

advantage of it is that as the DA function is universally concave, portfolio allocation 

problems, especially optimal finite portfolio allocation problems are solvable (Ang et 

al., 2006). The difference between the DA utility function being taken in this chapter 

and the one in Gul’s (1991) study is that the utility function in this chapter is under a 
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rational representative agent framework while the one is Gul’s (1991) study only aims 

to solve the problem in an aggregate market, specifically in a consumption setting 

(Routledge and Zin, 1993). In this study, wealth is measured by the market portfolio, 

and all assumptions comply with the CAPM.  

 

Gul’s (1991) disappointment aversion utility function is shown below 

1
( ) ( ( ) ( ) ( ) ( ))

W

W
WU U W dF W A U W dF W

K









   ,               (2.1) 

where U(W) is the utility function of wealth W by the end of the period, F(x) is the 

cumulative density function of wealth W, and W is a certain level of wealth. 

According to Gul (1991), U(W) is set to be a power utility function, that is, 

(1 )( ) / (1 )U W W    .                     (2.2) 

The parameter A in equation (2.1) is the disappointment aversion coefficient given 

0<A≤1, and K is a scalar which is given by 

Pr( ) Pr( )W WK W A W     .                (2.3) 

Therefore, if the result is below the W, it is called a disappointing outcome. The 

reason A is between 0 and 1 is that, the disappointing outcomes would take relatively 

more weight than the contrary outcomes. In other words, the disappointment averse 

investors care more about downside risk than upside risk. On the other hand, when 

A=1, the disappointment aversion utility function will become the mean-variance 

utility function (Ang et al., 2006). 

 

As a key component of the mean–variance utility function, the regular beta is given by  
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cov( , )

var( )

i M

M

xR xR

xR
  ,                       (2.4) 

where xRi is asset i’s excess return, xRM is the market excess return. Beta could be a 

powerful parameter to explain and describe the risk-return relationship of each asset, 

since it is true that each asset’s expected return will increase in a rising market and 

decrease in a declining market when the beta is high. However, since investors would 

pay more attention to downside risk, the disappointment aversion utility function risk 

coefficient does not have enough explanatory power on downside risk. To overcome 

this issue, the downside beta, denoted by β
-
, as a measurement of downside risk is 

introduced by Bawa and Lindenberg (1977).
8
 Mathematically, β

-
 is given by 

cov( , | )

var( | )

i M M M

M M M

xR xR xR xR

xR xR xR
  




 ,                 (2.5) 

where 
MxR  is the average market excess return over the sample period. 

 

On the other hand, a DA investor would like to hold a stock with high upside potential 

payoffs at a relative discount. Compared to downside risk, high upside potential 

stocks could bring more wealth to investors when the investors’ wealth is already high, 

so that these stocks are not as attractive as the ones which deliver a payoff when the 

market is declining. Therefore, stocks with high upside potential would not require a 

high expected return to make investors hold them, which is the reason for the discount. 

In order to measure the upside risk, an upside beta is introduced, denoted by β
+
 (Bawa 

and Lindenberg 1977). Similarly to downside beta, upside beta is given by  

                                                        
8
 Downside beta measures the co-movement between stock return and return of market portfolio 

in a falling market. To a stock, the larger downside beta is, and more losses will be suffered in a 

downside market, and vice versa.  
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cov( , | )

var( | )

i M M M

M M M

xR xR xR xR

xR xR xR
  




 ,               (2.6) 

where all notations are consistent with downside beta.  

 

Apart from downside and upside betas, another two statistics; coskewness and 

cokurtosis (Harvey and Siddique, 2000) are introduced to explain the risk-return 

relationship. Harvey and Siddique (2000), point out that there is a negative 

relationship between return and coskewness. Mathematically, coskewness and 

cokurtosis are given by 

2[( )( ) ]

var( ) var( )

i i M M

i M

E xR xR xR xR
coskewness

xR xR

 
  ,             (2.7) 

and 

3

3/2

[( )( ) ]

var( ) var( )

i i M M

i M

E xR xR xR xR
cokurtosis

xR xR

 
 ,                (2.8) 

where 
ixR is the average excess return of asset i, and other notations are consistent 

with downside beta.
9
  

 

Since the regular beta, upside beta and downside beta are not independent of each 

other, in order to distinguish the effects among them, two more statistics have been 

introduced by Ang et al. (2006): the relative upside beta, denoted by (β
+
-β) and 

relative downside beta denoted by (β
-
-β). In the subsequent analysis, comparison 

among the relations between regular beta, upside beta, downside beta, relative upside 

beta, relative downside beta and coskewness and realized return are summarized.      
                                                        
9
 Coskewness measures the asymmetry of stock return’s probability distribution in relation to the 

distribution of market return, while cokurtosis measures the degree of peak. Since stock return is 

the main variable to investigate, it always has the order of 1 in the formula.  
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2.4  Data and data transformations 

The US data used in this chapter are taken from the CRSP database. This chapter 

focuses on the ordinary common stocks listed on the New York Stock Exchange 

(NYSE), American Stock Exchange (AMEX) and NASDAQ measured on a monthly 

frequency from January 1960 to December 2010.
10

 American depositary receipts 

(ADR), real estate investment trust (REIT), closed-end funds, foreign firms and other 

securities which do not have a CRSP share code of 10 or 11 are excluded from the 

sample. Each stock is required to have at least 5 years of consecutive monthly 

adjusted return observations with at most 5 missing observations. The return of each 

stock is adjusted for stock splits, mergers and acquisitions, and dividends (dividends 

are subtracted from stock prices for adjustment), giving 13557 stocks. The 

value-weighted return of all listed stocks is taken as a measure of the market portfolio, 

and the one month Treasury bill rate represents the risk free rate.
11

 

 

The UK data used in this chapter are taken from Datastream. With the same 

requirement as the US data, monthly stock prices of FTSE All Share firms between 

December 1979 and December 2010, the UK three-month T-bill middle rate, and 

FTSE All Share price index over the same period are used. For the monthly stock 

prices, all are adjusted for dividend payments and stock splits, and there are 564 

stocks in total.  

 

                                                        
10

 The NASDAQ data are only available from January 1972. 
11

 Using the same criteria Ang et al. (2007) used and no filtering out outliers aims to follow their 

study as close as possible. Notably, using this criteria could cause survival bias.  
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In order to conduct the analysis, essential data transformations were prepared on the 

original data. Firstly, continuously compounded returns are derived from stock prices 

to estimate and calculate beta, downside beta, upside beta and all other parameters. 

The transformation is as follows: 

, , , 1ln( ) ln( )i t i t i tR p p  
,                       

(2.9) 

where Ri,t is the continuously compounded return of stock i at time t, pi,t is the 

adjusted price of stock i at time t (on monthly frequency), and ln is the natural 

logarithm. The same transformation applies to the FTSE All Share price index to 

calculate the return of  the market portfolio.  

 

Secondly, the excess return of each stock and the market return are derived by taking 

the difference of the continuously compounded return and the risk free rate as follows 

, , ,i t i t f txR R R 
,
                       (2.10) 

where xRi,t is the excess return of stock i at time t, and Rf,t is the risk free rate at time t. 

 

Moreover, Rf,t is derived from the UK 3-month T-bill middle rate. Since the original 

data is in annual percentage terms to each corresponding month, we therefore 

calculate Rf,t as follows: 

,
, 1200

f t
f t

r
R 

,
                     (2.11) 

where rf,t is the annualized return.    

 

A general summary of statistics is shown in the Table 2.1. It can be seen from the  

table that, overall, the UK stocks yield a lower return and a higher standard deviation 
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than the US stocks. For the UK stocks, the average annualized return is 3.61% with a 

standard deviation of 22.21%. For the US stocks, generally, over the whole sample, 

the average annualized return is 12.08% with a standard deviation of 17.06%. Stocks 

that have been listed in all three stock exchanges yielded highest average annualized 

return at 14.61%, while stocks that have been listed on both NASDAQ and AMEX are 

most volatile with a standard deviation of 20.17%. 

 

Table 2.1 A summary of Both UK and US stocks
12

 

 
Stock Exchange 

Number of 

Stocks 

Percentage 

to whole 

Sample 

Average 

Annualized 

Return 

Standard 

Deviation 

UK DATA 
FTSE ALL 

SHARES 
564 100% 3.61% 22.21% 

      
US DATA NYSE 2198 16.21% 10.6% 10.99% 

 
NASDAQ 7636 56.33% 12.32% 20.13% 

 
AMEX 1105 8.15% 10.99% 16.92% 

 
NYSE & NASDAQ 1031 7.60% 14.12% 13.55% 

 
NYSE & AMEX 556 4.10% 14.10% 13.72% 

 

NASDAQ & 

AMEX 
829 6.11% 11.24% 20.17% 

 

NYSE & NASDAQ 

& AMEX 
202 1.49% 14.61% 16.15% 

 
Total Sample 13557 100% 12.08% 17.06% 

 

2.5  Empirical results
13

 

To demonstrate the relationship between annual realized returns of stocks and various 

types of betas, results are summarized in subsequent tables. All the realized betas, 

realized downside betas, and realized upside betas are estimated by OLS, while 

                                                        
12

 The average annual risk free rates are 5.43% and 7.11% for US and UK, respectively.  
13

 All data transformation, computation and empirical work are done by Stata 11.2 MP  
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realized relative downside betas, realized relative upside betas and realized downside 

beta less upside betas are generated subsequently. 

  

When betas are calculated, a moving window method is adopted. For both the US and 

the UK data, a 3 year window is employed to calculate each beta for individual stocks, 

so when the first beta of that stock is calculated, the next beta of that stock is 

calculated by moving the window forward by one month. When all types of betas are 

calculated, each type is sorted into five portfolios according to their values each 

month. Specifically, all stocks are cross-sectionally sorted into five quintiles 

according to different types of corresponding beta measurements at each point of time. 

The low beta portfolios contain the stocks which have the lowest 20% betas among all 

stocks each month, and the other four portfolios contain the stocks falling into 20% - 

40%, 40% - 60%, 60% - 80% and 80% - 100% beta measurement intervals, 

respectively. After the portfolios have been constructed, the equally weighted average 

beta for the portfolios are calculated and assigned to the beta of the portfolio. To 

demonstrate the sample period impact and predictive power of betas, both the same 

period and the following year average annual excess return of each portfolio are 

calculated.  

 

2.5.1  Empirical results: US data 

For the US stocks, it can be seen from Table 2.2 Panel 1 that when stocks are sorted 

by β, average annual stock excess returns increase along with the increase of β. 
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Table 2.2  US Stocks Sorted By Factor Loadings With Average Market Excess 

Return As A Benchmark 

This table presents the relationship between excess stock returns and factor loading of stock 

market portfolio with average market excess return as a benchmark. The column labeled ―return‖ 

reports the average annualized stock returns over the one month T-bill rate. ―High-Low‖ reports 

the difference between portfolio 5 and portfolio 1. 

 

Panel 1 Stocks Sorted by β 
 

Panel 2 Stocks Sorted by β
-
      

Portfolio Return β β
-
 β

+
 

 
Portfolio Return β β

-
 β

+
 

1 Low 5.44% 0.33 0.58 0.01 
 

1 Low 7.28% 0.59 0.24 0.54 

2 7.90% 0.78 0.99 0.54 
 

2 9.12% 0.88 0.86 0.74 

3 9.09% 1.07 1.24 0.84 
 

3 10.09% 1.11 1.18 0.98 

4 10.88% 1.37 1.46 1.20 
 

4 10.35% 1.33 1.54 1.11 

5 High 15.03% 2.06 1.92 2.17 
 

5 High 11.49% 1.71 2.37 1.38 

High - Low 9.59% 1.74 1.34 2.15 
 

High - Low 4.21% 1.11 2.13 0.84 

           
Panel 3 Stocks Sorted by β

+
     

 
Panel 4 Stocks Sorted by relative β

-
          

Portfolio Return β β
-
 β

+
 

 
Portfolio Return β β

-
 β

+
 

1 Low 6.57% 0.68 1.09 -0.61 
 

1 Low 12.12% 1.45 0.73 1.70 

2 9.03% 0.81 1.01 0.42 
 

2 10.57% 1.14 1.01 1.10 

3 9.92% 1.03 1.16 0.87 
 

3 9.71% 1.02 1.12 0.87 

4 10.44% 1.28 1.31 1.37 
 

4 9.15% 0.99 1.33 0.69 

5 High 12.38% 1.81 1.61 2.71 
 

5 High 6.78% 1.01 1.99 0.40 

High - Low 5.81% 1.12 0.52 3.32 
 

High - Low -5.34% -0.45 1.26 -1.29 

           
Panel 5 Stocks Sorted by relative β

+
     

 
 Panel 6 Stocks Sorted by (β

-
-β

+
)       

Portfolio Return β β
-
 β

+
 

 
Portfolio Return β β

-
 β

+
 

1 Low 8.24% 1.1 1.48 -0.39 
 

1 Low 10.92% 1.47 0.97 2.39 

2 10.39% 1.02 1.22 0.55 
 

2 10.09% 1.09 1.02 1.22 

3 10.17% 1.00 1.12 0.87 
 

3 9.87% 1.01 1.12 0.88 

4 9.57% 1.06 1.09 1.23 
 

4 10.12% 1.00 1.30 0.57 

5 High 9.96% 1.43 1.27 2.49 
 

5 High 7.33% 1.03 1.77 -0.31 

High - Low 1.72% 0.32 -0.21 2.88 
 

High - Low -3.59% -0.44 0.8 -2.70 
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The span of returns is from 5.44% to 15.03% with a spread of 9.59%. At the same 

time, β
-
 and β

+
 present the same pattern as β, the span of β

-
 and β

+
 are from 0.58 to 

1.92 and 0.01 to 2.17 with a spread of 1.34 and 2.15, respectively. 

 

When stocks are sorted by β
-
, it can be seen from Panel 2 that the average excess 

return, β, and β
+
 all exhibit a very similar increasing pattern as in Panel 1. The 

average excess return increases from 7.28% in portfolio 1 to 11.49% in portfolio 5. 

Notably, although Panel 2 shows a similar pattern to Panel 1, the spread of average 

excess returns in Panel 2 is 4.21%, much less than that in Panel 1 (9.59%). Similarly, 

in Panel 3, when stocks are sorted by β
+
, an increasing pattern appears for each 

portfolio, the average excess return grows from 6.57% to 12.38% with a spread of 

5.81%. Noticeably, the spread of β
-
 decreases dramatically when stocks are sorted by 

β
+
, it is only 0.52 in Panel 3, while the spread of β

+
 also decreases when stocks are 

sorted by β
-
, for instance in Panel 2, the spread of β

+
 is only 0.84. At this stage, β

+
 

shows a positive relationship with β, when stocks are sorted by both estimates, the 

returns exhibit a very similar pattern with a high spread. Regarding β
-
, further research 

needs to be done, since stock returns show a similar pattern but have a lower spread. 

Additionally, it suggests that β
-
 and β

+
 exhibit a negative relationship since the stock 

returns show reverse patterns when sorted by each of them.   

 

In order to examine the unique properties of β
-
 and β

+
, stocks are sorted by relative β

-
, 

denoted by (β
-
 - β) and relative β

+
, denoted by (β

+
 - β), both of them are controlled for 

the effect of β. It can be seen from Panel 4 that when stocks are sorted by (β
-
 - β), only 
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β
-
 shows an increasing pattern from 0.73 in portfolio 1 to 1.99 in portfolio 5, while 

both average excess returns and β
+
 exhibit reverse patterns from portfolio 1 to 

portfolio 5. Moreover, β exhibits a generally decreasing trend from portfolio 1 to 

portfolio 4 but with a subtle increase in portfolio 5. By contrast, when stocks are 

sorted by (β
+
 - β), it is clear in Panel 5 that β

+
 increases from -0.39 in portfolio 1 to 

2.49 in portfolio 5. Generally, in Panel 5, average excess returns and β increase and β
-
 

shows a decreasing trend, all are reverse versions of Panel 4. Finally, when stocks are 

sorted by (β
-
 - β

+
), patterns similar to Panel 4 appear. It can be seen from Panel 6 that 

only β
-
 shows an increasing pattern from 0.97 in portfolio 1 to 1.77 in portfolio 5, 

while both average excess returns and β
+
 exhibit decreasing patterns from portfolio 1 

to portfolio 5. And β exhibits a generally decreasing trend from portfolio 1 to portfolio 

4 but with a slight increase in portfolio 5.  

 

It can be concluded from Table 2.2 that the average excess returns are consistent with 

the classic high beta high return relationship when stocks are sorted by β. Similar 

relationships still hold when stocks are sorted by β
-
 and β

+
, and all of these results are 

consistent with Ang et al’s (2006) findings. However, there are some results which 

contradict Ang et al’s (2006) findings: the spread of average excess returns drops 

when stocks are sorted by β
-
 while it increased in Ang et al’s (2006) study. When 

controlling for β, the unique properties of β
-
 and β

+
 become more obvious. Clearly 

from Panel 4, Panel 5 and Panel 6, β
-
 exhibits a negative relationship with average 

excess return, while β
+
 has a positive relationship which is consistent with β. Whereas 

in Ang et al’s (2006) study, a totally reversed result is found.   
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In order to explore the downside risk component at a deeper level, inspired by Ang et 

al.’s (2006) study, rather than using average market excess return as a benchmark to 

compute the downside and upside beta, two more benchmarks are employed. The 

motivation for changing the benchmark is to examine the sensitivity of stock returns 

to beta, downside beta and upside beta. First, the risk free rate is employed instead of 

the average market excess return, therefore the corresponding downside and upside 

beta measures can be written as 

cov( , | )

var( | )

i M M f

Rf

M M f

xR xR xR R

xR xR R
 





 ,                      (2.12) 

and 

cov( , | )

var( | )

i M M f

Rf

M M f

xR xR xR R

xR xR R
 





 .                   (2.13) 

The second new benchmark employed assumes that the market excess return equals 

zero, then the corresponding downside and upside beta can be written as 

0

cov( , | 0)

var( | 0)

i M M

M M

xR xR xR

xR xR
  




 ,                   (2.14) 

and 

0

cov( , | 0)

var( | 0)

i M M

M M

xR xR xR

xR xR
  




 ,                    (2.15) 

where all previous notations remain the same. 

 

Following the same method of Table 2.2, Table 2.3 and Table 2.4 present the 

risk-return relationship with 
Rf   and 

Rf  , and 0
  and 0

 employed,
14

 

                                                        
14

 Moving window approach is employed. 
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respectively. Surprisingly, although the benchmarks have changed, Table 2.3 and 

Table 2.4 exhibit almost identical patterns as in each panel in Table 2.2. It can be 

concluded from Table 2.2 to Table 2.4 that three types of downside (and upside) betas 

have the same impact on stock returns, with the average excess return always 

consistent with the classic high beta high return relationship when stocks are sorted by 

β. This relationship still holds when stocks are sorted by any of the downside beta and 

upside beta measures, but the spread of average excess returns drops when stocks are 

sorted by downside beta. When controlling for β, from Panel 4, Panel 5 and Panel 6 of 

Table 2.2 to Table 2.4, downside betas exhibit a negative relationship with average 

excess return, while upside beta has a positive relationship regardless of the 

benchmark used. To sum up, the risk-return relationship does not change with the 

measure of beta. Compared to Ang et al’s (2006) study, results are consistent when 

stocks are sorted by beta, downside beta and upside beta. However, when beta is 

controlled, the unique effects of downside beta and upside beta on stock returns are 

presented. Unlike Ang et al’s (2006) results, in this study, relative downside and 

upside beta have a negative and a positive impact on stock returns, respectively. 
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Table 2.3  US Stocks Sorted By Factor Loadings With Average Risk-Free Rate 

As Benchmark 

This table presents the relationship between excess stock returns and factor loading of stock 

market portfolio with average risk-free rate as a benchmark. The column labeled ―return‖ reports 

the average annual stock returns over the one month T-bill rate. ―High-Low‖ reports the difference 

between portfolio 5 and portfolio 1. 

 

Panel 1 Stocks Sorted by β 
 

Panel 2 Stocks Sorted by βRf
- 

Portfolio Return β βRf
-
 βRf

+
 

 
Portfolio Return β βRf

-
 βRf

+
 

1 Low 5.44% 0.33 0.63 0.05 
 

1 Low 7.23% 0.59 0.23 0.56 

2 7.90% 0.78 1.01 0.55 
 

2 9.41% 0.89 0.87 0.78 

3 9.09% 1.07 1.26 0.85 
 

3 9.79% 1.12 1.20 0.99 

4 10.88% 1.37 1.48 1.22 
 

4 10.50% 1.33 1.57 1.12 

5 High 15.03% 2.06 1.97 2.20 
 

5 High 11.42% 1.68 2.49 1.41 

High - Low 9.59% 1.74 1.33 2.15 
 

High - Low 4.19% 1.09 2.26 0.85 

           
Panel 3 Stocks Sorted by βRf

+
 

 
Panel 4 Stocks Sorted by Relative βRf

-
 

Portfolio Return β βRf
-
 βRf

+
 

 
Portfolio Return β βRf

-
 βRf

+
 

1 Low 6.37% 0.66 1.14 -0.53 
 

1 Low 12.07% 1.45 0.72 1.72 

2 9.19% 0.82 1.04 0.43 
 

2 10.41% 1.12 1.00 1.08 

3 10.12% 1.04 1.18 0.88 
 

3 9.84% 1.03 1.13 0.87 

4 10.43% 1.28 1.34 1.38 
 

4 8.90% 1.00 1.36 0.71 

5 High 12.21% 1.81 1.66 2.72 
 

5 High 7.11% 1.01 2.13 0.49 

High - Low 5.84% 1.15 0.52 3.25 
 

High - Low -4.96% -0.44 1.41 -1.24 

           
Panel 5 Stocks Sorted by Relative βRf

+
 

 
Panel 6 Stocks Sorted by (βRf

-
 -βRf

+
) 

Portfolio Return β βRf
-
 βRf

+
 

 
Portfolio Return β βRf

-
 βRf

+
 

1 Low 8.35% 1.11 1.56 -0.28 
 

1 Low 10.92% 1.46 0.94 2.37 

2 10.23% 1.01 1.23 0.55 
 

2 10.08% 1.10 1.04 1.23 

3 10.35% 0.99 1.12 0.87 
 

3 9.85% 1.01 1.14 0.89 

4 9.59% 1.07 1.12 1.24 
 

4 9.85% 1.01 1.32 0.58 

5 High 9.81% 1.43 1.32 2.50 
 

5 High 7.64% 1.03 1.91 -0.20 

High - Low 1.46% 0.32 -0.24 2.78 
 

High - Low -3.28% -0.44 0.97 -2.56 
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Table 2.4  US Stocks Sorted By Factor Loadings With Zero Return As 

Benchmark 

This table presents the relationship between excess stock returns and factor loading of stock 

market portfolio with zero return as a benchmark. The column labeled ―return‖ reports the average 

annual stock returns over the one month T-bill rate. ―High-Low‖ reports the difference between 

portfolio 5 and portfolio 1. 

 

Panel 1 Stocks Sorted by β 
 

Panel 2 Stocks Sorted by β0
-
 

Portfolio Return β β0
-
 β0

+
 

 
Portfolio Return β β0

-
 β0

+
 

1 Low 5.44% 0.33 0.62 0.05 
 

1 Low 6.99% 0.62 0.19 0.57 

2 7.90% 0.78 1.00 0.55 
 

2 9.70% 0.90 0.87 0.80 

3 9.09% 1.07 1.26 0.86 
 

3 9.84% 1.11 1.19 0.97 

4 10.88% 1.37 1.47 1.22 
 

4 10.53% 1.33 1.57 1.13 

5 High 15.03% 2.06 1.94 2.18 
 

5 High 11.27% 1.66 2.49 1.38 

High - Low 9.59% 1.74 1.32 2.14 
 

High - Low 4.28% 1.04 2.30 0.80 

           
Panel 3 Stocks Sorted by β0

+
 

 
Panel 4 Stocks Sorted by Relativeβ0

+
 

Portfolio Return β β0
-
 β0

+
 

 
Portfolio Return β β0

-
 β0

+
 

1 Low 5.86% 0.64 1.12 -0.48 
 

1 Low 11.76% 1.46 0.67 1.68 

2 9.23% 0.81 1.04 0.44 
 

2 10.21% 1.13 1.00 1.09 

3 10.08% 1.05 1.18 0.89 
 

3 9.98% 1.04 1.14 0.89 

4 10.21% 1.29 1.33 1.36 
 

4 9.12% 0.99 1.35 0.71 

5 High 12.96% 1.83 1.63 2.64 
 

5 High 7.27% 1.00 2.14 0.48 

High - Low 7.10% 1.19 0.51 3.12 
 

High - Low -4.49% -0.45 1.47 -1.20 

           
Panel 5 Stocks Sorted by Relative β0

+
 

 
Panel 6 Stocks Sorted by (β0

-
 - β0

+
) 

Portfolio Return β β0
-
 β0

+
 

 
Portfolio Return β β0

-
 β0

+
 

1 Low 7.91% 1.09 1.55 -0.23 
 

1 Low 11.20% 1.47 0.88 2.27 

2 9.81% 1.03 1.25 0.59 
 

2 9.91% 1.10 1.02 1.22 

3 10.56% 0.99 1.12 0.87 
 

3 10.02% 1.02 1.13 0.89 

4 9.74% 1.07 1.11 1.22 
 

4 9.77% 1.00 1.33 0.60 

5 High 10.33% 1.43 1.28 2.40 
 

5 High 7.44% 1.02 1.94 -0.12 

High - Low 2.42% 0.34 -0.27 2.64 
 

High - Low -3.76% -0.45 1.06 -2.40 
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2.5.2  Empirical results: UK data 

Whole sample analysis 

In order to expand Ang et al’s (2006) study and to provide a comparison, the 

relationship between beta measures and average annual excess returns using UK data 

is examined. Dimson et al (2003) and Gregory (2011) focus on UK stock market risk 

premium but not particularly considering downside market. Unlike the US data, the 

UK sample is shorter with a number of bear market periods such as the 1989 market 

crash, the Dot com bubble and the sub-prime crisis. Overall, the UK sample is mostly 

characterized by bear markets, therefore unusual results are expected, and the time 

sensitivity of downside and upside beta is observed. 

 

It can be seen from Table 2.5 that when the largest data sample is used, from January 

1980 to December 2010, some unusual results between realized return and beta 

measurements occur. According to the conventional definition of the risk–return 

relationship, high beta should generate high returns, and vice versa. However, Table 

2.5 illustrates the opposite result. 

 

When stocks are sorted by conventional beta, average beta estimates for the lowest 

beta portfolio is 0.32, while the one for the highest beta portfolio is 1.79, the average 

beta estimates go up at relatively stable intervals from low to high, and the spread 

between the highest beta estimate and lowest one is 1.47. Although these beta 

estimates are smaller than expected, they are still within a reasonable range. 
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   Table 2.5  UK Stocks Sorted By Factor Loadings (Jan 1980-Dec 2010) 

This table presents the relationship between excess stock returns and factor loading of stock 

market portfolio with average market excess return as a benchmark. The sample uses FTSE All 

Shares from January 1980 to December 2010. The column labeled ―return‖ reports the average 

annual stock returns over three month T-bill rate. ―High-Low‖ reports the difference between 

portfolio 5 and portfolio 1. 

 

 Panel 1 Stocks Sorted by β   Panel 2 Stocks Sorted by β
-
 

Portfolio Return β β
-
 β

+
   Portfolio Return β β

-
 β

+
 

1 Low 1.94% 0.32 0.51 0.36 1 Low  1.24% 0.36 0.43 0.62 

2 0.66% 0.75 1.07 1.05  2 -0.06% 0.77 1.04 1.14 

3 0.39% 1.00 1.39 1.45  3 0.57% 1.01 1.39 1.47 

4 0.35% 1.24 1.71 1.82  4 -0.06% 1.23 1.73 1.75 

5 High  -2.82% 1.79 2.42 2.71  5 High  -1.19% 1.73 2.50 2.41 

High - Low -4.76% 1.47 1.91 2.36  High - Low -2.43% 1.37 2.07 1.79 

           

 Panel 3 Stocks Sorted by β
+
  Panel 4 Stocks Sorted by Relative β

-
 

Portfolio Return β β
-
 β

+
   Portfolio Return β β

-
 β

+
 

1 Low 3.80% 0.41 0.81 0.19 1 Low  0.30% 0.66 0.65 1.41 

2 0.60% 0.78 1.15 1.00  2 -1.19% 0.86 1.11 1.37 

3 0.34% 1.00 1.38 1.45  3 -0.31% 1.01 1.39 1.49 

4 -0.51% 1.21 1.62 1.87  4 1.04% 1.15 1.67 1.56 

5 High  -3.72% 1.70 2.14 2.88  5 High 0.65% 1.41 2.28 1.55 

High - Low -7.52% 1.29 1.33 2.69  High - Low 0.35% 0.75 1.63 0.14 

           

Panel 5 Stocks Sorted by Relative β
+
  Panel 6 Stocks Sorted by (β

-
 -β

+
 ) 

Portfolio Return β β
-
 β

+
   Portfolio Return β β

-
 β

+
 

1 Low  3.65% 0.66 1.28 0.34 1 Low -3.62% 1.24 1.34 2.45 

2 1.69% 0.83 1.25 1.03  2 -0.91% 1.05 1.34 1.72 

3 0.61% 0.99 1.37 1.44  3 0.73% 0.98 1.35 1.43 

4 -1.14% 1.14 1.47 1.83  4 1.40% 0.91 1.38 1.14 

5 High -4.28% 1.48 1.71 2.74  5 High 2.90% 0.91 1.67 0.65 

High - Low -7.93% 0.82 0.43 2.39  High - Low 6.53% -0.33 0.33 -1.79 
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The average downside beta estimates and upside beta estimates of these 5 portfolios 

follow the direction of the change of conventional beta estimates from low to high. 

Surprisingly, when it comes to the realized returns, the average realized returns for 

each portfolio are in the reverse order of the corresponding beta estimates. The lowest 

beta portfolio generates a rate of return of 1.94% per annum, while the highest beta 

portfolio suffered a loss of 2.82% per annual (the spread from high to low is -4.76%). 

The realized returns show a decreasing trend from low beta portfolio to high beta 

portfolio.  

 

The same phenomenon appears again when stocks are sorted by downside beta, 

upside beta and relative upside beta. When stocks are sorted by relative downside beta, 

the returns exhibit a U-shaped pattern from the low beta portfolio to high beta 

portfolio. The annual return for the lowest relative downside beta portfolio is 0.3%, 

and then drops below zero along with the increase of the relative downside beta. It 

then comes back above zero and finally yields at 0.65% per annum. Although there is 

a tiny fall between the annual returns of the second highest relative downside beta 

portfolio and the highest one, a U-shaped pattern of their returns is still clearly 

observed.  

 

An upward trend of annual returns from low beta to high beta portfolio is finally 

apparent when stocks are sorted by downside beta less upside beta ( β
-
 -β

+
 ). The 

annual return for the low ( β
-
 -β

+
 ) portfolio is -3.62% and increasing along with the 

growth of ( β
-
 -β

+
 ), it closes at 2.9% for the high ( β

-
 -β

+
 ) portfolio with a spread 
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between high to low at 6.53%. Overall, Table 2.5 illustrates a surprising risk-return 

relationship, the pattern of returns is totally contradictory to the conventional 

risk–return theory, and a non-linear relationship occurs when stocks are sorted by 

relative downside beta. In addition, the values of returns are smaller than expected 

when the sample from January 1980 to December 2010 is chosen.
15

 

 

Sub-period analysis 

In order to examine in more detail the risk–return relationship and time sensitivity of 

downside risk (especially when a relatively small sample contains a number of crises 

is used), a number of shorter and reshaped samples are chosen. Table 2.6 gives results 

pertaining to January 1980 to December 2007. The reason for analyzing this period is 

the sub-prime crisis. Taking out the data from January 2008 to December 2010 from 

the original data set aims to remove the influence of the global financial crisis. It can 

be seen from Table 2.6 that after shortening the sample, the realized return series in 

each panel of Table 2.6 becomes more realistic, with the average highest annual rate 

of return across all the panels at around 6%, rather than close to zero as in Table 2.5. 

However, focusing on the risk–return relationship, the results do not follow the classic 

portfolio theory, but exhibit similar patterns as in Table 2.5. When stocks are sorted by 

relative downside beta, the returns demonstrate a U-shaped pattern from the low beta 

portfolio to high beta portfolio. The annual rate of return of the lowest relative 

downside beta portfolio is 4.19%, and then falls dramatically to 1.9% when the 

relative downside beta increases to the next level. Then, the rate of return starts going 

                                                        
15

 Average annual return of each portfolio is expected to be similar to the US one. 
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up from the median beta portfolio at 2.36% and finally closes at 2.53%. Although 

there is a 0.9% drop between the annual returns of the second highest relative 

downside beta portfolio and the highest one, a U-shaped pattern in their returns is still 

clearly observed.  

 

Overall, Table 2.6 shows a similar risk and return relationship as Table 2.5, the pattern 

of returns is still contradictory to the conventional risk–return theory, and a U-shaped 

pattern of returns occurs when stocks are sorted by relative downside beta. Moreover, 

in Table 2.6, the values of returns are much greater than the ones in Table 2.5 and are 

quite close to what excess returns are expected, this can be attributed to the removal 

of the sub-prime crisis period. 

 

Comparing Table 2.5 to Table 2.6, it is clear that although shortening the sample size 

still cannot give an expected result, the annual rate of returns appears more normal. To 

further analyze the risk–return relationship in light of Table 2.5 and Table 2.6, all 

financial crises are excluded and a number of subsamples are considered. 
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Table 2.6  UK Stocks Sorted By Factor Loadings (Jan 1980-Dec 2007) 

This table presents the relationship between excess stock returns and factor loading of stock 

market portfolio with average market excess return as a benchmark. The sample uses FTSE All 

Shares from January 1980 to December 2007. The column labeled ―return‖ reports the average 

annual stock returns over three month T-bill rate. ―High-Low‖ reports the difference between 

portfolio 5 and portfolio 1. 

 

 Panel 1 Stocks Sorted by β   Panel 2 Stocks Sorted by β
-
 

Portfolio Return β β
-
 β

+
   Portfolio Return β β

-
 β

+
 

1 Low  5.95% 0.30 0.49 0.31 1 Low 5.43% 0.35 0.41 0.56 

2 3.91% 0.73 1.05 0.98  2 3.11% 0.74 1.02 1.07 

3 3.00% 0.98 1.37 1.38  3 3.01% 0.98 1.36 1.41 

4 2.49% 1.20 1.66 1.75  4 2.34% 1.19 1.68 1.67 

5 High  -0.93% 1.74 2.36 2.64  5 High  0.51% 1.68 2.45 2.34 

High - Low -6.88% 1.44 1.87 2.33  High - Low -4.92% 1.33 2.04 1.78 

           

 Panel 3 Stocks Sorted by β
+
   Panel 4 Stocks Sorted by Relative β

- 

Portfolio Return β β
-
 β

+
   Portfolio Return β β

-
 β

+
 

1 Low 7.38% 0.39 0.78 0.15 1 Low  4.19% 0.64 0.62 1.33 

2 3.64% 0.75 1.12 0.94  2 1.90% 0.84 1.09 1.32 

3 3.01% 0.97 1.35 1.38  3 2.36% 0.99 1.37 1.43 

4 1.97% 1.18 1.58 1.80  4 3.41% 1.12 1.63 1.50 

5 High  -1.59% 1.66 2.09 2.78  5 High  2.53% 1.36 2.22 1.47 

High - Low -8.98% 1.27 1.31 2.64  High - Low -1.67% 0.72 1.60 0.14 

           

 Panel 5 Stocks Sorted by Relative β
+
  Panel 6 Stocks Sorted by (β

-
 -β

+
 ) 

Portfolio Return β β
-
 β

+
   Portfolio Return β β

-
 β

+
 

1 Low 6.58% 0.62 1.25 0.30 1 Low  -0.66% 1.22 1.32 2.36 

2 4.50% 0.79 1.21 0.97  2 2.13% 1.03 1.32 1.66 

3 3.32% 0.96 1.33 1.37  3 3.35% 0.95 1.32 1.37 

4 1.56% 1.11 1.44 1.75  4 4.12% 0.87 1.34 1.07 

5 High  -1.55% 1.46 1.69 2.65  5 High 5.46% 0.87 1.63 0.60 

High - Low -8.12% 0.84 0.44 2.35  High - Low 6.11% -0.35 0.32 -1.76 
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Table 2.7 provides results pertaining to the risk–return relationship of sorted portfolios. 

The data used are consistent with the ones used in Table 2.6, but exclude the 

sub-prime crisis (January 2008 to December 2010), the October 1989 stock market 

crash, and the Dot com bubble crash (March 2000 to October 2002). Bredin et al. 

(2007), Gregoriou et al. (2009) and Nneji et al. (2011) also focus on the crash periods 

on UK equity market, however neither of their studies specifically relates to the 

downside risk. When the stocks are sorted by beta, there is a downward pattern on the 

returns along with an increase of beta. The downward pattern is similar to the ones in 

Table 2.5 and Table 2.6, however, the spread of returns between the highest beta 

portfolio and the lowest beta portfolio is much narrower than those in previous two 

tables (it is only -2.98%, compared to -4.76% in Table 2.5 and -6.88% in Table 2.6). 

 

Comparing the return of the lowest beta portfolio in panel 1 of Table 2.7 with the one 

in Table 2.6, the difference is very small. However, the return of the highest beta 

portfolio in panel 1 in both tables are obviously far away from each other (the one for 

Table 2.7 is 2.98% per annum, and the one for Table 2.6 is only -0.93% per annum), 

the reason for the spread becoming narrower is the increase in the return of the highest 

beta portfolio. Moreover, the returns of the three middle beta portfolios in Panel 1 of 

Table 2.7 are all relatively higher than those in Table 2.6. Though not as high as 

expected, the increase in the return of the highest beta portfolio after discarding 

abnormal stock price movements, does tend to change the return pattern. Apart from 

Panel 1, the other panels in Table 2.7 show a fairly similar pattern in the risk–return 

relationship as in Table 2.6. 
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Table 2.7  UK Stocks Sorted By Factor Loadings (Excluding Financial Crises ) 

This table presents the relationship between excess stock returns and factor loading of stock 

market portfolio with average market excess return as a benchmark. The sample uses FTSE All 

Shares January 1980 to December 2010 excluding the market crash (October 1989), the Dot com 

bubble (March 2000 to October 2002) and sub-prime crisis (January 2008 to December 2010). The 

column labeled ―return‖ reports the annual average stock returns over three month T-bill rate. 

―High-Low‖ reports the difference between portfolio 5 and portfolio 1. 

 

 Panel 1 Stocks Sorted by β   Panel 2 Stocks Sorted by β
-
 

Portfolio Return β β
-
 β

+
  Portfolio Return β β

-
 β

+
 

1 Low 5.55% 0.31 0.53 0.31  1 Low  5.10% 0.36 0.45 0.56 

2 5.25% 0.73 1.08 0.99  2 4.43% 0.76 1.05 1.08 

3 4.19% 0.98 1.40 1.38  3 4.17% 0.98 1.40 1.39 

4 3.10% 1.21 1.71 1.73  4 3.41% 1.20 1.73 1.68 

5 High  2.57% 1.71 2.40 2.53  5 High 3.54% 1.65 2.49 2.22 

High - Low -2.98% 1.40 1.87 2.23  High - Low -1.56% 1.29 2.05 1.66 

           

 Panel 3 Stocks Sorted by β
+
   Panel 4 Stocks Sorted by Relative β

-
 

Portfolio Return β β
-
 β

+
  Portfolio Return β β

-
 β

+
 

1 Low  7.19% 0.39 0.82 0.17  1 Low 4.32% 0.65 0.65 1.28 

2 5.01% 0.75 1.16 0.95  2 3.43% 0.84 1.11 1.28 

3 3.99% 0.98 1.40 1.37  3 3.24% 0.99 1.40 1.42 

4 3.00% 1.19 1.63 1.78  4 4.54% 1.12 1.67 1.50 

5 High  1.47% 1.64 2.12 2.67  5 High  5.11% 1.35 2.29 1.46 

High - Low -5.73% 1.25 1.30 2.50  High - Low 0.79% 0.70 1.64 0.18 

           

Panel 5 Stocks Sorted by Relative β
+
   Panel 6 Stocks Sorted by (β

-
 -β

+
 ) 

Portfolio Return β β
-
 β

+
  Portfolio Return β β

-
 β

+
 

1 Low 6.98% 0.63 1.32 0.33  1 Low  1.94% 1.18 1.29 2.22 

2 5.55% 0.80 1.26 0.98  2 2.93% 1.02 1.33 1.62 

3 4.08% 0.96 1.37 1.36  3 4.43% 0.96 1.36 1.36 

4 2.64% 1.11 1.48 1.73  4 5.35% 0.89 1.40 1.09 

5 High  1.41% 1.43 1.69 2.54  5 High  6.00% 0.90 1.74 0.66 

High - Low -5.57% 0.80 0.37 2.20  High - Low 4.06% -0.28 0.45 -1.57 



58 

 

Moreover, when stocks are sorted by relative downside beta, there is an obvious 

U-shaped return pattern without the small drop which appears in both Table 2.5 and 

Table 2.6 for the highest relative beta portfolio. Furthermore, when stocks are sorted 

by ( β
- 

-β
+
), the upward pattern of returns appear as in Table 2.5 and Table 2.6. 

However, the spreads between the return of the highest beta portfolio and the lowest 

beta portfolio in each panel in Table 2.7 are much less than the corresponding ones in 

Table 2.6 except when stocks are sorted by ( β
-
 -β

+
). However, the returns for the 

lowest beta measurement portfolio in both tables are quite close to each other. In other 

words, the narrowing of the spreads is due to the increase in returns to the high beta 

measurement portfolio. The only change made on the data set is discarding the crisis 

period, therefore, it can be concluded that bear market periods do have more impact 

on high beta stocks than low ones. 

 

To explore the impact of crisis period stock price movements on the risk–return 

relationship, an analysis specific to the Dot com bubble over the period from March 

2000 to October 2002 is conducted. The results of this analysis are shown in Table 2.8. 

Not surprisingly, over this period, on average, stocks suffered huge losses. When 

stocks are sorted by beta, downside beta, upside beta, relative downside beta and 

relative upside beta, none of the portfolios generate a positive rate of return, and the 

spreads between high beta and low beta measurements are quite wide, from -18.77% 

to -29.78%. In these 5 panels, it can be seen that the highest beta measurement 

portfolio generates the lowest rate of return. When stocks are sorted by conventional 

beta, the highest beta portfolio generates the lowest rate of return among all portfolios.  
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Table 2.8  UK Stocks Sorted By Factor Loadings (Mar 2000-Oct 2002) 

This table presents the relationship between excess stock returns and factor loading of stock 

market portfolio with average market excess return as a benchmark. The sample uses FTSE All 

Shares during the Dot com bubble (March 2000-October 2002). The column labeled ―return‖ 

reports the annual average stock returns over three month T-bill rate. ―High-Low‖ reports the 

difference between portfolio 5 and portfolio 1. 

 

 Panel 1 Stocks Sorted by β   Panel 2 Stocks Sorted by β
-
 

Portfolio Return β β
-
 β

+
  Portfolio Return β β

-
 β

+
 

1 Low -1.64% 0.11 0.23 -0.05  1 Low -2.39% 0.14 0.19 0.23 

2 -13.97% 0.60 0.88 0.82  2 -13.58% 0.61 0.86 0.89 

3 -17.47% 0.94 1.30 1.44  3 -17.19% 0.95 1.30 1.47 

4 -19.04% 1.27 1.71 2.06  4 -21.62% 1.25 1.73 1.94 

5 High -31.44% 2.04 2.64 3.59  5 High  -28.79% 2.01 2.69 3.32 

High - Low -29.79% 1.93 2.41 3.64  High - Low -26.40% 1.86 2.50 3.09 

           

 Panel 3 Stocks Sorted by β
+
   Panel 4 Stocks Sorted by Relative β

-
 

Portfolio Return β β
-
 β

+
  Portfolio Return β β

-
 β

+
 

1 Low  -4.13% 0.19 0.49 -0.23  1 Low  -4.73% 0.48 0.43 1.26 

2 -13.21% 0.62 0.93 0.79  2 -15.91% 0.74 0.97 1.28 

3 -16.67% 0.94 1.29 1.46  3 -17.57% 0.95 1.30 1.49 

4 -18.86% 1.24 1.62 2.12  4 -20.65% 1.21 1.68 1.83 

5 High  -30.69% 1.97 2.43 3.72  5 High  -24.73% 1.58 2.38 2.00 

High - Low -26.56% 1.78 1.94 3.95  High - Low -20.00% 1.10 1.95 0.74 

           

Panel 5 Stocks Sorted by Relative β
+
   Panel 6 Stocks Sorted by (β

-
 -β

+
 ) 

Portfolio Return β β
-
 β

+
  Portfolio Return β β

-
 β

+
 

1 Low -9.70% 0.39 0.85 -0.10  1 Low -24.94% 1.54 1.74 3.28 

2 -12.81% 0.64 0.97 0.80  2 -15.44% 1.15 1.47 2.04 

3 -13.94% 0.93 1.27 1.45  3 -15.12% 0.91 1.24 1.43 

4 -18.62% 1.20 1.54 2.10  4 -14.38% 0.72 1.08 0.89 

5 High  -28.47% 1.80 2.14 3.61  5 High  -13.69% 0.65 1.24 0.21 

High - Low -18.77% 1.41 1.29 3.72  High - Low 11.24% -0.89 -0.50 -3.07 
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Focusing on the pattern on returns, in the first 5 panels, a downward pattern appears 

when the corresponding beta measurement is increasing. In addition, the previously 

mentioned U-shaped pattern of returns when stocks are sorted by relative downside 

beta disappears, replaced by a downward pattern. As in previous tables, when stocks 

are sorted by ( β
-
-β

+
), the upward pattern of returns appeared again with all negative 

values. Overall, it can be seen from Table 2.8 that the abnormal stock price 

movements do not change the return pattern and risk–return relationship so much. 

However, during the Dot com bubble, it is clear that stocks suffered huge losses, 

especially on the high beta measurement portfolios. It shows again that high beta 

stocks are influenced the most when downward stock price movements occur. 

 

After analyzing the Dot com bubble, a sub-period analysis is conducted and the time 

sensitivity of downside risk is shown more obviously. The original data are divided 

into three sub-periods, January 1980 to December 1989, January 1990 to December 

1999 and January 2000 to December 2010. The results of the analysis are illustrated in 

Table 2.9, Table 2.10 and Table 2.11, respectively. It can be seen from these three 

tables that the results for each sub-period are quite different from each other in terms 

of the risk-return relationship. 

 

Firstly, there appears to be no steady relationship between return and corresponding 

beta measurements in Table 2.9 which covers the 1989 market crash. The pattern of 

returns is non-linear in each panel with U-shaped patterns present and the highest beta 

measurement portfolio always generating a negative rate of return. Secondly, a 
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different pattern of returns is shown in Table 2.10. When stocks are sorted by 

conventional beta, returns exhibit a downward pattern from the low to the high beta 

portfolio. The same patterns appear again when stocks are sorted by downside beta, 

upside beta and relative upside beta. When stocks are sorted by relative downside beta, 

the returns demonstrate a U-shaped pattern from the low beta portfolio to the high 

beta portfolio.  

 

Results become more interesting when turning to Table 2.11, when the January 2000 

to December 2010 period is analyzed. Consistent with Ang et al’s (2006) findings, 

when stocks are sorted by conventional beta, the rate of return series exhibits an 

upward pattern along with the increase of beta estimates. When stocks are sorted by 

downside beta, relative downside beta, relative upside beta and downside beta less 

upside beta, the upward pattern of returns corresponding to the increase in 

corresponding beta measure becomes more obvious. Finally, when stocks are sorted 

by upside beta, a clear downward pattern of returns is exhibited. Overall, this 

sub-period analysis shows three different risk–return relationships depending on the 

sample period used. 

 

To summarize, different types of portfolio return patterns appear when they are sorted 

with respect to corresponding beta measurements. The UK data present evidence of 

sensitivity to the time period used, especially when financial crises happen and rates 

of return are low. When the longest sample size is adopted, a reversed pattern of 

returns appears, contrary to conventional portfolio theory. 
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Table 2.9  UK Stocks Sorted By Factor Loadings (Jan 1980-Dec 1989) 

This table presents the relationship between excess stock returns and factor loading of stock 

market portfolio with average market excess return as a benchmark. The sample uses FTSE All 

Shares from January 1980 to December 1989. The column labeled ―return‖ reports the annual 

average stock returns over three month T-bill rate. ―High-Low‖ reports the difference between 

portfolio 5 and portfolio 1. 

 

 Panel 1 Stocks Sorted by β   Panel 2 Stocks Sorted by β
-
 

Portfolio Return β β
-
 β

+
  Portfolio Return β β

-
 β

+
 

1 Low  2.14% 0.41 0.61 0.53  1 Low  2.40% 0.45 0.56 0.74 

2 1.07% 0.78 1.06 1.15  2 0.97% 0.79 1.05 1.20 

3 2.51% 0.96 1.30 1.42  3 1.87% 0.96 1.30 1.45 

4 2.13% 1.11 1.50 1.65  4 1.11% 1.10 1.52 1.58 

5 High  -2.73% 1.42 1.94 2.08  5 High  -1.26% 1.38 2.00 1.86 

High - Low -4.87% 1.01 1.33 1.55  High - Low -3.66% 0.93 1.44 1.12 

           

 Panel 3 Stocks Sorted by β
+
   Panel 4 Stocks Sorted by Relative β

-
 

Portfolio Return β β
-
 β

+
  Portfolio Return β β

-
 β

+
 

1 Low  2.78% 0.48 0.82 0.39  1 Low  2.54% 0.66 0.71 1.31 

2 0.94% 0.81 1.16 1.10  2 1.13% 0.84 1.08 1.36 

3 1.73% 0.96 1.31 1.41  3 1.78% 0.96 1.29 1.42 

4 2.04% 1.09 1.44 1.69  4 1.41% 1.03 1.47 1.40 

5 High  -2.37% 1.34 1.69 2.23  5 High  -1.76% 1.19 1.86 1.33 

High - Low -5.15% 0.86 0.87 1.84 High - Low -4.31% 0.52 1.15 0.01 

           

Panel 5 Stocks Sorted by Relative β
+
   Panel 6 Stocks Sorted by (β

-
 -β

+
 ) 

Portfolio Return β β
-
 β

+
  Portfolio Return β β

-
 β

+
 

1 Low  1.83% 0.65 1.15 0.50  1 Low  0.52% 1.01 1.13 1.93 

2 1.46% 0.87 1.26 1.13  2 1.35% 0.97 1.23 1.58 

3 1.43% 0.96 1.31 1.41  3 1.97% 0.95 1.29 1.41 

4 0.91% 1.03 1.32 1.65  4 0.58% 0.90 1.32 1.17 

5 High  -0.55% 1.18 1.39 2.14  5 High  0.66% 0.85 1.46 0.74 

High - Low -2.38% 0.53 0.25 1.64  High - Low 0.14% -0.16 0.33 -1.19 
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Table 2.10  UK Stocks Sorted By Factor Loadings (Jan 1990-Dec 1999) 

This table presents the relationship between excess stock returns and factor loading of stock 

market portfolio with average market excess return as a benchmark. The sample uses FTSE All 

Shares from January 1990 to December 1999. The column labeled ―return‖ reports the average 

annual stock returns over three month T-bill rate. ―High-Low‖ reports the difference between 

portfolio 5 and portfolio 1. 

 

 Panel 1 Stocks Sorted by β   Panel 2 Stocks Sorted by β
-
 

Portfolio Return β β
-
 β

+
  Portfolio Return β β

-
 β

+
 

1 Low  2.59% 0.21 0.37 0.16  1 Low  1.43% 0.27 0.28 0.45 

2 -1.08% 0.68 1.00 0.89  2 -1.41% 0.70 0.96 0.99 

3 -3.03% 0.95 1.35 1.33  3 -2.90% 0.96 1.34 1.37 

4 -3.53% 1.20 1.67 1.75  4 -3.64% 1.18 1.70 1.65 

5 High  -8.02% 1.78 2.47 2.70  5 High  -6.55% 1.72 2.57 2.37 

High - Low -10.61% 1.58 2.10 2.53  High - Low -7.98% 1.45 2.29 1.92 

           

 Panel 3 Stocks Sorted by β
+
   Panel 4 Stocks Sorted by Relative β

-
 

Portfolio Return β β
-
 β

+
  Portfolio Return β β

-
 β

+
 

1 Low 3.66% 0.29 0.70 0.01  1 Low  -0.11% 0.56 0.49 1.21 

2 -1.74% 0.69 1.05 0.86  2 -3.44% 0.80 1.04 1.26 

3 -2.33% 0.94 1.33 1.34  3 -3.14% 0.95 1.34 1.37 

4 -3.79% 1.18 1.59 1.79  4 -2.54% 1.11 1.64 1.50 

5 High -8.87% 1.71 2.18 2.83  5 High  -3.85% 1.38 2.34 1.50 

High - Low -12.53% 1.42 1.48 2.81  High - Low -3.74% 0.82 1.86 0.30 

           

Panel 5 Stocks Sorted by Relative β
+
   Panel 6 Stocks Sorted by (β

-
 -β

+
 ) 

Portfolio Return β β
-
 β

+
  Portfolio Return β β

-
 β

+
 

1 Low  1.93% 0.55 1.23 0.19  1 Low  -7.33% 1.19 1.25 2.32 

2 -0.41% 0.74 1.16 0.89  2 -3.45% 1.02 1.31 1.64 

3 -1.28% 0.93 1.31 1.33  3 -1.72% 0.92 1.29 1.32 

4 -4.34% 1.11 1.44 1.75  4 -0.57% 0.84 1.32 1.02 

5 High  -8.95% 1.48 1.70 2.68  5 High  -0.01% 0.84 1.68 0.54 

High - Low -10.88% 0.93 0.47 2.49  High - Low 7.32% -0.35 0.43 -1.78 
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Table 2.11  UK Stocks Sorted By Factor Loadings (Jan 2000-Dec 2010) 

This table presents the relationship between excess stock returns and factor loading of stock 

market portfolio with average market excess return as a benchmark. The sample uses FTSE All 

Shares from January 2000 to December 2010. The column labeled ―return‖ reports the average  

annual stock returns over three month T-bill rate. ―High-Low‖ reports the difference between 

portfolio 5 and portfolio 1. 

 

 Panel 1 Stocks Sorted by β   Panel 2 Stocks Sorted by β
-
 

Portfolio Return β β
-
 β

+
  Portfolio Return β β

-
 β

+
 

1 Low  1.11% 0.37 0.58 0.45  1 Low 0.28% 0.42 0.51 0.71 

2 2.25% 0.81 1.15 1.14  2 0.72% 0.83 1.13 1.25 

3 2.66% 1.09 1.50 1.59  3 3.42% 1.09 1.50 1.60 

4 3.31% 1.38 1.88 2.01  4 2.99% 1.37 1.89 1.96 

5 High  2.67% 2.03 2.68 3.15  5 High  4.59% 1.98 2.76 2.82 

High - Low 1.56% 1.66 2.10 2.70  High - Low 4.31% 1.56 2.25 2.10 

           

 Panel 3 Stocks Sorted by β
+
   Panel 4 Stocks Sorted by Relative β

-
 

Portfolio Return β β
-
 β

+
  Portfolio Return β β

-
 β

+
 

1 Low  4.62% 0.49 0.91 0.24  1 Low  -0.73% 0.77 0.77 1.69 

2 2.87% 0.84 1.24 1.08  2 -0.31% 0.92 1.19 1.50 

3 2.29% 1.08 1.48 1.58  3 1.34% 1.11 1.51 1.66 

4 1.33% 1.34 1.78 2.08  4 4.63% 1.28 1.82 1.73 

5 High  0.89% 1.93 2.38 3.36  5 High  7.07% 1.60 2.49 1.75 

High - Low -3.73% 1.43 1.47 3.12  High - Low 7.80% 0.83 1.71 0.06 

           

Panel 5 Stocks Sorted by Relative β
+
   Panel 6 Stocks Sorted by (β

-
 -β

+
 ) 

Portfolio Return β β
-
 β

+
  Portfolio Return β β

-
 β

+
 

1 Low  -2.74% 1.43 1.56 2.91  1 Low  -2.39% 1.45 1.58 2.92 

2 -0.03% 1.13 1.44 1.89  2 0.32% 1.14 1.45 1.90 

3 2.19% 1.05 1.45 1.56  3 2.54% 1.07 1.46 1.57 

4 3.68% 0.99 1.48 1.22  4 4.03% 1.00 1.49 1.23 

5 High  7.14% 1.02 1.80 0.71  5 High  7.49% 1.03 1.81 0.72 

High - Low 9.54% -0.43 0.22 -2.22  High - Low 9.89% -0.42 0.23 -2.20 
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When the sample size is shortened, the reversed pattern still exists, however, the 

spreads between the highest beta measurement portfolio and the lowest one became 

much narrower. When notable financial crises are excluded from the data set, an 

unexpected U-shaped pattern appears in returns across beta portfolios. When a 

sub-period analysis is conducted, three totally different risk–return relationships are 

obtained. The period of January 2000 to December 2010 exhibits a risk-return 

relationship which is closest to the conventional portfolio theory, when this sample is 

characterized by a long bull market. The reasons for this are difficult to explain, but 

are most likely to be the booms before and after the slump, which offset the negative 

impact of the bull market. Clearly, all crises within the UK data exist in the US data, 

but the results of both samples are different. Since the measurements of beta are the 

same, the reason for the different results can be attributed to the sample used. The US 

data has a much longer sample size which could alleviate the effect of downside 

markets. However, for the UK data, since the sample size is not long enough (too 

many missing value for a longer sample) and most of the sample is in the bear market, 

the downside market dominates the sample, and unexpected results appear.   

 

2.6  Fama-Macbeth regressions 

In order to further illustrate the impact of beta measures on US stock returns, as 

introduced in the literature review, the widely used cross-sectional approach of Fama 

and Macbeth (1973) is adopted. This methodology consists of regressing excess stock 

returns upon beta measures and pertinent independent variables. The essence of the 
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Fama-Macbeth regression is that, in stage one, a time-series regression is conducted to 

obtain beta estimates. In stage two, estimates from stage one are treated as 

independent variables, and a cross-sectional regression of excess stock returns upon 

their beta estimates are run at each point in time. The mean of the coefficient 

estimates for each variable are calculated as the final estimates of impact. The 

Fama-Macbeth regression aims to treat estimates as factors rather than factor loadings, 

and highlight their impact on stock returns in a cross-sectional fashion. Newey-West’s 

(1987) heteroscdastic robust standard errors with 12 lags are employed to calculate 

the t-statistics.  

 

Apart from the above beta measures, other measures of risk: the standard deviation 

(sd), coskewness and cokurtosis of each stock at each point of time, and βL which is 

the liquidity beta estimate of each stock are employed.
16

 Specifically, βL is based on 

Pastor and Stambaugh (2003), and is estimated as follows:  

i i L M M SMB HML ixR L xR SMB HML                ,         (2.16) 

where αi is the intercept, L is the innovation in aggregate liquidity (calculated by 

dividing daily stock returns by the volume) collected from CRSP, and SMB and HML 

are the Fama-French (1993) firm size and book to market factors also collected from 

CRSP.  

 

To investigate multicollinearity, the correlation coefficients between the variables are 

presented in Table 2.12.

                                                        
16

 A moving window approach is adopted for computing all estimates. 
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Table 2.12 Correlations Of Factor Loadings 

This table reports the correlation coefficients between all factor loadings. To avoid repeating, only lower triangle of the matrix is shown. 

 

 
β β

-
 β

+
 βRf

-
 βRf

+
 β0

-
 β0

+ sd βL Coskewness Cokurtosis 

β 1.000 
          

β
-
 0.599 1.000 

         

β
+
 0.628 0.218 1.000 

        

βRf
-
 0.527 0.905 0.174 1.000 

       

βRf
+

 0.648 0.183 0.962 0.199 1.000 
      

β0
-
 0.522 0.893 0.179 0.938 0.193 1.000 

     

β0
+

 0.670 0.159 0.951 0.146 0.976 0.196 1.000 
    

sd 0.437 0.347 0.155 0.351 0.190 0.321 0.184 1.000 
   

βL -0.125 0.004 -0.228 0.009 -0.227 0.040 -0.206 -0.051 1.000 
  

Coskewness 0.013 -0.334 0.274 -0.314 0.281 -0.329 0.282 0.077 -0.144 1.000 
 

Cokurtosis 0.228 0.265 0.197 0.230 0.190 0.250 0.185 -0.290 -0.202 -0.594 1.000 
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It is obvious from Table 2.12 that β is highly correlated with all other downside and 

upside betas, with the correlation coefficients between β and each downside or upside 

beta all above 0.5. Moreover, higher correlations appear among the three types of 

downside betas, and the same phenomenon also appears among the three types of 

upside betas. The most highly correlated variables are 
Rf   and 

0
  with a 

correlation coefficient of 0.976. Besides that, βL appears to be moderately correlated 

with β with a correlation coefficient of 0.437, and the remaining variables only exhibit 

weak correlation with each other. Since there is no clear benchmark to identify 

multicollinearity in econometric theory, here we define the variables with a 

correlation coefficient above 0.5 or below -0.5 as highly correlated, and to avoid 

multicollinearity, variables which are highly correlated are not to be employed in the 

same regression as independent variables. Therefore, β is not employed in the same 

regressions with all other downside and upside betas, and each type of downside beta 

is only employed in the regression in pairs with the same type of upside beta.  

 

The results of the Fama-Macbeth regressions are summarized in Table 2.13 to Table 

2.16. It can be seen from Table 2.13 that when β is employed as an independent 

variable, it is highly significant at the 1% significance level among all five regressions 

with different combinations of the independent variables. Coskewness and cokurtosis 

did not perform significantly in the regressions, coskewness is never significant even 

at the 10% significance level and cokurtosis is only significant in regression 5. 

Standard deviation and liquidity beta are always highly significant at the 1% level. 
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Table 2.13 Fama-Macbeth Regression Of Factor Loadings 

This table reports the result of the Fama-Macbeth regression of factor loadings on excess stock 

returns. The t-statistics in the square brackets are calculated by using the Newey-West (1987) 

heteroscedastic robust standard error with 12 lags. * denotes significance at the 10% level, ** 

denotes significance at the 5% level and ***denotes significance at the 1% level. 

 

              1          2          3         4          5 

 

Among the five regressions in Table 2.13, regression 4 presents the highest R
2
 with all 

independent variables highly significant.
17

 When β
-
 and β

+
 are employed as 

independent variables, it can be seen from Table 2.14 that coefficients of β
-
 and β

+
 are 

highly significant at the 1% significance level in regression 1 to 3. Moreover standard 

deviation and liquidity beta are always highly significant at the 1% level in all 

regressions. 

                                                        
17

 The adjusted R
2
 is employed. 

 

β 

 

0.0566
***

 

[24.59] 

 

0.0575
***

 

[23.90] 

 

0.0582
***

 

[24.10] 

 

0.0523
***

 

[20.32] 

 

0.0498
***

 

[16.90] 

 

Coskewness 
 

 

-0.00906 

[-1.14] 

 

-0.00444 

[-0.55] 
 

 

0.00699 

[0.84] 

 

Cokurtosis 
 

 

-0.00234 

[-1.30] 

 

-0.00174 

[-0.96] 
 

 

0.00348
*
 

[1.66] 

 

βL 
  

 

0.0137
***

 

[3.28} 

 

0.0139
***

 

[3.41] 

 

0.0145
***

 

[3.48] 

 

sd 
   

 

0.0901
***

 

[4.75] 

 

0.109
***

 

[4.95] 

 

Intercept 

 

0.0332
***

 

[11.14] 

 

0.0341
***

 

[9.56] 

 

0.0334
***

 

[9.36] 

 

0.0228
***

 

[6.40] 

 

0.0179
***

 

[3.77] 

 

Adjusted R
2
 

No. of Obs 

 

0.043 

1910051 

 

0.043 

1910051 

 

0.044 

1910051 

 

0.045 

1910051 

 

0.045 

1910051 
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Table 2.14  Fama-Macbeth Regression Of Factor Loadings With Average 

Market Excess Return As Benchmark  

This table reports the result of the Fama-Macbeth regression of factor loadings on excess stock 

returns. The downside and upside beta are calculated taking average market excess return as a 

benchmark. The t-statistics in the square brackets are calculated by using the Newey-West (1987) 

heteroscedastic robust standard error with 12 lags. * denotes significance at the 10% level, ** 

denotes significance at the 5% level and ***denotes significance at the 1% level. 

  

1 

 

2 

 

3 

 

4 

 

5 

 

β
-
 

 

0.0136
***

 

[7.22] 

 

0.0121
***

 

[5.84] 

 

0.0120
***

 

[5.79] 

 

0.0157 

[0.70] 

 

0.00601 

[3.03] 

 

β
+

 

 

0.0155
***

 

[12.94] 

 

0.0168
***

 

[11.57] 

 

0.0176
***

 

[11.93] 

 

0.0137
***

 

[9.17] 

 

0.0154
***

 

[12.55] 

 

Coskewness 

  

-0.0170
*
 

[-1.75] 

 

-0.0144 

[-1.47] 

 

0.00321 

[0.33] 

 

 

Cokurtosis 

  

-0.00195 

[-0.99] 

 

-0.00165 

[-0.84] 

 

0.00976
***

 

[4.50] 

 

 

sd 

   

0.0139
***

 

[3.26] 

 

0.0163
***

 

[3.86] 

 

0.0161
***

 

[3.82] 

 

βL 

    

0.257
***

 

[12.43] 

 

0.205
***

 

[11.13] 

 

Intercept 

 

0.0652
***

 

[23.37] 

 

0.0650
***

 

[19.32] 

 

0.0647
***

 

[19.22] 

 

0.0217
***

 

[4.51] 

 

0.0400
***

 

[11.23] 

 

Adjusted R
2
 

No. of Obs 

 

0.020 

1910051 

 

0.020 

1910051 

 

0.020 

1910051 

 

0.031 

1910051 

 

0.029 

1910051 
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Table 2.15  Fama-Macbeth Regression Of Factor Loadings With Average 

Risk-Free Rate As Benchmark  

This table reports the result of the Fama-Macbeth regression of factor loadings on excess stock 

returns. The downside and upside beta are calculated taking the average risk-free rate as a 

benchmark. The t-statistics in the square brackets are calculated by using the Newey-West (1987) 

heteroscedastic robust standard error with 12 lags. * denotes significance at the 10% level, ** 

denotes significance at the 5% level and ***denotes significance at the 1% level. 

 

             1          2         3          4          5 

Rf 
 

0.0108
***

 

[6.47] 

0.00904
***

 

[4.94] 

0.00893
***

 

[4.88] 

0.00426 

[2.41] 

0.000446 

[0.23] 

 

Rf 
 

 

0.0167
***

 

[13.58] 

 

0.0186
***

 

[12.38] 

 

0.0193
***

 

[12.74] 

 

0.0161
***

 

[12.67] 

 

0.0143
***

 

[9.12] 

 

Cokewness 

  

-0.0229
**

 

[-2.36] 

 

-0.0203
**

 

[-2.08] 

  

0.00137 

[0.14] 

 

Cokurtosis 

  

-0.00216 

[-1.09] 

 

-0.00185 

[-0.94] 

  

0.00976
***

 

[4.46] 

 

βL 

   

0.0140
***

 

[3.30] 

 

0.0161 

[3.82] 

 

0.0161
***

 

[3.81] 

 

sd 

 

    

0.200
***

 

[10.82] 

 

0.254
***

 

[12.16] 

 

Intercept 

 

0.0666
***

 

[24.85] 

 

0.0654
***

 

[19.70] 

 

0.0650
***

 

[19.57] 

 

0.0417
***

 

[11.94] 

 

0.0224
***

 

[4.64] 

Adjusted R
2
 

No. of Obs 

0.020 

1910051 

0.020 

1910051 

0.021 

1910051 

0.029 

1910051 

0.031 

1910051 
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Table 2.16  Fama-Macbeth Regression Of Factor Loadings With Zero Return 

As Benchmark  

This table reports the result of the Fama-Macbeth regression of factor loadings on excess stock 

returns. The downside and upside beta are calculated taking zero return as a benchmark. The 

t-statistics in the square brackets are calculated by using the Newey-West (1987) heteroscedastic 

robust standard error with 12 lags. * denotes significance at the 10% level, ** denotes significance 

at the 5% level and ***denotes significance at the 1% level. 

 

             1          2         3          4         5 

0


 

 

0.0130
***

 

[7.80] 

0.0109
***

 

[5.96] 

0.0107
***

 

[5.81] 

0.00722
***

 

[4.14] 

0.00359
*
 

[1.85] 

0


 
0.0201

***
 

[15.69] 

0.0229
***

 

[14.74] 

0.0235
***

 

[15.03] 

0.0194
***

 

[14.79] 

0.0190
***

 

[11.75] 

 

Coskewness 

  

-0.0312
***

 

[-3.22] 

 

-0.0286
***

 

[-2.94] 

  

0.00917 

[0.93] 

 

Cokurtosis 

  

-0.00442
**

 

[-2.26] 

 

-0.00407
**

 

[-2.08] 

  

0.00622
***

 

[2.87] 

 

βL 

   

0.0131
***

 

[3.11] 

 

0.0159 

[3.80] 

 

0.0159
***

 

[3.78] 

 

sd 

    

0.186
***

 

[10.21] 

 

0.224
***

 

[10.90] 

 

Intercept 

 

0.0608
***

 

[22.73] 

 

0.0610
***

 

[18.55] 

 

0.0608
***

 

[18.48] 

 

0.0372
***

 

[10.60] 

 

0.0227
***

 

[4.73] 

 

Adjusted R
2
 

No. of Obs 

 

0.026 

1910051 

 

0.027 

1910051 

 

0.028 

1910051 

 

0.034 

1910051 

 

0.036 

1910051 

 

Coskewness is only significant at the 10% level in regression 2, but not significant in 

regression 3 and 5. And cokurtosis is significant at the 1% level in regression 5 and 

not significant in other regressions. Among the five regressions in Table 2.14, 

regression 4 presents the highest R
2
, though β

-
 and coskewness are not significant. 

Furthermore, 
Rf   and 

Rf   are employed as independent variables in all five 
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regressions in Table 2.15.
 Rf   is significant at the 1% level in regressions 1 to 3, at 

the 5% level in regression 4 and is not significant in regression 5, while 
Rf   is 

highly significant at the 1% level in all regressions. Standard deviation and liquidity 

beta are always highly significant at the 1% level in all regressions in which they are 

employed. Coskewness is significant at the 5% level in both regression 2 and 3, but is 

not significant in regression 5. Cokurtosis is significant at the 1% level in regression 5, 

but not significant in other regressions. Similar to Table 2.14, among the five 

regressions in Table 2.15, regression 5 presents the highest R
2
 value but with 

independent variables 
Rf   and coskewness as not significant. Finally in Table 2.16, 

0
  and 

0
  are employed. Coskewness is more significant in regression 2 and 3 at 

the 5% level but not significant in regression 5, while cokurtosis is significant at least 

at the 5% level in all regressions in which it is employed. 
0
 , 

0
 , sd and βL are all 

significant at the 1% level except 
0
  is significant at the 10% level in regression 5. 

In Table 2.16, regression 5 which employs all variables shows the highest R
2
, but with 

non-significant coskewness and 
0
  is not as highly significant as the remaining 

variables. In regression 4, coskewness and cokurtosis are not employed, but the 

remaining variables are highly significant, it presents the second highest R
2
 value.  

 

It can be concluded from Table 2.13 to Table 2.16 that β, three types of upside beta, 

standard deviation and liquidity are always highly significant in a cross-sectional 

regression context, with the three types of downside beta highly significant except 

when cokurtosis is significant. The significance of coskewness is identical to 
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cokurtosis when standard deviation is not employed. When standard deviation is 

employed, coskewness is never significant. Notably, when all variables are employed 

in the regression, both types of downside beta and coskewness are not significant. 

From R
2
 values, we can conclude that β or three types of downside and upside beta 

along with standard deviation and liquidity beta do make an impact on stock returns, 

and fit the regression better than when coskewness and cokurtosis are employed.  

 

Overall, consistent with Ang et al. (2006), without controlling for beta, downside 

betas have a positive impact on stock returns in a cross-sectional context, and 

downside risk is priced at 1.36% per annum, while upside betas have a positive 

impact on stock returns which does not appear in Ang et al’s (2006) finding. However, 

downside betas are not always highly significant as expected in each circumstance. 

  

2.7 Cross-sectional relationship between downside beta and 

coskewness 

As mentioned above, downside beta measures the co-movement between stock 

returns and a relatively falling market, while coskewness measures the distribution of 

stock returns to its mean relative to the skewness of the market portfolio. Both 

downside beta and coskewness are statistics which show the relationship between 

stock returns and the market portfolio when it is not symmetric about the mean. 

Therefore, downside beta estimates could have a potential relationship with 
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coskewness. Harvey and Siddique (2000) they found a negative relationship between 

stock returns and coskewness. Therefore, it is essential to examine the relationship 

between downside beta and coskewness to uncover the unique property on each of 

them. The relationship among annualized stock excess returns, three types of 

downside beta and coskewness are presented in Table 2.17 to Table 2.19. Each table 

contains two panels, in Panel 1, stocks are sorted into five quintiles based on their 

coskewness. Then for each quintile, stocks are further sorted into 5 portfolios based 

on the corresponding downside beta. Therefore, there are 25 portfolios in total, and 

the average excess return of each portfolio is presented. The steps are reversed in 

Panel 2, stocks are firstly sorted based on the corresponding downside beta, and 

further sorted by coskewness. This gives 25 portfolios with the average excess return 

of each portfolio presented.      

 

It can be seen from Table 2.17 that when stocks are firstly sorted by coskewness, only 

the lowest coskewness portfolios present a generally decreasing trend from 9.11% to 

6.15% with a slight increase in portfolio 2 in average excess returns along with the 

increase of β
-
. The remaining four groups of portfolios all illustrate an increasing 

trend on average excess returns when they are further sorted by β
-
. The last column 

labelled ―Average‖ presents the relationship between average excess returns of 

portfolios and β
-
 controlling for coskewness. It is clear that when controlling for 

coskewness, on average, excess returns are increasing along with the increase of β
-
. 

Comparatively, in Panel 2, when stocks are sorted by coskewness controlling for β
-
, 
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no clear pattern appears in either group and on average, the excess return of each 

portfolio is fluctuating along with the increase of coskewnes. Therefore, coskewness 

does not appear to have an obvious impact on stock returns when controlling for β
-
. 

Unsurprisingly, Table 2.18 and Table 2.19 present similar patterns as in Table 2.17. 

 

Table 2.17  The Relationship Between β
- 
And Coskewness 

This table reports the relationship between downside beta and coskewness. Panel 1 reports the 

average annual excess returns of each portfolio when controlling for coskewness. The top row 

represents the coskewness quintiles from the lowest 20% to the highest 20%, while the left column 

represents the 5 downside beta quintiles when controlling for coskewness. Panel 2 reports the 

average annual excess returns of each portfolio when controlling for downside beta. The top row 

represents the downside beta quintiles from the lowest 20% to the highest 20%, while the left 

column represents the 5 coskewness quintiles when controlling for the downside beta. The 

downside betas are computed with average market excess return used as a benchmark.  

 

Panel 1 Average annual returns sorted by β
-
 controlling for coskewness 

 

 

Coskewness Quintiles 

 

 Average 1Low 2 3 4 5High 

1Low 9.11% 7.57% 8.41% 7.76% 5.82% 7.73% 

2 9.94% 9.55% 9.79% 8.75% 7.13% 9.03% 

3 9.30% 10.26% 11.06% 9.13% 7.99% 9.55% 

4 8.82% 11.01% 10.90% 10.91% 9.51% 10.23% 

5High 6.15% 11.69% 14.32% 15.61% 11.22% 11.80% 

High-Low -2.96% 4.12% 5.91% 7.85% 5.40% 4.06% 

 

 

Panel 2 Average annual returns sorted by coskewness controlling for β
-
 

 

 

 

 

β
-
 Quintiles 

 

 Average 1Low 2 3 4 5High 

1Low 7.45% 9.35% 9.86% 9.61% 5.22% 8.30% 

2 7.74% 9.58% 9.41% 9.01% 10.47% 9.24% 

3 8.28% 9.71% 10.21% 11.85% 13.66% 10.74% 

4 7.03% 9.23% 11.34% 10.27% 14.07% 10.39% 

5High 5.88% 7.75% 9.63% 11.02% 14.06% 9.67% 

High-Low -1.57% -1.60% -0.23% 1.41% 8.84% 1.37% 

 



77 

 

Table 2.18  The Relationship Between downside Beta And Coskewness 

This table reports the relationship between downside beta and coskewness. Panel 1 reports the 

average annual excess returns of each portfolio when controlling for coskewness. The top row 

represents the coskewness quintiles from the lowest 20% to the highest 20%, while the left column 

represents the 5 downside beta quintiles when controlling for coskewness. Panel 2 reports the 

average annual excess returns of each portfolio when controlling for downside beta. The top row 

represents the downside beta quintiles from the lowest 20% to the highest 20%, while the left 

column represents the 5 coskewness quintiles when controlling for the downside beta. The 

downside betas are computed with average risk-free rate used as a benchmark.  

 

Panel 1 Average annual returns sorted by 
Rf   controlling for coskewness 

 

 

Coskewness Quintiles 

 

 Average 1Low 2 3 4 5High 

1Low 9.25% 7.89% 8.38% 7.44% 5.52% 7.70% 

2 9.72% 10.25% 10.51% 9.20% 6.86% 9.31% 

3 9.59% 9.14% 10.13% 9.62% 8.18% 9.33% 

4 8.81% 10.70% 11.61% 10.64% 9.97% 10.35% 

5High 5.94% 12.09% 13.86% 15.28% 11.14% 11.66% 

High-Low -3.31% 4.20% 5.48% 7.84% 5.62% 3.97% 

 

 

Panel 2 Average annual returns sorted by coskewness controlling for 
Rf   

 

  

Rf   Quintiles 

  Average 1Low 2 3 4 5High 

1Low 7.89% 8.99% 9.81% 8.66% 5.73% 8.22% 

2 7.87% 9.58% 9.71% 9.09% 10.37% 9.32% 

3 7.95% 9.98% 10.29% 11.87% 13.16% 10.65% 

4 6.67% 10.02% 9.90% 11.83% 13.67% 10.42% 

5High 5.76% 8.46% 9.22% 11.04% 14.18% 9.73% 

High-Low -2.13% -0.53% -0.59% 2.38% 8.45% 1.52% 
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Table 2.19  The Relationship Between Downside Beta And Coskewness 

This table reports the relationship between downside beta and coskewness. Panel 1 reports the 

average annual excess returns of each portfolio when controlling for coskewness. The top row 

represents the coskewness quintiles from the lowest 20% to the highest 20%, while the left column 

represents the 5 downside beta quintiles when controlling for coskewness. Panel 2 reports the 

average annual excess returns of each portfolio when controlling for downside beta. The top row 

represents the downside beta quintiles from the lowest 20% to the highest 20%, while the left 

column represents the 5 coskewness quintiles when controlling for the downside beta. The 

downside betas are computed with zero return used as a benchmark.  

 

Panel 1 Average annual returns sorted by 
0
  controlling for coskewness 

 

 

 

Coskewness Quintiles 

 

 Average 1Low 2 3 4 5High 

1Low 9.13% 7.84% 8.57% 7.30% 5.08% 7.58% 

2 9.56% 8.91% 10.15% 9.33% 6.82% 8.95% 

3 9.12% 10.18% 10.68% 9.25% 8.82% 9.61% 

4 9.26% 10.80% 11.47% 11.01% 9.92% 10.49% 

5High 6.23% 12.35% 13.62% 15.29% 11.03% 11.70% 

High-Low -2.90% 4.51% 5.05% 7.99% 5.95% 4.12% 

 

 

Panel 2 Average annual returns sorted by coskewness controlling for 
0
  

 

  

0
  Quintiles 

 

 

 Average 1Low 2 3 4 5High 

1Low 7.37% 9.41% 9.13% 9.73% 5.10% 8.15% 

2 8.29% 10.09% 9.34% 9.54% 10.34% 9.52% 

3 7.23% 10.17% 10.32% 11.05% 14.07% 10.57% 

4 6.72% 9.99% 10.31% 11.85% 13.29% 10.43% 

5High 5.37% 8.84% 10.10% 10.50% 13.58% 9.68% 

High-Low -2.00% -0.57% 0.97% 0.77% 8.48% 1.53% 

 

It can be seen from Panel 1 and Panel 2 of both Table 2.18 and Table 2.19 that when 

controlling for coskewness, excess returns increase along with the increase of 
Rf   

and 0
 , while coskewness does not show an obvious impact on stock returns when 

controlling for 
Rf   and 0

 . Therefore, we can conclude that three types of 
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downside beta do have a negative impact on stock returns even when controlling for 

coskewness, and this is consistent with the previous findings when downside beta is 

controlled for beta. However, in Ang et al’s (2006) study, a reversed result is 

presented. While the impact of coskewness on stock returns when controlling for any 

type of downside beta are not traceable from the data used in this chapter.  

 

2.8  Predictive power of downside beta  

2.8.1  Predictive power of downside beta: US stocks 

To investigate the predictive power of beta and the three types of downside beta, all 

stocks are sorted into five portfolios cross-sectionally based on the value of beta and 

three types of downside beta. The previously described methodology is adopted, 

except now the relationship between the risk and one year future excess returns are 

calculated. Results pertaining to US data are presented in Table 2.20. It can be seen 

from Panel 1 that when stocks are sorted by β, β
-
, βRf

-
, β0

-
, future average excess 

returns present a totally different reversed U-shaped pattern. It specifically increases 

from 10.13% in portfolio 1 to 21.9% in portfolio 3, and then starts dropping, ending 

up with 9.92% in portfolio 5. A similar relationship appears when stocks are sorted by 

β
-
, βRf

-
 and β0

-
 and the results are shown in Panel 2 to Panel 4.  

 

 

Table 2.20 US Stocks Sorted By Downside Factors With Future Excess Returns 

This table presents the relationship between future excess stock returns and downside factor 
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loadings. The following year’s returns are taken as the future excess returns. The column labeled 

―return‖ reports the annual average future stock returns over the one month T-bill rate. ―High-Low‖ 

reports the difference between portfolio 5 and portfolio 1. 

 

 

Panel 1 Stocks Sorted by β 
 

Panel 2 Stocks Sorted by β
-
 

Portfolio Return β β
-
 βRf

-
 β0

-
  Portfolio Return β β

-
 βRf

-
 β0

-
 

1 Low 10.13% 0.32 0.56 0.63 0.62  1 Low 10.97% 0.60 0.21 0.27 0.26 

2 15.46% 0.78 0.99 1.01 1.01  2 20.96% 0.88 0.86 0.89 0.89 

3 21.90% 1.08 1.23 1.26 1.25  3 21.49% 1.12 1.18 1.21 1.21 

4 16.43% 1.39 1.47 1.50 1.50  4 17.17% 1.34 1.54 1.57 1.57 

5 High 9.92% 2.11 1.94 2.00 1.97  5 High 3.25% 1.74 2.40 2.46 2.42 

High - Low -0.21% 1.79 1.37 1.37 1.36  High - Low -7.72% 1.15 2.19 2.19 2.16 

             

             

Panel 3 Stocks Sorted by βRf
-
  Panel 4 Stocks Sorted by β0

- 

Portfolio Return β β
-
 βRf

-
 β0

-
  Portfolio Return β β

-
 βRf

-
 β0

-
 

1 Low 11.57% 0.60 0.26 0.20 0.20  1 Low 11.07% 0.62 0.30 0.25 0.15 

2 21.22% 0.90 0.88 0.87 0.88  2 21.06% 0.90 0.87 0.89 0.86 

3 22.84% 1.12 1.19 1.21 1.20  3 23.17% 1.12 1.19 1.21 1.20 

4 17.75% 1.35 1.54 1.58 1.56  4 18.30% 1.35 1.55 1.56 1.58 

5 High 0.45% 1.72 2.32 2.55 2.50  5 High 0.23% 1.69 2.28 2.50 2.56 

High - Low -11.12% 1.12 2.06 2.36 2.30  High - Low -10.84% 1.07 1.99 2.25 2.41 

 

It can be seen from Table 2.20 that the peak of future excess returns always appears in 

the medium valued β, β
-
, βRf

-
 and β0

-
 portfolio, and the lowest future excess return 

constantly appears in the highest valued β, β
-
, βRf

-
 and β0

-
 portfolio, especially when 

stocks are sorted by the three types of downside beta (the lowest portfolio return is 

much lower than the one when stocks are sorted by β). Therefore, it can be concluded 

from Table 2.20 that β, β
-
, βRf

-
 and β0

-
 do have predictive power on future returns. To 

investors, portfolios with high β, β
-
, βRf

-
 and β0

-
 are expected to have low future 
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returns especially for the three types of downside beta. A medium value beta measures 

would predict a possibly high future return. 

 

2.8.2  Predictive power of downside beta: UK stocks 

As a comparison and for the sake of completeness, the predictive power of downside 

beta based on UK data is examined.
18

  

 

Table 2.21  UK Stocks Sorted By Factor Loadings With Future Excess Return 

This table presents the relationship future excess stock returns and factor loading of stock market 

portfolio with average market excess return as benchmark. The sample uses FTSE All Shares from 

January 1980 to December 2007, the following year’s excess returns are taken as the future excess 

return. The column labeled ―return‖ reports the average annual future stock returns over three 

month T-bill rate. ―High-Low‖ reports the difference between portfolio 5 and portfolio 1. 

 

 Panel 1 Stocks Sorted by β   Panel 2 Stocks Sorted by β
-
 

Portfolio Return β β
-
 β

+
  Portfolio Return β β

-
 β

+
 

1 Low  3.44% 0.30 0.49 0.31  1 Low  2.88% 0.35 0.41 0.56 

2 4.01% 0.73 1.05 0.98  2 4.49% 0.74 1.02 1.07 

3 2.95% 0.98 1.37 1.38  3 3.25% 0.98 1.36 1.41 

4 1.62% 1.20 1.66 1.75  4 1.40% 1.19 1.68 1.67 

5 High  -3.43% 1.74 2.36 2.64  5 High -3.43% 1.68 2.45 2.34 

High - Low -6.87% 1.44 1.87 2.33  High - Low -6.31% 1.33 2.04 1.78 

 

The results in Table 2.21 show that, when stocks are sorted by conventional beta, 

downside beta, a U-shaped pattern of returns appears over beta space. Notably, the 

second lowest beta portfolio always generates the highest rate of return, and the 

highest beta portfolio always suffers a loss. Overall, the predictive power of the UK 

downside beta is weak, but the medium valued betas are always a positive signal of 

                                                        
18

 The patterns of upside beta are presented for the sake of completeness. 
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future returns to investors. 

 

2.9  Conclusion 

Compared to the results based on US data, the UK stock returns exhibit unusual 

patterns on β, β
-
 and β

+
. When the whole sample is used (which covers quite a few 

financial crises), a reversed pattern of portfolio returns exists—a result which is 

against the classic literature. In the sub-period analysis, it is still hard to conclude a 

constant pattern between risk and return, and the predictive power of β
-
 is weak 

according to the results. Overall, the UK data presents obvious time sensitivity 

especially in regards to financial crises. 

 

However, as a main focus, the US data presents a much more sensible pattern. It can 

be concluded from this chapter that β and three types of downside and upside beta (β
-
 

and β
+
, 

Rf   and 
Rf  , and 

0
  and 

0
 ) do have a significant relationship with 

portfolio returns in a cross-sectional fashion. Portfolio returns are consistent with the 

classic high beta high return positive relationship when stocks are sorted by β. 

Consistent with Ang et al (2006), this relationship still holds when stocks are sorted 

by any one of the downside beta and upside beta measures, but the spread of average 

excess returns drops when stocks are sorted by downside beta. The downside risk 

premium is priced at 1.36% per annum in a Fama-Macbeth regression context.
19

 

However, when controlling for β, the unique property of downside and upside beta are 

                                                        
19

 The downside risk premium is priced at 6% per annum in Ang et al’s (2006) study. 
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revealed, and results are contrary to Ang et al’s (2006) study. Downside betas exhibit 

a negative relationship with average excess return, while upside beta presents a 

positive relationship regardless of the benchmark used. Regarding the additional 

variables, liquidity beta and standard deviation also have a significant positive impact 

on stock returns. It has been further shown that three types of downside beta do have a 

negative impact on stock returns even when controlling for coskewness, while the 

impact of coskewness on stock returns when controlling for any type of downside 

beta is not found. Moreover, high β, β
-
, βRf

-
 and β0

-
 values have a negative impact on 

future returns especially when the three types of downside beta are considered. The 

significance of β, β
-
 and β

+
 in a cross-sectional fashion are found, however, in order to 

improve the goodness of fit of the model, other econometric methods rather than 

classic OLS regression could be employed as alternative methods to examine the 

relationship.  



 

 

 

 

 

 

 

 

 

 

 

Chapter 3 

The cross-sectional determinants of US 

stock returns: The impact of 

time-varying downside risk 
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3.1  Introduction 

Most studies of downside risk follow the classic approach, employing the linear 

market model to estimate beta. In this chapter, two non-linear models, the cubic 

piecewise polynomial function (CPPF) model and the Fourier Flexible Form (FFF) 

model are employed to model portfolio returns in order to examine the significance of 

beta, downside beta and upside beta estimates.
20

 Both models take flexible 

approaches, yet are parsimonious, allowing beta estimates to be time-varying. 

Innovatively, various numbers of knots and orders are applied on the CPPF model and 

the FFF model respectively, to smooth the sample. Also, the Akaike Information 

Criteria (AIC) is adopted to determine the most appropriate number of knots and 

order for the sample. With the AIC, the best fitted estimates of beta, upside beta and 

downside beta for both models are generated. These estimates are sorted into 

portfolios to examine the risk-return relationship, and Fama-Macbeth regressions are 

then performed to discover the significance of the estimates in a cross-sectional 

framework. 

 

Taking the CPPF and the FFF approach is motivated by their flexibility, with both 

approaches allowing the beta estimates to vary over time. The CPPF approach is 

analogous to cubic spline approach but with no constraints of intercept columns, and 

the estimates at each point in time are the product of a vector of initial estimates and a 

                                                        
20

 Non-linear refers to the CPPF and FFF approach in terms of trend, the regression is still based 

the classic OLS. 
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piecewise polynomial matrix. For the FFF approach, sine and cosine functions are 

adopted to construct a matrix which creates a nonlinear pattern bounded between -1 

and 1. The pattern is finally presented on the estimates at each point in time to allow 

time-variation. The importance of time-varying estimates is that estimates can present 

the true relationship between variables at each point of time, which allows us to 

discover the variation of co-movements among variables rather than a single estimate 

over the whole sample. Compared to the moving window approach used in previous 

chapters, the advantage of the CPPF model and the FFF model is that the whole 

sample is considered, while the moving window approach is limited to past data and 

the length of the window used. 

 

We found the estimates of beta, downside beta and upside beta estimates of both 

models to be highly significant in relation to stock returns, and to have an impact on 

driving stock returns. The beta estimates positively drive stock returns. The downside 

and upside beta estimates demonstrate reversed impacts on stock returns, the 

downside beta has a negative impact on stock returns, while the upside beta, 

consistent with beta estimates, has a positive impact. This chapter is arranged as 

follows: section 3.2 provides literature reviews of both models, followed by section 

3.3 which is a description of the data. Then, section 3.4 explains the econometric 

models and methods applied in this chapter, section 3.5 and 3.6 provide the empirical 

results, results of the Fama-Macbeth regressions, and section 3.7 is the conclusion.       
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3.2  Literature review 

There is a long history of literature that has argued that the classic CAPM proposed 

by Sharpe (1964) and Lintner (1965) is inadequate to explain the risk-return 

relationship due to the assumption of constant beta. To solve this drawback, relaxing 

the constant beta assumption and allowing time-varying beta is one possible method. 

There are a number of approaches to obtain time-varying betas, for instance, in Fama 

and Macbeth’s (1973) study, moving window OLS regression is applied to the market 

factor model to obtain time-varying beta. According to Härdle et al (1985), Härdle 

(1992), Wand and Jones (1995), Ang and Kristensen (2011), and Li and Yang (2011), 

a nonparametric approach which is based on simulation is another method to obtain 

the time-varying beta. Moreover, the time-varying beta can also can be obtained by 

the multivariate GARCH based model proposed by Engle (2002), Andersen et al. 

(2002) and Nieto et al. (2011). 

  

Instead of regressing the stock return upon the market portfolio return in a linear 

fashion, two alternative methods have been employed in this chapter to estimate the 

corresponding time-varying beta coefficients. The first method adopted is the CPPF 

regression, and the second one is the FFF regression, both methods adopt various 

degrees of flexibility.  

 

Cubic spline approach 

In order to introduce CPPF approach, a review of cubic spline is essential. The cubic 



88 

 

spline method was originally used in mathematics and engineering (Ferguson 1963). 

Mathematically, as a third order piecewise polynomial function, the cubic spline is 

used to smooth discrete points into a continuous curve. According to Rorres and 

Anton (1984), a cubic spline can be expressed mathematically in the following form 

1 1 2

2 2 3

1 1

( ) ,

( ) ,
( )

( ) , 

 


 
 

   n n n

s x if x x x

s x if x x x
S x

s x if x x x

                   (3.1) 

where it is assumed that si is the third order polynomial function defined by 

3 2( ) ( ) ( ) ( )i i i i i i i is x a x x b x x c x x d      
,            

(3.2) 

for i = 1, 2, 3…….n-1. 

The first and second order derivative of equation (3.1) defines the fundamentals of the 

process. These derivatives are given by 

2( ) 3 ( - ) 2 ( - )i i i i i is x a x x b x x c   
,
                  (3.3) 

( ) 6 ( - ) 2i i i is x a x x b  
,
                      (3.4) 

for i = 1, 2, 3…….n-1. 

The piecewise polynomial function has the following properties: 

1. The piecewise polynomial function interpolates all data points. 

2. The S(x) function is continuous in the interval [x1, xn]. 

3. The first derivative of the S(x) function is continuous in the interval [x1, xn]. 

4. The second derivative of the S(x) function is continuous in the interval [x1, xn].  

 

There are a number of studies which employ the cubic spline approach in financial 

modeling, mainly focusing on estimation of the term structure, autoregressive 
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conditional duration (ACD) models and volatility of high frequency data. Vasicek and 

Fong (1981) and Jarrow and Ruppert (2004) employ the cubic spline approach in 

estimating interest rate term structure. Engle and Russell (1998) proposed an ACD 

model which treats the time between transactions as a stochastic process. Within the 

ACD model, a daily seasonal factor is modelled by a cubic spline series. Then in 

Zhang et al. (2001), a threshold autoregressive conditional duration (TACD) model is 

proposed and shown to be superior to the classic ACD model.
21

 More recently, Taylor 

(2004a, b) and Giot (2005) both adopted cubic splines in their studies in the context of 

modelling the volatility of high frequency data via the ACD model. Aside from the 

above studies, there are a few studies that have also adopted cubic splines as a 

modelling tool, such as Engle and Rivera (1991) who estimated the density factor by 

using cubic splines in an autoregressive conditional heterosecdasticity (ARCH) 

context. Yu and Ruppert (2002) introduced the cubic spline approach into the 

estimation of the single index model. Evans and Speight (2010) employed the cubic 

spline approach to model intraday exchange rate volatility. The advantages of the 

cubic spline approach are, firstly, data can be flexibly adjusted without considering 

the sample size. Secondly, for research in different international markets with time 

differences (in different time zones), it allows different cubic splines to be estimated 

among various selected knots. Thirdly, apart from the spline elements, the nature of 

the original data is retained and there are no extra functions or patterns to be put into 

the model. 

                                                        
21

 The cubic spline approach was particularly used to approximate seasonal factors within the 

model. 
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Competitive basis of cubic spline 

According to Eilers and Marx (2004), there are mainly two approaches used in cubic 

spline regression: the B-spline basis and truncated power functions basis.  

 

For the B-spline basis approach, Eilers and Marx (2004) use equally-spaced knots and 

spline function B. Mathematically, the B-spline model can be written as 

( )E y B   ,                          (3.5) 

and the objective function to be minimized is 

2 2
.B dQ y B D                         (3.6) 

Which λ is a non-negative parameter, and Dd is the d-th difference of α, it can be 

written as 

d

dD   ,                            (3.7) 

and  

1j j j      ,                         (3.8) 

2

1 22j j j j        ,                     (3.9) 

and so on for higher orders. So the objective function of QB leads the B-spline model 

to  

' ˆ( ' ) 'd dB B D D B y   .                    (3.10) 

It can be seen from equation (3.10) that when λ=0, it becomes the classic equation of 

linear regression. 

 

For the truncated power functions basis, according to Ruppert et al. (2003), for a 
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given asset i, column j and degree p, the truncated power function of F is written as 

( ) ( )P

ij i j i jF x t I x t   ,                   (3.11) 

where I(u) is an indicator function, it is 0 when u<0 and 1 otherwise. The vector t 

contains the knots, and the knots are placed as quantiles of x. Consequently, the model 

for E(y) can be written as  

1

0 1

( )
P n

k

i k i ij j

k j

E y x F b


 

   .                    (3.12) 

And the objective function to be minimized is given by 

2 2

FQ y x Fb b     .                    (3.13) 

The increasing of κ will increase the smoothness.  

 

Eliers and Marx (2004) point out that both bases allow a mixed model approach, and 

the B-spline basis can be derived from the truncated power basis. They also show that 

the truncated power basis has bad numerical properties, and could cause 

discontinuities in estimation, while the B-spline basis approach has no such issue. 

However, according to Taylor (2004), the truncated power basis is employed in the 

spline-based periodical GARCH model on high frequency commodity future return 

data, which produces excellent smooth estimates. Therefore, in light of Taylor’s (2004) 

study, the truncated power basis is employed in the CPPF approach in this thesis, and 

the detail of the piecewise polynomial matrix used will be introduced in section 3.4.
22

    

 

                                                        
22 The CPPF approach is related to the cubic spline approach described above. However, we do 

not refer to CPPF as a spline because we allow for discontinuities at each knot. 
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The FFF approach 

An alternative approach is the FFF which was first proposed and refined by Gallant 

(1981, 1982 and 1984). This mathematical function, based on a Fourier series, was 

initially used to approximate the utility function and derive an appropriate expenditure 

system for the whole economy. Mathematically, it can be written as 

0

1 1 1

2 [ cos( ) sin( )]
A J A J

ijk x

j j j

j J j

a e u u jk x jk x

     
 




   

 
    

 
  

 

,  (3.14) 

where 

, 1,2,3... , 0, 1, 2... .j j ja u i A j J           

Whereas i is defined as the imaginary unit, k is the order of the expansion, aj is the 

coefficient given by  

j j ja u i   .                            (3.15) 

Recently, the FFF was widely applied in two aspects of economics and finance: 

estimation of production and banking efficiency, and modeling high frequency 

volatility periodicity.  

 

In the former aspect, Chung et al. (2001) and Huang and Wang (2001) both applied 

the FFF in estimating the scale and scope of the Asian banking industry. Huang and 

Wang (2004) expanded the FFF and applied it to panel data to estimate multiproduct 

banking efficiency. Featherstone and Cader (2005) employed the FFF in a Bayesian 

econometrics context to evaluate agricultural production. And Yu et al. (2007) adapted 

the FFF to estimate agricultural banking efficiency.  
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Within a volatility context, Andersen and Bollerslev (1998) introduced the FFF into 

high frequency data volatility modelling. In their study, under GARCH framework, 

the FFF was used to estimate an intraday periodicity component in order to capture 

volatility reactions to macroeconomic announcements. The FFF within their study has 

been simplified as  

0 , ,

1 1

2 2
( , , ) ( , ) ( cos sin )

D P

k k c p s p

k p

p p
f t n I t n n n

N N

 
    

 

         ,   (3.16) 

where Ik(t,n) is the indicator of event k during time interval n on day t, θ is the 

parameter vector to be estimated, and μ0, λk, δc,p and δs,p are the fixed coefficients to be 

estimated (Andersen and Bollerslev, 1998). Moreover, Andersen et al. (2000) applied 

the FFF in the Japanese stock market, while Bollerslev et al. (2000) employed the FFF 

in analyzing the US bond market. More recently, Evans and Speight (2010) further 

adopted the FFF in the foreign exchange market.  

 

The advantages of the FFF approach are: firstly, in the context of high frequency data, 

the macroeconomic news announcement effect has been filtered by the periodic 

pattern of the FFF, so there is no need to model the macroeconomic news 

announcement effect; secondly, the FFF approach creates a smooth pattern for 

volatility dynamics and changes; thirdly, the FFF approach is based on sound 

mathematics and the fit of the periodicity of financial data is widely agreed. 

 

Although the cubic spline approach and FFF approach are widely used in the financial 

literature, the majority of studies use high frequency data in a financial derivatives 
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market, banking industry or foreign exchange market. There is hard to find any study 

using both approaches to estimate the downside and upside components of risk in 

stock markets. This chapter employs the CPPF and FFF as tools, with various 

numbers of knots and the AIC used to uncover the best fit of beta, downside beta and 

upside beta estimates of monthly data with a long span in the US stock market and to 

improve the goodness of fit of asset pricing models. 

 

3.3  Data 

The US data used in this chapter are the same as those used in Chapter 2.
23

  

 

3.4  Econometrics models and methods 

All econometric models in this chapter are based on the well-known market model 

proposed by Sharpe (1964). It can be written as 

( )it ft it it Mt ft itR R R R         ,              (3.17) 

where Rit is the rate of return of stock i at time t, Rft is the risk free rate at time t, αit is 

the constant at time t, βit is the coefficient to be estimated and represents the 

co-movement between stock i and the market at time t, RMt is the rate of return of 

market portfolio at time t, ( RMt – Rft ) is the excess return of the market portfolio, and 

εit is the error term of stock i at time t. It is this equation that will be estimated using 

the CPPF and FFF models. 

                                                        
23

 For a summary of data, see Table 2.1. 
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For convenience, we define 

it it ftxR R R 
,
                         (3.18) 

and 

Mt Mt ftxR R R 
,
                           (3.19) 

where xRit is the excess rate of return of stock i at time t, and xRMt is the excess rate of 

return of the market portfolio at time t. 

 

3.4.1 The CPPF model 

In this section, the CPPF (with knots) model is described. By using the CPPF model, 

the excess rate of return on the market portfolio xRM will be divided into different 

numbers of series depending on the number of knots selected, thus allowing the betas 

to vary over time.  

 

Deciding the number of knots to use is an interesting tradeoff (Stone, 1986). If a small 

number of knots are chosen, the estimates will be over-smooth with less variability, 

and could also be biased. By contrast, if a high number of knots is selected, the bias 

can be avoided, however, it will also lead to a high variability of estimates in the fit 

and could result in overfitting. Eilers and Marx (1996) discovered that up to 4 to 5 

knots is most appropriate for most applications, therefore, the number of knots 

selected for the CPPF model will vary from 0 to 5. 
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Placement of knots follows the quintile method proposed by Stone (1986). In his 

study, he found that placing knots according to the quintile point with respect to the 

total number of observations results in less bias than placing knots according to a 

fixed number of observations. Therefore, the knots are placed at the quintile points as 

follows: 

                    Table 3.1 Placement points of knots 

Number of knots 0 1 2 3 4 5 

Placement points 
 

50% 33.3% 25% 20% 16.6% 

   
66.6% 50% 40% 33.30% 

    
75% 60% 50% 

     
80% 66.6% 

      
83.3% 

 

The econometric models used here take advantage of the CPPF approach, and apply it 

to the classic market model. To estimate the beta coefficient of each stock, the model, 

in matrix terms, can be written as 

XRi = αi + (XRM ʘ SN)∙Bi + εi    N = 0, 1, 2, 3, 4, 5,     (3.20) 

where XRi is a (t×1) column vector of excess returns of stock i, αi is a t×1 column 

vector, XRM is a (t×1) column vector of excess returns of the market portfolio, SN is a 

(t×n) piecewise polynomial matrix with N representing the number of knots, ʘ is the 

element to element multiplication sign which results in (XRM ʘ SN) becoming a (t×n) 

matrix,
24

 Bi is the (n×1) estimated beta column vector, and εi is the (t×1) column 

vector error term. 

 

                                                        
24

 ʘ is conventionally used as an element to element multiplication sign when two matrices are in 

the same rank, we borrow it here for different rank matrices for the sake of simplicity.  



97 

 

Specifically, the piecewise polynomial matrix, SN, varies along with the number of 

knots selected. When the CPPF has no knots, S0 can be expressed as 

0 2 3

0 2 3

0 2 3

0 0 2 3

0 2 3

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4
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t t t t
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 .                     (3.21) 

Moreover, when one knot is selected, the knot will be placed at the 50% point of 

observations, with the S0 elements remaining in S1, plus new elements added in with 

elements valued 0 above the knot, therefore S1 can be written as 

0 2 3
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 ,        (3.22) 

The expression for SN with two knots (N=2), three knots (N=3), four knots (N=4) and 

five knots (N=5) can be found in the Appendix. It can be seen from the expression for 

S0 and S1 that as the number of knots increases, the number of columns in SN will 

increase. More precisely, for every one extra knot placed, the number of columns in 

SN will increase by 4, so the dimensions of S0, S1, S2, S3, S4 and S5 will be (t×4), (t×8), 
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(t×12), (t×16), (t×20) and (t×24) respectively.  

 

The OLS regression is applied to each stock to get the vector of beta estimates. Then, 

beta estimates for each stock at each point in time (𝐁𝐒 in vector form)
 
can be 

calculated as follows: 

                               
BS = SN ∙ Bi,                         (3.23) 

It can be seen from equation (3.14) that BS is a product of a (t×n) matrix SN and a 

(n×1) estimated beta vector Bi, therefore regardless of the number of knots placed in 

the function, the rank of BS
 
will always be t×1. Since the number of knots varies from 

0 to 5, there will be 6 possible Bi vectors for each stock corresponding to the number 

of knots used. In order to find the best fit for each stock, we follow Eilers and Marx’s 

(1996) study, and use the AIC.
25

 The AIC can be expressed as 

2ln( ) 2AIC L k    ,                       (3.24) 

where L is the maximium value of the likelihood function, and k is the number of 

parameters within the model. It can be seen from Figure 1 in the Appendix that there 

are discontinuities at knots points, while the fitted values are smooth between each 

knot. These discontinuities are due to the column of ones in the piecewise polynomial 

matrix, and in these cases, we let the data to decide the appropriate value of the 

estimates. As a comparison, sample plots between the CPPF and cubic spline 

estimates can be found in Figure 2 in the Appendix.   

 

                                                        
25

 The Schwarz Information Criteria (SIC) can also be used to determine the appropriate number 

of knots, this chapter chooses AIC instead of SIC since the SIC shows less tolerance when the 

number of parameters in the model is high, according to Eilers and Marx’s study (1996). 
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In order to calculate the downside and upside beta estimates by using the CPPF model, 

the same logic is used with equation (3.11) modified. Referring to Ang et al. (2006), 

the downside beta and upside beta are calculated as  

cov( , | )

var( | )

i M M M

M M M

xR xR xR xR

xR xR xR
  




 ,                    (3.25) 

and 

cov( , | )

var( | )

i M M M

M M M

xR xR xR xR

xR xR xR
  




 ,                   (3.26)     

where 𝑥𝑅𝑀 is the average market excess return over the sample period of the stock, 

and previous notations hold. In light of Ang et al. (2006), dummy variables (vectors) 

D1i and D2i are created and employed for each stock. D1 and D2 (with time subscript t) 

can be expressed as 

D1i = 1 and D2i = 0 if 
,M t MxR xR  ,              (3.27) 

and 

D1i =0 and D2i = 1 if 
,M t MxR xR  ,                (3.28) 

It can be seen from equation (3.18) and (3.19) that D1i = 1 and D2i = 0 if the market 

excess return at time t is below the average market excess return, while D1i = 0 and 

D2i = 1 if the market excess return at time t is above the average market excess return. 

Then two more variables are created as follows: 

1 1i M i MD xR D xR  ,                      (3.29) 

2 2i M i MD xR D xR  .                      (3.30) 

It can be seen from equations (3.20) and (3.21) that two new variables D1ixRM and 

D2ixRM are the element to element products of dummy variables of stock i and the 
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corresponding excess market return over the sample period of the stock. For the 

former, observations are excess market returns if they are below the average excess 

market return over the sample period, and 0 otherwise. For the latter, observations are 

excess market returns if they are above the average excess market return over the 

sample period, and 0 otherwise. 

   

The econometric model used to estimate downside and upside betas for each stock, in 

matrix form, can be written as 

XRi = D1i + D2i + (D1iXRM ʘ SN)∙ Bi
-
 + (D2iXRM ʘ SN)∙ Bi

+
 + εi ,      (3.31) 

where N = {0, 1, 2, 3, 4, 5}, Bi
-
 and Bi

+
 are the (n×1) estimated downside and upside 

beta estimate column vectors. Since the number of knots varies from 0 to 5, there will 

be 6 pairs of Bi
-
 and Bi

+ 
vectors. The best downside and upside beta estimates as 

determined by the AIC for a stock at each point of time, (𝐁𝐒
−∗ and  𝐁𝐒

+∗  in vector 

form) can be conducted as follows 

𝐁𝐒
−∗ = SN∙𝐁𝐢

−
,                           (3.32) 

and 

𝐁𝐒
+∗ = SN∙𝐁𝐢

+
.                           (3.33) 

As mentioned in the previous paragraph, regardless of the number of knots placed in 

the function, the dimensions of 𝐁𝐒
−∗ and  𝐁𝐒

+∗ will always be t×1. Both downside 

and upside betas can be interpreted in an analogous manner to classic beta regarding 

to downside and upside market.  
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3.4.2  The FFF model 

In this section, the FFF model is described in detail. In light of Andersen and 

Bollerslev (1998), Andersen et al. (2000), Bollerslev et al. (2000), and Evans and 

Speight (2010), the econometric model with the FFF specification employed in this 

chapter is defined as  

, sin,

1

2 2
[ (cos ) (sin )]

P

it it cos p Mt p Mt it

p

p p
xR n xR n xR

N N

 
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

        , (3.34) 

where αit is the constant, βcos,p and βsin,p are the coefficients to be estimated for stock i, 

N is the total number of observations of stock i, n is the order of observations with n = 

{1, 2, 3…t} , εit is the error term of stock i at time t, and p is the order of the FFF. The 

order of the FFF can vary from 1 to infinity. However, in order to provide efficient 

and unbiased estimates, according to previous studies, we chose up to 4.
26

 In this 

chapter, the order from 1 to 4 is selected to examine and discover the best fit of the 

estimates.  

 

The OLS regression is applied to each stock to get the βcos,p and βsin,p estimates. The 

AIC will then be used for each regression. Since an order of 1 to 4 is examined, there 

are 4 AICs for each stock. Taking advantage of the nature of the AIC, the regression 

that produces the least AIC will indicate the optimal fit. To calculate the best estimate 

for a stock at each point of time, the AIC supported estimates of βcos,p and βsin,p for 

each stock are used to get the best estimates at each point of time, specifically,  

                                                        
26

 See Andersen and Bollerslev (1998), and Evans and Speight (2010) for similar assumptions. 
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*
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In order to calculate the downside and upside beta estimates using the above FFF 

model, the same logic is followed as in the CPPF case. The same variables created in 

equation (3.20) and (3.21) are created and employed for each stock in the new FFF 

model and the new market model is given by 
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where 𝛽𝑐𝑜𝑠,𝑝
−  and  𝛽𝑠𝑖𝑛,𝑝

−  are the downside market coefficients to be estimated for 

stock i, and 𝛽𝑐𝑜𝑠,𝑝
+  and  𝛽𝑠𝑖𝑛,𝑝

+  are the upside market coefficients to be estimated for 

stock i, and previous notations hold. As in equation (3.22), there is no conventional 

constant term in the model, rather, full set of dummy variables are instead used. Since 

the order of the FFF examined varies from 1 to 4, there will be 4 groups of 𝛽𝑐𝑜𝑠,𝑝
− , 

𝛽𝑠𝑖𝑛,𝑝
− , 𝛽𝑐𝑜𝑠,𝑝

+  and  𝛽𝑠𝑖𝑛,𝑝
+  for each stock. For each group an AIC value is calculated 

and the lowest value indicates the best fit group of 𝛽𝑐𝑜𝑠,𝑝
− , 𝛽𝑠𝑖𝑛,𝑝

− , 𝛽𝑐𝑜𝑠,𝑝
+  and  𝛽𝑠𝑖𝑛,𝑝

+ .  

 

Furthermore, the best downside and upside beta estimates for each point in time are 

given by 
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and all previous notations hold. In the next section, the empirical results will be 

demonstrated and analyzed in detail. Figure 3 in Appendix shows the plots of FFF 

estimates 

 

3.5  Empirical results 

As the method explained in the previous section, the best fits for both the CPPF and 

FFF models are obtained. In order to illustrate the results in a clearer way, having the 

best fitted estimates 𝛽𝑆
∗, 𝛽𝑆

−∗ and  𝛽𝑆
+∗ for the CPPF model and 𝛽𝐹

∗, 𝛽𝐹
−∗ and  𝛽𝐹

+∗ 

for the FFF model, the number of stocks with corresponding numbers of knots or 

orders and the percentage of the whole sample are shown in Table 3.2 and Table 3.3 

respectively.  

 

Table 3.2  Stocks With Corresponding Knots To Construct 𝜷𝑺
∗ , 𝜷𝑺

−∗ And  𝜷𝑺
+∗ 

This table reports the number and percentage of stocks with different knots to 

construct the best fit estimates of CPPF model. 

 

Knots 

 

0 1 2  3  4 5 

𝛽𝑆
∗ Number of Stocks 9409 1455 861 655 614 563 

 

Percentage to 

Whole sample 

69.40% 10.73% 6.35% 4.83% 4.53% 4.15% 

𝛽𝑆
−∗and 𝛽𝑆

+∗ Number of Stocks 9399 903 483 416 729 1627 

 

Percentage to 

Whole sample 
69.33% 6.66% 3.56% 3.07% 5.38% 12.00% 
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For the CPPF model, it can be seen from Table 3.2 that for 9409 stocks (69.4%),
27

 

best estimates are obtained when no knots are used. For other knot values, the number 

of stocks decreases. Typically when 5 knots are used, just 563 stocks (4.15%) 

produced the best estimates. Similar results are obtained when the downside and 

upside beta estimates are constructed. 

 

For the FFF model, it is clear from Table 3.3 that to construct 𝛽𝐹
∗, 6204 stocks 

(45.76%) have an order of 1. Orders 2, 3 and 4 are generally selected less often. This 

pattern is even more obvious when constructing 𝛽𝐹
−∗ and  𝛽𝐹

+∗, 8377 stocks (61.79%) 

produce the best estimates with order 1, 2293 stocks (16.91%) with order 2, and the 

number of stocks with order 3 and 4 are 1429 (10.54%) and 1458 (10.75%), 

respectively. 

 

Table 3.3  Stocks With Corresponding Orders To Construct 𝜷𝑭
∗ , 𝜷𝑭

−∗ And  𝜷𝑭
+∗  

 

This table reports the number and percentage of stocks in different orders to construct 

the best fit estimates of the FFF model. 

 

Order 

 

1 2 3  4  

𝛽𝐹
∗ Number of Stocks 6204 2746 2099 2508 

 

 

Percentage to Whole 

sample 

 

45.76% 

 

20.26% 

 

15.48% 

 

18.50% 

 

𝛽𝐹
−∗and  𝛽𝐹

+∗ 

 

Number of Stocks 

 

8377 

 

2293 

 

1429 

 

1458 

 

 

Percentage to Whole 

sample 

 

61.79% 

 

16.91% 

 

10.54% 

 

10.75% 

 

                                                        
27

 In the brackets are the percentage to the whole sample. 
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Furthermore, the relationships among stock returns and corresponding beta, downside 

beta and upside beta estimates for the CPPF model and the FFF models are examined. 

In order to uncover the relationship in a cross-sectional fashion, following the 

methodology used in Chapters 2, stocks at each point of time are cross-sectionally 

assigned into five portfolios according to the value of the estimate. Since the beta, 

upside beta and downside beta estimates for both models are not independent of each 

other, to distinguish the effects among them, the relative upside beta, denoted by (β
+
-β) 

and relative downside beta denoted by (β
-
-β) are considered. To sort the portfolio, at 

each point of time, all stocks are sorted into five quintiles according to the value of 

the beta estimate. Therefore, portfolio 1 contains stocks with the lowest 20% of 

estimates, portfolio 2 contains stocks with the second lowest 20% of estimates, and so 

on. When stocks are sorted into 5 portfolios at each point of time,
28

 the equally 

weighted average of the estimate for each portfolio and the corresponding average 

annualized stock returns are calculated. The results of both models are summarized in 

Table 3.4 and Table 3.5, respectively.  

 

It can be seen from the CPPF model results in Table 3.4 that when sorting by 𝛽𝑆
∗, 

portfolio 1 has an average 𝛽𝑆
∗ of -0.24 while on the other hand, portfolio 5 has an 

average 𝛽𝑆
∗ of 2.68. Consistent with the literature, the average annualized realized 

rates of return of each portfolio show an ascending order as the average 𝛽𝑆
∗ increases, 

portfolio 1 yields a return of 1.53% while portfolio 5 shows a return of 24.84%. The 

                                                        
28

 Since monthly data are used in this chapter, and the whole sample is from January 1960 to 

December 2010, there are 612 time points. 
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average 𝛽𝑆
−∗ and  𝛽𝑆

+∗ values of each portfolio follow the same trend as 𝛽𝑆
∗, an 

average 𝛽𝑆
−∗ is 0.47 in portfolio 1 and increases to 2.18 in portfolio 5. Similarly, the 

average 𝛽𝑆
+∗ is -0.21 in portfolio 1 and increases to 2.4 in portfolio 5. 

 

Interestingly, a different pattern in returns was demonstrated when stocks are sorted 

by 𝛽𝑆
−∗. It is clear that average returns demonstrate a reversed trend while average 𝛽𝑆

∗ 

shows the same ascending trend from portfolio 1 to portfolio 5 along with the increase 

of 𝛽𝑆
−∗. 𝛽𝑆

−∗ is -7.2 in portfolio 1 with an average 𝛽𝑆
∗ of 0.48 and an average return 

of 25%, while in portfolio 5, 𝛽𝑆
−∗ grows to 10.01 with an average 𝛽𝑆

∗ increasing to 

1.86 and the average return drops to -2.67%. The pattern of 𝛽𝑆
+∗  is generally 

increasing but with a subtle variation in that, it drops from 0.85 to 0.62 from portfolio 

1 to portfolio 2, and then keeps growing to portfolio 5 ending up with a value of 1.23.  

Notably, although 𝛽𝑆
∗  and  𝛽𝑆

+∗  still have increasing trends in this panel, the 

difference between values for portfolio 1 and portfolio 5 (1.38 and 0.39 respectively) 

are narrower than the ones in Panel 1 (2.92 and 2.62 respectively). 

 

When stocks are sorted by 𝛽𝑆
+∗, a similar pattern appears to those in Panel 1. It can be 

seen from Panel 3 that, 𝛽𝑆
+∗ is -3.87 in portfolio 1 with an average 𝛽𝑆

∗ of 0.42 and an 

average return of -11.93%, and in portfolio 5, 𝛽𝑆
+∗ grows to 5.94 with average 𝛽𝑆

∗ 

increasing to 2.11 and average returns increasing to 35.58%. The pattern of 𝛽𝑆
+∗ is 

also generally increasing but with a sudden drop from 1.32 to 0.91 between portfolio 

1 to portfolio 2, and then keeps increasing to portfolio 5 and ends up with a value of  
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Table 3.4  Relationships Between Stock Returns And CPPF Factor Loadings 

This table presents the relationship between excess stock returns and factor loading of the CPPF 

model. The column labeled ―return‖ reports the average stock returns over a one month T-bill rate. 

―High-Low‖ reports the difference between portfolio 5 and portfolio 1. Notably, in a perfect 

market, the average value of βS
*
 is assumed to be 1. 

 

Panel 1  Stocks Sorted by βS
* 

  

Panel 2  Stocks Sorted by βS
-* 

Portfolio Return βS
* 

βS
-*

 βS
+*

  Portfolio Return βS
* 

βS
-*

 βS
+*

 

1 Low 1.53% -0.24 0.47 -0.21 
 

1 Low 25.00% 0.48 -7.2 0.85 

2 6.76% 0.64 0.80 0.32 
 

2 11.08% 0.77 0.68 0.68 

3 8.95% 0.99 1.23 0.84 
 

3 10.53% 1.03 1.1 0.83 

4 11.59% 1.41 1.54 1.25 
 

4 9.73% 1.33 1.61 0.99 

5 High 24.84% 2.68 2.18 2.4 
 

5 High -2.67% 1.86 10.01 1.23 

High - Low 23.30% 2.92 1.72 2.62 
 

High - Low -27.67% 1.38 17.21 0.39 

 

Panel 3  Stocks Sorted by βS
+*

  

 

Panel 4  Stocks Sorted by (βS
-*

-βS
*
) 

Portfolio Return βS
* 

βS
-*

 βS
+*

  Portfolio Return βS
* 

βS
-*

 βS
+*

 

1 Low -11.93% 0.42 1.32 -3.87 
 

1 Low 35.87% 1.64 -6.6 2.03 

2 6.67% 0.71 0.91 0.34 
 

2 14.74% 1.11 0.88 1.09 

3 9.85% 0.96 1.21 0.81 
 

3 9.72% 0.96 1.05 0.72 

4 13.43% 1.28 1.35 1.37 
 

4 5.72% 0.95 1.38 0.6 

5 High 35.58% 2.11 1.42 5.94 
 

5 High -12.35% 0.83 9.49 0.16 

High - Low 47.51% 1.69 0.1 9.81 
 

High - Low -48.22% -0.81 16.09 -1.87 

 

Panel 5 Stocks Sorted by (βS
+*

-βS
*
)  Panel 6 Stocks Sorted by (βS

-*
-βS

+*
) 

Portfolio Return βS
* 

βS
-*

 βS
+*

 
 

Portfolio Return βS
* 

βS
-*

 βS
+*

 

1 Low -6.16% 1.35 1.88 -3.38 
 

1 Low 36.79% 1.43 -6.32 5.09 

2 7.24% 1.03 1.37 0.52 
 

2 14.15% 1.05 0.89 1.2 

3 9.94% 0.96 1.16 0.84 
 

3 10.07% 0.96 1.05 0.83 

4 13.12% 1 1.1 1.21 
 

4 6.43% 0.98 1.35 0.53 

5 High 29.51% 1.14 0.71 5.4 
 

5 High -13.76% 1.05 9.23 -3.06 

High - Low 35.67% -0.2 -1.18 8.78 
 

High - Low -50.55% -0.38 15.55 -8.15 
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1.42. Compared to Panel 1, the spread of 𝛽𝑆
∗, and 𝛽𝑆

−∗ between portfolio 5 and 

portfolio 1 is less, however the spread of  𝛽𝑆
+∗ and average return is much higher 

( 9.81 and 47.51% in Panel 3, while 2.62 and 23.3% in Panel 1). It is clear that  𝛽𝑆
+∗ 

has the same positive impact on portfolio returns as  𝛽𝑆
∗. 

 

In order to examine how 𝛽𝑆
−∗ is driving the return not considering the impact of 𝛽𝑆

∗, 

a new estimate (𝛽𝑆
−∗- 𝛽𝑆

∗) is employed in the analysis. Using this estimate to sort 

portfolios could discover the unique property of 𝛽𝑆
−∗ after controlling for 𝛽𝑆

∗. When 

stocks are sorted by (𝛽𝑆
−∗- 𝛽𝑆

∗), an unfamiliar pattern appears in Panel 4. From 

portfolio 1 to portfolio 5, all average returns, 𝛽𝑆
∗ and 𝛽𝑆

+∗ are in descending order 

while only 𝛽𝑆
−∗ increases from -6.6 to 9.49. Although in Panel 1, Panel 2 and Panel 3, 

𝛽𝑆
−∗ are also in ascending order, the spread of average returns in Panel 4 is the highest 

and reaches -48.22%. So controlling for  𝛽𝑆
∗, it can be seen that  𝛽𝑆

−∗  shows a 

negative relationship with portfolio returns and  𝛽𝑆
∗.  

 

As with (𝛽𝑆
−∗- 𝛽𝑆

∗), (𝛽𝑆
+∗- 𝛽𝑆

∗) is employed to uncover the unique property of 𝛽𝑆
+∗ 

after controlling for 𝛽𝑆
∗. It can be seen from Panel 5 that from portfolio 1 to portfolio 

5, both average return and 𝛽𝑆
+∗ are in ascending order, starting at -6.16% and -3.38, 

increasing to 29.51% and 5.4, respectively. 𝛽𝑆
−∗ exhibits a descending trend for the 

first time within these panels. It drops from -1.88 to 0.71. A U-shaped pattern in 𝛽𝑆
∗ 

is apparent, it starts at 1.35 in portfolio 1 and drops to 0.96 in portfolio 3, but restores 

to 1.14 in portfolio 5.  
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In Panel 6, (𝛽𝑆
−∗- 𝛽𝑆

+∗) is adopted to sort the portfolio in order to control 𝛽𝑆
+∗ from 

𝛽𝑆
−∗ and for the sake of precision. In can be seen from Panel 6 that both average 

returns and 𝛽𝑆
+∗ are in descending orders, starting at 36.79% and 5.09 and dropping 

to 13.76% and -3.06 respectively, while 𝛽𝑆
−∗ exhibits an ascending trend increasing 

from -6.32 to 9.23. As in Panel 5, a U-shaped pattern appears in 𝛽𝑆
∗, starting at 1.43 in 

portfolio 1 dropping to 0.96 in portfolio 3 and recovering to 1.05 in portfolio 5. 

Notably, the spread of returns in Panel 6 is the highest among all 6 panels at -50.55%.   

 

Regarding the FFF model, it can be seen from Table 3.5 that when sorting by 𝛽𝐹
∗, 

portfolio 1 has an average 𝛽𝐹
∗ of -1.19 while on the other hand, portfolio 5 shows an 

average 𝛽𝐹
∗ of 1.22. Again, consistent with the literature, the average annualized rates  

of return to each portfolio are presented in an ascending order with the 𝛽𝐹
∗. Portfolio 1 

yields a return of 3.54%, while portfolio 5 has a return of 22.26%. Average 𝛽𝐹
−∗ and 

 𝛽𝐹
+∗ for each portfolio follow the same trend as 𝛽𝐹

∗, with an average 𝛽𝐹
−∗ of -0.74 in 

portfolio 1 and 0.76 in portfolio 5. Similarly, the average 𝛽𝐹
+∗ is -0.87 in portfolio 1 

and increases to 0.95 in portfolio 5. A different pattern was demonstrated when stocks 

are sorted by 𝛽𝐹
−∗. It is clear that average returns exhibit a reversed trend while 

average 𝛽𝐹
∗ shows the same ascending trend from portfolio 1 to portfolio 5 along 

with the increase of 𝛽𝐹
−∗. 𝛽𝐹

−∗ is -1.32 in portfolio 1 with an average 𝛽𝐹
∗ of -0.67 

and average return of 21.88%, while in portfolio 5, 𝛽𝐹
−∗ grows to 1.33, average 𝛽𝐹

∗ 

increases to 0.69 and the average return drops to -0.03%. The pattern of 𝛽𝐹
+∗ is 

consistent with  𝛽𝐹
−∗, it starts at -0.31 in portfolio 1, and then keeps growing to  
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Table 3.5  Relationships Between Stock Returns And The FFF Factor Loadings 

This table presents the relationship between excess stock returns and factor loading of the FFF 

model. The column labeled ―return‖ reports the average stock returns over one month T-bill rate. 

―High-Low‖ reports the difference between portfolio 5 and portfolio 1. Notably, in a perfect 

market, the average value of βF
*
 depends on the average value of the intercept. 

 

Panel 1  Stocks Sorted by βF
* 

  

Panel 2  Stocks Sorted by βF
-* 

Portfolio Return βF
* 

βF
-*

 βF
+*

 
 

Portfolio Return βF
* 

βF
-*

 βF
+*

 

1 Low 3.54% -1.19 -0.74 -0.87 
 

1 Low 21.88% -0.67 -1.32 -0.31 

2 7.51% -0.37 -0.26 -0.28 
 

2 13.09% -0.24 -0.38 -0.12 

3 9.11% -0.01 -0.01 -0.03 
 

3 10.46% -0.01 -0.01 -0.01 

4 11.24% 0.36 0.24 0.23 
 

4 8.22% 0.23 0.37 0.11 

5 High 22.26% 1.22 0.76 0.95 
 

5 High -0.03% 0.69 1.33 0.33 

High - Low 18.72% 2.41 1.49 1.82 
 

High - Low -21.91% 1.36 2.65 0.64 

 

Panel 3  Stocks Sorted by βF
+*

  

 

Panel 4  Stocks Sorted by (βF
-*

-βF
*
) 

Portfolio Return βF
* 

βF
-*

 βF
+*

 
 

Portfolio Return βF
* 

βF
-*

 βF
+*

 

1 Low -7.72% -0.81 -0.29 -1.28 
 

1 Low 33.18% 0.52 -0.71 0.65 

2 5.02% -0.27 -0.13 -0.36 
 

2 16.29% 0.11 -0.18 0.19 

3 9.44% -0.02 -0.01 -0.02 
 

3 10.34% -0.02 -0.02 -0.01 

4 14.58% 0.24 0.13 0.33 
 

4 4.66% -0.14 0.17 -0.21 

5 High 32.33% 0.86 0.3 1.33 
 

5 High -10.84% -0.48 0.74 -0.61 

High - Low 40.05% 1.67 0.59 2.61 
 

High - Low -44.02% -1 1.45 -1.27 

 

Panel 5 Stocks Sorted by (βF
+*

-βF
*
)  Panel 6 Stocks Sorted by (βF

-*
-βF

+*
) 

Portfolio Return βF
* 

βF
-*

 βF
+*

 
 

Portfolio Return βF
* 

βF
-*

 βF
+*

 

1 Low -4.27% 0.36 0.57 -0.63 
 

1 Low 36.12% 0.17 -0.81 0.85 

2 5.48% 0.12 0.21 -0.14 
 

2 16.44% -0.02 -0.24 0.17 

3 9.74% 0 -0.01 -0.01 
 

3 10.15% -0.02 -0.01 -0.02 

4 14.99% -0.14 -0.23 0.12 
 

4 4.34% -0.02 0.22 -0.2 

5 High 27.69% -0.34 -0.54 0.66 
 

5 High -13.41% -0.12 0.85 -0.81 

High - Low 31.95% -0.7 -1.1 1.29 
 

High - Low -49.53% -0.3 1.66 -1.66 
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portfolio 5 ending up with a value of 0.33. Notably, although  𝛽𝐹
∗ and  𝛽𝐹

+∗ still 

have an increasing trend in this panel, the difference between values in portfolio 1 and 

portfolio 5 (1.36 and 0.64, respectively) are narrower than the ones in Panel 1 (2.41 

and 1.82, respectively) 

 

When sorting by 𝛽𝐹
+∗, a similar pattern to that in Panel 1 appears. It can be seen from 

Panel 3 that 𝛽𝐹
+∗ is -1.28 in portfolio 1 with an average 𝛽𝐹

∗ of -0.81 and an average 

return of -7.72%, and in portfolio 5, 𝛽𝐹
+∗  grows to 1.33 with an average 𝛽𝐹

∗ 

increasing to 0.86 and an average return increasing to 32.33%. The pattern of 𝛽𝐹
−∗ is 

consistent with  𝛽𝐹
+∗, it starts at -0.29 in portfolio 1, and then keeps growing to 

portfolio 5 ending up with a value of 0.3. Compared to Panel 1, the spread of 𝛽𝐹
∗, and 

𝛽𝐹
−∗ between portfolio 5 and portfolio 1 are less. However, the spread of  𝛽𝐹

+∗ and 

average returns is much higher (2.61 and 40.05% in Panel 3, and 1.82 and 18.72% in 

Panel 1, respectively). 

 

As with the CPPF model, we consider (𝛽𝐹
−∗- 𝛽𝐹

∗) in the analysis. Using this estimate 

to sort portfolios could uncover further properties of  𝛽𝐹
−∗ after controlling for 𝛽𝐹

∗. 

When stocks are sorted by (𝛽𝐹
−∗-𝛽𝐹

∗), an unfamiliar pattern appears in Panel 4. From 

portfolio 1 to portfolio 5, average returns, 𝛽𝐹
∗ and 𝛽𝐹

+∗ all decrease only with 𝛽𝐹
−∗ 

increasing from -0.71 to 0.74. As in Panel 1, Panel 2 and Panel 3, 𝛽𝐹
−∗ are also in 

ascending order, the spread of average returns in Panel 4 is highest and reaches 

-44.02%. Referring back to when stocks are sorted by (𝛽𝑆
−∗-𝛽𝑆

∗), a similar pattern 
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appears. Therefore, it can be concluded that when controlling for the effect of beta, 

the relative downside beta estimates of both models have a negative relationship with 

portfolio returns, which can be interpreted as stocks tend to suffer a loss if they have 

large downside betas. 

 

When (𝛽𝐹
+∗ - 𝛽𝐹

∗ ) is employed (to uncover the unique property of  𝛽𝐹
+∗  after 

controlling for 𝛽𝐹
∗), it can be seen from Panel 5 that from portfolio 1 to portfolio 5, 

both average returns and 𝛽𝐹
+∗ increase, starting at -6.16% and -3.38% and increasing 

to 29.51% and 5.4, respectively, while both 𝛽𝐹
∗ and 𝛽𝐹

−∗ decrease from 0.36 and 

0.57 to -0.34 and -0.54, respectively.  

 

Also in Panel 6, (𝛽𝐹
−∗- 𝛽𝐹

+∗) is adopted to sort the portfolio to control 𝛽𝐹
+∗ from 𝛽𝐹

−∗ 

and for the sake of precision. It can be seen from this panel that the same pattern as in 

Panel 4 appears. From portfolio 1 to portfolio 5, average returns, 𝛽𝐹
∗ and 𝛽𝐹

+∗ all 

decrease while only 𝛽𝐹
−∗ increases from -0.81 to 0.85. Notably, the spread of returns 

in Panel 6 is the highest among all 6 panels at -49.53%. 

 

To sum up, the results of the CPPF and the FFF models, 𝛽𝑆
∗ and 𝛽𝐹

∗ as classic risk 

estimates, still have an obvious impact on driving stock returns. Specifically, when 

stocks are sorted by 𝛽𝑆
∗ and 𝛽𝐹

∗, average returns follow exactly the same increasing 

trend with the 𝛽𝑆
∗ and 𝛽𝐹

∗ presented, even the portfolio return is inversely related to 

the market return . More importantly, it can be seen from these panels that 𝛽𝑆
−∗, 𝛽𝑆

+∗, 
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𝛽𝐹
−∗ and 𝛽𝐹

+∗ do have an impact on stock returns. When stocks are sorted by 𝛽𝑆
−∗, 

(𝛽𝑆
−∗- 𝛽𝑆

∗), 𝛽𝐹
−∗ and (𝛽𝐹

−∗- 𝛽𝐹
∗), clearly, downside related estimates have a negative 

relationship with the realized returns, this is even more obvious in Panel 6 when 

stocks are sorted by  (𝛽𝑆
−∗- 𝛽𝑆

+∗) and (𝛽𝐹
−∗- 𝛽𝐹

+∗), while when stocks are sorted by 

𝛽𝑆
+∗, (𝛽𝑆

+∗- 𝛽𝑆
∗), 𝛽𝐹

+∗ and (𝛽𝐹
+∗- 𝛽𝐹

∗), positive relationships appear between upside 

related estimates and realized returns. Moreover, the classic estimates 𝛽𝑆
∗ and 𝛽𝐹

∗ 

appear to have a similar impact as the upside related estimates 𝛽𝑆
+∗, (𝛽𝑆

+∗- 𝛽𝑆
∗), 𝛽𝐹

+∗ 

and (𝛽𝐹
+∗- 𝛽𝐹

∗). To rationalize that, when downside beta is calculated, the return of the 

market portfolio is below the average, and very likely to be negative. The stock 

expected excess return is the product of beta and excess returns to the market portfolio, 

so when stocks are sorted by downside beta into portfolios, the larger the downside 

beta, the lower the return. In addition to that, the panic on the falling market of 

investors’ could also be a reason for aggravating the negative returns.   

  

Compared to the empirical results in the previous chapter,
29

 these results are quite 

similar except when stocks are sorted by downside beta. In the previous chapter, when 

stocks are sorted by downside beta, the excess return of the portfolio increases with 

the increase of downside beta. However, in this chapter, it can be seen from Table 3.5 

and Table 3.6 that for the CPPF and the FFF model, a reversed pattern exhibits. 

However, when beta is controlled and stocks are sorted by relative downside, both 

chapters present similar results. Therefore, it can be concluded that downside beta 

                                                        
29

 Table 2.2 in chapter 2. 
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clearly has a negative relationship with stock returns when beta is taken into account. 

The reversed results are attributed to different approaches used in these two chapters, 

in the previous chapter, a simple moving window estimation is used, while in this 

chapter, nonlinear time-varying approaches are used.        

 

 3.6  Fama-Macbeth regression 

In this section, in order to uncover the impact of 𝛽𝑆
∗, 𝛽𝑆

−∗,  𝛽𝑆
+∗, 𝛽𝐹

∗, 𝛽𝐹
−∗ and  𝛽𝐹

+∗ 

on stock returns from a regression point of view, following the previous chapter, a 

series of Fama-Macbeth regressions are performed which employ different 

combinations of the above estimates as independent variables.  

 

For the purposes of comparison and to demonstrate the importance of placing an 

appropriate number of knots for the CPPF model and choosing an appropriate order 

for the FFF model, additional variables 𝛽𝑆0 , 𝛽𝑆0
− ,  𝛽𝑆0

+ , 𝛽𝐹1 , 𝛽𝐹1
−  and  𝛽𝐹1

+  are 

introduced. For 𝛽𝑆0 , 𝛽𝑆0
−  and  𝛽𝑆0

+ , they are the beta estimate, downside beta 

estimate and upside beta estimate, respectively, for each stock at each point in time 

estimated with the CPPF model without placing a knot. However for 𝛽𝐹1, 𝛽𝐹1
−  and 

 𝛽𝐹1
+ , they are the beta estimate, downside beta estimate and upside beta estimate, 

respectively, for each stock at each point in time estimated with the FFF model with 

order 1. 
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Table 3.6 Correlations Of Factor Loadings Without Knot And In Order One 

This table reports the correlation coefficients between factor loadings of both the CPPF model 

with zero knots and the FFF model in order one. To avoid unnecessary repetition, only the lower 

triangle of the matrix is shown. 

 

 

𝛽𝑆0 𝛽𝑆0
−  𝛽𝑆0

+  𝛽𝐹1 𝛽𝐹1
−  𝛽𝐹1

+  

𝛽𝑆0 1.0000  

     

𝛽𝑆0
−  0.3363 1.0000  

    

𝛽𝑆0
+  0.4326 0.0365 1.0000  

   

𝛽𝐹1 0.4397 0.1345 0.1770  1.0000  

  

𝛽𝐹1
−  0.3209 0.2611 0.0458 0.7331 1.0000  

 

𝛽𝐹1
+  0.4620  0.0336 0.2737 0.8093 0.2886 1.0000  

 

In order to avoid multicollinearity in the Fama-Macbeth regression, the correlation 

coefficient matrices for groups of variables are presented in Table 3.6 and Table 3.7. It 

can be seen from Table 3.6 that 𝛽𝐹1 is highly correlated with both 𝛽𝐹1
−  and  𝛽𝐹1

+  

(the correlation coefficients are 0.7331 and 0.8093, respectively). The other pairs of 

variables are correlated with each other to some extent, but not as highly as the two 

mentioned pairs (above 0.5), for instance, 𝛽𝑆0  and  𝛽𝐹1
+  exhibits the highest 

correlation with a coefficient of 0.462 after the two peak values. Therefore, in the 

following Fama-Macbeth regression, 𝛽𝐹1 will not appear in the same regression with 

𝛽𝐹1
−  or  𝛽𝐹1

+ , and the other variables will form different combinations of independent 

variables. 
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It is clear from Table 3.7 that, as in Table 3.6, high correlations appear between the 

FFF based estimates, with 𝛽𝐹
∗  highly correlated with 𝛽𝐹

−∗  and  𝛽𝐹
+∗  (with 

correlation coefficients of 0.5239 and 0.6689, respectively). The remaining variables 

exhibit a weaker correlation with each other. Thus in the following Fama-Macbeth 

regression, 𝛽𝐹
∗ will not appear in the same regression with 𝛽𝐹

−∗ or  𝛽𝐹
+∗, and the 

other variables will form different combinations of independent variables. Notably, in 

Table 3.8, for both the CPPF and the FFF models, the upside beta estimates  𝛽𝑆
+∗ 

and  𝛽𝐹
+∗ are negatively correlated with the downside beta estimates of the CPPF 

model 𝛽𝑆
−∗ with correlation coefficients of -0.0001 and -0.0018, respectively.  

 

Table 3.7 Correlations Of Factor Loading With Corresponding Knots And Order 

This table reports the correlation coefficients between factor loadings of both the CPPF model 

with appropriate number of knots and the FFF model in appropriate order, to avoid unnecessary 

repetition, only the lower triangle of the matrix is shown. 

 

 

𝛽𝑆
∗ 𝛽𝑆

−∗ 𝛽𝑆
+∗ 𝛽𝐹

∗ 𝛽𝐹
−∗ 𝛽𝐹

+∗ 

𝛽𝑆
∗ 1.0000  

     

𝛽𝑆
−∗ 0.0130  1.0000  

    

𝛽𝑆
+∗ 0.0237 -0.0001 1.0000  

   

𝛽𝐹
∗ 0.3154 0.0029 0.0085  1.0000  

  

𝛽𝐹
−∗ 0.2609 0.0082 0.0025 0.5239 1.0000  

 

𝛽𝐹
+∗ 0.3099 -0.0018 0.0098 0.6689 0.1889 1.0000  
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This phenomenon potentially shows that the downside beta estimates do have an 

opposite impact on stock returns compared to the upside beta estimates which 

complies with the conclusion made in the previous sections. 

 

After deciding on the possible combinations of variables, the Fama-Macbeth 

regressions are performed on both groups of variables which are demonstrated in 

Table 3.6 and Table 3.7. Since the data are at monthly frequency from January 1960 to 

December 2010, there are 612 cross-sectional time points and 2,398,103 observations 

of each regression. Newey-West (1987) heterosecdasticity robust standard errors with 

12 lags are employed to calculate the t-statistics and the adjusted R
2
 values obtained 

from the cross-sectional regressions are provided in Table 3.8 and Table 3.9.
30

  

 

As concluded in the previous paragraph, 𝛽𝐹1  cannot not appear in the same 

regression with 𝛽𝐹1
−  or  𝛽𝐹1

+ , therefore, there are 11 possible combinations among  

𝛽𝑆0, 𝛽𝑆0
− ,  𝛽𝑆0

+ , 𝛽𝐹1, 𝛽𝐹1
−  and  𝛽𝐹1

+  as independent variables. It can be seen from 

Table 3.8 that regression 1, 2 and 3 examine the impact of estimates of the CPPF 

model without a knot. Generally, these three regressions exhibit poor fit with the 

intercept in regression 1 and coefficients of 𝛽𝑆0
−  and  𝛽𝑆0

+  in regression 2 not 

significant at the 5% significance level and with adjusted R
2
 values of 0.06 and 0.055, 

respectively. In regression 3, the coefficient on 𝛽𝑆0
−  and the intercept are not 

significant even at the 10% significance level with an adjusted R
2
 value of 0.098. 

                                                        
30

 Factor size could affect the significance of the estimates.  
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Regression 4 and 5 examine the impact of estimates of the FFF model with order 1. 

Estimates of regression 4 and 5 are all significant at the 1% significance level, 

however both regressions present low adjusted R
2
 values of 0.017 and 0.029, 

respectively.  

 

The remaining regressions 6 to 11 employ variables from both the CPPF model and 

the FFF model to examine the impact of these variables on stock returns. It is clear 

from Table 3.8 that with the exception of the coefficient on 𝛽𝑆0
−  and coefficients on 

𝛽𝑆0
−  and  𝛽𝑆0

+  in regression 10, remaining estimates are all significant at the 5% level. 

Among the regressions in Table 3.8, regression 11 shows the highest adjusted R
2
 value 

at 0.106 and it also contains the most variables. Notably, consistent with the literature, 

the estimated coefficients of 𝛽𝑆0 and 𝛽𝐹1 are always positive among regressions, 

and illustrate that the beta estimates for both models have a positive impact on stock 

returns. Moreover, the estimated coefficients on 𝛽𝐹1
−  and  𝛽𝐹1

+  are always significant 

at the 1% significance level, and their signs are constantly negative and positive, and 

show that the downside and upside risk estimates of the FFF model have negative and 

positive impacts on stock returns, respectively. However, the significance and sign of 

the estimated coefficients on 𝛽𝑆0
−  and  𝛽𝑆0

+  vary across regressions in Table 3.9, 

therefore it is difficult to provide a definitive conclusion. 

 

Table 3.9 shows the 11 possible combinations among 𝛽𝑆
∗, 𝛽𝑆

−∗,  𝛽𝑆
+∗, 𝛽𝐹

∗, 𝛽𝐹
−∗ and 

 𝛽𝐹
+∗. It can be concluded from Table 3.9 that, similar to Table 3.8, regressions 1 to 3 
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examine the impact of estimates of the CPPF model with appropriate numbers of 

knots according to the AIC. Moreover, regressions 4 and 5 examine the impact of best 

estimates of the FFF model (according to the AIC). The remaining regressions 6 to 11 

employ variables from both the best CPPF and FFF models to examine the impact of 

these variables on stock returns. Unlike Table 3.8, all estimated coefficients except the 

intercept in regression 1 are significant at the 1% significance level. These best fit 

estimates are all highly significant, and the beta coefficients are always positive, 

which is consistent with the classic literature (as in Table 3.8). Moreover, the 

estimated coefficients of downside and upside beta estimates show negative and 

positive signs, respectively, over all regressions, which is consistent with the 

conclusions made regarding Table 3.4 and Table 3.5. Furthermore, among all 11 

regressions in Table 3.9, regression 11 exhibits the highest adjusted R
2
 value at 0.153. 
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Table 3.8 Fama-Macbeth Regressions of Factor Loadings Restricted Estimates 

This table reports the results of the Fama-Macbeth regression of factor loadings without knot and order. The t-statistics in the square brackets are calculated by using 

Newey-West (1987) heteroscedastic robust standard error with 12 lags. * denotes significance at the 10% level, ** denotes significance at the 5% level and 

***denotes significance at the 1% level.

 
1 2 3 4 5 6 7 8 9 10 11 

            

Intercept 

 

0.00155 

[1.14] 

0.00743*** 

[3.82] 

0.00154 

[1.21] 

0.00852*** 

[3.48] 

0.00907*** 

[3.90] 

0.00212 

[1.57] 

0.00705*** 

[3.88] 

0.00213* 

[1.70] 

0.00345*** 

[2.89] 

0.00801*** 

[4.06] 

0.00251** 

[2.24] 

𝛽𝑆0 
0.00663*** 

[3.25] 

 0.00824*** 

[3.68] 

  0.00614*** 

[3.02] 

 0.00768*** 

[3.46] 

0.00525*** 

[2.73] 

 0.00626*** 

[2.98] 

𝛽𝑆0
−  

 0.0000637 

[0.08] 

-0.000721 

[-1.28] 

   0.00187*** 

[2.99] 

-0.000678 

[-1.20] 

-0.0119*** 

[-13.04] 

-0.000103 

[-0.15] 

0.00147*** 

[2.95] 

𝛽𝑆0
+  

 0.000937* 

[1.90] 

-0.000977*** 

[-2.13] 

   -0.000884** 

[-2.21] 

-0.000983** 

[-2.14] 

0.0115*** 

[14.41] 

0.000520 

[1.14] 

-0.00205*** 

[-4.72] 

𝛽𝐹1 
   0.00542*** 

[3.35] 

 0.00132** 

[2.50] 

 0.00141*** 

[2.66] 

 0.00509*** 

[3.77] 

 

𝛽𝐹1
−  

    -0.0113*** 

[-9.43] 

 -0.0126*** 

[-12.50] 

   -0.0131*** 

[-15.27] 

𝛽𝐹1
+  

    0.0148*** 

[10.83] 

 0.0156*** 

[12.60] 

   0.0127*** 

[17.27] 

Number of  

obs 

2398103 2398103 2398103 2398103 2398103 2398103 2398103 2398103 2398103 2398103 2398103 

Average R2 0.055 0.060 0.098 0.017 0.029 0.056 0.077 0.100 0.065 0.069 0.106 



121 

 

Table 3.9 Fama-Macbeth Regressions of Factor Loadings with Appropriate Knots and Orders 

This table reports the results of the Fama-Macbeth regression of factor loadings with appropriate knots and orders on stock excess returns. The t-statistics in the 

square brackets are calculated by using the Newey-West (1987) heteroscedastic robust standard error with 12 lags. * denotes significance at the 10% level, ** denotes 

significance at the 5% level and ***denotes significance at the 1% level. 

 

 
1 2 3 4 5 6 7 8 9 10 11 

            

Intercept 

 

0.00186 

[1.52] 

0.00898*** 

[7.05] 

0.00538*** 

[5.04] 

0.00826*** 

[3.56] 

0.00943*** 

[4.42] 

0.00279** 

[2.19] 

0.00965*** 

[7.54] 

0.00618*** 

[5.76] 

0.00369*** 

[3.38] 

0.00947*** 

[7.14] 

0.00623*** 

[6.23] 

𝛽𝑆
∗ 0.00610*** 

[3.42] 

 0.00448*** 

[3.82] 

  0.00481*** 

[3.00] 

 0.00383*** 

[3.54] 

0.00490*** 

[3.20] 

 0.00384*** 

[3.42] 

𝛽𝑆
−∗  -0.0120*** 

[-9.82] 

-0.00948*** 

[-11.19] 

   -0.0106*** 

[-10.25] 

-0.00944*** 

[-11.19] 

-0.00994*** 

[-12.94] 

 -0.00850*** 

[-11.30] 

𝛽𝑆
+∗ 

 

0.0134*** 

[14.47] 

0.00911*** 

[14.41]    

0.0117*** 

[15.25] 

0.00890*** 

[14.63] 

0.0107*** 

[15.74]  

0.00823*** 

[14.44] 

𝛽𝐹
∗  

   0.00673*** 

[4.16] 

 0.00334*** 

[5.67] 

 0.00238*** 

[4.73] 

 0.00342*** 

[3.91] 

 

𝛽𝐹
−∗ 

    -0.0113*** 

[-9.13] 

 -0.00419*** 

[-8.21] 

  -0.0111*** 

[-10.53] 

-0.00485*** 

[-13.74] 

𝛽𝐹
+∗ 

    0.0155*** 

[13.00] 

 0.00647*** 

[11.34] 

  0.0121*** 

[15.64] 

0.00586*** 

[13.51] 

 

Number of 

obs 

2398103 2398103 2398103 2398103 2398103 2398103 2398103 2398103 2398103 2398103 2398103 

Adjusted R2 0.092 0.13 0.147 0.039 0.055 0.096 0.138 0.150 0.11 0.137 0.153 
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However, since 𝛽𝐹
∗  cannot appear in the same regression with 𝛽𝐹

−∗  or  𝛽𝐹
+∗ , 

checking the alterative regression (regression 8) shows that employing 𝛽𝐹
∗ instead of 

𝛽𝐹
−∗ and  𝛽𝐹

+∗, generates the second highest adjusted R
2
 among all regressions at 0.15. 

Therefore, it can be concluded from Table 3.9 that the variables produce a much 

higher adjusted R
2
 value than the variables used in Table 3.8, thus indicating that 

placing appropriate numbers of knots in the CPPF model and selecting the appropriate 

order in the FFF model produces better beta estimates. Also, although 𝛽𝐹
∗ cannot 

appear in the same regression with 𝛽𝐹
−∗ or  𝛽𝐹

+∗, all the variables in regression 8 and 

regression 11 do have significant effects on excess stock returns, while the regression 

that employs 𝛽𝐹
−∗ and  𝛽𝐹

+∗ outperforming the one that employs 𝛽𝐹
∗. 

 

Compared to the results in the previous chapter,
31

 using the CPPF and the FFF 

approach and allowing the beta estimates to be time-varying delivers statistically 

significant improvements in fit of the cross-sectional asset pricing model. With all 

coefficients significant, the highest adjusted R
2
 value is only 0.045 in chapter 2,

32
 

while the highest adjusted R
2
 value is 0.153 in this chapter. It can be concluded that 

the nonlinear time-varying estimates have more significant explanatory power than 

the moving window estimates considered in the previous chapter.    

 

                                                        
31

 Table 2.13 and Table 2.14 in Chapter 2. 
32

 Regression 4 in Table 2.13 in Chapter 2.  
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3.7  Conclusion 

It can be concluded from this chapter that the beta, upside beta and downside beta 

estimates produced by the CPPF model and the FFF model do have a significant 

impact on cross-sectional stock returns. The beta estimates, whose role has been 

doubted in the literature for several decades, are significant in driving the stock 

returns for both models. Moreover, the downside and upside beta estimates of both 

models demonstrate reversed impacts on stock returns. The reason for that is when 

downside beta is calculated, the return of the market portfolio is below the average, 

and very likely to be negative. The expected excess stock return is the product of beta 

and excess returns to the market portfolio, so when stocks are sorted by downside beta 

into portfolios, the larger downside beta, the lower the return, and vice versa. The 

former ones show negative impacts on stock returns, while the latter ones, consistent 

with the beta estimates, have positive effects (both are significant). For stocks with 

negative downside beta, they are inversely related with downside risk and more 

desirable in a downside market, therefore positive returns are rewarded. 

 

Moreover, placing the appropriate number of knots in the CPPF model and selecting 

the correct order of the FFF model are crucial procedures to generate the best fit 

estimates according to the AIC. It has been shown in this chapter that estimates with 

the appropriate number of knots (or order) deliver more significant impacts on stock 

returns within the cross-sectional return regressions with respect to those based on 

non-optimal knots or orders. Furthermore, in order to avoid potential multicollinearity, 
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beta estimates based on the FFF model 𝛽𝐹
∗ can be treated as an alternative variable of 

downside and upside beta estimates ( 𝛽𝐹
−∗  and  𝛽𝐹

+∗ , respectively). However, 

employing 𝛽𝐹
−∗ and  𝛽𝐹

+∗ in the regression produces higher adjusted R
2
 values than 

employing 𝛽𝐹
∗.   

 

Finally, compared to the previous chapter, it can be concluded that downside beta 

clearly has a negative relationship with stock returns when beta is controlled for. The 

reversed results of stock returns after sorting by downside beta (decreasing with 

downside beta in this chapter and reversed in the previous chapter) are attributed to 

different approaches used in these two chapters. In terms of fit, allowing more flexible 

on the data, taking time-varying estimates (generated by the CPPF and FFF 

approaches) as factors delivers much higher adjusted R
2
 values than classic market 

model, therefore, the CPPF and the FFF model outperform the classic market model.  

 

 

 

        

 

 

 

 

 

 

  



 

 

 

 

 

 

 

 

 

Chapter 4 

The cross-sectional determinants of US 

stock returns: The impact of commodity 

market and business conditions  
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4.1  Introduction 

In this chapter, two multi-factor non-linear models are considered: the cubic piecewise 

polynomial function (CPPF) model and Fourier Flexible Form (FFF) model with 

various knots and orders employed to examine the significance of classic, downside 

and upside risks. With reference to the previous chapter, using the CPPF and FFF 

models allows the beta estimates to be time-varying, in order to present the true 

relationship between variables at each point in time. We will extend the idea in this 

chapter, and consider a market portfolio, a commodity price index and the 

Aruoba-Diebold-Scotti (ADS) real business index simultaneously, as the risk factors. 

The AIC is adapted to uncover the most appropriate number of knots and orders for 

the sample. With the AIC, the best fit estimates of the classic, downside and upside 

risks for both models are generated. These estimates are sorted into portfolios to 

examine the risk-return relationship. Fama-Macbeth regressions are then performed to 

discover the significance of the estimates cross-sectionally. We find that all three 

factors have a significant impact on individual stock returns. Moreover, downside and 

upside estimates provide more explanatory power than classic estimates. However, the 

predictive power of all estimates is found to be poor. This chapter is arranged as 

follows: section 4.2 contains a literature review, followed by section 4.3 which is a 

description of the data, then section 4.4 explains the econometric models and methods 

applied in this chapter, sections 4.5 to 4.7 provide the empirical results, and section 

4.8 is the conclusion.       
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 4.2  Literature review 

There has been a long history of literature suggesting that the use of the market factor 

is not enough to explain the risk-return relationship of stocks. Rose (1951) pointed out 

that economic news and information can be quantified and treated as an additional 

risk factor for stock returns. Moreover, the APT model assumes asset returns follow a 

multi-factor return generating process. (Ross 1976)  

 

Among the large number of multi-factor asset pricing studies, macroeconomic 

variables are the most popular ones to be employed within this context. There are 

quite a number of studies that investigate the relationship between stock returns and 

inflation. For instance, in the studies by Bodie (1976), Jaffe and Mandelker (1976), 

Nelson (1976), Fama and Schwert (1977), Fama (1981), and Fama and Gibbons’s 

(1982), inflation is employed as a common factor, and all of them found a negative 

relationship between stock returns and inflation with strong evidence provided. Apart 

from inflation, other macroeconomic variables have been employed as a risk factor. 

Chen et al. (1986) show that industrial production, the spread between long and short 

interest rates, expected and unexpected inflation and the spread between high and low 

grade bonds are significantly priced. They find that neither aggregate consumption 

nor oil price differences are priced separately. 

  

Fama (1990) used the economic growth rate to proxy the shock to cash flows, and he 

showed that the variance of stock returns is well explained by the economic growth 
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rate. In Chen’s (1991) later study, more variables are employed. The results indicate 

that the lagged production growth rate and the market dividend to price ratio are 

significantly priced, and they are positively correlated with future market excess 

returns. Bilson et al (1999) attempted to use macroeconomic variables to proxy local 

risk factors in emerging markets to explain the volatility of stock returns, with 

moderate evidence found to support the hypothesis. Flannery and Protopapadakis 

(2002) employed seventeen macroeconomic factors as independent variables in a 

GARCH model, and found that the consumer price index (CPI), producer price index 

(PPI), monetary aggregate, balance of trade, unemployment rate and housing starts are 

significantly priced. Duca (2007), Granger causality has been tested between the stock 

market excess return and GDP, (GDP is a component of the ADS index) with the 

results showing strong evidence that GDP Granger causes excess market returns. Also, 

Gay (2008) failed to find any significant influence of exchange rates on stock returns 

in emerging markets.  

 

Moreover, Gan et al. (2006), Tursoy et al. (2008) and Singh et al. (2011) employed 

various macroeconomic variables to explain the movement of their local stock 

markets (New Zealand, Turkey and Taiwan, respectively), with only weak evidence 

found to support their proposed ideas. Although there are a large number of studies 

employing macroeconomic variables in asset pricing models, few studies employ a 

macroeconomic factor which can measure the real economy (business) from all 

aspects (GDP is a good indicator, however, it fails to measure the employment rate 
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and other important aspects). The reason for that is obvious, to measure all aspects of 

the economy, there are too many variables to be employed, and there are few variables 

available which are capable of measuring all aspects. 

 

The innovation in this chapter is that it employs the ADS business conditions index, 

which measures the real economy from most aspects. The index itself is measured 

over a daily frequency but is computed using a number of macroeconomic variables 

with different frequencies. The constituents of the ADS index have been extended and 

modified ever since it was proposed, and the components and computing method were 

last fixed in 2011.
33

 There are six macro components of the ADS index. At a weekly 

frequency, there are initial jobless claims; at a monthly frequency, there are payroll 

employment, industrial production, personal income less transfer payments and 

manufacturing and trade sales; and at a quarterly frequency, real GDP (adjusted for 

inflation and deflation) is employed. It would be possible to employ individual 

macroeconomic factors rather than the ADS index. However, since each individual 

factor is measured over a different frequency, using the ADS index is clearly a better 

choice.  

 

Apart from macroeconomic variables, commodity prices as an indicator of the price 

level of essential goods have been employed in a few asset pricing studies. For 

instance, Hirshleifer (1989) found that the variability of stock market returns would 

                                                        
33 The ADS index was set to start on 29

th
 February 1960, and was re-estimated on 18

th
 August 

2011 due to the full release of manufacturing and trade sales in US.   
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increase the premium of hedging in the commodity market. Buyuksahin et al. (2010) 

failed to find any evidence to support the co-movement between a commodity index 

and stock returns. Buyuksahin and Robe (2011) pointed out that the commodity index 

and stock prices are correlated more closely when hedge funds perform actively in the 

market, while the correlation is much lower during a financial crisis. Hong and Yogo 

(2012) argue that commodity future prices are a good predictor of commodity returns. 

However, there is only weak evidence that commodity prices are a significant factor 

in the stock market.  

 

Moreover, as energy, especially crude oil becomes more valuable, oil prices become 

more of a focus in asset pricing. There are quite a few studies that focus on the 

relationship between the oil price and stock returns. Sadorsky (1999) finds a 

significant negative relationship between oil price shocks and the US stock market. 

Papapetrou (2001) pointed out that oil prices can affect both stock returns and the real 

economy, while stock returns only appear to have a weak influence on oil prices and 

the real economy. Miller and Ratti (2009) state that stock returns and oil prices are 

cointegrated, however, they failed to explain why stock returns and oil prices grew 

apart during several sub-periods. Kilian and Parker (2009) proposed that changes in 

stock prices differ significantly depending on whether the change of oil price is driven 

by supply or demand. They found that the change in stock prices is always consistent 

with the change in oil prices when it was driven by a drop in demand. However, when 

the change in oil price is driven by supply, stock prices move randomly and are 
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difficult to predict. Notably, as one of the key macroeconomic factors, inflation, is not 

employed by the ADS index. This chapter therefore also employs a commodity price 

index as a risk factor to represent the whole commodity market and as a measure of 

inflation.    

 

4.3  Data and data transformation 

The data used in this chapter aims to be consistent with the previous chapter as much 

as possible. The sample size is from March 1960 to December 2010.
34

 The ADS 

index is collected from the Federal Reserve Bank of Philadelphia website. It is a 

dynamic daily index starting from 1
st
 March 1960 to date. This index is derived from 

and updated by the above mentioned six macroeconomic variables to track the real 

business conditions of the US with a mean of zero.
35

 Therefore, if the value of the 

ADS index is below zero, it means that at that point in time, the business conditions 

are worse than average, and vice versa. Since monthly data are used in this chapter, 

the last observation of each month of the ADS index is used.     

 

The commodity price index is provided by the Commodity Research Bureau and 

collected from Datastream. This index is a commodity spot price index measured over 

a monthly frequency and has an average value of zero in year 1967. In order to 

conduct the analysis, continuously compounded returns of the commodity price index 

                                                        
34

 Stock returns are in monthly frequency, and a summary table can be seen in Table A in 

Appendix. 
35

 Subject to the availability of the variables when updating. 
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are derived as follows: 

1ln( ) ln( )t t tCR CP CP   ,                      (4.1) 

whereas CRt is the continuously compounded return of the commodity price index at 

time t, CPt is the commodity price index at time t, and ln is the natural logarithm. 

 

The stock prices and risk-free rate used are the same as those used in the previous 

chapter.
36

 

 

4.4  Econometrics models and methods 

4.4.1  The CPPF model 

Supported by the evidence in the previous chapter, in this section, a CPPF model is to 

be presented. By using the CPPF model, all risk factors (excess return on the market 

portfolio xRM, excess return on the commodity market xCR,
37

 and the ADS business 

index ADS) will be divided into a different number of series depends on the numbers 

of knots selected.  

 

The rule for deciding the number of knots placed follows chapter 3. Moreover, as in 

chapter 3, the placement of knots follows the quintile method proposed by Stone 

(1986).
38

 

                                                        
36

 To comply with the ADS index, the sample starts from 1
st
 March 1960. 

37
 We define xCR = CR - Rf. 

38
 See Table 3.1. 
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The models used in this chapter take full advantage of the CPPF approach, building 

on the classic market model. To estimate the coefficients of the risk factors for each 

stock, the augmented market model can be written as 

( ) ( ) ( )i i i M N i N i N ixR b xR S c xCR S d ADS S          

                         N = 0, 1, 2, 3, 4, 5,                            (4.2) 

where (xRM ʘ SN), (xCR ʘ SN) and (ADS ʘ SN) are all in dimension of (t×n), bi, ci and 

di are the OLS coefficient estimates of market factor, commodity factor and ADS 

factor, respectively, measuring the co-movement between the risk factor and stock 

returns.  

 

The OLS regression is then applied to each stock to get the vectors of estimate 

coefficients, with each coefficient vector having the dimension n×1. Then, using the 

cubic piecewise polynomial matrix multiplied by the vectors of coefficients estimates, 

thetime-varying coefficient estimates for each risk factor of a stock bs, cs, and ds ( Bs, 

Cs and Ds in vector form respectively)
 
can be obtained, as follows: 

Bs,i = SN ∙ Bi,                       (4.3) 

   Cs,i = SN ∙ Ci,                       (4.4) 

   
Ds,i = SN ∙ Di,                       (4.5) 

where Bi Ci and Di are vector forms of bi, ci and di, respectively . It can be seen from 

equations (4.3), (4.4) and (4.5) that Bs,i, Cs,i and Ds,i are products of the piecewise 

polynomial matrix SN with the dimension t×n and the coefficient vector with the 



131 

 

dimension n×1. Therefore, regardless of the number of knots placed in the function, 

the dimension of Bs,i, Cs,i and Ds,i will always be t×1. In other words, the coefficient 

estimates are always time-varying. Since the number of knots varies from 0 to 5, there 

will be 6 groups of bi, ci and di for each stock, one for each corresponding number of 

knots. In order to find the best estimates of  𝑏𝑆
∗, 𝑐𝑆

∗ and  𝑑𝑆
∗ for each stock, AIC is an 

appropriate indicator to decide the best fit of bi, ci and di.  

 

To calculate the downside and upside estimates by using the CPPF model, the same 

approach to conducting  𝑏𝑆
∗, 𝑐𝑆

∗ and  𝑑𝑆
∗ is followed, with equation (4.2) is modified 

accordingly. As in Ang et al. (2006), the downside beta and upside estimates in this 

chapter are calculated as 

cov( , | )

var( | )

i M M M

i

M M M

xR xR xR xR
b

xR xR xR

 



,                       (4.6) 

cov( , | )

var( | )

i M M M

i

M M M

xR xR xR xR
b

xR xR xR

 



,                       (4.7) 

cov( , | )

var( | )

i

i

xR xCR xCR xCR
c

xCR xCR xCR

 



,                    (4.8) 

cov( , | )

var( | )

i

i

xR xCR xCR xCR
c

xCR xCR xCR

 



,                    (4.9)    

cov( , | )

var( | )

i

i

xR ADS ADS ADS
d

ADS ADS ADS

 



,                  (4.10)    

cov( , | )

var( | )

i

i

xR ADS ADS ADS
d

ADS ADS ADS

 



,                  (4.11) 

where 𝑥𝑅𝑀 , 𝑥𝐶𝑅  and 𝐴𝐷𝑆  are the average market excess return, average 

commodity market excess return and average ADS business index value, respectively, 
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over the sample period, and all other notation remains the same. In light of Ang et al. 

(2006), dummy variables (vectors) D1,xRM, D2,xRM, D1,xCR, D2,xCR, D1,ADS and D2,ADS, are 

created and employed for each stock. These dummy variables can be expressed as 

(time subscript t is used) 

D1,xRM = 1 and D2,xRM = 0 if 
,M t MxR xR

,
                (4.12) 

                D1,xCR = 1 and D2,xCR = 0 if  xCRt < 𝑥𝐶𝑅,                (4.13) 

              D1,ADS = 1 and D2,ADS = 0 if  ADSt < 𝐴𝐷𝑆,               (4.14) 

and 

  D1,xRM =0 and D2,xRM = 1 if
,
  xRM,t ≥ 𝑥𝑅𝑀 ,               (4.15) 

                D1,xCR = 0 and D2,xCR = 1 if  xCRt ≥ 𝑥𝐶𝑅,                (4.16) 

              D1,ADS = 0 and D2,ADS = 1 if  ADSt ≥ 𝐴𝐷𝑆.               (4.17) 

It can be seen from equations (4.12) to (4.17) that D1,xRM , D1,xCR and D1,ADS represent 

the downside stock market, commodity market and real business condition dummies, 

respectively, while D2,xRM, D2,xCR and D2,ADS represent the upside ones, respectively.  

 

The CPPF augmented market model can be written as  

1, 2, 1,( ) ( ) ( )i i xRM M N i xRM M N i xCR NxR b D xR S b D xR S c D xCR S         

2, 1, 2,( ) ( ) ( ) +i xCR N i ADS N i ADS N ic D xCR S d D ADS S d D ADS S        

                         N = 0, 1, 2, 3, 4, 5.                       (4.18) 

It can be seen from equation (4.18) that in order to avoid multi-collinearity, there is no 

constant term. The value of D1,xRM ʘxRM is xRM if the value of xRM is below the mean, 

and zero otherwise. On the other hand, the value of D2,xRM ʘxRM is xRM if the value of 
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xRM is equal or above the mean, and zero otherwise.  

 

The parameters bi
-
, ci

-
 and di

-
 are the downside risk estimate coefficients while bi

+
, ci

+
 

and di
+
 are the upside risk estimate coefficients associated with stock i. In terms of the 

matrices, all of the estimates are column vectors with a dimension of n×1. Since the 

number of knots varies from 0 to 5, there will be 6 pairs of downside and upside 

vectors for each stock, with each pair of vectors having an associated AIC value. 

Among the 6 AICs, the lowest one indicates the best fitting pair of estimates, in 

addition, the associated best fitting time-varying downside and upside estimate 

coefficients for stock i, 𝑏𝑆,𝑖
−∗, 𝑐𝑆,𝑖

−∗,  𝑑𝑆,𝑖
−∗ and  𝑏𝑆,𝑖

+∗, 𝑐𝑆,𝑖
+∗,  𝑑𝑆,𝑖

+∗  (𝐁𝐒,𝐢
−∗, 𝐂𝐒,𝐢

−∗, 𝐃𝐒,𝐢
−∗ and 

 𝐁𝐒,𝐢
+∗ , 𝐂𝐒,𝐢

+∗, 𝐃𝐒,𝐢
+∗ in vector form) can be calculated as follows: 

*

, ,

  S i N S iB S B ,                               (4.19) 

*

, ,

  S i N S iC S C ,                           (4.20) 

*

, ,

  S i N S iD S D ,                           (4.21) 

*

, ,

  S i N S iB S B ,                           (4.22) 

*

, ,

  S i N S iC S C ,                           (4.23) 

*

, ,

  S i N S iD S D ,                           (4.24) 

where 𝐁𝐒,𝐢
− , 𝐂𝐒,𝐢

− , 𝐃𝐒,𝐢
−  and  𝐁𝐒,𝐢

+  , 𝐂𝐒,𝐢
+ , 𝐃𝐒,𝐢

+  are the vector forms of bi
-
, ci

-
, di

-
 and bi

+
, 

ci
+
, di

+
. As mentioned in the previous paragraph, regardless of the number of knots 

placed in the function, the dimension of 𝐁𝐒,𝐢
−∗, 𝐂𝐒,𝐢

−∗, 𝐃𝐒,𝐢
−∗ and  𝐁𝐒,𝐢

+∗ , 𝐂𝐒,𝐢
+∗, 𝐃𝐒,𝐢

+∗ will 

always be t×1. 
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4.4.2  The FFF model 

In this section, as an alternative way of generating time-varying risk estimate 

coefficients, the FFF model is presented. By using the FFF model, all risk factors will 

be divided into a different number of series depending on the order number. 

 

In light of Andersen and Bollerslev (1998), Andersen et al. (2000), Bollerslev et al. 

(2000), and Evans and Speight (2010), and following chapter 3, the FFF market 

model employed in this chapter is given by  

, , sin, ,

1

2 2
[ (cos ) (sin )]

P

i i cos p i M p i M

p

p p
xR b n xR b n xR

N N

 




        

 , , sin, ,

1

2 2
[ (cos ) (sin )]

P

cos p i p i

p

p p
c n xCR c n xCR

N N

 



       

, , sin, ,

1

2 2
[ (cos ) (sin )]

P

cos p i p i i

p

p p
d n ADS d n ADS

N N

 




       ,    (4.25) 

whereas αi is the constant term, bcos,p,i , bsin,p,i , ccos,p,i , csin,p,i , dcos,p,i and dsin,p,i ,are the 

coefficients to be estimated of each factor for stock i, N is the total number of 

observations of stock i, n is the order of observations with n = {1, 2, 3…T}, p is the 

order of the FFF model and the remaining notation remains the same. Following 

chapter 3, according to Andersen and Bollerslev (1998), the order of the FFF could 

vary from 1 to infinity. However, in order to improve the efficiency of the estimates, 

we follow their lead and chose 4 as the appropriate order. In this chapter, orders from 

1 to 4 are considered. 
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The OLS regression is then applied to each stock to obtain the estimated risk factor 

coefficient vector produced from equation (4.25). The AIC is then computed for each 

regression. Since the orders of 1 to 4 are considered, there are 4 AICs for each stock. 

Taking advantage of the nature of the AIC, the regression that produces the lowest 

AIC gives the best fit. To calculate the best fitting time-varying coefficients 𝑏𝐹,𝑖
∗ , 𝑐𝐹,𝑖

∗  

and  𝑑𝐹,𝑖
∗  for each stock, the minimum AIC estimated vector for stock i are calculated 

as follows:  

*

, , , sin, ,

1

2 2
( cos sin )

P

F i cos p i p i

p

p p
b b n b n

N N

 



    ,              (4.26) 

*

, , , sin, ,

1

2 2
( cos sin )

P

F i cos p i p i

p

p p
c c n c n

N N

 



    ,              (4.27) 

*

, , , sin, ,

1

2 2
( cos sin )

P

F i cos p i p i

p

p p
d d n d n

N N

 



    .              (4.28) 

 

In order to calculate the downside and upside estimates by using the above FFF model, 

the same procedure used above is followed. The dummy variables D1,xRM, D2,xRM, 

D1,xCR, D2,xCR, D1,ADS and D2,ADS used in equation (4.18) are created and employed 

again for each stock in the new FFF model. The new model is defined as 

cos, , 1, sin, , 1,

1

2 2
[ (cos ) (sin )]

P

i p i M xRM p i M xRM

p

p p
xR b n xR D b n xR D

N N

  



       

cos, , 2, sin, , 2,

1

2 2
[ (cos ) (sin )]

P

p i M xRM p i M xRM

p

p p
b n xR D b n xR D

N N

  



       

cos, , 1, sin, , 1,

1

2 2
[ (cos ) (sin )]

P

p i xCR p i xCR

p

p p
c n xCR D c n xCR D

N N

  



       

cos, , 2, sin, , 2,

1

2 2
[ (cos ) (sin )]

P

p i xCR p i xCR

p

p p
c n xCR D c n xCR D

N N

  



       



136 

 

cos, , 1, sin, , 1,

1

2 2
[ (cos ) (sin )]

P

p i ADS p i ADS

p

p p
d n ADS D d n ADS D

N N

  



       

cos, , 2, sin, , 2,

1

2 2
[ (cos ) (sin )]

P

p i ADS p i ADS i

p

p p
d n ADS D d n ADS D

N N

 
 



       . 

(4.29) 

Whereas 𝑏𝑐𝑜𝑠,𝑝,𝑖
− , 𝑏𝑠𝑖𝑛,𝑝,𝑖

− , 𝑐𝑐𝑜𝑠,𝑝,𝑖
− , 𝑐𝑠𝑖𝑛,𝑝,𝑖

− , 𝑑𝑐𝑜𝑠,𝑝,𝑖
− , and 𝑑𝑠𝑖𝑛,𝑝,𝑖

− , are the downside 

coefficients to be estimated for stock i, while 𝑏𝑐𝑜𝑠,𝑝,𝑖
+ , 𝑏𝑠𝑖𝑛,𝑝,𝑖

+ , 𝑐𝑐𝑜𝑠,𝑝,𝑖
+ , 𝑐𝑠𝑖𝑛,𝑝,𝑖

+ , and 

𝑑𝑐𝑜𝑠,𝑝,𝑖
+ , and 𝑑𝑠𝑖𝑛,𝑝,𝑖

+  are the upside coefficients to be estimated for stock i. For the 

same reason as for equation (4.24), there is no conventional constant term in the 

model to avoid multi-collinearity. Since the order of the FFF examined varies from 1 

to 4, there will be 4 groups of estimated risk factor coefficient vectors for each stock. 

The best fit time-varying downside and upside estimates for stock i,  𝑏𝐹,𝑖
−∗,  𝑏𝐹,𝑖

+∗, 𝑐𝐹,𝑖
−∗,  

𝑐𝐹,𝑖
+∗, 𝑑𝐹,𝑖

−∗ and 𝑑𝐹,𝑖
+∗ can be calculated as follows 

*

, cos, , cos, ,

1

2 2
( cos sin )

P

F i p i p i

p

p p
b b n b n

N N

   



    ,              (4.30) 

*

, cos, , cos, ,

1

2 2
( cos sin )

P

F i p i p i

p

p p
b b n b n

N N

   



    ,                (4.31) 

*

, cos, , cos, ,

1

2 2
( cos sin )

P

F i p i p i

p

p p
c c n c n

N N

   



    ,              (4.32) 

*

, cos, , cos, ,

1

2 2
( cos sin )

P

F i p i p i

p

p p
c c n c n

N N

   



    ,              (4.33) 

*

, cos, , cos, ,

1

2 2
( cos sin )

P

F i p i p i

p

p p
d d n d n

N N

   



    ,             (4.34) 

*

, cos, , cos, ,

1

2 2
( cos sin )

P

F i p i p i

p

p p
d d n d n

N N

   



    .               (4.35) 

It can be seen from equation (4.30) to (4.35) that regardless the order of the model, 
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𝑏𝐹,𝑖
−∗,  𝑏𝐹,𝑖

+∗, 𝑐𝐹,𝑖
−∗, 𝑐𝐹,𝑖

+∗, 𝑑𝐹,𝑖
−∗ and 𝑑𝐹,𝑖

+∗ always have the dimension t×1. 

 

4.5  Empirical results 

Based on the methods explained in the previous section, the best estimates for both 

the CPPF model and the FFF model are obtained. To summarize the estimation details, 

distribution of the best fitting knots and orders are presented in Table 4.1 and Table 

4.2. 

 

Table 4.1  Knots of CPPF Model Selected to Construct Best Fit Estimates     

This table reports the number and percentage of stocks with different knots to 

construct the best fit estimates of the CPPF model 

Knots 

 

0 1 2  3  4 5 

Classic estimates  Number of Stocks 7307 587 288 328 824 4223 

 

 

Percentage of 

Whole sample 

 

53.90% 

 

4.33% 

 

2.12% 

 

2.42% 

 

6.08% 

 

31.15% 

Downside and 

upside estimates 

Number of Stocks 

 

3923 

 

 350 

 

 494 

 

 909 

 

 1981 

 

 5900 

 

 

Percentage of 

Whole sample 

28.94% 

 

2.58% 

 

3.64% 

 

6.71% 

 

14.61% 

 

43.52% 

 

 

For the CPPF model, it can be seen from Table 4.1 that 7307 stocks (53.90% of the 

sample) construct  𝑏𝑆
∗, 𝑐𝑆

∗ and  𝑑𝑆
∗, when no knots are placed, when the number of 

knots varies from 1 to 4, a much lower number of best fit estimates are produced. 

However, 4223 stocks obtain the best estimates with 5 knots placed (31.15% of the 

sample). On the other hand, to construct downside and upside risk factor coefficients, 
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unlike the classic risk factor estimate coefficients, no knots are used for only 3923 

stocks (28.94% of the sample). Similar to classic risk estimates, a much lower number 

of best fit estimates are produced when 1 to 4 knots are placed. Surprisingly, 5900 

stocks obtain best fit estimates when 5 knots are placed (more than 40% of the 

sample). Compared with the previous chapter, more stocks produce best fit downside 

and upside risk coefficients when 5 knots are placed. It shows that in a multi-factor 

model, it is possible that more knots are needed.
39

  

 

Table 4.2  The order of the FFF model selected to construct best fit estimates 

 

This table reports the number and percentage of stocks in different order to construct 

the best fit estimates of the FFF model 

 

Order 

 

1 2 3  4  

Classic estimates Number of Stocks 8999 2164 1205 1189 

 

 

Percentage of 

Whole sample 

66.38% 15.96% 8.89% 8.77% 

Downside and 

upside estimates 

Number of Stocks 

 

9079 

 

1414 

 

742 

 

2322 

 

 

Percentage of 

Whole sample 

66.97% 

 

10.43% 

 

5.47% 

 

17.13% 

 

 

For the FFF model, it is clear from Table 4.2 that to construct 𝑏𝐹
∗ , 𝑐𝐹

∗  and  𝑑𝐹
∗ , 8999 

stocks used order 1 (66.38% of the sample). Stocks with orders 2, 3 and 4, however, 

produce a lower number of best estimates. It is more obvious when constructing 

downside and upside estimates , 9079 stocks obtain the best estimates with order 1 

(66.97% of the sample), 1414 stocks with order 2 (10.43% of the sample), and 742 
                                                        
39

 Only 12% of stocks produced best fit downside and upside estimate coefficients when 5 knots 

are placed in the chapter 3. 
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and 2322 stocks with orders 3 and 4 produced the best estimates (5.47% and 17.13% 

of the sample, respectively).  

 

Furthermore, the relations among stock returns and classic, downside and upside 

estimates of both the CPPF model and the FFF model betas are examined. In order to 

present the relationship in a cross-sectional fashion, following the methodology used 

in the previous chapter, stocks at each point in time are cross-sectionally assigned to 

five portfolios according to the value of the risk estimates. Since the classic, downside 

and upside beta estimates are not independent of each other due to the nature of the 

calculation, to distinguish the effects among them, more statistics are introduced. 

Specifically, we consider, for the CPPF model, the relative estimates denoted by 

(𝑏𝑆
−∗- 𝑏𝑆

∗), (𝑐𝑆
−∗- 𝑐𝑆

∗) and (𝑑𝑆
−∗- 𝑑𝑆

∗) for the downside market, and (𝑏𝑆
+∗- 𝑏𝑆

∗), (𝑐𝑆
+∗- 𝑐𝑆

∗) 

and (𝑑𝑆
+∗- 𝑑𝑆

∗) for the upside market. Similarly, for the FFF model, (𝑏𝐹
−∗- 𝑏𝐹

∗ ), (𝑐𝐹
−∗- 𝑐𝐹

∗) 

and (𝑑𝐹
−∗- 𝑑𝐹

∗ ) for the downside market, and (𝑏𝐹
+∗- 𝑏𝐹

∗ ), (𝑐𝐹
+∗- 𝑐𝐹

∗) and (𝑑𝐹
+∗- 𝑑𝐹

∗ ) for the 

upside market are computed. Introducing these statistics aims to illustrate the impact 

of downside and upside estimates after controlling for classic estimates. 

 

To sort the portfolio, at each point in time, all stocks are sorted into five quintiles 

according to the value of the target estimate. When stocks are sorted into 5 portfolios 

at each point of time (since monthly data are used in this chapter, and the whole 

sample is from March 1960 to December 2010, so there should be 610 time points), 

the equally weighted average of the estimate for each portfolio and the corresponding 
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same period average annualized stock returns and average values of the risk estimates 

are calculated. The results of both models are summarized in Table 4.3 to Table 4.8. 

 

4.5.1  Empirical results: the CPPF model 

For the CPPF model, Table 4.3 presents the results pertaining to the relationship 

between annualized excess stock returns and estimates of market beta. It can be seen 

from Panel 1 that when stocks are sorted by 𝑏𝑆
∗, portfolio 1 has an average 𝑏𝑆

∗ value 

of -0.40, while on the other hand, portfolio 5 shows an average 𝑏𝑆
∗ value of 2.15. 

Consistent with the classic literature, the average annualized return of each portfolio 

increases with 𝑏𝑆
∗, portfolio 1 yields a return of 4.40% while portfolio 5 yields a 

return of 20.74%. The average 𝑏𝑆
−∗ and  𝑏𝑆

+∗ values of each portfolio follow the 

same trend as 𝑏𝑆
∗, with average 𝑏𝑆

−∗ equaling -0.91 in portfolio 1 and increasing to 

1.81 in portfolio 5. Similarly, average 𝑏𝑆
+∗ is -0.92 in portfolio 1 and increases to 

2.01 in portfolio 5. 

 

When stocks are sorted by 𝑏𝑆
−∗, it can be seen from Panel 2 that the average returns 

generally drop from 14.02% to 8.19%, however from portfolio 2 to portfolio 4, returns 

present a U-shaped pattern. When stocks are sorted by  𝑏𝑆
+∗, both returns and 𝑏𝑆

∗ 

increase dramatically from portfolio 1 to portfolio 5, with a negligible drop in 𝑏𝑆
∗ in 

portfolio 2. 𝑏𝑆
−∗ slumps from 1.82 to -1.41 along with the increase of 𝑏𝑆

+∗.  
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Table 4.3  Excess Stock Returns Sorted by Stock Market Factor Loadings of 

CPPF Model  

This table presents the relationship between excess stock returns and stock market factor loadings 

associated with the CPPF model. The column labeled ―return‖ reports the annual average stock  

returns over the one month T-bill rate. ―High-Low‖ reports the difference between portfolio 5 and 

portfolio 1. 

  Panel 1  Stocks Sorted by 𝑏𝑆
∗ 

 
 Panel 2  Stocks Sorted by 𝑏𝑆

−∗ 

Portfolio Return 𝑏𝑆
∗ 𝑏𝑆

−∗ 𝑏𝑆
+∗ 

 
Portfolio Return 𝑏𝑆

∗ 𝑏𝑆
−∗ 𝑏𝑆

+∗ 

1 Low 4.40% -0.40 -0.91 -0.92 
 

1 Low 14.02% 1.06 -1.03 1.62 

2 7.62% 0.62 0.91 0.55 
 

2 9.62% 0.72 0.22 0.96 

3 9.41% 0.99 1.29 1.06 
 

3 10.40% 1.01 1.02 0.98 

4 11.64% 1.44 1.53 1.51 
 

4 11.56% 1.40 1.99 0.92 

5 High 20.74% 2.15 1.81 2.01 
 

5 High 8.19% 1.61 2.15 -1.94 

High-Low 16.34% 2.55 2.72 2.93 
 

High-Low -5.83% 0.55 3.18 -3.56 

           

    Panel 3  Stocks Sorted by 𝑏𝑆
+∗ 

 
  Panel 4  Stocks Sorted by (𝑏𝑆

−∗ - 𝑏𝑆
∗) 

Portfolio Return 𝑏𝑆
∗ 𝑏𝑆

−∗ 𝑏𝑆
+∗ 

 
Portfolio Return 𝑏𝑆

∗ 𝑏𝑆
−∗ 𝑏𝑆

+∗ 

1 Low 5.23% 0.66 1.82 -0.39 
 

1 Low 14.39% 1.98 -1.74 1.84 

2 7.54% 0.63 1.13 0.10 
 

2 13.54% 1.17 0.48 1.54 

3 10.05% 0.95 0.97 0.91 
 

3 9.88% 0.94 0.98 0.90 

4 12.64% 1.43 1.03 1.85 
 

4 8.71% 0.98 1.77 0.43 

5 High 18.34% 2.13 -1.41 2.30 
 

5 High 7.27% -0.26 2.46 -1.39 

High-Low 13.11% 1.47 -3.23 2.68 
 

High-Low -7.13% -2.24 4.20 -3.24 

           

  Panel 5  Stocks Sorted by (𝑏𝑆
+∗ - 𝑏𝑆

∗) 
 

 Panel 6  Stocks Sorted by (𝑏𝑆
−∗ - 𝑏𝑆

+∗) 

Portfolio Return 𝑏𝑆
∗ 𝑏𝑆

−∗ 𝑏𝑆
+∗ 

 
Portfolio Return 𝑏𝑆

∗ 𝑏𝑆
−∗ 𝑏𝑆

+∗ 

1 Low 8.23% 1.70 1.93 -2.06 
 

1 Low 14.76% 1.64 -1.79 2.19 

2 9.15% 1.07 1.61 0.31 
 

2 12.88% 1.15 0.50 1.63 

3 10.05% 0.94 0.97 0.91 
 

3 9.94% 0.97 0.98 0.91 

4 11.86% 1.08 0.64 1.66 
 

4 8.85% 0.99 1.76 0.35 

5 High 14.50% -0.46 -1.47 2.24 
 

5 High 7.36% -1.06 2.11 -1.94 

High-Low 6.28% -2.16 -3.40 4.30 
 

High-Low -7.40% -2.70 3.90 -4.13 
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When controlling for 𝑏𝑆
∗, returns drop from 14.39% to 7.27% when stocks are sorted 

by (𝑏𝑆
−∗- 𝑏𝑆

∗). In contrast, it is clear from Panel 5 that returns increase gradually from 

8.23% to 14.5% when stocks are sorted by (𝑏𝑆
+∗- 𝑏𝑆

∗). And it can be seen from Panel 6 

that only 𝑏𝑆
−∗ increases from -1.79 to 2.11, while returns drop from 14.76% to 7.36%. 

 

Table 4.4 presents the relationship between excess stock returns and estimates of 

commodity market risk. It can be seen from Panel 1 that when stocks are sorted by 𝑐𝑆
∗, 

portfolio 1 has an average 𝑐𝑆
∗ value of -1.82. On the other hand, portfolio 5 shows an 

average 𝑐𝑆
∗ value of 1.78. Unlike Panel 1 in Table 4.4, the average annualized return 

of each portfolio declines along with the increase of 𝑐𝑆
∗, portfolio 1 yields a return of 

15.31% while portfolio 5 yields a return of 7.85%. The average 𝑐𝑆
−∗ and  𝑐𝑆

+∗ of 

each portfolio follows the same trend as 𝑐𝑆
∗, the average 𝑐𝑆

−∗ is -1.43 in portfolio 1 

and increases to 1.8 in portfolio 5. Similarly, the average 𝑐𝑆
+∗ is -1.52 in portfolio 1 

and increases to 2.22 in portfolio 5. 

 

When stocks are sorted by 𝑐𝑆
−∗, it can be seen from Panel 2 that the average returns 

decrease from 16.66% to 5.82%. 𝑐𝑆
∗ presents a reversed U-shaped pattern along with 

the increase of 𝑐𝑆
−∗, starting at -1.36 in portfolio 1 and finishing at 0.26 in portfolio 5, 

reaching a peak at 0.56 in portfolio 4. Moreover, 𝑐𝑆
+∗ drops dramatically from 1.71 to 

-1.94. When stocks are sorted by 𝑐𝑆
+∗, returns increase dramatically from portfolio 1 to 

portfolio 5 and 𝑐𝑆
∗ increases gradually from portfolio 1 to portfolio 4, with a drop in 

portfolio 5. While 𝑐𝑆
−∗ slumps from 1.43 to -0.64 along with the increase of 𝑐𝑆

+∗. 
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Table 4.4  Excess Stock Returns Sorted by Commodity Market Factor Loadings 

of CPPF Model 

This table presents the relationship between excess stock returns and commodity market factor 

loadings associated with the CPPF model. The column labeled ―return‖ reports the annual average 

stock returns over the one month T-bill rate. ―High-Low‖ reports the difference between portfolio 

5 and portfolio 1. 

 Panel 1  Stocks Sorted by 𝑐𝑆
∗ 

 
Panel 2  Stocks Sorted by 𝑐𝑆

−∗ 

Portfolio Return 𝑐𝑆
∗ 𝑐𝑆

−∗ 𝑐𝑆
+∗ 

 
Portfolio Return 𝑐𝑆

∗ 𝑐𝑆
−∗ 𝑐𝑆

+∗ 

1 Low 15.31% -1.82 -1.43 -1.52 
 

1 Low 16.66% -1.36 -1.45 1.71 

2 11.29% -0.34 -1.29 -1.28 
 

2 12.49% -0.19 -1.30 0.49 

3 10.17% 0.10 -0.57 -1.01 
 

3 10.00% 0.07 0.05 0.15 

4 9.18% 0.60 0.27 1.95 
 

4 8.81% 0.56 1.61 -0.35 

5 High 7.85% 1.78 1.80 2.22 
 

5 High 5.82% 0.26 2.17 -1.94 

High-Low -7.46% 3.60 3.23 3.75 
 

High-Low -10.84% 1.62 3.62 -3.65 

           

  Panel 3  Stocks Sorted by 𝑐𝑆
+∗ 

 
   Panel 4  Stocks Sorted by (𝑐𝑆

−∗ - 𝑐𝑆
∗) 

Portfolio Return 𝑐𝑆
∗ 𝑐𝑆

−∗ 𝑐𝑆
+∗ 

 
Portfolio Return 𝑐𝑆

∗ 𝑐𝑆
−∗ 𝑐𝑆

+∗ 

1 Low 7.87% -1.03 1.43 -1.41 
 

1 Low 11.14% 1.83 -1.46 1.35 

2 8.74% -0.25 0.84 -1.06 
 

2 10.80% 0.34 0.67 1.19 

3 10.02% 0.07 -0.04 0.09 
 

3 10.17% 0.10 1.18 1.09 

4 12.45% 0.35 -0.48 1.72 
 

4 10.14% -0.09 1.50 0.15 

5 High 14.71% 0.19 -0.64 1.92 
 

5 High 11.53% -1.83 1.94 -0.78 

High-Low 6.84% 1.22 -2.07 3.33 
 

High-Low 0.39% -3.67 3.40 -2.12 

           

   Panel 5  Stocks Sorted by (𝑐𝑆
+∗ - 𝑐𝑆

∗) 
 

    Panel 6  Stocks Sorted by (𝑐𝑆
−∗ - 𝑐𝑆

+∗) 

Portfolio Return 𝑐𝑆
∗ 𝑐𝑆

−∗ 𝑐𝑆
+∗ 

 
Portfolio Return 𝑐𝑆

∗ 𝑐𝑆
−∗ 𝑐𝑆

+∗ 

1 Low 7.96% 1.58 1.61 -1.94 
 

1 Low 14.36% -0.85 -1.63 1.78 

2 7.56% 0.26 0.67 -1.46 
 

2 13.48% 0.13 -1.06 1.48 

3 10.27% 0.07 -0.34 0.10 
 

3 10.26% 0.05 0.02 0.10 

4 13.60% 0.02 -0.87 1.56 
 

4 8.02% 0.15 1.38 -1.35 

5 High 14.39% -1.58 -1.25 1.95 
 

5 High 7.67% -0.14 1.97 -1.71 

High-Low 6.44% -3.16 -2.86 3.89 
 

High-Low -6.69% 0.71 3.61 -3.49 
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To control for 𝑐𝑆
∗, when stocks are sorted by (𝑐𝑆

−∗- 𝑐𝑆
∗), returns present a U-shaped 

pattern but with little change in its value, starting at 11.14% and finishing at 11.53%. 

In contrast, it is clear from Panel 5 that returns increase steadily from 7.96% to 14.39% 

with a negligible drop in portfolio 2 when stocks are sorted by (𝑐𝑆
+∗- 𝑐𝑆

∗). In Panel 6, 

(𝑐𝑆
−∗- 𝑐𝑆

+∗) is employed for the same reason mentioned in Table 4.4. It can be seen 

from Panel 6 that only 𝑐𝑆
−∗ increases obviously from -1.63 to 1.97, while returns and 

 𝑐𝑆
+∗ are decreasing and it is difficult to trace the pattern of 𝑐𝑆

∗. 

 

Table 4.5 presents the relationship between excess stock returns and estimates of ADS 

risk. It can be seen from Panel 1 that when stocks are sorted by 𝑑𝑆
∗, portfolio 1 has an 

average 𝑑𝑆
∗ value of -0.89 and portfolio 5 shows an average 𝑑𝑆

∗ value of 0.89. The 

average annualized return of each portfolio shows a U-shaped pattern along with the 

increase of 𝑑𝑆
∗. Portfolio 1 yields a return of 10.6% while portfolio 5 is at a peak of 

12.11%, and there is a slight drop in portfolio 2. The average 𝑑𝑆
−∗ and  𝑑𝑆

+∗ values 

of each portfolio follows the same trend as 𝑑𝑆
∗, average 𝑑𝑆

−∗ is -0.79 in portfolio 1 

and increases to 0.82 in portfolio 5. Also, average 𝑑𝑆
+∗ is -0.53 in portfolio 1 and 

increases to 1.23 in portfolio 5.  

 

When stocks are sorted by 𝑑𝑆
−∗, it can be seen from Panel 2 that average returns 

decrease from 16.93% to 4.83%. 𝑑𝑆
∗ and 𝑑𝑆

+∗ both increase gradually along with the 

increase of 𝑑𝑆
−∗ . When stocks are sorted by 𝑑𝑆

+∗ , both returns and 𝑑𝑆
∗  increase 

steadily from portfolio 1 to portfolio 5.   
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Table 4.5  Excess Stock Returns Sorted by Business Conditions Factor Loadings 

of CPPF Model  

This table presents the relationship between excess stock returns and business conditions factor 

loadings associated with the CPPF model. The column labeled ―return‖ reports the annual average 

stock returns over the one month T-bill rate. ―High-Low‖ reports the difference between portfolio 

5 and portfolio 1. 

Panel 1  Stocks Sorted by 𝑑𝑆
∗ 

 
Panel 2  Stocks Sorted by 𝑑𝑆

−∗ 

Portfolio Return 𝑑𝑆
∗ 𝑑𝑆

−∗ 𝑑𝑆
+∗ 

 
Portfolio Return 𝑑𝑆

∗ 𝑑𝑆
−∗ 𝑑𝑆

+∗ 

1 Low 10.60% -0.89 -0.79 -0.53 
 

1 Low 16.93% -0.04 -0.73 -0.34 

2 10.15% -0.02 -0.13 -0.20 
 

2 13.32% -0.01 -0.12 -0.07 

3 10.28% 0.00 -0.03 0.57 
 

3 10.15% 0.00 0.01 0.13 

4 10.66% 0.01 0.48 0.77 
 

4 8.55% 0.01 0.10 0.29 

5 High 12.11% 0.89 0.82 1.23 
 

5 High 4.83% 0.05 1.11 1.45 

High-Low 1.51% 1.78 1.62 1.76 
 

High-Low -12.11% 0.09 1.84 1.79 

           

   Panel 3  Stocks Sorted by 𝑑𝑆
+∗ 

 
Panel 4  Stocks Sorted by (𝑑𝑆

−∗ - 𝑑𝑆
∗) 

Portfolio Return 𝑑𝑆
∗ 𝑑𝑆

−∗ 𝑑𝑆
+∗ 

 
Portfolio Return 𝑑𝑆

∗ 𝑑𝑆
−∗ 𝑑𝑆

+∗ 

1 Low 4.54% -0.06 1.60 -0.36 
 

1 Low 14.52% 0.47 -0.59 1.61 

2 8.95% -0.01 0.85 -0.13 
 

2 13.70% 0.01 -0.11 1.26 

3 10.36% 0.00 0.25 0.01 
 

3 10.47% 0.00 -0.01 1.19 

4 12.24% 0.00 0.10 0.12 
 

4 8.21% -0.01 0.10 0.24 

5 High 17.70% 0.07 -1.45 1.53 
 

5 High 6.88% -0.46 1.80 0.05 

High-Low 13.15% 0.12 -3.05 1.89 
 

High-Low -7.64% -0.93 2.39 -1.56 

           

 Panel 5  Stocks Sorted by (𝑑𝑆
+∗ - 𝑑𝑆

∗) 
 

Panel 6  Stocks Sorted by (𝑑𝑆
−∗ - 𝑑𝑆

+∗) 

Portfolio Return 𝑑𝑆
∗ 𝑑𝑆

−∗ 𝑑𝑆
+∗ 

 
Portfolio Return 𝑑𝑆

∗ 𝑑𝑆
−∗ 𝑑𝑆

+∗ 

1 Low 8.02% 0.61 -1.02 -1.23 
 

1 Low 12.81% 0.01 -1.73 1.71 

2 9.25% 0.00 0.59 -0.13 
 

2 13.75% -0.01 -0.11 1.29 

3 10.28% 0.00 1.30 0.01 
 

3 10.39% 0.00 -0.01 0.01 

4 12.02% -0.01 0.36 1.12 
 

4 8.48% 0.00 1.09 -0.12 

5 High 14.21% -0.60 -1.07 1.61 
 

5 High 8.34% 0.00 1.71 -1.55 

High-Low 6.19% -1.21 -0.05 2.85 
 

High-Low -4.47% -0.01 3.45 -3.26 
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However, 𝑑𝑆
−∗ slumps from 1.6 to -1.45 along with the increase of 𝑑𝑆

+∗. When stocks 

are sorted by (𝑑𝑆
−∗- 𝑑𝑆

∗), all returns, 𝑑𝑆
∗ and 𝑑𝑆

+∗ drop gradually while 𝑑𝑆
−∗ increases 

substantially. In contrast, it is clear from Panel 5 that returns increase steadily from 

8.02% to 14.21% when stocks are sorted by (𝑑𝑆
+∗- 𝑑𝑆

∗). Meanwhile, 𝑑𝑆
∗ decreases 

along with the increase of 𝑑𝑆
+∗, while 𝑑𝑆

−∗ presents a reversed U-shaped pattern. In 

Panel 6, (𝑑𝑆
−∗- 𝑑𝑆

+∗) is employed to sort stocks. It can be seen from this panel that 

only 𝑑𝑆
−∗ increases obviously from -1.73 to 1.71, while returns and  𝑑𝑆

+∗ decrease in 

general and a U-shaped pattern is presented in 𝑑𝑆
∗. 

 

Overall, the results are consistent with previous chapters, for stock market risk and 

ADS index risk, beta and upside beta have a positive impact on stock returns, while 

downside beta shows a negative impact. For commodity market risk, the beta shows a 

reverse impact on stock returns compared to the other two risk factors, while 

downside and upside beta follow the same impact on stock returns as the other two 

factors. 

  

4.5.2  Empirical result of the FFF model 

A similar approach applies to the FFF-based estimates. Table 4.6 to Table 4.8  

presents the risk-return relationship between annualized excess stock returns and 

estimates of stock market risk, commodity market risk and ADS index risk, 

respectively. 
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Table 4.6  Excess Stock Returns Sorted by Stock Market Factor 

Loadings of the FFF Model  

This table presents the relationship between excess stock returns and stock market 

factor loadings associated with the FFF model. The column labeled ―return‖ reports the 

annual average stock returns over the one month T-bill rate. ―High-Low‖ reports the 

difference between portfolio 5 and portfolio 1.  

Panel 1  Stocks Sorted by 𝑏𝐹
∗  

 
  Panel 2  Stocks Sorted by 𝑏𝐹

−∗ 

Portfolio Return 𝑏𝐹
∗  𝑏𝐹

−∗ 𝑏𝐹
+∗ 

 
Portfolio Return 𝑏𝐹

∗  𝑏𝐹
−∗ 𝑏𝐹

+∗ 

1 Low 5.24% -1.09 -0.78 -0.87 
 

1 Low 13.83% -0.50 -2.08 0.36 

2 8.22% -0.33 -0.26 -0.27 
 

2 10.58% -0.20 -0.43 -0.05 

3 9.28% -0.01 0.00 -0.03 
 

3 9.92% 0.00 0.00 0.00 

4 10.98% 0.32 0.27 0.22 
 

4 9.86% 0.20 0.43 0.05 

5 High 20.08% 1.11 0.79 0.94 
 

5 High 9.59% 0.51 2.08 -0.36 

High-Low 14.84% 2.20 1.57 1.81 
 

High-Low -4.23% 1.01 4.16 -0.72 

           

     Panel 3  Stocks Sorted by 𝑏𝐹
+∗ 

 
   Panel 4  Stocks Sorted by (𝑏𝐹

−∗ - 𝑏𝐹
∗ ) 

Portfolio Return 𝑏𝐹
∗  𝑏𝐹

−∗ 𝑏𝐹
+∗ 

 
Portfolio Return 𝑏𝐹

∗  𝑏𝐹
−∗ 𝑏𝐹

+∗ 

1 Low 4.05% -0.58 0.42 -1.93 
 

1 Low 18.92% 0.27 -1.68 1.07 

2 8.31% -0.22 -0.05 -0.39 
 

2 12.82% 0.03 -0.30 0.22 

3 10.20% -0.02 0.00 -0.01 
 

3 10.33% -0.01 -0.01 -0.01 

4 11.75% 0.20 0.04 0.38 
 

4 8.21% -0.05 0.29 -0.24 

5 High 19.46% 0.62 -0.41 1.96 
 

5 High 3.51% -0.24 1.70 -1.04 

High-Low 15.40% 1.20 -0.83 3.89 
 

High-Low -15.41% -0.50 3.38 -2.11 

           

    Panel 5  Stocks Sorted by (𝑏𝐹
+∗ - 𝑏𝐹

∗ ) 
 

   Panel 6  Stocks Sorted by (𝑏𝐹
−∗ - 𝑏𝐹

+∗) 

Portfolio Return 𝑏𝐹
∗  𝑏𝐹

−∗ 𝑏𝐹
+∗ 

 
Portfolio Return 𝑏𝐹

∗  𝑏𝐹
−∗ 𝑏𝐹

+∗ 

1 Low 8.17% 0.17 1.08 -1.53 
 

1 Low 17.52% 0.08 -1.63 1.50 

2 9.49% 0.08 0.27 -0.23 
 

2 12.81% -0.01 -0.30 0.23 

3 9.66% 0.00 -0.01 -0.01 
 

3 10.01% -0.01 -0.01 -0.01 

4 11.74% -0.09 -0.28 0.23 
 

4 8.56% 0.00 0.30 -0.24 

5 High 14.73% -0.15 -1.06 1.54 
 

5 High 4.88% -0.05 1.65 -1.48 

High-Low 6.56% -0.32 -2.14 3.07 
 

High-Low -12.64% -0.13 3.28 -2.98 
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Table 4.7  Excess Stock Returns Sorted by Commodity Market Factor Loadings 

of the FFF Model  

This table presents the relationship between excess stock returns and the commodity market factor 

loadings associated with the FFF model. The column labeled ―return‖ reports the annual average 

stock returns over the one month T-bill rate. ―High-Low‖ reports the difference between portfolio 

5 and portfolio 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      Panel 1  Stocks Sorted by 𝑐𝐹
∗  

 
Panel 2  Stocks Sorted by 𝑐𝐹

−∗ 

Portfolio Return 𝑐𝐹
∗  𝑐𝐹

−∗ 𝑐𝐹
+∗ 

 
Portfolio Return 𝑐𝐹

∗  𝑐𝐹
−∗ 𝑐𝐹

+∗ 

1 Low 14.96% -1.57 -1.36 -1.03 
 

1 Low 16.32% -0.76 -3.51 1.00 

2 11.37% -0.38 -0.37 -0.26 
 

2 11.89% -0.22 -0.60 0.15 

3 10.06% 0.00 -0.01 0.00 
 

3 10.29% 0.00 -0.01 0.02 

4 8.93% 0.37 0.36 0.22 
 

4 9.53% 0.22 0.59 -0.16 

5 High 8.48% 1.58 1.38 1.08 
 

5 High 5.75% 0.75 3.53 -1.00 

High-Low -6.48% 3.15 2.73 2.11 
 

High-Low -10.57% 1.51 7.04 -2.00 

           

             Panel 3  Stocks Sorted by 𝑐𝐹
+∗ 

 
         Panel 4  Stocks Sorted by (𝑐𝐹

−∗ - 𝑐𝐹
∗ ) 

Portfolio Return 𝑐𝐹
∗  𝑐𝐹

−∗ 𝑐𝐹
+∗ 

 
Portfolio Return 𝑐𝐹

∗  𝑐𝐹
−∗ 𝑐𝐹

+∗ 

1 Low 6.88% -0.54 0.97 -4.06 
 

1 Low 14.24% 0.21 -3.01 1.85 

2 9.80% -0.16 0.12 -0.59 
 

2 11.17% 0.01 -0.49 0.41 

3 10.54% 0.00 0.00 0.00 
 

3 10.38% 0.00 -0.01 0.02 

4 11.39% 0.15 -0.15 0.57 
 

4 10.11% -0.01 0.48 -0.40 

5 High 15.17% 0.55 -0.94 4.07 
 

5 High 7.87% -0.19 3.03 -1.87 

High-Low 8.29% 1.10 -1.91 8.13 
 

High-Low -6.38% -0.40 6.04 -3.73 

           

       Panel 5  Stocks Sorted by (𝑐𝐹
+∗ - 𝑐𝐹

∗ ) 
 

    Panel 6  Stocks Sorted by (𝑐𝐹
−∗ - 𝑐𝐹

+∗) 

Portfolio Return 𝑐𝐹
∗  𝑐𝐹

−∗ 𝑐𝐹
+∗ 

 
Portfolio Return 𝑐𝐹

∗  𝑐𝐹
−∗ 𝑐𝐹

+∗ 

1 Low 5.23% 0.35 1.77 -3.61 
 

1 Low 16.34% -0.09 -2.77 3.43 

2 9.15% 0.12 0.41 -0.45 
 

2 12.01% -0.06 -0.50 0.44 

3 10.29% -0.01 -0.02 0.00 
 

3 10.47% -0.01 -0.01 0.00 

4 12.21% -0.13 -0.42 0.44 
 

4 9.47% 0.05 0.48 -0.46 

5 High 

High-Low 

16.90% 

11.67% 

-0.34 

-0.69 

-1.75 

-3.52 

3.62 

7.23  

5 High 

High-Low 

5.49% 

-10.85% 

0.11 

0.20 

2.81 

5.59 

-3.41 

-6.84 
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Table 4.8  Excess Stock Returns Sorted by Business Condition Factor Loadings 

of The FFF Model  

This table presents the relationship between excess stock returns and business conditions factor 

loadings associated with the FFF model. The column labeled ―return‖ reports the annual average 

stock returns over the one month T-bill rate. ―High-Low‖ reports the difference between portfolio 

5 and portfolio 1. 

     Panel 1  Stocks Sorted by 𝑑𝐹
∗  

 
  Panel 2  Stocks Sorted by 𝑑𝐹

−∗ 

Portfolio Return 𝑑𝐹
∗  𝑑𝐹

−∗ 𝑑𝐹
+∗ 

 
Portfolio Return 𝑑𝐹

∗  𝑑𝐹
−∗ 𝑑𝐹

+∗ 

1 Low 11.77% -0.06 0.00 -0.04 
 

1 Low 16.72% -0.02 -1.05 0.02 

2 10.37% -0.01 -0.01 -0.01 
 

2 11.80% -0.01 -0.02 0.01 

3 9.63% 0.00 -0.02 0.00 
 

3 10.40% 0.00 0.00 0.00 

4 10.26% 0.01 -0.01 0.01 
 

4 9.44% 0.01 0.02 -0.01 

5 High 11.76% 0.06 0.05 0.04 
 

5 High 5.44% 0.02 1.05 -0.02 

High-Low -0.01% 0.12 0.05 0.08 
 

High-Low -11.28% 0.04 2.10 -0.04 

           

    Panel 3  Stocks Sorted by 𝑑𝐹
+∗ 

 
    Panel 4 Stocks Sorted by (𝑑𝐹

−∗ - 𝑑𝐹
∗ ) 

Portfolio Return 𝑑𝐹
∗  𝑑𝐹

−∗ 𝑑𝐹
+∗ 

 
Portfolio Return 𝑑𝐹

∗  𝑑𝐹
−∗ 𝑑𝐹

+∗ 

1 Low 6.13% -0.02 -0.12 -0.18 
 

1 Low 15.62% 0.01 -1.03 0.04 

2 9.03% -0.01 0.00 -0.02 
 

2 11.16% 0.00 -0.01 0.01 

3 10.06% 0.00 0.00 0.00 
 

3 10.13% 0.00 0.00 0.00 

4 11.50% 0.00 -0.01 0.02 
 

4 9.83% 0.00 0.01 -0.01 

5 High 17.06% 0.02 0.13 0.18 
 

5 High 7.05% -0.01 1.03 -0.04 

High-Low 10.93% 0.04 0.25 0.36 
 

High-Low -8.56% -0.02 2.07 -0.09 

           

     Panel 5  Stocks Sorted by (𝑑𝐹
+∗ - 𝑑𝐹

∗ ) 
 

   Panel 6  Stocks Sorted by (𝑑𝐹
−∗ - 𝑑𝐹

+∗) 

Portfolio Return 𝑑𝐹
∗  𝑑𝐹

−∗ 𝑑𝐹
+∗ 

 
Portfolio Return 𝑑𝐹

∗  𝑑𝐹
−∗ 𝑑𝐹

+∗ 

1 Low 7.79% 0.01 -0.07 -0.16 
 

1 Low 16.13% 0.00 -1.02 0.14 

2 9.26% 0.00 0.00 -0.02 
 

2 12.06% 0.00 -0.01 0.02 

3 10.10% 0.00 0.00 0.00 
 

3 10.30% 0.00 0.00 0.00 

4 11.26% 0.00 -0.02 0.02 
 

4 8.76% 0.00 0.01 -0.02 

5 High 15.37% -0.01 0.09 0.16 
 

5 High 6.54% 0.00 1.02 -0.13 

High-Low 7.58% -0.02 0.15 0.33 
 

High-Low -9.59% 0.00 2.04 -0.27 



150 

 

To sum up, although some patterns are not identical between both models, the 

relationship between returns and risk estimates are quite similar in general. It can be 

concluded from Table 4.3 to Table 4.8 that for both models, consistent with previous 

chapters, the conventional estimates of the stock market risk measures 𝑏𝑆
∗ and 𝑏𝐹

∗  do 

have a positive influence on stock returns, and are consistent with the classic literature 

of ―high beta high return‖. However, the classic estimates of the commodity market 

risk measures 𝑐𝑆
∗ and 𝑐𝐹

∗  appear to have a negative impact on stock returns. The 

reason for that is most likely that risk in the stock market and commodity market are 

inversely related while ADS index risk measures 𝑑𝑆
∗ and 𝑑𝐹

∗  did not exhibit an 

obvious impact on stock returns. Furthermore, for the downside estimates, except 

(𝑐𝑆
−∗- 𝑐𝑆

∗), all have strong negative effects on stock returns. When downside risk 

estimates increase, stock returns decrease dramatically. There is no clear evidence that 

(𝑐𝑆
−∗-𝑐𝑆

∗) has an impact on stock returns. Moreover, it is shown in Table 4.4 to Table 

4.9 that all the upside estimates (even when controlling for the classic estimates) have 

a strong positive impact on stock returns. When upside estimates increase, stock 

returns also increase substantially.  

 

With these findings, the roles of downside and upside estimates are not simply 

components of classic estimates, but are new risk measures. Therefore, it is 

worthwhile examining the importance of downside and upside estimates as factors 

rather than factor loadings.   
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4.6  Fama-Macbeth regressions 

In this section, in order to illustrate the impact of estimates of both models on driving 

stock returns from a cross-sectional regression point of view, a series of 

Fama-Macbeth regressions are performed which employ different combinations of the 

above estimates as independent variables. 

  

In order to investigate possible multicollinearity, the correlation coefficient matrix of 

all estimates is presented in Table 4.9. It can be seen from Table 4.9 that none of the 

estimates are highly correlated with one another.
40

 Between these estimates, the most 

correlated pair is 𝑏𝑆
∗ and 𝑑𝑆

∗ with a correlation coefficient at 0.43, followed by 𝑏𝐹
∗  

and 𝑏𝐹
+∗, and 𝑏𝑆

−∗ and 𝑐𝑆
+∗ at 0.38 and 0.33 respectively. Since none of the estimates 

is highly correlated with another, econometrically, all of them can be employed in 

Fama-Macbeth regression methodology.
41

  

 

Fama-Macbeth regressions are performed on different combinations of estimates. The 

estimated coefficients are shown in Table 4.10 to Table 4.12 with Newey-West (1987) 

heteroscedastic robust standard errors with 12 lags employed to calculate the 

t-statistics and the R
2
 values presented in the tables are adjusted R

2
 values. 

 

 

                                                        
40

 Here we define high correlation as a correlation coefficient greater than 0.5 or less than -0.5. 
41 Only bivariate correlations are tested in this thesis, multivariate correlations should have tested 

due to limited space, and multicollinearity is unlikely to change the result.    
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Table 4.9  Correlation Coefficients Between Factor Loadings of Both Models’ 

This table reports the correlation coefficients between all factor loadings of the CPPF and the FFF models. To avoid repetition, only the lower 

triangle of the matrix is shown. 

 
𝑏𝑆

∗ 𝑏𝑆
−∗ 𝑏𝑆

+∗ 𝑏𝐹
∗  𝑏𝐹

−∗ 𝑏𝐹
+∗ 𝑐𝑆

∗ 𝑐𝑆
−∗ 𝑐𝑆

+∗ 𝑐𝐹
∗  𝑐𝐹

−∗ 𝑐𝐹
+∗ 𝑑𝑆

∗ 𝑑𝑆
−∗ 𝑑𝑆

+∗ 𝑑𝐹
∗  𝑑𝐹

−∗ 𝑑𝐹
+∗ 

𝑏𝑆
∗ 1.0000                                   

𝑏𝑆
−∗ 0.0004 1.0000 

                
𝑏𝑆

+∗ -0.0013 -0.1297 1.0000 
               

𝑏𝐹
∗  0.0073 0.0012 0.0025 1.0000 

              
𝑏𝐹

−∗ 0.0026 0.0077 -0.0035 0.2997 1.0000 
             

𝑏𝐹
+∗ 0.0035 -0.0041 0.0121 0.3774 -0.2454 1.0000 

            
𝑐𝑆

∗ -0.2451 -0.0101 0.0169 -0.0037 -0.0121 0.0060 1.0000 
           

𝑐𝑆
−∗ -0.0003 -0.0116 0.0191 0.0005 -0.0004 0.0012 0.0010 1.0000 

          
𝑐𝑆

+∗ -0.0013 0.3318 -0.0030 -0.003 0.0006 -0.0026 -0.0023 -0.0259 1.0000 
         

𝑐𝐹
∗  -0.0011 -0.0012 -0.0028 -0.0139 -0.0317 0.0111 0.0090 0.0013 0.0025 1.0000 

        
𝑐𝐹

−∗ -0.006 -0.0044 -0.0024 0.0258 -0.1546 0.2540 0.0169 0.0009 0.0026 0.3038 1.0000 
       

𝑐𝐹
+∗ 0.0001 -0.0022 0.0016 -0.0444 0.0932 -0.1733 -0.0036 0.0002 0.0066 0.1358 -0.1648 1.0000 

      
𝑑𝑆

∗ 0.4324 0.0022 -0.0045 -0.0001 0.0016 -0.0016 -0.2643 -0.0005 -0.0020 -0.0022 -0.0062 -0.0000 1.0000 
     

𝑑𝑆
−∗ 0.0001 0.0013 0.0004 -0.0002 -0.0027 0.0011 -0.0002 0.0007 0.0031 -0.0001 -0.0003 0.0003 0.0002 1.0000 

    
𝑑𝑆

+∗ -0.003 0.0043 0.0525 0.0021 0.0009 0.0000 0.0058 0.0053 -0.0009 0.0014 -0.0003 0.0010 -0.0014 -0.0000 1.0000 
   

𝑑𝐹
∗  -0.0026 0.0026 0.0028 -0.0413 0.0017 -0.0346 -0.0035 -0.0009 0.0019 -0.1584 -0.0650 -0.0118 0.0076 0.0025 -0.0025 1.0000 

  
𝑑𝐹

−∗ -0.0039 -0.0003 0.0004 0.0228 -0.0029 0.0258 0.0041 -0.0001 -0.0000 -0.0086 -0.0388 -0.0090 0.0123 0.0000 0.0000 0.0008 1.0000 
 

𝑑𝐹
+∗ -0.001 0.0012 -0.0025 -0.008 0.0814 -0.0858 -0.0020 0.0004 0.0023 -0.0182 0.0649 -0.0371 0.0029 -0.0006 -0.0058 0.1207 0.0080 1.000 
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Table 4.10  Fama-Macbeth Regression of CPPF Model Factor Loadings   

This table reports the result of the Fama-Macbeth regression of the CPPF model factor loadings on 

excess stock returns. The t-statistics in the square brackets are calculated by using Newey-West 

(1987) heteroscedastic robust standard error with 12 lags. * denotes significance at the 10% level, 

** denotes significance at the 5% level and ***denotes significance at the 1% level. 

 

It can be seen from Table 4.10 that estimates of the CPPF-based cross-sectional model 

are employed in different possible combinations to examine the sensitivity of risk 

factor coefficients to stock returns. Among these eight regressions, regression 2 

produces the highest adjusted R
2
 value at 0.30, with all estimates highly significant at 

the 1% significance level. Regression 2 employs all the downside and upside 

 
1 2 3 4 5 6 7 8 

         

𝑏𝑆
∗ 

 

0.00336*** 

[3.38] 

 0.000435*** 

[3.09] 

  0.00063 1* 

[1.87] 

0.00136*** 

[2.79] 

 

𝑐𝑆
∗ 

-0.000246 

[-0.30] 

  0.00000587 

[0.12] 

 -0.0000503 

[-0.36] 

 0.0000986 

[0.43] 

𝑑𝑆
∗ 

-0.0329 

[-0.63] 

   -0.00173 

[-0.39] 

 -0.0104 

[-0.66] 

0.000218 

[0.02] 

𝑏𝑆
−∗ 

 -0.00814*** 

[-6.55] 

 -0.000390*** 

[-3.63] 

-0.000264* 

[-1.80] 

  0.00000105 

[0.04] 

𝑏𝑆
+∗ 

 0.0110*** 

[10.69] 

 0.00103*** 

[4.05] 

0.000438*** 

[3.24] 

  0.0000540*** 

[2.81] 

𝑐𝑆
+∗ 

 -0.00599*** 

[-6.34] 

-0.000286*** 

[-4.57] 

 -0.000131*** 

[-3.65] 

 -0.0000179* 

[-1.68] 

 

𝑐𝑆
−∗ 

 0.00485*** 

[6.43] 

0.000397*** 

[3.35] 

 0.000234*** 

[2.60] 

 0.0000244** 

[2.46] 

 

𝑑𝑆
+∗  -0.251*** 

[-3.81] 

-0.0137*** 

[-2.81] 

-0.0206** 

[-2.02] 

 -0.00425 

[-1.22] 

  

𝑑𝑆
−∗  0.217*** 

[6.24] 

0.0199*** 

[4.00] 

0.0235*** 

[3.91] 

 0.00291** 

[2.00] 

  

Cons 0.00417** 

[2.47] 

0.00286* 

[1.72] 

0.00795*** 

[3.05] 

0.00760*** 

[3.00] 

0.00834*** 

[3.26] 

0.00795*** 

[3.25] 

0.00692*** 

[2.90] 

0.00842*** 

[3.24] 

No. of Obs 2396262 2396262 2396262 2396262 2396262 2396262 2396262 2396262 

Adjusted R2 0.129 0.296 0.035 0.037 0.032 0.032 0.038 0.032 
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estimates of the CPPF model to explain the movement of stock returns without 

considering the classic estimates. Among the independent variables in regression 2, 

𝑑𝑆
−∗ and  𝑑𝑆

+∗ have coefficients of 0.251 and 0.217, respectively. Regression 1 aims 

to employ all the classic estimates to explain the movement of stock returns regardless 

of the downside and upside estimates. It produces the second highest R
2
 value among 

the eight regressions, however, 𝑐𝑆
∗  and  𝑑𝑆

∗  are not significant even at the 10% 

significance level. Regression 3 employs downside and upside estimates of 

commodity market and ADS index risk to explain stock returns. All of the 

independent variables are significant at the 1% significance level. However, it 

produces a much lower R
2
 value than regression 2 at 0.04.  

 

It can be concluded that classic estimates do not have enough explanatory power on 

stock returns, and when dividing the market risk into downside and upside risk, 

downside and upside estimates have more explanatory power than classic ones. 

Regarding the importance of market risk, although commodity market and business 

risk do have a relationship with the stock market, market risk is still an essential 

element relating to stock returns. 

 

It can be seen from Table 4.11 that estimates of the FFF model are employed in 

different combinations. Among these eight regressions, regression 2 produces the best 

fit with an adjusted R
2
 value of 0.14, with all estimates significant at the 1% level.  
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Table 4.11  Fama-Macbeth Regression of the FFF Model Factor Loadings   

This table reports the result of the Fama-Macbeth regression of the FFF model factor loadings on 

excess stock returns. The t-statistics in the square brackets are calculated by using Newey-West 

(1987) heteroscedastic robust standard error with 12 lags. * denotes significance at the 10% level, 

** denotes significance at the 5% level and ***denotes significance at the 1% level. 

 

 

It employs all the downside and upside risk estimated coefficients of the FFF model to 

explain the movement of stock returns without considering the classic betas. Among 

the independent variables in regression 2, 𝑑𝐹
−∗ and  𝑑𝐹

+∗ have coefficients of 0.277 

and 0.242, respectively. Regression 3 produced the second best fit with an adjusted R
2
 

 
1 2 3 4 5 6 7 8 

         

𝑏𝐹
∗  

 

0.00567*** 

[3.52] 

 0.00608*** 

[4.38] 

  0.00597*** 

[4.08] 

0.00578*** 

[3.97] 

 

𝑐𝐹
∗  

-0.00156 

[-1.28] 

  0.00144 

[-1.47] 

 -0.000992 

[-0.95] 

 -0.00143 

[-1.34] 

𝑑𝐹
∗  

-0.0301 

[-0.37] 

   -0.0104 

[-0.15] 

 -0.00434 

[-0.06] 

-0.0259 

[-0.35] 

𝑏𝐹
−∗ 

 -0.0110*** 

[-8.17] 

 -0.00371*** 

[-5.35] 

-0.00322*** 

[-5.04] 

  -0.00134*** 

[-2.99] 

𝑏𝐹
+∗ 

 0.0153*** 

[13.07] 

 0.00702*** 

[8.45] 

0.00582*** 

[8.07] 

  0.00316*** 

[5.58] 

𝑐𝐹
−∗ 

 -0.00791*** 

[-7.95] 

-0.00253*** 

[-6.83] 

 -0.00271*** 

[-5.64] 

 -0.00117*** 

[-4.38] 

 

𝑐𝐹
+∗ 

 0.00661*** 

[7.35] 

0.00267*** 

[6.33] 

 0.00276*** 

[5.70] 

 0.00142*** 

[5.57] 

 

𝑑𝐹
−∗  -0.277*** 

[-4.16] 

-0.114*** 

[-4.52] 

-0.143*** 

[-4.21] 

 -0.0856*** 

[-4.13] 

  

𝑑𝐹
+∗  0.242*** 

[6.80] 

0.120*** 

[5.59] 

0.109*** 

[5.60] 

 0.0745*** 

[5.07] 

  

Con 0.00929*** 

[4.45] 

0.00716*** 

[3.85] 

0.00721*** 

[3.12] 

0.00688*** 

[3.18] 

0.00928*** 

[4.40] 

0.00728*** 

[3.27] 

0.00917*** 

[4.13] 

0.00909*** 

[4.23] 

No. of Obs 2396262 2396262 2396262 2396262 2396262 2396262 2396262 2396262 

Adjusted R2 0.071 0.135 0.095 0.094 0.099 0.075 0.077 0.079 
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of 0.1. It employs the classic stock market beta with downside and upside commodity 

market and ADS index risk to explain stock returns, with all variables significant at 

the 1% level significance. 

  

It can be concluded from Table 4.10 and Table 4.11 that when the estimates are 

separately employed in the Fama-Macbeth regression based on their original models, 

the downside and upside risk estimates of both models of all three risk factors are 

significantly priced and produce the best fit, while the classic estimates did not 

perform as well as downside and upside ones. Among the downside and upside risk 

estimates, the ones that employ ADS index risk explain stock returns the most. 

Downside and upside risk estimates of the CPPF model, employed as independent 

variables in Fama-Macbeth regression produced the best fit among all regressions in 

both Table 4.10 and Table 4.11.   

 

For the sake of completeness, rather than dividing estimates into two groups based on 

their original models, all available estimates are employed in different combinations 

to perform Fama-Macbeth regressions, in order to examine whether putting estimates 

from both models together could enhance the cross-sectional explanatory power. The 

results of these exercises are shown in Table 4.12. It is obvious that when all estimates 

are employed, regression 7 produces the highest R
2
 value of 0.38 among all 

regressions from Table 4.10 to Table 4.12. However the best fit does not make all 

estimates significant, particularly, 𝑑𝑆
∗ 𝑐𝑆

∗, 𝑐𝐹
∗  and 𝑑𝐹

∗  which are not even significant 
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at the 10% significance level. Regression 2 employs all the downside and upside 

estimates of both models and produces the second best fit with an adjusted R
2
 value of 

0.35. All estimates of regression 2 are highly significant at the 1% significance level. 

The remaining regressions in Table 4.12 produce low adjusted R
2
 values with certain 

independent variables being not significant. 

 

Notably, the classic estimates of the commodity market and ADS index risk of both 

models, 𝑐𝑆
∗, 𝑑𝑆

∗, 𝑐𝐹
∗  and 𝑑𝐹

∗ , have never been significant in any regression shown in 

Table 4.10 to Table 4.12. In contrast, the downside and upside estimates of all three 

factors associated with both models are almost always significant. It can be concluded 

from Table 4.10 to Table 4.12 that from a cross-sectional point of view, downside and 

upside estimates are not only components of classic estimates, but also produce better 

explanatory power than classic estimates. The importance of downside and upside 

estimates show that explaining the movement of stock returns can be more precisely 

achieved by examining the downside and upside of risk factors individually rather 

than treating risk factors as a whole. Moreover, it also can be summarized that apart 

from stock market risk itself, commodity market and ADS index risk do have 

significant relations with stock returns. The downside risk estimates have a negative 

relationship with stock returns, while upside estimates show a positive one. 

Furthermore, between the CPPF model and the FFF model, with all estimates 

significant, the former one does produce a slightly better fit than the latter one.  
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Table 4.12  Fama-Macbeth Regression of the both models’ Factor Loadings  

 

This table reports the result of the Fama-Macbeth regression of both the CPPF model and the FFF 

model factor loadings on excess stock returns. The t-statistics in the square brackets are calculated 

by using Newey-West (1987) heteroscedastic robust standard error with 12 lags. * denotes 

significance at the 10% level, ** denotes significance at the 5% level and ***denotes significance 

at the 1% level. 

 
1 2 3 4 5 6 7 

𝑏𝑆
∗ 

 

0.00292*** 

[3.56] 

 0.00125** 

[2.08] 

 0.00255*** 

[3.61] 

 0.000892* 

[1.93] 

𝑐𝑆
∗ 

-0.0000123 

[-0.02] 

 0.000106 

 [0.25] 

 -0.0000623 

[-0.10] 

 0.000122 

[0.36] 

𝑑𝑆
∗ 

-0.0208 

[-0.49] 

 0.00230 

[0.22] 

 -0.0154 

[-0.43] 

 0.00457 

[0.57] 

𝑏𝐹
∗  

0.00312*** 

[2.62] 

  0.00257*** 

[3.53] 

 0.00263** 

[2.45] 

0.00128** 

[2.56] 

𝑐𝐹
∗  

-0.00150** 

[2.01] 

  -0.00105** 

[-2.21] 

 -0.000579 

[-0.92] 

-0.000327 

[-1.39] 

𝑑𝐹
∗  

-0.00837 

[-0.17] 

  -0.0021 

[-0.09] 

 0.00967 

[0.46] 

0.0127 

[1.50] 

𝑏𝑆
−∗ 

 -0.00789*** 

[-6.49] 

-0.00799*** 

[-6.46] 

  -0.00796*** 

[-6.54] 

-0.00778*** 

[-6.42] 

𝑏𝑆
+∗  0.0106*** 

[10.73] 

0.0107*** 

[10.57] 

  0.0107*** 

[10.73] 

0.0105*** 

[10.64] 

𝑐𝑆
−∗  -0.00580*** 

[-6.30] 

-0.00586*** 

[-6.28] 

  -0.00587*** 

[-6.32] 

-0.00572*** 

[-6.25] 

𝑐𝑆
+∗  0.00469*** 

[6.45] 

0.00473*** 

[6.44] 

  0.00475*** 

[6.45] 

0.00462*** 

[6.45] 

𝑑𝑆
−∗  -0.244*** 

[-3.80] 

-0.247*** 

[3.79] 

  -0.245*** 

[-3.81] 

-0.241*** 

[-3.79] 

𝑑𝑆
+∗  0.211*** 

[6.23] 

0.212*** 

[6.25] 

  0.214*** 

[6.23] 

0.208*** 

[6.24] 

𝑏𝐹
−∗  -0.00486*** 

[-6.17] 

 -0.00998*** 

[-9.10] 

-0.00885*** 

[-7.99] 

 -0.00388*** 

[-6.24] 

𝑏𝐹
+∗  0.00668*** 

[8.85] 

 0.0128*** 

[13.35] 

0.0111*** 

[12.73] 

 0.00434*** 

[8.30] 

𝑐𝐹
−∗  -0.00305*** 

[-7.64] 

 -0.00667*** 

[-8.25] 

-0.00606*** 

[8.08] 

 -0.00212*** 

[-7.19] 

𝑐𝐹
+∗  0.00262*** 

[6.50] 

 0.00599*** 

[7.48] 

0.00477*** 

[8.11] 

 0.00179*** 

[6.91] 
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For the sake of completeness, cross-sectional regressions employing all possible 

variables are exercised. Although there is no sign of multicollinearity between all 

available variables econometrically (bivariate correlations), the implication of 

employing risk estimates of the same risk factors from both models is still 

questionable. Nevertheless, it is clear that employing downside and upside estimates 

of both models produces a much higher adjusted R
2
 value with all estimates 

significant. It is most likely that the CPPF model and the FFF model can complement 

each other, and the downside and upside risk estimated coefficients could capture 

something that the one of the other models could not.  

 

Finally, consistent with the results of chapter 3,
42

 the downside and upside estimates 

of market risk are highly significant, and have negative and positive relations with 

stock returns, respectively. More importantly, employing commodity market and ADS 

index risk in the regressions leads to a dramatic increase in adjusted R
2
 values. In the 

                                                        
42

 See Table 3.9 in Chapter 3. 

Table 4.12 -continued  

 
1 2 3 4 5 6 7 

𝑑𝐹
−∗  -0.0660*** 

[-4.80] 

 -0.235*** 

[-4.30] 

-0.198*** 

[-4.35] 

 -0.0473*** 

[-4.58] 

𝑑𝐹
+∗  0.0687*** 

[5.97] 

 0.209*** 

[6.86] 

0.177*** 

[6.83] 

 0.0420*** 

[5.79] 

Cons 0.00567*** 

[3.59] 

0.00304** 

[2.30] 

0.00160 

[1.39] 

0.00769*** 

[4.23] 

0.00468*** 

[3.31] 

0.00349** 

[2.44] 

0.00261** 

[2.56] 

No. of Obs 2396262 2396262 2396262 2396262 2396262 2396262 2396262 

Adjusted R2 0.160 0.135 0.347 0.094 0.099 0.075 0.380 
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previous chapter, with all estimates significant, the highest adjusted R
2
 value is 

0.153,
43

 while it increases to 0.35 (regression 2 table 4.12). It is obvious that 

commodity market risk and real business risk do have strong explanatory power on 

stock returns. While there could be other factors significantly driving stock prices, the 

above three factors are preferred because they measure the whole economy in a more 

comprehensive way.            

 

4.7  The predictability of risk factor estimate coefficients 

After revealing the relationship between realized stock returns and estimates of both 

models, the predictability of the risk factor coefficients is examined. As in earlier 

sections, the relative estimates associated with the CPPF model, denoted by (𝑏𝑆
−∗- 𝑏𝑆

∗), 

(𝑐𝑆
−∗- 𝑐𝑆

∗) and (𝑑𝑆
−∗- 𝑑𝑆

∗) for the downside market, and (𝑏𝑆
+∗- 𝑏𝑆

∗), (𝑐𝑆
+∗- 𝑐𝑆

∗) and (𝑑𝑆
+∗- 𝑑𝑆

∗) 

for the upside market, and repetitive measures associated with the FFF model. 

Moreover, the annualized average excess return of each stock are computed based on 

the following year’s data. Furthermore, all stocks in the sample are assigned into five 

portfolios based on the mean of the target estimate. Finally, the equally weighted 

average of estimates and future one year excess returns for each portfolio are 

computed. The results are shown in Tables 4.13 to 4.18.  

 

 

 
                                                        
43

 See regression 11 in Table 3.9 in Chapter 3. 
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Table 4.13  Future Excess Stock Returns Sorted by Stock Market Factor 

Loadings of the CPPF Model  

This table presents the relationship between future excess stock returns and the stock market factor 

loadings associated with the CPPF model. The column labeled ―return‖ reports the annual average 

future stock returns over the one month T-bill rate. ―High-Low‖ reports the difference between 

portfolio 5 and portfolio 1. 

 Panel 1  Stocks Sorted by 𝑏𝑆
∗ 

 
Panel 2  Stocks Sorted by 𝑏𝑆

−∗ 

Portfolio Return 𝑏𝑆
∗ 𝑏𝑆

−∗ 𝑏𝑆
+∗ 

 
Portfolio Return 𝑏𝑆

∗ 𝑏𝑆
−∗ 𝑏𝑆

+∗ 

1 Low 8.69% -1.01 -0.48 0.11 
 

1 Low 7.45% 0.99 -1.37 1.61 

2 17.44% 0.65 0.31 -0.13 
 

2 20.86% 1.05 -0.72 1.13 

3 21.64% 1.06 1.11 0.58 
 

3 23.40% 1.09 1.08 0.98 

4 18.31% 1.49 1.64 2.00 
 

4 16.94% 1.06 1.75 0.77 

5 High 7.76% 2.10 1.92 1.24 
 

5 High 5.19% 1.12 1.92 -1.69 

High-Low -0.93% 3.11 2.41 1.12 
 

High-Low -2.26% 0.13 3.30 -3.30 

           

  Panel 3  Stocks Sorted by 𝑏𝑆
+∗ 

 
 Panel 4  Stocks Sorted by (𝑏𝑆

−∗ - 𝑏𝑆
∗) 

Portfolio Return 𝑏𝑆
∗ 𝑏𝑆

−∗ 𝑏𝑆
+∗ 

 
Portfolio Return 𝑏𝑆

∗ 𝑏𝑆
−∗ 𝑏𝑆

+∗ 

1 Low 6.68% 0.60 1.96 -0.54 
 

1 Low 8.82% 1.79 -0.36 1.36 

2 12.42% 1.05 1.55 -0.53 
 

2 20.84% 1.33 0.55 1.15 

3 21.47% 1.16 1.04 0.92 
 

3 22.13% 1.03 1.06 0.98 

4 20.60% 1.31 0.81 1.14 
 

4 15.78% 0.82 1.58 0.41 

5 High 12.66% 1.19 -1.85 1.81 
 

5 High 6.27% -1.67 1.93 -1.71 

High-Low 5.98% 0.59 -3.81 2.35 
 

High-Low -2.55% -3.46 2.30 -3.07 

           

 Panel 5  Stocks Sorted by (𝑏𝑆
+∗ - 𝑏𝑆

∗) 
 

Panel 6  Stocks Sorted by (𝑏𝑆
−∗ - 𝑏𝑆

+∗) 

Portfolio Return 𝑏𝑆
∗ 𝑏𝑆

−∗ 𝑏𝑆
+∗ 

 
Portfolio Return 𝑏𝑆

∗ 𝑏𝑆
−∗ 𝑏𝑆

+∗ 

1 Low 6.86% 1.42 1.71 -1.50 
 

1 Low 10.62% 1.42 -1.21 1.61 

2 11.98% 1.19 1.43 -0.38 
 

2 22.66% 1.32 0.53 1.64 

3 22.23% 1.00 0.95 0.94 
 

3 21.18% 0.97 1.02 0.91 

4 21.85% 0.92 1.25 1.01 
 

4 12.94% 0.90 1.34 -0.34 

5 High 10.93% -1.84 -1.20 1.73 
 

5 High 6.43% 0.69 1.84 -1.04 

High-Low 4.07% -3.26 -2.91 3.23 
 

High-Low -4.19% -0.73 3.06 -2.65 
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Table 4.14  Future Excess Stock Returns Sorted by Commodity Market Factor 

Loadings of the CPPF Model  

This table presents the relationship between future excess stock returns and the commodity market 

factor loadings associated with the CPPF model. The column labeled ―return‖ reports the annual 

average future stock returns over the one month T-bill rate. ―High-Low‖ reports the difference 

between portfolio 5 and portfolio 1. 

 Panel 1  Stocks Sorted by 𝑐𝑆
∗ 

 
Panel 2  Stocks Sorted by 𝑐𝑆

−∗ 

Portfolio Return 𝑐𝑆
∗ 𝑐𝑆

−∗ 𝑐𝑆
+∗ 

 
Portfolio Return 𝑐𝑆

∗ 𝑐𝑆
−∗ 𝑐𝑆

+∗ 

1 Low 5.94% -1.33 -0.01 -2.57 
 

1 Low 7.35% -0.43 -0.58 1.67 

2 19.74% -0.30 -1.93 -2.00 
 

2 18.81% -0.78 1.07 1.84 

3 19.77% 1.11 0.79 0.60 
 

3 20.88% 1.02 1.46 0.46 

4 19.45% 1.58 -0.87 1.94 
 

4 17.76% -0.07 1.52 -1.57 

5 High 8.94% 1.82 2.16 1.30 
 

5 High 9.05% 1.63 2.10 -1.12 

High-Low 3.00% 3.14 2.18 3.87 
 

High-Low 1.70% 2.06 2.68 -2.79 

           

Panel 3  Stocks Sorted by 𝑐𝑆
+∗ 

 
 Panel 4  Stocks Sorted by (𝑐𝑆

−∗ - 𝑐𝑆
∗) 

Portfolio Return 𝑐𝑆
∗ 𝑐𝑆

−∗ 𝑐𝑆
+∗ 

 
Portfolio Return 𝑐𝑆

∗ 𝑐𝑆
−∗ 𝑐𝑆

+∗ 

1 Low 6.54% -1.07 1.97 -1.18 
 

1 Low 8.76% 0.81 -0.53 0.82 

2 19.90% 0.01 1.33 -0.55 
 

2 18.31% 1.49 -0.16 1.56 

3 21.53% 1.11 -0.11 0.14 
 

3 21.77% 0.11 0.06 0.27 

4 19.22% -0.44 0.36 1.44 
 

4 15.82% -0.28 1.05 0.51 

5 High 6.65% -0.24 -1.41 1.76 
 

5 High 9.17% -1.77 1.69 -1.90 

High-Low 0.11% 0.83 -3.38 2.94 
 

High-Low 0.41% -2.58 2.22 -2.72 

           

Panel 5  Stocks Sorted by (𝑐𝑆
+∗ - 𝑐𝑆

∗) 
 

Panel 6  Stocks Sorted by (𝑐𝑆
−∗ - 𝑐𝑆

+∗) 

Portfolio Return 𝑐𝑆
∗ 𝑐𝑆

−∗ 𝑐𝑆
+∗ 

 
Portfolio Return 𝑐𝑆

∗ 𝑐𝑆
−∗ 𝑐𝑆

+∗ 

1 Low 6.70% 0.97 1.77 -0.45 
 

1 Low 7.74% -1.78 -0.17 1.78 

2 18.18% 0.53 1.76 -0.17 
 

2 18.21% 1.32 0.48 1.17 

3 23.83% 0.14 -0.08 0.18 
 

3 23.54% 1.16 1.00 0.05 

4 18.50% -0.29 0.18 1.33 
 

4 17.55% -1.20 1.20 -1.13 

5 High 6.62% -1.99 -1.49 1.51 
 

5 High 6.80% 1.50 1.60 -1.27 

High-Low -0.08% -2.96 -3.26 1.96 
 

High-Low -0.94% 3.28 1.77 -3.05 
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Table 4.15  Future Excess Stock Returns Sorted by Business Conditions Factor 

Loadings of the CPPF Model  

This table presents the relationship between future excess stock returns and the business 

conditions factor loadings associated with the CPPF model. The column labeled ―return‖ reports 

the annual average future stock returns over the one month T-bill rate. ―High-Low‖ reports the 

difference between portfolio 5 and portfolio 1. 

Panel 1  Stocks Sorted by 𝑑𝑆
∗ 

 
Panel 2  Stocks Sorted by 𝑑𝑆

−∗ 

Portfolio Return 𝑑𝑆
∗ 𝑑𝑆

−∗ 𝑑𝑆
+∗ 

 
Portfolio Return 𝑑𝑆

∗ 𝑑𝑆
−∗ 𝑑𝑆

+∗ 

1 Low 11.42% -0.69 -1.57 -1.07 
 

1 Low 9.31% -0.07 -1.04 -2.10 

2 18.47% -0.02 -1.51 -0.69 
 

2 18.05% -0.02 -0.87 1.20 

3 23.10% 0.00 0.75 0.53 
 

3 23.09% 0.00 -0.01 0.03 

4 16.24% 1.01 -0.17 0.40 
 

4 18.25% 1.03 0.74 -0.27 

5 High 4.61% 1.58 -1.17 -1.22 
 

5 High 5.14% 1.14 1.68 -0.50 

High-Low -6.81% 2.27 0.40 -0.15 
 

High-Low -4.17% 1.21 2.72 1.60 

           

Panel 3  Stocks Sorted by 𝑑𝑆
+∗ 

 
Panel 4  Stocks Sorted by (𝑑𝑆

−∗ - 𝑑𝑆
∗) 

Portfolio Return 𝑑𝑆
∗ 𝑑𝑆

−∗ 𝑑𝑆
+∗ 

 
Portfolio Return 𝑑𝑆

∗ 𝑑𝑆
−∗ 𝑑𝑆

+∗ 

1 Low 8.07% -0.19 -0.30 -1.79 
 

1 Low 10.15% 1.13 -0.91 -1.16 

2 15.46% 1.03 -0.87 -0.47 
 

2 17.54% 1.06 -0.84 -0.58 

3 22.68% -0.01 1.08 1.01 
 

3 20.92% -1.00 1.01 1.12 

4 15.99% 1.31 1.72 1.40 
 

4 20.62% -1.04 1.43 -0.86 

5 High 11.64% -0.04 -0.30 1.81 
 

5 High 4.61% -1.26 1.86 -1.56 

High-Low 3.57% 0.15 0.00 3.60 
 

High-Low -5.54% -2.39 2.78 -0.40 

           

Panel 5  Stocks Sorted by (𝑑𝑆
+∗ - 𝑑𝑆

∗) 
 

Panel 6  Stocks Sorted by (𝑑𝑆
−∗ - 𝑑𝑆

+∗) 

Portfolio Return 𝑑𝑆
∗ 𝑑𝑆

−∗ 𝑑𝑆
+∗ 

 
Portfolio Return 𝑑𝑆

∗ 𝑑𝑆
−∗ 𝑑𝑆

+∗ 

1 Low 8.08% 1.20 -0.50 -0.68 
 

1 Low 10.88% -1.06 -1.01 1.84 

2 13.76% 1.05 -0.02 -0.47 
 

2 18.11% -1.03 -1.01 0.49 

3 23.44% -1.00 1.14 1.00 
 

3 22.84% -0.03 1.01 0.01 

4 17.44% -1.05 0.95 1.40 
 

4 17.10% 1.10 1.94 -0.53 

5 High 11.13% -1.32 -1.24 1.72 
 

5 High 4.91% -1.04 2.52 -1.87 

High-Low 3.05% -2.52 -0.74 2.40 
 

High-Low -5.97% 0.02 3.54 -3.72 
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For the CPPF model, it can be seen from Table 4.13 that when stocks are sorted by 𝑏𝑆
∗, 

𝑏𝑆
−∗, 𝑏𝑆

+∗, (𝑏𝑆
−∗- 𝑏𝑆

∗) and  (𝑏𝑆
+∗- 𝑏𝑆

∗), the highest future returns all appear in portfolio 3, 

and returns present a reversed U-shaped pattern. When stocks are sorted by (𝑏𝑆
−∗- 𝑏𝑆

+∗), 

the reversed U-shaped pattern still exists. When stocks are sorted by estimates of the 

commodity market and ADS index risk, it is even more obvious from Table 4.14 and 

Table 4.15 that the reversed U-shaped pattern of future returns is present, and with 

portfolio 3 of each group producing the highest future return.  

 

For the FFF model, it can be seen from Table 4.16 to Table 4.18 that the reversed 

U-shaped pattern on future returns on all groups of portfolios exists except when 

stocks are sorted by 𝑏𝐹
+∗ and (𝑏𝐹

+∗- 𝑏𝐹
∗ ). For the remaining groups, portfolio 1 or 

portfolio 5 never produces the highest future return but constantly has the lowest 

future return. 

 

It can be concluded from the results that the medium value estimates of the 

commodity market and ASD index risk lead to a high future return, while the top and 

bottom value estimates constantly lead to a low future return. Moreover, for estimates 

of stock market risk, there is very weak evidence that low upside estimates indicate a 

high future return on the FFF model. However, the estimates of the CPPF model do 

not support the evidence, the remaining estimates of stock market risk appear to be 

consistent with the estimates of the commodity market and ADS index risk.   
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Table 4.16  Future Excess Stock Returns Sorted by Stock Market Factor 

Loadings of the FFF Model  

This table presents the relationship between future excess stock returns and stock market factor 

loadings associated with the FFF model. The column labeled ―return‖ reports the annual average 

future stock returns over the one month T-bill rate. ―High-Low‖ reports the difference between 

portfolio 5 and portfolio 1. 

Panel 1  Stocks Sorted by 𝑏𝐹
∗  

 
Panel 2  Stocks Sorted by 𝑏𝐹

−∗ 

Portfolio Return 𝑏𝐹
∗  𝑏𝐹

−∗ 𝑏𝐹
+∗ 

 
Portfolio Return 𝑏𝐹

∗  𝑏𝐹
−∗ 𝑏𝐹

+∗ 

1 Low 19.19% 0.82 0.83 0.84 
 

1 Low -3.61% 0.93 0.50 1.16 

2 19.48% 0.96 0.97 0.98 
 

2 13.40% 0.98 0.94 1.00 

3 19.66% 1.00 1.00 1.00 
 

3 20.08% 1.00 1.00 1.00 

4 16.99% 1.03 1.02 1.03 
 

4 24.21% 1.02 1.04 1.00 

5 High -1.48% 1.20 1.14 1.19 
 

5 High 19.77% 1.09 1.48 0.87 

High-Low -20.67% 0.38 0.31 0.35 
 

High-Low 23.38% 0.16 0.98 -0.29 

           

 Panel 3  Stocks Sorted by 𝑏𝐹
+∗ 

 
Panel 4  Stocks Sorted by (𝑏𝐹

−∗ - 𝑏𝐹
∗ ) 

Portfolio Return 𝑏𝐹
∗  𝑏𝐹

−∗ 𝑏𝐹
+∗ 

 
Portfolio Return 𝑏𝐹

∗  𝑏𝐹
−∗ 𝑏𝐹

+∗ 

1 Low 29.28% 0.91 1.13 0.57 
 

1 Low -9.21% 1.04 0.55 1.27 

2 21.82% 0.98 1.00 0.96 
 

2 6.64% 0.99 0.95 1.02 

3 21.32% 1.00 1.00 1.00 
 

3 20.98% 1.00 1.00 1.00 

4 10.25% 1.02 0.99 1.04 
 

4 25.84% 0.99 1.03 0.97 

5 High -8.84% 1.10 0.83 1.46 
 

5 High 29.61% 0.99 1.42 0.77 

High-Low -38.12% 0.18 -0.30 0.89 
 

High-Low 38.82% -0.05 0.87 -0.50 

           

Panel 5  Stocks Sorted by (𝑏𝐹
+∗ - 𝑏𝐹

∗ ) 
 

Panel 6  Stocks Sorted by (𝑏𝐹
−∗ - 𝑏𝐹

+∗) 

Portfolio Return 𝑏𝐹
∗  𝑏𝐹

−∗ 𝑏𝐹
+∗ 

 
Portfolio Return 𝑏𝐹

∗  𝑏𝐹
−∗ 𝑏𝐹

+∗ 

1 Low 23.47% 1.02 1.25 0.63 
 

1 Low -9.57% 1.02 0.58 1.38 

2 23.44% 1.00 1.02 0.97 
 

2 8.23% 0.99 0.95 1.02 

3 21.27% 1.00 0.99 1.00 
 

3 20.00% 1.00 0.99 1.00 

4 10.98% 0.99 0.96 1.02 
 

4 26.19% 1.00 1.03 0.97 

5 High -5.33% 1.00 0.72 1.41 
 

5 High 29.00% 1.00 1.39 0.66 

High-Low -28.80% -0.03 -0.53 0.78 
 

High-Low 38.57% -0.02 0.81 -0.72 
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Table 4.17  Future Excess Stock Returns Sorted by Commodity Market Factor 

Loadings of the FFF Model  

This table presents the relationship between future excess stock returns and commodity market 

factor loadings associated with the FFF model. The column labeled ―return‖ reports the annual 

average future stock returns over the one month T-bill rate. ―High-Low‖ reports the difference 

between portfolio 5 and portfolio 1. 

Panel 1  Stocks Sorted by 𝑐𝐹
∗  

 
Panel 2  Stocks Sorted by 𝑐𝐹

−∗ 

Portfolio Return 𝑐𝐹
∗  𝑐𝐹

−∗ 𝑐𝐹
+∗ 

 
Portfolio Return 𝑐𝐹

∗  𝑐𝐹
−∗ 𝑐𝐹

+∗ 

1 Low -0.18% -1.31 -1.33 -1.28 
 

1 Low 2.80% -1.14 -1.96 1.23 

2 19.79% -1.04 -1.04 -1.03 
 

2 15.89% -1.03 -1.08 1.00 

3 20.56% 0.90 -1.00 -1.01 
 

3 19.39% -1.01 -1.01 -1.01 

4 21.96% 1.04 1.02 1.03 
 

4 20.35% 1.02 1.06 -1.02 

5 High 11.71% 1.30 1.30 1.13 
 

5 High 15.42% 1.14 1.94 -1.35 

High-Low 11.89% 2.62 2.63 2.41 
 

High-Low 12.62% 2.28 3.90 -2.59 

           

Panel 3  Stocks Sorted by 𝑐𝐹
+∗ 

 
Panel 4  Stocks Sorted by (𝑐𝐹

−∗ - 𝑐𝐹
∗ ) 

Portfolio Return 𝑐𝐹
∗  𝑐𝐹

−∗ 𝑐𝐹
+∗ 

 
Portfolio Return 𝑐𝐹

∗  𝑐𝐹
−∗ 𝑐𝐹

+∗ 

1 Low 15.40% 0.90 1.25 -0.16 
 

1 Low 5.36% 1.01 0.12 1.39 

2 22.85% 0.97 0.99 0.93 
 

2 15.92% 0.99 0.93 1.04 

3 22.08% 1.00 0.99 0.99 
 

3 20.40% 1.00 0.99 1.00 

4 13.80% 1.02 0.97 1.06 
 

4 18.29% 1.00 1.05 0.96 

5 High -0.29% 1.09 0.74 2.03 
 

5 High 13.88% 0.98 1.86 0.45 

High-Low -15.69% 0.19 -0.50 2.18 
 

High-Low 8.52% -0.03 1.74 -0.94 

           

Panel 5  Stocks Sorted by (𝑐𝐹
+∗ - 𝑐𝐹

∗ ) 
 

Panel 6  Stocks Sorted by (𝑐𝐹
−∗ - 𝑐𝐹

+∗) 

Portfolio Return 𝑐𝐹
∗  𝑐𝐹

−∗ 𝑐𝐹
+∗ 

 
Portfolio Return 𝑐𝐹

∗  𝑐𝐹
−∗ 𝑐𝐹

+∗ 

1 Low 19.70% 1.05 1.38 -0.08 
 

1 Low -1.55% 0.97 0.23 1.87 

2 23.17% 1.00 1.04 0.94 
 

2 15.03% 0.99 0.94 1.05 

3 22.16% 1.00 0.99 0.99 
 

3 20.38% 0.99 0.99 0.99 

4 13.30% 0.99 0.94 1.04 
 

4 21.22% 1.00 1.05 0.94 

5 High -4.49% 0.94 0.59 1.95 
 

5 High 18.77% 1.02 1.74 -0.01 

High-Low -24.19% -0.11 -0.79 2.03 
 

High-Low 20.32% 0.04 1.51 -1.87 
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Table 4.18 Future Excess Stock Returns Sorted by Business Condition Factor 

Loadings of the FFF Model  

This table presents the relationship between future excess stock returns and the business 

conditions factor loadings associated with the FFF model. The column labeled ―return‖ reports the 

annual average future stock returns over the one month T-bill rate. ―High-Low‖ reports the 

difference between portfolio 5 and portfolio 1. 

Panel 1  Stocks Sorted by 𝑑𝐹
∗  

 
Panel 2  Stocks Sorted by 𝑑𝐹

−∗ 

Portfolio Return 𝑑𝐹
∗  𝑑𝐹

−∗ 𝑑𝐹
+∗ 

 
Portfolio Return 𝑑𝐹

∗  𝑑𝐹
−∗ 𝑑𝐹

+∗ 

1 Low -0.91% 0.99 0.63 0.99 
 

1 Low -3.70% 1.00 -0.68 1.00 

2 17.59% 1.00 0.85 1.00 
 

2 16.25% 1.00 1.00 1.00 

3 23.82% 1.00 1.30 1.00 
 

3 22.31% 1.00 1.00 1.00 

4 23.05% 1.00 1.40 1.40 
 

4 20.83% 1.00 1.00 1.00 

5 High 10.29% 1.01 1.43 1.41 
 

5 High 18.16% 1.00 1.56 0.99 

High-Low 11.20% 0.03 0.80 0.42 
 

High-Low 21.86% 0.01 2.24 -0.01 

           

Panel 3  Stocks Sorted by 𝑑𝐹
+∗ 

 
Panel 4  Stocks Sorted by (𝑑𝐹

−∗ - 𝑑𝐹
∗ ) 

Portfolio Return 𝑑𝐹
∗  𝑑𝐹

−∗ 𝑑𝐹
+∗ 

 
Portfolio Return 𝑑𝐹

∗  𝑑𝐹
−∗ 𝑑𝐹

+∗ 

1 Low 16.08% 1.00 0.34 0.94 
 

1 Low 1.28% 1.00 -0.68 1.00 

2 15.88% 1.00 0.85 1.00 
 

2 18.61% 1.00 1.00 1.00 

3 20.54% 1.00 0.96 1.00 
 

3 20.29% 1.00 1.00 1.00 

4 19.19% 1.00 1.01 1.00 
 

4 17.82% 1.00 1.00 1.00 

5 High 2.16% 1.00 0.72 1.05 
 

5 High 15.85% 1.00 1.56 0.99 

High-Low -13.92% 0.01 0.37 0.10 
 

High-Low 14.57% 0.00 2.24 -0.02 

           

Panel 5  Stocks Sorted by (𝑑𝐹
+∗ - 𝑑𝐹

∗ ) 
 

Panel 6  Stocks Sorted by (𝑑𝐹
−∗ - 𝑑𝐹

+∗) 

Portfolio Return 𝑑𝐹
∗  𝑑𝐹

−∗ 𝑑𝐹
+∗ 

 
Portfolio Return 𝑑𝐹

∗  𝑑𝐹
−∗ 𝑑𝐹

+∗ 

1 Low 14.57% 1.00 0.25 0.95 
 

1 Low -2.45% 1.00 -0.68 1.03 

2 17.45% 1.00 0.99 1.00 
 

2 18.30% 1.00 1.00 1.00 

3 22.26% 1.00 0.91 1.00 
 

3 21.17% 1.00 1.00 1.00 

4 18.84% 1.00 0.98 1.00 
 

4 18.35% 1.00 1.00 1.00 

5 High 0.72% 1.00 0.75 1.05 
 

5 High 18.48% 1.00 1.55 0.96 

High-Low -13.85% 0.00 0.50 0.10 
 

High-Low 20.93% 0.00 2.23 -0.08 
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4.8 Conclusion 

From the cross-sectional point of view, the time-varying conventional estimates of 

stock market risk play important roles in determining stock returns. Specifically, 𝑏𝑆
∗ 

and 𝑏𝐹
∗  are found have a positive influence on stock returns – a result that is 

consistent with the classic literature (the high beta high return, low beta low return 

theory still holds) and previous chapters. However, the classic estimates of 

commodity market risk 𝑐𝑆
∗ and 𝑐𝐹

∗  appear to have a negative impact on stock returns, 

while classic estimates of ADS index risk 𝑑𝑆
∗ and 𝑑𝐹

∗  did not show an obvious 

impact on stock returns. Furthermore, for all the downside estimates of both models, 

even when controlling for the classic estimates and upside estimates, there are strong 

negative impacts on stock returns. When downside estimates increase, stock returns 

decrease dramatically. There is no clear evidence that (𝑐𝑆
−∗- 𝑐𝑆

∗) has an impact on 

stock returns. Moreover, it is found that all the upside estimates even when controlling 

for the classic estimates, have strong positive impacts on stock returns. When upside 

estimates increase, stock returns also increase substantially.  

 

When estimates are treated as factors rather than factor loadings in the Fama-Macbeth 

regression methodology, this chapter finds that downside and upside estimates are not 

only components of classic estimates, but also produce better explanatory power than 

classic estimates. The evidence from downside and upside estimates shows that 

explaining the movement of stock returns can be enhanced by examining the 

downside and upside of risk factors individually rather than treating the risk factor as 
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a whole. Moreover, it can be summarized that apart from stock market risk, the 

commodity market and ADS index risks are found to have a significant impact on 

stock returns. The downside estimates have a negative relationship with stock returns, 

while upside estimates have a positive impact. Furthermore, between the CPPF model 

and the FFF model, with all estimates significant, the former one produces a better fit 

than the latter one. However, it is found that employing downside and upside 

estimates of both models can produce a much higher adjusted R
2
 value with all 

estimates significant. This could be due to the complementary property of both 

models. 

 

Finally, the predictive power of all classic, downside and upside estimates of both 

models is found to be poor. There is very weak evidence that low upside estimates of 

stock market risk indicate a higher future return when the FFF model is employed.
44

 

However the estimates of the CPPF model do not support the evidence. Regarding the 

remaining estimates, only medium value estimates lead to higher future returns, while 

the top and bottom portfolios continuously lead to lower future returns.     

 

 

 

 

 

 

 

 

 

                                                        
44

 See Panel 3, Table 4.16. 
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Conclusion 

Consistent results are obtained from Chapter 2 to Chapter 4. From a cross-sectional 

point of view, when the single market factor model is adopted, stock returns accord 

with the classic high beta high return positive relationship when stocks are sorted by 

conventional beta. Similar results are obtained when stocks are sorted by downside 

beta. When controlling for beta, downside betas exhibit a negative relationship with 

average excess returns, while upside betas present a positive relationship regardless of 

the benchmark used to compute them.  

 

When the CPPF model and the FFF model are adopted, and time-varying betas are 

generated. All results are consistent with Chapter 2 (with moving window approach) 

except for downside beta. The beta is positively significant in driving stock returns for 

both models. The downside beta shows a negative impact on stock returns, while the 

upside beta, consistent with beta estimates, shows a positive impact. The different 

results obtained are most likely due to the approaches used. Chapter 2 adopted the 

single market factor model with a moving window approach, while Chapter 3 and 4 

adopted more flexible time-varying models. Specifically, the estimated coefficients 

generated by the CPPF and the FFF model produce a much better cross-sectional fit 

than the single market factor model.  

 

When commodity market risk and real business risk are employed, the conventional 
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commodity market risk appears to have a negative impact on stock returns. Moreover, 

all the downside risk estimates, even when controlling for the classic and upside risk 

estimates, exhibit strong negative relationships with stock returns. When downside 

estimates increase, stock returns decrease dramatically. The reverse patterns appear on 

the remaining conventional beta and upside beta estimates.  

 

Overall, downside and upside betas deliver more explanatory power. The risk-return 

relationship shown in this thesis can be attributed to the fact that when downside beta 

is calculated, the return of the market portfolio is below the average, and very likely 

to be negative. The expected stock excess return is the product of beta and the excess 

return of the market portfolio, so when stocks are sorted by downside beta into 

portfolios, the larger the downside beta, the lower the return, and vice versa. As for 

the commodity market and ADS index risks, all downside and upside risk estimates 

exhibit similar effects to those of the market portfolio. While the conventional 

commodity market risk estimates exhibit a reversed impact on stock returns as the 

classic beta does. There is no clear evidence that conventional ADS index risk has an 

impact on stock returns. It suggests that, on both downside and upside, the stock 

market risk is not the only cross-sectional determinant of US stocks, the commodity 

market and ADS index risks are also important ones.     

 

In terms of fit, non-linear time-varying estimates deliver much higher adjusted R
2
 

values in cross-sectional regressions than conventional estimates. It is more obvious 
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when commodity market risk and ADS index risk are involved. Clearly the CPPF and 

the FFF model outperform the classic market model. It is also found that regressing 

stock returns on estimates generated from both the CPPF and the FFF models delivers 

the highest adjusted R
2
 values.  

 

Regarding predictive power, downside and upside estimates of both models are found 

to be poor. There is very weak evidence that low upside estimates of stock market risk 

indicate a high future return on the FFF model. However the estimates of the CPPF 

model do not support the evidence. Regarding the remaining estimates, only medium 

value betas lead to high future returns, while the top and bottom portfolios 

continuously lead to low future returns.  

 

There are certainly some limitations in this study. First, this study only broadly 

divides markets into downside and upside, but there could be other criteria to classify 

the market, for instance, downside and upside of emerging and developed markets. 

Second, the ADS index is the most updated indicator to describe real business 

conditions, but there might be other indicators to represent the whole economy in 

more specific aspects (such as exchange rate, surplus or deficit). Third, although 

employing all risk estimates of both the CPPF and the FFF model produced the 

highest adjusted R
2
 value, the implication of risk estimated coefficients of the same 

risk factors in different models is still to be explored. Fourth, alternative nonlinear 

approaches such as FFF with no periodic constraint can be tested. Fifth, this study 
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mainly focuses on the US stock market. However, emerging markets such as the 

Chinese stock market could also be the target of further research.           
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Piecewise polynomial matrix with 2 knots 
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Piecewise polynomial matrix with 3 knots 
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Figure 1 Plots of the CPPF Estimates  

This figure shows the plots of the CPPF estimates with different numbers of knots. 

Panel 1 is based on Boeing Company returns, Panel 2 is based on 21
st
 Century Fox 

returns, Panel 3 is based on AT&T Inc. returns, Panel 4 is based on HCP Inc. returns, 

Panel 5 is based on SAIC returns, and Panel 6 is based on PPG Industries returns. 

 

      Panel 1 Estimates without knot         Panel 2 Estimates with one knot 

  

     Panel 3 Estimates with two knots        Panel 4 Estimates with three knots 

 

     Panel 5 Estimates with four knots       Panel 6 Estimates with five knots 
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Figure 2 Plots of the CPPF and Cubic Spline Estimates  

This figure shows the sample plots of the CPPF and cubic spline estimates with five 

knots. These plots are based on Praxair Inc. returns. 

 

Panel 1 The CPPF estimates       Panel 2 The cubic spline estimates 
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Figure 3 Plots of The FFF Estimates   

This figure shows the plots of the FFF estimates with different orders. Panel 1 is 

based on Nucor Corp. returns, Panel 2 is based on ONEOK returns, Panel 3 is based 

on Republic Service Inc. returns, and Panel 4 is based on Xilinx Inc. returns. 

 

     Panel 1 Estimates on order one         Panel 2 Estimates on order two 

  

     Panel 3 Estimates on order three         Panel 4 Estimates on order 4 
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Table A  Summary of Both US stocks 

This table summarizes the constituents of US stocks, average annual returns and 

volatility used in Chapter 4, the sample size is from March 1960 to December 2010. 

  

Stock Exchange 
Number of 

Stocks 

Percentage 

to whole 

Sample 

Average 

Annualized 

Return 

Standard 

Deviation 

NYSE 2198 16.21% 10.59% 10.99% 

NASDAQ 7636 56.33% 12.32% 20.13% 

AMEX 1105 8.15% 10.98% 16.91% 

NYSE & NASDAQ 1031 7.60% 14.12% 13.55% 

NYSE & AMEX 556 4.10% 14.10% 13.72% 

NASDAQ & 

AMEX 
829 6.11% 11.24% 20.17% 

NYSE & NASDAQ 

& AMEX 
202 1.49% 14.61% 16.15% 

Total Sample 13557 100% 12.08% 17.06% 
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