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Abstract 

Oxbow lakes are of high ecological importance due to the number and the diversity of 

habitats they provide. They are created after the abandonment of meanders and 

subsequent sediment infilling leads to their progressive terrestrialisation, taking from a 

few months up to several centuries. Nonetheless, little is known about oxbow lake 

terrestrialisation processes, sediment composition, or why such a disparity exists in 

lakes’ longevity. 

 

To understand the controls on oxbow lakes alluviation, field observations, remotely 

sensed data and GIS analyses were combined. Sediment transfers in oxbow lakes were 

documented by topographic and sampling surveys of sites in France and Wales. Aerial 

photographs and maps were used to date cutoff events, analyse oxbow lakes geometry, 

and understand the controls on oxbow lake terrestrialisation for eight rivers of different 

characteristics. 

 

Findings from this study illustrate that the specific mechanism by which an oxbow lake 

is formed is critical to its persistence as a lake and to the sedimentary processes 

experienced. Chute cutoff oxbow lakes filled in 10 times faster than neck cutoffs and 

showed significantly different sediment deposits. Results also highlighted that oxbow 

lakes are not only fine-grained sediment stores, as often referred to, but can be 

significant bed material sinks since a site on the Ain River sequestered up to 34% of the 

bed material supply. However, the volume of sediment mobilised in the main channel 

during cutoff appeared to be larger than the bed-load stored in the former channel 

within the first decade after abandonment (40%). Sedimentary evidence showed that 

the terrestrialisation of oxbow lakes is driven by several processes: a flow separation 

zone at the entrance of the channel creating a sediment plug, sediment sorting by flow 

gradients and decantation in ponded areas.  These results have important implications 

for the management of meandering rivers by providing a comprehensive analysis of 

depositional processes which also helps to predict oxbow lake longevity. 
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Oxbow lakes are widespread features of freely meandering rivers across the planet 

which form as a result of the abandonment of a meander bend by cutoff. Former 

meanders are then isolated by progressive sediment aggradation at each end creating 

the oxbow lake’s open-water area. Their natural evolution leads to their progressive 

infilling with sediment and complete terrestrialisation. Oxbow lakes have important 

roles on floodplain corridors such as sinks for sediment and sediment-adsorbed 

contaminants as well as aquatic habitat for a number of species. This thesis provides a 

comprehensive study of oxbow lakes’ sedimentation, longevity and dynamics. The 

findings presented regarding the controls and processes of oxbow lake sedimentation 

are essential steps to understand floodplain architecture and meandering river 

dynamics. At last, these water bodies are of high ecological importance for the diversity 

of habitats they offer; therefore it is key to understand the controls on oxbow lake 

longevity. 

1.1 Sediment transfers 

Understanding channel dynamics, sediment transfers and depositional processes are 

key questions in fluvial geomorphology because they have important implications for 

floodplain habitats, the management of lands and pollution, and the general 

understanding of floodplain architecture. Sediment transported through a catchment 

has a tendency to exhibit a downstream increase in volume (Trimble 1997), in overall 

floodplain storage (Dietrich and Dunne 1978) and reduced sediment size (e.g. 

Ashworth and Ferguson 1989). Nevertheless there are exceptions, for instance Meade 

and Parker (1985) showed that sediment volume can decrease downstream during low 

flow periods on the Mississippi River (USA). A simplistic scheme for sediment transfers 

was advanced by Schumm (1977) and consisted of splitting a catchment in three 

subdivisions including an upper area where sediment was produced, a middle area 

where sediment was transferred and a lower area where sediment was deposited. This 

idealized system stresses that channel reaches may be dominated by a process, but it is 

not completely realistic as sediment is eroded, transported and deposited throughout 

the entire channel length. Sediment eroded from the drainage basin is transferred by 

rivers either as dissolved load (transported in solution), wash load (finer than bed-load 
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and moving readily in suspension) or bed-material load (material found in large 

quantities in the bed) (Knighton 1998). Numerous field studies have shown that 

sediment eroded from the bank and the floodplain is largely remobilized (e.g. Trimble 

1976, 1981, Aalto et al. 2008). For meandering rivers, the focus of this study, point bar 

deposits and meander curvature have a strong effect on currents and trigger channel 

migration by bank erosion (e.g. Leopold and Wolman 1960, Dietrich and Smith 1983). 

The progressive migration of meanders by bank erosion and point bar growth creates 

cross sections of scroll-shaped ridges and swales following the curve of channel (Allen 

1965). Channel migration is one of the dominant processes for sediment transfers of 

meandering rivers with additional influence from the effect of floods and runoff, which 

shave the existing floodplain. Finally, meanders can also cut-off leading to the transfer 

of large volumes of sediment up to five orders of magnitude larger than erosion by 

lateral channel migration (Zinger et al. 2011). The open water areas of the cut-off 

channels form oxbow lakes and constitute long term records of the river loads (e.g. 

Allen 1965, Erskine et al. 1982; Glinska-Lewczuk 2005). Former channel processes and 

the sedimentation of oxbow lakes will be the focus of this study. 

1.2 Meander cutoff 

1.2.1 Why do meandering rivers cut-off? 

Meander cutoff is a process occurring naturally on freely meandering rivers and can 

be defined as the shortening of a meander bend to the profit of a new path. The 

primary triggers of cutoffs are flood events (Johnson and Paynter 1967; Micheli and 

Larsen 2011) but these events are not necessarily of high magnitude (Fig. 1.1). For 

several cases, cutoffs were observed to occur after the repetition of moderate floods 

(Hooke 1995; Gay et al. 1998; Hooke 2004). Tal and Paola (2010) suggest that the 

incision of a new channel through floodplain sediment requires a flow at high erosion 

capacity; this is generated by the higher slope gradient of the shorter cut-off route. For 

this reason, cutoffs are more likely to occur on the most sinuous bends of a river (Allen 

1965; Micheli and Larsen 2011). Overbank flow can also trigger cutoff without a direct 

increase in discharge. Smith and Pearce (2002) described a cutoff caused by overbank 
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flow due to ice-jam on the Milk River (Montana, USA; and Alberta, Canada) but this is a 

far less common cause. Vegetation removal increases the vulnerability of the floodplain 

and enhance the risk of cutoff (Tal and Paola 2010; Micheli and Larsen 2011) because 

grass, plants and small trees play an important role in maintaining the banks by 

providing flow resistance and limiting erosion (e.g., Shields and Gray 1992; Millar and 

Quick 1993; McKenney et al. 1995; Prosser and Dietrich 1995; Abernethy and 

Rutherfurd 2001; Bennett et al. 2002; Jarvela 2002; Samani and Kouwen 2002; Gray 

and Barker 2004; Pollen et al. 2004; Corenblit et al. 2007; Eaton and Giles 2009; 

Langendoen et al. 2009; Pollen-Bankhead and Simon 2010). 

 

 

Figure 1.1: Satellite composite image of the confluence of the Mamore River and the Isiboro 
River in Bolivia. 
This extremely active stretch of meandering rivers expresses an impressively large number of 
cutoffs of various shapes and sizes. UTM coordinates: 15°13’35.30’’S, 64°55’59.16’’W. 
 

Cutoffs may function as a control on the floodplain dynamics of meandering rivers. 

Leopold and Wolman (1960) stated that cutoffs have the role of adjusting the river by 

providing a limit to the amplitude of meanders since the new channel is often a lot 

shorter than the abandoned meander bend. The question of the role of cutoff in 

meandering river dynamics was developed later by Stolum (1996) in a numerical 
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modelling study. Stolum (1996) suggests that meandering rivers follow a self-

organisation process controlled by cutoffs. A river evolving with symmetrical meanders 

(Fig. 1.2: “ordered state”, Stolum, 1996) is likely to migrate increasingly towards various 

directions with sharp bends (Fig. 1.2: “chaotic state”, Stolum, 1996) when cutoffs 

induce strong axial asymmetry intensified by the meandering process. Oppositely, 

Stolum (1996) explains that cutoff might also correct asymmetry by abandoning 

meanders. In the investigation of the causes of multiple cutoffs on the Bollin River, UK, 

Hooke (2004) suggested that long-term channel patterns matches with the hypothesis 

of Stolum (1996) since the author observed that river sinuosity had reached a critical 

value before an avalanche of cutoffs occured, resembling the chaotic state described 

by Stolum (1996). This is also suggested by Gautier et al. (2007), who could not 

demonstrate a clear relationship between flood occurrence and cutoff events. As a 

result, meander cutoff may generally be an inherent and inevitable process of natural 

meandering rivers. 

 

 

Figure 1.2: Evolution of the river simulated by Stolum (1996). 
The simulation started with a nearly straight line and evolves to both chaotic (on the left) 
and ordered state (on the right). The transition between the two states was initiated by a 
cutoff cluster. “The ordered state in the right part of the figure has reached a mature stage in 
which the train of bends is still highly symmetrical around the original axis, while at the same 
time each bend is growing into an asymmetrical shape” (Stolum, 1996, p1711). 

1.2.2 The significance of cutoffs for meandering rivers 

The effect of cutoffs for meandering rivers is three-fold: geometric since they reduce 

meander amplitude, dynamic since they generate sediment transfers and structural 

since their sediment infilling builds the floodplain architecture. Camporeale et al. 
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(2008) suggested the first two factors using model simulations. Their analyses 

highlighted that the geometrical role relates to the elimination of older reaches from 

the active river, while the dynamic role is explained by the disturbance of the channel 

by cutoff events. Cutoffs change river geometry by removing meanders which 

decreases sinuosity, reorganises bend shape (Stolum 1996) and maintains its amplitude 

(Sun et al. 1996; Camporeale et al. 2008). The dynamic function of cutoffs lies on the 

fact that, while eroding a new channel, they transfer large volumes of sediment that 

can be equivalent to 60 years of erosion by channel migration (Zinger et al. 2011). 

Cutoff events bypass river segments which limits the spatial evolution of meanders and 

leaves water bodies that progressively store sediment. Both water body and stored 

sediment modify the architecture of the floodplain, with geomorphic consequences 

observed to persist for over a decade after the event (Hooke 1995). 

1.2.3 Cutoff mechanisms 

Several different types of natural channel bifurcation were reported by previous 

literature in fluvial geomorphology. The term oxbow lake is often used in to describe 

the result of various types of channel shortening. Channel shortening takes place either 

on single meander bends such as neck and chute cutoffs (Fisk 1947; Allen 1965), or on 

longer segments including notably multiple loop cutoffs (e.g., Allen 1965; Lewis and 

Lewin 1983) or avulsions (e.g., Slingerland and Smith 1998). However, this thesis will 

only focus on the mechanism of single bend cutoff given that it is by definition the only 

process that produces oxbow lakes. 

1.2.3.1 Neck cutoff 

Neck cutoff occurs when two meander bends migrate into one another and 

trigger channel shift (Fig. 1.3). This process is generally associated with well-developed 

meanders that are cut-off when two opposite bends erode the floodplain toward each 

other until they eventually migrate into one another (Fisk 1947; Allen 1965; Gagliano 

and Howard 1984). The typical conditions favourable to neck cutoffs are low gradient 

river reaches. Lewis and Lewin (1983) investigated the role of gradient in driving neck 

cutoff in Wales and Borderland, they measured a slope between 0.8 ‰ and 2.5 ‰ 

associated with the studied neck cutoffs. Low slope favours meander migration and 
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imposes an important slope difference between the river and the former meander 

when cutoff occurs (Gagliano and Howard 1984). Slope difference could be of 

importance in the longevity of oxbow lakes and will be discussed in Chapter 2 using a 

large dataset of oxbow lake dimensions from various rivers of the world. Gagliano and 

Howard (1984) investigated neck cutoff formation using 26 former channels located 

along the Lower Mississippi River, USA. They detailed further the description of neck 

cutoff mechanism by suggesting two natural ways of formation: firstly by excessive 

growth of a whole meander loop as mentioned above, when both meander arms 

migrate into one another; and secondly by the migration of one meander bend into the 

other, possibly due to an important difference in bed material resistance of the two 

opposite meander sections. Regardless of their mode of formation, neck cutoffs lead to 

major shortening of the local channel length because an entire loop is removed. 

 

 

Figure 1.3: Aerial photographs showing the initiation of a neck cutoff. 
The site is located on the Smoky Hill River (Kansas and Colorado, USA) and cut-off between 
2003 and 2005, when the two meander arms migrated into one another. Sediment was 
already deposited at the ends of the former channel and isolated an oxbow lake in 2008. 
Vegetation developed on the new deposit around 2010. UTM coordinates: 38°58’30.62’’N, 
96°56’56.83’’W. 
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1.2.3.2 Chute cutoff 

Chute cutoff is created by the incision of a new channel across the point bar 

area of a meander (Fisk 1947; Allen 1965; Johnson and Paynter 1967; Gagliano and 

Howard 1984; Constantine et al. 2010a) (Fig. 1.4). Fisk (1947) observed that the new 

channel often develops as an extension of the upper arm of the cut-off meander. This 

cutoff process is associated with steeper slope than neck cutoff as it was observed to 

occur on channel slopes of up to 9.5 ‰ according to observations by Lewis and Lewin 

(1983). The high slope is likely to provide the energy to incise the floodplain area. The 

angle of bifurcation between the new channel and the upper part of the former 

channel (or “diversion angle”) is generally lower than for neck cutoffs (Fisk 1947; Bridge 

1985; Constantine et al. 2010a). Several studies (Fisk 1947; Lindner 1953; Gagliano and 

Howard 1984; Shields and Abt 1989; Piegay et al. 2002; Constantine et al. 2010a) 

suggest that this angle affects the diverted flow and sediment infilling occurring shortly 

after cutoff within the former channel (see 3.2).  

 

 
Figure 1.4: Aerial photographs showing the initiation of a chute cutoff on the White River 
(Indiana, USA). 
Between 2003 and 2008, a narrow chute channel enlarges progressively across the floodplain 
by what appears to be the enlargement of a swale. Around 2008 the new channel conveys a 
significant part of the discharge and becomes the main conveyor in 2010. The chute cutoff 
can be dated here between 2008 and 2010. UTM coordinates: 38°50’36.05’’N, 
87°10’22.73’’W. 
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Chute cutoffs take place either by enlargement of a swale (Fisk 1947; Grenfell et al. 

2012), by headcut extension (Gay et al. 1998) or by extension of an embayment 

(Constantine et al. 2010b). Chute cutoff by enlargement of swale takes place when 

overbank flow is great enough to flood the extended rills (“swales”) which are created 

by meander migration (Hickin and Nanson 1975). The water is then channelised in one 

or several channels and significant erosion of the banks can occur, leading to 

progressive enlargement of the swales (Fig. 1.5). Finally, enlargement can reach the 

point when one of the swales becomes the principal conveyor of the river discharge 

(Fisk 1947; Grenfell et al. 2012). According to Grenfell (2012) this mechanism of chute 

cutoff might be caused by a change in sediment load or inflow energy. 

 

 

Figure 1.5: Photo illustrating a series of inundated swales from an Amazonian floodplain. 
The swales can channelise water and potentially lead to chute cutoff (Constantine et al. 
2010b). 
 

In contrast, cutoff by headcut extension requires the presence of a natural dam located 

upstream of the meander (Constantine et al. 2010b) (Fig. 1.6). A natural dam, made for 

example of woody debris, can easily divert the river flow to the point bar and force 

overbank flows if the channel is narrow enough (Keller and Swanson 1979). Following 

the highest slope gradient, the water flowing overbank plunges downstream which can 

result in bank incision. The created headcut incision, located on the downstream half 

of the bend, can propagate upward until it reaches the upstream side of the bend and 

forms a chute (Constantine et al. 2010b). Gay et al. (1998) studied the evolution of 

headcut caused by ice-jam along the Powder River (Montana, USA). Because the river 

is quite narrow, jammed ice has the same effect as wood to divert flow and this can 

also lead to cutoff. The study shows that headcut propagation rate seems to depend on 

overbank flow and on whether or not the bank is frozen. Thompson (2003) reported a 

slightly different case of headcut extension observed on the Blackledge River in 



10 
 

Connecticut (USA). The study shows that the relocation of the river increased 

significantly sediment accumulation of a point bar. This led to a superelevation of 

water opposite the point bar that facilitated overbank flow, progressively caused 

headcut incision, and formed a cutoff. 

 

 

Figure 1.6: Illustration of a headcut that lead to chute cutoff on the Powder River (Montana, 
USA) in 1985. 
(a) Schematic representation of the meander bend where the headcut occurred.  
(b) Isometric drawing of headcut gully.  
(c) Photograph of the headcut gully in 1986 with the Powder River at the back. John Moody is 
standing in the middle of the photo for scale (after Gay et al. 1998). 
 

Constantine et al. (2010b) described a mechanism of chute cutoff by embayment 

extension (Fig. 1.7). It is initiated by the erosion of the outer bank of the upstream 

reach of the meander. Erosion is at first rather local but after successive floods the 

eroded zone enlarges to form an embayment that will trigger chute cutoff. On the 

Sacramento River (California, USA), Constantine et al. (2010b) observed that this type 

of cutoff can appear in areas devoid of natural dams in contrast with cutoff by headcut 

extension; the phenomenon is independent of sudden changes in conveyance capacity 

due to changes in channel width. The study concluded that the three primary controls 

of this particular chute cutoff would be: the steepening of the valley slope enhancing 

flow energy, the thinning of vegetation which would not provide a suitable protection 

against erosion, and the reduction in sediment load increasing the flow erosion 

capacity (Constantine et al., 2010b). Additional literature tackles the origins of chute 

cutoff by embayment (Hauer and Habersack 2009) in a study of a 1000-year flood 

impacts on floodplain morphology. In this case study the authors attributed 

embayment cutoff to an increase of the valley width after millennial flood but also 

partly due to anthropogenic influences. 
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Figure 1.7: Aerial photograph of a meander bend of the Missouri River (USA). 
This illustrates the formation of an embayment progressing downstream and that can 
potentially create a chute cutoff (Constantine et al. 2010b). 

1.3 Stages of oxbow lake sedimentation 

1.3.1 From cutoff to hydraulic disconnection  

Cutoff events create oxbow lakes by progressively isolating former meanders by 

sediment infilling. After cutoff, flow in the former meander reduces and favours 

deposition of coarse-grained sediment until the abandoned channel ends are partially 

or completely disconnected. The new channel enlarges progressively as it conveys an 

increasing discharge. This occurs to the detriment of the former channel which has a 

lower gradient than the incising channel and supports the blockage of the oxbow lakes 

ends by a sediment plug. Theoretical and experimental results indicate the existence of 

a flow separation within the upstream entrance of the former channel, the size of 

which is determined by the diversion angle (Taylor 1944; Law and Reynolds 1966; 

Hager and Hutter 1984; Neary and Odgaard 1993; Keshavarzi and Habibi 2005; 

Constantine et al. 2010a). These studies indicate that the larger the angle, the larger 

the width of the flow separation. Tiron (2009) also reported a zone of very low flow 

velocity near the outer bank at the entrance to the channel with a sediment plug 

forming rapidly, possibly linked to the existence of a flow separation. The size of the 

flow separation controls the competence of the diverted flow, enhancing plug 

formation with increases in the width of the separation (Constantine et al. 2010a), 
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though it remains unclear how construction of the plug proceeds. It is important to 

note as well the recent findings of Le Coz et al. (2010), who provided a rare description 

of the interaction between flow and sediment at the downstream end of the 

abandoned channel. Based on both field evidence and laboratory experiment, they 

revealed that the presence of complex flow circulation with secondary currents caused 

deposition near the downstream bank due to a decelerating flow along with erosion of 

the upstream bank due to accelerating flow (see field example of bar deposits on Fig. 

1.8). 

 

 

Figure 1.8: Photographs illustrating both coarse and fine-grained sediment in the studied 
oxbow lakes of the Towy River. 
 (a) and  (b): Photographs of the downstream end of the oxbow Lake CHU4 taken on different 
days in 2010. Nine years after cutoff a substantial infilling by coarse-grained sediment is 
visible and forms a bar.  
(c) Photograph of the river bank eroding the upstream end of an abandoned channel. Erosion 
reveals an outcrop with basal gravel deposit overlaid by a thick layer of clay and silt. 
(d) Close up of (c) showing the contact between fine- (clay and silt) and coarse-grained 
(gravel) sedimentation. 

 

 The development of a coarse-grained sediment plug disconnects the channel from the 

newly-formed oxbow lake. However, the lake is not necessarily fully isolated as it can 
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remain connected to the river at one end or through a tie channel flowing through the 

plug (Gagliano and Howard 1984; Rowland et al. 2005). The thick sediment plug is 

often observed to form first at the upstream end of chute cutoff former channels (Allen 

1965; Hooke 1995; Piegay et al. 2002; Constantine et al. 2010a). This stage of 

sedimentation was observed on aerial photographs from the Beni River (Bolivia) by 

Gautier et al. (2007), they reported that the first stage of sedimentation was the most 

rapid and lasted between 1 and three years. However, the period of formation of the 

plug at the extremities of the lake seems quite variable, ranging between months and a 

decade (Gagliano and Howard 1984; Hooke 1995). Nonetheless, plugs are not always 

present since observations by Grenfell et al. (2012) indicates that 33 to 67% of the 

chute cutoffs of three sand-bedded tropical rivers did not infill during the 35 years of 

study. The downstream end of chute cutoffs usually takes longer to block up and can 

remain connected to the river for longer due to the formation of complex recirculating 

flows that scour this zone and counter-balance deposition (Le Coz et al. 2010). For 

instance in a study of the Ain River (France), upstream plugs were present at all the 17 

sites whereas only 30% of them showed downstream plugs (Citterio and Piegay 2000). 

No such difference has been observed for neck cutoffs yet but Allen (1965) observed 

that the neck cutoff plugs are usually smaller than those of chute cutoff. This is due to 

the higher diversion angle these sites cut-off at, which creates a large flow bifurcation 

zone and enhances local deposition in case of neck cutoff (see 1.3.2). Based on 

observations within sediment plugs of oxbow lakes in the USA and Papua New Guinea, 

Rowland et al. (2005) observed that plug deposits were planar bedded and sloped 

gently toward the oxbow lakes. They hypothesised that the plugs first develop as 

berms separating the arms of the oxbow lake from the main channel. Material is then 

advected over these berms, forming a sedimentary ramp that progrades into the lake 

with time. Citterio and Piegay (2000) examined the controls on plug evolution within 

abandoned channels along the Upper Rhone River of France using a statistical analysis 

of measurements made from aerial photographs. They found that oxbow lake plugs 

can be subject to 3 types of evolution which are: 1) shortening by upstream erosion 

from channel migration, 2) vegetation development upstream supporting sediment 

deposition, and 3) downstream extension with progradation. Piegay et al. (2002) 

presented results of multiple regression analysis showing that the cutoff age had an 

impact on plug evolution because the number of floods increases with time. Hydraulic 
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connectivity, controlled by the plug, was described as the most significant factor 

controlling the sedimentation of oxbow lakes (Citterio and Piegay 2009). 

 

Studies reporting the very first stage of sediment transfers following cutoff are rare. 

Cutoff is a relatively sudden phenomenon and significant infilling can occur within a 

month. Therefore it is difficult to obtain data in this short time window to report 

sediment transfers associated with cutoff. Consequently, the volume of sediment 

transferred during the isolation of the channel is not well documented, especially 

related to the former channel entrance infill since no study has focused on this 

question yet. Even though plug formation and extension are key processes defining the 

oxbow water area, little is known about the rates and extent of plug development. For 

this reason, Chapter 3 will investigate the initial transfer of bed material and the 

patterns of sedimentation in two recently cut-off channels of the Ain River (France). 

This chapter will give a detailed description of the development of the plug at a yearly 

timescale during a decade, as well as assessing the significance of the bed-load 

transfers between the river and the former channel (see Appendix 4, Dieras et al. 

2013). 

1.3.2 From disconnection to terrestrialisation 

Once the oxbow lake ends are fully or partially blocked by bed material, sediment 

deposition occurs at much slower rates (e.g., Gautier et al. 2007). Sedimentation within 

the oxbow lake is dominated by fine-grained sediment delivered as suspended load 

during floods though Johnson and Paynter (1967) found that gravel nearly completely 

filled an abandoned channel of the River Irk (UK). However, sediment can also be 

scoured by high peak floods (Henry and Amoros 1995; Citterio and Piegay 2009). 

Floods can scour first by creating turbulent flow which prevents particle settling, and 

secondly, by draining the particles back to the river through a connected end. Fisk 

(1947) reported that the thickness of the fine-grained deposit was greatest away from 

the arms of the oxbow where the form of the lake was least affected by bed material 

aggradation. Fisk, Gagliano and Howard (1984) summarised the evolutionary cycle of 

oxbows generated by neck cutoff based on observations along the Lower Mississippi 

River. They noted that batture, or tie, channels may be eroded into sediment plugs, 
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thereby allowing a hydraulic connection to the main channel during low flow stages. 

The deposition of sediment at the batture-channel mouths produces muddy deltas 

within both arms of the lake. Rowland et al. (2005) estimated deposition rates within 

batture channels along the Lower Mississippi River, the Fly River of Papua New Guinea, 

and Birch River of Alaska, USA, and found that such channels can supply significant 

amounts of sediment to the oxbow lake. This finding was also reported by Day et al. 

(2008) from oxbow lakes along the Fly River. During floods, Gagliano and Howard 

(1984) reported that flow enters the oxbow from the upstream batture channel and 

exits through the downstream batture channel, though the fraction of flow being 

diverted is small relative to the total river discharge. Sutton et al. (2004) have shown 

through field observations and modelling that flow may not directly enter the oxbow 

during a flood. Instead, a recirculation zone may develop within both arms once the 

flood is fully developed, which allows some mixing between the lake and main channel, 

but not enough to transfer suspended sediment into the distal portions of the lake. In 

another potential complication, Gagliano and Howard (1984) also stated that because 

of the low gradient through the oxbow and through the batture channels, there is 

often a time lag between changes in river stage and changes in lake stage, which may 

alter the downstream flow pattern through the oxbow. In general, however, suspended 

sediment deposition is most rapid within the arms of the oxbow, with the upstream 

arm containing coarser grained particles due to its predominance as the entrance for 

overbank flow. Conversely, sedimentation rates are lowest within the distal portions of 

the lake and can be dominated by organic material (Piegay et al. 2008). 

After a period reported to last from decades to centuries (Gagliano and Howard 1984; 

Hooke 1995; Constantine et al. 2010a), sedimentation leads to the complete 

terrestrialisation of the oxbow lake. Neck cutoff oxbow lakes were observed to persist 

longer than chute cutoffs (e.g., Gagliano and Howard 1984) yet no study has ever 

quantified their long term evolution. Chapter 2 will investigate the evolution of the 

water surface area of 37 oxbow lakes from eight rivers of various geomorphic 

characteristics to try and determine if there is a general pattern to the evolution of 

oxbow lakes, notably regarding the cutoff mechanism. Sediment rate in oxbow lakes 

was reported to range between 3 and 140 mm.y-1 (e.g., Lewis and Lewin 1983; Erskine 

et al. 1992) but only a few surveys looked at the sedimentation patterns even though it 

participates in building the floodplain sedimentary structure. Neck cutoff oxbow lakes 



16 
 

are likely to have the most extensive clay infilling according to Fisk (1947) due to bed-

load contributing little to deposits (Allen 1965) (Fig. 1.9) and deposited preferentially at 

the ends of the channel (see 1.3.2 Diversion angle, geometry and cutoff mechanism). 

Coarse-grained sediment such as gravel was reported to fill former channels after 

chute cutoff on the River Irk, UK (Johnson and Paynter 1967). Chute channel deposits 

also tend to fine upward (Erskine et al. 1982) with thicker fine-grained deposits 

downstream (Citterio and Piegay 2009; Toonen et al. 2012). As mentioned in this 

paragraph, previous observations of oxbow lakes offer information regarding 

sedimentation patterns but a thorough survey of oxbow lakes sediment on several 

study sites is needed to be able to understand depositional processes. These data will 

be presented in Chapter 4 in a detailed investigation of the sedimentation of five 

oxbow lakes of the Towy River in Wales, UK. This chapter will provide a comprehensive 

study of the sedimentary structure and dynamics of oxbow lakes deposits in the long 

term (from a decade to over a century). This will help understanding sedimentation 

processes and provide key information regarding floodplain architecture. 

 

Figure 1.9: Schematic representation of oxbow lakes deposits suggested by Schumm (1960). 
 A) Sediment deposits in chute cutoff channels. B) Sediment deposits in neck cutoff channels 
(after Schumm 1960; Allen 1965). 
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1.4 Controls on terrestrialisation 

1.4.1 Floods and Hydraulic Connectivity 

Oxbow lakes can be directly hydraulically connected to the river, if one or both 

channel ends are not obstructed, or indirectly connected by overbank flow. Flow 

conveys sediment to the former channel therefore hydraulic connectivity is recognised 

as a major control on sedimentation (Shields and Abt 1989; Bornette et al. 1996; Henry 

and Amoros 1996; Piegay et al. 2000; Piegay et al. 2002; Piegay et al. 2008; Citterio and 

Piegay 2009; Tiron et al. 2009). Sedimentation is impacted by which end of the channel 

remains connected to the river according to Citterio and Piegay (2009). For example, if 

the downstream end is open during overbank flow, the flow input from upstream can 

scour fine-grained sediment deposited in the submerged area if the shear stress 

conditions are high (Henry and Amoros 1996; Amoros et al. 2005; Citterio and Piegay 

2009). In that case, the opened downstream end acts as an outlet drain. Additionally, a 

high magnitude flood that reconnects the upstream end is able to transfer coarse-

grained sediment to the lake and change the depth distribution of sediment (Henry 

and Amoros 1996). Hence, high magnitude floods could transfer coarse-grained 

sediment on top of finer sediment that was already deposited from previous floods of 

smaller magnitude.  

 

Once the two exits of an oxbow lake are fully disconnected by plugs, the lake fills up 

mostly with sediment conveyed by overbank flow. River incision lowers down the 

water level in the main channel and thus supports the isolation of former meander 

from direct hydraulic connection (Bornette et al. 1996). At this stage, oxbow lake 

sedimentation rate increases with a higher frequency of high magnitude floods 

(Citterio and Piegay 2009). However, for an individual flood event deposits thickness in 

oxbow lakes decreases with increasing distance from the main channel (Erskine et al. 

1982; Piegay et al. 2008). For example, Piegay et al. (2008) measurements exhibit a 

difference of about 3 m between deposits at the upstream end of the oxbow from 

those at the downstream end on the Ain River, France. River migration can reduce or 

lengthen the distance between the active and the former channel and modify the 

impact of overbank flow (Citterio and Piegay 2000; Piegay et al. 2000). Gautier et al. 
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(2007) reported that meander migration was an important factor controlling oxbow 

lake sedimentation after observing that former channels located on the concave side of 

a migrating meander tended to show rapid infilling. Therefore, by affecting overbank 

flow, the meander belt activity affects hydraulic connectivity and sedimentation. 

1.4.2 Diversion angle, geometry and cutoff mechanism 

One of the most important physical parameters that appears to impact oxbow lake 

sedimentation is the “diversion angle” (Fig. 1.10). In a study of diverted channels, 

Lindner (1953) reported that bed-load deposition was strongly increased by lower 

diversion angles. In contrast, fine-grained sediment remained in proportion to the 

diverted flow. Lindner (1953) suggested that a drastic reduction in flow velocity at the 

point of diversion resulted in bed-load deposition caused by reduced flow velocity and 

shear stress. Bridge et al. (1986) also confirmed Lindner’s (1953) ideas from 

observations of bed material deposition on the Calamus River (Nebraska, USA). 

Constantine et al. (2010a) investigated further the controls on the alluviation of oxbow 

lakes by bed material load along the Sacramento River, USA. Results from this study 

highlighted how diversion angle regulates the size of the flow separation zone between 

the new and the former channel. As a result, the flow separation zone created by the 

diversion controls boundary shear stress at the former channels entrance, and 

consequently affects bed material transport capacity. 

 

 

Figure 1.10: Schematic representation of the diversion angle (α). 
The small flow whirl at the entrance of the former channel indicate the flow bifurcation zone 
(adapted from Constantine et al. 2010a). 
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Bed material deposits in the former channel entrance tend to be affected by the 

diversion angle and the fraction of bed material load diverted appeared to be inversely 

proportional to the diversion angle for angles between 0 and 90° (Fisk 1947; Shields 

and Abt 1989). This means that with lower angles, more flow can be diverted in the 

abandoned channel, favouring bed material transport (Gagliano and Howard 1984; 

Kondolf 2007; Constantine et al. 2010a). Kondolf (2007) reported a relationship 

between sedimentation and diversion angle in a study based on historical aerial 

photographs, cross sections and sediment cores from the Sacramento River, USA. 

Results showed that oxbows with diversion angles ≤50° fill up at least five times faster 

than those with diversion angles >70°. Profiles of the entrance plug of the former 

channel vary with diversion angles: low angles are associated with long bar deposits 

and a gradual change of sediment calibre from coarse-grained to fine, while high angles 

are associated with dominant fine-grained profiles (Shields and Abt 1989; Piegay et al. 

2002; Kondolf 2007). Consequently, the diversion angle not only affects the volume of 

sediment diverted but also where sediments are deposited. 

 

Neck and chute cutoff mechanisms lead to different lake geometries. Neck cutoffs tend 

to form pear-shaped abandoned channels with a sediment plug at the entrance (Fisk 

1947) whereas chute cutoffs form lakes with less curvature, more ‘crescent-shaped’ 

(Fig. 1.11). This shape difference, depending on the mechanism, tends to naturally 

form neck cutoffs with higher diversion angles than chute cutoffs which affect 

sediment infilling as stated above. Johnson and Paynter (1967) noticed a morphological 

difference between chute and neck cutoff oxbow lakes. Their study of a chute cutoff on 

the River Irk (UK) reported extended accretion of coarse-grained sediment at both the 

upper and lower ends of the oxbow with significant deposits in the central part. In 

comparison, neck cutoff sedimentation in oxbow lakes from the Mississippi River is 

dominated by fine-grained sediment with coarser sediment only limited to the lake 

ends (Gagliano and Howard 1984). Hooke’s (1995) survey of four former channels in 

northwest England indicated that the neck cutoffs underwent faster plug formation 

than the chute cutoffs. The plug in neck cutoff oxbow lakes blocked the upstream 

connection to the river and the lake remained deep water bodies after five years 

whereas chute cutoffs were entirely filled up by this time (Hooke 1995). Channel type 

and curvature could also affect the rate of infill (Bridge et al. 1986; Hooke 1995; Citterio 
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and Piegay 2009). In Chapter 2 it is hypothesised that the long term evolution of oxbow 

lakes could depend on the cutoff mechanism since oxbow geometry and diversion 

angles are significantly different. This hypothesis will be tested in a study of the long 

term evolution of 37 chute and neck cutoff oxbow lakes. 

 

 

 

 

Figure 1.11: Illustration of the typical oxbow lake shape (in dark grey). 
(a) Pear-shaped oxbow lake created by neck cutoff.  
(b) Crescent-shaped oxbow lake created by chute cutoff. 

1.4.3 River sediment supply 

Sediment supply transported by the river has the key role of providing the raw 

material that fills up former channels and leads to terrestrialisation. Shields and Abt 

(1989) suggested that, while cutoff is occurring, bed-load concentrations have a strong 

influence on the abandoned channel volume. This is in agreement with the study by 

Constantine et al. (2010a) showing that aggradation rates within former channel 

entrances are impacted by the bed material in the main channel in a way that the finer 

the bed-load size, the higher the transport capacity and greater the amount of 

sediment diverted into the abandoned channel. Similarly, Erskine et al. (1992) 

expressed that former channel infilling could differ depending on the availability of 

coarse-grained sediment and therefore not all cutoff channels show uniform fine-

grained deposits. As a results, bed-load size and availability in the main channel 

impacts former channel aggradation. 
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Once one or both former channel limbs are plugged with sediment it is common that a 

batture channel still connects the lake to the river. Rowland et al. (2005) indicated that 

sediment load is the primary control of tie channels aggradation and deposits extent 

within the lake from a field study using OSL (optically stimulated luminescence) to date 

sediment. However, Gautier et al. (2007) did not find an influence of the presence of a 

tie channel on sedimentation rates. Former channel disconnection can at last be 

accelerated by a change in sediment supply caused by a dam as suggested by a study 

focused on sediment dynamic of lower Ain River, France, in an area influenced by dams 

(Rollet 2007).  

1.4.4 Vegetation 

On river corridors, vegetation increases bank strength and helps retaining soil with 

the root network (Prosser and Dietrich 1995; Abernethy and Rutherfurd 2001; Gray 

and Barker 2004; Pollen et al. 2004) (Fig. 1.12). Dense patches of aquatic plants also 

support sediment trapping by increasing flow resistance (McKenney et al. 1995; Steiger 

and Gurnell 2003; Corenblit et al. 2009; Pollen-Bankhead et al. 2011). The presence of 

riparian vegetation such as shrubs or grass established on floodplain reaches tends to 

reduce cutbank erosion, channel incision and the rate of riparian buffer expansion 

(Graf 1978; Marston et al. 1995; Allmendinger et al. 2005). Isolated or widely spaced 

trees are however less able to protect the floodplain from erosion. Using numerical 

modelling, Constantine and Dunne (2008) showed that spacing between trees trunks is 

limited by the extent of their crown. As a result, trees tend to be naturally more spaced 

then shrubs or smaller vegetation and less able to slow flows down and prevent 

floodplain erosion. Nonetheless they can indirectly protect the floodplain by providing 

shade to smaller vegetation (Constantine and Dunne 2008). The protecting role of 

vegetation can be extrapolated to abandoned channels. Hooke (1995) pointed out that 

sedimentation of former channels was closely related to the spatial development of 

vegetation. Grass, shrubs and small trees start spreading in the abandoned channel 

bars within a few years after cutoff (e.g., Hooke 1995). That favours sediment 

deposition by decreasing local boundary shear stress, especially in case of high stem 

density (Constantine and Dunne 2008). The expansion of vegetation patches on oxbow 
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lake upstream and downstream plugs supports sediment aggradation and 

subsequently oxbow lakes terrestrialisation (Henry and Amoros 1995; Citterio and 

Piegay 2000). Plants are very sensitive to changes of physical conditions and are easily 

affected by various factors (e.g., water transparency, flow disturbance, etc.). Frequent 

floods indirectly affect oxbow lake sedimentation by disturbing vegetation 

development on river corridors (Henry and Amoros 1995). Large floods generally 

sweep away most of the macrophytes present (Henry and Amoros 1996) but also affect 

terrestrial plants as well. 

 

 

 

Figure 1.12: Protective effect of vegetation against erosion. 
a) The use of Cedar trees and bank vegetation to reduce erosion on Spring Creek by the 
Oklahoma Department of Wildlife and Conservation (USA).  
b) Environmental scanning electron microscope image of rootlets and other material from 
the root attached to a sand grain revealing how vegetation is able to physically maintain 
sediment particles (Tal and Paola 2010). 

 1.5 The Role of oxbow lakes on meandering floodplain 

1.5.1 Floodplain architecture 

A key geomorphological role of former channels is to participate in the building of 

the floodplain architecture. Cutoffs abandon water features which mark the boundary 

of the meander belt (Allen 1965) and also store sediment. In the long term, deposition 

of fine-grained sediment fills up the depression left by former meanders. Sediment is 

compacted under its own weight (Fisk 1947), forming cohesive lenses hard to erode 

especially in the case of neck cutoff oxbow lakes since they tend to be rich in clay (e.g., 
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Gagliano and Howard 1984). When the future channel migration reaches these clay 

lenses, it meets a highly cohesive zone that can stop progression and forces bend 

migration in another direction. This is supported by a study of the Mississippi River 

(USA) that showed migration rates of 14 m.y-1 higher in the part of the alluvial valley 

where the channel was in contact with fewer clay plugs (Hudson and Kesel 2000). 

Chute cutoffs tend to store larger volumes of bed material than neck cutoff as 

mentioned above (see 1.3.2); consequently the floodplain architecture is likely to vary 

depending on the type of cutoff. As a result, oxbow lakes form heterogeneities on the 

floodplain that are very likely to affect channel migration (Allen 1965; Erskine et al. 

1982; Furbish 1991; Sun et al. 1996; Hudson and Kesel 2000). 

1.5.2 Storage of contaminants and flood waters 

Oxbow lake sediment records river pollution history because pollutants tend to 

adsorb on sediment particles (e.g., Erskine et al. 1982; Brugam et al. 2003; Glinska-

Lewczuk 2005; Babek et al. 2008; Galicki et al. 2008; Glinska-Lewczuk et al. 2009a). 

Former channels form enclosed depressions when they are disconnected from the 

river which allows them to potentially store contaminants transported by overbank 

flow or small tributary streams. In a study of the Morava River, Czech Republic, Babek 

et al. (2008) suggested that sediment on the studied sites offered a very good 

stratigraphic resolution for the record of river contamination history, at yearly and 

seasonal scale, and allowed to trace contamination history up to the early 1980s. 

Furthermore, they have shown that contamination records obtained with lake 

sediment such as heavy metals or persistent organic pollutants were consistent with 

data from other Central European rivers. Glinska-Lewczuk et al. (2009a) also 

demonstrated that heavy metals were efficiently stored in the oxbow lakes of the River 

Lyna in Poland, finding 3.24 g of lead and 16 g of zinc in the top 30 cm of sediment. 

 

The issue of the pollution of groundwater by contaminated oxbow lakes is not well 

documented even though this connection is mentioned (e.g., Amoros and Bornette 

2002; Cooper et al. 2003; Kim et al. 2009). Nonetheless a buffer for pollution may be 

created by the very low permeability of the clay-rich sediment layer lying on the bed of 

oxbow lakes and the natural filtering effect of vegetation. Galicki et al. (2008) analysed 
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the concentration of several pollutants (e.g., lead, arsenic, phosphorus) in an oxbow 

lake of the Mississippi River and in its surrounding vegetation. They suggested that 

even though pollutants originated principally from nearby fertilized cotton fields, 

pollutants appeared to accumulate preferentially in the lake. An explanation was that 

vegetation adsorbed the pollutant and then the decomposing litter was transported 

into the oxbow lake by seasonal floods. 

 

At an early stage of infilling, former meanders create large floodplain topographic 

depressions which are good flood water stores and help to restrain the volume of 

water immersing occasionally floodplains (Henry and Amoros 1995; Citterio and Piegay 

2000). Fine-grained sediment infilling by overbank flow provides therefore a reliable 

record of flood history in the long-term (e.g., Wolfe et al. 2006; Wren and Davidson 

2011). In a study of the Lower Hunter River (Australia), Erskine et al. (1992) showed 

that channel change, flood regime shifts and variations in bed material can be 

determined with the study of sedimentary records in cut-off channels. Former 

channels constitute a source of information and not only for geomorphologists but also 

for historians. Ellis and Brown (1998) successfully dated archaeological remains found 

in paleochannel sediments in Leicester (UK) with the use of archaeomagnetic dating. 

This method compares the natural remnant magnetisation of minerals in sediment to a 

reference age curve established for the location (Ellis and Brown 1998). The study 

revealed that oxbows are ideal environments for archaeomagnetic dating because they 

are historically associated with settlements and the waterlogged sediment is often 

preserved. Another example is the investigation of the impact of the first European 

Settlement in Australia by Leahy et al. (2005) who used sediment deposited in the 

oxbow lake Bolin (“Bolin Billabong”) from the Yarra River floodplain. 

1.5.3 Maintaining diverse aquatic habitats 

The particular location of oxbow lakes on the river corridor enables them to be 

regularly connected to the active channel (Fig. 1.13). These environments are half way 

between lotic and lentic, with regular lateral water connectivity (between the main 

channel and the river corridor). The connection to the river distinctively supports a 

high diversity of habitats for both fauna and flora (Ward and Stanford 1995; Tockner et 
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al. 1999; Ward et al. 1999; Amoros and Bornette 2002; Pringle 2003; Stella et al. 2011). 

When the former channel is hydraulically connected to the river, the nutrient-loaded 

water favours the development of vegetation and phytoplankton (Hamilton and Lewis 

1987; Kohler and Nixdorf 1994). The developing population of phytoplankton can in 

turns support planktonic crustacean as shown in a study of a Polish oxbow lake of the 

Bug River (Strzałek and Koperski 2009). However, hydraulic connection also helps 

control the overdevelopment of macrophytes by mechanically removing them during 

high magnitude floods, enhancing successional processes (Amoros and Bornette 2002). 

Vegetation removal by floods is very important because macrophyte overgrowth can 

reduce the volume of water available and affect macroinvetebrates (Gallardo et al. 

2012). A study of the Lower Ain River, France, shows that 20 to 25 hydrophyte species 

could be found on perifluvial aquatic zones of the river (Piegay et al. 2000). Vegetation 

communities found in former channels reflect contrasting ages and hydromorphic 

characteristics (Piegay et al. 2000) after the succession of different lacustrine stages, 

leading gradually to terrestrialisation. 

 

 

Figure 1.13: Simplified diagram to illustrate the role of fluvial dynamics and seasonal 
flooding in sustaining biodiversity (adapted from Ward et al. 1999). 
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Oxbow lakes are the fish nurseries of meandering river floodplains because they 

provide a calm environment for growth and refuges from predators (Kwak 1988; 

Schiemer 2000; Amoros and Bornette 2002; Miyazono et al. 2010; Osorio et al. 2011). 

Connectivity to the river is for these reasons essential for fish habitats and migration 

(e.g., Copp 1989; Schiemer et al. 1992; Ward et al. 1999; Jungwirth et al. 2000; 

Schiemer 2000). The water area and the shallowing of aging oxbow lakes also affect 

fish biodiversity because water depth is responsible for thermal, chemical and light 

stratification which also affects planktonic photosynthesis (Miranda 2005; Lubinski et 

al. 2008; Dembkowski and Miranda 2012). However, the primary controls on the water 

surface area of oxbow lakes have not been defined in the long-term; this question will 

be explored in Chapter 2 of this thesis. Henry and Amoros (1995) pointed out the 

importance of wetlands for their support of biodiversity, their sustenance of fishery 

productivity, and for the refuge they provide to animals from the river; e.g twaite shads 

and otters on the Tywi River, Wales (JNCC 2009). By sustaining a large variety of 

habitats for both fauna and flora, oxbow lakes support biodiversity (Miller et al. 2010) 

and are therefore of high ecological importance. 

 

In contrast, oxbow lakes storing large amounts of suspended sediment and pollutants 

may have unfavourable consequences for aquatic vegetation (Niethammer et al. 1984; 

Zablotowicz et al. 2006; Knight et al. 2009; Lizotte et al. 2009; Heimann et al. 2011). 

Suspended sediments increase turbidity and reduce aquatic flora (Reynolds 1987; Brink 

et al. 1992). As a result, photosynthesis would be inhibited by suspended sediments 

and aquatic fauna may become unproductive due to lack of light penetration before 

sediment settles (Knight et al. 2002). Another interesting point is put forward by a 

study of the water quality of nine Polish oxbow lakes (Glinska-Lewczuk 2009b); the 

study confirms that oxbow lakes located in agricultural areas have an important 

function of regulation (as a sink) of nutrient transfers to the river. On the other hand 

the authors point out that high input of nutrients trapped in oxbow lakes (i.e. 

fertilizers) lead to an increase of algal productivity, responsible for eutrophication 

followed by anoxic conditions which are disastrous for the ecological balance of lakes. 

Therefore nutrients flux in oxbow lakes and their consequences on trophic state can be 

significant in the perspective of river corridor restoration. 
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1.5.4 Socio-economic role 

Floodplains provide essential services to populations which have often led 

communities to live in the proximity of rivers. Services provided by floodplains include 

water storage and resources, pollution control, fishing and recreation (Sheaffer et al. 

2002; Tockner and Stanford 2002). A survey from the Salt and Dupage Counties in 

Illinois (USA) estimated to £426,000.km-2 the recreational value for the 14 km2 of 

floodplain area (Sheaffer et al. 2002). Similarly, the Vienna National Park “Donau-Auen” 

is a site located on a segment of the Danube River Floodplain for which benefits from 

visitors is evaluated to 11 million pounds per year (Gren et al. 1995). Oxbow lakes 

provide great value to meandering floodplains as they are good environments for 

fishing and recreation. Interviews of residents from five villages near the Tana River in 

Kenya showed that people ranked oxbow lakes as “very important” for fishing and rice 

growing (Terer et al. 2004). Oxbow lakes also represent valuable recreational values for 

the neighbouring population. Small lakes are appreciated by fishermen for their fish 

richness while larger lakes can be actual holiday’s destination offering wide areas for 

water-related activities (swimming, sailing, water-skiing, etc.) and picturesque 

landscapes. The lower end of the Mississippi River Floodplain is a good example of 

oxbow lakes importance with over 20 oxbow lakes displaying a water surface area 

often over 1 km2 wide. For example, Lake Mary Oxbow Lake is a holiday destinations 

(Fig. 1.14) with several beaches (Mississippi, USA) and its importance for the 

communities is highlighted by the fact that the lake even has a dedicated webpage on a 

social-network website with over 2,000 members. Consequently oxbow lakes such as 

Lake Mary 4can represent important regional socio-economical hubs. 
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Figure 1.14: The wide open-water area of Lake Mary (Mississippi, USA) seen from (a) vertical 
and (b) oblique aerial photographs, and (c) from land. 
Copyrights: (a) Google Earth, (b) USGS and (c) MWMassa via Flickr. 

1.6 Conclusion and thesis highlights 

There is a relative scarcity of studies tackling the question of the controls on oxbow 

lakes longevity or reporting sedimentary processes associated with meander cutoff. 

Recent research regarding oxbow lakes has mostly been dedicated to their ecology 

because of the high diversity of habitats they provide. In the context of increasing 

awareness of the importance of river protection and restoration, understanding the 

functioning of oxbow lakes is key for restoration projects on meandering rivers because 

of their high ecological value. 

 

This thesis presents a comprehensive study of oxbow lake sedimentation and longevity 

at various time-scales to cover the key stages of their life cycle and investigates the rate 

and sources of sediment infilling. This introduction chapter will be followed by three 

chapters presenting research findings. Four main hypotheses will be tested: 

 

 Chapter 2: 

- Hypothesis 1: The cutoff mechanism controls long term oxbow lake infilling  

- Hypothesis 2: The slope difference between former and current channel, 

the diversion angle and the meander size control the evolution of oxbow 

lakes 
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 Chapter 3: 

- Hypothesis 3: Former channels are not significant bed material sinks 

compared to transfers in the active channel 

 Chapter 4: 

- Hypothesis 4: Long-term oxbow lake alluviation is driven by several 

processes and multidimensional flow patterns 

 

An essential control on the persistence of oxbow lakes as open-water area will first be 

revealed in Chapter 2 by the study of the evolution of 37 oxbow lakes located on eight 

different rivers from the USA, Wales and France. This manuscript will then present the 

sedimentary processes of oxbow lakes by focusing on the two main stages of their 

infilling in Chapter 3 and 4. Chapter 3 will estimates volumes of bed-load transferred in 

former channels and the incised channel within the first decade after cutoff using three 

recently cut-off channels of the Ain River, France. Findings from this chapter are also 

published in the journal Geomorphology (Dieras et al. 2013, Appendix 4). Chapter 4 

will complement Chapter 3 by focusing on oxbow lakes sedimentation taking place 

after disconnection by bed-load. The structure and extent of fine-grained sediment 

infilling occurring between 10 and 120 years after cutoff will be presented with 

detailed analyses of sediment from five oxbow lakes of the Towy River, Wales. These 

three studies are unique in terms of detail and timescale and will provide essential 

information to geomorphologists, river managers and ecologists. 
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Chapter 2 

Controls on the persistence of oxbow lakes as 

aquatic habitats 
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2.1 Introduction 

The open-water area of oxbow lakes has a significant geomorphologic and ecological 

role in river corridors as it traps sediment and produces floodplain habitats. Oxbow 

lakes appear to evolve as changes in oxbow bed topography affects the amount and 

calibre of bed material input to the lake. The traditional model of oxbow lake evolution 

suggests a first phase of rapid sedimentation (Gautier et al. 2007) that within the first 

decade after cutoff (Gagliano and Howard 1984; Hooke 1995), large bed material 

inputs delivered from the main channel isolate the oxbow lake. Gautier et al. (2007) 

suggested then a second sedimentation phase occurs, during which the sedimentation 

rate decreases significantly as the plug develops. Additional studies from sand- and 

gravel-bed rivers show that bed material concentrates at the entrance and exit of the 

former meander, creating a sediment plug (e.g., Gagliano and Howard 1984; Erskine et 

al. 1992; Hooke 1995; Piegay et al. 2002; Fuller et al. 2003b; Constantine et al. 2010a). 

A sediment plug prevents significant further input of large volume of bed material 

during normal flow conditions and, consequently, the oxbow lake becomes a long-term 

sink for fine-grained sediment by overbank flow (Erskine et al. 1992; Piegay et al. 2000; 

Lauer and Parker 2008; Piegay et al. 2008; Toonen et al. 2012). A few studies that have 

investigated the rate of filling suggest that the oxbow fills within years to centuries 

after cutoff (Gagliano and Howard 1984; Hooke 1995; Wolfe et al. 2006; Constantine et 

al. 2010a). Recent work has highlighted the need to re-examine this traditional model, 

particularly as bed material plugs are not always created soon after cutoff. Open 

bifurcations can form after chute cutoff and remain stable for at least 20 years (Grenfell 

et al.2012). What remains unclear is whether open bifurcations are common, or 

whether the traditional model presents a universally observed trend. 

 

Oxbow lakes are of ecological importance because they provide diverse habitats for 

flora and fauna (e.g., Ward and Stanford 1995; Bornette et al. 1998; Amoros and 

Bornette 2002). Habitat diversity is controlled by the rate of fine-grained sediment 

input that varies as a function of water depth, substrate composition, and transparency 

(Amoros and Bornette 2002). Flood frequency also modifies habitat diversity by 

conveying nutrients that fertilize and support the development of the aquatic 

vegetation (Brink et al. 1992; Heiler et al. 1995; Knowlton and Jones 1997; Tockner et 
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al. 1999; Glinska-Lewczuk 2005; Persic and Horvatic 2011) and promoting successional 

effects by creating a disturbance (Connell 1978; Ward et al. 1999; Amoros and Bornette 

2002). Many fish species utilise the variety of habitats provided by oxbow lakes for 

refuge, spawning or growth (e.g., Copp 1989; Jungwirth et al. 2000; Schiemer 2000; 

Amoros and Bornette 2002; Borcherding et al. 2002; Lasne et al. 2007; Miyazono et al. 

2010). Oxbow lakes also support fish communities since they provide calm areas that 

are episodically or permanently connected to the main channel, allowing for juvenile 

fish growth and migration (e.g., Ward et al. 1999; Jungwirth et al. 2000; Borcherding et 

al. 2002; Dembkowski and Miranda 2012). Numerous reaches of meandering 

floodplains of the world, such as the Towy River in Wales or the Sacramento River in 

the USA, are areas of ecological importance notably for fish (Nielsen 2000; Lovering 

2008). For example, riparian habitats of the Towy River (Wales) are classified as a 

“Special Area of Conservation” to protect Twaite Shads and Otters who need refuges 

for breeding and resting (Lovering 2008). A key element of the protection of these 

species is an understanding of the dynamics of the oxbow habitats that they live in. 

Understanding how oxbow lakes fill with sediment could impact these conservation 

efforts.  

 

Oxbow lakes can persist from years to centuries but few studies have discussed why a 

large disparity in longevity exists. Gautier et al. (2007) studied 160 oxbow lakes from 

aerial photographs (one chute cutoff and 159 neck cutoffs) from the Beni River (Bolivia) 

and reported three types of sedimentary phases: a first rapid infilling, an intermediate 

sedimentation rate and a stable period of slow or absent sedimentation. Qualitatively, 

it appears that the cutoff mechanism affects the rate of sedimentation, due to cutoff 

mechanism causing differences in the lake geometry. The shortening of a meander 

bend to the profit of a new path, or “meander cutoff”, occurs by two most common 

ways: chute or neck cutoff. Chute cutoff is the result of the isolation of a meander by 

incision of a chute channel through the floodplain whereas neck cutoff occurs when 

two meander bends migrate into one another and isolate a meander loop (Lewis and 

Lewin 1983; Gagliano and Howard 1984; Erskine et al. 1992; Hooke 1995; Constantine 

et al. 2010a). Neck cutoffs tend to form pear-shaped sinuous abandoned channels with 

a sediment plug at the exits (Fisk 1947) whereas chute cutoffs form lakes with less 

curvature, and are more ‘crescent-shaped’ (Fig. 1.11). More specifically, neck cutoffs 
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can be identified as those in which the distance between the two meander’s bends was 

less than a channel width apart when cutoff occurred, whereas chute cutoffs showed a 

much longer breach (Lewis and Lewin 1983). Hooke (1995) also mentioned that one of 

the main differences between the two geometries is that the newly incised channel 

tends to be more curved for chute cutoffs and straighter for neck cutoffs. Cutoff 

mechanism could affect sedimentation in a number of ways. Firstly, cutoff mechanism 

appears to control the formation of a sediment plug that stops the input of bed 

material (Gagliano and Howard 1984; Shields and Abt 1989; Piegay et al. 2002). 

Secondly, different oxbow geometries affect the rate of fine-grained sediment transfer 

into oxbow lakes by floods. This mechanism suggests that flood frequency and 

magnitude controls sedimentation rate (Gagliano and Howard 1984; Shields and Abt 

1989; Erskine et al. 1992; Piegay et al. 2002; Citterio and Piegay 2009). Thirdly, the 

location of the oxbow on the floodplain controls the impact of floods. If the main 

channel migrates away from the oxbow, then the input of washload from floods is 

reduced (Gagliano and Howard 1984; Piegay et al. 2008). Finally, cutoff mechanism 

affects the diversion angle (see Chapter 1, Fig. 1.10) and difference in slope between 

the former and current channels (Gagliano and Howard 1984; Shields and Abt 1989; 

Piegay et al. 2002; Piegay et al. 2008; Citterio and Piegay 2009; Constantine et al. 

2010a). Constantine et al. (2010a) showed that diversion angle affects the volume of 

bed material that is transferred from the main channel to the oxbow. They suggested 

that the magnitude of the zone of flow separation created at the apex of the divergent 

channels affects the rate of sediment plug development. In their model, low diversion 

angle cutoffs result in slower plug formation, with a greater proportion of bed material 

diverted into the former channel. A lower diversion angle favours the diversion of flow 

in the former channel, increases shear stress and tends to support the transport of 

coarse-grained sediment further (Lindner 1953; Bridge et al. 1986). In contrast, a high 

diversion angle would create a large flow separation zone with low shear stress 

conditions, supporting coarse-grained deposits near the entrance. However, diversion 

angle is unlikely to be the only mechanism controlling sedimentation rates, particularly 

amongst neck cutoffs, where highly sinuous rivers can cut-off channels with similar 

diversion angles but drastically different channel lengths. One would expect that short 

channels would fill with sediment faster than long channels with the same diversion 

angle. Also, more sinuous meander loops would have a shallower slope than shorter 
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channels, promoting sedimentation at the former channel entrance. Cutoff geometry 

and flood hydrology are prominent in all four of these hypothesised mechanisms for 

oxbow lake evolution. Despite this, there has been no systematic attempt to 

understand how cutoff geometry affects the development of oxbow lakes across a 

range of different rivers. 

 

This Chapter assesses how cutoff mechanism controls oxbow lake infilling. Using water 

surface area (WSA) as a proxy for sediment infilling, the decrease in WSA was 

measured for 37 chute and neck cutoff oxbow lakes from a range of geological and 

hydrological settings. This dataset allows to test whether the rate of sediment plug 

formation, slope difference between former and current channel, or diversion angle 

control oxbow evolution. This remote sensing approach provides a simple, yet powerful 

method for the global assessment of oxbow lake dynamics. 

2.2 Study sites 

This research examines the evolution of 37 cutoff channels from eight rivers located in 

the USA, Wales and France. Rivers were chosen from a diverse range of geomorphic 

and hydrologic settings that had extensive aerial photograph coverage of the cutoff 

period and most of the lake lifespan (Tab. 2.1). These rivers are mostly located in dry or 

mild temperate climate areas. Most rivers were located in the USA because this 

country is one of the best documented in aerial photographs due an early 

development of this technology during the First World War. Aerial photographs needed 

to show the development of oxbow lakes’ lifespan, limiting the choice of sites. Six 

rivers are located in the USA: the Mississippi River, the Kansas River, the Smoky Hill 

River (Kansas), the Pelican River (Minnesota), the Red River of the North (Minnesota) 

and the Sacramento River (California); and two rivers are located in Europe: the Towy 

River (Wales) and the Ain River (France). River channel width ranged from 10 m to 

1,600 m between the Pelican River and the Mississippi River, (Tab. 2.1). Bed material 

type varied between the rivers from clayey-sand to gravel, consequently the material 

infilling the former channels also differs between rivers. Sinuosity and slope also varied 

between 1.06 and 1.7 and 0.14% and 5% respectively. 
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Among the 37 cutoffs chosen for the study, 14 sites were classified as neck cutoffs and 

23 as chute cutoffs (Tab. 2.2) by comparing aerial photographs before and after cutoff 

and determining whether cutoff occurred by the migration of two meanders into one 

another or by the incision of a chute channel. Neck cutoffs contain oxbow lakes with 

lengths that vary across two orders of magnitude (102 to 104m), while chute cutoffs 

vary across one order of magnitude (102 to 103m) (Fig. 2.1). Cutoffs were measured at 

all stages of their evolution, with the age of the cutoff events (defined as the time since 

the cutoff event happened) ranging from 7 to 235 years old. The diversion angle, 

defined as the downstream-looking angle between the centrelines of the main channel 

and the former meander, of chute cutoffs ranged between 20°±5 to 90°±5, while those 

from neck cutoffs ranged between 100°±15 to 160°±15. The Sacramento River and the 

Towy River exhibited the two cutoff mechanisms occurring within the period covered 

by aerial photographs, which was not the case with the other sites. 

 

 

Figure 2.1: Frequency distribution of the initial meander lengths showing the variability of 
sizes relative to cutoff mechanism. 
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Table 2.2: Location and type of cutoff channels 
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2.3 Methodology 

2.3.1 Aerial photographs measurements 

2.3.1.1 Water Surface Area (WSA) measurement 

The WSA as the area was defined as the area of the pool of water that outlines 

the oxbow lake. This method has also been used to study the evolution of the tropical 

river Rio Beni in Bolovia by Gautier et al. (2007). The initial WSA is the extent of the 

former channel before cutoff (Fig. 2.2) and measured on the youngest pre-cutoff aerial 

photograph. The initial WSA of the 37 sites varied at each site, making comparison 

between sites difficult. Each result was normalised by initial WSA, such that 100% 

corresponds to the initial meander area and 0% corresponding to the absence of water 

or the complete terrestrialisation of the site. All the inundated areas were included in 

each WSA measurement regardless of the hydrological state of the main channel. 

Therefore floods did sometimes temporarily increase the WSA of the lake on some 

aerial photographs, the magnitude of this effect is discussed in section 2.3.1.2. 

 

 

Figure 2.2: Representation of a meander during cutoff. 
The grey area represents the initial meander area considered in this study (WSA ≈ 100%). 
 

The WSA evolution of former channels was measured on every available aerial 

photograph with historical maps used for two measurements of the Towy River (Tab 

2.2, Lake NECK). The WSA was measured using digitalized aerial photographs (Tab. 2.3) 

for the Ain River, the Towy River and the Sacramento River and historical aerial 

photographs on Google EarthTM for the remaining rivers and for the measurement on 

the Towy River after 2000. 
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Table 2.3: Summary of the images used for the study 

 

 

For images analysed on Google EarthTM, the WSA was measured manually using the 

“Polygone” Ruler tool. The source and the resolution of aerial photographs on Google 

EarthTM varied in each country and image resolution ranged between 0.25 and 2 m in 

these locations. USGS aerial photographs for the Sacramento River from 1997, 

Ordnance Survey 1:25,000 maps for the Towy River from 2006 and IGN aerial 

photographs from 2000 for the Ain River were georeferenced before acquisition as a 

geotiff or similar format. For the other images, ortho-rectified aerial photographs were 

georeferenced using ArcGIS (v. 9.2). The orthorectified images varied in spatial 

resolution from 0.26 m to 4.2 m, but the resolution rarely exceeded 1 m. The root 

mean square error on georeferencing provided by the GIS software was always lower 

than 4 m. 

 

2.3.1.2 Error related to the aerial photograph quality 

Despite attempts to use high quality images, there were small differences in 

resolution as discussed above. Discerning the boundary between water and sediment 

required significant contrast that varied across the images. The visual error was 

assessed by performing repeat measurements (five times per photograph) of WSA for 
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five sites (25 times total). Results showed that the standard deviation of the visual 

error accounted for 1 to 7 % of the average WSA. 

2.3.1.3 Influence of the river discharge  

The variation of the river hydrological stage can affect the WSA of oxbow lakes, 

especially when the oxbow lake is still hydraulically connected to the river. The effect of 

different river discharges on the WSA was examined using photographs taken several 

times a year for the same site and the corresponding record of daily discharge values. 

This rather rare dataset was only available for one site of the Ain River (“Martinaz”, see 

Chapter 3 Fig. 3.1) and consisted of aerial photographs taken twice a month from April 

to September 2010 (26 cm resolution). Unfortunately repeating this test across other 

sites was not viable as aerial photographs taken at sufficiently high temporal resolution 

were lacking for these locations.  

 

The Martinaz abandoned channel was cut-off in 2003 and remained connected to the 

river by the downstream end at the time of the study in 2010. The WSA was measured 

and compared to the average discharge of the river on the day the aerial photograph 

was taken. This test showed that the WSA varied by 4,000 m2 between April and 

September (blue circles, Fig. 2.3), reflecting the variation due to a difference of ~60 

m3.s-1 in discharge. This represents only 13% of the total 30,000 m2 decrease in WSA 

between the summers of 2005 and 2009 (squares) caused by the infilling of the oxbow 

lake (Fig. 2.3).  
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Figure 2.3: Variation of the water surface area of Martinaz oxbow lake, Ain River, France. 
Blue dots represent bimonthly measurements of water surface area between April and 
September, 2010. The variability in WSA as a function of discharge is small when compared 
with the differences due to oxbow infilling shown by the green squares. 

2.3.1.4 Dating the cutoff events 

The date of cutoff initiation was defined as the midpoint between the latest 

image before cutoff and the earliest image after cutoff. This method creates an average 

error of 6 years and a range of 1 year to 23 years for all the oxbows of the dataset. The 

largest error is associated with the three oxbows of the Towy River that are older than 

100 years. Instead of aerial photographs, two Ordnance Survey maps were used from 

1840 and 1885 (Jones et al. 2011), or 1863 ±23y. Some oxbows from the Mississippi are 

even older than those of the Towy River and were dated using historical maps by 

Gagliano and Howard (1984). 

2.3.1.5 Rate of water surface area reduction 

The rate of WSA reduction was measured at three points in the oxbow 

evolution. Multiple, arbitrary points were chosen on the WSA evolution (result 2.5) to 

reflect the non-linear nature of oxbow lake infilling. The time taken to reduce water 

surface area by 75%, 50% and 25% of the initial meander area was estimated.  
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2.3.1.6 Diversion angle 

The diversion angle was measured on the earliest aerial photograph after the 

initiation of cutoff (see Chapter 1, Fig. 1.10) between the centrelines of the main 

channel and where the former meander would merge on the upstream end. The error 

on this value was calculated by repeating the measurement five times. Themaximum 

variation of the angle was ±5°, except for the oldest sites on the Mississippi River. 

Heavy modification of the floodplain meant that the older (80 to 237 years old) 

Mississippi River sites had a maximum error of ±7°. 

2.3.1.7 Difference in slope between former and active channel 

The difference in slope as the ratio of former to current channel length was 

calculated for each site. The higher the slope difference, the lower the slope of the 

former channel bed relative to the new channel. Absolute slope was impossible to 

measure with the resolution of this study’s remotely sensed data therefore the ratio of 

lengths represented the best proxy for the effect of changing slope on oxbow 

sedimentation. There is some uncertainty in this method for the older oxbows of the 

Towy and the Mississippi rivers as floodplain sediment was reworked since the cutoffs 

and the only available aerial photographs do not always show clearly where the 

meander bend was cut-off. The error on the initial oxbow length for the Mississippi can 

be up to ±800 m but is really difficult to estimate. 

2.3.1.8 Initial meander length 

The initial meander length was measured along the centreline of each former 

channel on the earliest aerial photograph after cutoff. There is some error in this 

measurement because floodplain sediment has been remobilised and removed a 

portion of the former channel ends. On very old sites such as those on the Mississippi 

River, the uncertainty is at its highest since about 20% of the former channels could 

have been remobilised. Wide rivers conveying large volumes of water naturally create 

wider meanders and oxbow lakes than smaller ones. Therefore, to account for this bias, 

the initial meander length after cutoff was normalised and divided by the river bankfull 

width. 
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2.3.1.9 Statistical analysis 

Statistical analyses were conducted to understand what variable, between the 

slope, the diversion angle and the meander length was the best predictor of the water 

surface area decrease rate. After the calculation of the decrease rate at three stages of 

the lake evolution (when 25%, 50%, 75% of the water remains) a multiple regression 

analysis was performed on the three variables and decrease rates. A Mann-Witney U 

test was also performed to compare the decrease rate between chute and neck cutoffs. 

2.4 Results 

 2.4.1 Evolution of neck and chute cutoff channels. 

There is a distinctive difference between the patterns of sedimentation in chute 

and neck cutoffs, with the open water area of neck cutoff sites persisting for much 

longer than that of chute sites (Fig. 2.4). The WSA of oxbows created by neck cutoff 

remains for decades with 30 to 60% of the initial surface area persisting longer than 70 

years for all sites, which corresponds to WSA decrease rate of 0.4% to 0.9% per year. 

There is some overlap between chute and neck cutoff oxbow lakes with short 

sedimentation record; however those with long records define two distinctive fields. 

Within the neck cutoff domain, the Mississippi and Sacramento oxbows tend to infill 

more slowly than those of the Towy River, Wales. 

 

Chute cutoffs show a rapid decrease in WSA in the first 5-20 years followed by a slower 

decrease. Analyses showed that the decrease rate of chute cutoffs was not significantly 

different from neck cutoff when the area was reduced by 25% (n= 26 Chute and 6 

Neck, p=0.055) probably due to the small sample size. Additionally, the decrease rates 

could not be compared at later stages of the reduction (-50% and -75% WSA) due to 

the smaller sample size. However, the calculated average difference between the rates 

is about 9%.y-1. The WSA initially decreases by 4% to 16% per year until only 20% of the 

WSA remains. The rate decreases for the following 50 years with an average 0.4% per 

year between 20 and 70 years after cutoff. This trend holds for most of the data except 

those from the from the Towy River oxbows (Fig. 2.4, diamond markers). For these 
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oxbows, up to 20% of the WSA remains in the Towy River’s former channel after 70 

years. An investigation was conducted to know whether the difference in the Towy 

River represented a primary trend or was likely to be caused by a systematic error in 

the data. Of the 4 Towy chute cutoffs, two sites (Lake CHU1 and CHU3) were pre-1885 

cutoffs so were estimated from Ordnance Survey mapping and have an uncertainty of 

±23 years. There is a maximum of 7% error in the measurement of water surface area 

across all of the chute cutoff WSA estimates. This error is likely to be randomly 

distributed and is unlikely to produce the systematic difference in WSA shown by these 

data. 
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Figure 2.4: The water surface area of 37 cutoff channels as percentage of the initial meander 
area against time. 
Time “0” corresponds to the date of cutoff and 100% of water surface area corresponds to 
the initial meander area when cutoff occurred. Blue markers represent the water surface 
area evolution of oxbow lakes created by neck cutoff whereas green markers are oxbows 
created by chute cutoff. Each symbol corresponds to a specific river and these symbols can be 
of two colours when both chute and neck cutoff sites were measured on a single river (e.g., 
Sacramento and Ain Rivers). Dashes are used to provide an approximate separation of chute 
and neck cutoffs oxbow lakes. 
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2.4.2 Effect of different factors on WSA rate of decrease. 

The ratio of lengths and diversion angle show a relationship with the rate of WSA 

decrease at any stage: when 25%, 50% or 75% of the WSA remains. Analyses of the 

relationship between these two variables (lengths ratio and angle) and the decrease 

rate showed that the variables were both significant predictors of the decrease rate (n= 

26, p<0.01). However, this statistical analysis was only significant for the decrease rate 

calculated when the water has reduced by 75% but not at earlier stages of the oxbow 

life, when 25% or 50% of the WSA remains. The correlation was highest when the 

water had reduced by 50% (Fig. 2.5b,e). A positive linear correlation exists between 

slope difference (ratio of lengths) and infilling time, however the value is always higher 

for neck cutoff oxbow lakes than chute cutoffs with a ratio of lengths of  4.3 and 15.3 

respectively (Fig. 2.5d-f). 
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Figure 2.5: Plots of the ratio of lengths, diversion angle, and normalised meander size against 
the WSA decrease rate at several stages of oxbow evolution. 
(a,b,c) Plots showing the relationship between WSA reduction and ratio of lengths defined as 
the former meander length divided by the new channel. (d,e,f) Plots showing the relationship 
between WSA reduction and diversion angle. (g,h,i) Plots showing the relationship between 
WSA reduction and initial meander length divided by the river bankfull width. 

 

The diversion angle shows a positive exponential relationship with the time to reduce 

the WSA (Fig. 2.5d, e, f). Diversion angle data have a relatively even spread, with a 
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range of angle from 20° to 160°. Sites with a diversion angle of 50° took 5 years to 

reduce the WSA by 50% whereas sites with a diversion of 100° took at least 20 years to 

reach the same stage. The spread of the neck and chute cutoffs sites relative to 

diversion angle is similar to the ratio of lengths. All the neck cutoffs oxbow lakes were 

formed at higher angle than chute cutoffs and took longer to reduce in WSA. Chute 

cutoff oxbows lakes were created at diversion angles ranging from 20° to 90° and took 

1 to 20 years to reduce by 50% whereas oxbows lakes created by neck cutoffs ranged 

between 100° and 160° and took 20 to 120 years to reduce by the same proportion. 

 

The relationship between meander size and the persistence of oxbow lakes was 

assessed using measurements of the normalised initial oxbow length plotted against 

the time to reduce the WSA by 25, 50 and 75% (Fig.2.6g, h, i). No significant 

relationship was found between the initial meander length and the reduction of WSA 

at any stage of the terrestrialisation (n= 26, p>0.05). 

2.4.3 Relationship between Ratio of Lengths and Diversion Angle 

There is a positive exponential correlation (r2 = 0.76) between diversion angle and 

ratio of lengths (Fig. 2.6), with oxbow lakes with higher diversion angles express higher 

ratio of lengths. The distinct separation between the two mechanisms shows that 

oxbow lakes formed by chute cutoff always have both lower diversion angles and ratio 

of lengths compared to neck cutoff sites (Fig. 2.6). The overall trend is consistent with 

averaged values of diversion angle and length ratio reported for chute channels from 

the Southern Hemisphere by Grenfell et al. (2012). 
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Figure 2.6:  Plot of the diversion angle against the oxbow length ratio for the 37 study sites. 
Chute and neck cutoffs oxbow lakes are represented using different markers, which reveal 
two distinct groups of data. Data for chute cutoff from Grenfell et al. (2012) are presented on 
this graph in addition to data from the eight rivers of this study. These additional data are 
mean values of diversion angle and length ratio calculated for stable chute bifurcations on 
three sand-bedded rivers. 

2.5 Discussion 

2.5.1 Controls on oxbow lakes longevity 

2.5.1.1 Cutoff mechanism  

The persistence of oxbow lakes as aquatic environments depends on the 

sediment infilling rate. Results from this chapter show that oxbow lakes created by 

neck cutoff persist for at least a few centuries whereas a large majority of those 

created by chute cutoff become totally terrestrial within 60-100 years (Fig. 2.4). The 

water surface area of chute cutoffs appears to decrease rapidly after cutoff, down to 

20% remaining within 20 years, and then reduces slowly for the next 50 years until 

becoming completely terrestrial around 80 years after cutoff. In the case of neck 

cutoffs, the water surface does not show the sharp reduction characteristic of chute 
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cutoffs, instead up to 60% of the water can remain in the oxbow for 100 years at some 

sites. Findings for neck cutoff oxbow lakes are similar to the evolution of the majority 

of the neck cutoffs studied on the Beni River by Gautier et al. (2007). On this tropical 

river, the WSA was reduced by only 0 to 5% within the first 14 years after cutoff for 

65% of the sites. However, 10% of the sites were almost completely terrestrial after 14 

years on the Beni River contrary to this study where over 50% of the WSA remained at 

this stage. This suggests either that tropical rivers could have different evolution or that 

the neck cutoffs of this study may not be representative of the whole range of lake 

evolutions. Where both cutoff mechanisms exist on the same river, and therefore 

similar hydrologic conditions and bed material loads (e.g., Sacramento River, Ain River) 

the difference in WSA evolution can most logically be attributed to a cutoff mechanism 

control. In contrast, the reduction of water surface area with time was less distinctive 

for sites of the Towy River as these chute cutoff sites exhibit an evolution somewhere 

between most chute and neck cutoff sites (Fig. 2.4). The water surface area reduction 

for the oxbows of the Towy River occurred at an intermediate rate between those of 

other rivers. There was 5 to 10% of water remaining after 100 years on chute cutoffs 

sites of the Towy River whereas most chute cutoffs sites of other rivers were fully 

terrestrial at this stage and most neck cutoff sites exhibited 25-60% of their initial 

water surface area. The data for the Towy River showing an intermediate pattern are 

those of two sites, Lake CHU1 and CHU3, that cut-off around 1863 with a large 

uncertainty of ±23 years. The oldest former channels of the Towy River have potentially 

received less sediment relative to those of other rivers. This could be caused by a 

sediment deficit in the main channel. The Towy River channel was subject to gravel 

extraction since the 1920s and Llyn Brianne reservoir was constructed in 1973 

upstream of the study site. Both disturbances caused an important sediment deficit in 

the main channel and probably reduced the material transferred to former channels; 

however no study has yet quantified this deficit. 

 2.5.1.2 The role of diversion angle and slope 

Neck and chute cutoff mechanisms create oxbow lakes with different diversion 

angles and ratio of lengths. Neck cutoffs have higher diversion angles (100°±15 to 

160°±15) and ratio of lengths than chute cutoffs (20°±5 to 90°±5) (Fig. 2.6). Lindner 

(1953) observed that higher diversion angles reduce the volume of flow and sediment 
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(wash and bed-load) to a bifurcated channel. This is supported by field observations 

that suggest high diversion angles promote the growth of the sediment plug at the 

entrance within former channels (Shields and Abt 1989) and reduce sediment infilling 

(Shields and Abt 1989; Piegay et al. 2000). Constantine et al. (2010a) inferred that the 

diversion angle controls the size of the zone of flow separation between former and 

current channels, affecting the ability of sediment to enter the former channel. Neck 

cutoffs have high diversion angles and form a large flow separation that lowers shear 

stress and limits flow entering the former channel. Low shear stresses within the flow 

separation favour bed material deposition leading to rapid oxbow disconnection (Fisk 

1947; Constantine et al. 2010a). Results from this chapter show a correlation between 

diversion angle and the rate of oxbow infilling, suggesting the diversion angle plays a 

role in the development of oxbow lakes (Hooke 1995; Constantine et al. 2010a; Toonen 

et al. 2012). However, the R2 of these correlations suggest that diversion angle alone 

can only account for about 50% of the variability in oxbow infilling rate. 

 

The ratio of lengths, or difference in slope between the former and current channels, 

shows a simple linear correlation with oxbow infilling rate (Fig. 2.6). Neck cutoffs tend 

to create longer oxbows, thus have a higher slope difference (Fig. 2.7a) than chute 

cutoffs. The difference in slope between the main and former channels contains two 

different effects that are difficult to separate with these data; the first is that a larger 

ratio of lengths will divert more flow through the main channel, limiting the bed 

material load transferred to the former channel; the second is that higher ratio of 

lengths typically correlate with low gradient oxbow lakes. Gradient was a key influence 

on oxbow alluviation rate identified by Gagliano and Howard (1984).  

 

Separating the effects of diversion angle and ratio of lengths is difficult because there is 

a strong positive relationship between diversion angle and ratio of lengths (Fig. 2.6). 

Chute cutoffs take place at low diversion angles and tend to isolate a smaller portion of 

meander than higher diversion angles (Fig. 2.7a) therefore the ratio of length is smaller. 

Neck cutoffs create a new channel that is always more or less equal to two channel 

widths, since it results from the migration of two channels. Therefore sedimentation is 

primarily a function of absolute slope when comparing different neck cutoffs from 

rivers of the same width (Fig. 2.7b). While there is a general positive correlation 
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between diversion angle and length ratio, there is no correlation when comparing only 

neck cutoffs or only chute cutoffs (Fig. 2.6). This suggests that the positive relationship 

between both ratio of lengths and diversion angle may represent different processes of 

sedimentation occurring in oxbow lakes. 

 

 

 

Figure 2.7: Illustration of the relationship between diversion angle and cut-off meander 
length. 
a) Cartoon showing diversion angle variation depending on the cutoff location on a meander 
bend. The two upper cutoffs correspond to diversion angle more observed with chute cutoff 
(45°, 90°) whereas the bottom one (140°) is at an angle more common for neck cutoffs. The 
figure also shows how high diversion angle are often naturally related to higher oxbow ratio 
of lengths for chute cutoffs.b) Scheme highlighting how meander length (slope) and diversion 
angle can vary independently for neck cutoffs. 
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2.5.2 Sedimentary processes associated with cutoff type 

Chute cutoffs take longer to form a sediment plug, as rapid bar growth is the driver 

of rapid reduction in WSA. As a sediment plug develops at the upper entrance of chute 

cutoff oxbows, less flow is diverted in the former channel, reducing the sediment load 

and rate of WSA decrease (Gagliano and Howard 1984; Rowland et al. 2005). The 

expansive accumulation of sediment that characterises the first 5-20 years of chute 

cutoff development occur prior to upstream disconnection of the channel by a 

sediment plug. This two-phase decrease with a rapid pre-sediment plug decrease in 

WSA followed by a slower post-plug decrease is similar to rates of sedimentation 

presented by Citterio and Piegay (2009). Oxbow lakes created by neck cutoffs have a 

distinctly different pattern of water surface area decrease. Within the first 20 years 

after cutoffs there is typically a reduction of only 30-40% of the initial WSA. This is 

followed by a very slow rate of decrease consistent with low rates of sediment input. It 

appears that neck cutoffs form a sediment plug more quickly, limiting sediment input 

to the former channel. This is consistent with the observations of Constantine et al. 

(2010) showing that neck cutoff channels rapidly form a short upstream bed-load plug. 

After disconnection the infilling of both neck and chute cutoff can only occur by 

overbank flow, sediment transport through tie channels (Hooke 1995; Piegay et al. 

2000; Piegay et al. 2002; Rowland et al. 2005) or backwater decantation if the 

downstream exit is still connected (Piegay et al. 2000). At this stage, only fine-grained 

sediment fills up the oxbow at slow rate which depends directly on the frequency of 

hydraulic connectivity (Citterio and Piegay 2009). 

2.5.3 Environmental impacts of the type of cutoff 

Oxbow lakes are features of high ecologic importance due to their diverse habitats 

that promote biodiversity of river corridors. As a result, the substantial difference in 

the longevity between the two types of oxbows has important implications for river 

management. Freely meandering rivers are becoming increasingly rare as floodplains 

have undergone important entropic changes during the last century. The Sacramento 

River is the most diverse river ecosystem in California (Golet 2003) where over the last 

150 years several dams, weirs and bank protections were built along the river and 

riparian vegetation was cleared for developing agriculture (Singer and Dunne 2001; 
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Golet 2003). As a result, the Sacramento River channel has straightened and the 

dominant cutoff process has changed from neck to chute cutoff (Micheli and Larsen 

2011). Such a change in oxbow type should have ecological consequences knowing that 

the chute cutoff oxbows of this study have a lifespan 200 years shorter than neck 

cutoffs. This suggests that the Sacramento River has transitioned from producing long-

term aquatic habitats to rapidly infilling, and possibly disturbance-driven 

environments. 

 

In contrast to the Sacramento, the Purus River, tributary of the Amazon in Brazil, is of 

similar size but remains mostly unmanaged. The meandering reach of the Purus River is 

dominated by neck cutoffs that form at a lower frequency (about 0.08 oxbows per km) 

than the Sacramento River (about 0.3 oxbows per km). The average length of the neck 

cutoff oxbows of the Purus River (6,960 m long or 14 m.m-1) when normalised by 

bankfull width are substantially longer than the chute cut-off oxbows of the 

Sacramento River (1,600 m or 11 m.m-1). This highlights the trade-off between cutoff 

frequency and habitat preservation. The result of the drastic change in the style of 

cutoff on the Sacramento River would probably lead to a loss of aquatic habitats and a 

change to a more disturbance driven ecosystem. More analyses are required and 

should ideally document habitat transformations in rivers between before and after a 

change in channel pattern. 

2.6 Conclusion 

Measurements of the evolution of 37 oxbow lakes located on eight different rivers 

across the planet revealed that the reduction of the water surface area of oxbow lakes 

is primarily dictated by the cutoff mechanism. In the first 10 years after cutoff, the WSA 

reduction of oxbow lakes created by chute cutoff occurs more than twice as fast 

compared to neck cutoff. This difference could be explained by the higher diversion 

angle and slope difference between the two types of cutoff types, which favours short 

sediment plugs in the case of neck cutoff. After a century, the oxbow lakes created by 

chute cutoff have been completely terrestrialised, whereas 25 to 60% of the water 

surface area still remains in oxbows created by neck cutoff. In conclusion, these results 
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have important implications for the management and restoration of meandering rivers 

as they can help in predictions of the longevity of oxbow lakes as aquatic habitats. 

Further research is required, however, to understand the physical processes 

responsible for sediment transport through oxbows and their resulting evolution. To 

support the hypothesis that the cutoff mechanism significantly affects sediment 

infilling in former channels, detailed field evidence is required to show that chute and 

neck cutoffs undergo very different style of sedimentary evolution. These issues will be 

tackled in Chapters 3 and 4, which describe detailed sedimentation patterns of chute 

and neck cutoff of oxbow lakes at both early and late sedimentary stages of their 

evolution. 
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Chapter 3 

Initial bed material transfers and storage after 

cutoff 
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3.1 Introduction 

Cutoff events are a source of significant geomorphological changes and mobilise large 

volumes of sediment within river channels. The incision of a new channel during cutoff 

can deliver to the downstream river segment a volume of sediment one to five orders 

of magnitude larger than erosion by lateral channel migration, as shown in the study of 

a chute cutoff of the Wabash River, USA (Zinger et al. 2011). The excess sediment load 

following incision tends to accumulate on bars (Fuller et al. 2003b; Zinger et al. 2011), 

triggering channel migration and affecting the dynamics of meandering rivers (e.g., 

Dietrich and Smith 1983; Whiting and Dietrich 1993; Hudson and Kesel 2000; 

Constantine 2006). The former meander bend is progressively abandoned as the chute 

enlarges and is the location of sediment transfers that may also affect sediment 

balance in the main channel. Chute incision is associated with a decrease of flow in the 

former channel as the newly-incised channel becomes the main conveyor of the 

discharge. Bed material accumulates in the former channel as a result of the 

decreasing discharge until a sediment plug obstructs the upper end. Sediment plugs 

prevent further coarse material infilling and isolate an oxbow lake that will then 

gradually fill up with fine sediment transported by overbank flow.  

 

Depending on the duration of the hydraulic connection to the main channel, former 

channels can be a potential sink for a large volume of bed material since about a third 

of the bed-load can be stored on the floodplain during a flood (Nittrouer et al. 2012). 

Oxbow lakes have previously been considered as sediment sinks (Lauer and Parker 

2008) but often for the storage of fine-grained sediment during floods (e.g., Gagliano 

and Howard 1984; Piegay et al. 2000; Citterio and Piegay 2009). At reach scale, bed 

material accumulation and transfer in former channels has rarely been the focus of 

quantitative studies even though these water bodies can completely fill up and become 

terrestrial environments within decades (Constantine et al. 2010a). According to 

Lindner (1953) up to 85% of the river segment bed material supply can be stored in 

former channels. 

 

Three concurrent and closely located former channels on the Ain River (France) provide 

a rare opportunity to study bed material transfers associated with meander cutoff. Bed 
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material transfer mechanism and volumes were assessed using a combination of field 

survey, remote sensing and GIS. Results from this chapter provide detailed information 

about oxbow lakes initial infilling and questions the significance of former channels as 

bed material sinks. This chapter also aims to inform theory regarding bed material 

transfers and effects on freely meandering rivers (see also Dieras et al. 2013, Appendix 

4). 

3.2 Study Setting 

The 185-km long Ain River drains 3,672 km2 of eastern France (Fig. 3.1), emptying into 

the Rhône River with an average annual discharge of 120 m3 s-1 (as determined at the 

Chazey-sur-Ain gauging station for the period 1958-2011). The 2- and 10-year 

discharges for the river near its junction with the Rhône are 760 and 1,200 m3 s-1. The 

upper 160 km of river is incised within the limestone gorges of the Jura Mountains, and 

the lower 40 km flows largely unhindered through a large alluvial plain (Piegay et al. 

2000), though outcrops of Jurassic limestone and the presence of resistant Pleistocene 

moraine deposits limit bank erosion at locations. Declining grazing activity from a 

maximum during the early 20th century has enabled recent riparian forest growth, 

which may have resulted in channel narrowing at some locations (Marston et al. 1995). 
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Figure 3.1:  Location maps and aerial photographs of the study area. 
(a) Map showing the location of the study area (black rectangle) relative to the major rivers 
of France. The inset shows a generalised geological map of the study area highlighting the 
study reaches. Key villages in the study area are also highlighted. (b) Aerial photograph of 
the Mollon (MOL) study reach in 2005. The abandoned channel is shown only 2-3 years after 
cutoff and is almost completely filled. The arrows show the angle between the active channel 
and the abandoned channel, the diversion angle, which equals 20°-25° for MOL. Images are 
courtesy of Google Earth™ mapping service. (c) Aerial photograph of the Martinaz (MAR) 
study reach in 2005. There were two cutoff events that isolated MAR1 in 2002-2003 
(diversion angle of 35°-40°) and MAR2 in 2005 (diversion angle of 55°-60°). 

  



60 
 

The study reach was located 20 km upstream of the confluence of the Ain and the 

Rhône, where chute cutoffs isolated three channel segments near the villages of 

Mollon and Martinaz (Fig. 3.1). Downstream bed slope within the study reach ranges 

between 1.2 to 1.8‰ (Piegay et al. 2002), the channel maximum depth varies between 

3 and 7 m, the bankfull width ranges from 70 to 80 m, and the median grain size of 

surface bar sediment gradually fines downstream from 46 to 22 mm (Rollet 2007; 

Lassettre et al. 2008). Dam construction from 1928 to 1970 reduced sediment delivery 

to the study site, but the geomorphic effects have not yet been observed in the study 

reach (Rollet et al. 2005), possibly due to minimal impacts on flood flows (Fig. 3.2). 

Rollet (2007) estimated the modern bed material transport capacity for the reach to 

equal 37,000 t yr-1 (or 14,000 m3 yr-1) using bed material transport calculations applied 

at cross-sections. The calculations were supported by field observations during 

different flow events using PIT-tags and scour chains for detecting entrainment 

discharge, particle transport distance, and scour layer thickness. 
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Figure 3.2:  Plot of the average daily discharge at gauging station Chazey-sur-Ain, Ain River, for the period January 1, 1999 to August 31, 2010. 
The solid line is the average annual discharge calculated over 51 years. The dashed line is the two-year flood measured over the same period. The dotted line 
is the discharge corresponding to the flood event that inundated the former channels in 2006. The vertical grey bars represent the periods over which each of 
the cutoffs developed. Key times of data collection either from topographic surveys or aerial photographs are also shown.
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Unlike the cutoff channels reported by Rollet et al. (2005), the channel segments under 

study have not been restored, and land use practices have not interfered with natural 

patterns of sediment transfer and deposition. Two channel segments were successively 

produced by chute incision near Martinaz, hereafter denoted MAR1 and MAR2. MAR1 

formed after a major flood event (greater than 103 m3 s-1) which occurred between 

October 2002 and February 2003, and MAR2 formed between March and May 2005 

(Figs. 3.2 and 3.4). The third channel segment was produced in 1996 by chute incision 

nearly a kilometre upstream of the MAR sites near the village of Mollon (hereafter 

MOL). The incision lead to a stable bifurcation (see Grenfell et al. 2012) until the chute 

evolved into the dominant conveyor of discharge between February and May 2003, 

forcing the gradual abandonment of a 1.42-km long channel segment (Fig. 3.4). 

 

Figure 3.3:  Channel change at MAR1 and MAR2 sites for the period 1971-2005. 
Each polygon represents the river based on aerial photo interpretation. Both the 2002 and 
2005 cutoffs occurred in similar locations to the path of the 1971 channel. 
 

Theoretical and experimental results indicate the existence of a flow separation within 

the upstream entrances of hydraulically connected channel segments, the size of which 

is determined by the angle by which flow is diverted from the main channel (Taylor 

1944; Law and Reynolds 1966; Hager and Hutter 1984; Neary and Odgaard 1993; 

Keshavarzi and Habibi 2005; Constantine et al. 2010a); the larger the angle, the larger 

the width of the flow separation. The size of the flow separation controls the 

competence of the diverted flow, enhancing plug formation with increases in the width 
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of the separation (Fisk 1947; Bridge et al. 1986; Shields and Abt 1989; Constantine et 

al. 2010a). In the case of the study sites, MOL had a diversion angle of 20-25°, MAR1 a 

diversion angle of 35-40°, and MAR2 a diversion angle of 55-60° (Fig. 3.1), measured 

using the earliest available images following cutoff (Fig. 3.4). 
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Figure 3.4:  Aerial photographs showing the Ain River in the study area between 1996 and 2009. 
The studied cutoff events occur between the 2000 and 2005 photographs. The 2005 photograph highlights the rapid sedimentation in the upstream (MOL) 
reach. The 2006 photo shows inundation of the cutoff channels during a flooding discharge of 264 m3 s-1
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3.3 Methodology 

3.3.1 Field surveys and topographic measurements 

A range of data sets was used to assess morphologic change within the channel 

segments of the study reach. Subaerial bar growth within the river and channel 

segments was monitored using regularly taken aerial photos between 1996 and 2009 

(Fig. 3.4), which were georeferenced with an average root mean square error of 1.99 

m. The aerial photos were supplemented with low resolution (15-30 m) Landsat images 

obtained from the Earth Resources Observation Systems Data Centre of the USGS and 

available for the period 1999-2010 with a frequency of every 15 days to a month, 

allowing to date cutoff initiation (Table 3.1). A longitudinal profile along the main 

channel was collected in 1999 during low-flow conditions using a total station 

(measurement uncertainty of <5 cm) with an average of 1 point per 50 m, distributed 

along geomorphic forms so that all changes in slope conditions were surveyed (i.e., all 

riffles were precisely located) (Citterio and Piegay 2000; Piegay et al. 2002; Rollet et al. 

2005). The profile provided a reference of the channel prior to the three incidents of 

chute cutoff. Regularly spaced topographic cross-sections of the channel and floodplain 

were also collected through the study reach in 2004 and in 2008 by researchers from 

CNRS and Cemagref. An airborne LiDAR survey was conducted in 2008, which provided 

a Digital Elevation Model (horizontal scale 25 cm) of the reach at low flow. Finally, 

subaerial oxbow topography was surveyed with a differential-GPS (hereafter DGPS) in 

the summer of 2010, with measurements having an average vertical and a horizontal 

precision of ±2.5 cm. Longitudinal profiles through the oxbows in 2008 and 2010 were 

constructed along the 1999 profile course using the LiDAR and field survey data. 
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Table 3.1:  Summary of the images used for the study 

 

3.3.2 Sediment Budgets 

Volumetric storage of sediment along the river reach was calculated using three 

different methods based on data availability. The morphologic budget approach was 

used first (e.g.,Goff and Ashmore 1994; Martin and Church 1995; Lane 1997; Ham and 

Church 2000; Fuller et al. 2002; Martin 2003; Surian and Cisotto 2007), which 

calculates volumetric change using topographic differences between similarly located 

cross sections taken at different times (in this case, in 2004 and 2008) multiplied by the 

reach length. The morphologic budget approach does not consider changes in 

topography between cross-sections and so may underestimate volumetric flux (Lane et 

al. 1995; Fuller et al. 2003a; Bertoldi et al. 2009).  

 

The second approach was based on differences in a DEM interpolated from the survey 

data collected in 2010 and the 2008 LiDAR-based DEM. The sensitivity of the quality of 

the 2010 DEM to interpolation schemes was assessed by comparing differences in the 

DEM when it was constructed using inverse distance weighted, kriging, natural 

neighbour, and triangulated irregular network methods. Data interpolated using the 

IDW method were calculated using a linear-weighted combination of known sample 

points. Natural neighbour interpolation is also based on weighted average but the 

interpolation uses the area of influence of the nearest points or “Thiessen polygons” 

(Thiessen 1911). Kriging is a statistical method which assumes a spatial correlation 

between distance or directions of points and involves the interactive investigation of 

the spatial variations (e.g., Child 2004; Naoum and Tsanis 2004). TIN method partitions 

geographic space using irregularly spaced data points and connects them to form non-

overlapping triangles forming a continuous surface. IDW and Natural Neighbour 

methods have similar principles based on weighed averaged; kriging is statiscal and can 
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modify initial points whereas a TIN calculation does not. The standard deviation of the 

volumes obtained by the different interpolation schemes was equal to 10% of the 

mean value for MOL and 30% for MAR1 and MAR2 (Table 3.2). 

 

The third approach provided an estimate of the overall volumetric aggradation within 

submerged portions of the channel segments from the moment each formed until the 

DGPS survey in 2010. For this, it was assumed that the deepest portion of the 2010 

submerged surface roughly represented the elevation of the original channel surface. 

Post-cutoff alluvium thickness was then estimated as the elevation difference across 

the submerged surface and the elevation of the deepest portion. The point 

measurements of alluvium thickness were integrated across the submerged surveyed 

surfaces to provide minimum estimates of volume. 

 

Table 3.2: Budgets calculated using different interpolation methods 

 

3.4 Results 

3.4.1 Patterns of Channel Adjustment Following Cutoff  

The longitudinal profiles provided an indication of how the study reach responded 

to the three incidents of chute cutoff. The 1999 and 2008 longitudinal profiles 

represent the channel form before and after the formation of the three channel 

segments; the 2008 topographic data were collected five years after cutoff for MOL 

and MAR1 and three years after cutoff for MAR2 (Fig. 3.5). The discontinuities 
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observed in the 1999 profile (points 9 and 23) were natural breaks in slope that can 

also be observed at several other locations on the river and did not appear to be 

associated with major changes in bar development. Within this time frame, nearly 0.3 

m of degradation occurred within the riverbed upstream of MOL while up to 1.5 m of 

aggradation occurred throughout the length of MOL. Similarly, nearly 1.5 m of 

aggradation occurred within the first 500 m of MAR1, although 0.5 m of degradation 

occurred over the next 250 m of the channel. In spite of this degradation, sediment 

plugs fully disconnected the upstream entrances of the channel segments from 

continuous flow by 2008. Between 2008 and 2010, MOL aggraded by as much as 0.2 m 

within its entrance, but degraded by roughly 0.4 m throughout the remainder of its 

length (Fig. 3.5). During this time frame, MAR1 experienced up to 0.2 m of degradation 

within its upstream limb and then 0.75 m of degradation within its downstream limb.
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Figure 3.5:  Changes in the longitudinal profile for the study reach. 
(a) LiDAR image from 2008 showing location of data points used for the longitudinal profile. (b) Longitudinal profiles collected on bars using a total station and 
DGPS for the years 1999, 2008, and 2010. The 1999 profile was taken before cutoff, and changes in sedimentation were estimated for the study reach by 
differencing the 2008 and 2010 profiles. Major river features (cutoffs and point bars) are shown on the plot for reference.
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Five locations of cross-section data for the study reach were available for years 2004, 

2008, and 2010. Each location was assigned a letter for ease of reference as shown in 

Figure 3.6. The cross sections from 2004 represent the topography one year after the 

abandonment of MOL and MAR1 and one year before the abandonment of MAR2. 

Between 2004 and 2008, net aggradation occurred at all locations except for location 

A, the main channel upstream of the entrance to MOL. Much of the aggradation, up to 

1-2 m, occurred within the entrances into the channel segments (see locations B and 

D). Further, the channel bed at location E aggraded by up to 0.5 m, with aggradation 

occurring uniformly across the section from bank to bank. Between 2008 and 2010, the 

upstream entrance to MOL aggraded by between 0.2 and 0.5 m, in contrast to the 

entrances to the MAR sites, which degraded by between 0.3 and 0.8 m (Fig. 3.6). 
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Figure 3.6:  Cross sections collected along the study reach for the years 2004, 2008, and 2010. 
Cross section locations are shown on a LiDAR image from 2008, with cross section “a” 
representing the most upstream location. Differencing of cross sections allowed to calculate 
a sediment budget for 2004-2008 and 2008-2010. (f) Photograph of the coarse-grained infill 
of the MOL cutoff taken in 2011 near cross section “c”; the deposits represent the typical infill 
of all the cutoff channels in the study reach. 
 
 

Bed aggradation followed similar temporal patterns within the three channel 

segments, occurring most rapidly immediately after cutoff in each case and primarily 

along a pre-existing point bar. For example, between 2000 and 2009, the point bar 

within the upstream entrance to MOL increased by nearly two fold in surface area, 

from 81,000 to 160,000 m2, similar to the bar within the upstream entrance to MAR1, 
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which increased in surface area from 58,000 to 116,000 m2 (Figs. 3.4, 3.6, 3.7). Results 

from the 2010 DGPS survey of the inundated portions of the channel segments also 

indicated the role of bar growth in the alluviation process within MOL (Fig. 3.8A). At 

this site, the submerged bar extended across the channel to considerably narrow the 

pool along the outer bank. The extent of bar growth within the MAR sites was not clear 

from the DGPS data, however, with the deepest portions of the channels existing 

downstream of the apices, between presumable zones of aggradation within the 

upstream and downstream limbs (Fig. 3.8B). 

 

 

Figure 3.7:  Bar development along the study area between the 1996-2009 measured from 
aerial photographs. 
Major changes in channel planform corresponded to increases in the surface area of 
sediment. In particular, there was rapid infilling of the MOL reach and progressive expansion 
of the MAR1&2 plugs after cutoff between 2000 and 2005. 
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Figure 3.8:  Estimates of sediment infill thickness in submerged areas of the abandoned 
channels seven years after cutoff based on the DGPS survey in 2010 
(a) Infill thickness data of MOL portrayed within the aerial photo of the site in 2009 
(b) Infill thickness data of MAR1 and MAR2 portrayed within the aerial photo of the sites in 
2010. 
 

3.4.2 Estimates of Off-Channel Bed material Storage 

Estimates of the volumetric storage of sediment throughout the study used the 

morphologic budget approach for the time period between 2004 and 2008, DEM 

differencing over subaerial bars for the time period between 2008 and 2010, and the 

DGPS survey for the time period between 2003 and 2010 (see Section 3.3). The results 

of the morphologic budget approach were combined with those of the DEM 

differencing for the subaerial sections of the channel segments, producing an estimate 

of volumetric exchange for the period between 2004 and 2010 within the entrances to 

each of the sites. The estimates revealed that the main channel was net-degradational 

from 2004-2008, losing 70,000 m3 (or 17,500 m3 y-1) of sediment as the river continued 

to evolve in response to the abandonment of MOL (Fig. 3.9). Conversely, MOL was a 

site of net aggradation between 2003 and 2010, gaining 34,000 m3 (or 4,900 m3 y-1) of 

sediment as increasingly less discharge was being routed through it. Using Rollet’s 

(2007) calculation of the average bed material transport capacity (see Section 3.2) as 

an estimate of the annual bed material load into the reach, MOL was able to sequester 

nearly 40% of the 14,000 m3 y-1 supply into the reach between 2003 and 2010. Slightly 
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complicating the assessment of MOL is that the portion of the reach immediately 

upstream of the entrance to MOL lost at least 9,000 m3 of sediment between 2004 and 

2008, or 2,250 m3 y-1 (Fig. 3.9). Assuming that Rollet’s (2007) estimate is most relevant 

for graded (i.e., inputs of bed material equal outputs) sections of the river, the 

additional loading likely due to chute enlargement would lower the amount 

sequestered to 34% of the supply.  
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Figure 3.9:  Schematic representation of the sediment budget for the study area between 
2003 and 2010. 
The reach was divided into segments based on the distribution of cross sections and an 
individual budget (represented by circles) calculated for each sub-reach. The MOL area 
showed net erosion while the MAR1&2 zones showed net deposition during this period. 
White circles indicate the dominance of aggradation over degradation, whereas dark circles 
indicate the dominance of degradation over aggradation. Grey areas represent the budget 
calculated from a 2010 DTM of the submerged areas (see also Fig. 3.7). White areas 
represent the budget calculated from 2004 and 2008 cross sections. Striped areas represent 
the budget calculated using cross sections for the period 2004-2008 and DTMs from 2008-
2010. 
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Between 2004 and 2008, chute enlargement at MOL delivered at least 61,000 m3 (or 

15,250 m3  y-1) of sediment to the downstream reach hosting the MAR sites. The total 

loading to the downstream reach was likely higher given additional upstream bed 

material inputs. For instance, if the 2,250 m3 y-1 of loading derived from the upstream 

entrance to the study reach were entirely sequestered by MOL, the site would only be 

able to sequester 3,280 m3 y-1 of the annual bed material load into the reach. 

Consequently, the total loading into the downstream reach was on the order of 26,000 

m3.y-1 (i.e., 14,000 m3 y-1 + 15,300 m3 y-1 - 3,300 m3 y-1). From the estimates of 

volumetric storage (Fig. 3.9), the main channel adjacent to the MAR sites gained 9,000 

m3 (or 2,250 m3.y-1) of sediment, or 9% of the supply from chute enlargement and 

upstream loading. The MAR sites, on the other hand, gained 30,000 m3 (or 4,400 m3 y-

1) of sediment between 2003 and 2010. Comparing average annual rates, the MAR sites 

were able to sequester 17% of the chute-enlargement supply, 43-50% less than rates of 

bed material sequestration at MOL. The main channel downstream of the MAR sites 

gained 43,000 m3 (or 10,750 m3 y-1) of sediment between 2004 and 2008, or more than 

41% of the chute-enlargement supply, implying that the majority of sediment derived 

from chute enlargement at MOL was stored within the river and the channel segments 

at MAR.  

 

Estimates of the volumetric storage of sediment between 2008 and 2010 using DEM 

differencing (see Section 3.3) indicated that the entrance to MOL gained only 6,800 m3 

(or 3,400 m3 y-1) of sediment, nearly three times less than the preceding period, and 

the upstream entrance to the MAR sites began to erode (Fig. 3.10). In particular, 2,300 

m3 of sediment was removed from the entrance to MAR1, and 2,000 m3 of sediment 

was removed from the entrance to MAR2 during this time period. The reason for the 

erosion of plug deposits at the MAR sites remains unclear, , but 85 m of bank erosion 

occurred between 2005 and 2010 (Figs. 3.3 & 3.10), shifting the channel margin closer 

to the sediment plugs and probably making it easier for flood flows to access and 

mobilise plug deposits. 
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Figure 3.10:  Representation of sediment mobilisation for the period 2008-2010. 
(a) The MOL cutoff site primarily shows areas of net aggradation (dark grey) with up to 2000 
m3 of deposition of sediment in sub-reaches (dark circles). (b) The MAR1&2 cutoff site is 
primarily erosional with up to 1500 m3 of sediment loss in sub reaches (white circles). The 
pre- (dark lines) and post-cutoff (grey shaded area) channel forms show the magnitude of 
channel change caused by the cutoffs. 

3.5 Discussion 

3.5.1 Sediment transfers in the reach 

The transfer of bed material from the river to an abandoned channel segment while 

it is still hydraulically connected reduces the bed material load to the downstream 

reach, which could instigate the removal of bed material from within the main channel 

cut-off reach that are not stabilised show a tendency to cutoff a second time (Hooke 

1995) as seen at MAR sites. In cases of chute cutoff, the evolving chute significantly 

increases the bed material load of the river (see also Zinger et al. 2011), more than 

compensating for off-channel sequestration. Within the study reach, chute 

enlargement at MOL delivered up to 15,250 m3.yr-1 to the river between 2004 and 

2008, nearly equivalent to the bed material transport capacity of the river. Given that 
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chute enlargement occurs concomitantly with a reduction in discharge through the 

abandoned channel, chute enlargement should then effectively limit the duration that 

bed material is transported through the abandoned channel. Bed material 

sequestration would also reduce the discharge diverted into the abandoned channel, 

thereby facilitating the chute enlargement process. Further, and consistent with 

observations from this study, Fuller et al. (2003b) found that a chute incised within the 

floodplain of the River Coquet, UK, continued to supply sediment to the downstream 

reach years after the abandoned channel was plugged. Results suggest that the 

predominant effect of chute cutoff on the reach-scale sediment budget of a 

meandering river is a net-increase in the bed material supply that could last for years 

after the initial chute incision. This increase in bed material supply should instigate bar 

building and potentially increased bank erosion as bar growth would alter flow 

conditions within downstream meander bends, increasing boundary shear stress 

conditions along riverbanks due to excess stream energy (Dietrich and Smith 1983; 

Whiting and Dietrich 1993; Fuller et al. 2003b, Constantine 2006). Fuller et al. (2003b) 

also observed that mid-channel bars were fed by sediment release due to bank erosion 

just upstream which is similar to MAR sites where a bar was created mid_channel, 

following the incision of the upstream site (MOL). 

3.5.2 Former channel sediment transfers 

The sedimentary deposits of oxbows have been shown to influence meander 

migration rates (Hudson and Kesel 2000), the width of the meander belt (Allen 1965; 

Howard 1996; Sun et al. 1996), and the hydrogeological characteristics of alluvial 

reservoirs (Richardson et al. 1987), but many efforts that examine the role of oxbow 

deposits in meandering behaviour and floodplain development presume that they 

consist primarily of the finest fractions of sediment in transport. Although bed material 

storage within the abandoned channel segments of this study did not compensate for 

the delivery of sediment by chute incision, the sites managed to sequester between 17 

and 40% of the bed material supply over seven years. In agreement with empirical 

evidence that much of the deposits of oxbows formed by chute cutoff tend to be 

coarse (i.e., bed material derived) (Fisk 1947; Bridge et al. 1986; Hooke 1995; 

Constantine et al. 2010a) (Fig. 3.6F), it appears that chute cutoff creates important off-



79 
 

channel sites for bed material storage and that oxbows do not always create the clay 

plugs that are commonly associated with them. The coarse deposits within the study 

sites also remained mobile as aggradation proceeded. The plugs of the MAR sites 

became a source of sediment as 4,300 m3 of sediment was mobilised between 2008 

and 2010 during overbank flows. Hooke (1995) suggested that old channels are often 

more erodible because the material is coarse and unconsolidated which is supported 

by the observation of erosion at MAR sites. This is potentially significant as oxbows 

may have a dualistic function with regards to the bed material budget of a meandering 

reach, functioning as significant sinks for bed material immediately following cutoff, 

but then as sources in the long term as flood flows or the lateral shifting of the 

meandering river mobilises the coarse deposits. 

3.5.3 Former channel depositional processes 

Results from this study provide insight into the mechanisms driving the transfer and 

storage of bed material within oxbows. The blockage of the former channels ends 

occurred within 2 years after the cutoff, consistent with observations by Hooke (1995) 

of <1-7 years on the Dane and Bollin Rivers (UK) and by Gagliano and Howard (1984) of 

2-10 years on the Lower Mississippi. Aggradation primarily occurred along inner bends 

of pre-existing point bars (Fig. 3.7) and the role of point bar growth in oxbow 

aggradation was also observed within abandoned channels of the Yangtze River, China 

(Li et al., 2007) and the Sacramento River, USA (Constantine et al. 2010a). Some 

evidence for the process was reported from sedimentological work along the 

Mississippi River, USA (Fisk 1947), the Calamus River, USA (Bridge et al. 1986), and the 

Rhine delta apex, Netherlands (Toonen et al. 2012). The pervasiveness of the 

observations suggests that the transverse transport of bed material driven by cross-

stream currents is an important mechanism in transforming the open-water volume of 

abandoned channel segments. If true, then the planform curvature of abandoned 

channels is an important control on both plug development and the open-water 

volume that oxbows inherit upon their formation. However, the ability of curvature-

induced forces to alter the downstream flow path through an abandoned channel will 

depend on the magnitude of discharge diverted from the main channel. This diverted 

discharge is a function of the discharge conditions in the main channel, the conveyance 
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capacity of the entrance, and the diversion angle (see Section 3.2) (Constantine et al., 

2010). As described, the diversion angle limits the diverted discharge by controlling the 

size of a flow separation within the entrance that induces pressure drag on the 

diverted current. Low diversion angles should allow for the maintenance of 

downstream currents capable of transporting bed material and perhaps also the cross-

stream currents responsible for bar development. Indeed, the three sites each had 

relatively low diversion angles (Fig. 3.1), consistent with previous observations that 

such angles allowed for sustained bed material transport and alluviation by point bar 

growth (see figure 4 of Constantine et al., 2010). Neck cutoff results as the 

consequence of meander growth and so should produce diversion angles that are 

greater than those produced by chute cutoff, whose diversion angles will be 

determined by the planform curvature of the abandoned channel segment and the 

location where the chute is incised. A global analysis of typical diversion angles 

associated with each meander cutoff process is required, but that cutoff processes may 

produce oxbow lakes with characteristically different diversion angles has important 

implications for the development of the floodplain. The prevalence of either cutoff 

mechanism may lead to distinct floodplain environments as the abandoned channels 

they create undergo distinct patterns of alluviation (Fisk, 1947; Constantine et al., 

2010). 

3.6 Conclusion 

The study of three cutoff sites of the Ain River (France) provided important information 

regarding initial oxbow lake sedimentation and sediment transfers within a river reach. 

Results were based on an extensive topographic survey associated with remote 

controlled measurements and GIS, allowing calculating sediment budgets. Bed material 

accumulating in the former channels appears to have extended pre-existing point bars 

until the upstream end is completely obstructed by sediment. One site did not exhibit a 

local sediment plug at the upstream end but progressively lost surface area uniformly 

throughout its length. This may be promoted by the low diversion angle and point bar 

curvature at the upstream end. Former channels are not only fine-grained sediment 

stores, as often referred to, but can be significant bed material sinks since about 34% of 

the supply to the river segment deposited in the upstream former channel. The 
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downstream site also stored a significant volume of sediment since 17% of the bed 

material transferred by channel incision accumulated in the downstream former 

channels. Chute cutoff creation caused larger sediment transfers by channel incision 

than by accumulation in former channels. About 41% of the bed material eroded after 

cutoff was deposited on the nearest downstream point bar. During the same period, 

this point bar bend migrated by about 85 m towards the downstream former channel 

by eroding the bed material plug. This highlights the probable effect of cutoffs on 

channel dynamics and suggests that former channels can have the dualistic function of 

sink and source of bed material. 
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Chapter 4 

Long-term depositional patterns and processes 

in oxbow lakes along the Towy River, Wales 
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4.1 Introduction 

As meandering rivers increase the space they occupy in their floodplains by the 

growth of meander bends, incidents of meander cutoff remove segments of river 

channel that are then isolated as off-channel water bodies (Leopold and Wolman 1960; 

Brice 1974). In many cases, these abandoned channels transition into oxbow lakes that 

may persist as aquatic habitat for centuries (Gagliano and Howard 1984; Wolfe et al. 

2006), but this transition may not be commonplace along all meandering rivers. 

Instead, some abandoned channels maintain a hydraulic connection to the main 

channel, narrowing with time by continued point bar growth until they become 

colonised by terrestrial vegetation (Constantine et al. 2010a). Whether an abandoned 

channel successfully transitions into an oxbow depends upon the formation of 

sediment plugs (bars of coarse sediment) within the entrances of the channel that 

prevent the continuous diversion of flow and bed material from the main channel 

(Citterio and Piegay 2000; Piegay et al. 2002). The rate of plug formation determines 

the duration that the abandoned channel is hydraulically connected, thus controlling 

the extent to which diverted bed material aggrades the original channel form (Fisk 

1947; Constantine et al. 2010a). Rapid plug formation improves the potential for the 

original channel form to be preserved, maximizing the open-water volume that the 

oxbow inherits and thus the accommodation space for storing suspended sediment 

delivered during floods. The occurrence of moderate floods appears to favour oxbow 

lake sedimentation at least during the first decade after cutoff (Hooke 1995, Gautier et 

al. 2007). The obstruction of former channel ends by aggradation of coarse-grained 

sediment prevents further bed-material input in the site and allows exclusively fine-

grained sediment infill. 

 

One of the most comprehensive reviews of oxbow alluviation made to date was 

provided by Fisk (1947) based on observations along the Lower Mississippi River, USA. 

In a report provided to the Mississippi River Commission, Fisk identified the major 

control on oxbow alluviation without attributing a cutoff mechanism. In his words (Fisk, 

1947, p. 38), “The nature of the sedimentary deposit in the old channel is dependent 

upon the duration of flow through the old course which in turn is dependent upon the 

alignment of the river with respect to both upstream and downstream arms of the 
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abandoned loop.” Fisk termed the alignment between the river and the upstream arm 

as the angle of diversion, or diversion angle. He noted that when the diversion angle 

was small, the abandoned loop receives continuous flow from the main channel for a 

longer duration and the upstream arm becomes gradually plugged by coarse bed-load 

(sand in the case of the Lower Mississippi River). Fisk also pointed out that abandoned 

loops became narrowed as a result of bed material aggradation, finding that the width 

of clay plugs within chute cutoff generated loops (which tend to have small diversion 

angles) were narrower than clay plugs found within neck cutoff generated loops (which 

tend to have large diversion angles). The field observations of Hooke (1995) of oxbow 

alluviation along rivers of northwest England are consistent with Fisk (1947). Shields 

and Abt (1989) similarly concluded that the diversion angle was an important control 

on oxbow alluviation. From empirical measurements of the rates of infilling within 

oxbows of the Lower Mississippi River, Shields and Abt found that differences in 

diversion angle and sediment load explained over 90% of the variability in rates of bed 

material aggradation. Although Erskine et al. (1992) did not examine the control of the 

diversion angle, they too argued for the importance of the nature of sediment moving 

through the reach on oxbow alluviation. Based on an analysis of sediment auger flights 

taken from the Hunter River of New South Wales, Australia, Erskine et al. (1992) found 

that the character of sediment (coarse against fine) stored within oxbows and oxbow 

sedimentation rates correlated with the character of sediment in transport. In essence, 

they found that the finer the sediment in transport, the finer the sediment being 

stored and the faster the sedimentation rate.  

 

As noted by Fisk (1947), given that neck cutoff results as the consequence of meander 

growth, the mechanism should produce diversion angles that are greater than those 

produced by chute cutoff, whose diversion angles will be determined by the planform 

curvature of the abandoned channel and the location where the chute is incised. The 

prevalence of either cutoff mechanism along meandering rivers may lead to distinct 

sedimentary environments in the floodplain as the abandoned channels they create 

undergo distinct patterns of alluviation (Fisk 1947; Constantine et al. 2010a). To assess 

the role of cutoff mechanism in the evolution of cutoff-produced water bodies, this 

chapter will examine the processes governing depositional processes in oxbow lakes at 

different stages of their lifespan using a very detailed record of sedimentation from 
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five oxbows of the River Towy, Wales. This Chapter explores the importance of the 

controls on oxbow alluviation and then identifies the conditions required for the 

successful oxbow transition. Results of the chapter will provide detailed field evidence 

of the nature and multidimensional patterns of oxbow deposits. Findings are essential 

to any prediction of the persistence of oxbow lakes as aquatic habitat but also provide 

important information regarding the composition of meandering floodplain sediment. 

4.2 Study Site 

The 105-km long River Towy drains 1,090 km2 of west Wales, emptying into Bristol 

Channel near the town of Carmarthen. The River Towy catchment experiences average 

annual precipitation of between 1,000 and 2,400 mm each year, which results in a 

mean annual discharge of 39 m3.s-1 at the Nantgaredig gauging station (McEwen and 

Milan 2006). Most of the river course flows within Ordovician and Silurian sedimentary 

rocks (clay and siltstone, siltstone and sandstone dominated, Fig. 4.1b) in a valley that 

contains 8-11 alluvial terraces (Jones et al. 2011). Three distinct channel forms exist 

along the river: a bedrock-controlled single wandering channel from Llyn Brianne dam 

to Llandovery; a braided channel between Llandovery and Llangadog; and a 

meandering channel between Llangadog and the river mouth. The median size of bed 

material (d50) ranges from 53 to 57 mm according to McEwen and Milan (2006). The 

geomorphic effects of the construction of the Llyn Brianne in 1973 remain uncertain. 

The river has also been affected in its upstream reaches by a large lead and zinc mine. 

The Nant-y-mwyn mine shut in 1932, but may have been in operation since the Bronze 

Age according to archaeological findings (Hughes 1992). A large part of the River Towy 

corridor is now classified as a “Special Area of Conservation” for the protection of 

several species of fish and otters (McEwen and Milan 2006). 
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Figure 4.1: Location maps of the study sites and coring survey. 
(a) Sketch map of the UK showing the location of the study area in Wales (black rectangle). 
(b) Map showing the geological ages of the area and the location of key cities and features. 
(c) Aerial photograph of the five studied oxbow lakes in 2009 (Google Earth™). The dashed 
lines are longitudinal profiles, the circles are isolated auger flights and the dashes with 
letters are transects of three to four auger flights. 

 

This study examined five oxbow lakes located in the lower and meandering section of 

the River Towy, between river kilometres 40 and 44, near Dryslwyn Castle (Fig. 4.1b). At 

the study sites, the Towy River is on the order of 3 m deep and 30 m wide. This specific 

group of oxbow lakes was chosen because it comprised sites of various ages and cutoff 

mechanisms. The close proximity of the oxbows allows the assumption that they 

underwent comparable hydrological and sedimentation histories. From OS maps and 
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aerial photographs, Lake CHU1, CHU3 and NECK cut-off around 1863 (±23y), whereas 

Lake CHU2 and CHU4 cut-off more recently, respectively in 1940 (±5y) and 2001 (±2y). 

The mechanism of cutoff was chute incision for Lakes CHU1, 2, 4 whereas Lake NECK 

was formed by neck cutoff. The mechanism of cutoff that initiated Lake CHU3 is not 

easy to assess due to the lack of historical maps but its curvature and location suggest 

a chute cutoff. 

4.3 Methods 

4.3.1 Field sampling and topographic measurements 

The five oxbow lakes of the study were surveyed during the summer 2010. A total of 

59 auger flights were collected using a peat auger along 18 transects regularly 

distributed throughout the sites (Fig. 4.1c). The peat auger allowed sampling of fine-

grained sediment composed of sand and clay, but could not penetrate gravel-rich 

layers such as the former river bed. Two soil auger flights were also collected within the 

floodplain to allow comparison with the surrounding alluvium (Fig. 4.1c, auger flights 

C15 and C3). Lake CHU4 was still submerged by at least of 1.5 m of water which 

prevented sampling near the lake apex. Consequently two of the soil auger flights do 

not occur along a transect (Fig. 4.1c, auger flights C5 and C6), and the remaining flights 

were taken close to the banks where the shallow water allowed sampling. Fine-grained 

sediment was sampled every 20 cm of each flight until a coarse-grained surface of 

gravel was reached that prevented deeper sampling. The gravel surface likely 

represented either the original abandoned channel bed or the surface of aggraded bed 

material that was delivered prior to plug formation. The location of each auger flight 

was recorded using a differential-GPS (vertical and horizontal precision: ±2 cm). The 

surface elevation of the flight locations was used to reconstruct the three-dimensional 

alluvial stratigraphy of each study site.  

4.3.2 Grain size analyses 

The grain size distribution of sediment samples was assessed by wet sieving (e.g., 

Folk 1974). Each 20 cm subsample from the auger flights was mixed, and then 60 g 
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were extracted from the bag sampled on the field and transferred to a 1L-plastic bottle. 

To assess how each 60g sample was representative of the bag composition, the 

measurement was replicated ten times for the first sample. Results showed a standard 

deviation of only 0.8% in composition of mud, sand or gravel for the ten replicates. Five 

mL of 30% Hydrogen Peroxide was added in order to oxidize the organic matter. After 

leaving the sample to react overnight, a solution of 500 mL of 1% Sodium 

Hexametaphosphate was added to disaggregate clay particles. The sample was left to 

react overnight once again before sieving. Wet sieving was then done using a stack of 

sieves that isolated every φ fraction between 0.063 mm and 2 mm: >2 mm , 2-1 mm, 1-

0.5 mm, 0.5-0.25 mm, 0.25-0.125 mm, 0.125-0.063 mm, <0.063 mm. Six empty 

aluminium trays were weighed prior to receiving the samples. The size-fraction finer 

than 0.063 mm was not actually measured but calculated by weight difference (see 

below). The sampled size-fractions were then poured in a tray and dried for a minimum 

of 12h in an oven at 100°C. The aluminium trays were then weighed when the samples 

were dry and had cooled down. The dry weight of each size fraction was calculated by 

subtracting the tray weight from the final weight of the tray and dry sample. 

 

A loss-on-ignition procedure was conducted to decipher the weight of the organic 

matter and the water content in the samples (e.g. Dean 1974, ASTM 2000). Five grams 

of sediment was taken from each subsample and then placed in an aluminium tray and 

weighed. To evaporate the water, the sediment was heated in an oven at 100°C for a 

minimum of 12h. Once dry, the tray containing the sample was weighed again. The 

water content was calculated by subtracting the wet weight (initial 5 g of sample) from 

the weight of the tray containing the dry sample. In order to know the organic matter 

content, the same protocol was then used on the water-free sample with the only 

difference that the temperature of 450°C was applied to combust the organic matter 

for a minimum of 6h. The organic matter weight was calculated by subtracting the 

initial weight of the tray containing the water-free sample from the tray containing the 

combusted sample. The weight of water and organic matter were also converted to 

percentages to obtain the actual weight in the 60 g sample. To calculate the weight of 

silt and clay (fraction <0.063 mm), all the measured weights were added (size fractions 

+ water + organic matter). The obtained value was then subtracted from the 60 g of the 

initial wet sample to obtain the silt and clay weight. The potential errors associated 
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with this protocol are the precision of the scale (±0.003 g) and the uncertainty related 

to the completeness of the sieving or the potential loss of sediment between protocol 

steps. 

4.3.3 Statistical Analysis 

To find out if the sediment composition of the former channels varied significantly a 

Kruskal-Wallis test was performed on the average grain size distribution per auger flight 

for each lake (Fig. 4.3). Ten pair comparisons were done on CHU1, CHU2, CHU3, CHU4 

and NECK sites.  

4.4 Results 

4.4.1 Oxbow lakes longitudinal profiles 

The spatial distribution of fine-grained sediment (i.e. sand and finer) through the 

abandoned-channel centre was mapped for each of the sites except for lake CHU4, 

whose profile represents the fill along the outer bank (Fig. 4.2). The data demonstrated 

different patterns of both coarse and fine-grained sedimentation. Gravel was exposed 

at the surface at two locations within different oxbows: within the upstream entrance 

of Lake NECK and CHU4 , between 0 and 100 m, and within the downstream entrance 

of Lake CHU4, between 250 and 300 m. The surface of the remaining lakes was 

composed entirely of fine-grained sediment, sloping in planar fashion in the 

downstream direction. The surface of buried gravel (or more precisely, the depth to 

coring resistance) within the sites (i.e. Lakes CHU1-3) was also planar in nature, sloping 

in the downstream direction (left to right, Fig. 4.2a,b,c,e). In detail, Lake CHU1 

contained evenly distributed fine-grained deposits ranging from 1 to 2 m in thickness, 

with a difference in the depth to gravel between the upstream entrance and 

downstream exit of 2.5 m. The surface of Lake CHU2 sediment was quite undulated, 

with the depth to gravel decreasing uniformly by about 0.5 m from upstream to 

downstream. The thickness of fine-grained deposits in Lake CHU2 was between 1 and 

2.5 m in thickness. The ground surface of Lake NECK gradually decreased in elevation 

from upstream to downstream, but also rapidly increased in elevation by about 0.8 m 
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near the downstream exit. The depth to gravel within Lake NECK decreased by 2 m on 

the first 100 m upstream and gradually decreases by 1.5 m for the remaining 830 m. 

Fine-grained deposits in Lake NECK ranged from 0.5 to almost 3 m, occurring uniformly 

throughout the lake’s length. Lake CHU4 demonstrated a very uneven distribution of 

sediment deposits, with a gravel depth of 80 cm near the apex and fine-grained 

sediment thickness between 0 and 2 m throughout. Similar to Lake NECK, the surface 

of Lake CHU3 was higher by about 20 cm at the upstream and downstream ends than 

the apex. It is important to note, however, that only 160 m of Lake CHU3 remained 

after the river eroded much of the ends of the abandoned channel. For Lake CHU3, the 

depth to gravel decreased gradually by about 0.5 m and fine-grained deposits are 1.5 

to 2 m thick. 

 

 

 
Figure 4.2: Longitudinal profiles of (a) Lake CHU1, (b) Lake CHU2, (c) Lake CHU3, (d) Lake 
CHU4 and (e) Lake NECK. 
Circles represent the ground surface in 2010 which correspond to the top of fine-grained 
sediment. The diamonds are the measured gravel layer elevations representing either the 
initial channel bed or the post-cutoff gravel infill which deposited on the former bed. All the 
profiles are oriented in the downstream direction towards the right. 
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4.4.2 Fine-grained sediment distribution 

4.4.2.1 Averaged grain size per auger flight 

Grain size was measured at different depths according to three size fractions: 

clay and silt (≤63 µm), sand (from >63 µm to ≤2 mm) and gravel (>2 mm) after 

Wentworth (1922). Data presented below (Fig. 4.3) correspond to average values for 

each core. The dominant size fraction of sediment infill of the five study sites was fine-

grained with the infill containing 0 to 35 % of gravel (Fig. 4.3). Lake CHU1 was 

dominated by clay and silt sized deposits, with auger flights containing 35-95 % of clay 

and silt, 5-60 % of sand, and 0-30 % of gravel. Lake CHU2 was dominated by fine-

grained deposits, with auger flights containing 30-75 % of clay and silt, 25-60 % of sand 

and 0-35 % of gravel. Lake CHU3 was dominated by clay and silt, with auger flights 

containing 50-90 % of clay and silt, 10-45 % of sand, and only 0-15 % of gravel. Lake 

CHU4 was evenly dominated by fine-grained deposits with two types of sediment infill: 

the first type contained 60-75 % of clay and silt, 25-40 % of sand and only 0-5 % of 

gravel and the second type contained 10-35 % of clay and silt, 65-85 % of sand and only 

0-15 % of gravel. Lake NECK was dominated by clay and silt, with auger flights 

containing 45-95 % of clay and silt, 5-30 % of sand, and 0-35 % of gravel.  

 

 
 

Figure 4.3: Averaged grain size distribution per auger flight. 
The size fractions considered are clay and silt (≤63 µm), sand (from >63 µm to ≤2 mm) and 
gravel (>2 mm). 
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Statistical analyses showed that all the chute cutoff’s sedimentary contents differed 

significantly from the neck cutoff site. All the chute cutoff contents were not 

significantly different except for the pair CHU2-CHU3 (Tab. 4.1). 

 

 

 

Table 4.1. Comparison of the average grain size per core between oxbow lakes based on a 

Kruskal-Wallis test. 

Pairwise Comparison n p 

CHU1/CHU2 34 0.15 

CHU1/CHU3 29 0.10 

CHU1/CHU4 26 0.74 

CHU1/NECK 32 0.00 

CHU2/CHU3 21 0.01 

CHU2/CHU4 18 0.77 

CHU2/NECK 24 0.00 

CHU3/CHU4 13 0.21 

CHU3/NECK 19 0.01 

CHU4/NECK 16 0.00 

 

4.4.2.2 Chute cutoff oxbow lake “CHU1” 

Lake CHU1 was one of the oldest sites and formed some time between 1840 

and 1885. The downstream third of the oxbow’s length was eroded by channel 

migration that created the meander at Lake CHU2. Twenty auger flights were taken 

along five transects at this site (Fig. 4.4). The depth to gravel decreased by up to 1.5 m 

in the downstream direction (Fig. 4.4, C17 and C1). The thickness of fine-grained 

sediment increased along the stream-wise axis (upstream to downstream) with a 

difference of about 1 m in depth between transect “a” and transect “e”. Transect “b” 

was an exception, being on average 0.49 m shallower than the upstream transect (Fig. 

4.4, transect “a”). The overall depth to gravel appeared as a berm at the transect with a 

pool-like area downstream of the transect where a thick layer of fine-grained deposits 

was stored. Grain size generally fined upward in both the oxbow and floodplain auger 

flights. Three oxbow auger flights did not exhibit this fining, however, and were located 

within the downstream end and contained the thickest fine-grained deposits; auger 

flights C7, C3 and C4 contained 2.09 m, 2.64 m and 1.97 m of fine sediment, 
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respectively. The sorting of fine-grained deposits appeared more variable in the 

downstream auger flights than those upstream. Upstream auger flights, such as in 

transect “a” and “b”, exhibited a smooth upward increase in clay and silt content from 

25% to about 75%. Downstream auger flights varied more in grain size through depth 

and coarsened upward at locations (e.g., Fig. 4.4, C1). Sediment within the downstream 

auger flights fined downstream, with clay and silt accounting for about 50 to over 75 % 

of the total content. 

 

There was no obvious pattern of fining or coarsening in the cross-stream direction. 

Nonetheless, the gravel depth was always deeper in the central part of the abandoned 

channel relative to the edges, except for core “C2”. The difference in gravel depth 

between the central auger flights and those on the edges of the abandoned channel 

were more significant within the downstream auger flights than those of the upstream. 

For example, there was a 2 m difference between the gravel depths of C7 and C8 

whereas there was a difference of less than 50 cm between C19 and C20. Grain sizes 

fined upward from the inner to the outer banks of the upstream transects (Fig. 4.4, 

Transects a,b,c), but not those of the downstream. The downstream transects fined 

upward only for the inner bank auger flights, whereas auger flights close to the outer 

bank had high proportions of nearly 90% clay and silt (Fig. 4.4, Auger flights C7, C3, C4). 
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Figure 4.4: Grain size distribution and fine-grained deposit thickness at Lake CHU1. 
It was measured for 20 auger flights from 5 transects in the abandoned channel and one core 
(auger flight) from the nearby floodplain. The location references “Upstream-Downstream” 
and “Inner to Outer Bank” are showing the relative location of auger flights between one 
another. 

 

4.4.2.3 Chute cutoff oxbow lake “CHU2” 

Lake CHU2 was a more recent chute cutoff than Lake CHU1 and formed 

between 1935 and 1945. The distribution of grain sizes was measured for this site using 

13 auger flights along four cross-channel transects. There was no apparent stream-wise 
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(upstream-downstream) sorting of sediment, and the gravel depth appeared at a 

uniformly distributed elevation of 15.5 m, which may have resulted from the prolonged 

diversion of bed material into the oxbow. Fine-grained deposits thinned near the apex, 

with deposits (Fig. 4.5, transect “g” and “h”) on average being  1.7 m thick whereas the 

upstream and downstream deposits were up to 30 cm thicker (Fig. 4.5, transect “f” and 

“I”). Deposits were also about 10 cm (Fig. 4.5, C12 compared to C13) to 20 cm thinner 

(Fig. 4.5, C9 compared to C8) in the apex than along either bank. Gravel depths were 

deepest along the outer bank, occurring at elevations of 14.2 and 13.8 m (Fig. 4.5, C4 

and C13).  

 

 
 
Figure 4.5: Grain size distribution and fine-grained deposit thickness at Lake CHU2. 
It was measured for 13 auger flights from 4 transects located in the abandoned channel. The 
location references “Upstream-Downstream” and “Inner to Outer Bank” are showing the 
relative location of auger flights between one another. 
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4.4.2.4 Chute cutoff oxbow lake “CHU3” 

Lake CHU3 was one of the oldest sites, having formed sometime between 1840 

and 1885. Because of its age, half of its length may have been eroded by channel 

migration. The spatial pattern of sediment infill was mapped using three transects that 

contained seven auger flights in total and one additional flight from the floodplain (Fig. 

4.6). Auger flights sampled at this site generally coarsened upward to about 1 m from 

the ground surface. Sediment deposits measured in the floodplain were 1.13 m thick, 

thinner than the average of 1.83 m thickness in the abandoned channel. Similar to Lake 

CHU1, the gravel surface sloped in the downstream direction, occurring at lower 

elevation downstream with a difference of up to 1 m between C1 and C8 (Fig. 4.6). No 

obvious stream-wise sorting of grain sizes deposit thickness was observed in the auger 

flights. Gravel depths were lower along the outer bank compared to the inner bank, 

with a difference of about 1 m between C6 and C5 (Fig. 4.6). Conversely, proportions of 

sand were higher near the inner bank, making up more than 50% of the sediment 

compared to the sediment infill near the gravel base (Fig. 4.6, C6, C9, C3). There was no 

obvious cross-channel trend in the thickness of fine-grained deposits. 
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Figure 4.6: Grain size distribution and fine-grained deposit thickness at Lake CHU3. 
It was measured for seven auger flights from three transects located in the abandoned 
channel and one core from the nearby floodplain. The location references “Upstream-
Downstream” and “Inner to Outer Bank” are showing the relative location of auger flights 
between one another. 
 

4.4.2.5 Chute cutoff oxbow lake “CHU4” 

Only six auger flights were sampled at Lake CHU4 due to the difficulty of field 

access. Its recent formation between 1999 and 2003 meant that much of the oxbow 

remained submerged by 1.5 m of water in 2010. Auger flights were thus only retrieved 

from along the inner and outer banks of the channel. Subsamples from the auger 

flights were difficult to obtain on occasion due to the liquefied nature of the near-

surface deposits (e.g., Fig. 4.7 C5). Samples did not demonstrate any obvious patterns 

in the stream wise or cross-channel directions. Nonetheless, the proportion of sand 
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relative to clay and silt was greater near the outer bank (Fig. 4.7, auger flights C4, C5, 

D6, D9).  

 

 

Figure 4.7: Grain size distribution and fine-grained deposit thickness at Lake CHU4. 
It was measured for six auger flights from four transects located in the abandoned channel. 
The location references “Upstream-Downstream” and “Inner to Outer Bank” are showing the 
relative location of auger flights between one another. 

 

4.4.2.6 Neck cutoff oxbow lake “NECK” 

Lake NECK was the longest (see Fig. 4.2c) and amongst the oldest sites, having 

formed some time between 1840 and 1885. Four transects and 11 auger flights were 

sampled at Lake NECK (Fig. 4.8). Longitudinally, deposits were thinner in the central 

part of the abandoned channel with a difference of 1.46 m in thickness between 

sediment from transect “k” and transect “m”. Gravel depths decreased in the 



99 
 

downstream direction, with differences between auger flights C2 and C11 of 1.26 m. 

Grain sizes fined upward within the upstream auger flights (Fig. 4.8, C1, C2 and C3), 

exhibiting uneven sorting in flights located near the apex (Fig. 4.8, C5 and C9), and 

coarsened upward in downstream flights (Fig. 4.8, C10, C11 and C12). The thickness of 

fine-grained deposits varied greatly in the cross-stream direction, though gravel depths 

were generally lower towards the outer bank (e.g., Fig. 4.8, C8 and C9). Sediment was 

coarser along the inner bank, however, and especially within the downstream auger 

flights. A pipe surrounded by a small concrete pier was noticed at the downstream end 

of the oxbow during the field campaign, suggesting that sediment could have been 

artificially redistributed in the area of transect “m” (Fig. 4.8). Grain size proportion 

tended to vary in the cross-stream direction with an increase in clay and silt content by 

up to 40% between the inner and the outer banks (Fig. 4.8, C7 and C9). Clay and silt 

proportion was generally high throughout all of the auger flights for this oxbow, 

representing between 50 and 100 % of the deposits. 
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Figure 4.8: Grain size distribution and fine-grained deposit thickness at Lake NECK. 
It was measured for 11 auger flights from 4 transects located in the abandoned channel. The 
location references “Upstream-Downstream” and “Inner to Outer Bank” are showing the 
relative location of auger flights between one another. 
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4.5 Discussion 

4.5.1 Variations in fine-grained sedimentation: neck cutoff versus 

chute cutoff 

 

Detailed analyses of sediment from the five abandoned channels of the River Towy 

highlighted a significant difference between neck and chute cutoff sites. Even though 

this study examined only a single neck cutoff site, the findings are consistent with the 

findings previously reported in the literature. As such, the neck cutoff site (Lake NECK) 

contained a thick layer of clay and silt that was more extensive than any of the chute 

cutoff sites (Fisk 1947; Allen 1965; Bridge et al. 1986; Hooke 1995). The average grain-

size per core was also significantly different between all the chute cutoffs and the neck 

cutoff. However CHU2 and CHU3 sediments were also statistically different (Tab. 4.1, 

p<0.05) which could be due to several factors such as the different flood history (up to 

80 years difference between the sites) or the fact that a part of the sites has been 

eroded.  The average percentage of clay and silt in the auger flights from Lake NECK 

varied between 65 and 100 % and between 35 to 85 % in the chute cutoffs. Lake NECK 

was the only abandoned channel that had a large inundated area even though it was 

over a century old, consistent with conclusions from Chapter 2, which demonstrates 

that neck cutoff oxbows persist as aquatic habitat for substantially much longer than 

chute cutoff oxbows. This clear difference in sedimentation may be the result of a 

strong difference in gradient reported in Chapter 2. The Ratio of Length for neck cutoff 

oxbow lakes was much higher than in the case of chute cutoff meaning that the 

gradient in neck cutoff was much lower. This favours an initial deposition of sediment 

at the entrance of neck cutoff oxbows and rapidly isolates a large WSA. In contrast, the 

relatively high gradients in chute cutoff oxbows favours extended sediment infilling 

within the former channels. Fine-grained deposits in the chute cutoff were generally 

well sorted and fined both upward (66% of the auger flights) and downstream, as also 

reported by earlier work  (e.g.,  Erskine et al. 1982; Bridge et al. 1986; Erskine et al. 

1992; Citterio and Piegay 2009; Toonen et al. 2012). Conversely, these patterns were 

not observed in the Lake NECK. Results suggest that sedimentation occurs differently in 

oxbows formed by chute cutoff than those formed by neck cutoff.  
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4.5.2 Cutoff depositional processes 

Differences in the four chute cutoff sites are difficult to explain, but may be due to 

each of them experiencing different flood histories as they were of significantly 

different ages. Lake CHU4 in particular, did not exhibit any fining upward trend like the 

other sites, possibly due to its very recent formation. This site was almost fully 

inundated and connected at the downstream end at the time of the study, which 

suggests that sediment could still be regularly mixed by flow currents. Nonetheless, the 

sedimentary composition and patterns observed at the five sites of the River Towy 

highlight the processes controlling sedimentation at different stages of oxbow 

evolution.  

4.5.2.1 Cutoff Stage 

During cutoff, discharge decreases progressively in the abandoned channel 

because of the combined effects of oxbow aggradation and the evolution of the newly 

incised channel, this diverts more flow as it enlarges with time. This should cause a 

decrease in sediment-transport capacity of the abandoned channel as flow 

competence decreases (Tiron et al. 2009). Coarser-grained sediment (e.g., bed material 

derived) should then gradually be deposited throughout the length of the oxbow as the 

diverted discharge is gradually reduced. This study did not allow to confidently 

determine whether the gravel encountered in the auger survey represented the 

original channel bed or the surface of aggraded bed material during the gradual closure 

of the oxbow. Nonetheless, the gravel surface of three of the study sites (CHU1-3) 

sloped in the downstream direction, suggesting that the surface did indeed represent 

post-cutoff deposits; a gravel ramp would not necessarily be seen otherwise. For 

example, the large difference in the gravel elevation recorded at Lake CHU1 revealed 

significant bed material deposition with up to 1.5 m difference in the elevation of the 

gravel surface between the upstream and downstream limbs (300 m long segment), 

comparable to the chute cutoff oxbows examined by Johnson and Paynter (1967) and 

Erskine et al. (1992). Moreover, this gradient in gravel is about 50‰, which is 

significantly higher than the valley slope in the area of about 0.5‰. 
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4.5.2.2 Plugging stage by bed material 

The incision of the main channel creates a bifurcation that affects the 

conveyance of flow and sediment (Fisk 1947; Shields and Abt 1989; Constantine et al. 

2010a). An area of low flow velocity caused by a flow separation within the entrance of 

bifurcated channels (Lindner 1953; Tiron et al. 2009; Constantine et al. 2010a) would 

restrict the diverted discharge. A separation zone was observed near the inner bank at 

the entrance of an oxbow in a hydrographic survey of Tiron et al. (2009). The width of 

this zone is controlled by the diversion angle (Chapter 1, Fig. 1.10): high diversion 

angles are associated with wide separation zones and reduce the diverted discharge 

(Constantine et al. 2010a). The low flow velocity associated with lower shear stress in 

the separation zone results in the accumulation of bed material in the entrance of the 

abandoned channel, eventually forming a plug (e.g., Gagliano and Howard 1984; Hooke 

1995). Constantine et al. (2010a) suggested that the diversion angle and the flow 

separation zone controlled the rate and extent of coarse-grained sediment aggradation 

in the oxbow; the higher the diversion angle, the more rapid the aggradation at the 

entrance and the less extended the deposits. The sediment plug finally isolates the 

abandoned channel from further coarse sediment input (Fisk 1947; Erskine et al. 1992). 

 

A gravel plug was observed at the upstream end of Lake NECK, with exclusively gravel 

deposits exposed at the surface along the first 10 m of the oxbow (Fig. 4.9). The 

upstream part of the abandoned channel was entirely filled by coarse-grained 

sediment, confined to the entrance of the abandoned channel and absent in the 

central part of the abandoned channel, similar to observations of Allen (1965) and 

Erskine et al. (1982). The pervasiveness of the observations may suggest the role of the 

separation zone near the entrance, which could cause a significant decrease in flow 

competence, which would promote deposition at the abandoned channel entrance 

(Constantine et al. 2010a). The diversion angle is about 120°±10 at this location, 

though there may be even greater uncertainty of this measure of the diversion angle 

given that channel migration partially eroded the ends of the oxbow. The upstream 

plug of the Lake NECK was probably created rapidly because bed material was 

restricted to the entrance, indicated by the mid-channel auger flights containing 50 to 

100% of clay and silt. It is important to note, however, that the gravel surface within 
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Lake NECK exhibited a small gradient, which could be the result of gravel progradation 

from the upstream entrance to the downstream. 

 

 

Figure 4.9: Interpretative scheme showing the sedimentary patterns of Lake Neck. 
A sky view of sedimentary patterns is presented on the left and cross sections are presented 
on the right. The cross sections showing the relative sediment thickness are based on Fig.4.9 
and drawn from the same elevation for comparison purpose. 
 

The chute cutoff oxbows of this study all had a diversion angle less than 90°, which 

should have favoured the maintenance of the diverted discharge and potentially 

aggradation of bed material throughout the length of the sites. The interpreted gravel 

ramp observed at the three chute cutoff sites suggests both that gravel thickness was 

higher at the upstream end and that an extensive plug was present (Fig. 4.10). Possibly 

complicating a generic interpretation of the sedimentary data, the recent channel 

(CHU4, Fig.4.8) did not contain a ramp, though the lack of extensive auger data could 

distort the findings presented here. 

4.5.2.3 Fine-grained sedimentation stage 

Once the upstream end of the abandoned channel is obstructed by a plug, 

direct bed material input is slowed and the oxbow will primarily fill by sediment 
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transported during overbank flow events (e.g., Citterio and Piegay 2009). 

Sedimentation after plug formation is mostly fine-grained because the flow velocity 

through the oxbow would presumably be much slower, even during floods, as the 

shallower depth and surface roughness would sufficiently extract momentum from the 

floodwater. Further, only the wash- and suspended load would be diverted into the 

oxbow. The data from Lake NECK support this conceptual understanding, as plug 

formation converted much of the relatively unaltered channel-form into a large sink 

available for storing silt and clay. The lack of sediment sorting with depth suggests that 

the magnitude of flood velocities and flood suspended-sediment concentrations were 

relatively uniform throughout the history of the oxbow. Possibly due to floodwater 

being trapped in the lake during the receding flood discharge, suspended sediment 

appears to have been deposited by settling in quiescent conditions. 

 

In the case of chute cutoff oxbows, the fine-grained infill showed trends both in the 

stream-wise (upstream to downstream end) and cross-stream directions (inner to 

outer bank) (Fig. 4.4-7), suggesting that continuous flow diversion occurred for a 

significant amount of time following cutoff, potentially providing the tractive force 

responsible for the infill patterns observed. Fine-grained sediment tended to fine 

downstream, which was also observed by Tiron et al. (2009) who demonstrated 

decreasing downstream flow velocities through the diversion. In CHU1, fine-grained 

sediment contained 75% of sand in the upstream limb compared to only 25-50% in the 

downstream limb (Fig. 4.4). CHU2 and CHU3 also demonstrated this pattern (Fig. 4.6-

7), but the least amount of sand was found within the apex, suggesting that flow 

entered both the upstream and downstream entrances during floods, supplying 

sediment to both limbs. In addition, auger flights of the downstream half of most of 

the sites contained 50 to 75 % of clay and silt in relatively unchanging proportions (not 

fining upward or coarsening) near the outer bank (Fig 4.5,6,8, Lake CHU1, 2, and 4). 

The thickness of sediment deposits at the centreline appears to follow the former bed 

topography for two study sites (Fig. 4.2a,d), similarly observed by Citterio and Piegay 

(2009), who noted that this could result by decantation of particles across the bed. In 

Lakes CHU1 and CHU2, sediment deposits consisted of coarser sediment, but were 

thinner along the bar near the inner bank, with up to 1.1 m difference in thickness 

between the inner and outer banks. This pattern was also observed by Fisk (1947) and  
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Toonen et al. (2012) and could be caused by the effect of the former bend curvature 

and topography on the transverse transport of bed material, similar to depositional 

processes on the point bars of active channels (e.g., Dietrich and Smith 1983). 

 

 

Figure 4.10: Interpretative scheme showing the sedimentary patterns of Lake CHU1. 
A sky view of sedimentary patterns is presented on the left and cross sections are presented 
on the right. The cross sections showing the relative sediment thickness are based on Fig.4.5 
and drawn from the same elevation for comparison purpose. 

4.6 Conclusion 

The study of fine-grained sedimentation in five oxbow lakes of the River Towy provided 

essential evidence for the understanding of depositional processes in abandoned 

channels. Abandoned channel infilling appeared to be driven by at least four processes: 

(1) the effect of the flow separation zone, where the flow velocity is low, which creates 

a sediment plug within the entrance of all the study sites; (2) decreasing discharge 

through the abandoned channel as the deposition of bed material aggrades the 

riverbed, thus promoting the fining upward sequences observed in the chute cutoff 

sites; (3) the development of a gravel-bed ramp sloping in the downstream direction, 
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which would cause a downstream fining of both bed material and potentially of 

suspended sediment delivered to the oxbow during floods; and (4) steady and 

uniformly occurring fine-grained sedimentation that occurs in both types of cutoffs in 

the later stages of evolution. 

 

Deposits in the neck cutoff site were significantly different from those of chute cutoff 

sites. The neck cutoff oxbow was dominated by large volumes of fine-grained sediment 

(principally silt and clay) and was blocked by a distinct gravel plug. Conversely, the 

chute cutoff oxbows had coarser, better sorted, and more complex sedimentary 

structures. Even though more studies of the deposits of neck cutoff oxbows are 

needed, results from this chapter suggest that the sedimentary composition of 

abandoned channel deposits differs quite significantly depending on the cutoff 

mechanism responsible, creating unique zones within the alluvial architecture of the 

floodplain. Such a difference in granulometry and structure of sediment could have 

implications for meander migration rates and the hydrogeological characteristics of 

valley alluvium. A better sense of how the different types of oxbows evolve could be 

accomplished by repeated measurements of bathymetry and hydraulic conditions 

during and after cutoff, key data for any attempt to model the oxbow alluviation 

process. 
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Chapter 5 

Conclusions 
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This thesis has presented a comprehensive study of oxbow lakes sedimentation and 

geomorphic evolution to date. Results notably revealed a major difference in the 

evolution and sedimentation of oxbow lakes depending on the mechanism of cutoff 

creation which has consequences for both the biodiversity and the channel dynamics 

of meandering rivers. 

5.1 General Discussion 

Former channels abandoned by meander cutoff progressively infill with sediment until 

complete terrestrialisation. The primary aim of this thesis was to provide a detailed 

understanding of the depositional patterns and processes of oxbow lakes during their 

lifespan.  The four main hypotheses of this study will be discussed in the following 

sections. 

5.1.1 Hypothesis 1: The cutoff mechanism controls long term oxbow 

lake infilling 

The evolution of the oxbow lakes was first assessed by measuring the reduction in 

water surface area of 37 oxbow lakes using aerial photographs and maps from eight 

different rivers analysed using GIS. Oxbow lakes are created either through the 

migration of river meanders into one another (neck cutoff) or through erosion of a new 

channel across the floodplain (chute cutoff). These mechanisms both isolate a former 

meander which is quickly obstructed by sediment accumulation. Findings from this 

study illustrate that the specific mechanism by which an oxbow is formed is critical to 

its persistence as a lake, proving the initial hypothesis. As a result, oxbow lakes can 

persist for as little as a few years to as long as several centuries depending on their 

mechanism of creation. Within the first 10 years following cutoff, the water surface 

area of oxbow lakes created by chute cutoff reduced at least twice as fast than those 

created by neck cutoff. Comparisons of WSA decrease rates showed that the lake area 

lost every year was ten times wider for chute cutoff oxbows compared to neck cutoffs. 

This suggested that oxbow lakes created by chute cutoff are likely to lose 10% per year 

whereas the decrease rate of neck cutoff oxbows is on average 1% per year.  About 100 

years after cutoff, most chute cutoff oxbow lakes of the study were fully terrestrial 
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whereas those created by neck cutoff exhibited 25 to 60% of their initial water surface 

area  

 

The importance of sediment supply and load was previously suggested by several 

studies showing that the bed-load concentration and size had a strong influence on 

abandoned channel infilling (Shields and Abt 1989, Constantine et al. 2010a, Erskine et 

al. 1992). A variation in sediment supply could have influenced the results for the Towy 

River which showed an intermediate evolution at three sites. The relatively slow 

sedimentation in these chute cutoffs could reflect a lack in sediment supply in the Towy 

River during the former channel lifespan. 

 

Sites from this study were located in areas of under dry and mild temperate climate 

and did not include temperate rivers that could show different patterns due to 

different hydrology. The range of sinuosity (1.06 to 1.7) and slope (0.14 to 2.6‰) were 

also relatively narrow which may limit extrapolation to other meandering rivers. 

Gautier et al. (2007) studied the first 14 years of evolution of the water surface area of 

neck cutoff oxbow lakes of the tropical river Rio Beni (Bolivia). This river was actively 

migrating, exhibits a low slope (0.1 to 0.07‰) and a high sinuosity (1.6 to 2.5). They 

found that the WSA decreased very slowly for 65% of the site which is similar to the 

neck cutoff oxbows of this study. However, 10% of the sites were almost completely 

infilled with sediment during the same period, similarly to the chute cutoffs of this 

study. This suggests that oxbow lakes of tropical rivers may have a different evolution 

or that there were too few neck cutoffs to exhibit a wide range of evolutions. 

5.1.2 Hypothesis 2: The slope difference between former and 

current channel, the diversion angle and the meander size control 

the evolution of oxbow lakes 

Parameters related to oxbow lake geometry appear to affect the reduction of the 

lake. The diversion angle, between the upstream end of the former channel and the 

main channel, as well as the oxbow lake slope showed a good correlation with the rate 

of decrease of the water surface area. Lakes with higher diversion angle or lower slope 

took longer to reduce than other lakes. Lower diversion angles probably facilitated flow 
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and sediment transfers within the former channel after cutoff and therefore led to a 

rapid reduction of the lake. Similarly, a steep slope for the lake bed tends to ease 

extensive sediment transfers and would cause rapid terrestrialisation. Therefore the 

initial hypothesis is proven for these two parameters even though their distinct role 

remains unclear since they appear to be related parameters, at least for chute cutoffs. 

Therefore the specific physical control of each parameter on oxbow lake 

terrestrialisation has yet to be analysed. Furthermore, data did not exhibit a significant 

relationship between oxbow lake size (length) and water surface area reduction, 

disproving the hypothesis. This is due to the fact that oxbow lakes size is linked to main 

channel dimension and consequently an oxbow lake may naturally receive large 

volumes of sediment if it was created by a big river. 

5.1.3 Hypothesis 3: Former channels are not significant bed material 

sinks compared to transfers in the active channel 

Depositional processes and the importance of sediment transfers associated with 

oxbow lake infilling was assessed using two complementary field surveys of oxbow 

lakes on the Ain River (France) and the Towy River (Wales). Two closely located oxbow 

lakes of the Ain River cut-off within a decade before this study and were investigated to 

measure the volume and location of the initial sediment transfers after cutoff. The 

infilling of abandoned meanders occurs mostly by bed-load transfers until the entrance 

of the oxbow lake is isolated by sediment accumulation. That stage was monitored on 

the Ain River sites using topographic measurements (cross sections, profiles and 

general mapping) and LiDAR data for several consecutive years. Five oxbow lakes of the 

Towy River which cut-off between 1863 (±23y) and 2001 (±2y) were studied to analyse 

the long term sedimentation of former channels. Findings from my surveys of the Ain 

River oxbow lakes revealed that the initial bed-load transfers (gravel here) in oxbow 

lakes can be significant with the equivalent of 34% and 17% of the river supply 

deposited in the studied sites, proving the hypothesis. Consequently, oxbow lakes are 

not necessarily only fine-grained sediment sinks, as often referred to, but can also store 

large volumes of coarser material. Nevertheless, the calculated volumes of sediment 

transferred due to the incision of the new channels were much greater than the 

volumes deposited in the former channels. The volume of bed material transferred by 
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channel incision was equal to 15,250 m3 y-1 which is greater than the bed material 

supply rate to the reach (14,000 m3 y-1). In addition, up to 41% of the sediment eroded 

from the incision of the upstream new channel deposited on the point bar immediately 

downstream. Oxbow lakes can also rapidly become a source of bed material after 

cutoff since about 2,300 m3 of sediment was removed from the upstream end, showing 

the dualistic role of oxbow lakes of both sources and sinks for sediment. This study also 

showed that initial bed material infilling occurred differently at the two sites. One 

(MOL site) had extensive bed material deposition which progressively narrowed the 

former channel until the upstream end was blocked whereas the other site (MAR) was 

obstructed mostly by the growth of a pre-existing point bar upstream, forming a plug. 

The lower diversion angle of the first site may have facilitated extensive bed material 

infilling although more study sites would be needed to confirm this hypothesis. 

 

5.1.4 Hypothesis 4: Long-term oxbow lake alluviation is driven by 

several processes and multidimensional flow patterns 

Long-term depositional patterns analysed from oxbow lakes sediment of the Towy 

River showed very different structures depending on the cutoff mechanism. The neck 

cutoff oxbow lake studied exhibits a much extended central lens of suspended 

sediment composed mostly of mud and clay and little to no grain size sorting with 

depth for most cores. The size fraction of sediment in all the chute cutoff oxbows was 

also estimated to be significantly different from the neck cutoff (NECK). The neck cutoff 

oxbow lake also showed a sharp change in sediment composition at the upstream end 

with very coarse bed material deposits made of gravel positioned next to the fine-

grained sediment lens (Fig. 5.1). The fact that this site formed by neck cutoff probably 

led to a high diversion angle which created a large flow separation zone and caused the 

accumulation of large volumes of gravel at the entrance of the former channel. The 

gravel plug efficiently isolated the oxbow lake which then filled up exclusively with fine-

grained sediment as shown by the large clay and silt deposits. This last infilling process 

was observed to be slow and has caused a wide lake to remain on the site for over a 

century. These findings from field surveys on the Towy River (Chapter 4) are consistent 

with the evolution of the water surface area observed at 37 sites (Chapter 2). 
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Sediment in the four chute cutoff oxbow lakes was generally coarser than the neck 

cutoff but also demonstrated some patterns in grain size sorting both stream-wise 

(upstream to downstream) and cross-stream (bank to bank). This suggests more 

complex interaction between flow and sediment in chute oxbow lakes. Abandoned 

channel infilling was driven by several processes. The smaller flow separation zone 

favoured extensive coarse-grained deposits further within the former channel with a 

long gravel ramp and also the presence of sand at the apex (Fig 5.1). Stream-wise flow 

gradients and a general decreasing discharge caused the sediment to be sorted and 

fine upward as well as toward the downstream end. Finally, a silt-and clay lens near the 

apex and where the former channel pool used to be suggests that decantation and 

sediment in calm flow condition occurred. These various sedimentary processes 

observed on the Towy River (Chapter 4) are consistent with the non-linear evolution of 

chute cutoff oxbow lakes shown in Chapter 2 and also suggested by Gautier et al. 

(2007). The log-shaped evolution of the water surface area probably reflects the 

succession of sedimentary processes including a rapid decrease of the WSA during the 

first 5-10 years whilst gravel accumulates, followed by a slower decrease as the channel 

becomes obstructed and finally a very slow infilling depending on silt and clay 

decantation. 
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Figure 5.1: Schematic representation of the geomorphic evolution of oxbow lakes based on the type of cutoff.  
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5.2 Significance 

5.2.1 Overview 

This study addressed the critical issues of oxbow lake persistence as aquatic habitats 

and depositional processes involved in their terrestrialisation. Sediment transfers 

associated with meander cutoffs have received relatively little research attention 

probably because they occur at short timescale like most geomorphic processes. 

Meander cutoffs are not easy to predict, especially since chute channel incised in the 

floodplain can take over a decade to become the main conveyor of the discharge or the 

cutoff may never occur in some cases. Cutoff can also take place suddenly after, for 

example, a flood of important magnitude. Lastly, significant geomorphic changes can 

take place at the timescale of few months in former channels which make their 

monitoring difficult. This study provided a comprehensive research about oxbow lakes 

depositional processes at various timescales, from the annual changes within the first 

decade after cutoff until long-term evolution during at least a century. Results allow 

discriminating between the importance of the cutoff mechanism for both oxbow lake 

longevity and sedimentation processes which is significant as well as useful to river 

managers, geomorphologists and ecologists. 

 

5.2.2 Ecological implications 

Findings from this study about the control by cutoff mechanism on the persistence 

of the oxbow lake as an aquatic habitat have important implications for floodplain 

ecology. The fact that chute cutoffs create short-term lakes compared to neck cutoffs 

affects aquatic habitats on meandering floodplains. River channel creating dominantly 

neck cutoffs are likely to provide long-term habitats for fauna and flora and durably 

support biodiversity by offering water bodies for over a century. The aquatic 

environment provided by oxbow lakes offers notably remote environments key to the 

development of fish species (e.g., Twaite Shads, Slamons). Varying physical conditions 

such as varying depth, substrate composition and regular flooding are essential to 
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floral diversity. The sedimentary composition of chute cutoff oxbow lakes varies 

between mud (silt and clay), sand and gravel, which offers a larger variety of habitats in 

relatively small areas. Conversely, neck cutoffs are wider and last longer, but have a 

substrate composed of mud only and consequently provide a less diverse range of 

environments. The knowledge of the persistence of a water body on the floodplain as 

well as the soil composition of infilled former channels based on the cutoff mechanism 

also has implications for land use. For example, the prediction of the longevity of a 

water body on pasture land is useful information for farmers. Additionally, the 

difference in soil composition of former channels is of interest for better managing 

cultivated lands and choosing the most adapted crops.     

 

Neck cutoff oxbow lakes are likely to provide the most durable habitats. This is very 

relevant in situations when river channels have evolved from neck cutoff dominated to 

chute cutoff dominated due to human pressure and change in land use such as the 

Sacramento River Valley. The drastic straightening of the Sacramento River changed the 

dominant mechanism of formation of oxbow lakes and is now only creating chute 

cutoff oxbow lakes which are short-lasting habitats. According to the findings of this 

study, oxbow lake slope and diversion angle control the infilling of chute cutoffs, such 

as those on the Sacramento River nowadays. Being able to predict the longevity of 

oxbow lake from their mechanism and their geometry provides useful information to 

river managers and scientists to evaluate the quality of habitats of meandering rivers, 

to anticipate the consequence of channel style change on biodiversity and, finally, to 

better restore river corridors. 

 

5.2.3 Significance for fluvial geomorphology 

Oxbow lakes are widespread features of meandering floodplain therefore a detailed 

understanding of the sediment transfers associated with meander cutoff as well as the 

complete analyses of oxbow lake depositional processes during their lifespan is very 

important to understand both past floodplain architecture and present channel 

dynamics. Results presented in this study highlighted that former channels can be 

significant bed-load stores in case of chute cutoff and also source since this material 
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can be eroded and transferred to the main channel only within a few years. It is known 

that cutoff affect channel dynamics by reducing sinuosity and transferring large volume 

of sediment downstream. Measurements from this study suggest that sediment 

eroded by channel incision are redeposited in large volume on the bars directly 

downstream the cutoff which probably caused an acceleration in channel migration 

opposite these bars. The abandonment of channels can consequently have two 

antagonistic effects of reducing and increasing the amplitude of meanders. This study 

also showed a strong difference in oxbow lakes sediments depending on the cutoff 

mechanism, with neck cutoffs generally forming extensive fine-grained sediment 

lenses, whereas chute cutoff infill with a much larger proportion of bed-load and 

coarser-grained sediment than neck cutoff. The tendency for pollutants, such as heavy 

metals, to adsorb on fine-grained particles suggests that neck-cutoff oxbow lakes 

constitute better stores for contaminants in polluted rivers. Moreover, the difference in 

sediment composition should affect the dynamics of rivers eroding past former 

channels deposits. The large deposits of coarse-grained sediment in the chute cutoff 

oxbow lakes analysed on the Towy and the Ain Rivers may create a weaker obstacle to 

channel migration than the large, cohesive, mud and clay lenses in neck cutoffs. For 

these reasons, this study provides new and important information for the 

understanding of the fluvial dynamics and architecture of meandering rivers. 

5.3 Future work and perspectives 

This research highlighted the influence of at least two geometrical parameters on the 

evolution of oxbow lakes: oxbow slope and diversion angle. Future work should focus 

on providing a mechanistic explanation and evidences on the distinct effect of each of 

these parameters on lakes’ longevity in the long term. This could be achieved using 

numerical models integrating flow and sediment transport. With this knowledge, it 

should be possible to inform and produce models enabling the prediction of oxbow 

lake lifespan according to their initial geometry. 

 

The sediment deposits structure and composition in oxbow lakes vary significantly 

depending on the type of cutoff according to this study and could therefore affect 
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future channel migration. In order to evaluate the effect of oxbow lake deposits on 

channel migration, further research should focus on the consequence of floodplain 

deposits on river migration. For instance, using flume modelling and in situ surveys it 

would be interesting to quantify the changes bank erodibility and channel migration 

rate caused by former channel deposits to assess their effect on fluvial dynamics. 

 

Oxbow lakes offer various aquatic habitats for many species and the persistence of 

these habitats relies on their terrestrialisation. However, it is not yet known how, for 

example, aquatic vegetation communities may respond to progressive terrestrialisation 

or how exactly their habitats differ between chute and neck cutoff oxbow lakes. In 

order to provide a comprehensive study of oxbow lakes habitats, a long term survey of 

the evolution of flora and fauna oxbow lakes with time should be conducted as some 

sites infill with sediment. 
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Appendix 1  

GIS measurements 

Table A1.1: Oxbow lakes parameters in Chapter 2. Part ½ 

River Lake ID Oxbow 
initial 
length 
(m) 

New 
channel 
length 
(m) 

Oxbow 
length 
ratio 

Diversion 
angle 
(degrees) 

Time 
to 
plug 
(y) 

Transition 
time for 
the WSA 
(y) 

Sacramento 
River 

rm178 1190 563 2.11 30 3 14 

Sacramento rm179B 1659 818 2.03 30 4 9 
Sacramento rm166 652 492 1.33 50 4 9 
Sacramento rm219 1334 936 1.43 60 4.5 14.0 
Sacramento rm203 3360 1198 2.80 90 2.5 17 
Sacramento rm184N 1566 1334 1.17 20 4.5 13 
Sacramento rm169 1596 1052 1.52 35 2.5 7 
Sacramento rm213 4244 1330 3.19 40 8.5 19 
Sacramento rm214 1028 804 1.28 25 11 20 
Sacramento rm191 2944 748 3.94 55 10 25 
Sacramento rm174 1932 1167 1.66 80 13 24 
Sacramento rm202 1470 1070 1.37 55 4.5  
Sacramento rm165 2290 675 3.39 80   
Ain River BRO 1647 828 1.99 90 5.5  
Ain River HYE 1697 1112 1.53 55 4.5 16 
Ain River M71 580 471 1.23 70 8.5 9 
Ain River PLA 2115 946 2.24 65 4.5 8 
Ain River M54 1145 956 1.20 30 4.5 6 
Ain River MOL 1310 1081 1.21 20 1 9 
Towy River CH1 510 349 1.46 80   
Towy River CH2 350 282 1.24 50   
Towy River NECK 1497 209 7.16 120   
Towy River CH3 402 97 4.14 90   
Towy River CH4 455 187 2.43 70   
Mississippi 
River 

EAGL 21400 1400 15.29 120   

Mississippi YUCA 16500 2400 6.88 100   
Mississippi MARY 23000 2750 8.36 140   
Mississippi FERG 16670 2310 7.22 160   
Mississippi MARE 24200 4250 5.69 110   
Mississippi LEE 19000 2500 7.60 140   
Pelican 
River 

PEL3 206 17 12.12 150   

Pelican PEL2 133 31.2 4.26 120   
Pelican PEL1 206 23 8.96 140   
Red River of 
the North 

RED1 874 85 10.28 130   

Red River RED2 1184 101 11.72 130   
Smoky Hill 
River 

SMO 1542 150 10.28 120   

Kansas River KAN 3875 1460 2.65 80   
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Table A1.2: Oxbow lakes parameters in Chapter 2. Part 2/2 

River Lake ID 
Time to 
-25% of 
WSA (y) 

Decrease 
rate until -
25% of WSA 
(% per year) 

Time to 
-50% of 
WSA (y) 

Decrease 
rate until -
50% of WSA 
(% per year) 

Time to -
75% of 
WSA (y) 

Decrease 
rate until -
75% (% 
per year) 

Sacramento 
River 

rm178 1 25.0 2 25.0 5 15.0 

Sacramento rm179B     6 12.5 

Sacramento rm166 2 12.5 4 12.5 6 12.5 

Sacramento rm219 2 12.5 3 16.7 6 12.5 

Sacramento rm203 1 25.0 2 25.0 7 10.7 

Sacramento rm184N 2 12.5 4 12.5 12 6.3 

Sacramento rm169   2 25.0 7 10.7 

Sacramento rm213 4 6.3 9 5.6 13 5.8 

Sacramento rm214 7 3.6 12 4.2 15 5.0 

Sacramento rm191 5 5.0 10 5.0 15 5.0 

Sacramento rm174 3 8.3 11 4.5 16 4.7 

Sacramento rm202 1 25.0 6 8.3 10 7.5 

 Sacramento rm165 36 0.7 120 0.4     

Ain River BRO 3 8.3 6 8.3 11 6.8 

Ain River HYE 3 8.3 6 8.3 10 7.5 

Ain River M71 4 6.3 7 7.1 11 6.8 

Ain River PLA 1 25.0 1 50.0 12 6.3 

Ain River M54 3 8.3 7 7.1 15 5.0 

Ain River MOL 2 12.5 4 12.5 7 10.7 

Towy River CH1 10 2.5 19 2.6 45 1.7 

Towy River CH2 3 8.3 9 5.6 42 1.8 

Towy River NECK 30 0.8 47 1.1 83 0.9 

Towy River CH3 6 4.2     

 Towy River CH4 19 1.3 32 1.6 43 1.7 

Mississippi 
River 

EAGL 39 0.6 78 0.6 117 0.6 

Mississippi YUCA 28 0.9 56 0.9   

Mississippi MARY 73 0.3 146 0.3 220 0.3 

Mississippi FERG 22 1.1 44 1.1 66 1.1 

Mississippi MARE 41 0.6 78 0.6   

Mississippi LEE 75 0.3 148 0.3     

Pelican 
River 

PEL3 11 2.3         

Pelican PEL2 7 3.6 16 3.1   

Pelican PEL1 9 2.8         

Red River of 
the North 

RED1 6 4.2         

 Red River RED2             

Smoky Hill 
River 

SMO             

Kansas River KAN 2 12.5 6 8.3 8 9.4 
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Table A1.3: Discharge in the main channel and water surface area at MAR oxbow lake 
when the photograph was taken (data used in Chapter 2). 
 
Note that the discharge at the dates marked with an “*” are average daily discharge whereas others are 
discharge measured within an hour before the photograph was taken 
 

Date of the 
Aerial 
Photograph 

Discharge 
(m

3
/s) 

Water 
Surface Area 
(m

2
) 

19/04/2010 40.6 43192 

27/04/2010 37.3 42714 

24/05/2010 24.4 40860 

04/06/2010 34.1 42341 

23/06/2010 23.8 40841 

07/072010 16.9 41418 

26/07/2010 14.8 40164 

07/08/2010 61.1 42851 

24/08/2010 73.7 43995 

06/09/2010 67.2 43134 

29/07/2009 * 17.6 41541 

02/08/2008 * 33.0 47189 

08/01/2005 * 71.9 67789 
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Table A1.4: Water Surface Area evolution over time (data used in Chapter 2). 
 

River Name Lake ID 
Cutoff 
date 

Year of 
measure 
of WSA 

Water 
Surface Area 
(m

2
) 

Time 
since 
cutoff (y) 

% of initial 
area 
remaining 

Sacramento rm169 1971.5 1972 153056 0 100.0 
Sacramento rm169 1971.5 1974 43611 2.5 28.5 
Sacramento rm169 1971.5 1978 42301 6.5 27.6 
Sacramento rm169 1971.5 1980 25711 8.5 16.8 
Sacramento rm169 1971.5 1986 25354 14.5 16.6 
Sacramento rm169 1971.5 1988 24276 16.5 15.9 
Sacramento rm169 1971.5 1993 14419 21.5 9.4 
Sacramento rm169 1971.5 1995 19920 23.5 13.0 
Sacramento rm169 1971.5 1997 20104 25.5 13.1 
Sacramento rm169 1971.5 1998 27473 26.5 17.9 
Sacramento rm169 1971.5 1999 24542 27.5 16.0 
Sacramento rm169 1971.5 2004 25293 32.5 16.5 
Sacramento rm169 1971.5 2005 26147 33.5 17.1 
Sacramento rm169 1971.5 2006 20312 34.5 13.3 
Sacramento rm169 1971.5 2007 25918 35.5 16.9 
Sacramento rm178 1983 1983 134852 0 100.0 
Sacramento rm178 1983 1986 45248 3 33.6 
Sacramento rm178 1983 1988 34403 5 25.5 
Sacramento rm178 1983 1990 23422 7 17.4 
Sacramento rm178 1983 1993 29749 10 22.1 
Sacramento rm178 1983 1994 14335 11 10.6 
Sacramento rm178 1983 1995 27405 12 20.3 
Sacramento rm178 1983 1997 23995 14 17.8 
Sacramento rm178 1983 1998 24503 15 18.2 
Sacramento rm178 1983 1999 22607 16 16.8 
Sacramento rm178 1983 2004 7634 21 5.7 
Sacramento rm178 1983 2005 10091 22 7.5 
Sacramento rm178 1983 2006 6181 23 4.6 
Sacramento rm178 1983 2007 11666 24 8.7 
Sacramento rm179 1957 1957 208789 0 100.0 
Sacramento rm179 1957 1958 183620 1 87.9 
Sacramento rm179 1957 1964 28216 7 13.5 
Sacramento rm179 1957 1969 16211 12 7.8 
Sacramento rm179 1957 1974 14552 17 7.0 
Sacramento rm179 1957 1978 24491 21 11.7 
Sacramento rm179 1957 1980 10951 23 5.2 
Sacramento rm179 1957 1986 18550 29 8.9 
Sacramento rm179 1957 1988 6608 31 3.2 
Sacramento rm179 1957 1990 18355 33 8.8 
Sacramento rm179 1957 1993 7973 36 3.8 
Sacramento rm179 1957 1994 3326 37 1.6 
Sacramento rm179 1957 1995 3038 38 1.5 
Sacramento rm179 1957 1997 2069 40 1.0 
Sacramento rm179 1957 1999 699 42 0.3 
Sacramento rm179 1957 2004 1711 47 0.8 
Sacramento rm179 1957 2005 14192 48 6.8 
Sacramento rm179 1957 2006 4903 49 2.3 
Sacramento rm179 1957 2007 0 50 0.0 
Sacramento rm184 1942.5 1943 133942 0 100.0 
Sacramento rm184 1942.5 1947 48453 5 36.2 
Sacramento rm184 1942.5 1964 12366 22 9.2 
Sacramento rm184 1942.5 1969 9662 27 7.2 
Sacramento rm184 1942.5 1974 7545 31.5 5.6 
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River Name Lake ID 
Cutoff 
date 

Year of 
measure 
of WSA 

Water 
Surface Area 
(m

2
) 

Time 
since 
cutoff (y) 

% of initial 
area 
remaining 

Sacramento rm184 1942.5 1978 6019 35.5 4.5 
Sacramento rm184 1942.5 1980 6523 37.5 4.9 
Sacramento rm184 1942.5 1986 5825 43.5 4.3 
Sacramento rm184 1942.5 1988 2675 45.5 2.0 
Sacramento rm184 1942.5 1990 3701 47.5 2.8 
Sacramento rm184 1942.5 1993 4120 50.5 3.1 
Sacramento rm184 1942.5 1995 2467 52.5 1.8 
Sacramento rm184 1942.5 1997 3901 54.5 2.9 
Sacramento rm184 1942.5 1998 3632 55.5 2.7 
Sacramento rm184 1942.5 1999 3888 56.5 2.9 
Sacramento rm184 1942.5 2004 4330 61.5 3.2 
Sacramento rm184 1942.5 2006 4754 63.5 3.5 
Sacramento rm184 1942.5 2007 559 64.5 0.4 
Sacramento rm213 1971.5 1972 418590 0 100.0 
Sacramento rm213 1971.5 1986 77641 14.5 18.5 
Sacramento rm213 1971.5 1988 87533 16.5 20.9 
Sacramento rm213 1971.5 1990 56440 18.5 13.5 
Sacramento rm213 1971.5 1993 27316 21.5 6.5 
Sacramento rm213 1971.5 1994 15513 22.5 3.7 
Sacramento rm213 1971.5 1997 17512 25.5 4.2 
Sacramento rm213 1971.5 1998 8020 26.5 1.9 
Sacramento rm213 1971.5 1999 8294 27.5 2.0 
Sacramento rm213 1971.5 2005 21159 33.5 5.1 
Sacramento rm213 1971.5 2006 8098 34.5 1.9 
Sacramento rm213 1971.5 2007 8964 35.5 2.1 
Sacramento rm219 1951.5 1952 92172 0 100.0 
Sacramento rm219 1951.5 1956 31849 5 34.6 
Sacramento rm219 1951.5 1958 17989 7 19.5 
Sacramento rm219 1951.5 1974 6432 22.5 7.0 
Sacramento rm219 1951.5 1986 2187 34.5 2.4 
Sacramento rm219 1951.5 1988 1557 36.5 1.7 
Sacramento rm219 1951.5 1998 1038 46.5 1.1 
Sacramento rm219 1951.5 1999 862 47.5 0.9 
Sacramento rm219 1951.5 2004 0 52.5 0.0 
Sacramento rm203 1971.5 1972 451346 0 100.0 
Sacramento rm203 1971.5 1974 158786 2.5 35.2 
Sacramento rm203 1971.5 1978 115573 6.5 25.6 
Sacramento rm203 1971.5 1986 42095 14.5 9.3 
Sacramento rm203 1971.5 1988 23313 16.5 5.2 
Sacramento rm203 1971.5 1990 22121 18.5 4.9 
Sacramento rm203 1971.5 1994 20797 22.5 4.6 
Sacramento rm203 1971.5 1997 22438 25.5 5.0 
Sacramento rm203 1971.5 1998 17706 26.5 3.9 
Sacramento rm203 1971.5 2004 28253 32.5 6.3 
Sacramento rm203 1971.5 2005 20780 33.5 4.6 
Sacramento rm203 1971.5 2006 23285 34.5 5.2 
Sacramento rm203 1971.5 2007 18246 35.5 4.0 
Sacramento rm202 1997.5 1998 102651 0 100.0 
Sacramento rm202 1997.5 1999 58447 1.5 56.9 
Sacramento rm202 1997.5 2004 51190 6.5 49.9 
Sacramento rm202 1997.5 2005 35204 7.5 34.3 
Sacramento rm202 1997.5 2006 31300 8.5 30.5 
Sacramento rm202 1997.5 2007 27483 9.5 26.8 
Sacramento rm166 1957 1957 64118 0 100.0 
Sacramento rm166 1957 1964 8418 7 13.1 
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River Name Lake ID 
Cutoff 
date 

Year of 
measure 
of WSA 

Water 
Surface Area 
(m

2
) 

Time 
since 
cutoff (y) 

% of initial 
area 
remaining 

Sacramento rm166 1957 1969 6234 12 9.7 
Sacramento rm166 1957 1974 4229 17 6.6 
Sacramento rm166 1957 1978 2762 21 4.3 
Sacramento rm166 1957 1980 1027 23 1.6 
Sacramento rm174 1983 1983 279177 0 100.0 
Sacramento rm174 1983 1986 197343 3 70.7 
Sacramento rm174 1983 1988 176781 5 63.3 
Sacramento rm174 1983 1990 171700 7 61.5 
Sacramento rm174 1983 1994 141188 11 50.6 
Sacramento rm174 1983 1999 65452 16 23.4 
Sacramento rm174 1983 2003 41445 20 14.8 
Sacramento rm174 1983 2005 23150 22 8.3 
Sacramento rm174 1983 2006 9127 23 3.3 
Sacramento rm174 1983 2009 4218 26 1.5 
Sacramento rm191 1942.5 1943 156132 0 100.0 
Sacramento rm191 1942.5 1958 32877 15.5 21.1 
Sacramento rm191 1942.5 1978 3509 35.5 2.2 
Sacramento rm191 1942.5 1980 3120 37.5 2.0 
Sacramento rm191 1942.5 1993 2276 50.5 1.5 
Sacramento rm214 1958 1958 128564 0 100.0 
Sacramento rm214 1958 1969 77917 11 60.6 
Sacramento rm214 1958 1974 20982 16 16.3 
Sacramento rm214 1958 1986 5547 28 4.3 
Sacramento rm214 1958 1988 5986 30 4.7 
Sacramento rm214 1958 1990 4253 32 3.3 
Sacramento rm165 1872.5 1873 439326 0 100.0 
Sacramento rm165 1872.5 1938 241571 65.5 55.0 
Sacramento rm165 1872.5 1986 233358 113.5 53.1 
Sacramento rm165 1872.5 1988 222407 115.5 50.6 
Sacramento rm165 1872.5 1993 219102 120.5 49.9 
Sacramento rm165 1872.5 1999 242748 126.5 55.3 
Ain BRO 1959.5 1960 95983.6 0 100.0 
Ain BRO 1959.5 1965 49900 5.5 52.0 
Ain BRO 1959.5 1971 22571 11.5 23.5 
Ain BRO 1959.5 1980 8126.16 20.5 8.5 
Ain HYE 1958.5 1959 82724 0 100.0 
Ain HYE 1958.5 1963 47000.2 4.5 56.8 
Ain HYE 1958.5 1971 10845.5 12.5 13.1 
Ain HYE 1958.5 1991 10740.3 32.5 13.0 
Ain HYE 1958.5 1996 15663.6 37.5 18.9 
Ain HYE 1958.5 2000 4095.29 41.5 5.0 
Ain HYE 1958.5 2005 8414.91 46.5 10.2 
Ain HYE 1958.5 2009 4274.83 50.5 5.2 
Ain M71 1967 1967 25274 0 100.0 
Ain M71 1967 1971 19537 4 77.3 
Ain M71 1967 1980 1656 13 6.6 
Ain M71 1967 1991 2294.35 24 9.1 
Ain M71 1967 1996 1342 29 5.3 
Ain PLA 1953 1953 104935 0 100.0 
Ain PLA 1953 1954 51916 1 49.5 
Ain PLA 1953 1965 24972 12 23.8 
Ain PLA 1953 1971 21154 18 20.2 
Ain PLA 1953 1980 13423 27 12.8 
Ain PLA 1953 1991 13365 38 12.7 
Ain MOL 2002 2002 53286.5 0 100.0 
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River Name Lake ID 
Cutoff 
date 

Year of 
measure 
of WSA 

Water 
Surface Area 
(m

2
) 

Time 
since 
cutoff (y) 

% of initial 
area 
remaining 

Ain MOL 2002 2005 32090.5 3 60.2 
Ain MOL 2002 2009 11051 7 20.7 
Ain M54 1949.5 1950 23808 0 100.0 
Ain M54 1949.5 1954 14536 4.5 61.1 
Ain M54 1949.5 1963 6233 13.5 26.2 
Ain M54 1949.5 1971 4562 21.5 19.2 
Ain M54 1949.5 1991 5982 41.5 25.1 
Ain M54 1949.5 1996 6794.03 46.5 28.5 
Ain M54 1949.5 2005 3139.87 55.5 13.2 
Towy LA 1863 1863 10564 0 100.0 
Towy LA 1863 1889 3415 26 32.3 
Towy LA 1863 1907 2719 44 25.7 
Towy LA 1863 1946 540 83 5.1 
Towy LA 1863 1954 945 91 8.9 
Towy LA 1863 1969 942 106 8.9 
Towy LA 1863 1975 424 112 4.0 
Towy LA 1863 1992 942 129 8.9 
Towy LA 1863 1999 854 136 8.1 
Towy LA 1863 2002 442 139 4.2 
Towy LA 1863 2006 1980 143 18.7 
Towy LB 1940 1940 9900 0 100.0 
Towy LB 1940 1946 5066 6 51.2 
Towy LB 1940 1954 4755 14 48.0 
Towy LB 1940 1969 4205 29 42.5 
Towy LB 1940 1992 1100 52 11.1 
Towy LB 1940 1999 800 59 8.1 
Towy LB 1940 2002 625 62 6.3 
Towy LB 1940 2006 1245 66 12.6 
Towy LD 2000.5 2001 11020 0 100.0 
Towy LD 2000.5 2006 8586 6 77.9 
Towy LE 1863 1863 5445 0 100.0 
Towy LE 1863 1889 3550 26 65.2 
Towy LE 1863 1907 1279 44 23.5 
Towy LE 1863 1946 878 83 16.1 
Towy LE 1863 1954 583 91 10.7 
Towy LE 1863 1969 1183 106 21.7 
Towy LE 1863 1975 547 112 10.1 
Towy LE 1863 1992 61 129 1.1 
Towy LE 1863 2006 429 143 7.9 
Towy LC 1863 1863 54410 0 100.0 
Towy LC 1863 1889 44777 26 82.3 
Towy LC 1863 1907 28178 44 51.8 
Towy LC 1863 1946 13559 83 24.9 
Towy LC 1863 1954 20862 91 38.3 
Towy LC 1863 1969 15183 106 27.9 
Towy LC 1863 1975 15232 112 28.0 
Towy LC 1863 1981 14705 118 27.0 
Towy LC 1863 1992 10571 129 19.4 
Towy LC 1863 1999 7283 136 13.4 
Towy LC 1863 2002 8233 139 15.1 
Towy LC 1863 2006 20371 143 37.4 
Mississippi YUCA 1929 1929 1600000 0 100.0 
Mississippi YUCA 1929 1989 860000 60 46.3 
Mississippi YUCA 1929 1998 860000 69 46.3 
Mississippi YUCA 1929 2007 870000 78 45.6 
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River Name Lake ID 
Cutoff 
date 

Year of 
measure 
of WSA 

Water 
Surface Area 
(m

2
) 

Time 
since 
cutoff (y) 

% of initial 
area 
remaining 

Mississippi EAGL 1866 1866 2080000 0 100.0 
Mississippi EAGL 1866 1994 1700000 128 18.3 
Mississippi EAGL 1866 2005 1730000 139 16.8 
Mississippi EAGL 1866 2010 1700000 144 18.3 
Mississippi MARE 1933 1933 1820000 0 100.0 
Mississippi MARE 1933 2004 790000 71 56.6 
Mississippi MARE 1933 2006 830000 73 54.4 
Mississippi MARE 1933 2010 890000 77 51.1 
Mississippi FERG 1933 1933 1040000 0 100.0 
Mississippi FERG 1933 2000 790000 67 24.0 
Mississippi FERG 1933 2005 670000 72 35.6 
Mississippi FERG 1933 2009 820000 76 21.2 
Mississippi MARY 1776 1776 1330000 0 100.0 
Mississippi MARY 1776 1996 1000000 220 24.8 
Mississippi MARY 1776 2006 1050000 230 21.1 
Mississippi LEE 1858 1858 14860000 0 100.0 
Mississippi LEE 1858 1996 7980000 138 53.7 
Mississippi LEE 1858 2007 7390000 149 49.7 
Smoky Hill SUP 2004 2005 86604 1 100.0 
Smoky Hill SUP 2004 2006 62471 2 72.1 
Smoky Hill SUP 2004 2008 60862 4 70.3 
Kansas CHU 1995 1995 520000 0 100.0 
Kansas CHU 1995 2002 240000 7 46.2 
Kansas CHU 1995 2003 120000 8 23.1 
Kansas CHU 1995 2005 210000 10 40.4 
Kansas CHU 1995 2010 200000 15 38.5 
Red River of 
the North 

RED2 1987 1987 47900 0 100.0 

Red River RED2 1987 1997 29980 10 62.6 
Red River RED2 1987 2003 35600 16 74.3 
Red River RED2 1987 2004 35190 17 73.5 
Red River RED2 1987 2005 39390 18 82.2 
Red River RED2 1987 2006 39130 19 81.7 
Red River RED2 1987 2008 37720 21 78.7 
Red River RED2 1987 2010 37720 23 62.6 
Red River RED1 2000 2003 27396 3 100.0 
Red River RED1 2000 2006 20312 6 74.1 
Red River RED1 2000 2008 22451 8 81.9 
Pelican River PEL1 1991 1991 2140 0 100.0 
Pelican River PEL1 1991 2003 1408 12 65.8 
Pelican River PEL1 1991 2008 1591 17 74.3 
Pelican River PEL2 1991 1991 1101 0 100.0 
Pelican River PEL2 1991 2003 607 12 55.1 
Pelican River PEL2 1991 2009 536 17 48.7 
Pelican River PEL3 1991 1991 2700 0 100.0 
Pelican River PEL3 1991 2003 1980 12 73.3 
Pelican River PEL3 1991 2006 1980 15 73.3 
Pelican River PEL3 1991 2008 1730 17 64.1 
Pelican River PEL3 1991 2009 1670 18 61.9 
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Appendix 2  

Topographic measurements: longitudinal profiles and cross 

sections. 

 
 
 
 
Table A2.1: Longitudinal profiles data for the Ain River (data used in Chapter 3). 
 

Point 
number 

Distance 
start 
profile 
(km) 

Elevation 
in 1999 
(m) 

Elevation 
in 2008 
(m) 

Elevation 
in 2010 
(m) 

1 0.00 218.3 218.7 218.7 
2 0.33 218.3 218.4 218.6 
3 0.61 217.8 217.5 217.5 
4 0.77 217.7 217.9 218.1 
5 0.91 217.6 218.0 217.8 
6 1.08 216.9 218.0 218.0 
7 1.31 216.9 217.4 216.9 
8 1.40 216.7 216.8 216.7 
9 1.43 216.7 217.1 217.1 
10 1.47 216.3 216.2 216.3 
11 1.51 216.2  216.6 
12 1.66 216.0   
13 1.80 216.0 215.9  
14 1.98 216.0 216.5  
15 2.03 215.9 216.0 216.4 
16 2.13 215.7 216.2  
17 2.32 215.4 216.4 216.2 
18 2.53 215.2 216.3 216.2 
19 2.70 215.2 215.1 215.0 
20 2.81 215.1 214.7 214.9 
21 2.87 215.1 215.0 214.9 
22 2.92 215.0 215.3  
23 2.96 214.5 215.2 214.7 
24 2.97 214.5 215.3 214.9 
25 3.08 214.5 215.0 214.7 
26 3.37 214.4 215.1 214.9 
27 3.56 214.4 215.5 214.8 
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Table A2.2: Cross Sections at location “a” (data used in Chapter 3).  
Note that only a fourth of the data for 2008 are shown for presentation purpose. 
 

C.S. "a" 
Distance, 
2004 (m) 

C.S. "a" 
Elevation, 
2004 (m) 

C.S. "a" 
Distance, 
2008 (m) 

C.S. "a" 
Elevation, 
2008 (m) 

C.S. "a" 
Distance, 
2010 (m) 

C.S. "a" 
Elevation, 
2010 (m) 

2.09 216.98 0.00 217.35 1.01 217.04 
4.33 217.08 0.73 217.33 5.29 217.31 
6.62 217.22 1.52 217.32 9.69 217.43 
8.66 217.32 2.50 217.31 12.55 217.52 
11.25 217.47 3.28 217.30 14.08 217.58 
13.92 217.58 4.07 217.29 14.14 217.63 
17.26 217.86 4.86 217.28 20.58 217.81 
22.26 218.12 5.83 217.26 25.97 217.96 
26.47 218.35 6.62 217.25 31.32 218.21 
29.38 218.60 7.41 217.33 32.18 218.07 
34.92 218.84 8.19 217.36 35.62 218.91 
46.40 219.11 9.17 217.39 41.72 219.29 
49.29 219.60 9.95 217.41 49.12 219.66 
56.64 219.54 10.20 217.42   
  10.44 217.44   
  10.50 217.45   
  10.74 217.46   
  10.98 217.47   
  11.23 217.49   
  11.47 217.50   
  11.53 217.51   
  11.77 217.53   
  12.01 217.54   
  12.26 217.55   
  12.50 217.56   
  12.56 217.57   
  12.80 217.57   
  13.05 217.58   
  13.29 217.58   
  13.53 217.58   
  13.59 217.58   
  13.83 217.59   
  14.08 217.60   
  14.32 217.62   
  14.56 217.63   
  14.81 217.63   
  15.59 217.64   
  16.38 217.66   
  17.17 217.68   
  17.96 217.72   
  18.93 217.71   
  19.72 217.70   
  20.50 217.75   
  21.29 217.74   
  22.26 217.79   
  23.05 217.81   
  23.84 217.85   
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C.S. "a" 
Distance, 
2004 (m) 

C.S. "a" 
Elevation, 
2004 (m) 

C.S. "a" 
Distance, 
2008 (m) 

C.S. "a" 
Elevation, 
2008 (m) 

C.S. "a" 
Distance, 
2010 (m) 

C.S. "a" 
Elevation, 
2010 (m) 

  24.63 217.95   
  25.60 218.01   
  26.39 218.05   
  27.17 218.11   
  27.96 218.18   
  28.94 218.29   
  29.72 218.38   
  30.51 218.50   
  31.30 218.58   
  32.57 218.76   
  33.36 218.81   
  34.33 218.85   
  35.12 218.88   
  35.91 218.89   
  36.69 218.92   
  37.67 218.95   
  38.45 219.00   
  39.24 219.04   
  40.03 219.11   
  41.00 219.16   
  41.79 219.17   
  42.58 219.17   
  43.36 219.18   
  44.34 219.21   
  45.13 219.20   
  45.91 219.20   
  46.70 219.24   
  47.67 219.40   
  48.46 219.47   
  49.25 219.56   
  50.04 219.60   
  51.55 219.74   
  52.34 219.77   
  53.13 219.79   
  54.10 219.81   
  54.89 219.84   
  55.68 219.85   
  56.46 219.83   
  57.44 219.85   
  58.22 219.82   
  59.01 219.81   
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Table A2.3: Cross Sections at location “b” (data used in Chapter 3).  
Note that only a fourth of the data for 2008 are shown for presentation purpose. 
 

C.S "b" 
Distance, 
2004 (m) 

C.S "b" 
Elevation, 
2004 (m) 

C.S "b" 
Distance, 
2008 (m) 

C.S "b" 
Elevation, 
2008 (m) 

C.S "b" 
Distance, 
2010 (m) 

C.S "b" 
Elevation, 
2010 (m) 

2.45 218.51 0.16 218.40 2.72 218.68 
6.97 218.24 0.95 218.44 17.26 218.32 
11.10 218.01 1.74 218.46 38.45 218.19 
17.31 217.83 2.53 218.39 53.94 217.95 
22.35 217.75 3.32 218.36 69.60 217.99 
27.72 217.67 4.11 218.30 79.82 218.23 
32.37 217.58 4.90 218.26   
35.23 217.63 5.69 218.20   
39.99 217.54 6.48 218.21   
44.29 217.49 7.27 218.22   
48.65 217.35 8.23 218.22   
59.95 217.38 9.02 218.30   
63.09 217.49 9.81 218.27   
71.09 217.75 10.60 218.21   
74.78 217.81 11.39 218.20   
78.16 218.02 12.18 218.17   
79.81 218.24 12.97 218.16   
80.81 218.70 13.76 218.21   
  14.55 218.12   
  15.34 218.07   
  16.13 218.08   
  16.92 218.02   
  17.71 217.95   
  18.67 217.95   
  19.46 217.95   
  20.25 218.00   
  21.04 217.96   
  21.83 217.90   
  22.62 217.87   
  23.41 217.86   
  24.20 217.91   
  24.99 217.97   
  25.78 217.99   
  26.57 218.01   
  27.36 218.06   
  28.15 218.06   
  29.11 218.10   
  29.90 218.15   
  30.69 218.19   
  31.48 218.22   
  32.27 218.21   
  33.06 218.21   
  33.85 218.16   
  34.64 218.15   
  35.43 218.12   
  36.22 218.11   
  37.25 218.11   
  38.04 218.08   
  38.83 218.05   
  39.62 218.03   
  40.41 218.02   
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C.S "b" 
Distance, 
2004 (m) 

C.S "b" 
Elevation, 
2004 (m) 

C.S "b" 
Distance, 
2008 (m) 

C.S "b" 
Elevation, 
2008 (m) 

C.S "b" 
Distance, 
2010 (m) 

C.S "b" 
Elevation, 
2010 (m) 

  41.20 217.99   
  41.99 218.01   
  42.95 217.95   
  43.74 217.93   
  44.53 217.90   
  45.32 217.86   
  46.11 217.86   
  46.90 217.85   
  47.69 217.84   
  48.48 217.82   
  49.27 217.81   
  50.06 217.80   
  50.85 217.78   
  51.64 217.75   
  52.43 217.75   
  53.39 217.69   
  54.18 217.72   
  54.97 217.73   
  55.76 217.76   
  56.55 217.74   
  57.34 217.74   
  58.13 217.72   
  58.92 217.73   
  59.71 217.74   
  60.50 217.72   
  61.29 217.68   
  62.08 217.67   
  62.87 217.66   
  63.83 217.66   
  64.62 217.66   
  65.41 217.66   
  66.20 217.65   
  66.99 217.61   
  67.78 217.61   
  68.57 217.64   
  69.36 217.62   
  70.15 217.66   
  70.94 217.73   
  71.73 217.77   
  72.52 217.78   
  73.31 217.75   
  74.27 217.82   
  75.06 217.89   
  75.85 217.94   
  76.64 218.00   
  77.43 218.09   
  78.22 218.13   
  79.01 218.25   
  79.80 218.56   
  80.59 218.69   
  81.38 218.74   
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Table A2.4: Cross Sections at location “c” (data used in Chapter 3). 
Note that only a fourth of the data for 2008 are shown for presentation purpose. 
 

C.S. "c" 
Distance, 
2004 (m) 

C.S. "c" 
Elevation, 
2004 (m) 

C.S. "c" 
Distance, 
2008 (m) 

C.S. "c" 
Elevation, 
2008 (m) 

C.S. "c" 
Distance, 
2010 (m) 

C.S. "c" 
Elevation, 
2010 (m) 

3.82 216.89 0.74 217.15 2.34 217.15 
11.45 216.97 1.63 217.20 16.40 217.37 
15.38 217.22 2.33 217.21 28.65 217.55 
29.87 217.31 3.04 217.22 29.66 217.32 
44.49 217.45 3.75 217.23 42.60 217.59 
55.36 217.49 4.45 217.24 50.80 217.87 
62.45 217.48 5.16 217.25 65.59 217.72 
  5.87 217.22   
  6.57 217.16   
  7.28 217.25   
  8.00 217.26   
  8.71 217.29   
  9.41 217.30   
  10.12 217.33   
  10.83 217.36   
  11.53 217.35   
  12.24 217.37   
  12.95 217.40   
  13.65 217.41   
  14.36 217.40   
  15.07 217.44   
  15.77 217.43   
  16.48 217.42   
  17.19 217.42   
  17.89 217.41   
  18.60 217.41   
  19.32 217.43   
  20.02 217.47   
  20.73 217.47   
  21.44 217.45   
  22.15 217.43   
  22.85 217.42   
  23.56 217.44   
  24.27 217.45   
  24.97 217.48   
  25.68 217.49   
  26.39 217.47   
  27.09 217.43   
  27.80 217.41   
  28.51 217.44   
  29.21 217.47   
  29.92 217.41   
  30.64 217.37   
  31.34 217.38   
  32.05 217.39   
  32.76 217.40   
  33.46 217.37   
  34.17 217.41   
  34.88 217.46   
  35.58 217.50   
  36.29 217.53   
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C.S. "c" 
Distance, 
2004 (m) 

C.S. "c" 
Elevation, 
2004 (m) 

C.S. "c" 
Distance, 
2008 (m) 

C.S. "c" 
Elevation, 
2008 (m) 

C.S. "c" 
Distance, 
2010 (m) 

C.S. "c" 
Elevation, 
2010 (m) 

  37.00 217.54   
  37.71 217.55   
  38.41 217.53   
  39.12 217.58   
  39.83 217.58   
  40.53 217.55   
  41.24 217.48   
  41.96 217.56   
  42.66 217.68   
  43.37 217.70   
  44.08 217.65   
  44.78 217.61   
  45.49 217.66   
  46.20 217.69   
  46.90 217.67   
  47.61 217.66   
  48.32 217.62   
  49.02 217.59   
  49.73 217.58   
  50.44 217.62   
  51.14 217.65   
  51.85 217.70   
  52.56 217.72   
  53.28 217.75   
  53.98 217.75   
  54.69 217.73   
  55.40 217.67   
  56.10 217.61   
  56.81 217.57   
  57.52 217.57   
  58.22 217.58   
  58.93 217.62   
  59.64 217.68   
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Table A2.5: Cross Sections at location “d” (data used in Chapter 3). 
Note that only a fourth of the data for 2008 are shown for presentation purpose. 
 

C.S. "d" 
Distance, 
2004 (m) 

C.S. "d" 
Elevation, 
2004 (m) 

C.S. "d" 
Distance, 
2008 (m) 

C.S. "d" 
Elevation, 
2008 (m) 

C.S. "d" 
Distance, 
2010 (m) 

C.S. "d" 
Elevation, 
2010 (m) 

4.50 216.08 0.00 216.34 4.43 215.83 
8.93 215.56 1.00 216.33 14.65 216.09 
12.18 215.98 2.00 216.31 72.17 216.15 
22.19 216.17 3.00 216.28 87.51 215.62 
46.25 216.46 4.00 216.24 94.97 215.63 
67.21 216.56 5.00 216.17 116.11 215.32 
80.01 216.18 6.00 216.08 152.65 214.82 
87.26 215.69 7.00 215.99 159.46 214.79 
89.79 215.28 8.00 215.95   
93.79 214.95 9.00 215.92   
98.79 214.61 10.00 215.80   
101.07 214.48 11.00 215.79   
103.47 214.34 12.00 215.87   
105.43 214.26 13.00 215.94   
107.66 214.16 14.00 215.95   
109.93 214.01 15.00 215.92   
112.02 213.93 16.00 215.90   
114.05 213.77 17.00 216.03   
116.20 213.74 18.00 216.05   
118.21 213.83 19.00 216.08   
120.95 213.84 20.00 216.09   
122.86 213.90 21.00 216.10   
126.46 213.92 22.00 216.16   
128.54 213.87 23.00 216.22   
130.64 213.92 24.00 216.20   
133.00 213.75 25.00 216.19   
136.79 213.76 26.00 216.17   
138.64 213.99 27.00 216.16   
140.85 214.79 28.00 216.17   
142.15 215.28 29.00 216.17   
144.80 215.73 30.00 216.20   
148.52 215.94 31.00 216.24   
155.56 216.32 32.00 216.21   
159.82 216.95 33.00 216.16   
  34.00 216.23   
  35.00 216.33   
  36.00 216.35   
  37.00 216.47   
  38.00 216.47   
  39.00 216.40   
  40.00 216.38   
  41.00 216.40   
  42.00 216.41   
  43.00 216.43   
  44.00 216.42   
  45.00 216.44   
  46.00 216.46   
  47.00 216.45   
  48.00 216.40   
  49.00 216.38   
  50.00 216.36   
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C.S. "d" 
Distance, 
2004 (m) 

C.S. "d" 
Elevation, 
2004 (m) 

C.S. "d" 
Distance, 
2008 (m) 

C.S. "d" 
Elevation, 
2008 (m) 

C.S. "d" 
Distance, 
2010 (m) 

C.S. "d" 
Elevation, 
2010 (m) 

  51.00 216.34   
  52.00 216.37   
  53.00 216.33   
  54.00 216.30   
  55.00 216.29   
  56.00 216.30   
  57.00 216.33   
  58.00 216.33   
  59.00 216.36   
  60.00 216.37   
  61.00 216.43   
  62.00 216.42   
  63.00 216.42   
  64.00 216.43   
  65.00 216.48   
  66.00 216.53   
  67.00 216.56   
  68.00 216.58   
  69.00 216.56   
  70.00 216.52   
  71.00 216.48   
  72.00 216.47   
  73.00 216.47   
  74.00 216.44   
  75.00 216.45   
  76.00 216.47   
  77.00 216.40   
  78.00 216.38   
  79.00 216.35   
  80.00 216.30   
  81.00 216.27   
  82.00 216.26   
  83.00 216.15   
  84.00 216.08   
  85.00 216.06   
  86.00 216.00   
  87.00 215.93   
  88.00 215.89   
  89.00 215.78   
  90.00 215.71   
  91.00 215.72   
  92.00 215.71   
  93.00 215.73   
  94.00 215.69   
  95.00 215.71   
  96.00 215.68   
  97.00 215.68   
  98.00 215.61   
  99.00 215.58   
  100.00 215.59   
  101.00 215.60   
  102.00 215.62   
  103.00 215.58   
  104.00 215.62   
  105.00 215.63   
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C.S. "d" 
Distance, 
2004 (m) 

C.S. "d" 
Elevation, 
2004 (m) 

C.S. "d" 
Distance, 
2008 (m) 

C.S. "d" 
Elevation, 
2008 (m) 

C.S. "d" 
Distance, 
2010 (m) 

C.S. "d" 
Elevation, 
2010 (m) 

  106.00 215.58   
  107.00 215.58   
  108.00 215.56   
  109.00 215.56   
  110.00 215.59   
  111.00 215.63   
  112.00 215.70   
  113.00 215.69   
  114.00 215.73   
  115.00 215.62   
  116.00 215.58   
  117.00 215.56   
  118.00 215.57   
  119.00 215.60   
  120.00 215.58   
  121.00 215.56   
  122.00 215.52   
  123.00 215.49   
  124.00 215.50   
  125.00 215.49   
  126.00 215.50   
  127.00 215.47   
  128.00 215.45   
  129.00 215.44   
  130.00 215.47   
  131.00 215.45   
  132.00 215.46   
  133.00 215.45   
  134.00 215.45   
  135.00 215.48   
  136.00 215.47   
  137.00 215.48   
  138.00 215.47   
  139.00 215.48   
  140.00 215.48   
  141.00 215.45   
  142.00 215.43   
  143.00 215.43   
  144.00 215.41   
  145.00 215.38   
  146.00 215.37   
  147.00 215.33   
  148.00 215.27   
  149.00 215.22   
  150.00 215.17   
  151.00 215.14   
  152.00 215.05   
  153.00 214.99   
  154.00 215.01   
  155.00 215.02   
  156.00 214.99   
  157.25 214.98   
  158.25 214.97   
  159.25 214.96   
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Table A2.6: Cross Sections at location “e” (data used in Chapter 3). 

 

C.S. "e" 
Distance, 
2004 (m) 

C.S. "e" 
Elevation, 
2004 (m) 

C.S. "e" 
Distance, 
2008 (m) 

C.S. "e" 
Elevation, 
2008 (m) 

C.S. "e" 
Distance, 
2010 (m) 

C.S. "e" 
Elevation, 
2010 (m) 

0.55 213.73 0.00 214.60 0.48 214.76 
2.86 213.56 1.72 214.31 1.56 213.90 
5.13 213.43 5.49 213.89 2.74 213.76 
7.24 213.23 9.23 213.23 3.77 213.49 
9.39 212.93 10.72 212.93 4.91 213.49 
11.61 212.82 17.01 213.13 5.92 213.08 
14.86 212.69 21.66 213.73 6.91 212.87 

17.04 212.65 24.78 214.13 8.52 212.71 
19.46 212.77 27.39 214.63 9.55 212.60 
21.79 213.04   10.66 212.50 
24.30 213.36   11.75 212.42 
26.23 213.71   12.80 212.52 
27.82 214.27   13.90 212.35 
29.26 214.78   14.99 212.39 
31.49 214.79   16.00 212.46 
33.09 214.83   17.13 212.51 
34.04 215.26   18.25 212.54 
    19.24 212.78 
    20.27 212.86 

    21.28 213.06 
    22.31 213.29 
    23.32 213.40 
    24.35 213.56 
    25.37 213.83 
    26.38 213.94 
    27.38 214.56 
    33.23 214.76 
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Table A2.7: Longitudinal profiles at Lake CHU1 and Lake CHU2 on the Towy River, Wales 
(data used in Chapter 4). 
 

Lake CHU1 Lake CHU2 

Gravel Ground Surface Gravel Ground Surface 
Distanc
e (m) 

Elevatio
n (m) 

Distanc
e (m) 

Elevatio
n (m) 

Distanc
e (m) 

Elevatio
n (m) 

Distanc
e (m) 

Elevatio
n (m) 

4.96 15.92 1.90 18.06 2.69 14.75 0.00 17.28 
37.49 16.06 5.00 17.26 86.67 14.41 2.69 16.73 
139.09 14.30 21.45 17.88 204.24 14.32 38.82 17.11 
268.15 14.30 37.75 17.13 293.00 14.41 59.22 17.00 
298.95 13.60 43.95 17.72   72.19 17.02 
  73.24 17.57   86.67 16.05 
  113.52 17.01   98.20 16.70 
  139.64 15.81   150.00 15.50 
  153.95 16.29   176.28 16.38 
  176.00 16.28   186.10 16.52 
  210.00 16.23   204.24 15.93 
  267.00 16.60   222.00 16.83 
  272.60 16.37   256.00 16.60 
  300.00 15.83   279.00 16.65 
      293.00 15.83 

 
 
Table A2.8: Longitudinal profiles at Lake CHU3 and Lake CHU4 on the Towy River, Wales 
(data used in Chapter 4). 
 

Lake CHU3 Lake CHU4 

Gravel Ground Surface Gravel Ground Surface 
Distance 
(m) 

Elevation 
(m) 

Distanc
e (m) 

Elevation 
(m) 

Distance 
(m) 

Elevation 
(m) 

Distance 
(m) 

Elevation 
(m) 

4.60 15.87 0.00 17.50 75.00 14.73 0.00 16.82 
77.21 15.57 4.60 17.43 89.00 14.81 8.43 16.94 
162.00 15.22 53.50 17.25 163.00 15.48 31.57 16.92 
  77.21 17.28 185.00 15.53 66.00 16.68 
  86.00 17.21 257.00 14.62 75.00 16.43 
  96.00 17.20 287.00 16.17 89.00 16.43 
  139.00 17.37   163.00 17.63 
  162.00 17.50   185.00 16.39 
  167.00 17.46   208.00 17.70 
      222.00 16.93 
      234.00 16.69 
      257.00 16.44 
      287.00 16.35 
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Table A2.9: Longitudinal profiles at Lake NECK on the Towy River, Wales (data used in 
Chapter 4). 
 

Lake NECK 

Gravel Ground Surface 
Distance 
(m) 

Elevation 
(m) 

Distance 
(m) 

Elevation 
(m) 

0.00 16.68 0.00 16.68 
104.00 14.65 21.00 16.50 
475.00 14.35 104.00 16.06 
780.00 14.40 311.00 16.31 
930.00 13.45 371.00 16.24 
  475.00 15.56 
  780.00 15.29 
  930.00 16.15 
  938.00 16.22 
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Appendix 3  

Grain size measurements 

 
Table A3.1: Average grain size fraction per core from the Towy River oxbow lakes 
The considered fractions considered are mud (≤63 µm), sand (from >63 µm to ≤2 mm) and gravel (>2 
mm). 
 

Core ID 
% 
Gravel 
per core 

% Sand 
per 
core 

% 
Mud 
per 
core 

CHU1-C1 0 40 60 
CHU1-C2 1 32 67 
CHU1-C3 0 21 79 
CHU1-C4 0 27 73 
CHU1-C5 1 29 70 
CHU1-C6 2 15 83 
CHU1-C7 0 7 93 
CHU1-C8 2 27 71 
CHU1-C9 6 47 47 
CHU1-C10 6 47 47 
CHU1-C11 5 35 61 
CHU1-C12 5 31 64 
CHU1-C15 5 47 48 
CHU1-C17 1 59 40 
CHU1-C18 2 44 54 
CHU1-C19 2 44 54 
CHU1-C2 1 60 39 
CHU1-C21 3 47 50 
CHU1-C22 2 38 60 
CHU1-C23 4 44 53 
CHU1-C24 1 51 48 
CHU2-C1 5 56 39 
CHU2-C2 2 55 43 
CHU2-C3 2 54 44 
CHU2-C4 6 49 45 
CHU2-C5 1 53 46 
CHU2-C6 0 28 72 
CHU2-C7 0 30 70 
CHU2-C8 1 48 51 
CHU2-C9 6 33 61 

CHU2-C10 2 38 60 
CHU2-C11 4 45 51 

    CHU2-C12 3 40 57 
CHU2-C13 1 44 55 
NECK-C1 4 19 77 
NECK-C2 3 13 85 
NECK-C3 24 26 50 
NECK-C4 4 10 86 
NECK-C5 0 2 33 
NECK-C7 10 14 76 
NECK-C8 7 6 33 
NECK-C9 0 4 95 
NECK-C10 0 25 75 
NECK-C11 0 17 83 
NECK-C12 0 14 86 
CHU4-C2 1 64 35 
CHU4-C4 2 25 73 
CHU4-C6 2 27 71 
CHU4-C8 5 82 13 
CHU4-C9 2 37 61 
CHU3-C1 0 26 74 
CHU3-C2 0 25 75 
CHU3-C3 1 43 56 
CHU3-C4 1 11 89 
CHU3-C5 1 25 74 
CHU3-C6 2 45 53 
CHU3-C8 1 18 81 
CHU3-C9 1 44 55 
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Table A3.2: Grain size variation with depth for cores of the five oxbow lakes studied on 
the Towy River, Wales (data used in Chapter 4). 
 

Sample 
ID/Location 

Sample 
Elevation 
(m) 

%Gravel %Sand %Mud 
(Silt-
Clay) 

Ground surface 16.19 100.0 100.0 89.8 
CHU1-C1-D1 16.09 100.0 100.0 89.8 
CHU1-C1-D2 15.89 100.0 100.0 86.3 
CHU1-C1-D3 15.69 100.0 100.0 77.2 
CHU1-C1-D4 15.49 100.0 100.0 62.1 
CHU1-C1-D5 15.29 100.0 100.0 61.3 
CHU1-C1-D6 15.09 100.0 100.0 58.5 
CHU1-C1-D7 14.89 100.0 100.0 53.4 
CHU1-C1-D8 14.69 100.0 100.0 40.2 
CHU1-C1-D9 14.49 100.0 100.0 46.7 
CHU1-C1-D10 14.29 100.0 100.0 47.8 
CHU1-C1-D11 14.09 99.8 100.0 53.1 
CHU1-C1-D12 13.89 95.1 100.0 50.8 
CHU1-C1-D13 13.69 100.0 100.0 48.7 
CHU1-C1-D14 13.49 100.0 100.0 57.3 
Gravel Depth 13.39 100.0 100.0 57.3 
Ground Surface 15.74 99.9 100.0 77.0 
CHU1-C2-D1 15.67 99.9 100.0 77.0 
CHU1-C2-D2 15.60 100.0 100.0 82.2 
CHU1-C2-D3 15.51 100.0 100.0 83.7 
CHU1-C2-D4 15.43 100.0 100.0 84.2 
CHU1-C2-D5 15.32 100.0 100.0 86.7 
CHU1-C2-D6 15.23 100.0 100.0 88.2 
CHU1-C2-D7 15.05 100.0 100.0 78.4 
CHU1-C2-D8 14.81 100.0 100.0 68.6 
CHU1-C2-D9 14.73 100.0 100.0 46.0 
CHU1-C2-D10 14.60 99.4 100.0 22.6 
CHU1-C2-D11 14.40 100.0 100.0 46.6 
CHU1-C2-D12 14.16 100.0 100.0 51.0 
CHU1-C2-D13 13.92 84.9 100.0 52.2 
Gravel Depth 13.82 84.9 100.0 52.2 
Ground Surface 16.04 100.0 100.0 74.0 
CHU1-C3-D1 15.95 100.0 100.0 74.0 
CHU1-C3-D2 15.80 99.8 100.0 71.3 
CHU1-C3-D3 15.71 100.0 100.0 67.9 
CHU1-C3-D4 15.64 100.0 100.0 71.4 
CHU1-C3-D5 15.58 100.0 100.0 72.3 
CHU1-C3-D6 15.53 100.0 100.0 73.3 
CHU1-C3-D7 15.44 100.0 100.0 80.3 
CHU1-C3-D8 15.32 100.0 100.0 82.5 
CHU1-C3-D9 15.21 100.0 100.0 81.8 
CHU1-C3-D10 15.08 100.0 100.0 69.5 
CHU1-C3-D11 14.92 100.0 100.0 85.1 
CHU1-C3-D12 14.74 100.0 100.0 83.3 
CHU1-C3-D13 14.51 100.0 100.0 81.4 
CHU1-C3-D14 14.20 100.0 100.0 85.3 
CHU1-C3-D15 13.99 100.0 100.0 85.6 
CHU1-C3-D16 13.92 100.0 100.0 92.8 
CHU1-C3-D17 13.64 100.0 100.0 90.1 
Gravel Depth 13.40 100.0 100.0 90.1 
Ground Surface 16.65 100.0 100.0 78.1 



158 
 

Sample 
ID/Location 

Sample 
Elevation 
(m) 

%Gravel %Sand %Mud 
(Silt-
Clay) 

CHU1-C4-D1 16.55 100.0 100.0 78.1 
CHU1-C4-D2 16.40 100.0 100.0 78.0 
CHU1-C4-D3 16.29 100.0 100.0 73.6 
CHU1-C4-D4 16.17 100.0 100.0 68.8 
CHU1-C4-D5 16.04 99.8 100.0 71.1 
CHU1-C4-D6 15.89 100.0 100.0 68.4 
CHU1-C4-D7 15.72 100.0 100.0 74.2 
CHU1-C4-D8 15.57 100.0 100.0 72.4 
CHU1-C4-D9 15.46 100.0 100.0 66.4 
CHU1-C4-D10 15.31 100.0 100.0 69.9 
CHU1-C4-D11 15.14 100.0 100.0 75.8 
CHU1-C4-D12 15.06 100.0 100.0 76.6 
CHU1-C4-D13 14.86 100.0 100.0 77.9 
Gravel Depth 14.68 100.0 100.0 77.9 
Ground Surface 17.25 100.0 100.0 86.4 
CHU1-C5-D1 17.13 100.0 100.0 86.4 
CHU1-C5-D2 16.92 100.0 100.0 87.3 
CHU1-C5-D3 16.79 100.0 100.0 87.1 
CHU1-C5-D4 16.69 100.0 100.0 89.9 
CHU1-C5-D5 16.55 100.0 100.0 86.6 
CHU1-C5-D6 16.25 100.0 100.0 59.8 
CHU1-C5-D7 15.82 100.0 100.0 41.3 
CHU1-C5-D8 15.44 99.7 100.0 55.3 
CHU1-C5-D9 15.22 89.8 100.0 33.7 
Gravel Depth 15.15 89.8 100.0 33.7 
Ground Surface 16.37 100.0 100.0 89.7 
CHU1-C6-D1 16.23 100.0 100.0 89.7 
CHU1-C6-D2 16.05 100.0 100.0 88.1 
CHU1-C6-D3 15.91 100.0 100.0 90.4 
CHU1-C6-D4 15.77 100.0 100.0 94.6 
CHU1-C6-D5 15.66 100.0 100.0 96.4 
CHU1-C6-D6 15.50 100.0 100.0 96.2 
CHU1-C6-D7 15.31 99.6 100.0 94.7 
CHU1-C6-D8 15.01 100.0 100.0 77.5 
CHU1-C6-D9 14.53 100.0 100.0 71.6 
CHU1-C6-D10 14.14 82.9 100.0 33.1 
Gravel Depth 14.01 82.9 100.0 33.1 
Ground Surface 16.75 100.0 100.0 86.7 
CHU1-C7-D1 16.63 100.0 100.0 86.7 
CHU1-C7-D2 16.43 100.0 100.0 88.4 
CHU1-C7-D3 16.28 100.0 100.0 91.9 
CHU1-C7-D4 16.13 100.0 100.0 95.2 
CHU1-C7-D5 15.89 100.0 100.0 95.2 
CHU1-C7-D6 15.64 100.0 100.0 96.2 
CHU1-C7-D7 15.11 100.0 100.0 95.9 
Gravel Depth 14.66 100.0 100.0 95.9 
Ground Surface 18.08 100.0 100.0 81.3 
CHU1-C8-D1 17.98 100.0 100.0 81.3 
CHU1-C8-D2 17.80 100.0 100.0 79.1 
CHU1-C8-D3 17.69 100.0 100.0 78.7 
CHU1-C8-D4 17.57 99.3 100.0 71.5 
CHU1-C8-D5 17.42 100.0 100.0 73.8 
CHU1-C8-D6 17.23 100.0 100.0 65.7 
CHU1-C8-D7 17.07 84.0 100.0 44.6 
Gravel Depth 17.02 84.0 100.0 44.6 
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Sample 
ID/Location 

Sample 
Elevation 
(m) 

%Gravel %Sand %Mud 
(Silt-
Clay) 

Ground Surface 16.34 100.0 100.0 79.2 
CHU1-C9-D1 16.21 100.0 100.0 79.2 
CHU1-C9-D2 15.98 100.0 100.0 65.7 
CHU1-C9-D3 15.78 100.0 100.0 48.4 
CHU1-C9-D4 15.62 100.0 100.0 47.7 
CHU1-C9-D5 15.51 100.0 100.0 46.8 
CHU1-C9-D6 15.37 100.0 100.0 47.0 
CHU1-C9-D7 15.22 98.3 100.0 44.4 
CHU1-C9-D8 15.11 82.0 100.0 27.0 
CHU1-C9-D9 14.88 91.9 100.0 27.0 
CHU1-C9-D10 14.65 88.5 100.0 27.3 
Gravel Depth 14.60 88.5 100.0 27.3 
Ground Surface 15.81 100.0 100.0 83.6 
CHU1-C10-D1 15.69 100.0 100.0 83.6 
CHU1-C10-D2 15.47 100.0 100.0 75.7 
CHU1-C10-D3 15.19 100.0 100.0 59.5 
CHU1-C10-D4 14.94 100.0 100.0 43.0 
CHU1-C10-D5 14.79 99.4 100.0 33.4 
CHU1-C10-D6 14.56 84.6 100.0 25.7 
CHU1-C10-D7 14.34 59.5 100.0 25.0 
Gravel Depth 14.30 59.5 100.0 25.0 
Ground Surface 15.63 100.0 100.0 90.5 
CHU1-C11-D1 15.53 100.0 100.0 90.5 
CHU1-C11-D2 15.34 100.0 100.0 86.6 
CHU1-C11-D3 15.14 100.0 100.0 62.9 
CHU1-C11-D4 14.91 100.0 100.0 53.4 
CHU1-C11-D5 14.67 100.0 100.0 51.4 
CHU1-C11-D6 14.45 100.0 100.0 53.4 
CHU1-C11-D7 14.18 95.5 100.0 53.3 
CHU1-C11-D8 13.99 68.1 100.0 35.2 
Gravel Depth 13.97 68.1 100.0 35.2 
Ground Surface 16.36 100.0 100.0 75.7 
CHU1-C12-D1 16.26 100.0 100.0 75.7 
CHU1-C12-D2 16.05 100.0 100.0 74.1 
CHU1-C12-D3 15.86 100.0 100.0 77.4 
CHU1-C12-D4 15.72 99.4 100.0 52.7 
CHU1-C12-D5 15.64 75.3 100.0 41.8 
Gravel Depth 15.60 75.3 100.0 41.8 
Ground Surface 17.03 100.0 100.0 74.6 
CHU1-C15-D1 16.93 100.0 100.0 74.6 
CHU1-C15-D2 16.72 100.0 100.0 66.4 
CHU1-C15-D3 16.49 100.0 100.0 65.6 
CHU1-C15-D4 16.27 100.0 100.0 62.1 
CHU1-C15-D5 16.11 97.9 100.0 40.5 
CHU1-C15-D6 15.96 95.2 100.0 16.7 
CHU1-C15-D7 15.87 72.5 100.0 11.3 
Gravel Depth 15.84 72.5 100.0 11.3 
Ground Surface 17.62 100.0 100.0 63.0 
CHU1-C17-D1 17.50 100.0 100.0 63.0 
CHU1-C17-D2 17.30 100.0 100.0 53.5 
CHU1-C17-D3 17.12 100.0 100.0 57.7 
CHU1-C17-D4 16.94 100.0 100.0 41.5 
CHU1-C17-D5 16.81 100.0 100.0 35.4 
CHU1-C17-D6 16.66 99.8 100.0 24.1 
CHU1-C17-D7 16.48 99.6 100.0 29.1 
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Sample 
ID/Location 

Sample 
Elevation 
(m) 

%Gravel %Sand %Mud 
(Silt-
Clay) 

CHU1-C17-D8 16.33 90.7 100.0 16.5 
Gravel Depth 16.27 90.7 100.0 16.5 
Ground Surface 17.30 100.0 100.0 70.8 
CHU1-C18-D1 17.16 100.0 100.0 70.8 

CHU1-C18-D2 16.96 100.0 100.0 67.1 

CHU1-C18-D3 16.79 100.0 100.0 55.8 

CHU1-C18-D4 16.58 100.0 100.0 50.4 
CHU1-C18-D5 16.39 99.9 100.0 48.0 
CHU1-C18-D6 16.23 99.2 100.0 46.1 
CHU1-C18-D7 16.12 90.0 100.0 42.0 
Gravel Depth 16.08 90.0 100.0 42.0 
Ground Surface 17.23 100.0 100.0 67.5 
CHU1-C19-D1 17.12 100.0 100.0 67.5 
CHU1-C19-D2 16.93 100.0 100.0 65.5 
CHU1-C19-D3 16.77 100.0 100.0 66.4 
CHU1-C19-D4 16.59 100.0 100.0 65.3 
CHU1-C19-D5 16.42 100.0 100.0 59.5 
CHU1-C19-D6 16.27 100.0 100.0 52.7 
CHU1-C19-D7 16.12 100.0 100.0 45.5 
CHU1-C19-D8 15.94 99.1 100.0 39.8 
CHU1-C19-D9 15.81 83.4 100.0 28.1 
Gravel Depth 15.78 83.4 100.0 28.1 
Ground Surface 17.53 100.0 100.0 64.7 
CHU1-C20-D1 17.42 100.0 100.0 64.7 
CHU1-C20-D2 17.23 100.0 100.0 57.3 
CHU1-C20-D3 17.08 100.0 100.0 50.1 
CHU1-C20-D4 16.91 100.0 100.0 42.0 
CHU1-C20-D5 16.73 100.0 100.0 33.1 
CHU1-C20-D6 16.57 100.0 100.0 23.7 
CHU1-C20-D7 16.38 95.6 100.0 20.9 
CHU1-C20-D8 16.21 93.2 100.0 20.4 
Gravel Depth 16.14 93.2 100.0 20.4 
Ground Surface 17.58 100.0 100.0 59.1 
CHU1-C21-D1 17.47 100.0 100.0 59.1 
CHU1-C21-D2 17.29 98.5 100.0 52.1 
CHU1-C21-D3 17.15 99.3 100.0 51.8 
CHU1-C21-D4 17.03 91.2 100.0 36.7 
Gravel Depth 16.99 91.2 100.0 36.7 
Ground Surface 17.13 100.0 100.0 76.2 
CHU1-C22-D1 17.02 100.0 100.0 76.2 
CHU1-C22-D2 16.83 100.0 100.0 76.9 
CHU1-C22-D3 16.67 100.0 100.0 70.1 
CHU1-C22-D4 16.52 99.9 100.0 60.6 
CHU1-C22-D5 16.34 100.0 100.0 58.1 
CHU1-C22-D6 16.17 99.3 100.0 43.4 
CHU1-C22-D7 16.09 84.4 100.0 33.0 
Gravel Depth 16.06 84.4 100.0 33.0 
Ground Surface 17.16 100.0 100.0 78.5 
CHU1-C23-D1 17.05 100.0 100.0 78.5 
CHU1-C23-D2 16.85 100.0 100.0 75.2 
CHU1-C23-D3 16.66 100.0 100.0 63.8 
CHU1-C23-D4 16.47 100.0 100.0 47.2 
CHU1-C23-D5 16.28 99.8 100.0 31.4 
CHU1-C23-D6 16.16 76.6 100.0 19.0 
Gravel Depth 16.13 76.6 100.0 19.0 
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Sample 
ID/Location 

Sample 
Elevation 
(m) 

%Gravel %Sand %Mud 
(Silt-
Clay) 

Ground Surface 17.27 99.8 100.0 71.5 
CHU1-C24-D1 17.13 99.8 100.0 71.5 
CHU1-C24-D2 16.91 100.0 100.0 56.3 
CHU1-C24-D3 16.72 100.0 100.0 43.3 
CHU1-C24-D4 16.57 95.4 100.0 21.9 
Gravel Depth 16.52 95.4 100.0 21.9 
Ground Surface 16.76 100.0 100.0 32.6 
CHU2-C1-D1 16.63 100.0 100.0 32.6 
CHU2-C1-D2 16.44 100.0 100.0 37.1 
CHU2-C1-D3 16.31 100.0 100.0 35.4 
CHU2-C1-D4 16.19 100.0 100.0 37.4 
CHU2-C1-D5 16.06 100.0 100.0 49.5 
CHU2-C1-D6 15.90 100.0 100.0 54.6 
CHU2-C1-D7 15.73 99.7 100.0 49.9 
CHU2-C1-D8 15.58 100.0 100.0 41.9 
CHU2-C1-D9 15.38 100.0 100.0 42.7 
CHU2-C1-D10 15.13 90.9 100.0 31.9 
CHU2-C1-D11 14.86 54.8 100.0 14.5 
Gravel Depth 14.71 54.8 100.0 14.5 
Ground Surface 16.69 100.0 100.0 27.0 
CHU2-C2-D1 16.55 100.0 100.0 27.0 
CHU2-C2-D2 16.33 100.0 100.0 42.1 
CHU2-C2-D3 16.18 100.0 100.0 44.2 
CHU2-C2-D4 16.07 100.0 100.0 48.5 
CHU2-C2-D5 15.94 100.0 100.0 54.7 
CHU2-C2-D6 15.77 99.7 100.0 51.3 
CHU2-C2-D7 15.60 100.0 100.0 44.9 
CHU2-C2-D8 15.36 100.0 100.0 40.9 
CHU2-C2-D9 15.14 99.3 100.0 48.3 
CHU2-C2-D10 14.94 83.1 100.0 25.4 
Gravel Depth 14.81 83.1 100.0 25.4 
Ground Surface 16.48 100.0 100.0 41.8 
CHU2-C3-D1 16.36 100.0 100.0 41.8 
CHU2-C3-D2 16.15 100.0 100.0 41.3 
CHU2-C3-D3 15.97 100.0 100.0 54.2 
CHU2-C3-D4 15.79 99.9 100.0 60.3 
CHU2-C3-D5 15.58 99.3 100.0 51.8 
CHU2-C3-D6 15.38 100.0 100.0 46.3 
CHU2-C3-D7 15.16 91.5 100.0 37.5 
CHU2-C3-D8 14.92 93.2 100.0 29.9 
CHU2-C3-D9 14.73 100.0 100.0 36.3 
Gravel Depth 14.65 100.0 100.0 36.3 
Ground Surface 16.72 100.0 100.0 29.9 
CHU2-C4-D1 16.59 100.0 100.0 29.9 
CHU2-C4-D2 16.40 100.0 100.0 47.1 
CHU2-C4-D3 16.29 100.0 100.0 49.7 
CHU2-C4-D4 16.14 100.0 100.0 54.9 
CHU2-C4-D5 15.96 100.0 100.0 63.0 
CHU2-C4-D6 15.77 80.9 100.0 42.1 
CHU2-C4-D7 15.58 68.4 100.0 27.3 
CHU2-C4-D8 15.35 95.0 100.0 44.4 
CHU2-C4-D9 15.08 91.7 100.0 50.2 
CHU2-C4-D10 14.75 99.8 100.0 43.8 
CHU2-C4-D11 14.34 98.2 100.0 45.4 
Gravel Depth 14.12 98.2 100.0 45.4 
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Sample 
ID/Location 

Sample 
Elevation 
(m) 

%Gravel %Sand %Mud 
(Silt-
Clay) 

Ground Surface 16.40 100.0 100.0 42.7 
CHU2-C5-D1 16.27 100.0 100.0 42.7 
CHU2-C5-D2 16.06 100.0 100.0 52.5 
CHU2-C5-D3 15.87 100.0 100.0 60.3 
CHU2-C5-D4 15.67 100.0 100.0 64.3 
CHU2-C5-D5 15.50 100.0 100.0 46.4 
CHU2-C5-D6 15.33 100.0 100.0 41.6 
CHU2-C5-D7 15.10 99.3 100.0 43.6 
CHU2-C5-D8 14.83 99.5 100.0 33.3 
CHU2-C5-D9 14.63 93.9 100.0 26.7 
Gravel Depth 14.56 93.9 100.0 26.7 
Ground Surface 16.05 100.0 100.0 57.4 
CHU2-C6-D1 15.91 100.0 100.0 57.4 
CHU2-C6-D2 15.69 100.0 100.0 57.2 
CHU2-C6-D3 15.49 100.0 100.0 75.1 
CHU2-C6-D4 15.24 100.0 100.0 78.2 
CHU2-C6-D5 14.97 100.0 100.0 81.7 
CHU2-C6-D6 14.66 100.0 100.0 76.7 
CHU2-C6-D7 14.45 97.1 100.0 77.1 
Gravel Depth 14.41 97.1 100.0 77.1 
Ground Surface 16.21 100.0 100.0 56.9 
CHU2-C7-D1 16.08 100.0 100.0 56.9 
CHU2-C7-D2 15.88 100.0 100.0 60.0 
CHU2-C7-D3 15.63 100.0 100.0 70.3 
CHU2-C7-D4 15.35 100.0 100.0 73.8 
CHU2-C7-D5 15.14 100.0 100.0 80.0 
CHU2-C7-D6 14.83 100.0 100.0 76.8 
CHU2-C7-D7 14.60 96.8 100.0 71.4 
Gravel Depth 14.55 96.8 100.0 71.4 
Ground Surface 16.27 100.0 100.0 58.7 
CHU2-C8-D1 16.11 100.0 100.0 58.7 
CHU2-C8-D2 15.88 100.0 100.0 67.9 
CHU2-C8-D3 15.69 99.7 100.0 53.8 
CHU2-C8-D4 15.45 100.0 100.0 43.6 
CHU2-C8-D5 15.22 100.0 100.0 43.3 
CHU2-C8-D6 14.82 100.0 100.0 46.1 
CHU2-C8-D7 14.48 92.8 100.0 40.3 
Gravel Depth 14.46 92.8 100.0 40.3 
Ground Surface 15.93 96.2 100.0 60.5 
CHU2-C9-D1 15.81 96.2 100.0 60.5 
CHU2-C9-D2 15.61 98.8 100.0 62.4 
CHU2-C9-D3 15.46 98.3 100.0 55.4 
CHU2-C9-D4 15.30 99.8 100.0 71.6 
CHU2-C9-D5 15.10 100.0 100.0 74.4 
CHU2-C9-D6 14.90 100.0 100.0 63.2 
CHU2-C9-D7 14.66 100.0 100.0 71.1 
CHU2-C9-D8 14.42 62.8 100.0 32.2 
Gravel Depth 14.32 62.8 100.0 32.2 
Ground Surface 16.23 100.0 100.0 70.9 
CHU2-C10-D1 16.11 100.0 100.0 70.9 
CHU2-C10-D2 15.94 93.6 100.0 55.1 
CHU2-C10-D3 15.80 92.3 100.0 46.6 
CHU2-C10-D4 15.64 96.1 100.0 58.3 
CHU2-C10-D5 15.44 98.1 100.0 63.8 
CHU2-C10-D6 15.24 99.7 100.0 65.2 
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Sample 
ID/Location 

Sample 
Elevation 
(m) 

%Gravel %Sand %Mud 
(Silt-
Clay) 

CHU2-C10-D7 15.03 98.5 100.0 61.9 
CHU2-C10-D8 14.86 99.9 100.0 62.1 
CHU2-C10-D9 14.67 99.5 100.0 54.3 
Gravel Depth 14.56 99.5 100.0 54.3 
Ground Surface 16.09 100.0 100.0 70.9 
CHU2-C11-D1 15.97 100.0 100.0 70.9 
CHU2-C11-D2 15.77 100.0 100.0 66.0 
CHU2-C11-D3 15.60 100.0 100.0 46.0 
CHU2-C11-D4 15.40 99.8 100.0 48.1 
CHU2-C11-D5 15.20 99.0 100.0 50.4 
CHU2-C11-D6 14.95 98.7 100.0 58.8 
CHU2-C11-D7 14.69 96.0 100.0 40.4 
CHU2-C11-D8 14.54 75.0 100.0 25.9 
Gravel Depth 14.51 75.0 100.0 25.9 
Ground Surface 15.83 100.0 100.0 75.0 
CHU2-C12-D1 15.68 100.0 100.0 75.0 
CHU2-C12-D2 15.45 97.2 100.0 55.0 
CHU2-C12-D3 15.26 98.8 100.0 47.4 
CHU2-C12-D4 14.96 99.7 100.0 63.2 
CHU2-C12-D5 14.70 93.5 100.0 52.2 
CHU2-C12-D6 14.52 92.0 100.0 48.3 
Gravel Depth 14.41 92.0 100.0 48.3 
Ground Surface 16.34 100.0 100.0 79.1 
CHU2-C13-D1 16.24 100.0 100.0 79.1 
CHU2-C13-D2 16.04 99.0 100.0 76.8 
CHU2-C13-D3 15.83 100.0 100.0 73.4 
CHU2-C13-D4 15.64 100.0 100.0 66.8 
CHU2-C13-D5 15.47 100.0 100.0 63.2 
CHU2-C13-D6 15.26 100.0 100.0 54.1 
CHU2-C13-D7 14.95 97.9 100.0 39.1 
CHU2-C13-D8 14.54 99.9 100.0 51.3 
CHU2-C13-D9 14.27 98.4 100.0 25.9 
CHU2-C13-D10 14.02 94.5 100.0 20.6 
Gravel Depth 13.82 94.5 100.0 20.6 
Ground Surface 16.37 100.0 100.0 87.3 
NECK-C1-D1 16.17 100.0 100.0 87.3 
NECK-C1-D2 15.90 100.0 100.0 84.7 
NECK-C1-D3 15.73 100.0 100.0 84.9 
NECK-C1-D4 15.51 100.0 100.0 76.4 
NECK-C1-D5 15.35 78.7 100.0 52.8 
Gravel Depth 15.32 78.7 100.0 52.8 
Ground Surface 16.07 100.0 100.0 92.3 
NECK-C2-D1 15.84 100.0 100.0 92.3 
NECK-C2-D2 15.48 100.0 100.0 78.0 
NECK-C2-D3 15.28 100.0 100.0 93.5 
NECK-C2-D4 15.18 100.0 100.0 92.0 
NECK-C2-D5 14.90 87.4 100.0 68.5 
Gravel Depth 14.64 87.4 100.0 68.5 
Ground Surface 16.05 90.9 100.0 77.3 
NECK-C3-D1 15.83 90.9 100.0 77.3 
NECK-C3-D2 15.47 70.9 100.0 34.9 
NECK-C3-D3 15.27 61.9 100.0 39.6 
NECK-C3-D4 15.05 95.6 100.0 61.4 
NECK-C3-D5 14.79 63.2 100.0 38.7 
Gravel Depth 14.67 63.2 100.0 38.7 
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Sample 
ID/Location 

Sample 
Elevation 
(m) 

%Gravel %Sand %Mud 
(Silt-
Clay) 

Ground Surface 15.81 100.0 100.0 83.3 
NECK-C4-D1 15.61 100.0 100.0 83.3 
NECK-C4-D2 15.33 100.0 100.0 95.2 
NECK-C4-D3 15.17 100.0 100.0 96.4 
NECK-C4-D4 14.89 100.0 100.0 93.7 
NECK-C4-D5 14.65 81.9 100.0 60.7 
Gravel Depth 14.61 81.9 100.0 60.7 
Ground Surface 15.56 100.0 100.0 92.7 
NECK-C5-D1 15.40 100.0 100.0 92.7 
NECK-C5-D2 15.10 100.0 100.0 96.3 
NECK-C5-D3 14.83 100.0 100.0 97.3 
NECK-C5-D4 14.52 99.1 100.0 95.1 
Gravel Depth 14.35 99.1 100.0 95.1 
Ground Surface 15.72 100.0 100.0 77.5 
NECK-C7-D1 15.57 100.0 100.0 77.5 
NECK-C7-D2 15.35 100.0 100.0 89.3 
NECK-C7-D3 15.20 100.0 100.0 92.1 
NECK-C7-D4 15.05 58.6 100.0 45.1 
Gravel Depth 14.98 58.6 100.0 45.1 
Ground Surface 15.35 100.0 100.0 94.0 
NECK-C8-D1 15.14 100.0 100.0 94.0 
NECK-C8-D2 14.80 86.6 100.0 83.4 
Gravel Depth 14.67 86.6 100.0 83.4 
Ground Surface 15.21 100.0 100.0 95.3 
NECK-C9-D1 14.96 100.0 100.0 95.3 
NECK-C9-D2 14.58 100.0 100.0 97.3 
NECK-C9-D3 14.36 98.8 100.0 93.4 
Gravel Depth 14.28 98.8 100.0 93.4 
Ground Surface 16.36 100.0 100.0 58.8 
NECK-C10-D1 16.24 100.0 100.0 58.8 
NECK-C10-D2 16.02 100.0 100.0 57.7 
NECK-C10-D3 15.84 100.0 100.0 66.5 
NECK-C10-D4 15.67 100.0 100.0 65.9 
NECK-C10-D5 15.47 100.0 100.0 73.3 
NECK-C10-D6 15.18 100.0 100.0 74.5 
NECK-C10-D7 14.89 99.9 100.0 91.8 
NECK-C10-D8 14.62 100.0 100.0 91.8 
NECK-C10-D9 14.06 100.0 100.0 90.6 
Gravel Depth 13.66 100.0 100.0 90.6 
Ground Surface 16.03 100.0 100.0 67.0 
NECK-C11-D1 15.90 100.0 100.0 67.0 
NECK-C11-D2 15.69 100.0 100.0 73.3 
NECK-C11-D3 15.50 100.0 100.0 81.0 
NECK-C11-D5 15.32 100.0 100.0 85.5 
NECK-C11-D6 15.07 100.0 100.0 93.2 
NECK-C11-D4 14.77 100.0 100.0 80.2 
NECK-C11-D7 14.01 100.0 100.0 97.9 
Gravel Depth 13.38 100.0 100.0 97.9 
Ground Surface 15.70 100.0 100.0 79.1 
NECK-C12-D1 15.46 100.0 100.0 79.1 
NECK-C12-D2 15.11 100.0 100.0 69.8 
NECK-C12-D3 14.91 100.0 100.0 86.3 
NECK-C12-D5 14.65 100.0 100.0 93.1 
NECK-C12-D4 14.10 100.0 100.0 92.6 
NECK-C12-D6 13.39 100.0 100.0 93.0 
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Sample 
ID/Location 

Sample 
Elevation 
(m) 

%Gravel %Sand %Mud 
(Silt-
Clay) 

Gravel Depth 13.07 100.0 100.0 93.0 
Ground Surface 16.35 97.8 100.0 23.7 
CHU4-C2-D1 16.08 97.8 100.0 23.7 
CHU4-C2-D2 15.52 98.9 100.0 37.8 
CHU4-C2-D3 14.87 99.0 100.0 42.4 
Gravel Depth 14.48 99.0 100.0 42.4 
Ground Surface 16.44 100.0 100.0 75.8 
CHU4-C4-D1 16.22 100.0 100.0 75.8 
CHU4-C4-D2 15.76 96.6 100.0 71.2 
Gravel Depth 15.53 96.6 100.0 71.2 
Ground Surface 16.39 75.0 100.0 51.9 
CHU4-C5-D1 16.19 75.0 100.0 51.9 
Gravel Depth 15.98 75.0 100.0 51.9 
Ground Surface 16.35 100.0 100.0 75.2 
CHU4-C6-D1 16.16 100.0 100.0 75.2 
CHU4-C6-D2 15.74 100.0 100.0 76.7 
CHU4-C6-D3 15.30 94.3 100.0 61.7 
Gravel Depth 15.10 94.3 100.0 61.7 
Ground Surface 16.43 99.6 100.0 14.8 
CHU4-C8-D1 16.13 99.6 100.0 14.8 
CHU4-C8-D2 15.48 99.0 100.0 11.9 
CHU4-C8-D3 14.93 86.3 100.0 11.9 
Gravel Depth 14.73 86.3 100.0 11.9 
Ground Surface 16.43 100.0 100.0 61.5 
CHU4-C9-D1 15.86 100.0 100.0 61.5 
CHU4-C9-D2 15.05 96.3 100.0 60.2 
Gravel Depth 14.81 96.3 100.0 60.2 
Ground Surface 17.44 99.8 100.0 47.5 
CHU3-C1-D1 17.31 99.8 100.0 47.5 
CHU3-C1-D2 17.08 99.7 100.0 57.7 
CHU3-C1-D3 16.91 99.8 100.0 70.3 
CHU3-C1-D4 16.73 100.0 100.0 74.7 
CHU3-C1-D5 16.53 100.0 100.0 89.4 
CHU3-C1-D6 16.33 100.0 100.0 95.2 
CHU3-C1-D7 16.04 100.0 100.0 85.7 
Gravel Depth 15.87 100.0 100.0 85.7 
Ground Surface 17.52 100.0 100.0 45.4 
CHU3-C2-D1 17.39 100.0 100.0 45.4 
CHU3-C2-D2 17.18 100.0 100.0 74.4 
CHU3-C2-D3 16.99 100.0 100.0 83.1 
CHU3-C2-D4 16.76 100.0 100.0 85.9 
CHU3-C2-D5 16.55 100.0 100.0 89.9 
CHU3-C2-D6 16.12 99.9 100.0 68.5 
Gravel Depth 15.78 99.9 100.0 68.5 
Ground Surface 18.19 100.0 100.0 85.7 
CHU3-C3-D1 18.05 100.0 100.0 85.7 
CHU3-C3-D2 17.79 100.0 100.0 81.4 
CHU3-C3-D3 17.58 100.0 100.0 58.6 
CHU3-C3-D4 17.42 99.2 100.0 30.7 
CHU3-C3-D5 17.20 97.6 100.0 23.0 
Gravel Depth 17.06 97.6 100.0 23.0 
Ground Surface 17.28 100.0 100.0 76.9 
CHU3-C4-D1 17.09 100.0 100.0 76.9 
CHU3-C4-D2 16.81 100.0 100.0 89.3 
CHU3-C4-D3 16.62 100.0 100.0 90.8 
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Sample 
ID/Location 

Sample 
Elevation 
(m) 

%Gravel %Sand %Mud 
(Silt-
Clay) 

CHU3-C4-D4 16.42 100.0 100.0 94.9 
CHU3-C4-D5 16.26 100.0 100.0 97.5 
CHU3-C4-D6 15.89 96.9 100.0 81.7 
Gravel Depth 15.57 96.9 100.0 81.7 
Ground Surface 17.40 99.4 100.0 46.7 
CHU3-C5-D1 17.27 99.4 100.0 46.7 
CHU3-C5-D2 17.06 99.3 100.0 64.5 
CHU3-C5-D3 16.90 100.0 100.0 83.8 
CHU3-C5-D4 16.70 100.0 100.0 89.2 
CHU3-C5-D5 16.49 100.0 100.0 92.1 
CHU3-C5-D6 16.01 100.0 100.0 77.3 
CHU3-C5-D7 15.58 94.0 100.0 64.1 
Gravel Depth 15.53 94.0 100.0 64.1 

Ground Surface 17.98 100.0 100.0 86.9 
CHU3-C6-D1 17.85 100.0 100.0 86.9 
CHU3-C6-D2 17.65 100.0 100.0 86.5 
CHU3-C6-D3 17.49 100.0 100.0 87.5 
CHU3-C6-D4 17.32 100.0 100.0 82.1 
CHU3-C6-D5 17.17 99.9 100.0 47.9 
CHU3-C6-D6 17.03 99.9 100.0 27.0 
CHU3-C6-D7 16.85 99.8 100.0 13.0 
CHU3-C6-D8 16.65 100.0 100.0 19.2 
CHU3-C6-D9 16.48 81.2 100.0 26.4 
Gravel Depth 16.40 81.2 100.0 26.4 
Ground Surface 17.57 100.0 100.0 80.1 
CHU3-C8-D1 17.41 100.0 100.0 80.1 
CHU3-C8-D2 17.13 100.0 100.0 78.2 
CHU3-C8-D3 16.94 100.0 100.0 74.8 
CHU3-C8-D4 16.76 100.0 100.0 74.6 
CHU3-C8-D5 16.54 100.0 100.0 80.0 
CHU3-C8-D6 16.26 100.0 100.0 80.7 
CHU3-C8-D7 16.03 100.0 100.0 87.9 
CHU3-C8-D8 15.82 100.0 100.0 87.0 
CHU3-C8-D9 15.60 100.0 100.0 89.4 
CHU3-C8-D10 15.27 88.6 100.0 74.4 
Gravel Depth 15.02 88.6 100.0 74.4 
Ground Surface 17.97 100.0 100.0 79.4 
CHU3-C9-D1 17.84 100.0 100.0 79.4 
CHU3-C9-D2 17.65 100.0 100.0 86.8 
CHU3-C9-D3 17.51 100.0 100.0 89.8 
CHU3-C9-D4 17.28 100.0 100.0 95.5 
CHU3-C9-D5 17.06 100.0 100.0 76.1 
CHU3-C9-D6 16.89 100.0 100.0 28.5 
CHU3-C9-D7 16.67 100.0 100.0 19.5 
CHU3-C9-D8 16.46 100.0 100.0 10.6 
CHU3-C9-D9 16.27 91.5 100.0 11.6 
Gravel Depth 16.17 91.5 100.0 11.6 
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