
Are the Effects of Response Inhibition on Gambling
Long-Lasting?
Frederick Verbruggen1*, Rachel C. Adams2, Felice van ‘t Wout1, Tobias Stevens1, Ian P. L. McLaren1,

Christopher D. Chambers2

1 Psychology, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom, 2 School of Psychology, Cardiff University, Cardiff, United Kingdom

Abstract

A recent study has shown that short-term training in response inhibition can make people more cautious for up to two
hours when making decisions. However, the longevity of such training effects is unclear. In this study we tested whether
training in the stop-signal paradigm reduces risky gambling when the training and gambling task are separated by 24
hours. Two independent experiments revealed that the aftereffects of stop-signal training are negligible after 24 hours. This
was supported by Bayes factors that provided strong support for the null hypothesis. These findings indicate the need to
better optimise the parameters of inhibition training to achieve clinical efficacy, potentially by strengthening automatic
associations between specific stimuli and stopping.
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Introduction

Convergent clinical evidence suggests that executive control in

the motor domain might share mechanisms with high-level

decision-making. Poor response inhibition during adolescence

predicts later substance dependence [1], and response-inhibition

deficits have been observed in impulse-control disorders [2,3],

such as attention deficit/hyperactivity disorder [4], substance

abuse disorders [5,6], and gambling disorders [7–10]; but see also

[11]. More generally, problem gambling and substance addiction

involve a shift from novelty-seeking, impulsive behaviour (acting

quickly in pursuit of reward without consideration of adverse

consequences) to compulsive behaviour (acting persistently with

diminished regard for reward and despite adverse consequences);

and response inhibition has been linked to both constructs [12,13].

Thus, several authors have argued that response inhibition could

play an important role in the development and maintenance of

addictions and influence the outcome of treatments [12,14–17].

Inspired by these empirical findings and the central role of

response inhibition in neurobiological models of addiction, we

recently examined whether asking people to stop simple move-

ments had a causal effect on gambling [18]. To this end, we

combined a stop-signal task with a ‘decision-making under

uncertainty’ task that involved a certain element of risk (i.e.

subjects could either win or lose points). Successful stop-signal

performance requires an inhibitory control network, which

includes (among other areas) the right inferior frontal gyrus, right

middle frontal gyrus, pre-supplementary motor area, and basal

ganglia [2,3,19,20]. The right frontal areas have been linked to

self-control and inhibition in multiple domains [21–23]. There-

fore, we used a variant of the stop-signal task to explore whether

motor control would transfer to monetary decision-making when

gambling [18].

On every trial of our novel gambling task, participants were

presented with 6 choice options. Each option was associated with a

certain amount they could win; however, they were informed at

the beginning of the experiment that wins were less probable for

higher amounts. Healthy participants performed this task

throughout the session. In some blocks (‘load’ blocks), participants

had to perform a second task when an occasional signal occurred.

Participants in the ‘stop’ condition attempted to stop the planned

choice response, whereas participants in the ‘double-response’

condition executed a second response on trials where the signal

occurred. We found that participants in the stop group not only

became more cautious when executing their choice responses (as

indexed by longer choice latencies), they also selected lower

amounts with a higher probability of winning [p(win)] in ‘load’

blocks than in ‘no-load’ blocks in which no signals could occur

[18]. In the double-response group, there was a numerical

difference in the opposite direction; i.e. a tendency to select

higher amounts with a lower p(win) in load blocks than in no-load

blocks. We concluded that stopping-induced motor cautiousness

transferred to monetary choice when gambling.

The potential overlap between control processes could open

new avenues for the treatment of impulse-control disorders

[22,24–26]. Indeed, in two follow-up experiments, we found that

training participants to stop motor responses also influenced

monetary decision-making when stopping and gambling were

separated in time [18]. Those experiments consisted of two phases:

the training phase involved either a stop task or double-response

task (Figure 1) without monetary decision-making; in the test

phase, participants then performed the gambling task without an
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additional cognitive load. The delay between the training phase

and test phase was either two minutes (Experiment 2) or two hours

(Experiment 3). In both experiments, we found that participants

who did the stop task preferred lower amounts with a higher p(win)

in the subsequent gambling task, compared with participants who

did the double-response task or participants who received no

executive-control training. In sum, these results suggested that

training on stopping simple motor responses could have a

sustained after-effect on monetary decision-making.

In the present study, we further explored the longevity of these

training effects by increasing the delay between the training phase

and the test phase. In Experiment 1, the delay between the

training phase and the test phase was 24 hours. In Experiment 2,

we doubled the amount of training: On Days 1 and 2, participants

performed the double-response or stop task, before completing the

gambling task on Day 3.

Materials and Methods

Ethics Statement
This work was carried out at Cardiff University and the

University of Exeter in compliance with ethical standards. The

experiments were approved by the local research ethics commit-

tees at the School of Psychology, Cardiff University (Experiment 1)

and the School of Psychology, University of Exeter (Experiment 2).

Written informed consent was obtained after the nature and

possible consequences of the studies were explained.

Participants
In Experiment 1, sixty volunteers from the Cardiff University

community participated for monetary compensation (£6 per hour,

plus money won in the gambling task; average amount won: £1.1,

range: £0–4.2). In Experiment 2, fifty-two volunteers from the

University of Exeter participated for partial course credit. In each

experiment, sample size, gender, age, and general levels of

impulsivity (assessed by the Barratt Impulsiveness Scale –11) and

risk-taking (assessed by the Stimulating-Instrumental Risk Inven-

tory), were similar for the stop and double-response groups

(Table 1). Participants were informed that they would do different

tasks on consecutive days, but we did not specify the nature of the

tasks in advance.

Procedure
All stimuli were presented on a 19-inch LCD monitor against a

grey background. The task was run using the Psychophysics

Toolbox [27].

Training phase. Both the double-response and stop groups

started with a training phase in which the primary task was to

Figure 1. Examples of no-signal and signal trials in the training phase, and a gambling trial in the test phase (SOA = variable
stimulus-onset asynchrony).
doi:10.1371/journal.pone.0070155.g001

Table 1. Characteristics of participants included in the
analyses (see the Results section for discussion of the
participant exclusion criteria).

Experiment 1 Experiment 2

Variable Stop
Double-
response Stop

Double-
response

# participants 30 29 24 24

% female 70 66 88 75

Age 23.0 22.7 19.0 20.0

BIS-Total 64 62 60 65

BIS-Attentional 17 16 16 17

BIS-Motor 23 22 21 23

BIS-NonPlanning 24 24 23 25

SIRI-Total 38 40 38 40

SIRI-Stimulating 22 23 20 22

SIRI-Instrumental 17 18 21 18

Note: The range of possible total scores on the 11th version of the Barratt
Impulsiveness Scale (BIS-11; Patton, Stanford, & Barratt, 1995) is 30 to 125;
higher scores indicate more impulsive behaviour. On the Stimulating-
Instrumental Risk Inventory (SIRI; Zaleskiewicz, 2001), scores of 45 and below
indicate a tendency toward avoiding taking risks. Separate scores for the three
BIS-and two SIRI subscales appear below the total score. Note: BIS & SIR data of
four participants in Experiment 1 were missing; in Experiment 2, the BIS data of
one participant was missing. Due to rounding, there are small differences
between the total SIRI score and the sum of the subscales.
doi:10.1371/journal.pone.0070155.t001
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identify a go stimulus (square vs. diamond) as rapidly and

accurately as possible (Figure 1). Participants responded with their

left or right hands, respectively (‘C’ or ‘M’ on a keyboard).

No-signal trials started with the presentation of a fixation circle

for 1.5 sec after which a white non-filled shape appeared around it

(to reduce the overall duration of a session, fixation duration was

0.750 sec in Experiment 2). The shape remained on the screen for

1.5 sec and participants had to respond before it disappeared.

On signal trials, the outline of the shape turned bold after a

variable delay (SOA). In Experiment 1, 25% of trials were signal

trials; 33% of trials were signal trials in Experiment 2. We

increased the percentage of stop signals to encourage proactive

control and cautious decision-making [28]. On signal trials,

participants in the stop group were instructed to refrain from

responding, whereas participants in the double-response group

had to press the space bar as quickly as possible with either thumb

after they pressed ‘C’ or ‘M’. The SOA between the go stimulus

(the shape) and signal was initially set at 0.250 sec. In the stop

group, the SOA was continuously adjusted according to a tracking

procedure that converged on a probability of stopping of.50; in the

double-response group, we simulated a tracking procedure to

produce a similar range of SOAs to the stop group (see ref. 18, for

further details).

The training phase of Experiment 1 consisted of 15 blocks of 56

trials. In Experiment 2, participants completed two training

sessions, each consisting of 10 blocks of 72 trials and with a 24-

hour delay between them. In both experiments, participants

received feedback at the end of each block: they were shown their

mean RT, the number of incorrect and missed responses on no-

signals, and the percentage of failed stops or double-responses

(depending on the group). Participants then paused for 15 seconds

before commencing the next block. In Experiment 1, participants

also received immediate written feedback (presented for one

second) after an error or missed response in the first block.

Test phase. Twenty-four hours after the training, partici-

pants completed a gambling task. On each trial, 6 vertical bars

were presented next to each other; each bar was associated with a

certain amount and a specific key of a keyboard (‘d’, ‘f’, ‘g’, ‘h’, ‘j’,

‘k’; Figure 1). Participants were instructed to select one of the

amounts by pressing the corresponding key, and without revealing

the exact probabilities, they were informed at the beginning of the

experiment that p(win) was lower for higher amounts.

Each trial started with the presentation of the ‘start’ bars,

amounts, and the associated keys. The bars appeared between two

horizontal lines. After 3.5 sec the bars started rising together. All

bars reached the top line after 1.33 sec on ‘low-bar‘ trials, and

after 1.67 sec on ‘high-bar‘ trials (the distance between bottom-

and top line was approximately 7.5 cm on ‘low bar’ trials & 9 cm

on ‘high bar’ trials; both trial types occurred with equal probability

in each block). Trials ended 0.5 sec after the bars reached the top

line. Participants had to execute the choice response before the

end of the trial but not sooner than 0.250 sec. before the bars

reached the top line. Feedback was presented at the end of each

trial, and indicated how much had been won/lost and the current

balance. The feedback screen was replaced by a blank screen after

2.5 sec and the following trial started after a further 0.5 sec. We

originally developed this task to examine stopping and gambling

within a single block (see above). Timing of events, the rise of the

bars, and the height manipulation were dictated by these stop-

related factors; for example, we introduced moving bars to ensure

an optimal stop-signal delay (see ref. 18, for a discussion).

Similarly, we used a single manual response on each trial to

manipulate response inhibition. In order to allow cross-experiment

comparisons, we decided to use the same task across experiments.

On each trial, participants could win or lose points. The exact

amount depended on the stake (low, medium, or high). In

Experiment 1, amounts [with p(win)] participants could win in the

low-stake condition were: 112 (0.15), 64 (0.27), 32 (0.39),16 (0.51),

6 (0.63), 2 (0.75). In Experiment 2, amounts and p(win) were: 64

(0.2), 32 (0.25), 16 (0.325), 8 (0.47), 4 (0.605), 2 (0.875). On losses,

they lost half the chosen amount. Amounts decreased exponen-

tially to make the higher amounts more attractive. We changed

probabilities and amounts in Experiment 2 to ensure that expected

value was the same for the three lower amounts (consequently,

selecting the lowest amount was not disadvantageous). For

medium stakes, all amounts were x 2; for high stakes, amounts

were x 4. Stakes and the left-right order of the amounts varied

pseudo-randomly from trial to trial. The starting balance was 2500

points. In Experiment 1, the total amount won was converted to

money at the end of the study (1000 points = £1), whereas in

Experiment 2 participants played for points only; this change in

pay-off structure was motivated by practical considerations

because we could not let undergraduate students gamble for real

money. Playing for points is common in the literature [29,30] and

pilot work in our lab had shown that we could replicate the

findings observed in Experiment 1 of Verbruggen et al. [18] with a

points-only version of the stop-gambling task.

Data Analyses
For each participant, we calculated a ‘betting score’ by taking the

average of all choices (Range: 1–6). Choice 1 corresponded to the

smallest amount with the highest p(win); choice 6 was the highest

amount with the lowest p(win). Consequently, a higher betting

score indicated that participants preferred higher amounts with a

lower probability of winning.

The analyses focused mostly on the test phase (but see Tables 2

and 3 for an overview of the training data). Test trials with a

response that was not part of the response set, with an anticipatory

response, and trials without a response were excluded; trials that

followed such trials were also excluded. Finally, the first trial of the

experiment was also excluded. In Experiments 1 and 2, 3.9% and

4.2% of the trials were excluded, respectively. After exclusion, we

calculated mean betting score and average choice latency as a

function of group.

All data processing and analyses were completed using R (R

Development Core Team, 2008). Raw data files and R scripts used

for the analyses are deposited on the Open Research Exeter data

repository (http://hdl.handle.net/10871/4461). Because we pre-

dicted that betting scores would be lower in the stop group than in

the double-response group due to a ‘cautiousness transfer’ [18], we

analysed average betting scores with one-tailed Welch t-tests.

When the difference between means is in the predicted direction,

the p-value for the one-tailed t-test = 0.5*p(two-tailed); but when

the difference is in the opposite direction, p(one-tailed) = 1 -

0.5*p(two-tailed). We also calculated Bayes factors for the betting

scores. A Bayes factor compares two hypotheses; in this study these

are: the hypothesis that stop training induces cautiousness when

gambling (the experimental hypothesis) and the null hypothesis

(i.e. no cautiousness induced). Bayes factors vary between 0 and

infinity with values of less than.33 indicating support for the null

hypothesis and values greater than 3 indicating support for the

alternative [31]. Following Dienes [32], we used a half-normal

distribution with a standard deviation of.42, which corresponds to

the numerical difference in betting scores between stop and

double-response groups in Experiment 3 of Verbruggen et al.

[18]. The half-normal distribution was most appropriate here

because it assumes that smaller effects than in our original study

(which included a 2-hour rather than 24-hour delay between

Response Inhibition Training and Gambling
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training and test) are more probable. We calculated the Bayes

factors using the R-version of Zoltan Dienes’ Bayes calculator

(http://www.lifesci.sussex.ac.uk/home/Zoltan_Dienes/

inference/bayes_factor.swf).

Results

Experiment 1
All relevant training data are presented in Table 2. We excluded

one participant in the double-response group from further analyses

because their accuracy on no-signal trials was below 85%.

In the training phase, reaction times were longer and accuracy

was higher on no-signal trials in the stop group than in the double-

response group. This is consistent with our previous findings

[18,28,33], and suggests that participants in the stop group were

more cautious when executing their responses on no-signal trials.

These conclusions were supported by one-way ANOVAs (Table 3).

For the test phase, we compared betting scores in the stop- and

double-response groups (Figure 2). Unlike in Verbruggen et al.

[18], betting scores were not lower in the stop group (M = 3.46;

SD = 0.84) than in the double-response group (M = 3.28; SD = .71),

t(55.962) = 0.919, p = 0.819. Thus, there was no detectable transfer

of cautiousness between sessions when the delay between them was

24 hours. Box-plots indicated that this was unlikely to be due to a

few outlying subjects (Figure 2), and a Bayes factor (see Materials

and Methods for explanation) indicated the data provided strong

support for the null, relative to the cautiousness-transfer hypoth-

esis, B = 0.249. This indicates that the cautiousness transfer was

indeed absent. Finally, choice latencies were also comparable for

the stop group (M = 1514 ms; SD = 92) and the double-response

group (M = 1522 ms; SD = 92), t(56.943) = -0.339, p = 0.632.Thus,

the results of Experiment 1 suggested that completing a single

session of stop training did not influence gambling behaviour after

a 24 hour delay.

Experiment 2
All relevant training data are again presented in Tables 1 and 2.

Three subjects from the double-response group were excluded

because the percentage of missed double-responses was higher

than 15%; one participant in the double-response group was

excluded because accuracy on no-signal trials was below 85%; and

two participants from the stop group were excluded because the

percentage of missed responses on no-signal trials was larger than

15%. After exclusion, there were 24 participants in each group.

Consistent with the results of Experiment 1 and our previous

studies, we found that response latencies were longer and accuracy

rates higher in the stop group than in the double-response group

(see Tables 2 & 3). Again, this demonstrates that participants

become more cautious when they are instructed to stop their

responses occasionally.

We examined whether two days of stop training influenced

gambling behaviour on the third day by comparing betting scores

(Figure 3) and choice latencies for the stop and double-response

Table 2. Behavioural data of training sessions for Experiments 1 and 2.

Experiment 1 Experiment 2

Session 1 Session 2 t-test

Group Trial DV Mean SD Mean SD Mean SD

Stop Nosignal RT 591 100 890 205 867 240 1.084

p(acc) 0.975 0.016 0.976 0.026 0.983 0.020 1.214

p(miss) 0.012 0.019 0.036 0.031 0.017 0.018 2.546

Signal p(resp) 0.496 0.007 0.484 0.017 0.488 0.022 1.683

SOA 336 94 654 224 649 253 0.235

SSRT 233 31 225 35 212 29 1.789

Double Nosignal RT 495 59 485 64 434 56 6.973

p(acc) 0.955 0.028 0.958 0.032 0.954 0.037 0.440

p(miss) 0.003 0.004 0.002 0.004 0.000 0.001

Signal RT 1 522 69 484 63 432 54 6.531

RT 2 533 72 453 61 376 44 10.002

SOA 261 54 457 60 415 52 5.308

p(miss) 0.973 0.033 0.970 0.029 0.990 0.016 3.486

T-tests for Experiment 2 indicate whether the differences between Session 1 and 2 were reliable (t-values larger than the critical t-value with, = .05 are underlined). All
latencies are in ms. DV = dependent variable. RT = reaction time in ms (RT 1 = RT for first response; RT 2 = RT for second response on double-signal trials). Stop-signal
reaction times (SSRT) were estimated using the integration method [38].
doi:10.1371/journal.pone.0070155.t002

Table 3. Overview of analyses of variance, comparing no-
signal performance in the double-response and stop groups.

Experiment DV IV F df MSE p

1 RT Condition 19.79 1,57 6777 ,.001

Acc Condition 11.40 1,57 0.0005 ,.01

2 RT Condition 83.53 1,46 50467 ,.001

Session 10.73 1,46 3051 ,.01

C 6 S 1.50 1,46 3051 0.27

Acc Condition 10.67 1,46 0.001 ,.01

Session 0.14 1,46 0.0005 0.71

CxS 1.17 1,46 0.0005 0.28

DV = dependent variable; IV = independent variable. RT = reaction time;
Acc = accuracy.
doi:10.1371/journal.pone.0070155.t003
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groups. Again, cautiousness did not transfer between sessions, as

participants in the stop group (M = 3.03; SD = .92) did not develop

a stronger preference for the lower amounts with higher

probability of winning compared with participants in the double-

response group (M = 2.66; SD = 0.82), t(45.454) = 21.492,

p = 0.929. The Bayes factor for betting scores also indicated

strong support for the null hypothesis, which states that

cautiousness does not transfer between training and test phases,

B = 0.23. Finally, choice latencies also suggested that there was no

training effect (stop = 1456 ms, SD = 66; double-respon-

se = 1470 ms, SD = 47), t(41.703) = 0.832, p = 0.795.

Correlation between Stopping and Gambling
Previous studies found that poor response inhibition predicted

risky decision-making in the Iowa Gambling Task [34–36]. The

link between stopping and gambling or risky decision-making is

also supported by the finding that response inhibition is impaired

in problem gamblers (see above). Here we explored whether stop

performance and betting scores in our gambling task correlated. In

order to have sufficient power, we combined the data of

Experiments 1 and 2. We estimated the covert latency of the

stop process (stop-signal reaction time or SSRT) with the

integration method [37,38], which assumes that the finishing time

of the stop process corresponds to the nth RT, where n = the

number of RTs in the RT distribution multiplied by the overall

p(respond|signal); SSRT can then be estimated by subtracting the

mean SOA from the nth RT. In Experiment 2, we estimated SSRT

for each session separately, and then took the average.

We found a statistically significant positive correlation (r = .32,

p = .017) between SSRT and betting scores: subjects who tended to

exhibit longer SSRTs in the training phase also preferred higher

amounts with a lower probability of winning in the test phase (see

Figure 4). This is consistent with previous findings in the Iowa

Gambling Task (see above). Furthermore, it suggests that, despite

the absence of a transfer of cautiousness between the two tasks,

there is a link between performance in the stop-signal task and

decision-making in the gambling task.

Discussion

We have recently demonstrated that participants preferred

lower amounts with a higher probability of winning in situations

where they expect to stop an initiated motor response (Experiment

1, ref. 18). Furthermore, we have found that training people, even

briefly, in controlling their own motor actions can induce cautious

decision-making for up to two hours afterwards (Experiments 2–3,

ref. 18). These experiments suggest that executive motor control

can transfer to other decision-making domains, in this case

monetary gambling.

In the present study, we further explored the potential of using

the stop task to make people more cautious when making

decisions. Compared with Experiment 3 of Verbruggen et al.

[18], we increased the delay between training and test phases to 24

hours. In two experiments, participants performed either a stop

task or double-response task during training. A comparison

between the two groups showed that the stop group was more

cautious during the training phase than the double-response

group. However, in both experiments, this motor cautiousness did

not transfer to the test phase in which the participants performed

the same gambling task as in our previous gambling studies. We

calculated Bayes factors for both experiments separately, and the

combined Bayes factor was 0.06 (0.249 * 0.234). Thus, the data of

the two studies combined provide ‘very strong’ evidence [31] for

the hypothesis that cautiousness does not transfer from the stop

Figure 2. Average betting scores for the double-response and
stop groups in Experiment 1 (minimum = 1; maximum = 6). In
each box, the horizontal solid lines show the medians and the asterisks
show the means. The upper and lower ‘‘hinges’’ correspond to the first
and third quartiles. The vertical lines at their respective end points
capture the location of extreme values. There were no outliers (i.e.
values exceeding the interquartile distance by more than 1.5).
doi:10.1371/journal.pone.0070155.g002

Figure 3. Average betting scores for the double-response and
stop groups in Experiment 2 (minimum = 1; maximum = 6). In
each box, the horizontal solid line shows the median and the asterisk
shows the mean. The upper and lower ‘‘hinges’’ correspond to the first
and third quartiles. The vertical lines at their respective end points
capture the location of extreme values. There were no outliers (i.e.
values exceeding the interquartile distance by more than 1.5).
doi:10.1371/journal.pone.0070155.g003
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task to the gambling task when the delay between the two phases is

increased to 24 hours. Although sleep plays in important role in

declarative and procedural memory consolidation [39], the results

of the present study suggest that stop training does not necessarily

benefit from sleep.

One possibility is that the amount of training of general

inhibitory skills that caused a transfer effect when the delay was

short was not strong enough to illicit changes in behaviour later in

time (although doubling the amount of training did not alter the

results). Guerrieri and colleagues [40] recently reached a similar

conclusion. They examined to what extent performing an

inhibitory control task influenced subsequent eating behaviour,

as several studies have demonstrated that eating disorders

correlate with impairments in inhibitory control [41–44]. They

found that participants who had to respond quickly (the

impulsivity group) tended to eat more during a subsequent bogus

taste test compared with a group who had to stop more and a

neutral baseline control group; importantly, the stop group and

baseline group did not differ. Based on these findings, the authors

concluded that effects of inhibition training may be weaker than

originally assumed.

Alternatively, the results observed in Verbruggen et al. [18]

may not have been caused by training of inhibitory control. Based

on our previous findings, it is tempting to conclude that

performing a short stop task can strengthen the inhibition control

network. However, an alternative explanation is that our previous

results were caused by a task carry-over effect. When participants

perform a stop-signal task, they often make proactive control

adjustments to balance between impulsive responses, which are

difficult to suppress, and slow responses, which can be stopped

more easily [28]. Such control adjustments may involve activating

the stop goal in advance and increasing decision thresholds in the

choice task [28,45,46]. Participants may have adopted a similar

‘proactive’ control strategy when performing the gambling task.

For instance, keeping the overall long-term goal activated (i.e.

‘have as many points as possible at the end of the experiment’)

could result in a more consistent choice pattern; higher decision

thresholds would also result in a more consistent choice pattern. It

seems likely that such a transfer is more likely to occur when the

stop task was executed recently.

A potential limitation of this study is that this is a cross-study

comparison. However, the only difference between the design of

Experiment 1 of the present study and the design of Experiments

2–3 in Verbruggen et al. [18] was the delay between training and

test. Thus, it seems unlikely that differences between the present

study and our previous work are caused by differences in design

other than the delay manipulation. Nevertheless, it is possible that

subtle differences between participants had an influence. People

with poor inhibitory control or problem gamblers may benefit

more from doing a stop-signal task than people who never gamble;

indeed, developmental studies have demonstrated that children

with poor executive control benefited the most from executive

control training [22,47,48]. We did not have a baseline

measurement of gambling or inhibition in our task, so we could

not explore this issue in the current study. Other individual

differences may also have contributed. For example, Colzatto and

colleagues have found that inter-individual genetic variability

modulated transfer between a training and a test task [49]. Thus,

an important avenue for future research is to determine how

individual differences modulate transfer effects.

Another potential avenue for future research is exploring

whether gambling-related stop learning induces longer-lasting

effects. We have previously demonstrated that executive control

processes such as stopping can also be triggered in a bottom-up

fashion by the retrieval of previously acquired stimulus-stop

associations [50]. Other studies have already demonstrated that

such stimulus-stop associations can influence behaviour outside the

lab. For example, it was found that a consistent pairing of alcohol-

pictures to stopping reduced the subsequent weekly alcohol intake

[51] or consumption in the lab [52]. Similarly encouraging

stimulus-specific training effects have been found in food studies

[53,54]. However, future research is required to explore the

potential of such training regimes for various impulse-control

disorders.
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