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Abstract 

Multidrug-resistant Gram-negative infection is an important cause of mortality 
and morbidity. Management of these infections is often dependent upon 
“treatment of last resort” "small molecule" antibiotics which suffer from 
significant toxicity and an indiscriminate volume of distribution. The aim of 
this study was to develop a prototype polymer-antibiotic conjugate that may 
be customised by polymer modification and binding chemistry to afford 
selective, controlled release at an infected site. These studies employed the 
biodegradable, naturally-occurring polymer, dextrin, and a polymyxin 
antibiotic, colistin, as the first model combination.  
 
Physicochemical characterisation of a library of succinoylated dextrins and 
dextrin-colistin conjugates demonstrated that conjugation of dextrin to colistin 
was feasible and reproducible, resulting in masking of colistin's amino groups 
through incorporation in peptide bonds. Exposure to physiological �-amylase 
activity resulted in controlled degradation of the dextrin component, leading 
to sustained colistin release. Following exposure of the conjugates to 
physiological concentrations of �-amylase, minimally-modified, low molecular 
weight dextrin, conjugated to colistin, demonstrated significantly earlier, 
maximal release of colistin and subsequent reinstatement of antimicrobial 
activity. At maximum unmasking, the lead conjugate reported equivalent 
antimicrobial activity to the current clinical formulation of colistin (Colimycin®) 
against a range of MDR organisms including: A. baumannii, K. pneumoniae 
and E. coli. A static two-compartment dialysis bag model was developed 
under infinite sink conditions, which demonstrated that the conjugates were 
able to suppress bacterial growth over a significantly greater duration than 
colistin sulfate. Ex vivo studies of infected human wound fluid samples 
confirmed that colistin could be readily liberated from conjugate in infected 
sites. Significantly higher amylase activity in these wound fluid samples 
supported the notion of locally-triggered, enzymatically-mediated unmasking.  
An in vivo intravenous, pharmacokinetic model in rats demonstrated the 
increased half-life associated with conjugation and succinoylation. Moreover, 
the dextrin-colistin conjugates were better tolerated than colistin sulfate at 
higher concentrations.  
 
These studies have demonstrated the feasibility of developing this new class 
of “nanoantibiotics” and highlighted their potential usefulness as 
bioresponsive nanomedicines for the treatment of MDR Gram-negative 
infection.  
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1.1 Introduction  

Multidrug-resistant (MDR) infection is a global health concern accounting for 

over 27,000 deaths, considerable healthcare costs estimated at €1.5 billion 

per year in Europe and $14-22 billion per year in the USA (2010). The 

incidence of microbial resistance is increasing and the emergence of MDR 

pathogens has been followed by extended and pan-drug resistant species 

(Boucher 2010; Maltezou 2009; Michalopoulos and Falagas 2010). A 

sustained reduction in the development of novel antibiotics by the 

pharmaceutical industry has aggravated this situation further (Boucher et al. 

2009; Bradley et al. 2007; Spellberg et al. 2008). Gram-negative infection has 

consequently been identified as an imminent global health threat due to the 

limited current therapeutic options and the virtual absence of drugs in 

advanced stages of development (European Medicines Agency 2009; Horton 

2009; Morel and Mossialos 2010; Talbot 2008). The purpose of this study is 

to develop and optimise a prototype, bio-responsive dextrin-colistin 

conjugate for use in acute infective disease processes � where Gram-

negative antimicrobial resistance presents a major clinical challenge.   

1.2 Gram-negative infection  

1.2.1 Gram-negative bacterial structure and antimicrobial targets 

Several structural features of the Gram-negative bacterial cell envelope play 

a significant role in determining the success of antimicrobial therapy. A 

common denominator for effective activity of several antimicrobials in current 

clinical use is access to the bacterial cell, which is limited by a formidable 

barrier: the Gram-negative bacterial envelope. Topoisomerase-catalysed 

DNA strand breakage and rejoining is essential for DNA synthesis, mRNA 

transcription, and cell division (Espeli and Marians 2004; Gellert et al. 1976). 

Fluoroquinolone class antibiotics have been markedly successful in the 

clinical treatment of Gram-negative bacteria through targeting DNA gyrase 

and topoisomerase IV (Blondeau 2004). Messenger RNA translation has also 

provided fertile grounds for antimicrobial targeting. For example, macrolides 

and amphenicols are 50S ribosome inhibitors whilst tetracyclins and 
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aminoglycosides are 30S ribosome inhibitors (Bulkley et al. 2010). 

Additionally, rifamycins are semi-synthetic antibiotics which inhibit RNA 

synthesis and affect nucleic acid metabolism (Floss and Yu 2005). Recent 

evidence suggests a common pathway for antimicrobial-mediated cell death 

through altered tricarboxylic acid cycle and iron metabolism, resulting in 

production of lethal hydroxyl radical concentrations (Kohanski et al. 2010).  

The bacterial periplasm is limited by a thin elastic cytoplasmic membrane 

mainly composed of phospholipids and proteins. The bacterial cell wall lies 

on the outer aspect of the cell membrane conferring strength. The rigid 

peptidoglycan polymer of this inner membrane (IM) prevents osmotic lysis 

(Silhavy et al. 2010). Gram-negative bacteria are distinguished by a second 

outer membrane (OM) external to the peptidoglycan layer (Kamio and 

Nikaido 1976). Lipopolysaccharide (LPS) is a major component of this OM 

and is a glucosamine disaccharide with 6-7 acyl chains, a polysaccharide 

core and an additional polysaccharide chain termed the O-antigen (Raetz 

and Whitfield 2002). LPS is responsible for endotoxic shock and is crucial to 

OM barrier function. The OM plays an important function in impeding the 

ingress of many antibiotics and access to their periplasmic targets (Figure 

1.1). Peptidoglycan biosynthesis is a target employed by antibiotic classes 

including � lactams and glycopeptides resulting in changes to cell shape and 

size, induction of cellular stress responses, and ultimately, death by lysis 

(Tomasz 1979). Additionally, antimicrobial peptides are a class of widely 

occurring natural antibiotics that exert a lytic, detergent effect on the Gram-

negative bacterial cell envelope (Zasloff 2002).  

1.2.2 Clinical course of Gram-negative infection  

Current therapeutic options for the "ESKAPE" pathogen group identified by 

the Infectious Diseases Society of North America are limited (Rice 2008). 

Four of these pathogens are Gram-negative bacteria: Escherichia coli and 

Klebsiella species; Acinetobacter baumannii; Pseudomonas aeruginosa; and
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Enterobacter species (Boucher et al. 2009). These pathogens require urgent 

attention in terms of novel antibiotic discovery (Rice 2008). These infections 

often complicate treatment of older patients with multiple co-morbidities. This 

now represents an increasingly common patient profile in western societies. 

These patients are prone to infection and less tolerant to the adverse, toxic 

effects of antimicrobial therapy (High et al. 2009). The challenge posed by 

the increasing frequency of susceptible patients is exacerbated by an 

increasingly common occurrence of organisms with multiple drug resistance 

(Raetz and Whitfield 2002). 

1.2.3 Multidrug resistance in Gram-negative bacteria 

Motivated by the demand for better bioactivity and lower toxicity, antibiotic 

research and development has passed through several phases. Most early 

discoveries were reported through natural product screening (e.g. 

macrolides, aminoglycosides, cephalosporins and glycopeptides), followed 

by semi-synthetic chemistry programs (e.g. clavulanic acid, tobramycin), 

through discovery of the fluoroquinolones and their analogs (Davies and 

Davies 2010; Fernandes 2006). Recent approaches such as bacterial 

genomics have had little notable success (Shlaes and Projan 2009).  

The literature presents ���	��� definitions to characterise the resistance 

patterns encountered in healthcare-associated antibiotic-resistant bacteria. 

Resistance to three or more different antibiotic classes has been frequently 

adopted in the literature as a working definition for MDR bacteria (D’Agata 

2004; Lockhart et al. 2007; Zhanel et al. 2008). More recently, a joint initiative 

by the major European and US Centres for Disease Control proposed to 

define multidrug resistance with regard to Staphylococcus aureus, 

Enterococcus spp., Enterobacteriaceae (other than Salmonella and Shigella), 

P. aeruginosa and Acinetobacter spp. as acquired non-susceptibility to at 

least one agent in three or more antimicrobial categories (Magiorakos et al. 

2011).  

Multiple mechanisms may give rise to antimicrobial resistance including 

chromosomal mutations or horizontal gene transfer (Khan et al. 2012). 
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Resistance may occur by several mechanisms including antibiotic 

degradation (Kumarasamy et al. 2010); mutations in specific antibiotic target 

sites such as DNA gyrase or RNA polymerase (Lambert 2005); limitation of 

local antibiotic concentration or porin modification (Delcour 2009); specific 

pump efflux mechanisms (Nehme and Poole 2007) or even antibiotic 

sequestration within bacterial biofilm (Mah et al. 2003). In addition to 

multidrug resistance, extensively drug resistant (XDR) bacteria have been 

described where effective antibiotic options are extremely limited (Conly and 

Johnston 2006; Magiorakos et al. 2011).  

There are currently only 6 compounds in clinical trials active against Gram-

negative infection (Rennie 2012). Moreover, it has been estimated that only 

75% of those compounds which complete phase III trials will be marketed 

(Rennie 2012). In the period between 1940-1962 more than 20 new antibiotic 

classes reached clinical use. Since then, only two new classes entered 

clinical use. Of these novel antibiotics only one candidate (leucyl-tRNA 

synthetase inhibitor) exhibited a novel mechanism of action, leaving a 

considerable shortfall in the demand for novel effective antibiotics against 

Gram-negative bacteria (Coates and Halls 2012).  

1.2.4 Current therapeutic approaches to Gram-negative infection 

In the absence of effective therapeutic alternatives, re-screening and 

chemical modification of natural antibiotic libraries is a recent approach in 

antimicrobial research and development (Fernandes 2006). Antimicrobial 

peptides are a widely distributed class of naturally occurring antibiotics that 

function through a detergent effect on the bacterial cell envelope (Zasloff 

2002). The polymyxins are prime examples of this antibiotic class and were 

amongst the first classes of antimicrobial agents to be discovered (Stansly et 

al. 1947).  Colistin is an example of an effective antimicrobial peptide with 

extensive antimicrobial activity. This resulted in widespread use after its 

discovery (Stansly et al. 1947). Subsequent semi-synthetic modifications of 

effective antibiotics yielded successive generations of antibiotics with more 

favourable activity/toxicity profiles (Fernandes 2006). Interest in colistin 
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subsequently decreased, presumably in favour of newer, less toxic antibiotics 

(Arnold et al. 2007; Falagas and Kasiakou 2006; Ma et al. 2009). It is 

possible that this prolonged period of disuse reduced those selection 

pressures favouring resistance, allowing colistin to retain antimicrobial activity 

when efficacy of other antimicrobial classes is failing. Because of toxicity 

concerns, colistin currently occupies a clinical niche as a  "treatment of last 

resort" (Levy and Marshall 2004). Literature trends demonstrated a marked 

increase in interest within the medical and academic community in colistin 

which mirror that observed for MDR bacteria (Figure 1.2).  

1.2.5 Colistin redevelopment 

Recent interest in colistin addresses two challenges for its effective and safe 

use. Firstly, research is directed at re-engineering the molecule to reduce the 

toxicity of the colistin towards a favourable activity/toxicity profile (Table 1.1). 

The colistin molecule is made up of (a) hydrophilic cycloheptapeptide ring 

with 3 positively charged amine groups (b) a tail tripeptide moiety with 2 

positively charged amine groups (c) a hydrophobic acyl chain tail (Figure 

1.3). The first theme reported within this trend reports the “deconstruction” of 

the colistin molecule by analysing the properties of derivatives substituting or 

lacking the different structural parts or charges (Figure 1.3 a-c). Colistin was 

determined to exert a bactericidal detergent action by way of its amphiphilic 

(part hydrophilic - part hydrophobic) structure on the bacterial membrane 

(Vaara 1992). The amino groups mediate both the extensive bactericidal 

effect and toxicity to human cells (Clausell et al. 2007; Mares et al. 2009; 

Vaara et al. 2008). Therefore, modification of these groups has been the 

focus of extensive study (Vaara et al. 2008). Early studies attempted 

sulfomethylation of the amino groups forming an uncharged prodrug, which 

hydrolyzes in vivo to colistin (Barnett et al. 1964). The result is colistimethate 

sodium or colomycin, which is the predominant, systemic form of colistin 

administered in contemporary practice (Beveridge and Martin 1967). 
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Table 1.1: Research and development trends on colistin: re-engineering the colistin molecule 
towards a favourable activity/toxicity profile.  

 Intent  Bioactivity vs parent compound Key studies  
N

-T
er

m
in

al
 F

at
ty

 A
cy

l A
na

lo
gu

es
 

OM penetration  
and disrupt 
packing of the lipid 
A fatty acyl chains 

Both colistin and PMB nonapeptides 
do not possess direct antimicrobial 
activity. Specifically bind to LPS and 
disrupt OM. Efficiently sensitise 
bacteria to hydrophobic antibiotics. 

Nakajima ��
���(1967) 
Bhattacharjya���
���
(1997). 
 

Analogues of the 
D-Phe6-L-Leu7 
hydrophobic 
domain 

Hydrophobic interactions of the fatty-
acy� cha	�s of lipid A and the 
hydrophobic side chains of D-Phe6-L-
Leu7 motif stabilise the LPS-
polymyxin complex. This domain is 
highly conserved among polymyxins, 
but not imperative for activity. 

Pristovtec and Kidric 
(2004, 1999) 
Kanazawa ��
�� (2009) 

Study variation in 
fatty acyl chain 
composition on 
antimicrobial effect 

Octanoyl N-terminal fatty acyl chains 
displayed optimal activity. Activity was 
reduced with longer/shorter chains. 
Poor antimicrobial activity against����
����, and ��������
 but potent 
activity against ���
�������
� 

Chihara ��
�� (1974) 
Katsuma ��
���(1974) 
Orwa���
�� (2001) 
Sakura ��
��������� 
 

D
A

B
 s

id
e-

ch
ai

n 

Dab N�- formyl 
PMB derivatives 

Dab N�-Triformyl derivative was 
equally effective to parent compound 
Dab N�-diformyl derivative (105) was 
70% more active.  

Teuber ��
�. (1970) 
Srinivasa and 
Ramachandran (1978) 
Weinstein ��
�� ������ 

Serial DAB 
substitutions to 
alanine to 
determine the 
most significant 
contribution to 
activity. 

Loss of the positive charges on the 
tripeptide linker moiety all displayed 
effective antimicrobial activity. 
However, loss of cationic charge in 
the cyclic heptapetide moiety resulted 
in complete loss of antimicrobial 
activity. DAB in position 5 has an 
important bactericidal role.  

Kanazawa  ��
�. (2009) 
Vaara ��
��(2012, 2008) 

Serial DAB� 
amino acid 
substitutions 

Length of the amino acid side-chain, 
as well as the cationic nature of the 
amino acid plays an important role in 
antimicrobial activity 

Tsubery ��
�� (2002) 

Sulphomethylation Blocking the free amino groups by 
sulfomethylation yields an uncharged 
prodrug which hydrolyses to the 
active compound. CMS is the current 
clinically employed form of colistin, 
but hydrolysis is unpredictable. 

Barnett ��
�� (1964) 
Beveridge and Martin 
(1967) 
Molina ��
�� (2009) 

Polymer 
therapeutics 
 

Conjugation to large, biodegradable 
water soluble polymers such as 
dextran for use as an anti-endotoxin. 
No bioactivity data available. 

Bucklin ��
�� (1995) 

 

Acyclic analogs of 
colistin peptides 

The lariat structure is essential for 
antimicrobial activity. Both branched 
and linear analogs showed no 
antimicrobial activity.  

Kline ��
���(2001) 

PMB: polymyxin B, OM: outer membrane 
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However, hydrolysis into the active drug is concentration- and temperature-

dependant. This may result in unpredictable colistin formation and toxicity 

(Healy et al. 2011b; Wallace et al. 2008). The second area of research 

addresses optimisation of the current formulation, its characterisation, purity, 

structure-activity relationship, PK/PD relationships, dosing, stability, analytical 

methods and resistance surveillance (Table 1.2). Colistin was developed 

before the inception of current standardised dosage and pharmacokinetic / 

pharmacodynamic (PK/PD) requirements (Marchand et al. 2010). In vivo 

critical care PK/PD studies have only recently been reported (Healy et al. 

2011b). Interestingly, dosage regimens vary widely between countries, from 

once daily to four divided daily doses (Conly and Johnston 2006). 

Like other conventional small molecule antibiotics, colistin does not 

preferentially localise to the intended (infected) area. Distribution to 

unintended areas away from the intended site of infection may facilitate 

toxicity (Arnold et al. 2007; Falagas and Kasiakou 2006; Falagas et al. 2009; 

Ganapathy et al. 2009; Ma et al. 2009). A redevelopment strategy to afford 

selective, controlled release at the site of infection would, therefore, 

considerably improve patient treatment.  

1.3 Nanomedicine approaches to the treatment of infection  

Nanomedicines represent nano-scaled tools for the diagnosis, prevention 

and treatment of disease (Duncan and Gaspar 2011). Over the last decade, 

nanomedicine has been increasingly employed as a means of drug targeting 

and improving drug delivery to reduce toxic side effects, in particular cancer 

therapy (Duncan and Gaspar 2011). A number of studies have also 

investigated various nanomedicine approaches for the safe and effective 

delivery of antibiotic drugs (Table 1.3). This growing class of nano-sized 

antimicrobial therapies includes, amongst others, antimicrobial 

nanomaterials, nanoparticles, liposomes and polymer therapeutics.  
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Table 1.2: Research and development trends on colistin: optimisation of current therapy 

Theme Subtheme Narrative synthesis of major studies 

R
es

is
ta

nc
e 

Epidemiology Resistance to polymyxins remains low in most countries 
(Karageorgopoulos and Falagas 2008) including North America 
(Sinirtas et al. 2009), the Middle East (Dizbay et al. 2008). 
However a trend to greater resistance was observed in the Asia-
Pacific, Latin American regions (Gales et al. 2011; Hernan et al. 
2009) the far-east (Ko et al. 2007; Tan and Ng 2006), and 
Greece (Gilad et al. 2005; Antoniadou et al. 2007). 

Mechanisms  Early studies reported that membrane stuctural changes may 
confer resitance to polymyxins. These included fatty acid 
alterations and lipopolysaccharide (LPS) binding to polymyxin 
(Conrad and Galanos 1989), changes in negatively-charged 
surface lipopolysaccharides induced by the regulatory loci pmrA 
and phoP, generate resistance to polymyxins (Groisman et al. 
1997); different lipid compositions of lipopolysaccharides 
(Conrad and Galanos 1989; Vaara and Vaara 1983) or 
substitution of protein OprH for magnesium in the outer 
membrane (Brown et al. 1990; Nicas and Hancock 1980). 

Genetics Genetics implicated in polymyxin resistance include those for the 
2-component signaling proteins PmrB and PmrA linked by 
polymyxin resistance protein, PmrD (Adams et al. 2009; Fu et al. 
2007; Sabuda et al. 2008) regulatory loci pmrA (Groisman et al. 
1997), pho P pho Q,  (reviewed in (Velkov et al. 2009); micF and 
osmY (Oh et al. 2000); chromosomally encoded multidrug efflux 
systems (Brown et al. 1990; Germ et al. 1999; Li et al. 2000).   

C
ha

ra
ct

er
iz

at
io

n 

Formulation Stability: colistin is susceptible to degradation in solutions of pH 
H 5, principally by racemisation; new formulations in solution (Lin 
et al. 2005); component analysis (Orwa et al. 2001); component 
de-novo synthesis (Kline et al. 2001). 

Physico-
chemical 

Initial non-specific microbiological assays (Thomas et al. 1980) 
were followed by mass spectrometric (MS) (Govaerts et al. 
2002a; Govaerts et al. 2002b); liquid chromatography-MS (LC-
MS) (Ma et al. 2008); HPLC (Li et al. 2003b); hyphenated liquid 
chromatography (Decolin et al. 1997) and NMR (Mares et al. 
2009; Pristovsek and Kidric 1999) methods.  

Structure Analysis of de-novo synthesized colistin components and 
analogs (Kline et al. 2001) and stucture analysis (Ikai et al. 
1998).  

Pharmaco-
kinetics 

Pharmacokinetics (PK) of novel solutions (Lin et al. 2005; Orwa 
et al. 2002), PK studies in critically ill patients (Healy et al. 
2011a; Plachouras et al. 2009).  

T
ox

ic
ity

 

Clinical 
studies 

Current studies debate the "unacceptable toxicity of colistin", but 
most studies report significant toxic adverse effects: 
nephrotoxicity (Cheng et al. 2009; Falagas and Kasiakou 2006; 
Ganapathy et al. 2009; Hartzell et al. 2009; Pintado et al. 2008), 
neurotoxicity (Cheng et al. 2009), rhabdomyolysis 
(Evagelopoulou et al. 2007). 
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Table 1.3: Nanomedicines that have undergone/are undergoing in vivo evaluation for the 
treatment of infection 

Delivery 
vehicle 
 

Drug Carrier Clinical 
status 

Reference 

Nanoparticle Rifampicin Poly(lactide)-co-
glycolide 

In vitro, pre-
clinical 

Esmaeli et al. (2007)  

Core-shell 
nanostructure 

Gentamicin PluronicTM PEO-
PPO block 
copolymer 

In vivo, pre-
clinical 

Ranjan et al. (2009) 

Dendrimer Erythromycin PAMAM G4 In vitro, pre-
clinical 

Bosnjakovic et al. 
(2011) 

Liposome 
 

Amikacin PC: cholesterol (2:1) Phase II Whitehead et al. 
(1998) 

Liposome Gentamicin PC: 1,2-DSPE-N-
[PEG-2000] (PEG-
DSPE) (2.85:0.15) 

Phase I Schiffelers et al. 
(2001a) 

Liposome 
 
 

Gentamicin 
and 
ceftazidime 

PC: cholesterol: 
PEG-DSPE 
(1.85:1:0.15) 

In vivo, pre-
clinical 

Schiffelers et al. 
(2001b) 

Liposome 
 
 

Isoniazid and 
rifampicin 

PC: cholesterol: 
dicetylphosphate: 
PEG-DSPE 
(2:1.5:0.2:0.2) 

In vivo, pre-
clinical 

Labana et al. (2002) 

Liposome 
 
 

Vancomycin 
and 
ciprofloxacin 

PC: stearylamine: 
cholesterol (7:2:1) 
 

In vivo, pre-
clinical 

Kadry et al. (2004) 

Liposome 
 
 

Ciprofloxacin PEG-DSPE: PC: 
cholesterol (5:50:45) 

In vivo, pre-
clinical 

Bakker-Woundenberg 
et al. (2002) 

Liposome Colistin PC: cholesterol (2:1) In vivo, pre-
clinical 

Wang et al. (2009)  

Liposome Streptomycin PC: cholesterol and 
PG (2:1:0.1) 

In vivo, pre-
clinical 

Fielding et al. (1998) 

Polymer-drug 
conjugate 
 

Ciprofloxacin 
and 
norfloxacin 

PEG In vitro, pre-
clinical 

Pinter et al. (2009) 

Polymer-drug 
conjugate 
 

Peptoid 7 PEG 
PGA 

In vivo, pre-
clinical 

Vicent et al. (2010) 

Polymeric 
drug 

OligoG 
fragments 

Alginate oligomer Phase I Ferguson et al. 
(2012a) 

Polymer-drug 
conjugate 

Ubiquitin-
PEG  

(PEG–N-(N-(3-
diphenylphosphinop
ropionyl)glycyl)-S-
tritylcysteine ligand) 

In vivo pre-
clinical 

Melendes-Alafort et 
al. (2009) 

PC: phosphatidylcholine; PEO: poly(ethylene oxide); PPO: poly(propylene oxide); PAMAM: 
poly(amidoamine); G4: fourth generation; DSPE: distearoyl-sn-glycero-3-
phosphoethanolamine; PEG: poly (ethylglycol). 
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1.3.1 Antibiotic nanomaterials  

Nanomaterials exhibit several physicochemical properties that may be 

advantageously exploited for antimicrobial means including high surface area 

to volume ratios (Weir et al. 2008). Several nanoparticles have been studied 

for their antimicrobial value including production of reactive oxygen species, 

interference with energy transduction mechanisms, and DNA synthesis 

(reviewed in Huh and Kwon 2011). Synergic nanoparticle-antibiotic 

combinations have been reported potentially reducing toxic antibiotic 

concentrations necessary to achieve antimicrobial effects (Rai et al. 2009; 

Shahverdi et al. 2007). However, non-specific toxicity of the nanomaterials 

themselves, has been a described as a major drawback including 

mitochondrial adverse effects, nephrotoxicity and myotoxicity (Hussain et al. 

2005). Insolubility and inherent non-selective toxicity were major concerns for 

fullerenes and carbon nanotube applications (Jia et al. 2005; Tsao et al. 

2002; Wick et al. 2007). 

1.3.2 Liposomes as antibiotic delivery systems 

Liposomes were among the first clinically viable nanomedicines and are often 

overlooked in contemporary reviews (Duncan and Gaspar 2011). These 

vesicles consist of a water space surrounded by single/multiple lipid bilayers. 

The lipid bilayers may interact with viable cells through absorption, lipid 

exchange, endocytosis, and fusion (Pinto-Alphandary et al. 2000). Since 

doxorubicin-encapsulating PEG-liposome was first approved in 1995, 

liposomal antibiotic delivery systems have experienced marked clinical 

success (Lian and Ho 2001). The ability of their lipid bilayer to fuse with 

bacteria contributed to their widespread adoption (Zhang et al. 2010). 

Additionally, both the aqueous core and phospholipid bilayers can be used to 

retain antibiotics of varying hydrophobicity (Lasic 1998; Sosnik et al. 2010). 

Literature reports several attractive properties of liposomes for antibiotic 

delivery including: improved pharmacokinetics, decreased toxicity, enhanced 

activity versus both intracellular and extracellular pathogens, and the 

possibility for target selectivity (extensively reviewed in Drulis-Kawa and 

Dorotkiewicz-Jach 2010). Liposomes “loaded” with colistin sulfate have been 
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recently described. Recently, Wang et al. (2009), reported colistin sulfate 

liposomes (phospholipid:cholesterol) exhibiting an initial (40%) burst release 

(ascribed to unencapsulated colistin), followed by a slower release phase 

(complete at 24 h) and reduced in vivo toxicity. In contrast, colistin and CMS 

liposomes recently reported by Wallace et al. (2012) showed 50% release 

within 10 min, prompting the authors to comment about their limited utility for 

long duration controlled-release applications. Short lipid vesicle shelf-life, with 

consequent drug stability issues, represents a challenge to liposome 

antibiotic delivery (Drulis-Kawa and Dorotkiewicz-Jach 2010). Short shelf-life 

is already a concern with current CMS formulations (section 1.2.5). In vivo, 

physical instability may  exacerbate drug leakage, resulting in payload 

transfer to plasma lipoproteins or membranes, (Gregoriadis 1995). Moreover 

rapid clearance of liposomes (such as the those recently described by Wang 

et al. (2009) and Wallace et al. (2012) by the mononuclear phagocytic 

system has been established, necessitating introduction of various strategies 

to prolong circulation time, such as polymer conjugation, (Moghimi and 

Szebeni 2003).  

1.4 Polymer therapeutics as antibiotic nanomedicines 

Polymer therapeutics represent a class of nano-sized therapeutic agents 

typically consisting of at least 2 components: a water-soluble polymer covalently 

attached to an active constituent, such as a drug, protein, gene or peptide 

(Duncan 2003). This generic term encompasses a number of diverse entities 

whose common denominator is the possession of a water-soluble polymer. 

These include: polymeric drugs, polymer–drug conjugates, polymer–protein 

conjugates, polymeric micelles (to which drug is covalently bound) and multi-

component polyplexes (Duncan 2003). The conjugation of relatively toxic 

drugs to water-soluble polymers has become well-established as a reliable 

method for delivering proteins, peptides and antibody-based therapeutics. 

These new chemical entities are distinct from conventional drug delivery 

systems and offer considerable advantages over them (Duncan and Gaspar 

2011; Vicent et al. 2009). Polymer conjugation permits the rationalised 

design of new molecules to alter plasma circulation time, distribution and 
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bioavailability, decrease immunogenicity, mask protein charge and toxicity 

(Duncan 2009; Flanagan et al. 1990; Greco and Vicent 2008). The nature of 

the water-soluble polymer can be varied to suit the intended clinical demand.  

1.4.1 Polymer designs 

Polymers consist of repeating single component units (monomers) to 

produce a high molecular weight structure with unique physicochemical 

characteristics. Polymers may be classified into homopolymers (whose 

chains contain one, repeating monomer unit) or copolymers. Copolymers 

consist of more than 1 monomer type. The different monomers may take the 

form of an alternating copolymer chain, a block copolymer or a graft 

copolymer. Polymers also vary according to structure and may be linear, 

branched, stellate, or dendrimeric (Duncan et al. 2005). Gauthier and Klok 

(2010) suggest that the influence of  flexible linear polymers (e.g. dextrins) on 

conjugate activity is greater than those polymers displaying branching, 

folding or bulky side-chains. Conveniently, polymers may also be broadly 

classified according to their biodegradability (Duncan 2011).  

1.4.2 Degradable versus non-degradable polymers 

The majority of polymers reaching current clinical practice are non-

biodegradable synthetic polymers, including, for example, 

poly(ethyleneglycol) (PEG) (Pasut and Veronese 2009), and N-(2-

hydroxypropyl) methacrylamide (HPMA) co-polymers (Duncan 2009). 

PEGylated conjugates are clinically well-tolerated and constitute a substantial 

proportion of the conjugates to have entered clinical practice (Gauthier and 

Klok 2010). Their lack of biodegradability, however, may have safety 

implications (Duncan and Gaspar 2011). The need to ensure renal 

elimination limits the size of non-biodegradable conjugates to below renal 

threshold (Duncan 2003; Hreczuk-Hirst et al. 2001b). Otherwise, non-

biodegradable polymers carry a risk of toxic accumulation (Gaspar and 

Duncan 2009), and lysosomal storage or other metabolic aberrations (Chi et 

al. 2006; Miyasaki 1975). This would be especially relevant where 
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administration of cumulative doses would be anticipated, such as in infection 

or the treatment of chronic disease.  

Biodegradable polymers offer several advantages that lend themselves to the 

construction of bioresposive polymer-antibiotic conjugates intended as 

therapeutic agents in infection. Hydrolytic or enzymatic degradability is a 

property of several biodegradable polymers including hydroxyethyl starch 

(HES) (Besheer et al. 2009); polyglutamic acid (PGA) (Santamaría et al. 

2009) and dextran (Bucklin et al. 1995). Biodegradable polymers permit more 

flexibility for the optimisation of pharmacokinetic profiles since the use of 

higher molecular weight platforms is possible (Duncan and Gaspar 2011). A 

number of concerns have been raised with some biodegradable polymers. 

Dextrans may generate an immunoglobulin-M (IgM) response (Battisto and 

Pappas 1973), and they are degraded slowly (Vercauteren et al. 1990). 

Specific problems have also been reported with dextrans and HES in the 

conjugated forms, and with the degradation products of the respective 

conjugates. For example, HES fractions may cause hypersensitivity and 

interfere with coagulation processes causing haemorrhage (Bisaccia et al. 

2007; Treib et al. 1997). Dextrans tend to form non-degradable adducts even 

with low levels of chemical modification, limiting their utility (Vercauteren et 

al. 1990). 

1.4.3 Strategies for triggered "payload release" in polymer therapeutics 

Many potential mechanisms have been examined for the triggered release of 

payloads from the respective polymer conjugate, including physicochemical, 

metabolic and enzymatic (Hoffman 2004; Roy and Gupta 2003). Physical 

stimulation such as temperature (Shimoboji 2001, 2003), and 

electromagnetic energy (Shimoboji 2002) have been used to instigate ligand-

receptor recognition. Reversible, steric hindrance has also been employed 

next to active sites (Hoffman 2004; Shimoboji 2001, 2002). Chemically-

induced methods such as pH have also been described (Bulmus et al. 2003). 

Polymer-enzyme conjugates were used to instigate the degradation of pre-

administered liposomal therapy (Duncan et al. 2001). More recently, an 
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elegant approach for “shielding” the bioactive payload in transit, followed by 

localised enzymatic controlled release and restitution of bioactivity has been 

described by Duncan et al. (2008).

The polymer masking-unmasking-protein therapy principle (Duncan et al.

2008) involves a multi-functional biodegradable polymer to envelope the 

payload of interest, whilst allowing locally-triggered polymer degradation and 

re-instatement of the masked bioactive's activity (Figure 1.4). This strategy 

offers several advantages. The degree of polymer modification and payload 

coupling can be directly controlled by varying the ratios of reactants 

(Hreczuk-Hirst et al. 2001a). The masked conjugate offers improved 

biological efficacy, extended plasma circulation time, reduced proteolytic 

degradation and protein immunogenicity (Werle and Bernkop-Schnürch 

2006; Ferguson and Duncan 2009; Roberts et al. 2002). Locally triggered 

unmasking at the intended site allows controlled re-instatement of bioactivity. 

Proof of concept for the PUMPT principle has been provided in diverse 

disease states including dextrin-phospholipase A2 as an anticancer conjugate 

(Ferguson et al. 2006); and dextrin-recombinant human epidermal growth 

factor (Hardwicke et al. 2010). An additional advantage of polymer 

conjugation is the conversion of a conventional "small molecule" antibiotic 

into a macromolecule, which may benefit from passive, size-based targeting 

to an infected locus (Maeda 2012).

1.4.4 The Enhanced permeability and retention effect 

The EPR effect relates to the passive, size-dependant accumulation of 

macromolecules at sites of increased vascular permeability, and their 

subsequent local retention (Maeda et al. 2009; Matsumura and Maeda 1986). 

The EPR effect has provided a universal and efficient strategy for anticancer 

drug design, allowing increased selectivity with improved therapeutic efficacy 

and fewer side-effects (Duncan 2003; Maeda et al. 2009). 
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Whilst the EPR effect has been recognised as a breakthrough in anti-tumour 

targeting, its potential has not yet been fully exploited in infection. The 

presence of a widespread, significant EPR effect would intimately influence 

the rationalisation of a novel polymer therapeutic aimed to afford controlled 

release at the site of infection, in terms of the choice of polymer size, 

modification, and rate of controlled degradation, and localisation of the 

enzyme triggering local re-instatement of bioactivity. Before embarking on the 

construction of a polymer-antibiotic conjugate, it was essential to evaluate the 

notion of a widespread, clinically significant EPR effect in infection across 

salient, Gram-negative bacterial pathogens. 

1.5 EPR effect as a novel paradigm for antibiotic targeting in infection 

EPR in cancer has been attributed to vascular permeability enhancement 

(VPE) and decreased efflux of macromolecules from the pathological locus 

(Matsumura and Maeda 1986). Several features of infection-induced 

inflammation resemble these processes (Figure 1.5). Following an initial 

insult, rapid vasodilatation recruits additional vessels whose permeability is 

subsequently enhanced. Vascular permeability has been categorised into an 

immediate stage (contraction of endothelial cells), a transient response 

(endothelial injury) and transcytosis (Kumar 2010). Each of these processes 

has a potential for microbial protease-induced VPE. The ensuing 

macromolecular extravasation contributes to swelling. Furthermore, 

inflammation, with protracted angiogenesis (Majno 1998) and ongoing 

remodelling, provides the opportunity for macromolecular accumulation 

(Hardwicke et al. 2008a) (Figure 1.6). 

1.5.1 Abnormal circulation 

Tumour vasculature presents characteristics that contribute to the creation of 

an EPR effect (Maeda 2001; Maeda et al. 2009). Angiogenesis and high 

vascular density also characterise inflammation and infection (Fiedler and 

Augustin 2006) much like the hypervasculature classically present in solid 

tumours (Fang et al. 2010).  
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Moreover, VPE has been attributed to tumour vascular abnormalities, 

including endothelial fenestrations and lack of smooth muscle (Daruwalla et 

al. 2008; Fang et al. 2004; Greish 2007; Suzuki et al. 1987). The majority of 

the VPE contribution to the EPR effect in infection is found to occur at the 

post-capillary venule region, which resembles the tumoural circulatory 

compartment (Maeda 2001; Mares et al. 2009) in terms of inter-endothelial 

junctions (Baffert et al. 2006; Maruo et al. 1998; Mehta and Malik 2006; 

Spindler et al. 2010) and caveolar pathways (Baban and Seymour 1998; 

Jungmann et al. 2008). Maeda et al. (2009) hypothesized that retention is the 

main difference between infection and cancer in the sustenance of an EPR 

effect, reasoning that a dysfunctional lymphatic system is essential and 

unique to EPR in cancer. They proposed that an EPR effect may not be 

tenable in infection due to rapid lymphatic clearance. However, early and 

significant macromolecular accumulation at sites of infection has been 

reported (Evans Jr et al. 1973; Laverman et al. 1999, 2001a, 2001b). Indeed, 

dysfunctional lymphatic drainage is a feature of infection, by way of increased 

interstitial pressure and tissue destruction (Swartz 2004).  

1.5.2 Indirect mechanisms  

The eleven-member toll-like receptor (TLR) family plays a key role in the 

innate immune recognition of pathogen-associated molecular patterns 

(Kaisho and Akira 2004; Kielian et al. 2005; Kopp and Medzhitov 2003). TLR 

downstream signalling occurs in both inflammation and cancer (Tsan 2006). 

LPS, ubiquitously present in Gram-negative bacterial cell walls, binds to TLR-

4 and triggers the release of inflammatory mediators, which stimulate 

vascular permeability (Ianaro et al. 2009; Leon et al. 2008; Poltorak et al. 

1998). Lipoteichoic acid (LTA), ubiquitously present in the Gram-positive 

bacterial cell wall, activates TLR-2 (Gillrie et al. 2010; Henneke et al. 2008). 

Both LTA (Herwald et al. 1998; Maeda and Yamamoto 1996) and LPS 

(Imamura et al. 2005; Katori et al. 1989; Shin et al. 1996) stimulate the 

kallikrein-kinin cascade, increasing vascular permeability by providing a 

suitably negative surface for Hageman factor (HF) activation (Maeda et al. 

1993). LPS also strongly upregulates the Bradykinin-1 receptor (BKR-1) 
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(Leeb-Lundberg���
�� 2005) and enhances production of vascular endothelial 

growth factor (VEGF) (Section 1.5.3.4). These observations suggest that 

enhanced vascular permeability is a common feature across human bacterial 

pathogens. 

VPE may be induced by the immune system itself (Figure 1.6). Neutrophils 

predominate in acute inflammation. They promote vascular permeability by 

releasing neutrophil elastase, which cleaves high molecular weight 

kininogens (HMWK) to E-kinin (Imamura�� �
��  2002). Secretory leukocyte 

protease inhibitor (SLPI), which normally suppresses neutrophil elastase 

activity, may also be inactivated by bacterial proteases leading to potentiated, 

elastase-induced permeability (Into���
��  2006). Peroxynitrite (ONOO-) and 

nitric oxide (.NO) radicals (Section 1.5.3.2) may activate matrix 

metalloproteinases (MMPs) secreted by macrophages which, alongside 

neutrophil-produced elastase, increase vascular permeability. MMPs, 

activated by ONOO- and .NO, are involved in the proteolytic degradation and 

inactivation of �1-proteinase inhibitor, facilitating kallikrein-kinin-mediated 

permeability as well as neutrophil elastase activity (Maeda���
�� 1999; 

Moreno and Pryor 1992; Okamoto���
�� 2001). Neutrophil lysis releases 

myeloperoxidase, elastase and MMP-9, which contribute to nitration of 

albumin and enhanced vascular permeability (Mirastschijski���
���2002; 

Trengove���
���1999). BKR-1-induced endothelial inducible nitric oxide 

synthase (iNOS) may be augmented by the inflammatory cytokines 

interleukin-1 (IL-1) and interferon-� (IFN-�), resulting in prolonged .NO 

release (Ignjatovic���
�� 2004).  

1.5.3 Direct mechanisms

The kallikrein-kinin cascade is a major effector of systemic inflammatory 

responses and a key contributor to the EPR effect in tumours mediated by 

upregulation of kallikrein gene expression and receptor upregulation in target 

cell populations (Bhoola���
��  2001; Maeda���
�� 1999; Wu���
��  2002). BK 

plays a central role in directly activating VPE (Filipovich-Rimon and Fleisher-

Berkovich 2010; Maeda���
�� 2003; Maeda���
�� 1999) which may be 
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amplified by several effector cascades (NO, MMP, VEGF and eicosanoids) 

(Colman 2006; Morrissey et al. 2008; Zhang et al. 2008b) (Table 1.4).

1.5.3.1 The Kallikrein Kinin system 

Characterisation of the two main BK receptors and their cognate ligands 

suggest temporally and pathophysiologically distinct (but complimentary) 

functions (Figures 1.7 and 1.8). BK and kallidin (lysl-BK) are first generation 

BKs which preferentially activate the BKR-2 receptor (Leeb-Lundberg et al.

2005). BK has a half-life of only 27 seconds, since it is rapidly degraded by 

the angiotensin-converting enzyme (ACE) and dipeptidyl carboxypeptidase 

kininase II, on the endothelial cell surface (Yong et al. 1992). Despite its short 

half-life, the effects of BK and the kallikrein-kinin cascade extend into each 

stage of VPE by the resulting products: des-Arg9-BK, Lys-des-Arg9-BK

(Mehta and Malik 2006) and des-Arg10-kallidin, (McLean et al. 2000) which 

preferentially activate BKR-1. BKR-2 is ubiquitous, constitutively expressed, 

rapidly sequestered and internalised, (Blaukat et al. 1996; Blaukat et al.

2001; Leeb-Lundberg et al. 2005; Oehmcke and Herwald 2010). BKR-1 is 

however only induced during an infective insult, and is less susceptible to 

internalisation and desensitisation (Bascands et al. 1993; Mathis et al. 1996; 

Smith et al. 1995). In fact, BKR-2 has been shown to activate early phase 

oedema whereas later phase oedema is dependent on stimulation of BKR-1 

(Todorov et al. 2002). BKR-1 has also been implicated in animal models of 

persistent inflammation, including infection (Leeb-Lundberg et al. 2005). 

These findings support BKR-2 mediation of the initial response and BKR-1 

mediation of the delayed, but more prolonged, reaction. A prolonged effect 

for BK-mediated VPE is also suggested by other recently reported 

mechanisms (Figures 1.7 and 1.8). Activation of HF or HMWK by microbial 

proteases results in the production of HKa (a kinin-free derivative of HMWK). 

Formation of HKa results in exposure of the D5 domain of HMWK. Both HKa 

and D5 inhibit in vitro endothelial adhesion to vitronectin and fibrinogen, 

leading to apoptosis (Colman 2006). Endothelial injury, cell necrosis, cell
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detachment and apoptosis have been proposed as mechanisms for 

prolonged vascular leakage (Lentsch and Ward 2000). BK contributes to VPE 

through both a transcellular and an intercellular route (Figure 1.9), although 

the precise mechanisms are still contended (Baffert et al. 2006; Jungmann et 

al. 2008). BK-induced VPE is apparently independent of the guanidine 

triphosphatases (GTPases), Rho and Rac, two key regulators of endothelial 

barrier function (Adamson et al. 2002; Wojciak-Stothard and Ridley 2002). 

BK may directly influence adherens junctions via production of NO and 

indirectly, through filamin-mediated Rho-induced adherens junction control 

(Mehta and Malik 2006). An ability to widen endothelial gaps may explain 

why the presence of an EPR effect significantly increases cancer metastasis 

(Maeda et al. 1996) and infection dissemination  in pathogenic species such 

as Vibrio spp. and Pseudomonas spp., (Jones and Oliver 2009; Maeda et al. 

1999; Maeda and Yamamoto 1996) (Quinones-Ramirez et al. 2010). 

Continuous production of first generation BKs is further enhanced by 

downstream activation/release of second generation products and 

simultaneous BKR-1 upregulation (Komarova and Malik 2010; Marceau and 

Regoli 2004). BKR also contributes to delayed processes such as nuclear 

transcription and translation via nuclear factor kappa-light-chain-enhancer of 

activated B cells (Nf-����and caveolins.  

1.5.3.2 Nitric Oxide 

NO is synthesised from L-arginine by nitric oxide synthase (NOS), which 

exists in 3 different forms: endothelial (eNOS), inducible (iNOS) and neuronal 

(nNOS). eNOS and nNOS are constitutively expressed at low levels but may 

be rapidly activated by increased cytoplasmic calcium. iNOS is induced when 

macrophages and other inflammatory cells are activated by cytokines (Kumar 

2010). Prolonged generation of NO by BKR-1 may contribute to sustain VPE. 

An association between the NO pathway, BK, and VPE has been reported 

(Maeda et al. 2000; Palmer et al. 1988). It has since been shown that BK, 

despite its ability to activate the Gi/Gq pathway, cannot directly activate 
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myosin light chain kinase (MLCK) or Rho (Mehta and Malik 2006). Gi/Gq 

activation, however, increases NO synthesis (as well as phosphatidyl inositol 

(PI), cytosolic calcium and prostaglandins (PG) (Bhoola et al. 1992; Conklin 

et al. 1988). Ignatiovic et al. (2004) demonstrated that BKR-1 may stimulate 

human endothelial iNOS, with prolonged NO release. This NO release is 

important in inter-endothelial junction integrity (Predescu et al. 2005). In 

cancer, generation of NO through NOS activation significantly increases 

vascular permeability in a tumour size-dependent manner (Doi et al. 1998; 

Maeda et al. 1994; Wu et al. 1998). Within solid tumours, and in parallel to 

infection, .NO and O2
.- induce extremely reactive .ONOO-. Moreover, .NO and 

.ONOO- may also activate pro-MMP (1, 8, and 9) (Okamoto et al. 2001). 

Downstream targets of .ONOO- in infection and cancer include activation of 

MMPs and nitration of tyrosine residues in albumin (Maeda et al. 2003; 

Okamoto et al. 200$; Predescu et al. 2002). 

NO-releasing polymers for use in wound healing, and ischaemic stroke have 

been described in the literature, including cross-linked polyethylenimine (PEI) 

(Shabani et al. 1996; Smith et al. 1996), ethylene-vinyl acetate (EVAc) 

(Gabikian et al. 2002) and poly(vinyl alcohol) (Masters et al. 2002). NO-

releasing monofilament polypropylene (Engelsman et al. 2009) has been 

investigated for use in infection. NO is a promising antimicrobial alternative 

since reactive oxygen species (ROS) possess significant antimicrobial 

activity (Huh and Kwon 2011). Since NO is a mediator of VPE in infection, 

such polymers would theoretically benefit from NO-promoted EPR, whilst 

exerting an antimicrobial effect.  

1.5.3.3 Matrix metalloproteinases 

The endothelium is supported by an extracellular matrix (ECM), which 

contributes to the endothelium's size and charge barrier (Berrier and Yamada 

2007; Hassell et al. 2002; Kalluri 2003; Paulsson 1992). Permeabilisation of 

this barrier may be enhanced by BK-mediated induction of constitutively 

expressed host MMP (Webb et al. 2006), in part mediated through induction 

of pro-MMP-9 expression via mitogen activated protein kinase (MAPK), and 
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the  nuclear factor kappa beta (NfK��  and ERK/Elk-1 pathways (Hsieh et al. 

2008). Several bacterial proteases are capable of inducing human MMP 

(DeCarlo et al. 1998; Imamura 2003; Matsushita et al. 2006). Moreover, LPS 

induces the formation of BK (through HMWK) while upregulating BKRs 

(Aasen and Wang 2006; Seguin et al. 2008) simultaneously inducing 

cytokine formation and upregulating MMP-9 expression (Aasen and Wang 

2006). Activation of MMP may increase VPE in normal skin through a variety 

of pathways, including .ONOO- generation (Okamoto et al. 2001; Wu et al. 

2001) This evidence suggests that during infection, MMP's contribute to VPE 

directly and by acting as downstream effectors of the Kallikein-Kinin system, 

prolonging and amplifying its effect. 

1.5.3.4 Vascular Endothelial Growth Factor 

VEGF may potently enhance vascular permeability in bacterial infection 

(Hippenstiel et al. 1998; Maeda et al. 2000) as it does in solid tumours 

(Hostacka 2000; Maeda et al. 2003; Maeda et al. 1999; Senger et al. 1983; 

Tomaras et al. 2008). Activated VEGF receptor-2 (VEGFR-2) may "uncouple" 

VE-cadherin-�-catenin, which are essential for endothelial junction integrity 

(Weis et al. 2004). Activated small GTPase Rac promotes intercellular 

junction (ICJ) disassembly (Gavard and Gutkind 2006). Bradykinin activation 

of VEGF (Colman 2006; Johnson et al. 1999) may, therefore, provide an 

indirect route for BK-induction of Rho/Rac, and ICJ control. Furthermore, 

endothelial NO, which determines IEJ integrity, is up-regulated by 

VEGF,(Leung et al. 1989; Maeda et al. 2000; Murohara et al. 1998; 

Papapetropoulos et al. 1997) through Src (Duval 2007). Since a similar VPE 

effect is observed by picomolar VEGF concentrations and nanomolar (nM) 

BK concentrations, (Maeda et al. 2003) significant and sustained modification 

of the paracellular route may result from BK-VEGF-NO crosstalk.  
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1.5.3.5 Eicosanoid pathoways 

The eicosanoid pathway in inflammation may contribute to the infection-

induced VPE effect, in a similar manner to cancer. It is dependent on various 

regulatory elements, which may be BK-dependent or BK-independent, and 

these responses may be organ- or tissue- specific. BK induces cyclo-

oxygenase (COX) expression in various human cell types, including 

endothelial cells, cerebral arterioles, human airway epithelial cells, smooth 

muscle cells and fibroblasts (Conklin et al. 1988) which are responsible for 

upregulating prostaglandin (PG) synthesis in solid tumours (Cahill et al. 1988; 

Maeda et al. 1999). Prostaglandin I2 (PGI2) and prostaglandin E1 (PGE1) may 

induce VPE in a similar fashion to NO (Maeda et al. 2000) and this has been 

recently applied in vivo in Beraprost®, a synthetic prostacyclin analog (Maeda 

et al. 2003). BK results in endothelial production of PGE2 (Jose et al. 1981), 

activation of phospholipase A2 (PLA2) (Burch and Axelrod 1987) and 

phospholipase C (Gilroy et al. 1999), both of which metabolise arachidonic 

acid for PGE2 synthesis. BK receptors play distinct roles within this pathway. 

Within human umbilical vein endothelial cells (HUVEC) BKR-2, but not BKR-

1, induces increased synthesis and activation of cytosolic PLA2 in a Ca2+-

dependent manner which, in turn, induces the synthesis of PGI2 (Yamasaki et 

al. 2000).  In these models, BK stimulation of COX-1 is the main pathway by 

which PGE is released. COX-2 stimulation has an initial pro-VPE effect 

(production of PGE2), later exerting an anti-VPE effect through 15-deoxy,12, 

14-PGJ2 (Gilroy et al. 1999).  

Microbial-induced VPE may also be induced by BK-independent 

mechanisms, such as P. aeruginosa Exotoxin U (ExoU) (Hauser et al. 1998; 

Holder et al. 2001; Sato and Frank 2004; Sawa et al. 1998; Shaver and 

Hauser 2004). 

1.5.4 Relevance across human pathogenic bacteria 

EPR-enhancing mechanisms appear to be widespread among human 

bacterial pathogens. Successful exploitation of this phenomenon for targeted 

antimicrobial delivery is dependent on the extent of vascular permeability, its 
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ubiquitous occurrence in pathogenic bacteria and, importantly, the magnitude 

of this effect. The close evolutionary conservation of the kallikrein-kinin 

cascade across several kingdoms and species (Marcondes and Antunes 

2005), and the presence of multiple activators of an enzymatic cascade 

suggests that BK-induced VPE may be common feature of human microbial 

pathogens. 

1.5.4.1 Direct bacterial protein activation 

Several major pathogens, including the ESKAPE organisms are known to 

enhance vascular permeability. This may occur via direct protease activation 

or through inactivation of natural inhibitors for major effector systems (Tables 

1.3 and 1.4). Targets for P. aeruginosa alkaline phosphatase and elastase 

stimulation of BK production, include HF (Tanaka et al. 1992) mediated via 

MMPs (alkaline protease and elastase) (Machado et al. 2010; Maeda et al. 

1993; Maeda and Molla 1989; Maeda and Morihara 1995; Molla et al. 1989). 

Human pre-kallikrein (PK) may be activated in vitro by P. aeruginosa-derived 

elastase and protease (Molla et al. 1989). Effects on VPE are also likely to be 

localised to the pathophysiological locus or in the interstitial fluid, rather than 

in blood, due to the presence of �2-macroglobulin in the latter (Shibuya et al. 

1991). P. aeruginosa expression of alkaline phosphatase and elastase are 

widespread, therefore it is expected that induction of EPR may be common.  

In a comparative study of sepsis patients and healthy controls, Soares et al. 

(2009) showed that components of the kallikrein-kinin system, including 

HMWK, are significantly depleted in infection. Acinetobacter spp. secretes a 

vascular permeability factor (VPF), which significantly increases vascular 

permeability in vitro (Hostacka 2000; Tomaras et al. 2008). However, 

Acinetobacter spp. and Klebsiella spp. also significantly activate the 

kallikrein-kinin cascade via LPS (Section 1.5.2). The presence of multiple 

activators of an enzymatic cascade suggests a significant EPR effect is 

evident.  

A study performed in healthy volunteers has demonstrated that E. coli 

induces significant VPE by LPS-induction of VEGF (Mittermayer et al. 2003). 
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Evans (1973) has also investigated the VPE properties of E. coli enterotoxin, 

and these studies demonstrated that accumulation of Evans blue dye in 

rabbit models was linearly related to dermal concentrations of enterotoxin. 

They hypothesised that Evans blue dye binds tightly to albumin, creating a 

macromolecule that facilitated permeability and retention. Furthermore, curli 

fibres expressed by E. coli can bind and assemble contact factors resulting in 

BK release (Ben Nasr et al. 1996; Frick et al. 2007; Herwald et al. 1998; 

Persson et al. 2000). The enzymatic activity of Enterobacter spp. includes 

several MMPs, including gelatinase (secreted by E. aerogenes, E. cloacae 

and Citrobacter spp.) and elastase (Goncalves et al. 2007) which may 

contribute to an EPR effect through increasing vascular permeability (Section 

1.5.1).  

1.5.4.2 Inactivation of regulatory protease inhibitors 

Inhibition of regulatory host protease inhibitors may also play a significant 

contributory role in microbial VPE (Table 1.5). The human kallikrein-kinin 

cascade is normally controlled by a well-characterised system of inhibitors. 

Pseudomonal proteases (PAP and elastase), and serratial proteases may 

effectively inactivate serine protease inhibitors (SERPINS), such �1-protease 

inhibitor (Kress 1986; Molla et al. 1988; Morihara et al. 1979), �2-antiplasmin 

and �2-macroglobulin (Molla et al. 1986; Virca et al. 1982). A separate 

function is the ability of the inhibitor-�2-macroglobulin complex to be 

internalised via �2-macroglobulin receptors. After internalization, 

regeneration of the free protease may cause cell death (Maeda and Molla 

1989). However, unless �2-macroglobulin was significantly depleted 

systemically, the effect would most likely be localised (Shibuya et al. 1991). 

Besides ubiquitous bacterial components capable of low-level VPE activation 

(Section 1.5.2), there are several salient examples of the evolutionary 

conservation of EPR mechanisms. Porphyromonas gingivalis Gingipains R 

and K, whose role in VPE production are widely acknowledged have 

evolutionarily well-conserved active sites (Imamura 2003). Their catalytic 

dyad is common to caspases, clostripain and mammalian legumain, 
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Table 1.5: Bacterial inhibition of specific protease inhibitors 

 

Protease Inhibitor   Species/Protease Reference 

SERPINS ��������
��
�������
�
���
��
��
�
�����
��
 !"���������
�����

Morihara ��
�� (1979) 
Kress���
�� (1986) 
Molla���
�� (1984F�$84,> 
 

�1-protease inhibitor ��������
��
�������

���
��
��
�
������
��� !"�����
��������
����

Morihara ��
�� (1979) 
Kress���
�� (1986)�
Potempa���
�� (1998) 
Molla ��
�� (1988)�
Nelson ��
�� (1998)  
 

�2-antiplasmin ��������
��
�������

���
��
��
�
�����

Virca ��
�� (1982) 
Molla ��
�� (1986)  
 

�2-antiplasmin ��������
��
�������
�
���
��
��
�
������
��� !"�����
��������
����
��

Virca ��
�� (1982) 
Molla ��
�� (1986)  
 

�2-macroglobulin ��������
��
�������
�
���
��
��
�
������

Virca ��
�� (1982) 
Molla ��
�� (1986)  
Shibuya ��
�� (1991) 
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suggesting they are probably evolutionarily-related (Chen et al. 1998). Some

of these VPE-generating proteases been reported as members of a core of 

key factors responsible for colonisation and infection, by many infectious 

strains (Dubin 2003). These findings all suggest a common, evolved system 

for sustaining VPE at sites of bacterial infection. 

1.6 Targeting potential of the EPR effect in infection

Infected patients are prone to rapid deterioration (Section 1.2.2). The 

successful clinical exploitation of the EPR effect in the treatment of infection 

will, ultimately, depend upon an expeditious establishment of an EPR effect 

(Opal and Cohen 1999). Several studies report that rapid, passive, size-

based accumulation around infected foci is feasible in vivo. 99Tc-labelled

poly(ethylene glycol)-coated liposomes (99mTc-PEG-liposomes) accumulate 

around an infected locus within 2 h (Dams et al. 1999), and gallium-

transferrin can clearly delineate intra-abdominal abscesses within 4 h of 

injection (Dams et al. 1999). Radiolabelling studies have demonstrated that 

radiolabelled PEG-coated liposomes preferentially permeate into, and are 

specifically and selectively retained at sites of infection (Laverman et al.

1999; Laverman et al. 2001a; Oyen et al. 1996). Sikkink and co-workers later 

demonstrated a significant quantitative correlation between uptake of these 

particles and the size of intra-abdominal abscesses (Sikkink et al. 2009). 

Komarek et al. (2005) reported that 99m Tc- labelled proteins including 

aprotinin (6,512 g/mol) allow rapid localisation around infected foci induced in

vivo animal models and their concentration was up to 6.5 times higher than 

control tissue. More recently, Techentium99 labelled antimicrobial peptide 

ubiquicidin (UBI), conjugated to low molecular weight PEG (poly 

(ethyleneglycol)–N-(N-(3-diphenylphosphinopropionyl)glycyl)-S-tritylcysteine 

ligand), (conceived as radiological marker) a  has been shown to selectively 

and specifically accumulate around infected sites in an in vivo (animal) model 

of infection, within 2 h (Melendez-Alafort et al. 2009). This situation contrasts 

with anti-cancer drug design where a long-circulating "stealth" formulation 

approach is preferred (Duncan and Gaspar 2011; Gaspar and Duncan 2009).  
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1.7 Rationale for the design of a polymer-antibiotic conjugate 

The value of polymer therapeutics in treating life-threatening disorders such 

as neoplasia, hematological and immune disease (Duncan et al. 2005) has 

been well-established. More recently, the scope of polymer therapeutics has 

widened to include wound healing, and viral disease (Hardwicke 2009; 

Wannachaiyasit et al. 2008). However, there are currently no antibiotic 

products aimed at Gram-negative infection designed on the concept of a 

polymer therapeutic using PUMPT and EPR. Rationalised construction of an 

antibiotic polymer therapeutic may offer an interesting and innovative solution 

to the treatment of infective disease. It is evident that the literature entertains 

the notion of a widespread, harnessable EPR effect in infection. Conjugation 

offers the possibility of masking the bioactive in transit, shielding the payload 

itself from biofouling and reducing toxicity to the body. It may also be 

hypothesised that a macromolecular enzyme usually present in limited 

quantities in the blood (e.g. plasma amylase) may accumulate at the target 

site, to stimulate localised, re-instatement of the bioactive. This would favour 

enzymatically mediated, locally-triggered unmasking (Duncan et al. 2008). 

Additionally, evidence presented in this section supports the notion that the 

macromolecular size bestowed on a "small molecule" antibiotic through 

polymer conjugation offers the possibility of passive targeting to an infected 

focus where the respective enzyme provides local re-instatement of 

bioactivity (Section 1.4.3). Classical design of anticancer polymer-drug 

conjugates requires polymers that may be used at the highest possible 

molecular weights/modifications to promote the greatest possible EPR and 

"stealth" characteristics as a paramount concern (Duncan et al. 2005). 

However, application of polymer therapeutics for the treatment of patients 

who have acute life-threatening infection (Section 1.2.1) requires a construct 

capable of affording masking during an expeditious transit to an infected site, 

as well as early and sustained unmasking.   

1.8 Aims and experimental hypotheses 

The aim of this Study is to develop a prototype polymer-antibiotic conjugate 

based on colistin that may be customised by polymer modification and 
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binding chemistry to afford selective, controlled release at the site of 

infection. The specific objectives of this study were:  

1. To establish and physicochemically characterise a library of bioresponsive 

dextrin-colistin conjugates from a range of succinoylated intermediates, 

geared towards use in acute Gram-negative infection 

2. To characterise the activity of candidate dextrin-colistin conjugates against 

a range of multidrug-resistant Gram-negative bacteria

3. To evaluate the pharmacokinetic / pharmacodynamic (PK/PD) profile of 

colistin, dextrin-colistin and the colistin/dextrin-colistin conjugates in terms of 

unmasking/drug release and antibacterial activity using in vitro model 

systems

4. To perform an in vivo pharmacokinetic evaluation of the lead agent 

through an ascending dose study 
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Chapter Two 

General Methods 
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2.1 Chemicals 

2.1.1 General chemicals and reagents 

Aprotinin (from bovine lung), cytochrome C (from equine heart), carbonic 

anhydrase (from bovine erythrocytes), bovine serum albumin (BSA), and 

alcohol dehydrogenase (from Saccharomyces cerevisiae), blue dextran; 

colistin sulfate (Batch C4461, H 15,000 U/mg activity), ethanol, acetic acid 

(glacial), dimethylsulfoxide (DMSO), hydrochloric acid, human salivary α-

amylase, ninhydrin, hydrindantin, lithium acetate dihydrate, ethanolamine, 4-

dimethylaminopyridine (DMAP), anhydrous N,N-dimethylformamide (DMF), 

succinic anhydride, diethyl ether, Lugol's iodine, type 1 dextrins from  corn 

starch, acetronitrile (ACN)*, boric acid*, 9-fluorenylmethyl chloroformate 

(FMOC-Cl)*, tetrahydrofuran (THF)*, methanol*, sodium bicarbonate*, and 

bromothymol blue were purchased from Sigma Aldrich (Poole, UK). Sodium 

hydrogen orthophosphate, potassium dihydrogen orthophosphate, potassium 

chloride, and sodium hydroxide (NaOH), copper (II) sulphate pentahydrate, 

bicinchoninic acid solution (BCA) and 1-ethyl-3-[3-dimethylaminopropyl] 

carbodiimide hydrochloride (EDC) were purchased from Thermo Fisher 

Scientific (Loughborough, UK). Pullulan standards were purchased Polymer 

Laboratories (Church Stretton, UK). Sterile 0.9% sodium chloride solution 

was obtained from Baxter (Berkshire, UK). Foetal calf serum was purchased 

from Invitrogen (Paisley, UK). N-hydroxysulfosuccinimide (sulfo-NHS), 

dextrin type 1 (13,900 g/mol) from potato starch, was purchased from Fluka 

(Buchs, Switzerland). Strata® C18 solid phase extraction (SPE) cartridges 

(100 mg sorbent/mL, 55 Im particle size, 70 Å pore size) were purchased 

from Phenomenex (Torrance, CA, USA). Sep-pak C18 SPE cartridges (100 

mg sorbent/mL, 55-105 Im particle size) were purchased from Waters 

(Mass, USA). 

Trypticase soy agar (TSA), trypticase soy broth (TSB) and cation adjusted 

Mueller Hinton broth (CAMHB, lot 43145) were purchased from Oxoid 

(Basingstoke, UK). Polyvinylidene fluoride (PVDF) sterile membrane syringe 

filters (0.22 Im) were from Elkay (Basingstoke, UK). Tegaderm® semi-
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permable dressings were purchased from 3M Healthcare (Neuss, Germany). 

Sterile graduated plastic syringes were from BD plastipak (Madrid, Spain). 

Phadebas® assay kits were from Magle Life Sciences (Lund, Sweden). 

MaxSignal® enzyme-linked immunosorbent assay (ELISA) kits were 

purchased from Bio Scientific Corp. (Austin, USA). Unless marked (*) to 

indicate HPLC grade, all chemicals were of analytical grade.    

2.2 Equipment 

2.2.1 General equipment for conjugate synthesis 

100 mL and 10 mL round-bottomed flasks, 25 mL flat-bottomed beakers and 

rubber stoppers, were purchased from Sigma Aldrich (Poole, UK). 

Spectra/POR 7™ regenerated cellulose dialysis membrane molecular weight 

cut-off (MWCO) 2,000 and 10,000 g/mol were purchased from Spectrum 

Laboratories Inc. (California, USA). Filter paper, (5-13 Im pore size) was 

purchased from VWR International (Lutterworth, UK). Vivaspin® 6 centrifugal 

concentrators were obtained from Sartorius Stedim Biotech (Goettingen, 

Germany). 

2.2.2 General equipment for microbiology 

Sterile flat-bottomed 96-well plates, sterile universal containers, 15 mL and 

centrifuge tubes were purchased from Starstedt (Leicester, UK). Microbank 

vials were purchased from Prolab (Wirral, UK). The microbiological incubator 

was from LTE Scientific (Greenfield, UK). The orbital shaking incubator was 

from Stuart Ltd (Stone, UK). The microflow cabinet was from Bassaire 

(Southampton, UK). The Class II, laminar flow Astec Microflow 2® cabinet 

was from Bioquell (Andover, UK).  

2.2.3 Analytical equipment 

2.2.3.1 Spectrophotometry: Ultraviolet-visible (UV-vis) 

A Fluostar Optima microplate reader (BMG Labtech, Aylesbury, UK), 

equipped with 540 nm and 570 nm absorption filters, was used, with BMG 

Optima™ software version 22.10.r2 and firmware v.1.23. A Dupont 800 
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UV/Vis Spectrophotometer was purchased from VWR International 

(Lutterworth, UK).  

2.2.3.2 Fourier Transform Infrared Spectroscopy (FTIR) 

A Nicolet 380 FTIR spectrophotometer, fitted with a Nicolet Smart-Arc diffuse 

reflectance accessory, was from Thermo Fisher Scientific (Loughborough, 

UK). Nicolet E-Z Omnic software version 7.4.127 was used for data 

collection.  

2.2.3.3 Gel permeation chromatography (GPC) 

The aqueous GPC, equipped with a Jasco® HPLC pump and two TSK-gel 

columns in series (4000 PW, followed by 3000 PW) and a guard column 

(progel PWXL), was purchased from Polymer Laboratories (Church Stretton, 

UK). The eluate was monitored using a differential refractometer (Gilson 153, 

Gilson, Inc., Middleton, USA). Data was collected and analysed using Cirrus 

GPC software version 3.2. 

2.2.3.4 Fast protein liquid chromatography (FPLC)  

An ÄKTA FPLC system, from GE Healthcare (Amersham, UK), was used. 

The unit was connected to a pre-packed Superdex 75 10/300 GL column and 

a Frac-950 fraction collector (GE Healthcare). The UV detector data was 

collected and analysed using Unicorn software version 5.20. 

2.2.3.5 High pressure liquid chromatography (HPLC)  

The HPLC system from Thermo Fisher Scientific (Hemel Hempstead, UK) 

consisted of a Dionex ICS-3000 suite connected to a Dionex AS autosampler 

and a Dionex RF 2000 fluorescence detector, with a data processing unit. 

Data was collected and analysed using Chromeleon® software suite version 

6.8.3. An Onyx® monolithic C18 guard (4.6 mm internal diameter) was 

connected to Phenomenex C18 (4.6 mm internal diameter) reverse-phase 

HPLC columns of various lengths from 50-210 mm (Phenomenex, Torrance, 
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USA). Detection by monitoring for fluorescence was performed at an 

excitation wavelength of 260 nm and an emission wavelength of 315 nm.  

2.2.3.6 Miscellaneous equipment 

A Hanna 209 pH meter was purchased from Hanna Instruments 

(Bedfordshire, UK). Needles and syringes were purchased from Tyco 

Healthcare (Gosport, UK). An ALC-PK 120-R refrigerated centrifuge 

purchased from ALC™ SpA (Cologono Monzeze, Italy) was used for 

centrifugation. Water was purified by a Milli-Q system (Millipore, Bedford, 

MA, USA). A freeze-dryer (Edwards Benchtop Moduylo) connected to a high 

vacuum pump was purchased from Edwards High Vacuum (Sussex, UK). 

2.3 Bacterial isolates 

Clinical bacteriological isolates, Pseudomonas aeruginosa PA01 American 

Type Culture Collection (ATCC) 15692 and Escherichia coli National 

Collection of Type Cultures (NCTC) 10418 were donated by Dr Robin Howe 

(Public Health Wales Microbiology Laboratory, University Hospital of Wales, 

Cardiff, UK) and Dr. Ann Lewis (Public Health Wales Microbiology 

Laboratory, Singleton Hospital, Swansea, UK). Bacillus subtilis ATCC 6633 

was purchased from Thermo Fisher Scientific, Basingstoke, UK. Multiple 

drug resistance was confirmed from the referring laboratories.  

2.4 Animals 

Thirty-five male Sprague-Dawley® rats were purchased from Charles River 

Laboratories (Edinburgh, UK). These were 8-10 weeks old at dosing. Animals 

were fed a standard laboratory diet of known formulation, which did not 

contain colistin bacitracin or polymyxins (SDS Rat and Mouse maintenance 

diet no 1, Special Diet Services Ltd, Essex, UK). 

2.5 Methods 

This section details general methods used in these studies. Specific methods 

are described within the chapters where they are used.  
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2.5.1 Purification of dextrin-colistin conjugates 

FPLC was used to purify dextrin-colistin conjugates to remove unwanted 

protein and cross-linking agents by separation according to their molecular 

weights. A prepacked Superdex® 75 10/300 GL column was washed with 2 

column volumes (~50 mL) of filtered (0.2 Im) and degassed double-distilled 

water (ddH2O). Next, the column was equilibrated with 2 column volumes of 

filtered and degassed mobile phase, phosphate buffered saline (PBS, pH 

7.4) before use. This was repeated periodically after storage, service and 

maintenance. First the column was calibrated (0.5 mL/min flow rate) using 

standardised proteins of various molecular weights: aprotinin from bovine 

lung 6,500 g/mol; cytochrome c from bovine heart 12,400 g/mol; carbonic 

anhydrase from bovine erythrocytes 29,000 g/mol; albumin from bovine 

serum 66,000 g/mol; and alcohol dehydrogenase 150,000 g/mol. The 

calibration curve is reported in Figure 2.1. The vortexed reaction mixture was 

centrifuged (5 min, 1,200 g, 10 oC) and supernatant (500 μL) was injected 

(complete fill method) with PBS (pH 7.4) as moving phase (0.5 mL/ min). The 

elution profile was monitored over 30 mL and fractions corresponding to the 

dextrin-colistin conjugate (7-13 mL) were collected, pooled, desalted and 

concentrated by ultrafiltration. Samples were transferred to Vivaspin® 

centrifugal concentrators (MWCO 5,000 g/mol) and centrifuged at 4000 g. 

The final product was washed in three times its volume with ddH2O. Finally 

the dextrin-colistin conjugate was lyophilised to constant weight and stored at 

-20 oC until required. After use, the column was thoroughly washed with two 

column volumes of eluant, followed by two column volumes of ddH2O, and 

finally stored in 20 % v/v ethanol. 

2.5.2 Characterisation of dextrin-colistin conjugates 

2.5.2.1 Characterisation by GPC 

Dextrin-colistin conjugates were analysed using aqueous phase GPC to 

determine molecular weight. Polysaccharide (pullulan) standards (molecular 

weight 738-788,000 g/mol) were used to produce a calibration curve, from 

which the weight average molecular weight and polydispersity could be 



46 

 

 
 
    
  (a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  (b) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 2.1: FPLC calibration using various protein molecular weight standards. Panel (a) 
shows the chromatogram of the protein standards (6,500 to 66,000 g/mol). Panel (b) shows 
a typical FPLC molecular weight calibration curve for estimation of molecular weight.  
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calculated (Figure 2.2). All samples were prepared in PBS (3 mg/mL, pH 7.4) 

and approximately 60 μL of each solution was injected into a 20 μL injection 

loop in turn. Filtered, degassed PBS was used as a mobile phase (flow rate 

1.0 mL/min). Refractive index (RI) detection was used and the data was 

analysed using PL Caliber™ instrument software.  

2.5.2.2 Characterisation by FPLC 

FPLC (as described previously) was also used to estimate the ratio of free 

and bound colistin. After appropriate equilibration and calibration, samples of 

purified conjugate (150 μL, 3 mg/mL) were injected into a 100 μL loop and 

allowed to run at a flow rate of 0.5 mL/min. Area of the peaks was used to 

determine the ratios of area under the curve (AUC).   

2.5.2.3 BCA protein assay 

A BCA assay was used to determine the total protein content of the dextrin-

colistin conjugates (Smith et al. 1985). This reaction involves two steps. The 

Biuret reaction is the first step whereby copper chelates with protein in an 

alkaline environment. In the second step of the reaction, BCA reacts with the 

reduced (cuprous) cation. The intense purple-coloured reaction product 

results from the chelation of two molecules of BCA with one cuprous ion. The 

BCA/copper complex is water-soluble and exhibits a strong linear 

absorbance with increasing protein concentrations. 

The BCA assay was conducted in a 96-well plate using colistin sulfate as a 

calibration standard. BCA reagent was prepared by mixing 1 mL BCA: 20 μL 

Cu(II)SO4. Reference wells were prepared to contain 20 μL colistin standard 

(0-1 mg/mL, n=3) or dextrin-colistin conjugate (1 and 3 mg/mL, n=4), and 

BCA reagent (200 μL). The microtitre plate was gently agitated and then left 

in the dark (37 oC for 20 min). Absorbance was then measured 

spectrophotometrically at 544 nm. A typical calibration curve is illustrated in 

Figure 2.3.  
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Figure 2.2: GPC calibration using pullulan molecular weight standards. Panel (a) shows a 
chromatogram of the pullulan standards (738-788,000 g/mol). Vb (20 mL) represents the bed 
volume. Panel (b) represents a typical calibration curve for estimation of sample molecular 
weight.  
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Figure 2.3:  A typical BCA assay calibration curve obtained using colistin sulfate. Data 
shown represents mean ± SD (n=3).  
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2.5.2.4 Ninhydrin assay 

Ninhydrin, a potent oxidising agent, reacts with primary amines (pH 4-8) to 

produce Ruhermann's purple pigment enabling spectrophotometric 

quantification of amine content (Plummer 1978). First, lithium acetate buffer 

solution (4 M) was prepared by dissolving lithium acetate dihydrate (40.81 g) 

in ddH2O (60 mL). Glacial acetic acid was added until the solution reached 

pH 5.2 and the solution was then made up to a final volume of 100 mL with 

double distilled water (ddH2O). Ninhydrin (200 mg) and hydrindantin (30 mg) 

were next dissolved in DMSO (7.5 mL) and lithium acetate buffer (2.5 mL). 

Buffered ninhydrin reagent (86 μL) was added to an equal quantity of sample 

/ calibration standard solution and heated in a waterbath for 15 min at 100 
oC. After allowing the solutions to cool to room temperature, ethanol (50 % 

v/v in ddH2O, 130 μL) was added and mixed thoroughly. An aliquot of each 

sample/standard solution (200 μL) was added to a well in a 96-well plate in 

triplicate and analysed spectrophotometrically at 570 nm. Standard samples 

were prepared by diluting ethanolamine (0 - 1.1158 mM) in PBS (pH 7.4). A 

typical calibration curve is illustrated in Figure 2.4. 

2.5.3 Microbiological characterisation of dextrin-colistin conjugates 

2.5.3.1 Equipment sterilisation 

In order to ensure sterility, microbiology incubators, safety cabinets, 

equipment and all working surfaces were sprayed with 70 % v/v ethanol in 

aqueous solution. Those items not supplied pre-sterilised were sterilised by 

either autoclaving (120 oC, 15 lb/m2, 15 min) for glassware, certain plastics,  

PBS  and  ddH2O or microfiltration  (0.2 μm)  for  solutions.  

2.5.3.2 Agar preparation 

TSA was prepared as per manufacturer instructions (Oxoid Limited 2011a). 

Briefly, TSA (40 g) was added to 1 L ddH2O and stirred vigorously until fully 

dissolved. This was sterilised by autoclaving at 121 °C for 15 min. Once 

cooled to 56 °C in a sterile waterbath, agar aliquots was poured into sterile 
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Petri dishes in a microflow cabinet and left to cool until solid. The prepared 

plates were stored inverted at 2-8 °C in a refrigerator, until required. Fresh 

TSA plates were produced every 15 days.  

2.5.3.3 Preparation of microbiological broths 

TSB was prepared as per manufacturer's instructions (Oxoid Limited 2011c). 

Briefly, TSB (30 g) was added to ddH2O (1 L) and stirred throroughly until 

fully dissolved. Aliquots (~200 mL) were placed into glass bottles, which were 

sealed and sterilised by autoclaving at 121 °C for 15 min. 

MHB was prepared as per manufacturer's instructions (Oxoid Limited 2011b). 

Briefly, MHB (21 g) was added to ddH2O (1 L) and stirred throroughly until 

fully dissolved. Aliquots were placed into final containers and these were 

sterilised by autoclaving at 121 °C for 15 minutes.  

2.5.3.4 Preparation of microbiological cultures 

Bacterial isolates were grown from frozen stock (-80 oC). After warming to 

room temperature, each isolate was streaked on a TSA plate, and incubated 

overnight (35 oC with ambient air).  

2.5.3.5 Preparation of overnight cultures 

All overnight broth cultures were produced in TSB and were inoculated as 

follows. Four morphologically similar colonies were touched with a sterile 

loop and used to inoculate sterile TSB (10 mL) in a sterile 25 mL universal 

container. This preparation was then incubated overnight (35 oC with ambient 

air) prior to use.  

2.5.3.6 Minimum Inhibitory Concentration (MIC) assay  

MIC assay with serial broth microdilution was used to determine antimicrobial 

susceptibility, in sterile 96-well plates. In the first column, a starting 

concentration of� test compound�was prepared (1,024 I�/�L) in�CAMHB (200 

IL) in triplicate. Serial log2 dilutions were performed for each test compound 

in subsequent columns. Overnight cultures were diluted in sterile PBS to an 
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optical density (OD625) of between 0.08 and 0.10 (McFarland standard). The 

bacterial cultures were then diluted ten-fold in CAMHB and 5 μL of the final 

solution was added to each well of the 96-well plate within 30 min of 

inoculum preparation. The microtitre plates were then wrapped in parafilm 

and incubated at 35-37 oC in ambient air for 18-20 h (Andrews 2006). The 

lowest concentration at which there was no visible growth (the first clear 

well), was taken as the MIC of the test compound. The modal result (n=3) 

was reported. A significant difference in two MIC readings was accepted if 

they differed by more than a two-fold dilution (Andrews 2006). A typical plate 

layout for MIC determination is reported in Figure 2.5. 

2.5.3.6.1 Quality control procedures 

Each MIC determination was accompanied by growth, sterility and quality 

controls. Growth controls (no antibiotic) were considered acceptable if they 

showed heavy turbidity. Sterility controls were considered acceptable if they 

were free from visible bacterial growth. After reading the MIC, a purity control 

was performed by subculturing growth controls and the first turbid well of 

each test onto TSA plates. Each TSA plate was then incubated for a further 

18-20 h (35 oC with ambient air). Plates were then visually inspected to 

confirm homogeneity of colonies.  Antimicrobial susceptibility of E. coli NCTC 

10418 to colistin (or colistin and ciprofloxacin for checkerboard assays) 

determined with each batch of MIC determinations (in triplicate) was 

considered acceptable if within one serial dilution from published standards 

(Andrews 2006).   

2.5.4 ELISA ������� 

Colistin content was also estimated using an ELISA kit according to the 

manufacturer's instructions. Typically, sample (40 IL) was mixed with ddH2O 

(40 IL) in an Eppendorff tube. One part colistin extraction buffer (diluted ten-

fold in ddH2O) was added to four parts 20% v/v acetonitrile. Aliquots of the 

resulting solution (240 IL) were added to an Eppendorff tube followed by 

cleanup buffer I (16 IL) and vortexed for 10 s. After addition of cleanup buffer 

II (16 IL) the resulting solution was centrifuged (10 min, 4000 g, 21 oC). 
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Supernatant (75 μL) was extracted, diluted 100-fold in ddH2O, re-vortexed 

and assayed using the ELISA kit. After addition of stop buffer, the 

absorbance was measured at 450 nm. A standard calibration curve (range 

0.5 to 50 μg/L) was constructed by plotting the mean relative absorbance (%) 

obtained from each reference standard against its concentration on a 

logarithmic curve (Figure 2.6). Sample concentrations of colistin were derived 

by interpolation.  

2.6 Statistical analysis 

Unless otherwise stated, data was expressed as mean ± the error, expressed 

as 1 standard deviation (SD). Statistical significance was set at p < 0.05 

(indicated by *). Where only two groups were compared, Student's t-test for 

small sample sizes was used (Swinscow and Campbell 2002). When more 

than two groups were compared, significance was evaluated using analysis 

of variance (ANOVA). Goodness-of-fit was investigated with coefficients of 

determination (R2) using least-squares regression. Unknown values were 

directly interpolated from the respective best-fit calibration curve. All 

statistical analyses were performed using GraphPad Prism version 5.00 for 

Windows, (San Diego USA). Specific statistical techniques are described in 

the chapters where they are used.  
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Chapter Three 

Synthesis and Optimisation of Dextrin-colistin Conjugates 
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3.1 Introduction 

This chapter aims to synthesise and characterise a rationally designed library 

of dextrin-colistin conjugates for subsequent biological evaluation. Polymer-

protein conjugates classically exhibit a tripartite structure, consisting of a 

polymer, linker and the bioactive payload (Duncan 2003). In this study, the 

polymer is intended to be a covalently bound structural component of the 

construct without intrinsic activity. Ideally the polymer should possess 

functional groups or permit introduction of functional groups that activate the 

polymer and allow conjugation to the bioactive payload, generating a stable 

masked conjugate. It should also lend itself to enzyme-triggered degradation, 

unmasking the bioactive payload without generating toxic by-products 

(Chapter 1). To design a polymer conjugate that would have the required 

stability, pharmacokinetic profile and pharmacological activity, features such 

as polymer molecular weight, conjugation chemistry and number of reactive 

groups on the polymer were initially considered.  

3.1.1 Dextrin  

Dextrin is a �-1, 4 poly (D-glucose) polymer obtained from starch hydrolysis. 

Dextrins are largely linear polymers with limited (< 5%) branching in the �-1, 

6 position and an established safety profile (Federal Drug Agency 2010; Guo 

et al. 2002). Dextrin's versatility to several clinical applications has been well-

established. It is used as a supplement for renal and hepatic failure 

(Woolfson et al. 1976) as a carrier for intraperitoneal 5-fluorouracil (Davies 

2006; Kerr et al. 1996) and as a component of peritoneal dialysis solutions 

(Peers and Gokal 1998).  

The enzyme-triggered degradation of dextrin offers several advantages, not 

least that degradation results in non-toxic metabolites. Amylase triggers 

hydrolysis of �-1,4 glucosidic linkages forming maltose and iso-maltose 

which are subsequently metabolised to glucose by tissue maltases, and/or 

excreted into urine (Burkart 2004; Davies 1993; Roberts and Whelan 1960). 

Dextrin also lends itself well to masking of protein activity by conjugation and 

subsequent �-amylase-triggered reinstatement. The PUMPT concept was 
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first characterised using dextrin as the model polymer (Duncan et al. 2008). 

Since then, several bioresponsive dextrin conjugates have been reported 

(Table 3.1). This body of evidence provides a robust rationale for dextrin to 

be chosen as the model polymer.  

3.1.2 Linker and activation chemistry 

A key requirement for the optimised synthesis of a polymer-protein conjugate 

is the introduction of a linker through a reproducible reaction that allows 

targeted modification, while generating the least toxic or immunogenic by-

products (Duncan 2003). However, dextrin does not bear convenient 

carboxyl or amino groups to which the bioactive may be coupled and requires 

functionalisation. In contrast to most other methods used to functionalise 

dextrin (Table 3.2), succinoylation involves relatively non-toxic reagents and 

by-products (Hreczuk-Hirst et al. 2001b). Any residual succinate would be 

naturally metabolised to fumarate by succinate dehydrogenase, and non-

toxic metabolites (Bruice 1998; Olson 1997). The number of reactive groups 

can be controlled by altering the reactant ratios (Hreczuk-Hirst et al. 2001a).  

Previous studies have also reported the use of succinoylation as a means of 

controlling the rate of dextrin enzymolysis and regeneration of protein/peptide 

activity through succinoylation (Duncan et al. 2008; Hreczuk-Hirst et al. 

2001a; Treetharnmathurot et al. 2009). Therefore, the use of optimally 

succinoylated dextrins would introduce the opportunity of rationalising 

conjugate design to its specific application in infection. For these reasons, 

succinoylation was employed to functionalise dextrin. 

3.1.3 The bioactive payload 

Several considerations governed the selection of the antibiotic payload. First, 

the choice antibiotic should be structurally characterised and permit 

conjugation via accessible amine groups. It should also posess established 

efficacy against Gram-negative MDR bacteria, but be limited by a significant 

toxicity profile and an indiscriminate volume of distribution to a "last treatment 

resort" niche.  
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Colistin is an antimicrobial peptide that retains excellent activity against 

Gram-negative MDR bacteria (Gales et al. 2011). Small molecules such as 

colistin (molecular weight 1,155 g/mol) readily traverse blood vessels to 

distribute indiscriminately along their volume of distribution, facilitating their 

toxicity (Chapter 1). Colistin's significant toxicity has been well-established 

(Conly and Johnston 2006; Vaara 2010; Wunsch et al. 2012). Colistin is an 

amphiphilic lipodecapeptide composed of a polycationic hydrophilic cyclic 

heptapeptide moiety attached to a tri-peptide side-chain. Attached to the 

tripeptide side-chain's N-terminus is a hydrophobic fatty-acyl tail (Orwa et al. 

2002; Suzuki et al. 1963). It consists of at least 30 closely related 

components (Govaerts et al. 2003; Ikai et al. 1998; Orwa et al. 2002) of 

which colistin A (polymyxin E1) and colistin B (polymyxin E2) are the major 

constituents (Orwa et al. 2002). They differ in that they are acylated by (S)-6-

methyloctanoic acid and (S)-6-methylheptanoic acid, respectively (Velkov et 

al. 2009).  

Colistin shows an intimate relationship between structure and activity which 

needs to be considered when selecting the conjugation process. Colistin's 

structural integrity is essential for its bactericidal function. Colistin's polar and 

hydrophobic domains form two distinct three-dimensional faces, conferring 

structural amphipaticity (Velkov et al. 2009). The polar face of colistin 

interacts with the polar lipid-A head, while the hydrophobic face inserts into 

the LPS fatty-acyl layer (Meredith et al. 2009; Pristovsek and Kidric 1999, 

2004). Loss of the tripeptide tail moiety, fatty acyl chain and N-terminal amino 

acid results in a compound that does not bear antimicrobial activity (Nakajima 

1967; Vaara 1992). Acyclic polymyxin analogs also lack antimicrobial activity 

(Kline et al. 2001). Colistin's 5 D-amino groups per molecule mediate 

bactericidal activity and exert significant toxicity (Perazella 2009; Vaara et al. 

2008; Velkov et al. 2009). These accessible amino residues are cationic 

under physiologial conditions (pKa = 10) and available for conjugation (Ma et 

al. 2009). Literature reports numerous attempts to decrease colistin's 

toxicity/efficacy balance through chemical manipulation of these amino 

groups (�hapter 1). Sulphomethylation produces an uncharged prodrug 
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which hydrolyses to colistin (Barnett et al. 1964; Beveridge and Martin 1967), 

and remains the only technique to yield a clinically viable product and the 

commonest parenterally administered formulation of colistin (colistimethate 

sodium, CMS, Colomycin®). 

3.1.4 The conjugation procedure 

Polymer conjugation may reduce a bioactive's toxicity and immunogenicity, 

extend plasma circulation time, and increase stability against proteolytic 

degradation (Duncan et al. 2008). Furthermore, creation of macromolecular 

constructs may achieve passive targeting through the EPR effect, which 

would limit colistin's volume of distribution and consequent toxicity (Chapter 

1). Hreczuk-Hirst et al. (2001b) popularised the coupling of amino group-

containing compounds to succinoylated dextrin using zero-length cross-

linking agents, namely EDC and sulfo-NHS (Chapter 2). This technique was 

successfully applied for several bioactives including doxorubicin, PLA2, 

trypsin, and epidermal growth factor. In these studies, Treetharnmathurot et 

al. (2009), Hardwicke et al. (2008a), Ferguson and Duncan (2009),  

generated by-products that were relatively easily removed by 

chromatographic protocols. A zero-length cross-linking reaction using EDC 

and sulfo-NHS was therefore chosen to form amide bonds between 

succinoylated dextrin's carboxylic acid groups and colistin's amine residues. 

Next, it was necessary to establish an experimental process for synthesis, 

characterisation and optimisation, leading to an optimal dextrin-colistin 

conjugate-library for in vitro testing.  

3.2 Experimental aims 

The overall aim of this study was to establish a library of bioresponsive 

dextrin-colistin conjugates from a range of succinoylated intermediates. The 

specific aims of this chapter were:  

1. To select a library of succinoylated dextrin intermediates, through 

physicochemical and biological charaterisation �for �conjugation �to�colistin 
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2. To synthesise a dextrin-colistin conjugate library and establish methods for 

conjugate physicochemical characterisation with respect to molecular weight, 

polydispersity index, protein content, dextrin: colistin molar ratio, and free 

amine groups per molecule after conjugation 

3. To evaluate the effect of dextrin molecular weight and the degree of 

succinoylation on the unmasking of colistin after exposure to human �-

amylase 

4. To identify and optimise a dextrin-colistin conjugate library for which 

masking/unmasking would be feasible in infection 

3.3 Methods 

A number of general methods (Chapter 2) were used for characterisation of 

succinoylated dextrins and dextrin-colistin conjugates, including the BCA 

protein assay (Section 2.5.2.3), ninhydrin assay (Section 2.5.2.4), GPC 

(Section 2.5.2.1) and FPLC (Section 2.5.2.2). 

3.3.1 Succinoylation of dextrin 

A low molecular weight (LMW) dextrin (8,100 g/mol), a high molecular weight 

(HMW) dextrin (28,900 g/mol) from corn starch, a medium molecular weight 

(MMW) dextrin from potato starch (13,900 g/mol) were used to synthesise a 

library of succinoylated dextrin intermediates. Succinoylation of each of these 

dextrins was based on the method of Hreczuck-Hirst et al. (2001b) to create 

three succinoylated dextrin libraries. In each case, increasing degrees of 

succinoylation were produced by adjusting the molar ratio of dextrin to 

succinic anhydride. Typical reaction conditions used to derive 2 mol% 

theoretical succinoylation of LMW dextrin are described below. 

Dextrin (1g, 1.23 x 10-4 mol), succinic anhydride (12.32 mg, 1.2 x 10-4 mol) 

and DMAP (5.7 mg, 4.6 x 10-5 mol) were added to a round-bottomed flask, 

which was then purged with liquid nitrogen. Anhydrous DMF (10 mL) was 

withdrawn under nitrogen gas and added to the flask. The mixture was stirred 



65

continuously at 50 oC for 14 h. The product was added dropwise to diethyl 

ether (~800 mL) and vortex-stirred overnight. Residual solid was extracted by 

filtration and dissolved in ddH2O (10 mL). Dialysis (MWCO 2,000 g/mol) 

against ddH2O (6 x 1 L) over 6 h, was used to remove water-soluble 

impurities. Finally, the succinoylated dextrin solution was lyophilised to a 

constant weight, and stored at 4 oC. The reaction scheme is summarised in 

Figure 3.1. 

3.3.2 Confirmation and quantification of dextrin functionalisation   

Molecular weight and polydispersity were determined by GPC (Section 

2.5.2.1).

3.3.2.1 Titrimetric analysis 

The degree of succinoylation was determined by titration against a standard 

solution of NaOH (5 x 10-4 M) with bromothymol blue as colorimetric indicator. 

Acid-base titrimetric analysis was used to quantify the degree of carboxyl 

groups incorporated into dextrin polymer. Succinoylated dextrin was

dissolved in ddH2O (1.5 mg/mL, 2 mL) and titrated against 5 x 10-4 M NaOH 

using bromothymol blue indicator (1% w/v in ethanol, pH range 6-7.6). The 

endpoint of the titration reaction was indicated by a colour change to bright 

green. The final titer volume was subtracted from the volume required to 

titrate ddH2O (2 mL). All titrations were performed in triplicate and the amount 

of carboxyl groups incorporated to the dextrin by succinoylation (mol %) was 

calculated.

3.3.2.2 Fourier Transform Infrared Spectroscopy (FTIR) 

FTIR was used to confirm incorporation of C=O bonds with succinoylation. 

FTIR of dextrin prior to succinoylation was used as a negative control. 

Succinoylated dextrins were analysed over the mid-infrared (400-4,000 cm-1)

and near-infrared (>4,000 cm-1) regions, with background interferences being 

subtracted. Qualitative analysis of the FTIR spectra was conducted by 

interpretation of the peaks in the double-bond region, 2,000-1,500 cm-1.
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The resulting spectra were examined for peaks in the 1,750 cm-1 region to 

confirm qualitatively the incorporation of carboxyl functional groups by 

succinoylation. 

3.3.3 Synthesis of the dextrin-colistin conjugates 

Succinoylated dextrin was conjugated to colistin using EDC and sulfo-NHS 

as zero-length cross-linking agents (Hermanson 2008). Typical reaction 

conditions used to conjugate 1 mol% succinoylated dextrin to colistin were as 

follows. Succinoylated dextrin (200 mg, 1.28 x 10 -5 mol) EDC (2.22 mg, 1.16 

x10 -5 mol) and sulfo-NHS (2.50 mg, 1.16 x10 -5 mol) were dissolved in ddH2O 

(2 mL) in a round-bottomed flask and stirred for 20 min. Next, colistin 

sulphate (35 mg, 0.0133 mol) was added followed by dropwise addition of 

aqueous NaOH (0.5 M) until the reaction mixture reached pH 7 and stirred for 

2 h at 21 oC. After 2 h, the product was centrifuged (4000 rpm, 5 min at 10 
oC) to remove undissolved sediment. The supernatant was immediately 

frozen at -20 oC until required for purification by FPLC. The reaction scheme 

is summarised in Figure 3.2. 

3.3.4 Conjugate purification and characterisation

Dextrin-colistin conjugates were purified from the reaction mixture by FPLC. 

Fractions (1 mL) corresponding to the conjugate were pooled, desalted, 

lyophilised to constant weight and stored at -20oC (Section 2.5.1). Dextrin-

colistin conjugates were then characterised by GPC for molecular weight and 

polydispersity (Section 2.5.2.1), FPLC for % free colistin (Section 2.5.2.2), 

BCA protein assay for total protein (Section 2.5.2.3) and ninhydrin assay for 

free amine groups (Section 2.5.2.4).  

3.3.5 Degradation of dextrin, succinoylated dextrin, and dextrin-colistin 
conjugate

To study the rate of �-amylase degradation of dextrin, and succinoylated 

dextrin, each polymer (3 mg/mL, in PBS pH 7.4) was incubated in the 

presence / absence of �-amylase (100 IU/L) at 37 oC for up to 24 h (n=3). 

Sample aliquots (300 �L) were taken at various time-points.



+

su
cc

in
oy

la
te

d 
de

xt
rin

co
lis

tin

n

8

am
id

e 
bo

nd

+

20
 m

in
, 2

0 
o C

 

dd
H

2O
 

F
ig

ur
e

3.
2:

R
ea

ct
io

n
sc

he
m

e
fo

r
co

nj
ug

at
io

n
of

su
cc

in
oy

la
te

d
de

xt
rin

to
co

lis
tin

su
lfo

-N
H

S
 

E
D

C

su
cc

in
oy

la
te

d 
 

de
xt

rin

am
in

e 
–

re
ac

tiv
e 

su
lfo

-N
H

S
 e

st
er

2 
h,

 2
1o

 C
 

68



69 

 

These were immediately snap-frozen on dry ice to stop the reaction, and then 

stored at -20 oC prior to GPC analysis. To study the effects of �-amylase on 

the dextrin-colistin conjugates, conjugates (3 mg/mL) were incubated in the 

presence / absence of �-amylase (100 IU/L in PBS, pH 7.4) for up to 48 h at 

37 oC (n=3). Samples (300 �L) were removed at various time-points and 

snap-frozen on dry ice prior to analysis by GPC and FPLC (n=3). The % 

apparent free colistin was estimated from the ratio of area under the curve 

peaks (mAUmL) corresponding to conjugated and free colistin.   

3.4 Results 

3.4.1 Synthesis, purification and characterisation of succinoylated 

dextrin libraries 

Functionalisation of dextrin by succinoylation resulted in a library of products 

(Table 3.3). Yield efficiency ranged from 46.5 to 54.6%. However, the 

variance in yield efficiency between the three parent-dextrin libraries was not 

significantly different (univariate ANOVA, p = 0.471) (Figure 3.3a).  

FTIR of dextrin showed characteristic peaks at 3,350 cm-1 (OH), 2,800 cm-1 (-

CH stretching vibrations) and 1,450 cm-1 (O-CH2). However, analysis of 

succinoylated dextrins reported an additional C=O peak (1,720 cm-1) which 

increased in strength with increasing mol% succinoylation. Figure 3.4 

represents typical absorption spectra for the LMW parent-dextrin library. 

Similar spectra were obtained for MMW and HMW parent-dextrin libraries 

(Appendix 2.1).  

Overall % conversion efficiency was 49.4% ± 2.7 (mean ± SD) (range 48.2% 

to 53.6%). Mean conversion efficiency was 49.0 % (LMW parent-dextrin 

library), 50.2% (MMW parent-dextrin library) and 51.2 mol% (HMW parent-

dextrin library). The conversion efficiency did not vary significantly between 

the three parent-dextrin libraries or between succinoylations (Bonferroni 

multiple comparison tests, p > 0.05, Figure 3.5). 
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Table 3.3: Physicochemical characteristics of succinoylated dextrins 

 

Succinoylation (mol %) Batch Conversion 
efficiency 

Yield 
efficiency 

Mw PDI 

Theoretical Actual* n (%)* (%)* (g/mol)P - 

LM
W

 p
ar

en
t-

de
xt

rin
 li

br
ar

y 

30   14.2 (0.7) 3 48.1 (0.8) 54.4 (2.6) 14, 800 (400) 1.9 (0.2) 

15   7.2 (0.2) 4 47.9 (1.1) 52.5 (2.8) 11,900 (300) 1.8 (0.2) 

10 4.8 (0.6) 6 50.1 (3.4) 52.7 (2.8) 10,900 (600) 2.0 (0.3) 

5   2.5 (0.2) 6 49.1 (3.0) 52.0 (3.0) 8,900 (500) 1.9 (0.2) 

2   1.0 (0.1) 7 49.7 (3.6) 51.0 (7.0) 8,600 (500) 1.9 (0.1) 

0 
n/a1 

(control) 
n/a n/a n/a 8,100 (200) 1.7 (0.1) 

M
M

W
 p

ar
en

t-
de

xt
rin

 li
br

ar
y 30 14.4 (0.4) 3 48.2 (1.3) 50.6 (1.7) 24,500 (800) 2.1 (0.2) 

15 7.5 (0.7) 3 50.3 (4.6) 49.2 (5.8) 18,000 (300) 2.0 (0.2) 

10 5.0 (0.3) 3 50.6 (3.1) 53.1 (4.7) 16,400 (400) 2.2 (0.3) 

5 2.6 (0.1) 3 51.1 (0.6) 49.0 (7.1) 14,300 (400) 2.0 (0.2) 

0 
n/a1 

(control) 
n/a n/a n/a 13,900 (300) 1.8 (0.2) 

H
M

W
 p

ar
en

t-
de

xt
rin

 li
br

ar
y 30 14.8 (0.9) 3 49.4 (2.9) 46.5 (4.7) 51,700 (500) 1.9 (0.2) 

15 7.6 (0.4) 3 50.6 (3.1) 53.9 (14.8) 46,300 (700) 1.9 (0.1) 

10 5.4 (0.3) 3 53.6 (1.3) 51.6 (3.7) 41,700 (500) 2.0 (0.2) 

5 2.6 (0.1) 3 51.1 (0.6) 54.6 (8.6) 33,500 (1000) 1.9 (0.1) 

0 
n/a1 

(control) 
n/a n/a n/a 28,900 (400) 1.9 (0.2) 

* Mean (± SD); values reported to 1 d.p. 
P Mean (± SD) relative to pullulan standards, to nearest 100 g/mol 
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  (a)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
   
  (b) 
 
  
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.3: Comparison of % yield efficiency for succinoylated dextrins and dextrin-colistin 
conjugates. Panel (a) shows variance in % yield efficiency between the three parent dextrin 
libraries for the succinoylated dextrin intermediates. (Non significant: univariate ANOVA: F 
(2, 10) = 0.814, p = 0.471). 
 
Panel (b) shows variance in % yield efficiency between the LMW and MMW parent-dextrin 
libraries for the dextrin-colistin conjugates (Non significant: unpaired t test, p = 0.7537, t = 
0.33 degrees of freedom=5; F test to compare variance: F (3, 2) = 2.771, p = 0.553). 
Horizontal lines and error bars represent mean ± SD. NS: non-significant. 
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Figure 3.4: Typical characterisation of succinoylated dextrins by FTIR (LMW parent-dextrin 
family), showing the increase in peak intensity at 1720 cm-1 caused by succinoylation. 
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(a) 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.5: Comparison of mol% conversion efficiency between the three parent-dextrin 
libraries (LMW, MMW, HMW parent-dextrin). Panel (a) reports two-way unweighted means 
ANOVA for mol% conversion efficiency versus parent-dextrin library Mw and mol% 
succinoylation. The effect of parent dextrin on mol% conversion efficiency was not 
statistically significant (F (2, 30) = 2.93, p = 0.0687).  
 
Panel (b) reports Bonferroni post hoc multiple comparison tests comparing mol% conversion 
efficiency between parent-dextrin libraries for each succinoylation. In each case, this was 
non significant (p > 0.05). 
 

Comparison Theoretical degree of 
succinoylation (mol%) 

Difference t statistic 

LMW vs MMW 
 parent-dextrin library 

30 0.9022 0.3991 
15 2.418 1.070 
10 0.4667 0.2384 
5 2.670 1.364 

LMW vs HMW  
parent-dextrin library 

30 2.169 0.9595 
15 2.707 1.197 
10 3.533 1.805 
5 1.970 1.006 

MMW  vs HMW  
parent-dextrin library 

30  1.267 0.5604 
15  0.2889 0.1278 
10  3.067 1.357 
5  -0.7000 0.3097 
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%
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In all cases, it was observed that apparent molecular weight (derived from 

GPC analysis using pullulan standards) increased in consistence with mol% 

succinoylation (Table 3.4): the variance in apparent molecular weight was 

associated to both mol% succinoylation and parent-dextrin Mw (two-way 

ANOVA, p < 0.05) (Figure 3.6). 

3.4.2 Synthesis and characterisation of the conjugate library 

Preliminary investigations reported that optimum reaction conditions for 

dextrin-colistin conjugation were RT (21o C) in ddH2O, at pH 7 over 2 h 

reaction time. It was hypothesised that conjugation results in the covalent 

reaction of free amino groups on colistin to carboxyl groups on the 

succinoylated dextrin, producing peptide (amide) bonds. Consequently, the 

number of available amine groups on the colistin molecule before and after 

conjugation needed to be quantified. The ninhydrin assay indicated that 

colistin possessed 5 � 0.4 (mean � SD, n = 6) amine groups per molecule. 

After conjugation, the ninhydrin assay reported 1.7 � 1.0 to 3.1 � 0.6 (mean �

SD) unconjugated amino groups per colistin molecule. 

When succinoylated dextrin was conjugated to colistin using EDC and sulfo 

NHS, FPLC confirmed the presence of a high molecular weight conjugate (7-

13 mL) with additional peaks at 15-17 mL (colistin, sulfo-NHS) and 19-21 mL 

(DMAP) for unreacted products. Figure 3.7a reports a typical elution of the 

reaction mixture. Peaks corresponding to the various reactants are inset. 

After purification, these reactants and unbound colistin were below the limit of 

detection (Figures 3.7b, 3.8). 

Colistin content of the conjugates ranged from 9.6 to 26.4% w/w, as 

determined by the BCA protein assay, corresponding to incorporation of 0.7 

to 1.7 moles of colistin per mole of succinoylated dextrin. Neither dextrin nor 

succinoylated dextrin interfered with the BCA protein assay (Table 3.4). 

Overall mean % yield efficiency was 40.6% ± 3.2% (mean ± SD), and ranged 

from 35.4% to 45.0%. However, variance in % yield efficiency between the 

two dextrin-colistin conjugate libraries was not significantly different (Figure 

3.3b).
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Figure 3.6: Effect of theoretical mol% succinoylation and parent-dextrin on apparent 
molecular weight for (a) succinoylated dextrins (LMW, MMW and HMW parent-dextrin 
libraries) and (b) dextrin-colistin conjugates (LMW and MMW parent-dextrin libraries).  
 
Panel (a) shows two-way ANOVA reporting that variance in apparent molecular weight was 
associated to both mol% succinoylation (F (4, 38) = 1023.72, p < 0.0001), parent-dextrin 
molecular weight (F (2, 38) = 14,546.69, p < 0.0001) and interaction between the two 
variables (F (8, 38) = 162.83 p < 0.0001). Panel (b) shows two way ANOVA reporting that 
variance in apparent molecular weight was associated to both mol% succinoylation (F (2, 16) 
= 131.69, p < 0.0001); and parent-dextrin molecular weight (F (1, 16) = 91.60, p < 0.0001).  
 
Data shown represents mean ± SD (n=3). Molecular weight (GPC) is given relative to 
pullulan standards.  
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Figure 3.7: Typical FPLC analysis of the conjugation reaction. Panel (a) shows a typical 
elution profile of the reaction mixture and reactants for EA-4 conjugate. Panel (b) shows a 
typical FPLC chromatogram of the conjugate after purification. Void volume (V0) = 7.7mL; 
Bed volume (Vb) = 24 mL.  
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Figure 3.8: Typical FPLC chromatograms for purified dextrin-colistin conjugates showing (a) 
EA-1 to EA-4 dextrin-colistin conjugates (LMW parent-dextrin library) and (b): EA-5 TO EA-7 
dextrin-colistin conjugates (MMW parent-dextrin library). 
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Final confirmation of successful conjugation was achieved using GPC, where 

retention time was decreased for dextrin-colistin conjugates compared to free 

colistin. An increase in succinoylation of dextrin-colistin conjugates led to an 

increased apparent molecular weight but the change in polydispersity was 

limited. Average molecular weight and polydispersity for each dextrin-colistin 

conjugate are reported in Table 3.4. Variance in apparent molecular weight 

was associated to both mol% succinoylation and parent-dextrin molecular 

weight (two-way ANOVA, p < 0.05). 

3.4.3 Degradation studies of dextrin, succinoylated dextrin by �-
amylase  

When dextrin and succinoylated dextrin were exposed to �-amylase, a 

decrease in molecular weight was reported over time (Figure 3.9-3.12) that 

followed a biphasic pattern, with an earlier rapid and a latter slower phase. 

Degradation of succionylated dextrins by �-amylase was best fit by 

logarithmic regression. Some degradation also occured in the absence of �-

amylase, but did not attain statistical significance (p > 0.05, Appendix 2.2). 

In the presence of �-amylase, varying parent-dextrin molecular weight (at 

constant succinoylation) resulted in a significantly increased degradation rate 

in all cases (p < 0.05, Figure 3.13). However, final molecular weight at 24 h 

(Mw24) was still associated with increasing parent-dextrin molecular weight 

(LMW < MMW < HMW) (Figure 3.14). In the presence of �-amylase 

succinoylation resulted in a significantly increased variance in degradation 

rate despite constant parent-dextrin Mw. However, this was not the case in 

the absence of amylase (Figure 3.15; Appendix 2.2). 

The contribution of both independent factors (parent-dextrin molecular weight 

and mol% succinoylation) to the variance in degradation rate was highly 

statistically significant (Figure 3.16). Succinoylation accounted for a greater 

contribution to the variance in degradation rate with decreasing parent-

dextrin Mw (LMW > MMW > HMW). Overall the greatest contribution to 

variance in degradation rate was accounted for by the parent-dextrin 

molecular weight. 
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Figure 3.9: Typical time-dependant change in the GPC elution profile during incubation with 
�-amylase for (a) 1 mol% succinoylated dextrin (LMW parent dextrin library) and (b) EA-3 
dextrin-colistin conjugate.  
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Figure 3.10: Degradation of succinoylated dextrins (LMW parent-dextrin library) measured by 
GPC during (a) incubation with �-amylase and (b) controls (no amylase). Data shown 
represents mean ± SD (n=3). Molecular weight is given relative to pullulan standards.  
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Figure 3.11: Degradation of succinoylated dextrins (MMW parent-dextrin library) measured 
by GPC during (a) incubation with �-amylase and (b) controls (no amylase) for increasing 
mol% succinoylations. Data shown represents mean ± SD (n=3). Molecular weight is given 
relative to pullulan standards.  
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Figure 3.12: Degradation of succinoylated dextrins (HMW parent-dextrin library) measured 
by GPC during (a) incubation with �-amylase and (b) controls (no amylase) for increasing 
mol% succinoylations. Data shown represents mean ± SD, (n=3). Molecular weight is given 
relative to pullulan standards. 
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Figure 3.13: Change in degradation rate of dextrin-colistin conjugates with increasing parent-
dextrin molecular weight at constant succinoylation in the presence of �-amylase for (a) 2.5 
mol%; (b): 5.0 mol% (c): 7.5 mol% (d): 14.5 mol% succinoylation. ANCOVA statistics for the 
corresponding figures are reported for each data set. In all cases p was < 0.05. Data shown 
represents mean ± SD (n=3). Molecular weight is given relative to pullulan standards.  HMW 
succinoylated dextrins are shown in black, MMW succinoylated dextrins in blue and LMW 
succinoylated dextrins in red.  
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MMW vs HMW -2.72  14.87  

4.8 mol%  LMW vs HMW -11.65  17.59  
MMW vs HMW -10.69  16.14  

7.2 mol%  LMW vs HMW -13.43  25.38  
MMW vs HMW -11.76  22.22  

14.2 mol%  LMW vs HMW -19.34  23.50  
MMW vs HMW -13.76  16.70  

 
 
Figure 3.14: One-way ANOVA of Mw24h for each succinoylation versus parent-dextrin library, 
for succinoylated dextrin intermediates, showing that variance in Mw24h was significantly 
associated to parent-dextrin molecular weight, in all cases (p < 0.05). Panel (e) reports the 
Bonferroni post hoc multiple comparison tests, showing that in all cases, Mw24h for the HMW 
library was significantly higher. All comparisons were statistically significant (p < 0.05). Data 
shown represents mean ± SD (n=3). Molecular weight by GPC analysis is given relative to 
pullulan standards.  
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Figure 3.15: Typical analysis of the effect of polymer functionalisation on degradation rate of 
succinoylated dextrin intermediates. Panel (a) shows the typically increased degradation rate 
in the presence of amylase for 1 mol% succinoylated LMW dextrin (ANCOVA F (1, 28) = 
116.9, p < 0.0001).  
 
Panel (b) shows that degradation increased significantly with increasing mol% succinoylation 
(ANCOVA: F (5,113) = 14.88, p < 0.0001). 
 
Panel (c) shows that in the abscence of amylase degradation rate did not differ �significantly 
with increasing succinoylation (ANCOVA: F (4, 49) = 0.452, p = 0.77).  
 
Data shown represents mean ± SD (n=3). Molecular weight (by GPC analysis) is given 
relative to pullulan standards. LMW parent dextrin library: A: 0 mol%; B: 1.0 mol%; C: 2.5 
mol%; D: 4.8 mol%; E: 7.2 mol%; F: 14.2 mol% succinoylation.  
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Figure 3.16: Contribution of mol% succinoylation and parent-dextrin Mw to variance in 
degradation rate (two-way ANOVA) for succinoylated dextrin intermediates. Values are 
reported as mean and standard deviation. Panel (b) reports the contribution (%) of 
succinoylation and parent-dextrin molecular weight to the degradation in molecular weight. 
Points on the graph represent mean degradation rate for each degree of succinoylation ± 
SD.  
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Since the HMW parent-dextrin family and 14.6 mol% succinoylated dextrins 

reported very slow degradation these intermediates were not tested further.  

3.4.3.2 Degradation of dextrin-colistin conjugates

�-Amylase degradation of dextrin-colistin conjugates was similar to 

succinoylated dextrin intermediates, displaying a pronounced biphasic 

pattern of degradation (Figures 3.17-3.18) and increasing succinoylation (at 

constant parent-dextrin Mw) was inversely related to the degradation rate 

(Appendix 2.2). In the absence of �-amylase, some decrease in molecular 

weight was observed but this was not statistically significant (p > 0.05)

(Appendix 2.2).  

3.4.3.3 Unmasking of colistin

When unmasking of dextrin-colistin conjugates was analysed using FPLC, a 

peak corresponding to free colistin appeared (15-17 mL), which increased in 

intensity during incubation, while the peak corresponding to dextrin-colistin 

conjugate (7-13 mL) decreased reciprocally (Figure 3.19). This corresponded 

to an increasing concentration of "unmasked" colistin, mirrored by decreasing 

concentration of dextrin-colistin conjugate and indicative of release of colistin 

from conjugate due to dextrin degradation by �-amylase. Unmasking in the 

presence of �-amylase was greater than controls for both LMW and MMW 

parent-dextrin families (Figures 3.20 and 3.21 respectively). In these 

experiments, dextrin-colistin conjugates of LMW dextrin with low degrees of 

succinoylation released most free colistin after 48 h incubation time. In fact, 

unmasking at 48 h was most complete in EA-4 conjugate in the presence of 

�-amylase (70.3 ± 2.3 mol%, mean ± SD), when compared to the respective 

controls (57.0 ± 3.8 mol%, mean ± SD). Figure 3.22 demonstrates that for 

both LMW and MMW parent-dextrin families, the variance in % unmasking 

was significantly associated to mol% succinoylation and time (two-way 

ANOVA, p < 0.05). When compared to the respective MMW conjugates, 

unmasking occurred consistently earlier in the LMW dextrin-colistin 

conjugates, and was more complete (Bonferroni multiple conparison tests, p 

< 0.05). 
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Figure 3.17: Degradation of dextrin-colistin conjugates (LMW parent-dextrin library) 
measured by GPC during (a) incubation with �-amylase and (b) controls (no amylase). Data 
shown represents mean ±SD, (n=3). Molecular weight is given relative to pullulan standards.  
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Figure 3.18: Degradation of dextrin-colistin conjugate �(MMW �parent-dextrin �library)
measured by GPC during (a) incubation with �-amylase and (b) controls (no amylase). Data 
shown represents mean ±SD (n=3). Mw is given relative to pullulan standards.  
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Figure 3.19: Typical change in dextrin-colistin elution by FPLC during unmasking of dextrin-
colistin conjugates, by �-amylase for (a) EA-4; (b) EA-1 dextrin-colistin conjugates.  
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Figure 3.20: Release of colistin from dextrin-colistin conjugates (LMW parent-dextrin library) 
measured by FPLC, during (a) incubation with human �-amylase and (b) control (no 
amylase). Data shown represents mean ± SD (n=3). 
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Figure 3.21: Release of colistin from dextrin-colistin conjugates (MMW parent-dextrin library) 
measured by FPLC, during (a) incubation with � amylase and (b) control (no amylase). Data 
shown represents mean ± SD, n=3. 
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Figure 3.22: Two-way time-series analysis of variance (ANOVA) for apparent unmasked 
colistin versus degree of succinoylation and time: (a) 1.0-7.2 mol% succinoylated conjugates 
(LMW parent-dextrin library) and (b) 2.6 to 7.5 mol% succinoylated conjugates (MMW 
parent-dextrin library). 

(a) Variance in % apparent colistin unmasking was significantly associated to mol% 
succinoylation (F (35, 80) = 121.57, p < 0.0001), time F (5, 80) = 3117.90), p < 
0.0001) and interaction between the two variables (F (35, 80) = 36.58 p < 0.0001); 
Matching was effective (F (6, 80) = 2.69, p < 0.0019).  

(b) Variance in % apparent colistin unmasking was significantly associated to: mol% 
succinoylation (F (25, 60) = 26.60 p < 0.0001); time (F (5, 12) = 60.84 p < 0.0001), 
and the interaction between these two independent variables (F (12, 60) = 2.0, p < 
0.0396). Matching was effective (F (12, 60) = 2.00, p < 0.05).  

 
Bonferroni replicate means tests are reported in Appendix 2.3. Data shown represents mean 
± SD, n=3. 
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In fact, in the presence of �-amylase, EA-4 conjugate reported that % 

unmasked conjugate was significantly different from the resepective control  

as early as 2 h post incubation time. Detailed statistical analyses are reported  

in Appendix 2.3.  

3.5 Discussion 

This chapter aimed to establish a library of dextrin-colistin conjugates from a 

range of succinoylated intermediates, optimised towards use in infection, and  

to characterise the rate and extent of colistin release by a physiologically  

relevant �-amylase concentration.   

3.5.1 Characterisation of the succinoylated dextrin libraries  

In concordance to piviotal studies in this field (Hreczuk-Hirst���
��  2001b),  

overall yield of the succinoylation reaction did not vary significantly between  

parent-dextrin libraries (Section 3.4.1). This suggests that under the reaction  

conditions employed, reaction yield is reproducible. Moreover, the overall %  

conversion efficiency, (49.4% ± 2.71, mean ± SD) was similar to that reported  

by Hreczuck-Hirst ��
��  (2001b) and Hardwicke ��
l. (2008a). Since  

conversion efficiency did not vary significantly between the three different  

parent-dextrin molecular weights (8,100 - 28,900 g/mol) and range of  

succinoylations (1 - 14.5 mol %) used, it was possible to compare the  

behaviour of similar mol% succinoylated dextrins from different parent- 

dextrins in later experiments.  

The literature reports varying conversion efficiencies (50 to 90%) across a  

range of succinoylations (2-32 mol %) and polymer molecular weights (7,000  

to 51,000 g/mol) (Duncan���
�� 2008; Hreczuk-Hirst���
�� 2001b). In contrast,  

using NMR, Bruneel and Schacht (1994) reported consistent conversion  

efficiency for pullulan succcinoylation. Parent-dextrins (�-1,4 poly (D-glucose)  

used in this experiment contained less than 5% �-1, 6 links (Ferguson and  

Duncan 2009). However, earlier studies by Marchal ��
��� (1999) and  
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White et al. (2003) reported that depending on the starch source, 

manufacture and hydrolysis process, apparently similar dextrins may exhibit 

varying degrees of bioavailability in solution. All the source dextrins cited in 

these studies are of food grade quality (Chapter 1) and this may explain  the 

slight difference in conversion efficiency since the dextrins used in these 

studies were from corn (LMW, HMW dextrin) and potato (MMW dextrin).  

GPC was used to infer molecular weight from elution time, based on 

hydrodynamic radius in solution, using pullulan calibration standards. 

Determining an exact molecular weight was challenging, because both 

dextrin and pullulan exhibit a random coil structure in aqueous solution and 

consist of a polydisperse mix rather than a single molecular species (Alvani 

et al. 2009; Shingel 2004). However, by maintaining identical anaylsis 

conditions, it was possible to keep any confounding variables constant 

throughout the analyses (including analysis of pullulan standards), making it 

possible to characterise trends in the behaviour of apparent molecular weight 

after succinoylation and after exposure to �-amylase. Increasing dextrin 

succinoylation resulted in an increased molecular weight relative to the 

parent-dextrin which could not be attributed to the absolute mass alone. This 

discrepancy may be explained by the incorporation of charged carboxyl 

groups. It is possible that their resulting negative charges contribute to 

opening up the random polymer coil conformation, increase hydrodynamic 

radius in solution, elution time, and therefore apparent molecular weight 

(Duncan et al. 2008; Hardwicke et al. 2008a; Treetharnmathurot et al. 2009). 

In fact, variance in apparent molecular weight after succinoylation was 

significantly associated to both mol% succinoylation and parent-dextrin Mw 

(Figure 3.7), confirming previous studies' observations (Duncan et al. 2008; 

Hreczuk-Hirst et al. 2001a).  

Predictability and reproducibility of drug release are critical issues in the 

design of controlled release medicines (Deshpande et al. 1996; Gaspar and 

Duncan 2009; Lin and Metters 2006; Youan 2010). Succinoylation did not 

alter degradation behaviour (curve shape) which remained best-predictable 

by logarithmic regression in keeping with "biphasic" degradation patterns 
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described in earlier studies (Hardwicke et al. 2008a; Hreczuk-Hirst et al. 

2001a). Both independent factors (parent-dextrin Mw and mol% 

succinoylated) significantly contributed to the variance in degradation rate 

mediated by �-amylase. Parent-dextrin displayed a dominant contribution to 

variance in degradation rate. In classical applications of polymer therapeutics 

requiring prolonged release such as cancer HMW dextrins have been 

preferred (Duncan 2011). However, application of polymer therapeutics for 

"acute diseases" demanded exploration of lower Mw dextrins, that provide 

sufficient masking during transit to the target site, but expeditious unmasking 

and re-instatement of bioactivity thereafter (Chapter 1).  

In this study, parent-dextrin displayed a dominant contribution to variance in 

degradation rate but the contribution of succinoylation to variance in 

degradation rate progressively and substantially increased with decreasing 

initial parent-dextrin Mw. One possible explanation is that the carboxylate 

groups introduced through succinoylation effectively limit the rate/site of 

amylase-catalysed hydrolysis. These results suggest that in higher molecular 

weight polymers, succinoylation may provide a mechanim for "fine-tuning" 

degradation rates (parent-dextrin Mw is the major determinant of variance in 

degradation rate), but in smaller dextrins, the degradation rate may be 

significantly delayed by increasing the degree of polymer functionalisation.  

These results demonstrated that the HMW parent-dextrin family and > 15 

mol% succinoylated dextrins exhibited degradation rates that were deemed 

not suitable for use in acute infection (Chapter 1). Therefore 1.0 to 7.2 mol% 

succinoylated LMW and MMW dextrins were selected for conjugation to 

colistin for further studies (Figure 3.23).  

In agreement with Hreczuk-Hirst et al. (2001a) limited non-statistically 

significant degradation of succinoylated dextrin occured in the absence of �-

amylase therefore subsequent degradation rate changes could be attributed 

to presence of this enzyme (Figure 3.15).  
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Figure 3.23: Scheme for selection of the optimal dextrin-colistin library for further
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3.5.2 Characterisation of dextrin-colistin conjugates 

Successful, reproducible conjugation of succinoylated dextrins' functional 

groups to the amino groups on colistin was evident from the resultant 

conjugate size, protein content and decrease in amino groups per molecule. 

BCA assay also confirmed reproducible incorporation of colistin in the 

conjugate (SD S ± 0.5), and suggested an increase in colistin incorporation 

with increasing mol% succinoylation (Table 3.4). Moreover, ninhydrin assay 

confirmed that after conjugation, there was a consistent reduction in the 

number of primary amines on the colistin molecule, from which it was 

possible to determine that approxiately 2-3 amino groups were consistently 

incorporated in peptide bonds, and therefore "masked" by conjugation. Final 

confirmation of successful conjugation was achieved using GPC where 

retention time was decreased for dextrin-colistin conjugates compared to free 

colistin and free succinoylated dextrin. Therefore, using reliable methods that 

detected both free- and conjugated colistin, conjugation was evident, feasible 

and reproducible. 

Contamination of the final purified product with residual reactants or by-

products was below the limit of FPLC detection (Figures 3.7 and 3.8). 

However, a similar study reported that some residual free dextrin remained 

detectable by NMR spectroscopy after purification (Duncan et al. 2008). 

Since dextrin is non-immunogenic and clinically well-tolerated, (Section 3.1.1) 

its presence would not be concerning in these proof of concept studies. 

FPLC reported that these conjugates were a polydisperse mixture of species, 

which may be accounted for by the multivalency of both dextrin and bioactive 

component (Ferguson 2008a). Since increasing mol% succinoylation of 

dextrin resulted in an increased hydrodynamic radius in solution (Section 

3.4.2), it may be postulated that some degree of "steric" masking was 

possible in accordance to previous studies (Duncan et al. 2008; Hardwicke et 

al. 2008b). Variance of % yield efficiency was not significantly different 

between the two dextrin-colistin conjugate-libraries, suggesting consistent % 

yield efficiency between parent-dextrin libraries (Figure 3.5b).  
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GPC was used to estimate dextrin-colistin conjugate molecular weight 

(Ferguson and Duncan 2009; Hardwicke et al. 2008a; Hreczuk-Hirst et al. 

2001a). Increasing degrees of succinoylation resulted in a corresponding 

increase in apparent conjugate molecular weight. Determining an exact 

polymer-protein conjugate molecular weight by this method was not 

straightforward since behaviour of polymer-protein conjugates is not identical 

to that of either individual component (Duncan et al. 2008). Heterogeneity of 

the product was unavoidable, and attributable to the polydisperse dextrin 

fraction used for conjugation (Hardwicke et al. 2008b). The conjugated 

protein's charge, molecular weight, and tertiary structure, including the 

presence of hydrophobic groups within the colistin molecule (Section 3.1.3), 

may have further distorted the polymer coil, influenced hydrodynamic radius, 

elution time, (Hreczuk-Hirst et al. 2001a) and apparent molecular weight. 

Consequently, FPLC could not be used to derive molecular weight since the 

dextrin-colistin conjugates largely eluted in the column's void volume.  

3.5.3 Degradation and unmasking of dextrin-colistin conjugates 

Dextrin-colistin conjugates exhibited similar behaviour to the respective 

succinoylated dextrin intermediates in the presence and absence of amylase, 

in agreement with Hardwicke et al. (2008a). The dextrin-colistin conjugate 

degradation rates determined by GPC were mirrored by the rate of colistin 

unmasking determined by FPLC, indicating that in response to a 

physiological �-amylase concentration, bioresponsive unmasking of colistin 

was feasible according to the PUMPT hypothesis (Chapter 1).  

When FPLC was used to study colistin release, it reported a slower, smaller 

and more linear shift from masked to apparent unmasked conjugate under 

control conditions. However GPC analysis of conjugate degradation under 

control conditions reported only limited degradation over time which did not 

attain statistical significance. These results suggest that limited hydrolytic 

degradation occurring under control conditions produces smaller dextrin 

chains attached to colistin which would not result in complete unmasking.  
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In this study, 70 % of conjugate unmasking was achieved at 48 h incubation 

by EA-4. Since these dextrin-colistin conjugates were designed for relatively 

rapid drug release, the optimisation required use of a shorter range of 

molecular weight parent-dextrins and degree of succinoylation. Therefore 

direct comparisons to other dextrin-conjugates described in the literature in 

terms of reinstated activity after unmasking are not straightforward. The vast 

majority of dextrin conjugates described in prior literature were designed for 

chronic disease processes such as wound healing or cancer, and were 

therefore optimised for prologed release, using markedly higher parent 

polymer molecular weights and / or modification (Maeda 2012). However, 

these findings are in keeping with prior reports investigating succinoylated 

dextrin conjugates of trypsin, melanocyte stimulating hormone, recombinant 

human epidermal growth factor and PLA2, showing that 20-100% re-

instatement of activity can be through �-amylase mediated unmasking 

(Duncan et al. 2008; Ferguson et al. 2006; Hardwicke et al. 2008a; 

Treetharnmathurot et al. 2009).   

 
The seminal studies that originally described this relationship used significantly 

higher concentrations of rat plasma amylase (Hreczuk-Hirst et al. 2001a) and 

these levels may indeed reflect the higher �-amylase levels that may exist at 

target sites such as cancer or wounds which may permit preferential 

unmasking (Hardwicke et al. 2010). However, plasma �-amylase 

concentrations provide a baseline level that the succinoylated dextrins need 

to contend with, whilst in transit to the target site, and such physiological 

levels have been reported during rationalised conjugate planning and 

optimisation studies (Ferguson and Duncan 2009; Hardwicke et al. 2008a).  

The experiments in this chapter were conducted using salivary amylase. 

Although circulating plasma amylase would likely be of pancreatic in origin, 
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behaviour of these isoenzymes would be likely to yield similar results 

(Hardwicke 2009).  

3.5.4 Determination of an optimal dextrin-colistin library 

LMW conjugates presented optimal physicochemical characteristics for which 

masking/unmasking would be feasible in infection. Unmasking of LMW 

conjugates occurred earlier than the respective MMW conjugates (Figure 

3.22) and within a time-frame compatible with an EPR effect, which occurs 

early in infection (Chapter 1). It was also evident that unmasking was 

significantly more complete and occurred earlier with decreasing 

succinoylation. These considerations provided a robust rationale for selecting 

the LMW dextrin-colistin conjugate family for in vitro antimicrobial 

susceptibility studies (Figure 3.23). The physicochemical data presented here 

suggests that EA-4 may provide the quickest and most complete release of 

colistin that would permit sufficient "masking" of the bioactive payload whilst 

in transit to the target site, but that would also enable suitably rapid, efficient 

and maximal "unmasking" in concordance to the PUMPT principle.  

3.6 Conclusion 

These studies demonstrated that the degradation rate of succinoylated 

dextrin intermediates depended on mol% succinoylation and parent-dextrin 

molecular weight permitting the refinement of a library of succinoylated 

dextrin intermediates. Conjugation of dextrin to colistin was a feasible and 

reproducible reaction that resulted in masking of amino groups through 

incorporation in peptide bonds. Moreover the LMW conjugate family 

presented optimal physicochemical and degradation characteristics, for 

which "masking/unmasking" was a feasible concept with potential for use in 

infection. These dextrin-colistin conjugates were chosen for futher 

investigation. The bioactivity of the LMW dextrin-colistin conjugate family will 

now be established through in vitro bacteriological assays, both in the 

presence of �'amylase and in an amylase-free enviroment. 
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Chapter Four 

In Vitro Antimicrobial Activity of Dextrin-colistin Conjugates 
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4.1 Introduction 

Colistin is a potent antibiotic with a detergent-like action on the bacterial cell 

membrane. The LMW dextrin-colistin conjugates exhibited optimal 

characteristics for which ‘masking/unmasking’ was physicochemically 

feasible (Chapter 3). Prior to testing the nanoantibiotic in vivo, it was deemed 

important to demonstrate that the conjugate retained antimicrobial activity 

towards Gram-negative bacteria. Therefore, in these studies, the in vitro 

antimicrobial activity of dextrin-colistin conjugates, as well as colistin sulfate 

and CMS (as reference controls) were evaluated against a panel of clinically 

important Gram-negative bacteria. In addition, approximately 59-74% of total 

colistin is bound to albumin (Mohamed et al. 2012). This study also sought to 

investigate whether dextrin conjugation could reduce colistin's protein 

binding. Finally, since combination therapy is being increasingly used to 

combat antibiotic resistance and enhance antimicrobial activity (Fischbach 

2011), the activity of dextrin-colistin conjugate in combination with a 

commonly used antibiotic, ciprofloxacin, was considered. 

4.1.1 Gram-negative pathogens investigated in this study 

P. aeruginosa, A. baumannii, K. pneumoniae and E. coli (Table 4.1) have 

emerged as Gram-negative pathogens of global concern, and high annual 

mortality rates have been reported (Dellit et al. 2007; Obritsch et al. 2005; 

Parkins et al. 2010; Smolinski et al. 2003; Sunenshine et al. 2007). These 

organisms also have a propensity to rapidly acquire multiple drug resistance 

(Keen et al. 2010a; Parkins et al. 2010). MDR A. baumannii infection, in 

particular, is associated with significant healthcare costs and a high mortality, 

whilst its incidence in military casualties has risen to epidemic proportions 

(Lee et al. 2011; Towner 2009; Visca et al. 2011). Consequently, colistin is 

often favoured as the therapeutic option of last resort against these 

pathogens since resistance to this antibiotic is low (Boucher et al. 2009; 

Gales et al. 2011). The global health concern caused by P. aeruginosa, K. 

pneumoniae, E. coli, and A. baumannii due to their MDR status, and their 

continued susceptibility to colistin underscores the
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rationale for including these organisms in the assessment of the dextrin-colistin

conjugates' antimicrobial activity.  

4.1.2 The mechanism of action of colistin 

Colistin's broad Gram-negative spectrum of activity has been attributed to 

membrane disruption (Rustici���
��  1993). In Gram-negative bacteria, lipid-A 

anchors the LPS component of the outer membrane, whose key role is to 

control permeability (Velkov���
�� 2009) (Figure 4.1). Colistin's positively 

charged amino groups are thought to interact with negatively charged Lipid-A 

to displace divalent ions, destabilising the bacterial membrane (Clausell���
�� 

2007; Melo���
��  2009; Powers and Hancock 2003). This is aided by fatty 

acyl chain and hydrophobic amino acid domains weakening the packing of 

bacterial fatty acyl lipid-A chains, leading to outer membrane expansion 

(Velkov���
��  2009). Colistin straddles the hydrophobic tails and hydrophilic 

heads of the phospholipid inner-membrane bilayer further disrupting its 

integrity (Clausell���
�� 2007; Hancock 1997; Hancock and Lehrer 1998). 

Colistin's structural integrity is essential for antimicrobial function (Chapter 

3). In these studies, successful conjugation of colistin to succinoylated dextrin 

was achieved through incorporation of at least one amino group into an 

amide bond. However, previous studies investigating the effect of conjugation 

on enzyme and growth factor activity demonstrated different extents to which 

payload function was reinstated after unmasking, varying from 20-100% 

(Duncan���
�� 2008; Ferguson���
�� 2006; Treetharnmathurot���
��  2009). It 

was uncertain how polymer conjugation would affect colistin's antimicrobial 

activity following its amylase-triggered release. Therefore, it was necessary 

to determine the unmasked conjugates' antimicrobial activity and compare it 

to colistin sulfate and CMS, in order to assess the feasibility of reinstating 

dextrin-colistin conjugates’ antimicrobial activity by exposure to �-amylase 

within the context of the PUMPT principle (Chapter 1).  
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4.1.3 Assessment of antimicrobial susceptibility 

Antimicrobial susceptibility may be assayed using a variety of different 

methods (Table 4.2). However, colistin diffuses poorly in agar (Galani et al. 

2008), and the reliability of diffusion methods for colistin susceptibility testing 

and their ability to detect low-level resistance to colistin is contended 

(Andrews and Howe 2011; Lo-Ten-Foe et al. 2007; van der Heijden et al. 

2007). The MIC assay is widely accepted as a 'gold standard' for 

investigating the susceptibility of organisms to antimicrobials (Andrews 2001; 

2006) It has been specifically recommended for determining colistin 

susceptibility (Andrews and Howe 2011; European Committee on 

Antimicrobial Susceptibility Testing 2011; Gales et al. 2001), and it allows 

simultaneous testing of several concentrations. The serial broth microdilution 

technique presents an established, convenient and reproducible application 

for MIC testing (Andrews 2006; Barry et al. 1978). Conjugation is known to 

reduce biofouling and binding to albumin (Zhang et al. 2007). Since colistin  

binds readily to serum albumin, limiting its antibiotic activity (Craig and 

Welling 1977), the MIC assay also provided a suitable method to investigate 

how dextrin conjugation may reduce colistin's binding to serum proteins. It 

was hypothesised that the antimicrobial activity of conjugates would be less 

affected by the addition of serum than the free drug.  

4.1.4 Combination antimicrobial therapy 

The antimicrobial activity of dextrin-colistin conjugates in combination with a 

conventional antibiotic was also studied in these systems. Preserving 

colistin's antimicrobial efficacy is important due to its status as a "last line 

antibiotic" (Nation and Li 2009). Worldwide, the incidence of resistance to 

colistin remains low, but several resistance mechanisms have been identified 

(Gales et al. 2011).  Combination antimicrobial therapy, such as amoxycillin 

and clavulanic acid has resulted in wide clinical success (Silver and Bostian 

1993). The use of colistin in combination therapy has been extensively 

reported (Michalopoulos and Karatza 2010; Petrosillo et al. 2008; White et al. 

2010). Moreover, synergism between polymyxin derivatives and agents 

normally excluded by the Gram-negative outer membrane has been 
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reported (Vaara et al. 2010). Ciprofloxacin is a second-generation 

fluoroquinolone, which is widely used against Gram-negative pathogens 

(Akter et al. 2012; Patel et al. 2009; Tong et al. 2011). At lower 

concentrations, ciprofloxacin complexes bacterial DNA inhibiting bacterial 

growth, but at higher concentrations ciprofloxacin also exerts a bactericidal 

effect attributed to DNA cleavage (Hawkey 2003; Figure 4.1). 

Since colistin exerts a detergent effect on the bacterial membrane (Section 

4.1.2), and since ciprofloxacin needs ingress through the cell wall to exert its 

action, there is potential for colistin to facilitate ciprofloxacin's entry to the 

bacteria. Despite this seemingly cooperative mechanism, studies have 

reported that the ciprofloxacin + colistin combination was additive, but not 

synergistic (Petrosillo et al. 2008). In contrast to colistin sulfate, dextrin-

colistin conjugates offer the promise of both sustained release (through 

unmasking) and passive targeting (through the EPR effect), which could 

enhance the entry of ciprofloxacin into the bacteria. Moreover, long-term 

clinical randomised control studies have shown that colistin + ciprofloxacin 

combination therapy successfully prevented emergence of resistance, in 

contrast to other antibiotic/colistin combinations (Prentice et al. 2001). 

Investigating the combination of ciprofloxacin with colistin, CMS or dextrin-

colistin conjugate was therefore relevant to this study. 

Several methods have been described to investigate antimicrobial 

combinations including:  i) time-kill curves, ii) Epsilometer test and iii) MIC 

checkerboard technique. The checkerboard technique, first described by 

Elion et al. (1954), is commonly used to screen potential antibiotic 

combinations. It enables direct comparison of combination antibiotic activity 

to individual antibiotic susceptibilities determined by the MIC assay, 

minimising the risk of methodological bias (Foweraker et al. 2009; Pankey 

and Ashcraft 2011). Checkerboard assays allow testing of a range of 

concentration combinations, which is appropriate for simultaneously studying 

several concentrations to reflect the distribution of the antibiotic in different 

tissues (Matson et al. 2009; Varela et al. 2000). The fractional inhibitory 

concentration index (FICI) (Eliopoulos and Moellering 1996; Hall et al. 1983) 
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is the commonest method used to report the results of checkerboard tests 

(Lorian 2005; Odds 2003). Since variation in a single result places an MIC in 

a 3-dilution range (mode ± 1 log2 dilution) (Odds 2003) the conservative  

approach preferred by Odds to interpreting the FICI  was adopted in these 

experiments. Therefore, synergy was defined as an FICI of S 0.5; 'no 

interaction' was defined as an FICI of 0.5 to 4; and antagonism was defined 

as an FICI of H 4. 

4.2 Aims 

In summary, the aims of this study were to: 

1. Determine the in vitro antimicrobial activity of dextrin-colistin conjugates, 

compared to colistin sulfate and CMS, towards a panel of Gram-negative 

organisms.  

2. Assess the feasibility of reinstating/enhancing dextrin-colistin conjugates’ 

antimicrobial activity by incubation with �- amylase. 

3. Identify a lead compound for further investigation. 

4. Investigate the antimicrobial activity of dextrin-colistin lead candidate, 

colistin sulphate and CMS in the presence of foetal calf serum. 

5. Compare the antimicrobial activity of ciprofloxacin in the presence of EA-4 

(24 h-unmasked in �-amylase), colistin sulfate and CMS as possible 

combination therapy. 

4.3 Methods 

General methods, including preparation of agar, broths, and overnight 

cultures were reported in Section 2.5.3. Dextrin-colistin conjugate was 

prepared as detailed in sections 2.5.1 and 3.3.2, (Table 3.4).  

4.3.1 Bacterial strains 

The Gram-negative bacterial strains used in this chapter and their origins are 

reported in Table 4.1. Bacterial identification codes represent internal 
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laboratory reference numbers. P. aeruginosa PAO1 (ATCC 15692), K. 

pneumoniae 5725, E. coli 7273 and E. coli NCTC 10418 constituted an initial 

screening panel (test panel A).  

4.3.2 Dextrin-colistin conjugate unmasking by incubation with �-

amylase 

To study the effect of  �-amylase on conjugate antimicrobial activity, dextrin-

colistin conjugates (3 mg/mL colistin equivalent) were first incubated with �-

amylase (100 IU/L) for up to 24 h at  37 oC in PBS buffer (pH 7.4). Equal 

volumes (1.5 mL) were collected at defined intervals (0, 3, 6, 24 h), snap-

frozen in dry ice to stop the reaction and then stored at -20 oC until analysed 

by MIC. 

4.3.3 Minimum inhibitory concentration (MIC) assays 

Bacterial susceptibility to dextrin-colistin conjugates, colistin sulfate and CMS 

controls was determined using the MIC serial broth microdilution assay as 

detailed in Section 2.5.3.  

To study the effect of increasing degrees of succinoylation and time in the 

presence of �-amylase, a dextrin-colistin conjugate (for example EA-1) was 

pre-incubated in �- amylase, as detailed in Section 4.3.2. For each time 

point, a solution of test antibiotic (1,024 Ig/mL, 200 IL) was produced in 

CAMHB in triplicate within wells of the first column of a 96-well plate, then 

serially double diluted in CAMHB. MIC against P. aeruginosa PAO1 was 

determined by serial broth microdilution (Section 2.5.3). The procedure was 

repeated for all candidate dextrin-colistin conjugates (EA-1, EA-2, EA-3, EA-

4) against K. pneumoniae 5725, E.coli 7273, and E.coli 10418.  

To study the antimicrobial activity of the lead candidate (EA-4) against an 

extended range of Gram-negative strains, EA-4 was incubated in �-amylase 

(Section 4.3.2) and in the absence of amylase. For each time-point, 

antimicrobial susceptibility of all Gram-negative bacterial strains (Table 4.1) 

was determined using an MIC assay (Section 2.5.3).  
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To investigate the antimicrobial activity of the 24-hour-unmasked EA-4, 

colistin sulphate and CMS in the presence of serum proteins, MIC 

determination was performed against K. pneumoniae 5725, E.coli 7273 and 

E.coli NCTC 10418 as detailed in section 2.5.3.6, but using CAMHB enriched 

with 10% v/v foetal calf serum.  

4.3.4 Checkerboard experiments 

The susceptibility of A. baumannii 7789, and A. baumannii %%%%%, E.coli 5702, 

and E. coli 10418 to the combination of ciprofloxacin with either EA-4 (after 

24 h incubation in �-amylase), colistin or CMS was determined through a 

series of 2-directional checkerboard experiments. Within the checkerboard 

panel, the MIC of each antibiotic was in the middle of the range of 

concentrations tested with three double dilutions on either side (Cappelletty 

and Rybak 1996; Champney 2008). A typical two-directional checkerboard 

experiment for ciprofloxacin + EA-4 (after 24 h incubation in �-amylase) 

versus E. coli NCTC 10418 is described below. Figure 4.2 represents a 

typical checkerboard layout including quality controls.  

The MIC for each antibiotic against E. coli 10418 strain was determined 

(Section 2.5.3.6). Ciprofloxacin was diluted in CAMHB to achieve a stock 

solution (2 mL) at a concentration 8 times greater than the MIC of 

ciprofloxacin against the test organism. Serial two-fold dilutions were then 

produced in sterile universal containers in CAMHB. Equal volumes (100 IL) 

of the highest antibiotic concentration were pipetted into wells (row 1 of a 96-

well plate). The procedure was repeated in subsequent rows, resulting in 

serial two-fold dilutions of ciprofloxacin down the plate's rows. Next, EA-4 (24 

h-incubated in �-amylase as detailed in Section 4.3.2) was diluted in PBS in 

a universal container (2 mL) to produce a concentration 16-fold that of the 

previously determined MIC). A 100 IL volume was then pipetted into each 

well of the first column in the 96-well plate.  Two-fold dilution of EA-4 in each 

column was achieved by serial transfer of 100 IL. The plate was then 

inoculated with E. coli 10418 strain (Section 2.5.3.6) prepared as detailed in 

Section 2.5.3. The plate was wrapped in parafilm and incubated for 18-20 h 

at 35 o C in ambient air. The lowest concentration at which there was no 



Colistin serial double dilutions
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serial double  dilutions 
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MIC of ciprofloxacin to E.coli NCTC 10418 = 0.0156 Ig/mL
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�
�
�
Figure 4.2: A typical two-dimensional checkerboard assay layout for colistin +
ciprofloxacin versus E.coli NCTC 10418. MICs to the individual antibiotics were also
quantified on each plate as quality controls. MIC values within the checkerboard
are reported in Ig/mL. GC: growth control; SC: sterility control.
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visible growth was taken as the MIC of the antibiotic combination at that  

particular concentration. The procedure was repeated for A. baumanni %%%%%  

E. coli 5702 and E. coli NCTC 10418. For each antibiotic, the Fractional  

Inhibitory Concentration (FIC) of each first non-turbid well along the 

turbid/non-turbid interface was calculated (MIC of each drug in combination 

divided by the MIC of the individual drug). The mean FIC index of all non- 

turbid wells along the turbidity/non-turbidity interface was then calculated  

(Bonapace et al. 2000). The average of the mean FIC indices from triplicate 

microtiter trays was used to categorise results as synergy / antagonism / no  

interaction, according to Odds (2003). Quality control procedures are  

described in section 2.5.3.6.1. 

4.4 Results  

4.4.1 Antimicrobial activity, effect of bacterial strain and succinoylation 

P. aeruginosa demonstrated several differences in the susceptibility  

behaviour to the dextrin-colistin conjugates (Tables 4.3 - 4.4). Compared to  

A. baumannii, K. pneumoniae and E. coli all conjugates exhibited  

substantially higher MICs for P. aeruginosa. The lowest drop in MIC with  

incubation time occurred with P. aeruginosa. The lowest MIC drop between 

conjugates lying at the extremes of the succinoylation range (EA-1 and EA-4) 

was also seen with P. aeruginosa at 24 h pre-incubation time.  

At 0 h, all dextrin-colistin conjugates (with the exception of EA-1, the  

conjugate with the highest degree of succinoylation) had limited antimicrobial  

activity against "test-panel A" organisms. Antimicrobial susceptibility at 0 h  

also increased with decreasing succinoylation. Bacterial susceptibility  

generally increased with pre-incubation in �-amylase over 24 h (Table 4.5).  

The greatest increase in antimicrobial susceptibility with pre-incubation time  

was observed in minimally modified conjugate (EA-4). Bacterial susceptibility  

following 24 h incubation with �-amylase steadily increased with decreasing  

succinoylation: again, EA-4 reported the lowest MIC after 24 h unmasking in  

�-amylase. EA-4 showed the most marked antimicrobial activity in the  

preliminary screening, as it exhibited higher initial antimicrobial activity and  
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marked potentiation of this activiy was evident following amylase exposure. 

EA-4 was designated 'lead conjugate' and selected for further investigation. 

4.4.2 Antimicrobial activity of the lead conjugate  

Similar MICs for colistin and CMS were evident against the extended Gram- 

negative screening panel (test panel B, Table 4.4) to those in test panel A  

(Table 4.3). The exceptions were two MDR strains (P. aeruginosa MDR 301  

and A. baumannii MDR %%%%%, for which higher MICs (2 I�/mL) to colistin  

were apparent. EA-4 exhibited a time-dependant increase in antimicrobial  

susceptibility after pre-incubation with �-amylase. The MIC of EA-4 after pre- 

incubation with �-amylase was generally within 1 two-fold dilution of the MIC  

for CMS against A. baumannii, K. pneumoniae and E. coli. In keeping with  

the initial test-panel screen, only one P. aeruginosa strain (513232) showed  

time-potentiation in response to pre-incubation in �-amylase. Limited  

intraspecies variation was also noted: whilst susceptibiltiy of one K.  

pneumoniae strain (05506) was higher than CMS, E.�coli AIM-1 had a  

susceptibility equivalent to colistin (0.125 μg/mL) and two orders of  

magnitude lower than CMS. In the absence of �-amylase, after being  

incubated in PBS alone, there was no significant change in MIC over time.  

Moreover, when MIC assays were performed after pre-incubation in �- 

amylase, antimicrobial activity increased as the duration of pre-incubation  

with �-amylase increased.   

In the presence of 10% v/v FCS, colistin sulfate exhibited a substantial 

increase in MIC (range: 3-5 log2-fold increase, Table 4.4). In contrast, the  

change in antimicrobial susceptibility was lower for both CMS and 24 h- 

unmasked EA-4 (range: 1-2 log2-fold increase Table 4.5).   

4.4.3 Checkerboard assays with ciprofloxacin 

Combination testing of ciprofloxacin with either colistin, CMS or EA-4 after 24  

h preincubation in �- amylase resulted in average FICI values that ranged  

from 0.59 to 2.9, which were within the 'no-interaction' category (Table 4.6).  

The ciprofloxacin / EA-4 (24 h pre-incubation time) combination reported
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lower FICI values for both A. baumannii strains than for the E. coli.  

4.4.4 Quality control 

Each experiment satisfied the quality control criteria (Section 2.5.3.6.1). 

Antimicrobial susceptibility of E.coli NCTC 10418 to colistin and ciprofloxacin, 

determined with each experimental batch, were within one two-fold dilution of 

the published standard (Andrews 2006), for each experiment. Amylase 

activity in MHB was below the limit of detection of the Phadebas® assay (data 

not shown). Purity controls showed homogenous growth.  

4.5 Discussion 

The focus of this chapter was to investigate the in vitro antimicrobial 

susceptibility of a range of clinically relevant Gram-negative bacteria to 

dextrin-colistin conjugates and identify a lead compound for further studies. 

Due to the inherent toxicity of colistin sulfate, CMS is currently the 

predominant formulation administered intravenously (Falagas and Kasiakou 

2005; Lim et al. 2011). CMS, rather than colistin sulfate was therefore chosen 

as the comparator for the novel dextrin-colistin conjugates. As there are no 

current susceptibility standards for CMS, evaluating antimicrobial 

susceptibility to colistin sulfate additionally allowed comparison to published 

cut-offs validating MIC reproducibility and quality control (Andrews 2006; 

Giamarellou and Poulakou 2009). Whilst all the conjugates tested in the initial 

screen exhibited antimicrobial activity, the degree of antimicrobial activity 

varied with bacterial species, degree of succinoylation, exposure to �-

amylase and the presence of serum protein.  

In this study, MIC's for 24 h-unmasked EA-4 were within a two-fold dilution of 

CMS for A. baumannii, E. coli and K. pneumoniae species. Some intra-

species variation in conjugate sensitivity was also evident from K. 

pneumoniae 05506, and E.�coli �#)-$. Since variation in a single result places 

MICs in a three dilution range (Odds 2003), it may be argued that 

antimicrobial susceptibility to maximally unmasked conjugate was generally 

not inferior to CMS in most isolates from three of the four bacterial species 
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tested. Antimicrobial susceptibility results for 24 h- unmasked EA-4 

compared favourably with prior literature detailing PEGylation of other 

antimicrobial peptides, which led to 5 to 30-fold reductions in antimicrobial 

activity when tested against non-spore forming bacteria (Guiotto et al. 2003; 

Imura et al. 2007; Zhang et al. 2008a). With one exception (E. coli AIM-1 

versus EA-4), all conjugates were less active than colistin sulfate. The 

importance of cationic charges for interaction with the polar lipid A head and 

consequent mediation of colistin's antimicrobial effect is well-established 

(Section 3.4.2). An overall reduction in cationic amine groups resulting from 

the conjugation process may have contributed to this relative reduction in 

activity (Clausell et al. 2007; Velkov et al. 2009). Literature reports that loss 

of cationic charge in the cyclic heptapetide moiety (in contrast to those on the 

tripeptide linker moiety, Figure 1.3) resulted in complete loss of polymyxin 

antimicrobial activity (Vaara et al. 2008; Vaara et al. 2012). It is therefore 

possible that incorporation of amine groups residing on the heptapeptide 

moiety into peptide bonds by conjugation to succinoylated dextrin may have 

contributed to the reduction in activity of unmasked conjugate when 

compared to colistin sulfate. 

The reduction in overall cationic charge with conjugation may have also 

contributed to the reduced sensitivity of P. aeruginosa to 24-unmasked EA-4 

compared with the other Gram-negative species. Like dextrin-colistin 

conjugates, a polymxyin B derivative carrying reduced (only 3 out of 5) 

positive charges retained more activity against A. baumannii K. pneumoniae, 

and E. coli than P. aerugonisa in a large scale serial broth dilution MIC 

determination study (Vaara et al. 2012). The same compound sensitised A. 

baumannii and K. pneumoniae to other antibiotics more effectively than P. 

aeruginosa (Vaara et al. 2008). Moreover, Piers et al. (1994) reported that 

decreasing cationic content of antimicrobial peptides significantly decreases 

P. aeruginosa LPS-binding and outer membrane permeabilisation.  

The decrease in bioactivity prior to unmasking may be attributed to 

increasing stearic hindrance. In prior experiments, it was argued that 

increasing succinoylation resulted in increased hydrodynamic radius. 
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Therefore, conjugation to succinoylated dextrin may have contributed to 

stearic hindrance as evidenced by increasing MIC's at 0 h with increasing 

succinoylation, in all strains of test panel A.  The plausibility of this notion is 

also affirmed by NMR studies which suggest that bulky polymyxin derivatives 

may hinder insertion of the resultant molecule into the bacterial outer 

membrane reducing antimicrobial efficacy (Mares et al. 2009; Pristovsek and 

Kidric 1999, 2004). In another study, defensin conjugated to functionalised 

cellulose or agasorse also reported reduced antimicrobial activity against 

Gram-negative bacteria in serial broth microdilution assay compared to the 

original antimicrobial peptide (Bishop 2006). In control experiments 

conducted in the absence of �-amylase (Table 4.4), antimicrobial activity did 

not vary by more than one two-fold dilution, and it may be argued that this 

change was not significant, suggesting that in the conjugated form, masking 

of activity was evident, followed by �-amylase-mediated unmasking and re-

instatement of bioactivity. 

The subsequent reinstatement of antimicrobial activity on exposure to �-

amylase compared well with unmasking studies, governance of 

succinoylated dextrin degradation rates reported in the physicochemical 

characterisation experiments and with key preceeding studies (Hreczuk-Hirst 

et al. 2001a). These results confirm that enzymatically-triggered unmasking 

resulted in reinstatement of antibiotic activity, in keeping with the PUMPT 

principle (Duncan et al. 2008) and underscored the importance of �-amylase 

in the unmasking process.  

Pre-incubation in �-amylase reduced methodological bias. Whilst CAMHB did 

not posess detectable �-amylase activity, divalent cations contained in 

CAMHB may interfere with �-amylase. CAMHB may also contain starch 

which is a substrate for �-amylase (Deshpande and Cheryan 1984; Oxoid 

Limited 2011b). Variation in divalent cations contained in CAMHB may 

interfer with colistin function (Conly and Johnston 2006). However, the aim of 

these experiments was comparative (colistin to CMS to dextrin-colistin 

conjugate). The use of the same batch of CAMHB (Chapter 2) reduced this 

potential source of bias.  
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Antimicrobial activity of colistin dropped substantially in the presence of FCS 

compared to 24 h-unmasked EA-4 and CMS. In agreement with these 

findings it has been reported that 59-74% of total colistin is bound to albumin 

(Mohamed et al. 2012), but only the unbound colistin exerts an antibiotic 

effect (Dudhani et al. 2009). This suggests that sulphomethylation and 

polymer conjugation may reduce albumin binding, which could increase in 

vivo bioavailability.  

Determining the 'true' antimicrobial potential of macromolecular antibiotics is 

challenging. Susceptibility results in the presence of FCS suggest that 

conjugation would impart the conjugate an advantage over colistin in vivo. 

Moreover, standard antimicrobial susceptibility analysis by MIC does not take 

into account the potential for passive accumulation of the conjugate by the 

EPR effect (Chapter 1). It is, therefore, likely that the true antimicrobial 

potential of these conjugates is underestimated in vitro. Nonetheless, MIC 

determination provided a standard, accepted and robust methodology 

whereby the activity of different candidate conjugates could be compared to 

each other and to CMS and colistin. 

Checkerboard assays suggest that masking/unmasking did not alter the 

interaction behaviour of the resulting unmasked product, and the conjugation 

process did not result in antagonistic activity. The checkerboard assay 

provided an objective method to compare the antimicrobial effect of the 

different ciprofloxacin combinations. It is possible that the ciprofloxacin + 

dextrin colistin conjugate combination could benefit from prolonged in vivo 

bioactivity owing to its controlled release nature (hence prolonged detergent 

effect on the bacterial membrane) and, potentially, passive accumulation by 

EPR. Moreover, recent studies have shown that addition of colistin to 

fluoroquinolone antibiotics effectively lowered the concentration necessary to 

prevent the emergence of resistant mutants �������� as well as in retrospective 

clinical studies (Cai et al. 2012; Prentice et al. 2001; Zhanel et al. 2006). The 

potential in vivo benefits of dextrin-colistin combination to ciprofloxacin may, 

consequently, have been underestimated by this assay. Through controlled, 

prolonged release (by the PUMPT effect), and passive accumulation (by the 
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EPR effect), use of dextrin-colistin conjugates may serve to achieve greater 

efficacy in preventing the emergence of resistant strains.  

4.6 Conclusion  

These studies demonstrated that incubation of dextrin-colistin conjugates in 

the presence of �-amylase resulted in re-instatement of antimicrobial activity, 

against A. baumannii, K. pneumoniae and E. coli, whilst P. aeruginosa was 

resistant. EA-4 showed the most marked antimicrobial activity, which after 24 

h incubation with �-amylase was generally not inferior as an antimicrobial 

agent to the current clinically used formulation (CMS) using well-established 

in vitro tests. There was a general agreement between polymer modification 

and conjugate activity with conjugates containing lower degrees of 

succinoylation displaying more antimicrobial activity. Based on these studies 

it was also possible to determine a lead candidate, EA-4, for which 

masking/unmasking, and reinstatement of antimicrobial activity in the 

presence of �-amylase was a feasible concept in vitro, in the context of 

PUMPT. Whereas the antimicrobial activity of colistin was decreased by the 

addition of FCS, CMS and 24 h-unmasked EA-4 activity was largely 

unaffected. This was presumably due to the altered affinity to serum protein. 

Addition of ciprofloxacin to bacteria incubated with dextrin-colistin conjugate 

resulted in 'no interaction' by the checkerboard method. To investigate further 

the pharmacological / pharmacodynamic profile of dextrin-colistin conjugates, 

an in vitro, static two-compartment model under infinite sink conditions was 

constructed to measure unmasking and bacterial killing and will be 

characterised in Chapter 5.  
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Chapter Five 

Pharmacokinetic/Pharmacodynamic and Ex Vivo Studies 
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5.1 Introduction 

This study has determined a "lead" conjugate (EA-4) for which controlled 

unmasking by �-amylase led to reinstatement of antibiotic activity and whose 

antibacterial activity was generally equivalent to CMS against A. baumannii, 

K. pneumoniae, and E. coli. Establishing the �-amylase activity within target 

tissue, and viability of conjugate unmasking at these sites is critically 

important in supporting the concept of PUMPT (Duncan et al. 2008) for 

dextrin-colistin conjugates. In this study, �-amylase activity in ex vivo infected 

wound fluid samples, collected from a series of burn patients, and bacterial 

amylase production were investigated. Evaluation of in vitro antibacterial 

activity during unmasking of dextrin-colistin conjugates is an important step in 

determining optimal dosing strategies. Therefore, a two-compartment, static, 

dialysis bag model under infinite sink conditions was validated. Using this 

model, the pharmacokinetic/pharmacodynamic (PK/PD) profile of colistin 

sulfate, EA-4 and the colistin sulfate + EA-4 combination was investigated in a 

modified time-kill model against a MDR A. baumannii strain. The PK/PD 

model was then used to evaluate real-time unmasking of EA-4 in infected 

human wound exudates. A. baumannii infection is associated with significant 

mortality and multidrug resistance (Dijkshoorn et al. 2007). In military 

casualties A. baumannii infection has reached epidemic proportions (Keen et 

al. 2010b). The clinical importance of A. baumannii infection provided a 

clinically valid rationale for selecting an A. baumannii strain to investigate 

the PK/PD profile of the EA-4 dextrin-colistin conjugate.  

5.1.1 Amylase 

Several physicochemical characteristics of �-amylase provide a rationale for 

investigating its use in harnessing PUMPT in infection. The �-amylases 

randomly hydrolyse �-1, 4-glycosidic bonds along the polysaccharide chain 

(Burkart 2004). The by-products of this reaction (intermediate length dextrins, 

shorter limit dextrins, maltotrioses, and the disaccharides maltose and

isomaltose, (Figure 5.1) are non-toxic and easily assimilated in normal

physiological metabolic processes. Human production of �-
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amylase accounts for 5-6% of total protein secretion (Whitcomb and Lowe 

2007), resulting in limited α-amylase activity in plasma under physiological 

conditions. However, its high molecular weight (~57,000 g/mol) is compatible 

with passive targeting and retention at an infected site, by EPR (Section 1.7). 

Moreover, this high molecular weight would conveniently facilitate partitioning 

in a two-compartment model using dialysis membranes. The optimal pH of α-

amylase is 6.7-7 (Abrams et al. 1987), which is compatible with the acidic pH 

expected in and around infected foci (Kumar 2010).  

Clinical application of α-amylase has so far been limited to diagnostics, for 

example, of salivary and pancreatic disease (Longmore et al. 2010). Previous 

studies have demonstrated the presence of α-amylase activity within acute 

and chronic wounds (Hardwicke et al. 2010). To date, however, no studies 

have investigated �-amylase activity in infected wounds or its therapeutic 

potential within this context. Successful application of dextrin-colistin 

conjugates is dependant on locally triggered polymer degradation to permit 

time-dependant protein ‘unmasking’, and controlled reinstatement of 

bioactivity at the infected site (Duncan 2011). It was, therefore, essential to 

investigate �-amylase activity in ex vivo infected wound fluid to substantiate a 

proof of concept regarding the viability of dextrin-colistin conjugates in 

infection.   

The two human amylase isoforms (pancreatic and salivary) have the same 

mechanism of action and their predicted amino acid sequences differ by only 

6% (Lott and Lu 1991; Ramasubbu et al. 1996). Amylases are, however, not 

unique to humans (Pandey et al. 2000). In particular, bacterial production of 

amylases has been extensively explored in the food industry (Reddy et al. 

2004). It was, therefore, also considered interesting to investigate whether 

the pathogenic strains used in this study produced amylase.  

5.1.2 Infected wound fluid collection 

Wound fluid is a valid representation of the biochemical status in the wound 

environment (Trengove et al. 1996) and has been used to monitor 

biochemical events in the dermis in acute and chronic wounds (Faria et al. 
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1997; Staiano-Coico et al. 2000; Trengove et al. 2001). Moreover, wound 

fluid is a commonly used ex vivo model for analytical and experimental 

purposes (Bowler et al. 2012; Staiano-Coico et al. 2000). �-Amylase activity 

and its unmasking potential has been successfully assessed in wound fluids 

from healing wounds (Hardwicke et al. 2010). The literature suggested that 

collection of infected wound fluids was appropriate for conducting these 

experiments.  

A variety of validated non-invasive techniques (Table 5.1) has been 

described for collection of wound fluids. Indirect collection methods involve 

collection of wound fluid into absorbent media or dressings followed by 

wound fluid elution. However, such methods entail significant time (minimum 

of 1–4 h), rendering them unsuitable for use in unstable, critical care patients. 

In contrast, direct collection of infected fluid from the wound bed presents a 

simple, rapid and effective direct sampling technique, with minimal 

interference to the wound bed (Moseley et al. 2004). 

Infected burn wounds present a potentially large, "weeping" surface area 

which necessitates multiple dressing changes and operative interventions. 

This lends itself well to direct collection of wound fluid samples, whilst 

avoiding sampling bias that may arise from indirect fluid collection methods, 

such as  variance in the volume of wound fluid eluted, fluid protein levels and 

adsorption of proteins to dressing materials (Cook et al. 2000; Moseley et al. 

2004). The care-costs of these patients are markedly higher than for the 

general in-patient population (Sanchez et al. 2008). Burn wound infection 

remains a primary cause of morbidity and mortality in these patients, for 

whom novel and effective antibiotic agents are needed (Ansermino and 

Hemsley 2004; Church et al. 2006; Sharma et al. 2006). 

5.1.3 PK/PD models 

PK/PD models offer the possibility of linking the concentration-timecourse 

(unmasking at the target site) to the drug effect (bacterial killing). 

Antimicrobial activity has been traditionally explored with time-to-kill (TTK) 

assays, where a fixed concentration of both antibiotic and bacteria is 
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added to an enclosed container and colony counts are determined over time 

(Manduru et al. 1997). In a classical TTK study (static, one compartment 

model), the growth medium remains unchanged (Bernaerts et al. 2004; 

Murakawa et al. 1980). Single compartment static models have been well-

established for studying the effect of a fixed antibiotic dose on a fixed 

bacterial load (Tan and Ng 2006). However, selecting an appropriate PK/PD 

model to investigate drug-release and real-time antimicrobial effect for a 

single dose of a controlled-release, bioresponsive conjugate (whose 

unmasking depends on a local, enzymatically-triggered reaction) presented  

specific challenges in comparison to conventional antibiotic in vitro models. 

Continuous removal of peripheral compartment fluid is a classical method 

used to establish a concentration gradient from a central compartment 

containing the drug, to a peripheral compartment containing the bacteria 

(Gloede et al. 2010). However, such methods require specialist equipment 

and interpretative software. In their extensive review, Gloede et al. (2010) 

proposed a novel perspective into methods harnessing "infinite sink" 

conditions which use a concentration gradient as a driving force from one 

compartment to another. This method has been successfully used to study in 

vitro drug release from a variety of drug delivery systems, including drug-

eluting stents (Schwartz et al. 2002) and anaesthetic-containing 

microparticles (Colombo et al. 2004). Therefore, a static two-compartment 

dialysis bag model under infinite sink conditions offered a simple and cost-

effective model that was appropriate for an initial study exploring the 

antimicrobial effect of a single conjugate dose whose unmasked proportion 

changed over time. Use of a two-compartment model would also allow 

content of each compartment to be varied and assayed separately. This 

model would further permit flexibility to introduce increasing levels of 

complexity, from model validation, to a modified TTK assay. Moreover, 

partitioning �-amylase to the central compartment would minimise 

interference from �-amylase inhibitors potentially present in artificial media 

such as TSB (used for overnight bacterial growth) and MHB used for 

sustaining bacterial growth (Oishi et al. 1991; Ryan 1990).  
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5.2: Aims

The aims of these studies were to: 

1. Determine �-amylase activity in ex vivo infected wound fluid collected from 
a series of burn patients 

2. Establish the bacterial contribution to �-amylase activity  

3. Investigate EA-4 unmasking directly in ex vivo infected wound fluid  

4. Develop a two-compartment, static, dialysis bag PK/PD model under 
infinite sink conditions to study re-instatement of EA-4 activity by �-amylase 

5. Describe the PK/PD profiles of colistin sulfate, EA-4, and a combination of 
colistin sulfate + EA-4 against A. baumannii strain 7789, in terms of drug 
release and antimicrobial activity 

5.3 Methods

General methods used, including BCA assay (Section 2.5.2.3), FPLC 
(section 2.5.2.2) and MIC assay (section 2.5.3) were previously described. 
Dextrin-colistin conjugates EA-4 (1.0 mol% succinoylation, 11.2 % w/w 
colistin content, Mw ~10, 300 g/mol) was prepared as detailed in Sections 
2.5.1 and 3.3.2. Unless otherwise specified, the concentration of the doses 
described in this study refers to colistin component of the conjugate. 

5.3.1 Ex vivo sample collection

Informed consent was obtained for all procedures, which were performed 
under Research Ethics Committee approval (11/WA/0252, Appendix 1). 
Wound fluid (up to 3 mL) was collected from infected burn wounds of six 
adult civilian patients treated at the Welsh Burns Centre (Swansea, UK). 
Burn wound infection was diagnosed according to the American Burn 
Association diagnostic criteria (Greenhalgh et al. 2007). Patients with 
recorded pancreatic or salivary disease, multiple trauma, or other concurrent 
foci of infection were excluded. Infected wounds originating from within 1% 
total body surface area of body orifices or in situ catheters/endotracheal 
tubes were also excluded. 
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Wound fluid collection was performed intra-operatively or during dressing 

change, under standard sterile operating theatre conditions. After dressing 

removal, wounds were lightly washed with sterile medical grade 0.9% sodium 

chloride solution. After 15 min, a sterile Teak® graft board with a smooth 

bevelled edge was gently passed over the wound surface to collect the 

exudate bathing the infected wound in a galley pot. Using this method, the 

widest infected area was sampled. Infected wounds surrounding or within 1% 

total body surface area of body orifices, arterial lines, endotracheal tubes or 

suspected urinary/faecal contamination were avoided. Each sample was 

transferred to a sterile syringe, sealed, then frozen on dry ice and stored at -

80 oC until required. Samples were clarified by centrifugation (15,000g x 5 

min at 4 oC) prior to use (Hardwicke et al. 2010).  

5.3.1.1 �-Amylase activity assay 

The �-amylase content of infected wound fluid samples was determined 

using a Phadebas® starch-dye assay (Akiko et al. 1972). Briefly, wound 

sample (200 μL) was added to ddH2O (4 mL) and pre-warmed (37 °C, 5 min). 

One Phadebas® tablet was added to each sample, vortexed for 10 s and 

incubated (37 °C, 15 min). The reaction was terminated by the addition of 

NaOH (0.5 M, 1 mL), before centrifugation (1,500 g, 5 min). Supernatant 

absorbance at 620 nm was measured in triplicate using distilled water as 

blank using a 1 cm path-length cuvette. The entire procedure was repeated 

in triplicate for each sample. Mean �-amylase activity in the samples was 

derived from the batch-specific calibration curve provided with the reagent.  

5.3.2 Bacterial production of amylase 

Amylase secretion by bacteria was explored using a using a modified 

procedure previously described by Wróblewska et al. (2011), whereby LMW 

dextrin was used instead of starch. Dextrin-agar was produced by dissolving 

TSA agar (40 g) and LMW dextrin (10 g) in ddH2O (1 L). Then, it was 

autoclaved (121 oC for 15 min). Once cooled to 56 °C in a waterbath, aliquots 

(20-30 mL) were poured into sterile Petri dishes in a microflow cabinet and 

left to cool until solid. The prepared plates were stored inverted at 2-8 °C until 
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required. Bacterial isolates were inoculated onto the dextrin-agar medium 

plates and incubated for 24 h. Amylase production was determined by the 

appearance of a colourless halo after Lugol's solution (1% iodine in 2% 

potassium iodide) was added to each plate. Bacillus subtilis ATCC 6633 was 

used as a positive control. Blank plates were flooded with Lugol's iodine and 

the resulting red-brown colour was used as a negative control. The 

procedure was repeated in triplicate for all clinical strains used in this study.  

5.3.3 Construction of a static two-compartment PK/PD model under 

infinite sink conditions 

Unmasking of dextrin-colistin conjugates was simulated using a two-

compartment static, ‘dialysis bag’ model under sink conditions (total volume: 

20 mL, inner compartment volume: 5 mL), as shown schematically in Figure 

5.2. Dialysis membrane (10,000 g/mol MWCO) was pre-soaked for 15-30 min 

in ddH2O, secured with dialysis clips and suspended from an injection port to 

separate the inner compartment (IC) from the outer compartmnt (OC) in a 

sterilised 25 mL beaker sealed with sterile medical grade polyurethane 

membrane. The model system was established under aseptic conditions in a 

class 2 laminar air flow cabinet, and transferred to a shaking incubator set at 

37o C in ambient air and constant orbital agitation at 70 RPM for 48 h.  

5.3.3.1 Method validation 

First, the integrity of the membrane to the masked conjugate was assessed. 

Here, the IC contained dextrin-colistin conjugate 3�'+ diluted in PBS (10 

mg/mL colistin equivalent), in absence of �-amylase. The OC contained PBS 

(15 mL). The sealed beaker was incubated as described previously for 17 h. 

After this time, FPLC was used to estimate the proportion of masked 

conjugate in both compartments (n=3).   

To validate the PK/PD model, the rate of change in total protein content in 

the OC and IC was measured over time. The OC contained sterile PBS (pH 

7.4, 37 oC) while the IC contained EA-4 (10 mg colistin equivalent) and �-

amylase (100 IU/L) in sterile PBS (pH 7.4, 37 oC) (Figure 5.2).  



B

Sampling ports

Dialysis membrane 
(10,000 g/mol MWCO)

Inner compartment (IC)

Semipermeable polyurethane 
membrane

Nylon surgical tie

Outer compartment (OC)

Figure 5.2: Schematic illustration of the  two-compartment ‘static’ dialysis bag 
PK/PD model under infinite sink conditions. The model system was incubated 
ay 37 oC with 70 RPM orbital shaking agitation. 

Dialysis clip
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Samples (150 μL) were extracted from each compartment at various intervals 

(0, 4, 8, 12, 24, 36, 48 h) using sterile, medical-grade single-use vascular 

catheters, and immediately frozen in dry ice. Samples were analysed for total 

protein content using BCA assay, and for antimicrobial susceptibility using an 

MIC assay. At 48 h, the % unmasked and masked colistin in both 

compartments was confirmed by FPLC using area under the respective 

curve. At the end of the experiment, integrity of the dialysis membrane to 

amylase was confirmed using carbonic anhydrase as a molecular weight 

surrogate. Contents of both IC and OC were removed. The dialysis 

membrane was flushed with several volumes of sterile ddH2O and then 

resuspended in sterile PBS as described previously. The IC was spiked with 

carbonic anhydrase (29,000 g/mol, 2 mg/mL) in PBS. After a further 17 h 

incubation against PBS within the OC under identical conditions, the ratio of 

carbonic anhydrase in both compartments was quantified by UV/vis 

spectrophotometry (n=3).  

5.3.3.2 Modified A. baumannii TTK model 

The model was converted to a modified, TTK study for investigating the effect 

of a single dose of colistin, EA-4, and the colistin sulfate/ EA-4 combination 

against A. baumannii $$���strain in terms of drug release and antimicrobial 

activity, over 48 h. Here, the OC contained a 0.5 Mcfarland concentration of 

A. baumannii $$���strain in MHB at 0 h. In separate experiments, the IC 

contained �-amylase (100 IU/L) in sterile PBS in combination with either:  

a. �olistin sulfate ($�( μg colistin equivalent, 1 x MIC)  

b. EA-4 ($,6 μg colistin equivalent, 1 x MIC)  

c. 3�'+�(320 μg colistin equivalent, 2 x MIC) 

d. � mixture of colistin sulfate ($�( μg colistin equivalent, 1x MIC) and EA-4 

(160 μg colistin equivalent, 1 x MIC) 

The model was incubated and aliquots from the OC were sampled as 

described previously (Section 5.3.2.1). Colony counts (CFU/mL) were 
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determined  according to the method of Miles et al. (1938). The procedure 

was repeated in triplicate. Freshly prepared TSA plates were dried inverted in 

sterile conditions in a laminar flow cabinet (20-30 min). OC aliquots (50 μL) 

were diluted 10-fold in PBS and centrifuged. Pellets were re-suspended in an 

equivalent volume of fresh PBS. Serial 10-fold dilutions were performed in 

triplicate across a 96-well plate (columns 2-12). Samples (5 μL) from each 

dilution were dropped onto the surface of the dried TSA plates in triplicate. 

TSA plates were left undisturbed for 30 min, inverted, and incubated for 18-

20 h (35-37 oC in ambient air) then visually inspected for growth. The drop-

position displaying the highest number of full-size discreet colonies, (range 2-

20 colonies) was quantified and multiplied by the dilution factor. The resulting 

colony count (CFU/mL) was plotted versus time to produce a time-kill model. 

Controls were included with each experimental procedure (Table 5.2.) 

5.3.3.3 Unmasking of dextrin-colistin conjugate in infected wound fluid 

The same model was used to evaluate the feasibility of dextrin-colistin 

conjugate unmasking in infected burn wound samples. Equal aliquots of each 

wound fluid sample (clarified as detailed in Section 5.3.1) was diluted in PBS 

to make up the IC volume (5 mL) and EA-4 (320 μg colistin equivalent) was 

added. The OC contained sterile PBS as described previously. OC samples 

(150 μL) were extracted (0, 3, 6, 12, 24, 48 h), and frozen on dry ice until 

required. For each wound sample the procedure was repeated in triplicate. 

The total colistin content in each sample was determined in triplicate using 

the MaxSignal® ELISA assay as detailed in section 2.5.4.  

5.4 Results 

5.4.1 Wound fluid collection and determination of �-amylase activity 

Wound fluid was collected from a total of 6 patients (Table 5.3). Typical 

patients were middle aged adults with partial thickness skin burns. Dry heat 

was the commonest cause of injury. Total protein content in the supernatant 

was 50.7 ± 15.1 mg/mL (mean ± SD). Infected wound fluid contained 

significantly higher �-amylase activity (408.4 ± 168.3 IU/L, mean ± SD) than  
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Table 5.2: Control procedures used in validation of the two-compartment 
dialysis bag model under infinite sink conditions 

 

Control  Procedure  

Sterility  Sterile PBS (IC, 5 mL) was dialysed against sterile freshly 

prepared MHB in the OC (15 mL) for 48 h. At 48 h, samples 

from both compartments were subcultured on sterile TSA 

plates and incubated for 18-20 h at 37 oC in ambient air. 

Contamination  At the end of each experiment, an aliquot from both IC and 

OC was subcultured onto TSA and incubated for a further 

18-20 h. Results were only considered acceptable in the 

presence of homogenous cultures. 

Growth Sterile PBS was dialysed against 5 x 105 CFU/mL A. 

baumannii in MHB in the OC (Section 5.3.3.1) for 48 h. 

Growth controls on 

colony counting 

plates 

3 x 5 Il drops of neat washed bacterial cells were used as 

growth controls with each determination of viable bacterial 

cells. 

Reporting controls Colony counts confirmed by a blinded observer. 
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serum (60.0 ± 25.3 IU/L, mean ± SD) concurrently reported from clinical 

charts on the same patient cohort (p < 0.05) (Figure 5.3).  

5.4.1.1 Bacterial production of amylase 

None of the bacterial strains produced amylase. In contrast B. subtilis strain 

ATCC 6633 reported a clear zone surrounding the colonies (Figure 5.4).  

5.4.2 PK/PD experiments using the static two-compartment model 

under infinite sink conditions 

5.4.2.1 Model validation 

Protein concentration in the IC decreased in a logarithmic fashion over time, 

while protein concentration in the OC increased reciprocally (Figure 5.5). A 

corresponding increase in antimicrobial activity of the OC over time was also 

observed (Figure 5.5). FPLC demonstrated that, at 48 h, significant 

unmasking occurred (p < 0.05) and unmasked conjugate accounted for ~68% 

of total colistin content in the system (Figure 5.6). At 48 h there was no 

significant difference in the distribution of unmasked conjugate between the 

two compartments (p > 0.05). On the other hand, the system reported a 

significant difference in the masked/minimally unmasked dextrin-colistin 

conjugate between OC and IC (p < 0.05), with ~ 80% being retained in the IC 

(Figure 5.5). Membrane integrity testing confirmed the presence of carbonic 

anhydrase in the OC was always below the lower limit of quantification 

(Figure 5.7). When the experiment was repeated using masked dextrin-

colistin conjugate in the absence of �-amylase, the OC protein content was 

<10% after 17 h satisfying quality control criteria (Spectrum Labs Inc 2012). 

5.4.2.2 PK/PD modelling against MDR A. baumannii isolates 

Colistin sulfate, at its previously determined MIC (Table 4.4) showed rapid 

initial killing, and viable bacterial counts were below the assay's lower limit of 

quantification at 4 h. However, early and significant bacterial re-growth 

following a colistin sulfate dose virtually nullified the gains registered by the 

rapid reduction in bacterial counts, within 8 h thereafter (Figure 5.8). In 
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Figure 5.3: Estimation of �-amylase activity by Phadebas® assay in infected wound fluid 
(n=3, mean ± SD) or from clinical reports (n=1, serum). The average data set represents 
mean amylase activity in wound versus plasma samples (mean ± SD, n=6). * Indicates a 
statistically significant difference (t-test, p < 0.05).  
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Figure 5.4: Typical images of bacteria grown on dextrin-agar plates tested with
Lugol’s iodine. Panel (a) shows a positive control (Bacillus subtilis)E panel (b)
shows a negative control (no bacteria); subsequent panels (c-j) show two
strains from each bacterial species tested.
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Figure 5.5: Distribution and antimicrobial activity of dextrin-colistin conjugates in a two-
compartment dialysis bag model under infinite sink conditions. Panel (a) shows protein 
concentration in the IC and OC over time (mean ± SD, n=3); panel (b) shows the 
corresponding MIC for each time point as a measure of antimicrobial susceptibility =�K(>���
��  
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Figure 5.6: Distribution of masked and unmasked dextrin-colistin conjugate at 48 h in a two-
compartment dialysis bag model under infinite sink conditions. Panel (a) shows the relative 
amounts of masked and unmasked dextrin-colistin conjugates in the system at 48 h; (b) 
shows the distribution of masked and unmasked dextrin-colistin conjugate in each 
compartment at 48 h. Data shown represents mean ± SD (n=3). * Indicates statistical 
significance (p < 0.05).  
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Figure 5.7: Detection of carbonic anhydrase by UV/vis spectroscopy, in IC and OC after 
integrity testing. 
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Figure 5.8: TTK curves against 
�� ���	
��
���� clinical isolate. Panel (a) shows bacterial 
viability count following a challenge with colistin sulfate or EA-4 in the presence of �-amylase 
(100 IU/L). Panel (b) reports bacterial viability count after a challenge with colistin 
sulfate+EA-4 in the presence of �-amylase (100 IU/L), or EA-4 at 2 x MIC. Data shown 
represents mean CFU values (n=3). Lower limit of quantification: 200 CFU/mL.  
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contrast, antimicrobial activity of the EA-4 conjugate was gradual and 

sustained. Maximum reduction in viable bacterial counts (~104 CFU/mL) 

occurred at 24 h compared to growth controls. Dextrin-colistin conjugate was 

bactericidal in a concentration-dependant manner (1 x MIC versus 2 x MIC). 

In contrast, the colistin sulfate�+�EA-4 combination retained optimal 

characteristics of both components, with rapid initial bacterial killing, 

maximum reduction in viable bacterial counts at 4 h and sustained reduction 

of viable bacteria throughout the experiment, compared to control and 

colistin. The control growth curves reported that bacterial growth could be 

maintained under the experimental conditions, while sterility controls 

confirmed that sterility conditions were maintained throughout. Culture onto 

TSA plates at the end of each experiment confirmed the presence of a 

homogenous culture. 

5.4.2.3 Ex vivo unmasking 

After sample clarification only three wound samples contained sufficient 

supernatant volume to enable assessment of direct dextrin-colistin 

unmasking in triplicate. The resulting �-amylase activity in the system (after 

dilution needed to make up three aliquots of each clarified, infected wound 

fluid sample to the required IC volume), is reported in Figure 5.9.  

An increasing colistin concentration in the OC was observed in all samples 

over time (Figure 5.9). As concentration of �-amylase in wound fluid 

increased (25.6 to 71 IU/L) the total concentration of colistin in the OC also 

increased correspondingly. At 48 h this equated to a mean total OC colistin 

content of 68.1 to 86.2 % of the theoretical concentration of the original dose 

concentration at equilibrium (32 μg/mL). Unmasked colistin in this 

compartment at 48 h was derived from the total (measured by ELISA) by 

subtracting the % of masked colistin reported in this compartment at the 

same timepoint. The resulting values for unmasked colistin and respective 

95% confidence intervals are detailed in Figure 5.9. In the system with the 

highest �-amylase activity, OC colistin concentration plateaued earliest, 

starting at 24 h.  
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(a)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b)  
 

Sample  Amylase activity in 
undiluted wound 
fluid (IU/L)  

Amylase 
activity in IC 
(IU/L)  

Total OC Colistin 
at 48 h (μg/mL)  

Calculated 
unmasked EA-4 in 
OC (%) * 

A  710 (26) 71  13.8 (0.7) a              34.3 (28.6 to 39.4)  

B  322 (13) 64  13.2 (0.5) b  32.5 (26.9 to 32.6)   

C  256 (3.9) 25.6  10.9 (1.3) c  25.1 (20.3 to 30.4)  

Values represent mean ± SD (n=3). *After application of a correction factor for masked 
EA-4 content, values represent mean unmasked EA-4 (95% confidence interval).  

 

 

Figure 5.9: Estimation of unmasked colistin release after incubation of masked conjugate in 
infected burn wound fluid. Panel (a) reports OC colistin content over time. Data shown 
represents mean ± SD, n=3. Panel (b) shows amylase concentration determined by 
Phadebas assay and the final amylase activity in the IC after dilution.  
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5.5 Discussion 

5.5.1 Determination of �-amylase activity in infected wounds 

The notion of a prototype polymer-antibiotic conjugate which affords selective 

release at an infected site was critically dependent on locally triggered 

polymer degradation to allow time-dependant "unmasking" and controlled 

reinstatement of activity (Duncan 2011). Establishing the presence of viable 

�-amylase activity within sites of infection was important to this study. 

Analysis of infected burn wound fluids allowed quantification of �-amylase 

activity within these fluids as well as providing further evidence that 

unmasking would be clinically feasible. 

Significantly increased wound �-amylase activity, compared to serum, 

suggests that �-amylase-triggered local re-instatement of nanoantibiotic 

activity is feasible, and supports a novel, therapeutic role for �-amylase in 

infection. A similar therapeutic role for �-amylase has been suggested in the 

management of chronic wounds (Hardwicke et al. 2008a) and cancer 

(Ferguson and Duncan 2009) in relation to PUMPT facilitation (Duncan et al. 

2008).  

Despite the pathological insult presented by burn surgery and infection, in 

this study, serum �-amylase activity was within normal physiological range of 

30-110 IU/L (Branca et al. 2001). Physiological plasma �-amylase activity 

provides a baseline level that conjugates need to contend with in transit from 

the site of administration to the target site. Several studies have adopted 

these levels during the initial physicochemical characterisation and 

optimisation of dextrin-colistin conjugates (Ferguson and Duncan 2009; 

Hardwicke et al. 2008a). Literature suggests that �-amylase-mediated 

degradation of succinoylated dextrins is compatible with unmasking over a 

wide range of �-amylase activity, from 90 to 8,000 IU/L (Hardwicke et al. 

2010; Hreczuk-Hirst et al. 2001a). In this study local �-amylase concentration 

was markedly higher than plasma, in keeping with findings in other disease 

states such as ovarian, lung and breast cancer (Grove 1994; Weitzel et al. 

1988; Zakowski et al. 1984). Increased �-amylase activity at the infected site 
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would favour locally triggered polymer degradation and re-instatement of 

bioactivity specifically at the target site (Duncan 2011), in keeping with the 

tenets of PUMPT (Duncan et al. 2008).  

In this study, mean time of sample collection was more than 2 weeks post-

burn, when vascular permeability, interstitial fluid leakage and fluid shift 

(classically reported to occur in the first 24 h post-injury) have subsided 

(Pham et al. 2008; Ward and Till 1990). Moreover, these burn injury-related 

phenomena principally occur after major burns (> 25 % total body surface 

area) (Warden 2007). In this study, significant differences in wound versus 

plasma �-amylase activity were observed throughout a range of body surface 

areas involved in thermal injury. The protein concentration reported in these 

samples confirmed the presence of an exudate, which is typical of infected 

wounds (Longmore et al. 2010).  

Few studies have investigated �-amylase production in Gram-negative 

pathogenic species (Momma 2000). Investigating the bacterial contribution to 

the significantly higher local �-amylase concentration showed that no 

bacterial strains used in this study produced amylase (Figure 5.4). It could, 

therefore, be argued that that local amylase accumulation occurs in response 

to an infection, rather than due to production by specific pathogens. These 

findings suggest that �-amylase activity reported in infected wound fluid is of 

human origin and imply that accumulation of endogenous �-amylase at an 

infected focus may occur by EPR (Sections 1.4.4 and 1.7). Consequently, 

locally-controlled, enzymatically-triggered re-instatement of bioactivity may 

depend on the generic production of an EPR effect in infection, independent 

of the actual infecting strain, suggesting this paradigm may be harnessed in a 

wide variety of infections.  

5.5.2 Model evaluation  

Several in vitro models have been used to study antibiotic PK/PD profiles, 

offering a choice from various levels of complexity to emulate in vivo 

conditions (Gloede et al. 2010). Although traditional TTK models have been 

extensively used to describe the effects of different antibiotics on a bacterial 
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pathogen (viable bacterial cells) in response to a fixed antibiotic challenge  

these models presented several drawbacks (Section 5.1.3).   

Time-kill models reported in the literature typically describe bacterial counts 

up to 24 h post-dose (for example Liang et al. 2011; Owen et al. 2007; Tang 

et al. 2009a). This approach was not appropriate for a controlled release 

formulation whose maximal unmasking was observed between 24-48 h. 

These models were also unable to prevent the potential alteration of �-

amylase activity by artificial media used to sustain bacterial growth (Section 

5.1.3). In contrast, the static, two-compartment dialysis bag model under 

infinite sink conditions offered a simple and cost-effective method for a  

PK/PD evaluation of locally triggered, �-amylase-mediated unmasking of 

dextrin-colistin conjugate.  

Several considerations were essential to the viability and reproducibility of 

this model. Selection of Spectra/POR 7 ® membrane avoided extensive, non-

specific colistin binding to other commonly used membranes, such as 

Amycon®, and reduced the risk of heavy metal contamination that could 

interfere with enzyme activity (Dudhani et al. 2010b; Li et al. 2003b).  An 

IC:OC volumes ratio of 1:4 and total volume of 20 mL in the system 

maintained infinite sink conditions (Caffrey, 2006), provided a concentration 

gradient as a driving force, and ensured that saturation of the OC with 

unmasked conjugate would not occur, whilst minimising antibiotic use. An 

infinite sink strategy presented a convenient means to achieve changing drug 

concentrations (Gloede et al. 2010). Consistent and reproducible results 

were achieved during valiation studies. Colistin concentration in the OC 

increased over the time-course of the experiment, and this was mirrored by 

an increase in antimicrobial activity in the same compartment. Final 

distribution of masked and unmasked dextrin-colistin conjugate upheld the 

initial physicochemical characterisation studies of colistin unmasking (section 

3.5.3). It also confirmed that unmasked conjugate was equally distributed 

between compartments whilst intact or minimally unmasked colistin was 

largely retained in the IC. Membrane integrity to �-amylase and to masked 

conjugate was also confirmed.  
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Considering the controlled release nature of the dextrin-colistin conjugate, it 

was essential to provide an incubation environment that emulated in vivo 

conditions, whilst ensuring bacterial viability throughout. Therefore, 37 oC 

was selected to mimic in vivo conditions and constant agitation (70 RPM) 

reduced the risk of boundary layer effects at the dialysis membrane 

(Schwartz et al. 2002). Growth control curves were in keeping with other TTK 

studies performed under similar conditions, with regard to curve shape and 

A. baumannii bacterial counts (Liang et al. 2011; Tan et al. 2007).  

In contrast to traditional TTK studies, this versatile model allowed increasing 

levels of complexity to be constructed, to emulate in vivo conditions around a 

focus of infection. Outer compartment modification by introduction of a 

quantifiable A. baumannii innoculum allowed measurement of the effect of 

bacterial viability over time in response to colistin, EA-4, or a colistin 

sulfate+EA-4 combination in the presence of �-amylase. Modification of the 

IC to incubate EA-4 directly in ex vivo infected wound fluid further allowed the 

viability of endogenous �-amylase mediated dextrin-colistin unmasking in an 

ex vivo setting to be investigated.  

5.5.3 PK/PD modelling against MDR A. baumannii isolates 

Colistin is a concentration-dependent antibiotic which exhibits a limited post-

antibiotic effect only at high concentrations (Li et al. 2006, 2005c; Owen et al. 

2007). In keeping with previous studies (Giamarellos-Bourboulis et al. 2001; 

Tan et al. 2007), colistin sulfate produced rapid bacterial killing followed by 

substantial regrowth (Figure 5.8). Indeed, Owen et al.'s (2007) TTK studies 

reported substantial A. baumannii regrowth at 24 h after a colistin challenge 

even at 64 x MIC. Current clinical dosing regimes vary substantially, and are 

disputed by the limited in vivo PK/PD studies available (Section 1.2.5). 

Moreover, several studies have reported that bacterial recovery occurs 

earlier than the shortest currently recommended dosing interval for colistin 

(Ganapathy et al. 2009; Landman et al. 2008).  

In contrast, dextrin-colistin conjugate activity was more sustained, reflecting 

the need for unmasking, although bacterial recovery was substantially 
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suppressed over a prolonged time-span. These results demonstrated that the 

EA-4 dextrin-colistin conjugate suppressed bacterial growth for up to 6 times 

longer than an equivalent dose of colistin sulfate. The controlled, sustained 

release and consequent bacterial killing reported by �-amylase-triggered EA-

4 over 48 h compared to colistin sulfate may, therefore, present several 

advantages over the traditional formulation. Such advantages reported in the 

literature for extended release dosage formulations included maximised 

therapeutic effects, minimised antibiotic resistance and improved patient 

compliance (reviewed in Gao et al. 2011). Based on these principles, several 

concentration-dependent antibiotics have been incorporated into extended 

release mechanisms: for example ciprofloxacin in a bilayer matrix (Talan et 

al. 2004), azithromycin microspheres (Blasi et al. 2007) and liposomal 

amikacin (Meers et al. 2008). Recently, release kinetics of colistin-laden 

liposomes have been described (Wang et al. 2009). However, rapid release 

(< 10 min) limited their effectiveness for controlled release. In contrast, 

covalent bonding of polymer to payload confers dextrin-colistin conjugates 

additional advantages to liposomes, including stability (Section 1.3.2) and 

localised, enzymatically triggered unmasking. Moreover, dextrin-colistin 

conjugate is bactericidal in a concentration-dependant manner (Figure 5.8b), 

suggesting that accumulation at infected sites by EPR (Chapter 3) could 

further enhance its antibacterial efficacy. Additionally, the colistin sulfate+EA-

4 combination exhibited optimal characteristics of both rapid bacterial killing 

and slower regrowth up to 48 h. Combination therapy would, therefore, 

present the additional advantage of a rapid decrease in bacterial load, 

followed by sustained suppression of regrowth.   

5.5.4 Colistin unmasking in infected wound exudates 

Incubation of dextrin-colistin conjugates with patient-derived burn wound 

exudates revealed an increasing concentration of colistin in the OC over 

time, demonstrating that colistin would be readily liberated from the conjugate 

within the infected sites due to local �-amylase activity within the wound 

environment. Unmasked colistin content at 48 h was apparently higher than 

the unmasking predicted from previous experiments (Section 3.4.3.3).
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However, the ELISA kit employed in this system measured total colistin 

(masked and unmasked). Masked conjugate constituted 18.3% ± 10.6 (mean 

±SD) of total OC colistin. Therefore, adjusting for this data, the unmasking at 

48 h reported in Figure 5.6b was in keeping with physicochemical 

characterisation studies reported in section 3.4.3.3. Prior experiments 

determined that bioresponsive unmasking of dextrin-colistin conjugate in the 

presence of �-amylase was feasible. However, under control conditions, only 

limited degradation occurred over time (Section 3.5.3). In keeping with these 

findings, IC �-amylase-mediated unmasking resulted in decreasing molecular 

weight of the dextrin-colistin conjugate, allowing diffusion through the dialysis 

membrane, and consequently, increasing OC colistin concentration. The 

corrected unmasking values compare favourably to published values for 

CMS, for which conversion to colistin in ex vivo human plasma samples after 

48 h varied from 60.3% to 62.8% (Li et al. 2003a). Modification of the two-

compartment, static, dialysis bag model under infinite sink conditions to an ex 

vivo model, emulated in vivo conditions around a focus of infection, to 

demonstrate the viability of local, endogenous �-amylase-mediated 

unmasking. In conformity with these findings, a recent study reported that 

incubation of a dextrin-EGF conjugate in chronic wound fluid also led to 

sustained, endogenous �-amylase-mediated EGF release over 48 h 

(Hardwicke et al. 2010).  

5.6. Conclusion 

In conclusion these studies demonstrated significantly increased endogenous 

�-amylase activity in ex vivo infected wound samples, which supported the 

concept of locally triggered dextrin-colistin unmasking. A static two-

compartment dialysis bag model under infinite sink condition was also 

validated for evaluating the relationship between drug release, bacterial 

killing, and the viability of endogenously mediated dextrin-colistin unmasking 

directly in ex vivo infected wound fluid samples. This versatile model allowed 

increasing levels of complexity to be constructed.  
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Sustained killing of A. baumannii by dextrin-colistin conjugate was observed. 

Th� combination of the dextrin-colistin conjugate with colistin sulfate 

demonstrated rapid bacterial killing followed by significantly delayed bacterial 

regrowth. Incubation of EA-4 in ex vivo samples confirmed that colistin could 

be readily liberated from the conjugate in infected sites due to local �-

amylase activity, supporting the notion of elevated, local reinstatement of 

activity. The encouraging results reported in this study justified further 

investigation of dextrin-colistin conjugates using animal models to evaluate in 

vivo pharmacokinetics and tolerance.  
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Chapter Six 

In Vivo Evaluation of Dextrin-colistin Conjugates 
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6.1 Introduction 

Previous experiments have identified a lead dextrin-colistin conjugate for 

which masking / unmasking in the acute infection environment was viable, in 

vitro and ex vivo. Antimicrobial activity at maximum unmasking was generally 

equivalent to the current clinical alternative (CMS), and demonstrated both 

rapid and prolonged killing in a modified TTK model. Following these 

encouraging studies, a preliminary investigation into its in vivo 

pharmacokinetics and clinical toxicity was the next essential step, prior to 

further pre-clinical development.  

6.1.1 In vivo colistin pharmacokinetic studies 

The development of colistin for clinical use pre-dated requirements for PK 

optimisation that modern drugs must satisfy. There is, therefore, limited data 

in this field (Li et al. 2006; Nation and Li 2007). Moreover, many early studies 

employed microbiological assays, whose accuracy has been questioned 

(Section 6.1.3). Colistin's clinical toxicity has been partly attributed to the lack 

of suitable PK information (reviewed in Azzopardi et al. 2012). PK evaluation 

of the dextrin-colistin conjugate would therefore be advantageous.  

In their seminal work, Li et al. (2003b) used pre-column derivatisation and 

RP-HPLC to measure colistin concentration in plasma and urine. In this 

study, bolus IV administration of 1 mg colistin sulfate/kg to Sprague Dawley 

rats resulted in a short distribution phase followed by a log-linear decline, 

with an elimination t½ of 1.2 h. Colistin clearance was estimated to be 5.2 ± 

0.4 mL/min/kg, with <1% of colistin being excreted unchanged in urine. 

These results were repeated in later publications investigating novel 

polymyxin derivatives (Ali et al. 2009) and the co-administration of melatonin 

or ascorbic acid with colistin as nephroprotective agents (Yousef et al. 2011, 

2012).  

Several PK parameters have been used to define colistin's efficacy, impeding 

straightforward comparisons (Falagas and Kasiakou 2005). However, 

common trends could be discerned from these in vivo PK analyses. 

Following a rapid distribution phase, which ranged from S 5 min (IV 
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administration of colistin sulfate) to 20 min (colistin released after IV 

administration of CMS) (Li et al. 2004; Marchand et al. 2010), studies concur 

that plasma colistin concentration follows a log-linear decline (Table 6.1). The 

last quantifiable concentration (Clast) recorded in these studies varied from 

180-240 min and colistin's t½ varied from 0.6 to 1.2 h (Table 6.1). However, 

these variations could be related to dissimilar sampling intervals and lower 

limits of quantification reported in these studies. Pharmacokinetics of colistin 

released from CMS remained linear over a range of IV doses (Li et al. 2004; 

Marchand et al. 2010).  

6.1.2 Study design considerations 

The Sprague Dawley rat is an outbred animal model which has found 

extensive favour as a cost-effective model in drug development and 

pharmacokinetic studies (Morgan et al. 2012), including the development of 

colistin and its derivatives (Table 6.1). Moreover, the IV route of 

administration has been applied in the vast majority of polymer therapeutics 

entering in vivo trials (reviewed in Duncan and Gaspar 2011; 2009) and the 

majority of in vivo PK colistin studies conducted in animals have used this 

route (Table 6.2). In these colistin PK studies, plasma harvesting was 

performed by centrifugation (Table 6.2).  

Antibiotic administration and sampling procedures differed between studies 

(Table 6.2). Dose administration and sample collection through the same 

vascular catheter required washing of the cannula, which complicated the 

experimental procedure (Li et al. 2003b). On the other hand, tail vein injection 

for IV antibiotic administration is well-established and may reduce the 

potential complications of multiple in situ IV catheters such as 

thrombogenicity (Jin et al. 2009; Kaushal and Shao 2010; Lagas et al. 2008; 

Turner et al. 2011). Several colistin dosing regimes were encountered in the 

literature, depending on the studies' terms of reference (Couet et al. 2012). 

Marchand et al. (2010) administered bolus IV CMS to Sprague Dawley rats at 

doses up to 120 mg/kg, with 16.7 mg/kg colistin appearing in the plasma S 5 

min post-dose. Therefore, tail vein administration of an 
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equivalent dose was selected to facilitate comparison of colistin sulfate and 

dextrin-colistin conjugates in terms of clinical toxicity and colistin 

concentration in plasma samples.  

6.1.3 Colistin assay methods for in vivo studies 

A consideration of the currently available quantification methods was 

essential in determining an accurate strategy for analysing plasma samples. 

Quantification of colistin in biological media presents a formidable challenge 

since it has no inherent fluorescence and poor UV absorption (Dotsikas et al. 

2011; Govaerts et al. 2003; Li et al. 2001a). Microbiological bioassays using 

Bordetella bronchiseptica as the indicator organism are commonly used as 

they are inexpensive and avoid use of specialist equipment (David and Gill 

2008; Healy et al. 2011a; Li et al. 2005a). However, this method lacks the 

sensitivity required for these in vivo studies and the microorganism and its 

growth medium are difficult to obtain. More recently, an E. coli microbiological 

bioassay for colistin was described (Wootton et al. 2005). In this method, 

colistin concentration is derived from plotting mean diameter of a zone of 

inhibition after diffusion through agar, versus log concentration. However, 

assay precision varied from 3.5–18.8% and the lower limit of quantification 

was only 0.5 mg/L. The reliability of diffusion methods has been questioned 

(Section 4.1.3). Moreover, previous experiments have shown that dextrin-

colistin conjugates exhibited different antimicrobial activity to colistin sulfate, 

making interpretation of this bioassay difficult (Section 4.4.2).  

More recently, HPLC-based methods have been preferred for colistin 

quantification in biological fluids (Table 6.3). Typically, samples are initially 

purified by ACN or TCA extraction, then analysed by RP-HPLC, coupled with 

either pre-column derivatisation or post-column mass spectrometry analysis 

(Table 6.3). Liquid chromatography-mass spectrometry/mass spectrometry 

(LC-MS/MS) reported lower quantification limits (10.4 μg/L, Table 6.3). 

However, it requires specialist equipment which is not widely available. 

Protein purification methods, on which LC-MS/MS techniques still rely for 

purification from the biological sample, also vary in efficiency, and co-elution
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Table 6.3: Comparison of the various methods for detection of colistin in biological samples 
described in the literature 

Matrix Sample preparation; 
extraction; Concentration 

Derivatisation and 
assay method 

Lower
Limit of 
Detection 

Study

Feeds Sonication in HCl; SPE 
(C18); MeOH/HCl; sample 
concentration 1:20 

OPA-Merc; RP-HPLC 
using Ultracarb 5 μm 
column in ACN/sodium 
sulfate 

1000
mg/kg

Cancho-
grande et
al. (2001) 

Human 
plasma 

MeOH-TCA; Extraction by 
centrifugation and MeOH-
HCl; sample concentration 
1:6

FMOC-Cl derivatisation 
(C18 SPE). RP-HPLC using 
ultrasphere C18 column in 
ACN:THF:Water 

0.1 mg/L Li et al.
(2001a) 

Serum (rat, 
dog)

N/A; 96-well extraction 
disk-plate extraction; 
sample concentration 
2:1

Dansyl chloride 
derivatisation; RP-HPLC 
(Zorbax eclipse column in 
MeOH-acetic acid) 

0.05 mg/L Gmur et al.
(2003) 

Rat plasma MeOH-TCA; extraction by 
centrifugation* (4 oC)
MeOH-HCl; sample 
concentration 1:6  

FMOC-Cl (C18 SPE); C18
column in ACN/THF/H2O
(50:30:20 v:v:v) 

0.1 mg/L Li et al.
(2003b) 

Rat plasma MeOH-TCA; centrifugation 
*(4 oC), MeOH-HCl; 
sample concentration 1:6 

FMOC-Cl  (C18 SPE); RP-
HPLC on  
Ultrasphere C18 column in 
ACN/THF/water (50:30:20 
v:v:v) 

0.1 mg/L Li et al.
(2004) 

Raw milk Oxalic acid, TCA-HCl; SPE 
(sulfonic acid /silane) 
MeOH, ACN, HCl, TEA, 
potassium acetate; sample 
concentration 2:1 

Derivatisation with OPA-
Merc; RP-HPLC with 
cromolith  column in 
ACN/phosphate 

0.0143
mg/kg

Suhren 
and
Knappstein 
(2005) 

Human 
plasma 

ACN; Centrifugation* (RT 
oC) 

FMOC-Cl derivatisation; 
RP-HPLC in 
ACN/water/cetic acid 
(50:25:25 v:v:v) 

0.125
mg/L

Cao et al.
(2008) 

Human 
plasma, 
urine 

MeOH-TCA;  
centrifugation* (4 oC); SPE 
(Oasis HLB); elution with 
MeOH/H2/acetic acid 
(80:90:1 v:v:v) 

RP-HPLC in ACN, water 
and acetic acid (80:19:1, 
v:v:v); LC-MS/MS 

0.028
mg/L

Ma et al.
(2008) 

Mouse
brain

TCA; centrifugation 
(16,000 g x 15 min,  RT) 

FMOC-Cl derivatisation; 
RP-HPLC in ACN/ 
water/acetic acid (80:19:1, 
v:v:v) 

93 μg/kg Jin et al.
(2009) 

Human 
plasma 

0.1% TFA in ACN (200 μL) RP-HPLC  (Bondapak C18)
in 25% ACN in 0.03% TFA; 
LC-MS/MS

10.5 μg/L  Jannson et
al. (2009) 

Human 
plamsa 

ACN; centrifugation *(RT) FMOC-Cl derivatisation; 
RP-HPLC in 
ACN:water:acetic acid 
(50:25:25 v:v:v) 

0.125
mg/L

Dudhani et
al. (2010a) 

MeOH methanol, HCl hydrochloric acid, LOQ, limit of quantification, RT room temperature.  * 
centrifugation performed at 1000g for 10 min, 
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of contaminants is a valid concern (Dotsikas et al. 2011). Pre-column 

derivatisation with FMOC-Cl has gained considerable popularity over ortho-

phthalaldehyde (OPA) and dansyl chloride labelling because of the increased 

stability of FMOC-colistin derivatives (Gmur et al. 2003; Le Brun et al. 2000; 

2001a). Successive methodological refinements in this technique resulted in 

consistently lower limits of quantification (range 0.125 - 4 mg/L), and shortened 

analytical times (Cao et al. 2008; Dudhani et al. 2010a; Li et al. 2003b), 

favouring selection of this method to evaluate sample colistin content in this 

study.  

A common limitation in colistin PK studies conducted in animals is that the 

lower limit of colistin quantification (0.125 mg/L) was reached before the end 

of the experiment (Li et al. 2004; Yousef et al. 2011, 2012). ELISA 

determination of colistin concentrations was first reported by Kitagawa et al. 

(1985). Traditionally, preparation of colistin immunogen for immunochemical 

determination in biological samples was complex and time-consuming 

(Hammer 1998; Suhren and Knappstein 2005). More recently a proprietary, 

competitive ELISA kit for colistin extraction and quantification from animal 

samples, with quantification limits from 0.5 to 50 μg/L has become 

commercially available (BioO Corp 2012). This method was successfully 

used to investigate ex vivo pharmacokinetics (Chapter 5).  

6.2 Experimental aims 

The aims of this chapter were: 

1. To establish a PK profile of colistin sulfate, EA-4 and EA-1 dextrin-colistin 

conjugates in an in vivo Sprague Dawley rat model 

2. To compare the toxicity of colistin sulfate to dextrin-colistin conjugates 

through observation of in vivo clinical adverse events 

6.3 Methods 

General methods used, including ELISA (Section 2.5.4) were previously 

described.  
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6.3.1 Animal husbandry 

Thirty Sprague Dawley rats aged 8-10 weeks at dosing were used in this 

study. The mice were housed in groups of 4 to 5 animals, according to Home 

Office regulations. All animals were acclimatised to the experimental unit for 

1 week prior to the study. During the acclimatisation period the animals were 

closely observed to ensure that they were in good health and suitable for 

inclusion in the study. During the pre-trial period, the rats were housed in 

solid floored polycarbonate and stainless steel caging with bedding material. 

Animals were fed a standard laboratory diet of known formulation which did 

not contain colistin, polymyxin or bacitracin (Section 2.4). Domestic tap water 

was available ad libitum. Holding and study areas had automatic control of 

light cycles and temperature. Light hours were 0700 to 1900 h.  Ranges of 

temperature and humidity measured during the study were 20 - 24 oC and 

50-73% respectively. All animal procedures were carried out in a Home 

Office Licensed Establishment (experiment no. 195183). For phases 1 and 2, 

six male Sprague Dawley rats were used. In phase 3, twenty-four Sprague 

Dawley rats were used (Appendix 2.4). All animals were weighed prior to 

dose administration. 

Animals were monitored for clinical signs at regular intervals throughout the 

study in order to assess any reaction to treatment. To compare the in vivo 

"single dose" toxicity data of colistin to dextrin-colistin conjugates the rats 

were constantly monitored for the presence of adverse events throughout the 

study. 

6.3.2 Dose preparation 

Dextrin-colistin conjugates EA-4 (1.0 mol% succinoylation, 10.75 % w/w 

colistin content) and EA-1 (7.1 mol% succinoylation, 15.2 % w/w colistin 

content) were used. Unless otherwise specified, the concentration of the 

doses described in this study refers to colistin component of the conjugate. 

Formulations were prepared on the morning of dose administration (Table 

6.4). Doses for phases 1 and 2 were prepared as detailed in Table 6.5. In 

phase 3, each pre-weighed test item was dissolved to achieve a stock 
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concentration of 0.5 mg/mL. An appropriate volume of each stock (where 

required) was made up to volume with 0.9% sterile saline to achieve a target 

dose concentration of 0.01, 0.05, 0.1, or 0.5 mg/mL. Each formulation was 

filtered (0.22 μm) prior to administration and stored at -20 oC. For example, 

for a 0.1 mg/kg colistin sulfate dose (phase 3), 7.0 mg was dissolved in 14.2 

mL sterile saline to produce 0.49 mg/mL stock solution. This was then diluted 

by a factor of 5 to produce a final solution of 0.1 mg/mL.  

6.3.3 Dose administration 

Antibiotic administration was achieved via the tail vein in each phase of the 

study. In phase 1, colistin sulfate was administered IV to a single animal at a 

target dose of 15 mg/mL. In phase 2, five rats received a bolus IV 

administration of colistin at a target dose of 0.5 mg/mL. In phase 3, an 

ascending dose approach was used. Four groups of six rats each received a 

single dose of 0.01, 0.05, 0.1 and 0.5 mg/kg of each test item. A bolus IV 

dose was administered over ~ 30 s at a target dose volume of 1 mL/kg 

(Table 6.5). Each group was dosed on consecutive days to ensure the 

previous dose level was suitable for the continuation of the study. For each 

test item and dose level, 2 rats were dosed IV via the tail vein, as a bolus 

over ~30 s, at a target volume of 1 ml/kg. Typically, for a 0.1 mg/mL dose in a 

rat with body weight 0.41 kg, 0.04 mg was dissolved in 0.9% saline (0.41 mL) 

to produce a final concentration of 0.1 mg/kg. 

6.3.4 Sample collection  

In phases 1 and 2, animals were heated to facilitate sample extraction by the 

tail vein. In phase 3, each rat was supplied with jugular vein cannulation to 

facilitate blood sampling. Following tail vein administration, blood samples 

(0.3 mL) were harvested from the jugular vein cannula into tubes containing 

lithium heparin at: 5 min, 30 min, 1 h, 4 h, 8 h, and 24 h post-dose. Plasma 

was generated by centrifugation (3,000 rpm for 10 min at 4 oC) and 

immediately stored at -20 oC until analysed. Immediately prior to analysis 

samples were warmed to room temperature and vortexed for 3 min. 
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6.3.5 Colistin assay  

Several methods were explored to select an optimal method for analysing 

colistin concentration in the rat plasma samples. Determination of a suitable 

strategy for assaying colistin in the rat plasma samples was investigated in 

parallel with the animal dosing experiments, using model samples of colistin 

sulfate in PBS.  

6.3.5.1 Evaluation of HPLC analysis for colistin   

Pre-column FMOC-Cl derivatisation of colistin followed by RP-HPLC assay 

was initially performed, based on the method developed by Cao et al. (2008). 

Colistin samples (0.125 to 4 mg/L) were independently prepared in PBS. 

First, SPE cartridges (C18, 100 mg sorbent 70Å pore size) were washed with 

acetone (1 mL), and conditioned with methanol (1 mL) followed by carbonate 

buffer (1 mL, 1% w/w, pH 10). ACN (100 μL) was then mixed with samples of 

PBS (100 μL) in a 1.5 mL Eppendorff tube, vortex-stirred for 30 s and 

centrifuged (10,000 g for 10 min at RT). The following procedure was then 

adopted: 

a) The sample (100 μL) was transferred to a preconditioned cartridge 

mounted on a vacuum manifold, and then the SPE cartridge was washed 

with carbonate buffer (1 mL). 

b) This was followed by FMOC-Cl (110 μL, containing 30 μL of 100 mM 

FMOC-Cl in ACN and 80 μL methanol).  

c) After 10 min of reaction time the FMOC-colistin derivative was eluted with 

acetone (900 μL) and the eluent was collected in a 2 mL Eppendorff tube.  

d) Boric acid (600 μL, 0.20 M) was added, followed by ACN (500 μL).  

After vortex-mixing, an aliquot of the resulting mixture (500 μL) was pipetted 

into a short thread autosampler vial, loaded and injected onto the HPLC 

column (30 μL). The HPLC set-up was used as detailed in section 2.2.3.5. A 

calibration curve was constructed from the area under the chromatogram 

curve corresponding to colistin A and B. PBS served as control. The isocratic 
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mobile phase consisted of ACN: THF: water (50:25:25, v:v:v) at a flow rate of 

1.0 mL/min.  

6.3.5.2 Evaluation of HPLC analysis for dextrin-colistin conjugate 

The procedure above was repeated for EA-4 conjugate. Given the lack of a 

quantifiable trace for the dextrin-colistin conjugates using this method, the 

RP-HPLC procedure was modified systematically as detailed in Table 6.6. 

First, flow rate and column length were varied (isocratic method). Then, a 

gradient method was set up as follows, using a 250 mm C18 column. Mobile 

phase A was 0.01% TFA in water. Mobile phase B was a mixture of ACN and 

0.01% aqueous TFA (9:1, v:v). At 0 - 3 min mobile phase A was fixed at 

100% using a flow rate of 0.6 mL/min. From 3 - 28 min mobile phase B was 

linearly increased to 100%. From 28 - 33 min mobile phase B was held at 

100%. From 33 - 38 min mobile phase B was linearly returned to 0% while 

mobile phase A was reciprocally increased to 100% to re-equilibrate the 

column. During these experiments, detection by monitoring for fluorescence 

was maintained at an excitation wavelength of 260 nm and an emission 

wavelength of 315 nm (Section 2.2.3.5).  

Given the lack of a quantifiable trace for the dextrin-colistin conjugates with 

variation of the HPLC analysis conditions, the precolumn labelling procedure 

was subsequently investigated. In these experiments, Blank PBS was used 

as negative control, whilst colistin sulfate in PBS served as a positive control. 

All experiments were performed at two known concentrations of EA-4 (4 

mg/L or 8 mg/L) to enable any relationships between areas under the HPLC 

curve peaks to be identified. Analyses were performed using the gradient 

method described above with the 250 mm C18 column" 

i) The process for labelling EA-4 with FMOC-Cl was repeated as described 

above for colistin sulfate. However, effluent from each stage (a-d above) was 

collected, titrated to pH 7 using 0.01 M HCl solution and analysed for colistin 

content using the MaxSignal® ELISA kit (Section 2.5.4).  
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Table 6.6: Conditions investigated for synthesis and HPLC analysis of dextrin-colistin-FMOC 
derivatives 

 

 
Parameter Range of variables explored 

H
P

LC
 a

na
ly

si
s 

Elution time 
C18 column 

length: 50 mm 
 C18 column 

length: 250 mm 

Method Isocratic method Gradient Method 

Mobile phase 
ACN/THF/H2O 
(50:25:25 v:v) 

TFA to ACN (see text) 

Flow rate 0.6 mL/min 1 mL/min 

S
ol

id
 p

ha
se

 
sy

nt
he

si
s 

SPE cartridge pore 
and particle size 

Pore size 
(70 to 130 Å) 

Packing particle size 
(50 -130 μm) 

Pressure through 
SPE cartridge 

1 mBar 
vacuum pressure 

Gravity 

Li
qu

id
 p

ha
se

 s
yn

th
es

is
 

Liquid phase 
synthesis 

Liquid phase synthesis in 
organic solvents 

Liquid phase synthesis in 
aqueous phase solvents 

Organic synthesis 
(reaction time)  

30 min  4 h 24 h 

Aqueous synthesis 
(aqueous volume) 

200 μL 500 μL 1,000 μL 

Aqueous synthesis 
(reaction time) 

30 min 4 h 24 h 

Aqueous synthesis 
(reaction pH) 

pH 7 pH 7.4 pH 10 

Aqueous synthesis 
(temperature) 

37 oC 60 oC 
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ii) Liquid phase synthesis (in solution) was attempted next. From a mixture of 

ACN (100 μL) and EA-4 sample (4 mg/L in 100 μL PBS), an aliquot (100 μL) 

was added to a 2 mL Eppendorff tube. Carbonate buffer (1 mL, 1% w/w in 

aq., pH 10), 110 μL of FMOC-Cl (containing 30 μL of 100 mM FMOC-Cl in 

ACN and 80 μL methanol) were added. After 30 min reaction time, acetone 

(900 μL) was added followed by boric acid (600 μL, 0.20 M) and ACN (500 

μL). The reaction was repeated at different reaction times (30 min, 4 h and 

24 h).

iii) Finally, aqueous phase synthesis of EA-4 - FMOC derivatives was 

attempted based on the method described by Gawande and Branco (2011).  

Briefly EA-4 dextrin-colistin conjugate was weighed in a 1 mL Eppendorf 

tube. FMOC-Cl (representing 50 x molar excess) was added, followed by 

ddH2O (200 μL). The reaction was terminated by lowering the pH through 

addition of 0.1 M HCL (1 mL), and boric acid (1:1 v:v, 0.02 M) was added 

and followed by immediated analysis. Conditions for this reaction were 

subsequently varied as detailed in Table 6.6. pH was varied by substituting 

ddH2O with an equal volume of PBS (pH 7.4) or carbonate buffer (pH 10). 

6.3.5.3 Analysis of colistin concentration using ELISA

Plasma from animals dosed at 0.1 mg/kg was analysed using the colistin 

ELISA kit as detailed in Section 2.5.4. 

6.4 Results 

6.4.1 Analysis of colistin assay 

Construction of an HPLC calibration curve using colistin sulfate in PBS 

yielded a linear calibration curve between 0.125 - 4 mg/L (Figure 6.1 a, b). 

However, attempts at reproducing the same method for EA-4 produced no 

signal in the RP-HPLC chromatogram, as seen with the negative control run 

using PBS only (Figure 6.1c). 
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 (a)  
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 (b)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (c)  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.1: Typical RP-HPLC chromatograms from method validation. Panel (a) reports 
typical HPLC chromatograms for FMOC-labelled colistin. Panel (b) reports the resulting 
calibration curve. Panel (c) reports a typical chromatogram for PBS and EA-4 after 
derivatisation on an SPE cartridge.  
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Similarly, no signal was noted when a range of different analytical conditions, 

as detailed in Table 6.6, were used. Increasing the SPE pore size and 

varying the sorbent particle size still produced no quantifiable trace on HPLC 

for EA-4. However, eluate analysis after loading the cartridge with EA-4 and 

washing with aqueous carbonate solution reported a significant concentration 

of colistin within the eluent, which doubled in concordance to the 

concentration of EA-4 loaded onto the column (data not shown). Further 

attempts to use liquid phase derivatisation also did not yield any quantifiable 

trace for dextrin-colistin conjugates when analysed, in contrast to colistin 

sulfate controls (Appendix 2.5). ELISA was therefore used as an alternative 

method for colistin quantification in plasma samples.  

6.4.2 Experimental procedure 

Pre-dose body weight did not vary significantly between the experimental 

subgroups (p > 0.05). Similarly, actual blood sampling times following IV 

administration did not vary significantly (p > 0.05; Appendix 2.6).  

6.4.3 In vivo PK profiles of colistin and dextrin-colistin conjugates 

Figure 6.2 reports the mean (± SD) total colistin concentration in plasma for 

colistin, EA-4 and EA-1, as a function of time. An initial distribution phase 

was observed for colistin (5 min), EA-4 (30 min) and EA-1 (60 min). In each 

case this was followed by a log-linear decline in concentration. For colistin 

sulfate, t½ was 0.9 h over 2 orders of magnitude. In contrast, t1/2, for EA-4 

and EA-1 was 1.6 h and 18.6 h respectively (Figure 6.3). The last recorded 

colistin concentration (Clast) was 4 h, but for both EA-4 and EA-1, Clast was H 

24 h. Area under the curve at 24 h (AUC24) increased from 135 μg/L/h 

(colistin) to 613 μg/L/h (EA-4) and 1605 μg/L/h (EA-1).    

6.4.4 Observation of clinical adverse effects 

In phase 1, rat 001M was found dead approximately 2 min post-IV dosing. In 

phase 2 of the study, all rats administered colistin sulfate experienced clinical 

signs which were outside the remit of the experimental license and were 
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(b) 

Dosing Group  “0.01 
mg/kg” 
 
 weight (kg) 

“0.05 mg/kg” 
 
 
weight (kg) 

“0.1 mg/kg” 
 
 
weight (kg) 

“0.5 mg/kg” 
 
 
weight (kg) 

colistin 0.370 0.370 0.410 0.41 

 0.370 0.370 0.470 0.40 

EA-4 0.390 0.390 0.390 0.31 

 0.360 0.360 0.390 0.37 

EA-1 0.370 0.370 0.390 0.42 

 0.360 0.360 0.40 0.42 

Average weight 
(kg)* 

0.37  0.37  0.41  0.39  

* 2 d.p. 

 
 

 

Figure 6.2: Two-way ANOVA (unweighted means ANOVA) of rat body weights reporting no 
statistical significance between different dosing and formulation groups (p > 0.05). Panel (b) 
reports the average weight in each dosing group. NS, not significant. 
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 (c) 
 

Antibiotic  Half-life (h)  95% Confidence interval (h)  
Colistin  0.9  0.8 – 1.2  
EA-4  1.6  1.2 – 2.1  
EA-1  18.6 11.4– 24.6  

  
 
Figure 6.3: Concentration of colistin in rat plasma over time after a 0.1 mg/kg dose. Panel (a) 
reports the increase in distribution and disposition phases from colistin through EA-1 to EA-
4. Panel (b) reports the curve of best fit for same results from the disposition phase which 
was used to calculate t½. Panel (c) reports t½ and 95% confidence intervals for each antibiotic 
tested. Plasma from two rats was analysed for each antibiotic tested. Data reported 
represents mean ± SD (n=2). 
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terminated on welfare grounds. In phase 3, EA-4 and EA-1 were well 

tolerated up to 0.5 mg/kg. However, both rats dosed with colistin sulfate at 

0.5 mg/kg exhibited adverse effects precluding sample extraction during the 

first 2 h period. Animals appeared subdued, had dark muzzles, and their 

eyes and ears were dark and red. Following close observation, the animals 

returned to normal ~2 h post-dose and were suitable for continuation of blood 

sampling.  

6.5 Discussion 

The main aim of this chapter was to evaluate the PK distribution of dextrin-

colistin conjugates in an in vivo model. Since the sampling and purification 

procedure produced low-volume plasma samples, it was essential to 

establish an optimal strategy with which to accurately determine colistin 

levels. Given that the majority of prior studies have used RP-HPLC, this 

working approach was initially adopted and satisfactorily replicated for colistin 

in PBS (Figure 6.1).  

Attempts at replicating this pre-column derivatisation and RP-HPLC method 

for the dextrin-colistin conjugate did not result in a quantifiable trace. Initially 

developed by Li et al. (2001a), pre-column FMOC derivatisation and RP-

HPLC has undergone several modifications, being optimised for maximal 

specificity to colistin and minimum elution times (Cao et al. 2008; Dudhani et 

al. 2009; Li et al. 2005b, 2004, 2003b). Consequently, several modifications 

were attempted to improve this method's sensitivity (Table 6.6) including a 

gradient method using ACN/TFA. This method has been commonly 

employed to resolve compounds where elution time was unknown, including 

novel colistin derivatives (Bai et al. 2011; Biswas et al. 2009; Carr 2002). This 

method was, therefore, applied on the C18 column of maximal length (250 

mm). Despite these alterations, a signal for FMOC-labelled dextrin-colistin 

conjugate was not detected on RP-HPLC. Subsequent analyses focussed on 

the solid phase derivatisation process.  

In this study, a conventional "small molecule" antibiotic was custom-

engineered into a macromolecule with increased hydrophilicity (Section 
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3.5.2). Detection of EA-4 by ELISA in the effluent immediately after washing 

the column with carbonate buffer provided further confirmation of the change 

in physicochemical properties occuring upon conjugation. Therefore, rapid 

elution/washout of EA-4 through the SPE cartridge, and its inability to adsorb 

to C18 afforded a plausible indication as to the lack of a quantifiable trace on 

RP-HPLC, despite several modifications to this method (Table 6.6). 

Consequently, the labelling procedure was repeated using liquid phase 

synthesis (in solution). Prior studies reported successful FMOC labelling to 

various molecules bearing free amino groups under similar conditions 

(Vreeken et al. 1998). To mitigate for the lower efficiency of liquid phase 

synthesis reported in the literature, reaction times were lengthened up to 24 h 

(Kent 2009). However, this was unsuccessful for EA-4. Finally, derivatisation 

of colistin's amino groups to FMOC was also attempted in aqueous 

conditions, which had been successfully applied to a considerable number of 

molecules (Gawande and Branco 2011; Ibáñez et al. 2005). Notwithstanding 

several modifications of the reaction conditions, including time and pH 

(Rebane and Herodes 2012), the reaction remained unfeasible for dextrin-

colistin conjugates. The precise reason for failure of this method was not 

immediately apparent. However, FMOC-Cl is a bulky and hydrophobic 

molecule (Kohmura et al. 1990) whose reaction to amine groups may be 

hindered by steric hindrance and hydrophilic-hydrophobic interaction 

(Ptolemy and Britz-McKibbin 2005). It is, therefore, possible that the 

hydrophilic, bulky and negatively charged succinoylated dextrin polymer may 

have contributed to unsuccessful labelling. Moreover, fewer amine groups 

were available as a result of incorporation into amino groups by conjugation 

(Section 3.5.2).  

Whilst use of post-column analysis methods such as  LC-MS/MS would have 

simplified preparation protocols and lowered limits of quantification (Jansson 

et al. 2009; Ma et al. 2008), it would still require substantial (20:1) sample 

concentration, given the IV dose administered. Therefore, it was deemed that 

RP-HPLC was not suitable for quantification of dextrin-colistin conjugate in 

plasma samples for these studies.  
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In comparison, the running cost of the colistin ELISA technique was 

considerably more expensive and it could only detect total colistin content. 

Therefore, the PK observations reported in this study may best be 

considered as hybrid parameters for dextrin-colistin conjugates at various 

stages of unmasking. However, the ELISA method provided a simple and 

rapid assay which had already been successfully used in this study (Chapter 

5). This approach provided a lower limit of quantification, minimised the 

multiple, complex steps required for pre-column derivatisation in RP-HPLC 

and allowed quantification of total colistin over two orders of magnitude, in 

agreement with previous studies (Ali et al. 2009; Feda et al. 2008).  

Route of administration was an important decision influencing the PK 

behaviour of the dextrin-colistin conjugates. Rapid attainment of optimal 

levels and maximal bioavailability is desirable in acute infection. Orally 

administered colistin has negligible bioavailability (Kwa et al. 2008). The 

inhalational route is clinically well-established for cystic fibrosis (Foweraker et 

al. 2009). However, serum colistin concentrations peaked at 1.5 h post-

inhalation, and subsequent serum levels were markedly below equivalent IV 

doses (Ratjen et al. 2006). In animal models, intramuscularly (IM) 

administered colistin sulfate plasma levels peaked late (~ 2 h), were prone to 

increased incidence of local side effects (Michalopoulos et al. 2011; Tang et 

al. 2009b). In contrast, IV administration presents several advantages in 

treating acute disease, including shorter distribution time and the ability to 

bypass multiple barriers. Moreover, IV administration remains the preferred 

method of delivery for polymer therapeutics (Markovsky et al. 2011) and has 

been extensively preferred by modern in vivo colistin PK studies (Couet et al. 

2012). Colistin sulfate displayed a short distribution time, in agreement with 

prior studies (Table 6.1). Distribution time increased on administration of 

dextrin-colistin conjugates, but this still remained shorter than for colistin 

sulfate administered by other routes.  

These in vivo studies demonstrated that conjugation decreased clinical 

toxicity associated with colistin. Prior experiments demonstrated that 

succinoylated dextrin forms amide bonds with 2-4 amine groups on colistin 
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(Sections 3.4.2 and 3.5.2). These amine groups are commonly associated 

with toxicity (Section 1.2.5). CMS and, more recently, polymyxin derivatives 

with only three positive charges were also well-tolerated in similar in vivo 

models (Ali et al. 2009). However, the markedly longer t1/2  reported by 

dextrin-colistin conjugates when compared to colistin suggest a more stable 

drug level is possible following single dose IV administration. Therefore, the 

decreased clinical toxicity observed in this in vivo model may also be 

accounted for by a controlled release effect. Such findings have also been 

reported with other dextrin conjugates (Wannachaiyasit et al. 2008). These 

findings are also in keeping with the PUMPT concept (Duncan et al. 2008) 

and established literature investigating in vivo pharmacokinetics of polymer 

therapeutics (reviewed in Duncan and Gaspar 2011; Gaspar and Duncan 

2009). With appropriate dose adjustment dextrin-colistin conjugates may 

provide therapeutic levels with less frequent administration. For example, 

PEGylated interferon �-2a, reported a 70-fold increase in serum half-life, 

resulting in significantly superior in vivo efficacy in human clinical trials 

despite reduced dosing frequency and similar adverse events (Reddy et al. 

2001).  

Observational findings of clinical adverse events have been reported in 

previous colistin PK studies (Ali et al. 2009) justifying the comparison of the 

toxicity of colistin sulfate to dextrin-colistin conjugates through observation of 

in vivo clinical adverse events. Classical studies identified hyperthermia as 

an occasional side effect of colistin (Al-Khayyat and Aronson 1973). To 

minimise the confounding risk associated with this spurious adverse event, 

heating the animals to obtain blood samples was not used in phase 3. 

Furthermore, batch to batch variation in colistin composition has been 

reported in the literature (Thomas et al. 2012). Therefore, use of the same 

batch of colistin sulfate (Section 2.1.1) to generate the dextrin-colistin 

conjugate administered in this study facilitated comparison between these 

antibiotics in terms of toxicity and PK profile. Moreover, as a result of the 

adverse effects experienced in phases 1 and 2, an ascending dose approach 

was adopted in phase 3. Therefore, each group was dosed on a different day 
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to ensure the previous dose level was suitable for continuation of the study. 

Because of the adverse events observed at 0.5 mg/kg, the highest initial 

dose for which a full sample set was available was 0.1 mg/kg. This starting 

dose also justified use of the ELISA method on account of its markedly lower 

limits of quantification.  

Within these operational constraints, colistin sulfate reported a log-linear 

decrease in concentration and t½ which was in agreement with prior literature 

(Table 6.1). Colistin sulfate is a "concentration-dependent" antibiotic (Li et al. 

2001b) and posesses only a modest post-antibiotic effect (Li et al. 2006). 

Recent studies suggest that time-averaged exposure to colistin was more 

important than achieving high peak concentrations in terms of antibacterial 

efficacy both within in vitro models and clinical practice (Bergen et al. 2008; 

Dudhani et al. 2010b; Michalopoulos and Falagas 2011). These studies, 

therefore, suggest that the markedly increased circulation time for the 

dextrin-colistin conjugates may result in greater in vivo antimirobial efficacy. 

Similar in vivo models comparing PK disposition of colistin A and B and 

polymyxin derivatives with only three positive charges reported that subtle 

alterations in the chemical structure of the colistin molecule may lead to 

marked changes in disposition on plasma concentration-time curves (Ali et al. 

2009; Feda et al. 2008; Li et al. 2003b, 2004). Therefore, the marked 

physicochemical changes seen after colistin was conjugated to succinoylated 

dextrin may explain the significantly increased circulation time, in keeping 

with established literature (Section 1.4) and the in vivo PK characteristic of 

polymer therapeutics (reviewed in Duncan 2011; Duncan and Gaspar 2011; 

Duncan et al. 2008). For example, a recent pharmacokinetic studies of 

dextrin (Mw 6,600 g/mol) conjugated to succinoylated zidovudine (18.8 

%w/w) reported a marked rise in t½  from 1.3 to 19.3 h when administered IV 

to Sprague Dawley rats when compared to free drug (Wannachaiyasit et al. 

2008). Interferon-� 2a conjugated to trimer-structured PEG increased 

terminal t½ from 1.3 to 47.4 h, its serum activity peaked after 1 h and was 

retained for 23 h (Jo et al. 2006). 
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Seminal studies by Hreczuk-Hirst et al. (2001a) reported that typical 

plasma amylase concentrations in the Sprague Dawley rat  are at least 20-

fold higher than for infected skin wounds (Section 5.5.1). These 

considerations suggest that dextrin-colistin conjugate t½ in humans would be 

even longer than was observed in the rat model used in this study. The 

increased t1/2 and AUC24 of the dextrin-colistin conjugates may present an 

advantage compared to colistin sulfate and other polymxin derivatives 

described in the literature (Ali et al. 2009). Moreover, increased t½  may also 

reduce injection frequency, increase convenience and improve patient 

compliance (Sinclair and Elliott 2005).  

6.6 Conclusion 

This study reported an initial evaluation of PK behaviour and toxicity of 

dextrin-colistin conjugates in a well-established animal model. In summary, 

this study found that plasma t1/2, Clast, and AUC increased with conjugation 

and increasing degree of succinoylation. These changes support the notion 

that 'masking' of colistin by conjugation to succinoylated dextrin increased 

persistance of colistin in plasma in this animal model, which could have 

beneficial effects on antimicrobial activity by increasing time-averaged 

exposure to colistin. Clinical observations suggest that dextrin-colistin 

conjugates are well-tolerated in vivo, and that at higher concentrations were 

better tolerated than colistin sulfate. Ineffectiveness of pre-column 

derivatisation and RP-HPLC analysis corroborated the substantial changes in 

physicochemical characteristics produced by the conjugation process. This 

study suggests that further in vivo investigation of dextrin-colistin conjugates 

is warranted. 
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Chapter Seven 

General Discussion
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7.1 Introduction 

This study has designed, engineered and tested a novel polymer-antibiotic 

conjugate for use in the treatment of Gram-negative infectious disease, 

addressing the unmet clinical demand for novel effective antibiotics against 

Gram-negative bacteria (see Chapter 1; Coates and Halls 2012), whilst 

minimising the toxicity of systemically administered colistin (Carlet et al. 

2012; Karvanen et al. 2013).  

7.2 Polymer therapeutics in infection 

Whilst cancer therapy remains the main focus of research within the field of 

polymer therapeutics (Chapter 1), infection-associated EPR has also been 

recognised as a common feature of Gram-negative infection (Azzopardi et al. 

2013). The concept of PUMPT, and its application in the treatment of 

infection, is consequently not novel. Researchers first described the potential 

use of polymer therapeutics as anti-endotoxin / anti-inflammatory therapy 

against Gram-negative bacteria over 15 years ago (Bucklin et al. 1995). 

Successful research translation of clinical polymer therapies in infectious 

diseases has, however, been limited principally to anti-viral polymer-

conjugated interferons (PEGIntron® and PEGasys®) (reviewed in Duncan 

2011). In the field of Gram-negative bacterial infection, Vicent et al. (2010) 

described PEGylated peptoid 7 conjugates as anti-endotoxin therapy, and  

Bosnjakovic et al. (2011) described dendrimer-erythromycin conjugates for 

the treatment of infection-induced inflammation. Hypothetical polymer-

antibiotic (and polymer-antimicrobial peptide) structures have been described 

for the treatment of infectious disease (Bishop 2006). This study is the first to 

exploit the PUMPT concept (Duncan et al. 2008) in designing and delivering 

a prototype polymer-antibiotic conjugate to afford selective controlled release 

at sites of infection. Whilst previous studies have demonstrated the feasibility 

of conjugation to antimicrobial peptides, this procedure may reduce their 

antimicrobial effectiveness by up to 200-fold in some studies (Bishop 2006). 

Recently, fourth generation PAMAM dendrimers conjugated to azithromycin 
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have �����described for the treatment of Chlamydia trachomatis infection with 

improved in vitro drug release, although this occurred indiscriminately 

through autocatalysis (Mishra et al. 2011), negating the potential of locally-

targeted enzymatically-mediated release seen with dextrin-colistin 

conjugates. 

Dextrin was employed to provide a polymer which was readily functionalised 

and conjugated. In the delivery of a novel clinical therapy, ensuring the 

predictability and reproducibility of controlled drug release is an essential 

consideration (Deshpande et al. 1996; Gaspar and Duncan 2009; Lin and 

Metters 2006; Youan 2010). In this study, the rate of degradation of the 

succinoylated dextrin polymer and the rate of colistin release could be 

conveniently governed by varying the degree of parent-dextrin molecular 

weight and succinoylation.  

In vitro timecourse experiments conducted in the presence of �-amylase 

clearly showed that the rate of conjugate degradation observed by GPC 

reflected the colistin release measured by FPLC. However, in control 

experiments, FPLC analysis demonstrated a slow, linear shift from masked to 

unmasked conjugate, whilst GPC analysis under the same conditions 

demonstrated non-significant degradation. These results may not be 

contradictory. Slow non-statistically significant hydrolytic degradation under 

control conditions may result in a shift in FPLC elution peaks, colistin 

remaining attached to smaller dextrin whilst not completely unmasked. The 

lack of significant time-dependent potentiation of antimicrobial activity in the 

absence of amylase affirms the plausibility of this hypothesis. Later 

experiments (Section 5.4) demonstrated that under infinite sink conditions, 

the amylase-mediated decrease in molecular weight allowed unmasked 

conjugate to cross a dialysis membrane to an outer compartment, resulting in 

a corresponding increase in antimicrobial activity over time (Section 5.4) 

further supporting this notion. 

Natural polymers such as the dextrin used in this study tend to exhibit a 

relatively high degree of polydispersity and  contribute to polydispersity of the 
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resulting conjugate (Duncan 2003). Moreover, colistin sulfate is a 

multicomponent entity and inter-batch differences in the component 

composition have been documented (Decolin et al. 1997; Govaerts et al. 

2003; Orwa et al. 2002). However, this study employed a single source (i.e. 

batch) of colistin sulfate, to mitigate the potential confounding effects of 

varying component compositions. Colistin A is the principal 

pharmacologically active entity in colistin sulfate (Kline et al. 2001). The exact 

composition of a heterogenous preparation can affect both efficacy and 

toxicity (Gaspar and Duncan 2009). Therefore, in future 'scale-up' for clinical 

use, conjugating colistin A to low-polydispersity dextrin may facilitate 

physicochemical / structural characterisation, determination of bioactivity and 

toxicity as well as detection of impurities.  

Based on in vitro physicochemical and initial antimicrobial susceptibility data, 

EA-4 was selected and methodically taken through a number of 

investigations. Dextrin-colistin conjugates with lower degrees of 

succinoylation displayed more complete, faster unmasking, and a greater 

degree of antimicrobial activity against all strains tested in vitro (Section 4.4). 

The unmasked dextrin-colistin conjugates displayed a narrower spectrum of 

activity, notably against P. aeruginosa strains, than colistin sulfate or CMS. 

However, their antimicrobial spectrum of activity compared favourably with 

other antibiotics in current clinical development for Gram-negative bacterial 

infections (Rennie 2012). In most of the strains tested, 24-h unmasked EA-4 

reported similar MICs to CMS. This contrasted with the relatively poor 

reinstatement of antimicrobial activity after conjugation attempts to 

antimicrobial peptide reported in the wider literature (Bishop 2006). 

Given that in vitro non-clinical models are usually intended for screening "low 

molecular weight" drugs (Gaspar and Duncan 2009), a two-compartment 

static dialysis bag model under infinite sink conditions was developed to test 

dextrin-colistin conjugates, whose controlled release nature indicated a 

different PK profile. Under these conditions, the time-dependent change in 

bacterial viability reflected the unmasking rate reported in earlier 

experiments. An obvious clinical concern from the results in this experiment 
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(and in earlier MIC studies) was that production of a “functional” antibiotic 

from the conjugate was clearly time–dependent therefore conventional 

antibiotic therapy would be likely required to supplement dextrin-colistin 

conjugate use in clinical practice, at least during the initial dosing. Within this 

context, the value of a combination of colistin sulfate and dextrin-colistin 

conjugate was demonstrated to provide a rapid decline in viable counts, 

followed by sustained suppression of bacterial growth.  

The modified TTK model used in this study also demonstrated the 

advantages of controlled release. It was evident in this system that 

administration of EA-4 induced suppression of bacterial growth for a 

considerably prolonged period compared to colistin sulfate. In contrast, early 

and significant bacterial re-growth following a colistin sulfate dose virtually 

nullified the gains registered by the rapid reduction in bacterial counts 

(Section 5.4.2.2). Moreover, antibiotic-induced bacterial lysis and 

overwhelming endotoxin release, with exacerbation of septic shock has been 

described (Lepper et al. 2002). Considering the rapid decrease in viable 

bacterial counts observed with colistin sulfate (Figure 5.8), the sustained 

activity of dextrin-colistin conjugates could reduce this risk.  

The use of well-established, conventional assay techniques such as MIC 

determination allowed comparison of the dextrin-colistin conjugates' 

bioactivity to colistin sulfate and CMS, and antimicrobial activity with 

unmasking. Whilst these remain valuable analytical techniques, it must be 

recognised that these assays were designed for screening "low-molecular 

weight" chemical entities, and further model development may be required to 

truly realise the benefits afforded by the alteration of pharmacodynamic 

parameters through application of polymer therapeutics (Gaspar and Duncan 

2009). Similarly, validation of the two-compartment dialysis bag model 

provided advantages over traditional TTK studies and was more adept to 

studying effect of controlled colistin release on bacterial viability. However, an 

important limitation of such in vitro models is an inability to factor in the 

potential benefits of the EPR effect in vivo. Prior studies performed in the 

setting of anti-cancer therapeutics reported that polymer therapeutics could 
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achieve tumour/blood ratios of 5-30 in as little as 10 min (Maeda et al. 2001; 

Matsumura and Maeda 1986; Reddy 2005). It is therefore possible that such 

������
	�����assays may underestimate the true antimicrobial potential 

���
�����conjugates. 

Ex vivo studies demonstrated a significant increase in �-amylase activity 

within infected burn wound fluid. In this study, samples were collected 

markedly later than the first 24-48 h following major thermal injury where 

transient increase in vascular permeability and fluid shifts have been 

documented (Sjöberg 2012). Results are therefore in keeping with the notion 

that the significantly increased amylase activity detected around the infected 

foci was due to endogenous plasma amylase accumulating by an infection-

induced EPR effect. Since none of the bacterial strains in this study produced 

amylase it is likely that the increased �-amylase activity observed around 

infected foci was endogenous in nature. Conjugate unmasking in the 

presence of wound fluid provided further evidence about the feasibility of the 

PUMPT concept in acute infection.  

The increased amylase activity levels observed in infected wound fluid in the 

clinical study may represent a challenge to controlled release of colistin. 

However, these ex vivo experiments showed that, irrespective of disease 

state, serum �-amylase concentrations remained within similar 

(physiological) levels as those employed during in vitro physicochemical, 

antimicrobial susceptibility and PK/PD characterisation. Such levels could be 

considered the main challenge to "masking" of the conjugate whilst still in 

transport to the infected focus. It could also be argued that substantially 

increased amylase activity observed around an infected focus may be a 

challenge to controlled release. Locally increased amylase activity may lead 

to faster degradation and release of colistin. Despite the high amylase activity 

in Sprague-Dawley rat plasma (8,000-10,000 IU/L), even minimally modified 

dextrin-colistin conjugate displayed a markedly improved plasma t½. This 

parameter suggests that controlled release is possible even in the presence 

of higher amylase concentrations. Moreover, behaviour of succinoylated 

dextrin degradation reported in these experiments is mirrored by similar 
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observations over a wide range of �-amylase levels (Hardwicke et al. 2008; 

Hreczuk-Hirst et al. 2001).  

In vivo studies (Chapter 6) were essential to establish a working t½ on which 

to base the initial doses and dosing intervals in future studies. It is worth 

noting that the polymer molecular weight and degree of modification was 

selected on the premise of fulfilling an "acute disease" niche. Traditional 

applications of polymer therapeutics such as cancer favour use of markedly 

higher molecular weights and modifications (Maeda et al. 2009). Recent 

studies demonstrated that in vivo accumulation of macromolecules around an 

infected focus may occur with macromolecules of smaller molecular weight 

such as PEGylated ubiquicidin (5,000 g/mol) and technetium99-labelled 

aprotinin (6,512 g/mol) than traditionally favoured in the design and 

development of anticancer drugs (Komarek et al. 2005; Maeda et al. 2009; 

Melendez-Alafort et al. 2009). Given that EA-4 was designed for acute life-

threatening infection (Section 1.2.1), it was selected as the lead candidate 

based on its rapid, maximal release characteristics. However, the final 

selection of polymer molecular weight / modification / conjugation 

combination may need further refinement, given the limited initial activity 

observed during in vitro PK/PD studies, its markedly extended in vivo half-

life, and the surprising, localised increase in amylase activity around infected 

foci. 

In these studies, ex vivo release of colistin was successfully characterised by 

ELISA, and the results yielded by this method were in agreement with the 

model validation data obtained by BCA and FPLC assays. The choice of 

ELISA over HPLC, whilst bearing advantages (Section 6.5) limited the in vivo 

studies by being able to detect total colistin without discrimination between 

bound and free drug (reflecting the detection of an 'exposed' epitope by the 

polyclonal antibody used in the proprietary ELISA kit). As a result, PK 

observations reported in this study may best be considered as hybrid 

parameters for dextrin-colistin conjugates at various stages of unmasking. 

The use of ELISA to study payload release from polymer-drug conjugates 

has been previously described (Hardwicke et al. 2008a). In contrast to the 
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present study, Hardwicke et al. (2008) reported that 
��	��masked conjugate 

����not detected by thei� ELISA �	
. The significantly higher molecular weight 

and degree of succinoylation used by Hardwicke et al. (2008) may have 

increased steric hindrance to antibody binding. The decrease in residual 

antimicrobial activity of masked conjugates with increasing dextrin 

succinoylation was in keeping with this observation (Table 4.4). Moreover, it 

is also possible that the colistin ELISA kit did not distinguish between 

masked/unmasked colistin because of the presence of carbohydrate lytic 

reagents in the proprietary cleanup kit which could have contributed to 

succinoylated dextrin polymer degradation (Bhatt 2012, personal 

communicationF Appendix 2.7). 

Future studies would benefit from establishing an analytical technique which 

would distinguish unmasked and masked conjugate at the required levels of 

quantification. Literature suggests that urinary free colistin concentrations 

would be several orders of magnitude below the lower limit of detection of the 

ELISA kit used in this study (BioO Corp 2012; Li et al. 2003b). Development 

of a novel analytical technique would facilitate the analysis of urinary colistin 

concentrations in samples collected during the in vivo study, and 

consequently afford a more detailed PK characterisation of in vivo dextrin-

colistin conjugate pharmacokinetics. 

7.3 Future work 

The stepwise process of in vivo pre-clinical evaluation of novel 

pharmaceuticals is ultimately aimed at defining a dose which is safe for entry 

into human trials (Eisenhauer et al. 2000; Reigner and Blesch 2002). 

Following on from the encouraging in vivo data (Section 6.4), it is envisaged 

that the development of dextrin-colistin conjugates towards clinical use will 

progress to further escalation and repeat dose studies. The in vivo 

experiments in this study were limited by toxicity of colistin sulfate (Section 

6.5). However, dextrin-colistin conjugates did not exhibit signs of toxicity at 

the highest dose tested in this study (0.5 mg/kg). Therefore, further dose 

escalation studies would be beneficial in determining a maximum tolerated 
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dose for the lead dextrin-colistin conjugate. Such data would be useful to 

allow adequate characterisation of potential clinically relevant effects, whilst 

minimising animals use in later experiments (US Center for Drug Evaluation

and Research 2010). Subsequent repeated dose toxicity studies would

be based on dose intervals determined from these initial in vivo PK

studies.  

It will also be important to demonstrate in vivo the extent of partitioning 

between the infected target site and normal tissue, antimicrobial efficacy as 

well as monitoring the metabolic fate of both the succinoylated dextrin and 

conjugated colistin (Gaspar and Duncan 2009). However, the choice of an 

appropriate in vivo model for studying these aspects presents formidable 

challenges. Gaspar and Duncan (2009) suggest that such models should 

closely reflect the specific disease state, including pathophysiological 

progression, localisation, and immune status for which the nanomedicine is 

targeted. Tachi et al. (2004) validated an in vivo experimental model of an 

infected skin ulcer in Sprague Dawley rats. In this model, inoculation of an 

induced, gauze-covered full thickness skin wound resulted in infection being 

induced within 24 h, and maintained for 9 days. This model was originally 

intended to investigate topical antimicrobial application to infected chronic 

wounds. However, the possibility of quantifying the bacterial load and 

nanoantibiotic concentration from wound fluid or tissue biopsy as well as the 

opportunity of following the course of infection from induction through to 9 

days, would support the adoption of this model. Moreover this model would 

still allow further, simultaneous in vivo pharmacokinetic evaluation, such as 

the extent of nanoantibiotic distribution and partitioning between the infected 

target site and other tissues. This model may, therefore, facilitate future in 

vivo PK/PD characterisation of a lead compound.  

An interesting, additional use of these conjugates may be in the treatment of 

sepsis. The potential of polymyxins as anti-endotoxin therapy has been 

extensively investigated, however, its intracorporeal use is limited by 

extensive toxicity (Bhor et al. 2005; Cohen 2009). Whilst dextran 70-

polymyxin B conjugates have been described (Bucklin et al. 1995), clinical 
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success in sepsis has been limited to extracorporeal dialysis devices based 

on polymyxin B immobilised to polystyrene fibers (Shoji 2003). The anti-

endotoxin properties of dextrin-colistin conjugates, as well as toxicity studies, 

are being investigated by this Research Group (Ferguson et al. 2012b, 

2012c). 

7.4 Contribution of this study to the field of nanomedicine 

This study presented proof of principle for a novel class of nanoantibiotics 

effective against multidrug-resistant Gram-negative bacteria, for which limited 

resources currently exist. It exploited the PUMPT concept, described by 

Duncan et al. (2008), to design and deliver a prototype polymer-antibiotic 

conjugate that affords selective controlled release at sites of Gram-negative 

infection. Significantly increased amylase activity around clinically infected 

foci suggests a therapeutic role for amylase in infection, within the context of 

PUMPT. These studies underscore the potential usefulness of bioresponsive 

polymer-antibiotic conjugates as a new class of nanoantibiotics and open a 

novel and exciting avenue for the application of polymer therapeutics in the 

treatment of acute infection. 
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Appendix 2.1: Typical characterisation of succinoylated dextrins by FTIR. Panel (a) shows 
MMW parent-dextrin family. Panel (b) shows a typical HMW parent-dextrin family. The arrow 
indicated the increase in peak intensity at 1720 cm

-1 
caused by succinoylation. 
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Appendix 2.2a: Best fit models and the respective semilog transformations of Mw versus 
time for succinoylated dextrins (LMW parent-dextrin library). These graphs show that (a) in 
the presence of α-amylase degradation of succinoylated dextrin was best fit by logarithmic 
regression; (b) the respective controls were best fit by linear regression; semilog 
transformation of both experimental data (c) and control (d) were best fit by linear regression, 
enabling statistical comparison.  
 
Data shown represents mean ± SD (n=3). Legend: A: unmodified control; B: 1.0 mol% 
succinoylated C: 2.5 mol% succinoylated; D: 4.8% mol succinoylated; E: 7.2 mol% 
succinoylated F: 14.2 mol% succinoylated dextrin. Coefficients of determination are reported 
in Appendix 2.2d - e. 
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(a)      (b)        
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(c)       (d)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Appendix 2.2b: Best fit models and the respective semilog transformations of Mw versus 
time for succinoylated dextrins (MMW parent-dextrin library). These graphs show that (a) in 
the presence of α-amylase degradation of succinoylated dextrin was best fit by logarithmic 
regression; (b) the respective controls were best fit by linear regression; semilog 
transformation of both experimental data (c) and control (d) were best fit by linear regression, 
enabling statistical comparison.  
 
Data shown represents mean ± SD (n=3). Legend: A: unmodified control; B: 2.6 mol% 
succinoylated C: 5.0 mol% succinoylated; D: 7.5% mol succinoylated; E: 14.4 mol% 
succinoylated dextrin. Coefficients of determination are reported in Appendix 2.2d, e. 
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(a)      (b)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(c)      (d)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Appendix 2.2c: Best fit models and the respective semilog transformations of Mw versus 
time for succinoylated dextrins (HMW parent-dextrin library). These graphs show that (a) in 
the presence of α-amylase degradation of succinoylated dextrin was best fit by logarithmic 
regression; (b) the respective controls were best fit by linear regression; semilog 
transformation of both experimental data (c) and control (d) were best fit by linear regression, 
enabling statistical comparison.  
 
Data shown represents mean ± SD (n=3). Legend: A: unmodified control; B: 2.6 mol% 
succinoylated (C): 5.4 mol% succinoylated; (D): 7.6 % mol succinoylated; (E): 14.8 mol% 
succinoylated dextrin. Coefficients of determination are reported in Appendix 2.2d - e. 
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Appendix 2.2d: Best Fit Data for Enzymatic Degradation of Succinoylated Dextrin, and 
Controls. 
 

Theoretical 

Succinoylation 

(mol %) 

 

Α-amylase degradation 

Logarithmic regression model 

(y=m.lnx+c) 

Control  

Linear regression model 

(y=m.x+c) 

R
2 

D.O.F. 95% C.I.  

(slope) 

R
2 

D.O.F. 95% C.I.  

(slope) 

L
M

W
 d

e
x
tr

in
 l
ib

ra
ry

 

30 0.96 19 243 to 420 0.90 7 -33 to 0.54 

15 0.86 19 280 to 400 0.80 7 -40 to 8.3 

10 0.89 19 460 to 640 0.90 7 -77 to 1.6 

5 0.89 19 480 to 680 0.88 7 -76 to 24.5 

2 0.92 18 600 to 800 0.72 7 -28 to 5.2 

0 0.82 19 670 to 1110 - - - 

M
M

W
 d

e
x
tr

in
 l
ib

ra
ry

 

30 0.85 19 1,100 to 1,500 0.86 7 -192 to 21 

15 0.91 19 1,290 to 1,600 0.60 7 -110 to 44 

10 0.95 19 1,300 to 1,600 0.85 7 -32 to 4.0 

5 0.93 19 1,240 to 1630 0.88 7 -76 to 5.0 

0 0.86 19 1,390 to 2,000 - - - 

H
M

W
 d

e
x
tr

in
 l
ib

ra
ry

 

30 0.98 19 3,600 to 4,300 0.64 7 -290 to 140 

15 0.97 19 3,500 to 4,200 0.64 7 -240 to 94 

10 0.97 19 3,300 to 4,200 0.87 7 -190 to 28 

5 0.96 19 3,700 to 4,600 0.80 7 -95 to 46 

0 0.96 19 3,800 to 4,600 - - - 

R
2
: coefficient of determination; DOF: degrees of freedom; 95% CI (slope): 95% 

confidence interval (slope).  All values are reported to 2 significant Figures. 
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Appendix 2.2 e: Best fit data for the semilogarithic transformation for enzymatic degradation 
of succinoylated dextrin, and controls. 
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30 0.91 19 -1221 to -558 0.68 7 -290 to 140 

15 0.97 19 -963 to -624 0.81 7 -87 to 30 

10 0.98 19 -1498 to -1030 0.90 7 -270 to 70 

5 0.93 19 -1753 to -908 0.66 7 -160 to 100 

2 0.95 18 -2078 to -1174 0.76 7 -130 to 53 

0 0.86 19 -3032 to -1127 - - - 
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30 0.96 19 -2682 to -1681 0.90 7 -700 to 170 

15 0.96 19 -3624 to -2215 0.87 7 -180 to 51 

10 0.97 19 -3991 to -2697 0.85 7 -130 to 40 

5 0.97 19 -3963 to -2646 0.71 7 -310 to 140 

0 0.89 19 -5547 to -2371 - - - 
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30 0.98 19 -10,400 to -7,700 0.89 7 -930 to 230 

15 0.98 19 -10,400 to -7,400 0.89 7 -820 to 200 

10 0.98 19 -10,100 to -7,201 0.61 7 -600 to 380  

5 0.97 19 -11,500 to -7,600 0.90 7 -355 to 84 

0 0.96 19 -11,800 to -7,500 - - - 

R
2
: coefficient of determination; DOF: degrees of freedom; 95% CI (slope): 95% 

confidence interval (gradient).   
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(a)       (b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(c)      (d) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Appendix 2.2f: Best fit models and the respective semilog transformations of Mw versus time 
for a dextrin-colistin conjugates (LMW parent-dextrin library). These graphs show that (a) in 
the presence of α-amylase degradation of dextrin-colistin conjugate was best fit by 
logarithmic regression; (b) the respective controls were best fit by linear regression; semilog 
transformation of both (c): experimental data and (d): controls were best fit by linear 
regression, enabling statistical comparison. Data shown represents mean ± SD (n=3).  
 
Legend: A: 1.0 mol% succinoylated conjugate; B: 2.5 mol% succinoylated conjugate; C: 4.8 
mol% succinoylated conjugate; D: 7.2 mol% succinoylated conjugate. Coefficients of 
determination are reported in Appendix 2.2h - i.  
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(a)       (b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(c)       (d) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Appendix 2.2g: Best fit models and the respective semi log transformations of Mw versus 
time for a dextrin-colistin conjugates (MMW parent-dextrin library). These graphs show that 
(a) in the presence of α-amylase degradation of dextrin-colistin conjugate was best fit by 
logarithmic regression; (b) the respective controls were best fit by linear regression; semilog 
transformation of both (c): experimental data and (d): control were best fit by linear 
regression, enabling statistical comparison. Data shown represents mean ± SD (n=3).  
 
Legend: A: 2.6 mol% succinoylated (B): 5.0 mol% succinoylated; (C): 7.5 % mol 
succinoylation. Coefficients of determination are reported in Appendix 2.2h - i. 
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Appendix 2.2 h: Best fit data for the enzymatic degradation of dextrin-colistin conjugate and 
the respective controls. 
 

Theoretical 

Succinoylation 

(mol %) 

 

α-amylase degradation 

 

control  

 

R
2 

D.O.F. 95% C.I.  

(slope) 

R
2 

D.O.F. 95% C.I.  

(slope) 

L
M

W
  
p
a
re

n
t-

d
e
x
tr

in
  

lib
ra

ry
 

15 0.900 16 538 to 769 0.646 16 -17.1  to 0.0110 

10 0.907 16 627 to 883 0.605 16 -5.710 to 0.0959 

5 0.926 16 721 to 975 0.619 16 -13.68 to 0.308 

2 0.956 16 774 to 972 0.621 16 -9.491 to 0.494 

M
M

W
 p

a
re

n
t-

d
e
x
tr

in
  

lib
ra

ry
 

15 0.935 16 894.0 to 1,190 0.653 16 
-27.5 to 0.162 

 

10 0.930 16 1,120 to 1,500 0.612 15 -16.9 to 0.846 

5 0.953 16 1,270 to 1,600 0.627 16 -18.0 to 0.605 

R
2
: coefficient of determination; DOF: degrees of freedom; 95% CI (slope): 95% 

confidence interval (slope).  All values are reported to 3 significant Figures. 

 
 
  



260 
 

Appendix 2.2i: Best fit data for the enzymatic degradation of dextrin-colistin conjugate and 
the respective controls (semilog conversion) 

 
  

Theoretical 

Succinoylati

on (mol %) 

 

Α-amylase degradation 

 

Control  

 

R
2 

D.O.F. 95% C.I.  

(slope) 

R
2 

D.O.F. 95% C.I.  

(slope) 

L
M

W
  
p
a
re

n
t-

d
e
x
tr

in
 

  
lib

ra
ry

 

15 0.973 16 -1,851 to -1,159 0.646 16 
-338.3 to 4.466 

 

10 0.978 16 -2,094 to -1,382 0.605 16 -113.9 to 6.490 

5 0.959 16 -2,517 to -1,389 0.619 16 -271.3 to 11.59 

2 0.971 16 -2,485 to -1,535 0.621 16 -186.5 to 7.475 

M
M

W
  
p

a
re

n
t-

d
e
x
tr

in
 

 l
ib

ra
ry

 

15 0.971 16 -2970 to -1817 0.613 16 
-27.5 to 0.162 

 

10 0.966 16 -3794 to -2224 0.646 15 
-16.8 to 0.846 

 

5 0.968 16 
-4,140 to -2,470 

 
0.611 16 

-18.0 to 0.605 
 

R
2
: coefficient of determination; DOF: degrees of freedom; 95% CI (slope): 95% 

confidence interval (slope).  All values are reported to 3 significant Figures. 
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(a)      (b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(c)      (d) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(e) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Appendix 2.2j: Degradation rate analysis of succinoylated dextrins in the presence of α-
amylase and the respective controls (LMW dextrin library). This graph shows that for all 
mol% succinoylations studied, slope analysis reported a significantly increased degradation 
rate in the presence of α-amylase, versus controls: (a):1.0 mol% (F(1, 28) = 116.88, 
p<0.0001); (b) 2.5 mol% (F(1, 29) = 75.09, p<0.0001); (c) 4.8 mol% (F (1, 29) = 50.91, 
p<0.0001); (d) 7.2 mol% (F(1, 29) = 41.71, p<0.0001); (e) 14.2 mol% (F(1, 28) = 7.72, p < 
0.0096). Data shown represents mean ± SD (n=3). The Shapiro-Wilk test was used to test 
the normality assumption of the dependent variable and statistical significance was accepted 
if p < 0.05 for this and all subsequent analyses (data not shown). 
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(a)      (b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(c)      (d) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Appendix 2.2k: Degradation rate analysis of succinoylated dextrins in the presence of α-
amylase and the respective controls (MMW dextrin library). This graph shows that for all 
mol% succinoylations studied, slope analysis reported a significantly increased degradation 
rate in the presence of α-amylase, versus controls: (a) 2.9 mol% (F (1, 28) = 110.91, 
p<0.0001); (b) 5.4 mol% (F (1, 28) = 194.57, p<0.0001); (c) 7.7 mol% (F (1, 29) = 103.8, 
p<0.0001); (d) 14.5 mol% (F (1, 29) = 29.09, p<0.0001). Data shown represents mean ± SD 
(n=3). 
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(a)      (b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(c)      (d) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Appendix 2.2l: Degradation rate analysis of succinoylated dextrins in the presence of α-
amylase and the respective controls (HMW dextrin library). This graph shows that for all 
mol% succinoylations studied, slope analysis reported a significantly increased degradation 
rate in the presence of α-amylase, versus controls: (a) 2.6 mol% (F(1, 28) = 264.24, 
p<0.0001); (b) 5.0 mol% (F(1, 29) = 136.22, p<0.0001); (c) 7.8 mol% (F(1, 29) = 254.07, 
p<0.0001); (d) 15.2 mol% (F(1, 29) = 245.94, p<0.0001). Data shown represents mean ± SD 
(n=3). 
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(a)      (b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(c) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Appendix 2.2m: Degradation rate analysis of dextrin-colistin conjugates in the presence of α-
amylase and the respective controls (LMW parent-dextrin library). These graph shows that 
for all mol% succinoylations reported a significantly increased degradation rate in the 
presence of α-amylase: (a) 1.0 mol% (F (1, 32) = 232.33, p<0.0001); 2.5 mol% (F (1, 32) = 
128.36, p<0.0001); (c) 4.8 mol% (F (1, 32) = 109.54, p<0.0001). Data shown represents 
mean ± SD (n=3).  
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(a)      (b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(c) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Appendix 2.2n: Degradation rate analysis of dextrin-colistin conjugates in the presence of 

α-amylase and the respective controls (MMW dextrin library). These graphs show that all 
mol% succinoylations reported a significantly increased degradation rate in the presence of 
α-amylase. 
 
Using slope analysis of linear regression a significantly increased degradation rates were 
reported versus controls, for all succinoylations: (a) 2.6 mol% (F (1, 32) = 198.91, p < 
0.0001); (b) 5.5 mol% (F (1, 31) = 139.23, p < 0.0001); (c) 7.7 mol% (F (1, 32) = 99.53, p < 
0.0001). Data shown represents mean ± SD (n=3).  
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Appendix 2.2o:  Degradation rate analysis for succinoylated dextrin controls over time. 
These graphs report analysis of covariance for all parent
significance of the degradation rate, for each mol% succinoylation is reported
LMW parent-dextrin library; (b1): M
cases some degradation occurred but did not reach statistical significance (p > 0.05). Data 
shown represents mean ± SD (n=3). 
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    (b) 

    (d) 

    (f) 

:  Degradation rate analysis for succinoylated dextrin controls over time. 
These graphs report analysis of covariance for all parent-dextrin libraries. Statistical 
significance of the degradation rate, for each mol% succinoylation is reported

dextrin library; (b1): MMW dextrin library; (c1) HMW parent dextrin library. In all 
cases some degradation occurred but did not reach statistical significance (p > 0.05). Data 
shown represents mean ± SD (n=3).  
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:  Degradation rate analysis for succinoylated dextrin controls over time. 
dextrin libraries. Statistical 

significance of the degradation rate, for each mol% succinoylation is reported in panel (a1): 
dextrin library; (c1) HMW parent dextrin library. In all 

cases some degradation occurred but did not reach statistical significance (p > 0.05). Data 
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(a)      (b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(c)      (d) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(e) 

Graph  Mol% succinoylation  ANCOVA statistic  Significance  

(a)  1.0  F(1,26)=0.758 p=0.31  p > 0.5  

(b)  2.5  F(1,26)=1.95, p=0.17  p > 0.5  

(c)  4.8  F(1,25)=3.67, p=0.66  p > 0.5  

(d)  7.2  F(1,26) =0.006, p=0.941  p > 0.5  

 
 
Appendix 2.2p: Comparison of degradation rate of dextrin-colistin conjugates (LMW dextrin 
library) to their respective succinoylated dextrin precursors. Data shown represents mean ± 
SD (n=3). Molecular weight is given relative to pullulan standards. Where error bars are 
invisible they are within size of data points. Panel (e) reports ANCOVA statistics, showing 
that in each case, statistical significance was not attained i.e.: degradation rate was not 
statistically different (p > 0.5).  

Time (h)

M
o

le
c
u

la
r 

w
e

ig
h

t 
(g

/m
o

l)

0 4 8 12 16 20 24

0

4000

8000

12000

16000 1.0 mol% succinoylated
controls

succinoylated
dextrin

conjugate

Time (h)

M
o

le
c
u

la
r 

w
e

ig
h

t 
(g

/m
o

l)

0 4 8 12 16 20 24

0

4000

8000

12000

16000
2.5 mol% succinoylated

controls

succinoylated
dextrin

conjugate

Time (h)

M
o

le
c
u

la
r 

w
e

ig
h

t 
(g

/m
o

l)

0 4 8 12 16 20 24

4000

8000

12000

16000

20000
4.8 mol% succinoylated

controls

conjugate

succinoylated
dextrin

Time (h)

M
o

le
c
u

la
r 

w
e

ig
h

t 
(g

/m
o

l)

0 4 8 12 16 20 24

8000

12000

16000

20000
7.2 mol% succinoylated

controls

conjugate

succinoylated
dextrin



268 
 

 
 
(a)      (b) 

 
(c) 

 
(d) 

Graph  Mol% succinoylation  ANCOVA statistic  Significance  

(a)  2.6  F (1, 25) = 2.66, p = 0.12  p > 0.5  

(b)  5.0  F (1, 24) = 0.135, p = 0.72  p > 0.5  

(c)  7.5  F (1, 26) = 1.01, p = 0.32).  p > 0.5  

 
 
Appendix 2.2q: Comparison of degradation rate of dextrin-colistin conjugates (MMW dextrin 
library) to their respective succinoylated dextrin precursors: (a) 2.6 mol% succinoylation; (b) 
5.0 mol% succinoylation; (c) 7.5 mol % succinoylation. Data shown represents mean ± SD 
(n=3). Where error bars are invisible they are within size of data points. Panel (e) reports 
ANCOVA statistics, showing that in each case, statistical significance was not attained i.e.: 
degradation rate was not statistically different (p > 0.5).  
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(a)      (b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(c) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Appendix 2.2r: Effect of mol% succinoylation on degradation rate. In the presence of α-
amylase, degradation rate differed significantly with increasing mol% succinoylation for both 
(a) LMW dextrins (linear regression, ANCOVA: F (5,113) = 14.88, p <0.0001) and (b) MMW 
dextrins, ANCOVA: F (4, 95) =7.09, p < 0.0001) and (c) HMW dextrins.  
 
Data shown represents mean ± SD (n=3). Legend: A: 0 mol%; B: 1.0 mol%; C: 2.5 mol%; D: 
4.8 mol%; E: 7.2 mol%; F: 14.2 mol% succinoylation. MMW dextrin library G: 0 mol%; H: 2.6 
mol%; I: 5 mol%; J: 7.5 mol%; K: 14.4 mol% succinoylation.  
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(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Appendix 2.2s: Effect of mol% succinoylation on degradation rate. Panel (a): in the presence 
of α-amylase degradation rate differed significantly with increasing mol% succinoylation for 
both (a) LMW conjugates (linear regression, ANCOVA: F (5,113) = 14.88, p <0.0001) and (b) 
MMW conjugates, ANCOVA: F (4, 95) = 7.09, p < 0.0001).  
 
Legend: LMW dextrin colistin conjugate family: A: 1.0 mol% succinoylated conjugate; B: 2.5 
mol% succinoylated conjugate; C: 4.8 mol% succinoylated conjugate; D: 7.2 mol% 
succinoylated conjugate. MMW dextrin-colistin conjugate library. Legend: E: 2.6 mol% 
succinoylated F: 5.0 mol% succinoylated; G: 7.5 % mol succinoylation.  
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Appendix 2.3: Bonferroni multiple comparison tests to compare unmasking between dextrin-
colistin conjugates  
 

(i): 2 mol% theoretical succinoylation: experiment versus control (LMW parent-dextrin 
conjugate-library)  
 

Time  Difference t statistic p value Significance 
(y/n) 

0.1 h 0.0 0.0 p  >  0.05 N 

2 h -8.93 6.11 p  < 0.0001 Y 

4 h -12.0 8.18 p  < 0.0001 Y 

7 h -18.1 12.4 p  < 0.0001 Y 

24 h -26.1 17.8 p  < 0.0001 Y 

48 h -13.0 8.89 p  < 0.0001 Y 

 

 

 

(ii): 2 mol% (LMW conjugate-library) versus:   

5 mol% theoretical succinoylation: (LMW parent-
dextrin conjugate-library) 

5 mol% theoretical succinoylation: (MMW 
parent-dextrin conjugate-library) 

Time  Diff.* t statistic p value Significance 
(y/n) 

Diff. T statistic p value Significance 
(y/n) 

0.1 h 0.0 0.0 p > 0.05 N 0.0 0.0 p  > 0.05 Y 

2 h -7.50 5.13 p < 0.001 Y -10.8 7.41 p  < 
0.0001 

Y 

4 h -10.0 6.86 p < 0.0001 Y -13.3 9.07 p < 0.0001 Y 

7 h -10.1 6.93 p < 0.0001 Y -18.1 12.4 p < 0.0001 Y 

24 h -13.0 8.89 p < 0.0001 Y -24.7 16.9 p < 0.0001 Y 

48 h -12.0 8.20 p < 0.0001 Y -19.2 13.1 p < 0.0001 Y 

Diff: difference  
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iii: 5 mol%  theoretical succinoylation: (LMW parent-dextrin conjugate-library) versus:   

5 mol% theoretical succinoylation: control (LMW 
parent-dextrin conjugate-library) 

5 mol% theoretical succinoylation: 
experiment (MMW parent-dextrin 
conjugate-library) 

Time  Diff.* t statistic p value Significance 
(Y/N) 

Diff. t. statistic p value Significance 
(Y/N) 

0.1 h 0.0 0.0 p > 0.05 N 0.0 0.0 p > 0.05 N 

2 h -1.87 1.28 p > 0.05 N -3.33 2.28 p > 0.05 N 

4 h -3.58 2.45 p > 0.05 N -3.23 2.21 p > 0.05 N 

7 h -9.60 6.56 p < 0.0001 Y -8.00 5.47 p < 0.0001 Y 

24 h -16.6 11.4 p < 0.0001 Y -11.7 8.00 p < 0.0001 Y 

48 h -5.92 4.05 p < 0.05 Y -7.17 4.90 p < 0.01 Y 

Diff: difference 

 
 

 

 

 

iv: 10 mol% theoretical succinoylation: (LMW parent-dextrin conjugate-library) versus:   

10 mol% theoretical succinoylation: control LMW 
parent-dextrin conjugate-library) 

10 mol% theoretical succinoylation: 
experiment (MMW  parent-dextrin 
conjugate-library) 

Time  Diff.* t statistic p value Significance 
(Y/N) 

Diff. t statistic p value Significance 
(Y/N) 

0.1 h 0.0 0.0 p > 0.05 N 0.333 0.228 p > 0.05 N 

2 h -0.477 0.326 p > 0.05 N -1.15 0.789 p > 0.05 N 

4 h -2.73 1.87 p > 0.05 N -3.10 2.12 p > 0.05 N 

7 h -4.97 3.40 p > 0.05 N -5.36 3.66 p > 0.05 N 

24 h -10.1 6.91 p < 0.0001 Y -9.77 6.68 p < 0.0001 Y 

48 h -6.24 4.27 p < 0.05 Y -6.91 4.72 p < 0.01 Y 

Diff: difference 
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v: 15 mol% theoretical succinoylation: (LMW parent-dextrin conjugate-library) versus:   

15 mol% theoretical succinoylation: control (LMW 
parent-dextrin conjugate-library) 

15 mol% theoretical succinoylation: 
experiment (MMW parent-dextrin 
conjugate-library) 

Time  Diff.* t  statistic p  value Significance 
(Y/N) 

Diff. t  statistic p  value Significance 
(Y/N) 

0.1 h 0.0 0.0 p > 0.05 N 0.0 0.0 p > 0.05 N 

2 h -0.028 0.0189 p > 0.05 N 3.12 2.13 p > 0.05 N 

4 h -0.733 0.501 p > 0.05 N -0.433 0.296 p > 0.05 N 

7 h -2.03 1.39 p > 0.05 N -1.63 1.12 p > 0.05 N 

24 h -11.1 7.57 p < 0.0001 Y -6.13 4.19 p < 0.05 Y 

48 h -7.33 5.01 p < 0.001 Y -6.25 4.27 p < 0.05 Y 

Diff: difference 

 
 

 

 

vi: 5 mol% theoretical succinoylation: experiment versus control (MMW parent-dextrin 
conjugate-library) 
 

Time  Difference t statistic p  value Significance (Y/N) 

0.1 h 0.0 0.0 p > 0.05 N 

2 h -0.833 0.570 p > 0.05 N 

4 h -3.00 2.05 p > 0.05 N 

7 h -3.10 2.12 p > 0.05 N 

24 h -9.93 6.79 p < 0.0001 Y 

48 h -11.2 7.68 p < 0.0001 Y 

Diff: difference 
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vii: 10 mol% theoretical succinoylation: experiment versus control (MMW parent-dextrin 
conjugate-library) 
 

Time  Difference t statistic p  value Significance (Y/N) 

0.1 h -0.333 0.228 p > 0.05 N 

2 h -1.88 1.28 p > 0.05 N 

4 h -1.57 1.07 p > 0.05 N 

7 h -3.11 2.13 p > 0.05 N 

24 h -10.7 7.34 p < 0.0001 Y 

48 h -10.7 7.29 p < 0.0001 Y 

Diff: difference 

 
 
 

 

 

 

viii: 15 mol% theoretical succinoylation: experiment  versus control (MMW parent-dextrin 
conjugate-library) 
 

Time  Difference t statistic p  value Significance (Y/N) 

0.1 h 0.0 0.0 p > 0.05 N 

2 h 0.410 0.280 p > 0.05 N 

4 h 0.533 0.365 p > 0.05 N 

7 h 3.73 2.55 p > 0.05 N 

24 h 11.1 7.57 p < 0.0001 Y 

48 h 11.3 7.70 p < 0.0001 Y 

Diff: difference 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Appendix 2.4: Temporal progress of the 
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: Temporal progress of the in vivo study showing the three phases

 

study showing the three phases.  
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Appendix 2.5: Typical RP-HPLC chromatogram for colistin (positive control) using the 
gradient method on a 250 mm C18 column, when derivatisation was attempted using method 
(ii) liquid phase synthesis (in solution), showing a peak for colistin which doubled with 
doubling concentration.   
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(a) 
 

ID  Test  Nominal sampling time (min)  
Antibiotic  5  30  60  240  480  1440  

Actual sampling time (min)  
028M  EA-4  6  31  60  240  480  1442  
029M   6  31  60  240  480  1442  
030M  EA-1  6  30  60  240  480  1452  
031M   6  31  61  240  480  1441  
032M  Colistin  6  31  60  240  480  1441  
033M   5  30  60  240  480  1440  
Average 

sampling 

time*   
5.8 (0.4)  30.7 (0.5)  60.2 (0.4)  240.0  

(0)  
480.0  

(0)  
1443.0 

(4.6)  

* (mean ± SD)  
 
 
 
 
 
(b) 
 

ID  Test  Nominal sampling time (min)  

Antibiotic  5  30  60  240  480  1440  

Actual sampling time (min)  

034M  EA-4  6  31  60  241  480  1440  

035M   6  30  60  240  480  1440  

036M  EA-1  NS  31  60  240  480  1441  

037M   NS  30  60  240  480  1441  

038M  Colistin  NS  NS  NS  240  480  1440  

039M   NS  NS  NS  240  480  1440  

Average 

sampling 

time *  
 6.0  

(0)  
30.5 (0.6)  60.0  

(0)  
240.0 (0)  480.0 (0)  1440.0 

(0.5)  

* mean (± SD); NS: no sample  
 
 
Appendix 2.6: Group comparisons: (a) blood sampling times following intravenous 
administration of test-antibiotic at 0.1 mg/kg to Male Sprague Dawley rats (b) blood sampling 
times following intravenous administration of test-antibiotic at 0.5 mg/Kg to Male Sprague 
Dawley rats. Actual and nominal sampling times did not vary significantly (two-way ANOVA, 
p > 0.05).  
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