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Abstract 
 

Synucleinopathies are a group of diseases characterised by the presence of insoluble 

aggregated forms of α-synuclein.  The most common of these diseases is Parkinson’s disease 

(PD) which affects approximately 1% of the UK population over the age of 60.  Alpha-synuclein 

has also been linked to the disease through familial mutations and genome wide association 

studies as well as by its presence in sporadic cases.  Although solid evidence exists for a role of 

α-synuclein in PD, it remains unclear as to how this protein exerts its toxicity on neurons and 

exactly how this leads to the cell death characteristic of this neurodegenerative disease. 

Alpha-synuclein belongs to a family of three proteins which also includes β- and γ-synuclein.  

These three proteins are highly homologous and evolutionarily conserved, however none of 

them have a well defined function.  Evidence suggests a role for these proteins in synaptic 

vesicle dynamics but a more specific function remains to be unveiled.  However, due to the 

considerable degree of homology across these three proteins, knockout models have been 

considered to allow functional compensation of the missing synuclein protein through one of 

the remaining family members.  This has hindered studies from elucidating not only the role of 

α-synuclein but also β- and γ-synuclein.  To overcome this problem triple synuclein knockout 

mice have been produced and characterised, as described in this thesis.  As expected studies of 

these animals revealed no alterations in the number of dopaminergic neurons in either the 

substantia nigra pars compacta or ventral tegmental area.  Despite this, a significant deficit in 

striatal dopamine concentrations was detected, regardless of the fact that the levels and 

function of tyrosine hydroxylase being normal.  As well as this triple synuclein null mice were 

demonstrated to be hyperdopaminergic through various behavioural tests.  Work employing 

physcostimulants and, through a collaboration, using fast scan cyclic voltametry suggested a 

role for these proteins in normal dopamine release dynamics at the level of the synaptic 

vesicle. 

A previous body of work has indicated that the loss of α- and/or γ-synuclein is able to provide a 

degree of resistance against the toxic affects of the dopaminergic neurotoxin MPTP.  It was 

therefore hypothesised that the triple synuclein null animals would also display resistance to 

this toxin.  However, these animals were shown to be more sensitive than wild type controls.  

Importantly it was apparent that animals lacking β-synuclein alone or in combination with 

other synucleins were the most sensitive to this toxin.  Further work revealed a significant 

deficit in the ability of triple synuclein null mice to store dopamine in their synaptic vesicles.  
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This may explain the sensitivity to MPP+, the active metabolite of MPTP, due to the fact it 

cannot be efficiently stored in synaptic vesicles, which restricts the toxins access to the 

mitochondria where it normally inhibits complex I, thus leading to cell death.  When 

recombinant β-synuclein was reintroduced the deficit in synaptic vesicle dopamine uptake 

could be restored.  However, β-synuclein can not do this alone and requires incubation with 

cytosolic factors, suggesting it acts as a chaperone in this role.  This may explain why lines of 

synuclein null mice that specifically have the absence of β-synuclein apparently fair least well 

when exposed to MPTP. 

Finally, in order to assess the extent to which a loss of function role of α-synuclein leads to 

pathological alteration at the synapse an entirely novel conditional α-synuclein knockout 

mouse model was produced.  Currently no ideal model exists to answer this question as 

conventional knockout models are based on the knockout of the protein in development.  This 

may allow functional compensatory mechanisms to be established which can be overcome 

with a conditional knockout approach.  As well as this it is important to assess this loss in an 

aged nervous system, as PD is a disease of aging.  It is likely that, as α-synuclein forms insoluble 

Lewy bodies and undergoes abnormal posttranslational modifications, the amount of normally 

functioning protein at the synapse is depleted, therefore allowing a loss of function effect to 

develop.  It is hoped this model will allow new insight into the early disease process. 

Overall this work further contributes to a body of evidence that suggests the synucleins play an 

important role in synaptic dopamine handling, particularly at the synaptic vesicle level.  It is 

hoped that the newly established conditional α-synuclein knockout model will produce a new 

perspective on the loss of function role of α-synuclein in early disease development, an avenue 

that has yet to be fully explored. 
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Parkinson's Disease 

It is now almost 200 years since James Parkinson first described the disease that would later 

take on his name. He was fortunate to have recognised 6 individuals with similar symptoms 

who he was able to study closely taking careful histories.  From these he was able to clearly 

state two of the prominent characteristics of the disease as well as describing many other now 

well recognised features.  Firstly, that this was a disease of slow progress that over time 

caused progressive motor disability and secondly he clearly defined the resting tremor seen in 

these patients and stated that it was obviously different from other forms of shaking palsy 

previously described (Parkinson, 1817). 

Since this first description, Parkinson’s disease (PD) has become widely recognised as the 

second most common neurodegenerative disease after Alzheimer’s disease (Ross et al., 

2008b).  It is estimated to affect 0.3% of the population in industrialised countries and 

approximately 1% of the total population over 60 (Rajput, 1992, de Rijk et al., 2000). This gives 

the lifetime risk of developing the disease at 1.5% (de Rijk et al., 1995).  In the UK it is 

estimated that 127,000 people suffer from the PD, a figure which is likely to increase with our 

aging society (Parkinson's UK, 2012).  The majority of PD sufferers have a mean age of onset of 

60 years but in approximately 10% of cases, known as early onset, this age is lowered to 45 

years or younger.  Following diagnosis of the disease there is an average duration of 15 years 

until death (Katzenschlager et al., 2008, Samii et al., 2004).   

The economic burden of the disease is large, with one study estimating the direct annual cost 

of the disease on the healthcare system in the UK at £5,993 per year per patient if managed at 

home.  However, should the patient require full time institutionalisation, which is often the 

case in late disease, this cost rises dramatically to £19,338.  The cost of care has also been 

shown to relate to the stage of disease with patients in the early stages of disease having a 

care cost of £2971 per year where as at late stage this cost increases to £18,358 (Findley et al., 

2003, Findley, 2007).  These financial patterns are set to rise with an aging population.  Apart 

from the economic impact of PD, quality of life is significantly reduced for the patient and also 

has a great impact on the family and carers of the patient.  It is therefore key that the disease 

is better understood allowing more effective treatments to be developed. 

Clinical Features 

Classical PD is characterised by the presence of the cardinal features which are bradykinesia, 

resting tremor, rigidity and postural instability (Factor and Weiner, 2008).  For a clinical 
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diagnosis to be made the patient must present with 2 or more of the cardinal symptoms.  

However due to the current lack of diagnostic tests for PD the only true confirmation of the 

disease happens at autopsy in which 80-90% of clinical PD cases are confirmed (Litvan et al., 

2003).  In most cases the disease course starts with impairment of dexterity with the gradual 

progression to stiffness and reduced arm swing when walking.  However, these symptoms are 

rarely acknowledged by the patient who often attributes these small changes to the effects of 

aging.  This often causes a lag period between the first symptoms and a diagnosis of PD being 

made (Lees et al., 2009).  

The characteristic resting tremor is seen in 70% of PD patients and normally presents 

unilaterally but may, in later stages of the disease, become bilateral.  It resembles repetitive 

pill rolling between the thumb and index finger and has a low frequency of 4-7 Hz (Chaudhuri 

et al., 2003).  This differs from essential tremor as it only occurs at rest and is not problematic 

during activity.  The term bradykinesia is used to describe the difficulty in initiating new 

movement and the general slowness at which activity is performed.  In the earlier stages of the 

disease this tends to affect fine motor movement such as the fastening of buttons and it is also 

responsible for micrographia, another common feature of PD.  As the disease progresses it 

affects more general movement with patients adopting a shuffling step and also freezing, in 

which they are unable to initiate any movement.  Other symptoms associated with 

bradykinesia include facial passivity and problems with the laryngeal movement which leads to 

a monotone voice (Chaudhuri et al., 2003, Samii et al., 2004).  PD patients often display rigidity 

in the trunk and limbs and this refers to the resistance displayed during passive movement, 

often described as giving a cogwheel type of movement. Through a combination of 

bradykinesia and rigidity comes the postural instability giving poor balance and bent posture 

leading to the characteristic gait seen in PD patients.  These problems with posture are also an 

inherent cause of increased falls, a major cause of morbidity in Parkinson’s. 

PD also displays a vast and diverse array of non-motor symptoms (NMS) which are estimated 

to be present in up to 90% of PD patients and across all stages of the disease (Chaudhuri et al., 

2011).  It is generally considered that NMS are under-reported by patients; a recent report 

suggested up to 62% of NMS were undeclared to healthcare professionals, due to 

embarrassment or because patients did not realise these symptoms were linked to PD (Mitra 

et al., 2008).  Some of these symptoms are considered to precede the onset of motor 

symptoms seen in PD such as olfactory dysfunction, rapid eye movement behaviour disorder 

(RBD), constipation and depression (Chaudhuri et al., 2006).  The fact that olfactory 
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dysfunction may occur as a primary symptom would lend support for the six stage pathological 

process that occurs in the brain during PD, as proposed by Braak and colleagues, in which the 

degeneration of the olfactory bulb and the anterior olfactory nucleus occurs in stage one, the 

earliest preclinical stage proposed (Braak et al., 2003).  Witjas and colleagues suggested that 

the NMS be categorised into three broad subsets of symptoms: dysautonomic, mental 

(cognitive/phychiatirc) and sensory/pain.  Using these criteria they created a questionnaire for 

PD patients and found that the most frequent NMS were anxiety (66%), drenching sweats 

(64%), slowness of thinking (58%) and irritability (54%) (Witjas et al., 2002).  This is in 

agreement with the NMSquest study which found similar outcomes and also showed that 

patients found depression, sleep problems, pain, apathy, memory issues and balance 

dysfunctions more of a hindrance in everyday life than the motor symptoms of PD.  This study 

also found that patients suffered an average 10-12 NMS, highlighting their importance in the 

disease.  It is unlikely that these NMS are all caused by dopamine loss and the fact that they 

are generally fairly unresponsive to dopamine treatment is suggestive of the fact that they are 

likely caused by degeneration of other neurotransmitter pathways in the brain.  This makes 

these symptoms difficult to treat and this often has a detrimental effect on the patients’ 

quality of life. 

Of the numerous non-motor symptoms developed throughout the disease process one of the 

most debilitating can be dementia.  It is estimated that up to 80% of late stage PD patients 

display dementia (Aarsland et al., 2003).  This is considered to correlate with staging based on 

alpha-synuclein pathology proposed by Braak (Braak et al., 2006).  As well as dementia being 

prominent in late stages there are often noted cognitive alterations seen earlier in the disease 

process, which range from visuospatial problems to those concerned with executive functions 

(Uc et al., 2005).  It is thought that these symptoms do not arise due to the problems in the 

dopaminergic system, but in other areas of the brain.  This is also inferred by the fact that L-

DOPA therapy appears to have little effect on cognitive symptoms. 

PD Pathogenesis 

Classical PD has long been primarily defined by the selective loss of dopaminergic, 

neuromelanin laden, cells in the substantia nigra pars compacta (SNpc) which was first truly 

discussed by Greenfield and Bosanquet (Greenfield and Bosanquet, 1953).  By the time that 

the patient presents with symptoms, approximately 70-80% of the SNpc dopaminergic 

population has already been lost with many of the remaining neurons containing Lewy bodies 

(LB) and appearing dystrophic (Chaudhuri et al., 2003).  This presents a problem for treatment 
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as these cells cannot be restored and so ideally an earlier diagnosis strategy is required that 

could be used in-hand with an effective treatment that would halt this loss, thus pausing the 

dopaminergic symptom progression. However this loss is not solely restricted to the SNpc as 

was initially believed.  It is now apparent that dopaminergic cell loss is seen across other areas 

of the brain including the locus coeruleus, raphe nuclei, dorsal nuclei of the vagus and basalis 

of Meynert.  Further to this, the loss is not reserved only to dopaminergic neurons, with other 

catecholaminergic neurons also being affected throughout the disease.  Work carried out to 

measure the levels of both dopamine and noradrenaline in post-mortem brains of idiopathic 

and postenchephalitic PD patients compared to controls showed a dramatic 70-95% loss in the 

caudate nucleus and putamen (Ehringer and Hornykiewicz, 1960).  The loss of dopaminergic 

neurons and therefore dopamine in the SNpc accounts for the characteristic movement 

related problems in PD but fails to explain the more complex non motor symptoms which are 

more likely explained through the loss of the non-dopaminergic neurons. 

It has been proposed that there is a specific pattern to this cell loss, which is now widely 

accepted.  The Braak hypothesis proposes a staging of PD through the use of α-synuclein 

immunstaining patterns throughout the diseased brain (Braak et al., 2003).  This has lead to 

the belief that PD may begin in the non-dopaminergic structures of the brainstem or possibly 

even in the peripheral autonomic nervous system, although this remains controversial, with 

the progressive appearance of abnormal α-synuclein into the midbrain and in late stages of the 

disease into the cortical regions.  The principles of this hypothesis have since been confirmed 

in a number of other studies (Dickson et al., 2010, Jellinger, 2003).   More recently a study of 

almost 30 PD patients has shown the presence of α-synuclein inclusions in the spinal cord in all 

but one PD case with neuropathological stages 2-6 which were completely absent in control 

cases (Del Tredici and Braak, 2012).  Further to this it has also been suggested that generally 

neurons with long unmyelinated axon projections are more susceptible to LB pathology with 

LB rarely being seen in neurons with myelinated axons (Braak and Tredici, 2004, Orimo et al., 

2011).  How this spread of α-synuclein occurs throughout the nervous system is still a point of 

vivid debate, with beliefs that it may be able to spread in a prion-like manner across 

interconnected neuronal pathways and seed aggregation being most controversial.  A study in 

which normal mice were injected with various forms of α-synuclein demonstrated that a single 

injection of α-synuclein fibrils was enough to see α-synuclein pathology throughout the brain.  

This was not the case when monomeric forms of the protein were injected suggesting the form 

of the protein is important for triggering pathological changes (Luk et al., 2012).   
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Lewy Bodies 

The defining neuropathological hallmark of PD is the Lewy body and it is this structure that is 

required at post mortem for a definitive diagnosis of the disease.  Lewy bodies were first 

described in 1923 by Fritz Heinrich Lewy in the nucleus basalis of Meynert but are now known 

to be found throughout the brain of PD patients (Lewy, 1923). It was not until 1997 that the 

main component of LBs was discovered to be α-synuclein, the importance of which will be 

discussed in detail below (Spillantini et al., 1997, Lewy, 1923). Ubiquitin and other remnants of 

the ubiquitin proteosome system are known to be found within these structures along with 

numerous other proteins but not to the same extent as α-synuclein.  Alpha-synuclein is also 

found in a variety of forms within LBs, including ubiquitinated, phosphorylated and nitrated 

(Fujiwara et al., 2002, Giasson et al., 2000, Anderson et al., 2006).   There are a constant 

proportion of cells within the SNpc that contain LBs which is an estimated 3-4% of surviving 

neurons (Greffard et al., 2010).   

LBs are found throughout the brain and are categorised based on their location and 

differences in appearance and structure into either cortical or brainstem LBs.  Brainstem LBs 

are very dense spherical cytoplasmic structures with a hyaline eosinophilic core and a small 

pale halo.  The ultrastructure of these brainstem LBs consists of a dense core of radially 

arranged 7-20nm filaments whilst the outer edge consists of 10nm filaments.  This is 

contrasting to the cortical LBs which lack a halo and on an ultrastructural level are poorly 

arranged (Jellinger, 2009).  Another variation of the LB is the pale body, which is generally 

considered to be the precursor of LBs.  These are lightly stained eosinophilic structures with a 

diffuse internal arrangement (Shults, 2006).  All of these configurations have α-synuclein 

staining as a defining feature.  Dystrophic neurons that contain LBs often also display Lewy 

neurites (LNs).  These are also immunopositive for α-synuclein and the filaments found in LNs 

are similar in structure to those in LBs (Spillantini et al., 1998a).  

The Nigrostriatal Pathway 

The dramatic and selective loss of the dopaminergic neurons of the SNpc ultimately leads to 

the breakdown of the nigrostriatal pathway which is responsible for the initiation and 

coordination of voluntary movement thus resulting in the typical movement problems seen in 

PD.  The specific loss of the dopaminergic neurons of the SNpc ultimately leads to the over 

inhibition of the thalamus through the deregulation between the direct and indirect pathways.  

The indirect pathway works through the external globus pallidus inhibiting the subthalamic 

nucleus and thus promoting the inhibition of the thalamocortical pathway leading to 
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movement initiation.  In contrast, the direct pathway promotes movement via the inhibition of 

the internal globus pallidus, thus reducing its inhibition status and promoting the 

thalamocortical pathway.  The SNpc plays an important role in the regulation of these 

pathways through a dopaminergic input to the striatum, and the loss of dopamine seen in PD 

leads to the disinhibition of the indirect pathway and thus failure to initiate the 

thalamocortical pathway efficiently (Delong, 2000).  The breakdown of this circuitry and a 

further explanation of the outcome can be found in figure 1.1. 
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Figure 1.1 The Nigrostriatal Pathway 

The basal ganglia circuitry under both the normal and PD states.  Burgundy arrows represent 

excitatory pathways and navy represent inhibitory connections.  SNpc = subtania nigra pars 

compacta; DA = dopamine; Ptn = putamen; GPe = external globus pallidus; GPi = internal 

globus pallidus; STN = subthalamic nucleus. Under normal circumstances the thalamus receives 

inputs that originate from both the direct and the indirect pathways, which work together in a 

feedback system to ensure that there is a correct balance between activation and inhibition.  

The indirect pathway passes through the GPe to the STN in a GABAergic manner from where it 

then passes to the output nuclei via an excitatory glutaminergic projection.  When the direct 

pathway is activated it ultimately leads to the activation of the thalamus and therefore the 

cortex whereas activation of the indirect pathway leads to the transient inhibition of both the 

thalamus and the cortex and therefore movement.  The SNpc plays a crucial role in the 

regulation of these pathways by creating a dopaminergic input to the striatum.  The dopamine 

from the SNpc acts on both the D1 and D2 dopamine receptors.  At this point the D1 receptors 

facilitate the direct pathway and the D2 receptors the indirect pathway.  In PD, where the SNpc 

dopaminergic neurons are selectively lost, so is the nigral input to the striatum.  This leads to 
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the over inhibition of the thalamus due to the lack of inhibition of the GPi and STN and leads to 

the impairment of movement through the over activation of the indirect pathway.  This 

diagram was adapted from (Delong, 2000). 

Sporadic PD and associated risk factors 

The vast majority of PD sufferers do not have any family history of the disease and it is 

therefore considered to be a mainly sporadic disease.  Despite the sporadic nature of the 

disease there are no clear environmental causes and these are still highly controversial within 

the PD field.  However there are a number of risk factors known to be associated with the 

disease.  The main risk factor for the disease, along with many other age related 

neurodegenerative diseases, is age, with only 10% of cases occurring below the age of 45 and 

the risk of developing the disease increases with age (de Lau and Breteler, 2006).   For 

example, the incidence of PD is 17.4 per 100,000 person years between the ages of 50 and 59 

but this number increases dramatically 93.1 between 70 and 79 years (Bower et al., 1999).  

Another well established risk factor is that men are more likely to suffer with the disease than 

women, with some studies finding a 2 fold increase in the likelihood of men developing PD 

(Baldereschi et al., 2000).  However it is as yet unclear why men are more susceptible to the 

disease. 

After the discovery of 1-methyl-4-phenyl-1-2-3-6-tetrahyrdopyridine (MPTP), a selective 

dopaminergic neurotoxin that gives cell loss in the substantia nigra with a molecular structure 

recognised as being similar to some pesticides, the hypothesis that environmental insults may 

have a role in PD became prevalent.  Studies have been carried out assessing roles for 

pesticides, insecticides, well water drinking, heavy metal exposure, rural living, farming, early 

life infection and head trauma in the onset of PD.  However no firm conclusions have been 

made for any of the mentioned lifestyle risks.  There is nevertheless a trend that is suggestive 

of the fact that long term pesticide exposure may contribute to the onset of PD (de Lau and 

Breteler, 2006).  Paraquat, which is similar structurally to MPTP, is a widely used pesticide 

associated with increases in oxidative stress leading to the selective loss of SNpc neurons and 

has been demonstrated to promote the aggregation of α-synuclein (Dinis-Oliveira et al., 2006, 

McCormack et al., 2002, Manning-Bog et al., 2002).  Rotenone, another pesticide, has also 

been shown to effectively inhibit complex 1 of the mitochondria.  Numerous studies have 

shown that systemic administration of rotenone can cause progressive cell death of the 

nigrostriatal system in rodents with some describing α-synuclein positive aggregates (Inden et 

al., 2007, Betarbet et al., 2002) .  However it appears that the effects of rotenone are more 
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unpredictable than those of MPTP and it is for that reason that the latter is the commonly 

used toxin model (Bove and Perier, 2012).  It should be considered that studies used to unveil 

causative factors in disease are hard to interpret as they are often done retrospectively based 

on questionnaires that require the patient to remember particular exposures and therefore 

are prone to recall bias and also suffer from the fact that the individual is rarely only exposed 

to one particular pesticide.  However, a recent study in which large cohorts where carefully 

constructed to assess the role of paraquat and rotenone exposure was able to demonstrate a 

clear association of the two pesticides to the development of PD (Tanner et al., 2011). 

Three factors that do seem to have consistent results with regards to PD development are the 

effect of caffeine intake, non-steroidal anti-inflammatory drug (NSAIDs) use and smoking.  

Studies have consistently shown smokers to have a lower risk of developing PD than non 

smokers with one 29 year follow-up study showing that the incidence of PD in smokers was 

less than half of that in non smokers which has been reaffirmed by a large meta-analysis study 

(Hernan et al., 2002, Morens et al., 1996).  It has been suggested that nicotine could act 

protectively by stimulating dopamine release or possibly acting as an inhibitor of monoamine 

oxidase B (Quik, 2004).  Also, daily intake of caffeine seems to offer some protection from PD 

which has been clearly demonstrated in numerous studies (Ross et al., 2000, Hernan et al., 

2002, de Lau and Breteler, 2006).  It has been shown that caffeine is an inhibitor of the 

adenosine A2 receptor and in mouse models of PD can improve motor deficits (Ross et al., 

2000).  Numerous studies have also been carried out on the affect of NSAIDs and the 

development of PD.  A recent meta-analysis of seven studies that assessed the use of non 

aspirin NSAIDs found that people who took these drugs lowered their risk of PD development 

by 29% with regular use (Gagne and Power, 2010). A study that assessed the combined effect 

of smoking, caffeine intake and the use of NSAIDs suggested that people who took the largest 

doses of caffeine and smoking as well as using NSAIDs may reduce their risk of PD by as much 

as 87% (Powers et al., 2008).  

The factors affecting the onset of sporadic PD are wide ranging and complex.  For these 

reasons it is hard to pinpoint any exacting cause.  One direction that has helped unravel some 

clues to sporadic PD cases is information gained from familial PD forms.  
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Genetics of Parkinson’s disease 

Dominant loci  

Although rare, familial PD is estimated to be responsible for 5-10% of PD cases with more than 

13 loci and 9 genes being identified as potentially causative (Lesage and Brice, 2009).   Table 

1.1 summarises the genetic factors of PD.  Loci that have been associated with PD have been 

given the title “PARK” loci and it is these that will be discussed below. 

PARK1 is designated to the autosomal dominant missense mutations that have been identified 

in α-synuclein gene.  The first and most frequently occurring α-synuclein mutation to be 

recognised was the A53T point mutation that was discovered in a large Greek/Italian kindred 

(Polymeropoulos et al., 1997).  Following this, two further missense mutations in α-synuclein 

were also discovered the A30P and E46K which were found in German and Spanish kindred, 

respectively (Krüger R et al., 1998, Zarranz et al., 2004).  The mean onset of the disease with 

these missense mutations is 46 years and although generally this familial form is 

phenotypically very similar to idiopathic forms of PD there are some deviations from this.  

Commonly α-synuclein point mutations are associated with the development of dementia and 

the characteristic resting tremor may be absent (Kay et al., 2008).  Triplication and duplication 

mutations of the entire α-synuclein gene (SNCA) have also been found to display autosomal 

dominant inheritance in families from diverse origins (Singleton et al., 2003, Chartier-Harlin et 

al., 2004).  These were originally designated as PARK4 as they were considered to be a novel 

locus on the short arm of chromosome 4, however this was later disproved.  Triplications and 

duplications in the SNCA locus have shown to vary in size and contain variable numbers of 

other genes, suggesting that these mutations are de novo rearrangements across the various 

families.  The phenotype in these cases does appear to be dosage responsive with onset seen 

in patients carrying a triplication in their thirties and in duplication cases in their fifties (Hardy 

et al., 2009).  Patients that have a triplication of SNCA tend to have a faster disease 

progression and prominent dementia, but generally their symptoms match idiopathic PD 

whereas patients harbouring the duplication of SNCA tend to have pathology restricted more 

to the brainstem, thus resulting in a more movement disorder based disease pathway (Fuchs 

et al., 2007, Ross et al., 2008a).  This implies that increased wild type α-synuclein expression 

alone is enough to cause disease.  

Another possible link between PD and α-synuclein may be found in nucleotide polymorphisms 

seen in the promoter region of SNCA.  A number of studies have shown these polymorphisms 
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to have a role in the risk of developing PD.   A cell based study of Rep1, a dinucleotide repeat 

sequence 10kb prior to the translational start of α-synuclein, found that alternations in its 

sequence could alter the expression level of α-synuclein up to 3 fold (Chiba-Falek and 

Nussbaum, 2001).  This was later confirmed as a risk factor for PD in a study involving over 

6000 individuals (Maraganore et al., 2006).  

A second gene that has been clearly linked to PD encodes the leucine-rich repeat kinase 2 

protein (LRRK2). Autosomal dominant mutations in this gene have been located on the PARK8 

locus and are estimated to account for up to 10% of familial PD and a small number of 

apparently sporadic cases (Lesage and Brice, 2009).  This is a large 2527 amino acid protein 

that has multiple domains including RAS, WD-40 and domains with GTPase and kinase 

activities.  The presence of these numerous domains makes it likely that the LRRK2 protein has 

a role in cellular signalling (Taymans and Cookson, 2010).  The Park 8 locus was designated to 

chromosome 12p11.2-q13 in 2002 when genome-wide linkage studies found the association in 

a large Japanese kindred (Funayama et al., 2002).  Following this it wasn't until 2004 that the 

first mutations were recognised – these being the Y1699C and R1441C missense mutations 

(Paisán-Ruíz et al., 2004, Zimprich et al., 2004, Lesage and Brice, 2009).  Since then more than 

40 mutations have been identified in the LRRK2 gene most of which are missense.  However as 

yet it is not entirely clear if all of these are pathogenic, but at least 7 of these identified 

mutations have been demonstrated to be pathogenic and as may be expected these are 

clustered in the conserved functional domains of the protein (Kay et al., 2008). 

The most frequently occurring LRRK2 mutation is the G2019S but this differs depending on 

ethnic background being very rare in Asian and South African populations but accounting for 

30-40% of familial and sporadic PD cases in North Africa and 10-30% in Ashkenazi Jews (Lesage 

and Brice, 2009).  The mutation affects the kinase domain and it is considered to have a simple 

gain of function mechanism by increasing the kinase activity of the protein within the cell 

(Greggio et al., 2006).However it is not clear whether this is the case for all mutations, 

particularly those that fall outside of the kinase domain.  The G2019S mutation results in late 

onset PD indistinguishable from the disease course seen in sporadic PD cases and at post-

mortem there is a typical dispersion of LBs and LNs.  Incomplete penetrance is seen with the 

G2019S mutation, estimated to be below 50%.  This penetrance is age dependent meaning the 

older the carrier the higher the likelihood of developing PD (Bonifati, 2007).  This incomplete 

penetrance is likely to account for a number of apparently sporadic cases.   
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Another possible autosomal dominant PD associated gene is UCHL-1.  However there has only 

been one clearly evidenced mutation as yet found.  This is the I93M missense mutation 

discovered in a German family (Leroy et al., 1998).  This mutation results in a partial loss of 

function in the catalytic activity of the thiol protease.  Since then further studies, including a 

large meta-analysis, have shown a polymorphism in the UCHL-1 gene to be associated with 

sporadic PD (DeStefano et al., 2003).  At current it is considered that UCHL-1 could be a rather 

rare high penetrance PD associated gene.    
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Dominant Loci 

Gene/Loci 
Examples of Known 
Mutations 

Chromosome (human) Clinical Manifestation Reference 

SNCA 
PARK 1/4 

A53T 
A30P 
E46K 
Duplication 
Triplication 

4q21 
Typical PD but can present 
in some cases with related 
dementia 

(Polymeropoulos et al., 
1997) 
(Krüger R et al., 1998) 
(Zarranz et al., 2004) 
(Chartier-Harlin et al., 2004) 
(Singleton et al., 2003) 

LRRK2 
PARK 8 

G2019S  
Y1699C 
R1441C  

12q12 Typical PD 
(Kachergus et al., 2005) 
(Zimprich et al., 2004) 

UCHL-1 
PARK 5 

I93M 4p13 Typical PD (Leroy et al., 1998) 

Recessive Loci 

Parkin 
PARK 2 

T240R 
R42P 

6q26 
Early Onset PD with slow 
progression 

(Kitada et al., 1998) 
(Terreni et al., 2001) 

PINK1 
PARK 6 

C92F 
G386A 
G409V 

1p35-36 
Early Onset PD with slow 
progression and in some 
cases severe depression 

(Valente et al., 2004) 
(Ibáñez et al., 2006) 

DJ-1 
PARK 7 

L10P 
L166P 

1p36 
Early Onset PD with slow 
progression 

(Guo et al., 2008) 
(Bonifati et al., 2003) 

ATP13A2 
PARK9  

F182L 
G504R 

1p36 

A more aggressive form of 
PD with numerous 
complications including 
dementia  

(Ning et al., 2008) 
(Di Fonzo et al., 2007) 

PLA2G6 
PARK14  

R632W  
R747W 
R741Q 

22q13 
A more aggressive form of 
PD with numerous 
complications 

(Sina et al., 2009) 
(Paisan-Ruiz et al., 2009) 

FBXO7 
PARK15 

T22M 
R378G 

22q12 
PD with additional 
pyramidal symptoms 

(Di Fonzo et al., 2009) 
(Shojaee et al., 2008) 

Table1.1 Summary of mutations known to be associated with PD
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Recessive Loci 

As well as the dominant loci in PD a number of small families have allowed the recognition of 

recessive loci that are also responsible for the disease.  The first of these to be discovered was 

parkin (PARK2), mapped to chromosome 6, which is responsible for the autosomal recessive 

juvenile form of PD and was identified in a Japanese family (Kitada et al., 1998).  The most 

common  cause of autosomal recessive PD is mutations in the Parkin gene, with over 100 

pathogenic mutations now identified and together are responsible for almost half of all 

autosomal recessive PD cases, meaning that it is the only recessive PD mutation with a 

reasonable amount of information from post mortem analysis (Nuytemans et al., 2010).  This 

has revealed that a typical pattern of neuronal loss is seen with some cases reporting apparent 

α-synuclein and ubiquitin positive inclusions but there are no known examples of Lewy bodies 

in these patients (Sasaki et al., 2004, Gouider-Khouja et al., 2003). Patients with parkin 

mutations typically have onset of PD between 20-50 years of age, but the disease progress is 

relatively slow and responds well to L-DOPA therapy (Cookson et al., 2008). 

Two further autosomal recessive PD associated genes have also been identified.  PTEN-induced 

novel kinase 1 (PINK1) was denoted as PARK6 and was first described in three families from 

Italy and Spain in 2004 (Valente et al., 2004).  Numerous mutations have been identified in the 

PINK1 gene that suggests a loss of function role is likely to be the contributing factor in the 

disease.  The phenotype seen in PINK1 cases is very similar to those caused by parkin 

mutations but currently only a single PINK1 patient has been autopsied, which showed LB 

pathology but more cases will be required to confirm this result (Samaranch et al., 2010).   

Another autosomal recessive gene known to be associated with PD is DJ-1 (PARK7) which was 

identified in 2003 in both Italian and Dutch isolates (Bonifati et al., 2003).  The original study 

showed the Dutch case had a deletion within the DJ-1 gene, meaning that they had no 

expression of the protein product and the Italian case had a missense mutation causing the 

substitution of a highly conserved leucine for a proline, resulting in a non-functional protein 

product.  DJ-1 mutations are very rare, accounting for approximately 0.8% of familial PD cases 

which give rise to a similar disease course as parkin and PINK1 mutations (Kilarski et al., 2012).  

However although the number of individuals affected by this mutation is low it may still allow 

for an insight into PD. 

It has recently been estimated that early onset PD resulting from mutations in parkin, PINK1 

and DJ-1 account for a 5.1% rate of pathogenic mutation in UK patients (Kilarski et al., 2012).  



 16 

These three recessive PD linked genes are all conserved and possibly come together having 

complimentary functions involving mitochondria quality assurance.  Parkin is an E3 ubiquitin 

ligase which labels other proteins for proteasomal degradation (Cookson et al., 2008).  

However it has also been linked to the mitochondrial pathway with a suggested interaction 

with PINK1.  Early Drosophila studies that knocked out the homolog of parkin resulted in loss 

of flight muscles and male sterility, which were attributed to the fact that the earliest changes 

to be consistently seen in the muscles and developing spermatids were swollen mitochondria 

with disintegrated cristae (Greene et al., 2003).  A further study also showed that parkin 

knockout Drosophila have an increased sensitivity to oxidative stress induced using paraquat 

supporting a potential role for parkin in mitochondria and oxidative stress (Pesah et al., 2004).  

Following on from these studies parkin knockout mice were demonstrated to have 

mitochondrial dysfunction (Palacino et al., 2004).  It was later realised that parkin and PINK1 

may well interact in some way when PINK1 knockout Drosophila were revealed to have the 

same phenotypes as their parkin equivalents and importantly that over-expression of parkin 

could rescue the PINK1 phenotype but the reverse was not true suggesting for the first time 

that PINK1 acted upstream of parkin in an interplaying pathway (Park et al., 2006, Clark et al., 

2006).  The first work to help reveal a potential role for parkin was shown in HEK293 and HeLa 

cells treated with the mitochondrial uncoupling agent carbonyl cyanidem-

chlorophenylhydrazone (CCCP).  After just one hour of treatment parkin redistributed so that it 

localised with the depolarised mitochondria and began the process of mitophagy which has 

since been shown with other mitochondrial depolarising agents (Narendra et al., 2008).  Since 

this it has been shown that PINK1 is required for parkin to be recruited to the mitochondria by 

various studies (Geisler et al., 2010).  It is now considered that PINK1 is found on the outer 

mitochondrial membrane due to its amino-terminal mitochondrial targeting sequence where it 

is imported into the inner membrane of the normal functioning mitochondria which results in 

it becoming degraded.  Under conditions in which the mitochondrial membrane potential is 

lowered, such as dysfunction of the electron transfer chain and mutations in the mitochondrial 

DNA, PINK1 is prevented from reaching the inner membrane and so builds up on the outer 

membrane (Narendra and Youle, 2011).  Following this a recent study has found that once 

depolarisation of the mitochondrial membrane has occurred PINK1 undergoes 

autophosphorylation at two serine residues which are imperative to the recruitment of parkin 

to the mitochondria, following which it ubiquitinates the mitochondria marking it for 

mitophagy (Okatsu et al., 2012).   
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It is apparent that PINK1 disease mutations block the ability of the protein to recruit parkin. 

Similarly, mutations in parkin inhibit its recruitment to the mitochondria entirely or stop it 

from inducing mitophagy (Cookson, 2012).  Other recent evidence from a conditional parkin 

knockout mouse model proposes that parkin regulates the turnover of a zinc finger protein 

known as parkin interacting substrate (PARIS), which is able to accumulate when parkin is 

mutated or absent.  PARIS is able to bind to DNA and control the transcription of PGC1α, a 

transcriptional coactivator for a number of nuclear genes involved in the control of 

mitochondria and oxidative metabolism suggesting another possible role for parkin.  It was 

found that over expression of PARIS was enough to incur loss of dopaminergic neurons in the 

SNpc which could be reversed by expression of parkin (Shin et al., 2011).  

It is less clear where DJ-1 may fit into this picture however; there has been long standing 

evidence linking it with oxidative stress, with studies showing DJ-1 deficient mice to be more 

sensitive to mitochondrial toxins such as MPTP (Kim et al., 2005).  Other more recent work has 

demonstrated that in the absence of DJ-1 the appearance of mitochondria become aberrant 

and these apparent problems arising from DJ-1 seem to be dependent of the amount of 

reactive oxygen species.  This study found that this phenotype could be rescued with the 

expression of either parkin or PINK1 therefore possibly linking DJ-1 to faulty mitochondria 

clearance (Irrcher et al., 2010).  Further to this, loss of DJ-1 results in an increase of stress 

induced parkin recruitment to the mitochondria, which in turn leads to increased mitophagy.  

This can be returned to normal levels with the expression of wild type DJ-1.  It is still unclear 

how this interaction with parkin may occur and there is as yet no evidence to suggest that DJ-1 

acts directly with PINK1 in any way (Joselin et al., 2012). 

Although the role of mitochondria appears important from what can be learnt from the parkin, 

PINK1 and DJ-1 it is unlikely to be the sole cause of PD.  These cases contribute to only a very 

small percentage of the overall number of patients suffering PD and other hallmarks are more 

robust across the majority of cases.   

Other genes to be associated with autosomal recessive PD have recently been identified.  

These account for the ATP13A2; PARK9, PLA2G6; PARK14 and FBXO7; PARK15 loci.  These 

again count for a very small proportion of PD cases overall and as above cause juvenile onset 

of the disease often with extrapyramidal symptoms.  It is probably correct to consider these 

mutations as causing a disease that includes Parkinsonism as a symptom rather than causing 

classical PD.   
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The ATP13A2 mutations were first described in a Jordanian family and causes a loss of function 

in the encoded protein that results in a complex phenotype (Ramirez et al., 2006).  The gene 

encodes a transmembrane lysosomal type 5 P-type ATPase protein and, due to the phenotype 

given by the mutation resembling that of a lysosomal storage disease, it is considered that it 

may help show the link between PD and lysosomal storage disorders.  Recent work using 

fibroblasts from patients with the L3292 and L6025 mutations has shown some revealing 

results.  Both mutated fibroblasts and neuronal cells with ATP13A2 knockdown showed 

impaired lysosomal function which leads to an abundance of improperly degraded 

autolysosomes and autophagic vacuoles (Dehay et al., 2012).  This further legitimises the 

possible role of the lysosomal pathway in PD. 

Mutations in the FBX07 gene were first recorded in a Persian family and since have also been 

noted in Italian kindred (Shojaee et al., 2008, Di Fonzo et al., 2009).  The gene encodes an E3 

ubiquitin ligase similar to parkin and the diseases progress is very similar to that seen in 

patients possessing a parkin mutation.   

PLA2G6 mutations had already been identified for causing infantile neuroaxonal dystrophy 

(INAD) and neurodegeneration with brain iron accumulation (NBIA) but in 2009 a new 

mutation, R632W, was shown to be the casual mutation for PD presenting with dystonia in an 

Iranian family (Sina et al., 2009).  Since then a handful of other mutations in this gene 

associated with familial PD have also been recognised.   

Gaucher’s and Parkinson’s Disease 

Gaucher’s disease is a lysosomal storage disease caused by a recessive mutation in 

glucosecerebrosidase (GBA).  This results in a lysosomal build up of GBA, which causes most 

notably liver damage among other symptoms and can result in an array of neurological 

symptoms.  At autopsy it has been noted that LBs are sometimes present in the brains of these 

patients (Wong et al., 2004).  More interestingly a study found that the parents and second 

degree relatives of these patients frequently had PD and in such cases they were always GBA 

mutation carriers (Goker-Alpan et al., 2004).  This initial study lead to further investigation and 

it emerged that a heterozygous loss of function of GBA, meaning a reduction in GBA function 

of 40-50%, resulted in approximately a 5 fold increased risk to developing PD.  In Jewish 

populations where these mutations are more common they can account for up to 25% of all 

PD cases (Neumann et al., 2009).  This is of interest in PD research as a biochemical pathway 

that leads to the problems in Gaucher’s is already clearly defined. 
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Low-risk loci and Genome Wide Association Studies 

Genome wide association studies (GWAS) have allowed us to undertake large scale studies of 

the genetic variability in the normal population.  Generally the loci that have been found in 

association with PD by this strategy were found in approximately 5% of the population and at 

most increase the risk of disease by no more than 2 fold (Hardy, 2010).  Over the next decades 

it can be expected that genetic variants of smaller effect size will be detected using larger 

population studies.  A number of GWAS studies have been performed with regards to PD and 

have all been on a relatively small scale.  From these studies two loci have been consistently 

shown to be relevant in the susceptibility of PD, these being SNCA and MAPT, which encodes 

the microtubule associated protein tau (Simon-Sanchez et al., 2009, Satake et al., 2009, Saad 

et al., 2011, UK Parkinson's Disease Consortium et al., 2011, Edwards et al., 2010, Pankratz et 

al., 2009).  MAPT association was seen in studies using samples from people of European 

descent but not with Asian descent, which is likely to do with the expression variation of the 

two tau haplotypes (Simon-Sanchez et al., 2009, Satake et al., 2009).  It would appear from 

these studies that an increased expression of α-synuclein by 10% would be enough to increase 

the likelihood of developing PD by 40%.  The fact that the MAPT locus has been consistently 

shown to be associated with PD is more surprising however it is not that unusual to find tau 

pathology in the brains of PD patients.  Mutations in the MAPT gene have also been shown to 

cause frontotemporal dementia and Parkinsonism linked to chromosome 17 (FTDP -17), 

possibly supporting the fact that the gene has been consistently shown in association with PD 

(Hutton et al., 1998).   However some caution should be held regarding this GWAS result as it is 

a large haplotype that has been assumed to have MAPT as its causative agent despite the fact 

that there are a number of other genes within this region.  

Further to these initial findings a number of other genes have now been shown to associate 

with PD through GWAS.  This includes LRRK2, thus furthering the credibility to this gene having 

a role in sporadic disease.  Recently the first meta-analysis of the PD GWAS studies has been 

undertaken which found 11 loci to reach genome wide significance.  This is a useful method in 

allowing studies that were underpowered individually to be combined and analysed to give 

new insights to PD associated genes.   Of these genes 6 were already known (SNCA, MAPT, 

HLA-DRB5, BSTX1, GAK and LRRK2) and another 5 of the identified were novel genes (ACMSD, 

STK39, MCCC1/LAMP3,SYT11, and CCDC62/HIP1R)(International Parkinson's Disease Genomics 

Consortium et al., 2011).  Studies such as this help to enlighten our knowledge on other 

possible pathways that as yet were unidentified in the pathogenesis of PD and may ultimately 

lead to novel therapeutic strategies.  However these results still only account for a small 
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amount of risk and the main gene to get pulled out consistently in all the GWAS studies was 

SNCA. 

Pathways to Parkinson’s Disease 

There are three main pathways that have gained appreciation when considering the molecular 

basis to PD.  These involve the mitochondria, the protein degradation system and the role of 

improper protein folding.  The following section aims to briefly discuss the current views 

behind each possible pathway in PD and their probable overlap.  

Mitochondia 

In cells such as neurons that have a high energy load that are required to respond quickly and 

efficiently to various inputs it is extremely important that mitochondria are tightly quality 

controlled.  Various different routes have implicated the role of mitochondria in the 

pathogenesis of PD being investigated.  Interest was first sparked with the discovery of severe 

Parkinsonism in a group of drug users in the 1980s.  A batch of heroin had become 

contaminated with 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP) which was 

inadvertently injected by users who went on to develop the initial symptoms of PD within 4-14 

days.  Following their admission to hospital they were examined and all showed slowness of 

movement, abnormal posture, cogwheel rigidity and in one case a classic Parkinsonian tremor.  

All patients responded to L-DOPA therapy and when this treatment was withdrawn reverted to 

their original Parkinsonian state.  Gas chromatography and mass spectroscopy analysis of drug 

samples revealed various quantities of MPTP (Langston et al., 1983).  Post mortem 

examination of patients who had self administered MPTP showed loss of dopaminergic 

neurons in the SNpc but there was no evidence of LB pathology in the 3 patients described 

(Langston et al., 1999).  However a mouse model using continuous MPTP infusion has shown 

LB pathology but these results have proved hard to replicate and the LB structures do not take 

the appearance of a traditional LB (Fornai et al., 2005).  It has also been reported that in non-

human primates administered MPTP there was the presence of α-synuclein positive 

immunoreactivity but this has also been refuted in another study making it hard to draw firm 

conclusions (Halliday et al., 2009, Purisai et al., 2005).  It is likely that the regime of 

administration of MPTP is responsible for these variations.  With MPTP recapitulating one of 

the major pathogenic hallmarks of PD it was of great excitement when the pathway of its 

action was revealed.  This mechanism of action is illustrated in figure 1.2 and has been shown 

in many models to be selectively toxic to the dopaminergic neurons of the SNpc making it a 

widely used toxin for PD modelling.  
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Rotenone, a pesticide, is another complex I inhibitor that is also commonly used as a modelling 

agent for PD.  As it became apparent that MPTP worked through inhibiting complex I (NADH 

ubiquinoneoxidoreductase) of the mitochondrial electron transport chain, interest fast 

developed around the functioning of mitochondria in PD patients.  A study by Schapira and 

colleagues showed a significant reduction in the activity of complex I in the substantia nigra of 

PD brains at post mortem, a result that was also later demonstrated in the frontal cortex 

(Schapira et al., 1989, Parker et al., 2008).  However some caution should be taken as this 

deficit has not been seen in all PD patients. 

 

 

 

Figure  1.2 MPTP Mechanism of Action 

A diagrammatic representation of the action of MPTP on dopaminergic neurons.  As can be 

seen at (1) MPTP that has entered the bloodstream can cross the blood brain barrier and enter 

the brain.  Once in the brain it is converted, mainly via glial cells, to its active metabolite 1-

methyl-4-phenylpyridinium (MPP+) by monoamine oxidase B (2).  MPP+ is then released and is 

selectively taken up by dopaminergic neurons in a DAT dependent manner (3).  Once MPP+ has 
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entered the neuron there are two possible routes it can follow.  It may either inhibit complex 1 

of the mitochondria, which leads to cell death or it may be sequestered into synaptic vesicles, 

represented as purple circles, in a VMAT2 dependent approach. 
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Since mitochondria appear to have some importance in PD pathogenesis mitochondrial DNA 

(mtDNA), which encodes a number of protein components involved in the electron transport 

chain, has been investigated.  Although some studies have proved inconclusive, a study that 

used laser dissection of specifically SNpc dopaminergic neurons showed that there was an 

increased proportion of mtDNA deletions than in age-matched controls which may have led to 

mitochondrial dysfunction (Bender et al., 2006).  This could have resulted from increased 

oxidative stress in these neurons, which is also a result of mitochondrial dysfunction but could 

also be the result of other stresses on the cell.  Dopaminergic neurons are considered to be at 

a higher risk of oxidative stress through the oxidisation of cytoplasmic DA and it is known that 

PD patients show free radical mediated damage to various cellular components.  Thus any 

factor that may increase cytoplasmic DA concentrations may also generate a vicious circle of 

oxidative stress leading to mitochondrial dysfunction and ultimately cell apoptosis through a 

lack of ATP. However this scenario doesn’t necessarily apply to other non dopaminergic 

neurons that are affected during PD and so is unlikely to be the full story. 

As has already been discussed, there is evidence from genetic forms of PD supporting the role 

of mitochondrial dysfunction.  Recent work on parkin, PINK1 and DJ-1 highlight the importance 

of well controlled mitophagy with dysfunction possibly leading to neuronal death.  However 

there is still debate as to how relevant this is in an in vivo situation away from the cell culture 

environment that has thus far shed light on this pathway. 

Roles that lead to alterations in the normal function of mitochondria have also been suggested 

for LRRK2 and α-synuclein.  Those for α-synuclein will be discussed in detail in a later section.  

Recently a study by Wang et al has implicated over-expression of WT LRRK2 in the 

fragmentation of mitochondria through its part in the regulation of the fission/fusion pathway.  

This effect was further enhanced by LRRK2 mutants associated with PD.  This increased 

fragmentation was dependent on the increased recruitment of Drp1 to the mitochondria but it 

is as yet unclear if these effects are a direct or indirect action of LRRK2 (Wang et al., 2012).  

Prior to this fibroblasts from LRRK2 patients with the G2019S mutation had shown alterations 

in mitochondrial membrane potential and lowered ATP production, suggesting it may 

somehow be involved in altered mitochondrial dynamics (Mortiboys et al., 2010).  However 

this study was small involving only 5 patients and more in vivo work will need to be done to 

convincingly link LRRK2 to mitochondrial dysfunction. 

Impaired protein degradation 
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There are two main cellular pathways that are normally used for the clearance of unwanted 

proteins and organelles.  These are the ubiquitin proteosome system (UPS) and the autophagy-

lysosome pathway which when blocked or dysregulated in some manner can cause extensive 

problems for the cell.  In PD and various other neurodegenerative disorders there is protein 

aggregation, resulting in well defined pathological hallmarks.  So it seems plausible that 

dysfunction of the degradation systems could either cause this or escalate the problem.   

There is evidence that in sporadic PD there are reductions in levels of 20/26S proteosomes and 

proteosome activity in the striatum and substania nigra in comparison to control subjects 

(McNaught et al., 2003).  However it is unclear as to whether these changes are specific to late 

stage disease only.   The fact that LBs contain ubiquitinated α-synuclein may also support the 

reasoning for alterations to the UPS system.  However it could also be reliant on clearance via 

the lysosome due to the fact that the LB structure is too dense for the UPS to gain efficient 

access and remove it from the cell.  It is known that wild type α-synuclein is cleared through 

chaperone mediated autophagy (CMA) but dysfunction in this system can lead to its 

aggregation.  Further to this A53T and A30P mutant α-synuclein are able to inhibit degradation 

through the CMA pathway (Cuervo et al., 2004).  This in turn is likely to put strain on the UPS 

putting further stress on the cell. 

Other evidence that has linked the UPS to PD is the disease causing mutations in UCHL-I and 

parkin.  UCHL-I is a ubiquitin hydrolase but may also act as a ubiquitin ligase (Liu et al., 2002).  

It is as yet unclear to how this protein contributes to familial PD but it is likely to act within the 

UPS system.  As parkin has been identified as an E3 ubiquitin ligase its dysfunction in familial 

PD is considered to interrupt the normal UPS.  Apart from this recent evidence, discussed 

above, highlights parkin’s role in mitophagy, a process that is reliant on the proteasome.  

Recent work by Bedford et al has demonstrated that the conditional knockout of the PSMC1, a 

protein which is an essential subunit to the 26S proteasome, in the subtantia nigra allows the 

development of Lewy-like inclusions and significant neurodegeneration pointing to the 

importance of a properly functioning ubiquitin proteosome system in normal neuronal 

homeostasis (Bedford et al., 2008).  The importance in normal protein degradation by the 

lysosome has also been linked to PD through mutations in the ATP13A2 and GBA.  

Protein aggregation 

Protein aggregation is apparent in the majority of neurodegenerative disorders, which is 

suggestive for the fact that it is an important component of the pathogenesis that leads to 

neuronal dysfunction and death.  In PD the majority, but not all, cases have aggregated α-
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synuclein in the form of LBs and LNs but it is still unclear how these aggregates lead to disease.  

It has been suggested that the aggregates themselves act protectively by accumulating toxic α-

synuclein thus inhibiting them from causing neuronal death. 

Although it is as yet unclear how protein aggregation alone induces cell death it is apparent 

that these aggregates are stressful to the cellular environment.  It may be that a cascade of 

events within a cell may occur which cause a vicious cycle of events to ensue.  For example 

dopamine is able to spontaneously self oxidise, which if not dealt with properly would lead to 

increased oxidative stress and thus cause problems for mitochondrial function which can lead 

to increased α-synuclein aggregation (Betarbet et al., 2000, Dawson and Dawson, 2003).  This 

aggregation in turn leads to an array of problems with regards to normal protein degradation 

and so this overall dysfunction eventually leads to cell death.   

Recently there has been alot of debate on whether or not certain α-synuclein species could be 

transmissible from cell to cell.  This would possibly explain the spread of LB pathology 

throughout the brain as proposed in Braak hypothesis and would allow the proposition that 

the disease could begin in one dysfunctioning cell and lead to a disease of the nervous system.  

Some of the strongest evidence for this hypothesis comes from PD patients who received 

foetal mesencephalic dopaminergic neuron grafts and at post mortem have been found to 

have LB pathology within the grafts (Li et al., 2008).  This would suggest that somehow the 

unhealthly LB laden tissue of the patient was able to “infect” the healthy graft possibly in a 

prion like manner.  Very recently (Luk et al., 2012)have demonstrated the ability of fibril forms 

of α-synuclein to seed the spread of the protein through interconnected neuronal pathways 

and show that there is associated loss of dopaminergic neurons, decreased dopamine 

concentrations and motor deficit in these animals.  However they were not able to 

demonstrate any adverse affects when they used monomeric forms of α-synuclein for 

injections showing that the form of the protein appears important in relation to pathology (Luk 

et al., 2012).  This may have large implications on the importance of the forms involved in 

protein aggregation in PD and how we think about the disease process. 
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The Synucleins 

The synuclein family consists of three highly evolutionary conserved, highly homologous 

proteins: α-synuclein, β-synuclein and γ-synuclein.  Currently the function of these proteins 

remains to be fully elucidated.  All of the synucleins are small natively unfolded proteins and 

consist of a highly conserved amino-terminal with a more varied carboxy-terminal.  The amino 

terminal contains a variable number of 11-residue imperfect repeats which are highlighted in 

figure 1.3.  This section aims to introduce the synuclein family in detail to provide context to 

this thesis.  

Alpha-Synuclein 

Alpha-synuclein structure and aggregation properties 

Within the synuclein family α-synuclein was the first to be discovered and is the best studied 

and described.  In 1988 α-synuclein was first identified and cloned from Torpedo californica 

and was also identified in a rat brain cDNA library (Maroteaux et al., 1988).  Following this a 35 

amino acid peptide was identified in plaques from Alzheimer’s disease patients and once 

isolated and sequenced was named the non-amyloid-beta component precursor protein which 

is now known to create the hydrophobic region of α-synuclein (Uéda et al., 1993).  Only in 

1994 was the 140 amino acid human ortholog finally described as α-synuclein (Jakes et al., 

1994).  Since then it has been found in a vast array of species including zebra finches, where it 

was named Synelfin and is upregulated during periods of song learning. However, there is no 

homolog of the protein, or any other synuclein, expressed in invertebrates.  The protein is 

expressed widely throughout presynaptic nerve terminals of the central nervous system 

including the hippocampus, cerebral cortex, amygdala, midbrain, olfactory bulb and has been 

suggested to account for up to 1% of total protein (George et al., 1995, George, 2001, Lia et al., 

2002).   

The SNCA gene has been mapped in humans to chromosome 4q21.3-q22 and in mice to 

chromosome 6 (Chen et al., 1995, Touchman et al., 2001).  SNCA consists of 7 exons, 5 of 

which are coding and there is evidence of alternate splicing between exons 4 and 6 (Campion 

et al., 1995, Uéda et al., 1994).  The sequence of α-synuclein is 95.3% identical between 

human and rodents meaning only 6 amino acids differ, demonstrating the high degree of 

conservation across species.  One interesting alteration between the sequences is that in 

rodents the amino acid in position 53 is a threonine whereas in the human protein it is an 

alanine and substitution of the alanine to a threonine is known to cause familial PD (Lavedan, 
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1998).  Alpha-synuclein has 6 KTKEGV imperfect repeats and, as with the other synucleins, 

appears to have a natively unfolded structure.  However, more recently there has been some 

controversy over the presence of a tetrameric form of α-synuclein which has been described in 

two separate studies in which the form was purified from E. coli or red blood cells and human 

cell lines (Wang et al., 2011, Bartels et al., 2011).  These studies both claim that this 

conformation of α-synuclein is the predominant form.  However, another carefully constructed 

investigation using both E. coli expressed forms and protein purified under various conditions 

from human and rodent brain tissue agreed with the previous view that the majority of α-

synuclein in the central nervous system is natively unfolded (Fauvet et al., 2012).   

The N-terminus, amino acids 1-67, consists of two alpha-helical domains which are thought to 

be responsible for the apolipoprotein-like class-A2 helix which allows the protein to take on an 

alpha-helical conformation which is important when binding to lipid membranes (George, 

2001).  It has been shown that the substitution of certain residues with charged ones can 

disrupt this ability to associate with lipids and in another study the A30P mutant form of α-

synuclein was demonstrated to lose the ability to bind synaptic vesicles (Perrin et al., 2000, 

Jensen et al., 1998).  Residues 61-95 are responsible for the hydrophobic middle region also 

termed the non-amyoid β component of the protein which allows the transition from a 

random coil structure to β-sheet structure and Aβ-like fibrils (Serpell et al., 2000, Conway et 

al., 2000, Giasson et al., 2001).  The remaining C-terminal, residues 96-140, is rich in proline, 

aspartic and glutamic acids and appears to be important for possible chaperone activity of the 

protein (Dev et al., 2003).  

It is apparent that α-synuclein has the propensity to aggregate, doing so 20 times faster than γ-

synuclein (Uversky et al., 2002).  The wild type protein has been shown in vitro to form 

insoluble aggregates, within 280 hours of incubation, as have mutant forms with A53T and 

A30P mutants showing the faster dynamics of 100 hours and 180 hours, respectively (Conway 

et al., 2000, Narhi et al., 1999).  These dynamics are dependent on the incubation 

temperature, agitation, concentration of the protein and what form of the protein is used with 

some seeding aggregation more readily than others.  It has recently been shown that fibril 

forms of α-synuclein, but not monomeric forms, can seed the spread of the protein with 

associated loss of dopaminergic neurons and decreased dopamine concentrations also 

occurring.  This highlights the potential importance of the proteins form in contributing to the 

disease process (Luk et al., 2012). 
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Various forms of the protein including oligomers, protofibrils and pore-like structures have 

also been described as causing toxicity which has lead to debate over just how toxic LBs are, if 

at all.  It has been suggested that the production of LBs may actually be a protective 

mechanism of the neuron employed to limit the impact of more toxic pre-fibrilar stages 

(Tompkins and Hill, 1997).  For instance, studies of oligomeric forms both in vivo and in vitro 

situations have shown that they are more toxic than species forming fibrils more readily 

(Winner et al., 2011).  This is also true of protofibrils which have been shown to form more 

willingly in A53T and A30P variants of α-synuclein, supporting their capacity to cause disease, 

than in the wild type form and are able to form annular pore-like and tubular protofibril 

structures (Conway et al., 2000, Lashuel et al., 2002).  These protofibril structures are known 

to be able to bind and permeabilise lipid membranes which could have drastic knock on effects 

for the neuron by affecting its normal ion homeostasis.  More specifically in dopaminergic 

neurons this could allow synaptic vesicles to be permeabilised, which would ultimately lead to 

the leakage of DA and oxidative stress within the cell (Volles et al., 2001).  Interestingly, in PD 

patients significantly increased levels of plasma α-synuclein oligomers have been recorded, 

hinting at a link with disease (El-Agnaf et al., 2006).  Other evidence that supports non-fibrilar 

forms of α-synuclein being the toxic species is the fact that not all cases of familial PD cases 

harbour LBs, which is supported by animal models in which α-synuclein aggregates are present 

but with no associated neuronal loss (Lee et al., 2002).  
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Figure1.3 Synuclein Amino Acid Sequence Comparisons 

A) Comparison of the amino acid structures of alpha-, beta- and gamma-synuclein.  Highlighted are the imperfect repeats and the NAC region which is 

not complete in beta-synuclein.  This figure was adapted from (Sung and Eliezer, 2007).  (B) Protein sequence of both mouse and human alpha-

synuclein.  Differences between the two sequences are underlined.  Highlighted are the conserved repeats and the mutations that are associated with 

familial PD, A30P, E46K and A53T.  Diagram adapted from (Dev et al., 2003). 

B 

A 
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Alpha-synuclein and disease 

As has already been discussed it is well established that α-synuclein has a prominent role in 

the disease process leading to PD.  As well as this, it is considered to be a causative factor in a 

group of neurodegenerative diseases now collectively referred to as synucleinopathies 

(Spillantini et al., 1998b).  This group of diseases is defined by the presence of aggregated α-

synuclein forms and includes Lewy body dementia, multiple system atrophy (MSA), Lewy body 

variant of Alzheimer’s disease and Hallervorden-Spatz syndrome.  In all cases specific 

subpopulations of neurons or glia have characteristic α-synuclein inclusions.  This group of 

diseases is reviewed by Galvin et al should further detail be required (Galvin et al., 2001). 

Alpha-synuclein function 

The function of α-synuclein is still very much speculated however a vast number of possible 

roles have been discussed.  One of the earliest established ideas was the role of α-synuclein in 

synaptic plasticity.  The first evidence were obtained in studies of a zebra finch where α-

synuclein becomes significantly unregulated during a critical period of juvenile development in 

which bird song is learnt from a tutor.  During this time the RNA levels increased vastly in 

circuitry of the brain involved in song learning (George et al., 1995).   

The majority of focus has been on the role of α-synuclein in relation to dopamine and in 

particular its synthesis, release and reuptake.  From this it has been deemed that α-synuclein 

likely has a role in vesicle pool dynamics.  Early research demonstrated α-synuclein could bind 

to synaptic vesicles purified from brain homogenates and that the mutant A30P, but not A53T, 

had an impaired ability to do so (Jensen et al., 1998).  Since then further evidence has been 

gathered that highlights the possible importance of α-synuclein interactions with vesicles.  In 

yeast models α-synuclein over-expression was shown to increase  the number of cytoplasmic 

lipid droplet and cause vesicle accumulation thus inhibiting ER-Golgi transport, which was later 

verified in mammalian cell lines with A53T α-synuclein causing stronger inhibition (Gitler et al., 

2008, Outeiro and Lindquist, 2003).  This work found that co-expression of Ykt6p, which is a 

vesicle associated SNARE protein involved in the fusion of vesicles, ameliorated the inhibitory 

effect of α-synuclein.  Further to this α-synuclein has been shown to co-localise with 

prenylated Rab accepter protein 1 (PRA1) which, when this co-localisation occurs, localises 

vesicles to the periphery of the cytosol (Lee et al., 2011). 

Alpha-synuclein has also been implicated in the normal release of neurotransmitters into the 

synaptic cleft, a subject that will be discussed in detail below.  Animals produced that lack α-
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synuclein alone show alterations in synaptic dopamine handling as do animals lacking multiple 

synuclein proteins suggesting they are able to cooperate but may not necessarily be essential 

for neurotransmitter release (Abeliovich et al., 2000, Anwar et al., 2011, Yavich et al., 2004).  

This has lead to the hypothesis that α-synuclein may act as an activity dependent negative 

regulator of DA neurotransmission.  Other studies have also demonstrated changes to the 

vesicle pool dynamics in α-synuclein null mice instigating the protein in the maintenance of 

these pools (Cabin et al., 2002, Murphy et al., 2000).  Indeed it has also been noted that small 

increases in the expression of α-synuclein does not lead to overt phenotypes, but does cause 

disruption to normal neurotransmitter release through the inhibition of normal vesicle 

reclustering after endocytosis (Nemani et al., 2010).  Other in vitro work has also 

demonstrated diminished vesicular release in response to over-expression of human α-

synuclein which was considered to be responsible for pathological synaptic changes and the 

study also showed similar protein changes existed in diseased human brains (Scott et al., 

2010).   

In mice that lack cysteine string protein alpha (CSP-α), a synaptic co-chaperone for SNAP-25 

involved in SNARE complex formation, a progressive neurodegenerative phenotype is 

observed that leads to premature death.  If these animals are crossed with those over-

expressing α-synuclein the phenotype is rescued and conversely when they are crossed with α-

synuclein null mice their phenotype becomes worse (Chandra et al., 2004b).  However this is 

not true if crossed with γ-synuclein null animals suggesting a specific role of α-synuclein 

(Ninkina et al., 2012).  It has been demonstrated that α-synuclein is able to directly interact 

with VAMP-2 to promote SNARE complex assembly and so may function in the normal 

maintenance of these complexes that allow normal neurotransmitter release (Burré et al., 

2010).  In mice lacking all three synucleins an age dependent impairment of SNARE complex 

formation was noted; however there is conflicting evidence to this that arose in another study 

which found this to be an indirect affect of α-synuclein inhibiting SNARE complex formation 

through the sequestering of arachidonic acid (Darios et al., 2010).  Studies carried out in our 

own lab assessing this impairment of SNARE complex formation in the dorsal striatum of triple 

synuclein null animals have failed to replicate these results.  It is most likely that this is due to 

the fact that our studies assessed these changes in a specific brain region whereas in the Burré 

et al study the results were established from whole brain samples.  This is likely to indicate 

that the varying types of synapses respond differently to the absence of the synucleins.  

However despite these contrasting results there have also been alterations described in the 

brains of PD patients with regards to SNARE protein distribution (Scott et al., 2010).  For a 
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definitive answer on the relevance of α-synucleins role in SNARE complex assembly further 

studies are required, especially in human samples. 

Alpha-Synuclein Gain of Function vs Loss of Function 

It is commonly considered that the pathological changes that occur in PD and other 

synucleinopathies occur as a gain of toxic function of α-synuclein.  Although the hypothesis 

that a loss of normal function of α-synuclein has as yet received little attention, it is likely that 

this mechanism may contribute to the disease progression.  It is a plausible theory that α-

synuclein that has become incorporated into large insoluble aggregates such as LBs is unable 

to fulfil its normal role due to the functional protein being depleted within the cell. As well as 

this abnormal post-translational modification of α-synuclein may also inhibit its ability to 

function in its normal capacity at the synapse.  This could then lead to further stress within the 

neuron which adds to the disease process, producing a vicious circle of events.  It is evident 

from previous work discussed above that α-synuclein appears to have an important role in the 

normal maintenance of neurotransmission at the synapse and is therefore likely that 

alterations to this may lead to synaptic impairments.  In particular the midbrain dopaminergic 

system that is affected in PD may be more sensitive to these alterations due to the intrinsic 

toxicity of dopamine and ratios of dopamine active transporter (DAT) and vesicular 

monoamine transporter (VMAT) that may predispose these neurons to stressful situations, 

meaning any slight change could be detrimental.   

In part the reason that the loss of function hypothesis has gained little ground is due to the 

fact there has been no truly appropriate model in which to explore the affects of a loss of 

function of α-synuclein.  A number of conventional α-synuclein knockout animal lines have 

been produced, however these models appeared to be far from ideal as the knockout is 

constitutive, allowing the brain to establish a compensatory mechanism during critical 

development periods of high plasticity in the animal nervous system.  It is possible that this 

mechanism explains the resistance seen in α-synuclein null animals when exposed to MPTP.  

During development neurons that cannot establish a compensatory mechanism are lost but 

those remaining become more robust due to activation of compensatory mechanisms, making 

them partially resistant to the toxic effect of MPTP and, possibly, other environmental factors.  

It is also true that PD is a disease of the aging nervous system and thus models that are reliant 

on constituent knockout of α-synuclein throughout the animals’ development do not 

recapitulate the situation in the brain of PD patients.  It is feasible that depletion of α-synuclein 

after a period of high nervous system plasticity, particularly in the aged nervous system, will 



 33 

have a more pronounced effect on neuronal physiology and might mimic certain pathological 

processes characteristic to PD.  Indeed, aged α-synuclein knockout animals displayed more 

prominent alterations in their DA, DAT and TH levels in the striatum as well as a reduction of 

TH positive neurons in the SNpc, supporting the view that α-synuclein is important for normal 

synaptic integrity (Al-Wandi et al., 2010).  These results may also suggest that any 

compensatory mechanism established in these animals during development is not as effective 

in old age.  Mice lacking CSP-α that were crossed with α- and β-synuclein knockout mice 

developed a more aggressive neurodegenerative phenotype, whereas if they were crossed 

with animals overexpressing α-synuclein this phenotype was rescued (Chandra et al., 2005).  

This again highlights the importance of α-synuclein in the normal function of the synapse and 

shows it to potentially have a protective role against neurodegeneration. 

Another problem with the previously created models is that they have been hampered by the 

role of the remaining synucleins.  Due to the high degree of homology within the family it is 

likely that they can at least in part compensate for the loss of α-synuclein and increases in the 

remaining members of the synuclein family have been reported in previously produced 

knockouts (Chandra et al., 2004a, Robertson et al., 2004).  As well as this, more prominent 

pathology has been seen in young double and triple knockout animals in comparison to α-

synuclein knockout animals alone, supporting the role of familial functional compensation 

(Anwar et al., 2011, Chandra et al., 2004b, Senior et al., 2008). 

Alpha-Synuclein mouse models 

Alpha-Synuclein Transgenic models 

Due to the clear evidence of the role of α-synuclein in disease a vast array of α-synuclein 

transgenic mouse models have been created, which have employed expression of wild-type or 

mutated forms of the protein under different promoters.  This section intends to give a brief 

introduction to the many transgenic α-synuclein mouse models.  Whilst these have been of 

some use, it is apparent from these models that it is difficult to reproduce a clear PD 

phenotype or a classical LB in a mouse model.  

The earliest attempt to produce a transgenic α-synuclein model was in 2000 when human WT 

α-synuclein was expressed under the platelet derived growth factor-β (PDGFβ) promoter 

(Masliah et al., 2000).  A number of lines were produced that had various levels of both protein 

and mRNA levels of human α-synuclein.  The highest expressing line displayed the most severe 

phenotype with clear motor deficits as shown by rotarod analysis.  All of the lines displayed 
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both nuclear and cytoplasmic α-synuclein positive inclusions by two months, which was a 

progressive phenotype with more being produced as the animals aged.  However unlike LBs 

these inclusions were not as dense and fibrillar and were often located in the nucleus.  Both 

levels and activity of tyrosine hydroxylase were lower in the highest expressing line suggesting 

there may be a threshold effect for the levels of α-synuclein within the cell.  Another group 

also independently produced transgenic mice expressing either human α-synuclein or human 

A53T mutant α-synuclein under the PDGFβ promoter (Sharon et al., 2001).  It is hard to draw 

comparisons between results obtained by these two groups as the second group focused their 

study on the interaction of α-synuclein with fatty acids and although they were able to 

demonstrate the build up of soluble oligomers in two transgenic lines, phenotypes of these 

mice or results of any ultra-structural analysis have not been reported (Sharon et al., 2003).  

Expression of α-synuclein has been targeted more directly to the central nervous system using 

the prion protein (PrP) promoter.  Several lines have been produced expressing α-synuclein 

from various origins in a number of different forms including wild type, A53T and A30P.  

Results of these studies however are not consistent but a general pattern can be obtained 

indicating that the majority of models expressing mutant α-synuclein under control of the PrP 

promoter show some pathology whereas models expressing wild type protein commonly do 

not. For example Giasson et al produced mice expressing either wild type or A53T: only those 

expressing the A53T mutant showed a severe motor phenotype that eventually lead to 

paralysis and death and displayed intraneuronal α-synuclein accumulation (Giasson et al., 

2002).  Another group that produced lines of mice overexpressing human wild type, A53T or 

A30P only saw late adult onset neurodegenerative and motor problems in the A53T lines 

which also showed inclusions that were immunoreactive for both α-synuclein and ubiquitin 

(Lee et al., 2002).  The study also failed to show any obvious qualitative alterations in tyrosine 

hydroxalase.  However, Gomez-Isla and colleagues were able to demonstrate pathology in a 

line of high expressing human A30P mutants.  This line displayed age related motor decline but 

despite general neuronal soma staining for α-synuclein no inclusions or other pathological 

profiles have been observed.  The group had another line expressing a lower amount of the 

mutant protein but this did not demonstrate any pathology, highlighting the importance of 

high expression in producing these models (Gomez-Isla et al., 2003).  Generally speaking in all 

of the above described cases the nigrostriatal system was still intact with other areas of the 

brain being more affected. 
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The Thy-1 promoter, which gives predominantly neuronal expression, has also been frequently 

used to produce α-synuclein transgenic mouse models.  Van der Putten et al produced models 

that expressed A53T and wild type α-synuclein under the Thy-1 promoter and demonstrated 

that A53T over-expression could produce neuropathology by 3 months of age (van der Putten 

et al., 2000).  These animals had LB-like inclusions and motor impairment as well as synaptic 

and axonal changes.  Interestingly, using this approach over-expression of the wild type α-

synuclein protein has been shown to lead to similar pathological changes, therefore supporting 

the role of non-mutated α-synuclein in sporadic PD.  Motor neurons of the brainstem and 

spinal cord were the most affected in these models, which does not properly recapitulate the 

pathology seen in PD, but it is widely accepted that Thy-1 driven expression is low in the 

dopaminergic neurons of the substantia nigra compared to other regions of the central 

nervous system (Buchman and Ninkina, 2008).  However a study comparing expression of 

human α-synuclein under either the Thy-1 or PDGFβ promoter showed that Thy-1 was more 

valuable in obtaining expression of the transgene in the substa nigra (Rockenstein et al., 2002).  

Mice independently produced expressing human wild type, A53T or A30P α-synuclein under 

the Thy-1 promoter also exhibited a age dependent neurodegenerative phenotype (Chandra et 

al., 2005).  In the case of the A30P line the animals exhibited motor neuron loss associated 

with insoluble α-synuclein aggregates.  The line expressing the human wild type form of α-

synuclein was shown to have the least aggressive phenotype with only 15% of the animals 

developing modest neurodegenerative changes by 16 months.  Interestingly the group also 

produced 5 lines of mice overexpressing wild type mouse α-synuclein which did not show any 

neurodegenerative phenotype.  This may be due to the aggregation dynamics of mouse α-

synuclein which has been shown to be less prone to aggregation than the human protein 

(Uversky, 2007). 

Attempts have also been made to produce mice with dopaminergic specific expression of α-

synuclein but have in general been unfruitful.  Studies that have produced mice expressing 

wild type human α-synuclein or A53T or A30P variants under the tyrosine hydroxylase 

promoter have failed to show any pathological changes in the midbrain dopaminergic systems 

of these animals (Matsuoka et al., 2001, Wakamatsu et al., 2007).  Only expression of a mutant 

form of human α-synuclein bearing both the A30P and A53T substitutions under control of this 

promoter produced mice that displayed pathology including age related changes in dopamine 

metabolism and motor coordination (Richfield et al., 2002).  It is likely that significant results 

are not seen using the tyrosine hydroxylase promoter due to its relatively low expression levels 

meaning that the levels of α-synuclein required for pathology are just not reached.  
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Models driving the expression of C-termially truncated forms of α-synuclein have also been 

produced and studied.  This form of alpha-synuclein has been shown to be abundant in LBs 

and shows a clear propensity to aggregate in vitro (Baba et al., 1998).  Variants of these models 

include amino acid residues 1-120 and 1-130 truncations.  In the case of the 1-130 line of 

animals the expression of the human truncated protein was driven by the tyrosine hydroxylase 

promoter.  Although no alpha-synuclein positive aggregates were present in the 

dopmaninergic neurons of this model there was a selective loss of dopaminergic neurons in 

the substania nigra pars compacta during embryogenesis which was not progressive.  The mice 

also displayed significant reductions in striatal dopamine concentrations along with 

behavioural dysfunction (Wakamatsu et al., 2008).  Another model in which alpha-synuclein 1-

120 is expressed under the tyrosine hydroxylase promoter on a background in which 

endogenous alpha-synuclein expression is absent has also been produced.  This model also 

displayed significant reductions in striatal dopamine concentrations and decreased 

spontaneous motor activity.  In contrast to the previously discussed model these animals 

displayed aggregates of alpha-synuclein 1-120 in dopaminergic neurons of the subtantia nigra 

and the olfactory bulb but despite this no loss of dopaminergic neurons was described (Tofaris 

et al., 2006).  A more recent study of this model has also revealed an age dependent 

redistribution of striatal SNARE proteins and decreased dopamine release (Garcia-Reitbock et 

al., 2010).   

From these models a number of conclusions can be made.  The first of these is that it is 

apparent that the mutated forms of α-synuclein associated with familial forms of PD, as 

expected, are more aggressive and consistently produce pathology in transgenic animals.  

Contrary to this wild type α-synuclein appears to require higher expression levels to cause 

pathology.  Secondly none of the mouse lines discussed above are a suitable model as they do 

not cause progressive neurodegeneration of the nigrostriatal pathway.  This is likely to be due 

in part to the limitations associated with poor expression patterns of available promoters and 

possibly because dopaminergic neurons of rodents appear to be more robust than those of 

humans.  It is well established that rodents are more resistant to MPTP than humans for 

example (Gerlach et al., 1996, Fornai et al., 1997).  This may result in the requirement of 

particularly high expression specifically located in the SNpc dopaminergic neurons.  One 

method that has been used to overcome this has been viral vector mediated expression of α-

synuclein allowing injection of the virus directly into the area of interest.  These studies have 

been successful in reproducing the loss of dopaminergic neurons in the SNpc in both rodents 

and primates and in some cases have shown α-synuclein positive inclusions (Kirik et al., 2002, 
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Kirik et al., 2003, Yamada et al., 2004).  However these studies are highly labour intensive and 

require careful controls to be taken with each new batch of virus prepared.  Another drawback 

of these studies is that there is no way to assess the copy number per cell making it hard to 

measure the expression level achieved.  Although this model seems ideal in a number of ways, 

reproducibility is an issue and this is likely due to the variation seen in batch to batch viral 

production.  Thirdly, although pathological accumulation of α-synuclein has been described in 

some of these models none have shown classical LBs, which are a major hallmark of the 

human disease.  Of course it is likely that over-expression of α-synuclein alone is not enough to 

cause this type of pathology and in fact a second form of stress may also be required as some 

sort of trigger in these cells.    

Unfortunately these models have not given an answer to how α-synuclein is able to cause 

damage to subsets of neurons and these results, along with those from knockout animals, may 

suggest that abnormalities in normal cellular function is important in the pathology of PD and 

likely culminates through a variety of pathways in cell death.  It is indeed possible that changes 

in the normal dynamics of α-synuclein may be altering dopamine metabolism in patients long 

before the onset of symptoms, thus making the dopaminergic system more susceptible to later 

pathology. 

Alpha-Synuclein Knockout Models 

To date there have been a number of α-synuclein knockout lines produced, all of which have 

constitutive gene knockout thus possibly allowing for a functional compensation mechanism to 

be initiated during the nervous system development.  This section aims to give an overview of 

the models so far produced and discuss the results discovered by these studies. 

The first α-synuclein knockout model was produced by Abeliovich et al and relied on the 

targeted deletion of the first two exons of the gene (Abeliovich et al., 2000).  These animals 

were viable, with normal brain architecture and under normal conditions synaptic dopamine 

release was unaffected.  Alterations in straital dopamine concentrations were noted with α-

synuclein knockout mice harbouring an 18% reduction, whereas DOPAC concentrations 

remained comparable to wild type (WT) controls.  Striatal slices stimulated with paired pulses, 

to assess Ca2+ dependent dopamine release, found that α-/--synuclein mice showed significantly 

faster rates of recovery compared to their WT counterparts.  Whereas the WT slices had 

reduced dopamine release after the second stimulus in comparison to the first, α-/--synuclein 

slices failed to show this. Using amphetamine to induce DA release, a method that differs 

greatly compared to normal electrical impulse release, the study found that DA release by this 
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manner was normal in these alpha-synuclein knockout animals, indicating that Ca2+ 

independent release was unaffected by the loss of α-synuclein.  Taken together with the 

results of the paired stimuli release dynamics these results may suggest an inhibitory role of α-

synuclein in activity-dependent regulation of dopamine neurotransmission.  Interestingly 

alpha-synuclein knockout mice have a significantly reduced locomotor response to D-

amphetamine (dAMP) in comparison to WTs.  Despite the normal release and reuptake 

response to amphetamine seen in these animals the alteration in motor reaction may be 

explained by alterations at the postsynaptic membrane.   

Given the lack of pathology and the normal morphology of the dopaminergic neurons in the 

SNpc it was concluded that α-synuclein was not essential for normal neuronal maintenance or 

neuronal development.  However this study could not dispel the idea that β- or γ-synuclein 

were acting to functionally compensate for the lack of α-synuclein.  

In 2002 Cabin et al published their findings on another α-synuclein knockout model which did 

not entirely confirm the findings of the Abeliovich study (Cabin et al., 2002).  This model first 

differs in the fact that the knockout is based on the loss of exons 4 and 5 of the α-synuclein 

gene rather than the first two exons.  This study also primarily studied the hippocampal 

neurons, rather than those of the nigrostriatal system as in the previously mentioned study.  

The gross brain architecture was found to be normal but no consistent results were produced 

with regards to striatal dopamine concentrations due to wide variations in concentrations 

between animals, therefore making it difficult to compare to the previous study.  Although 

normal synaptic transmission was observed, it was also identified that these animals had an 

impaired ability to restore the pool of docked vesicles from the reserve pool as fast as their WT 

counterparts. Using electron microscopy to asses synaptic ultra-structure of cultured 

hippocampal neurons it was discovered that alpha-synuclein knockout mice had a 44% 

decrease in the number of vesicles in the reserve pool and an overall total of 50% decrease in 

presynaptic vesicles.  This may have been the reason for the noted impairment in repetitive 

stimulation of brain slices taken from the knockout mice.  Upon challenging with amphetamine 

there were no differences found in the response of knockout animals in comparison to wild 

type controls, unlike the Abeliovichet al study.  An important consideration when interpreting 

these two studies is that they were carried out on mice of different backgrounds, which may 

have been the cause of some of the discrepancies described.  This study supports the 

hypothesis that α-synuclein is required for normal synaptic function. 
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The fact that these knockout models show no detrimental alterations is supported by the 

discovery of a line of Harlan mice that have a genomic deletion that includes the entire α-

synuclein locus (Specht and Schoepfer, 2001).  These animals again show no overt phenotype 

which may suggest that β- and/or γ-synuclein or an unrelated mechanism may be providing 

functional compensation in the absence of α-synuclein.   

A model produced by Dauer et al in which a transcriptional blocking casette containing a stop 

codon was inserted prior to the start codon of the α-synuclein gene (Dauer et al., 2002).  This 

was sufficient to abolish α-synuclein transcription.  Although detailed morphological studies 

were not made in these mice, which were kept on a 129/Sv background, it was apparent that 

these mice had a normal phenotype as well as typical morphology within the brain.  

Importantly this group were the first to test the selective dopaminergic neurotoxin MPTP on α-

synuclein knockout mice and showed a striking resistance to the toxin.  They studied both 

acute, in which cell death is necrotic, and chronic, which induces cell death via apoptotic 

mechanisms, regimens of MPTP dosing.  In both cases the alpha-synuclein knockout mice 

exhibited a robust resistance with similar cell counts to animals injected with saline, whereas 

the WT controls displayed a 29% and 58% reduction in tyrosine hydroxylase (TH) positive 

neurons of the SNpc in chronic and acute regimes respectively.  This result has been repeated 

since by numerous groups (Robertson et al., 2004, Schluter et al., 2003).  The study was able to 

show normal DAT and VMAT dynamics in the knockout animals but when primary neuronal 

culture from them were treated with rotenone, another dopaminergic neurotoxin that is 

lipophilic and therefore does not require DAT for transport into the cell nor is it sequestered in 

vesicles, they were shown to be significantly more sensitive to the toxin.  These results when 

considered with those of the MPTP experiment suggest that the resistance seen to MPP+ in 

these α-synuclein null mice is controlled through a mechanism prior to the toxin being able to 

inhibit complex I.   

MPTP was also used to challenge another line of α-synuclein knockout animals produced by 

Schluter et al (Schluter et al., 2003).  These mice had the targeted deletion of SNCA by the 

replacement of the first coding exon, exon II, with a neomycin resistance cassette which 

proved enough to silence the expression of the α-synuclein protein.  These animals had no 

morphological changes in their brain structure and no significant changes were noted in the 

expression levels of various synaptic proteins including tyrosine hydroxylase.  Changes in the 

striatal levels of β-synuclein were noted to be increased by 11% but this was not deemed 

significant.  Striatal concentrations of dopamine and its metabolites were not noted to be 
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altered, but this result may differ from that of previous studies due to the background the 

mice were kept on differing from those used previously.  Upon challenging these animals with 

MPTP, using both acute and sub-chronic regimes, it was concluded that these animals 

exhibited a partial resistance to the toxin.  However this study did not comment on any SNpc 

cell counts and concluded this protection through the measurement of dopamine 

concentrations in the striatum.  As well as testing MPTP on their own line of animals Schluter 

et al also administered it to the Harlan mice that exhibit a spontaneous deletion of α-

synuclein.  These animals did not display any protection from the effects of MPTP.  These 

conflicting results could be due to the differing backgrounds of the two models which highlight 

the importance of having a standard background for all models.  Another possible reason could 

have been that the brains were harvested at different time points following the last MPTP 

injection; for the Harlan mice the brains were harvested after 10 days whereas in the model 

the group created this occurred after 5 days.  This may have allowed the levels of dopamine to 

recover as rodents are known to be more resilient to MPTP toxicity than humans and it is 

considered that they can recover from some of the affects of MPTP administration (Blandini 

and Armentero, 2012). 

The discrepancies between these alpha-synuclein knockout models may arise from the 

different genetic backgrounds on which they were produced as well as the design of the 

knockout models (Mourice et al., 2004).  The knockout animals produced in the Cabin et al 

study were based on the replacement of exons 4 and 5 of the α-synuclein gene with a 

neomycin resistance cassette, therefore disrupting the genes expression.  However this does 

not alter the start codon of the gene as is the case in other models and may therefore still 

permit some gene expression, creating a truncated protein, which has never been properly 

tested or at least reported. This highlights how important model design is in allowing the role 

of genes to be unravelled.  

Another approach to study the function of α-synuclein has been to use various methods to 

knockdown its in vivo expression.  A study in rats which injected recombinant adeno-

associated virus encoding small interfering RNA (siRNA) to silence α-synuclein expression into 

the SNpc achieved up to approximately 93% knockdown (Gorbatyuk et al., 2010).  This study 

demonstrated a rapid 82% reduction of TH positive neurons in the SNpc which occurred by 4 

weeks post injection but was not progressive.  A dramatic decline of striatal dopamine 

concentrations was also observed. As well as these striking alterations an abnormal response 

was also noted when these animals were exposed to amphetamine.  A unique feature of this 
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model was that in vivo knockdown was able to occur in adult rats in which the nervous system 

was therefore fully developed.  This is of interest as it means that an efficient compensatory 

mechanism for the functional loss of α-synuclein would not have been implemented as may be 

the case when the gene is knocked out congenitally.  This may explain the dramatic alterations 

seen in the nigrostriatal systems of these rats. This study demonstrated that α-synuclein is 

required for normal synaptic function and that in its absence neurodegeneration can occur. 

Other knockdown studies have been carried out and have produced inconsistent results.  One 

such study was carried out in the primate SNpc by continual infusion of naked siRNA to 

knockdown α-synuclein.  However this study only managed to ascertain a knockdown of 40-

50% and recorded no changes in the number of dopaminergic neurons or in striatal 

concentrations of dopamine and its metabolites (McCormack et al., 2010).  Another study in 

which cultured primary hippocampal neurons were subjected to α-synuclein antisense 

oligonucleotides demonstrated approximately 50% knockdown and the study was able to 

observe a significant difference in the number of distal but not docked vesicles compared to 

untreated controls (Murphy et al., 2000).  This would support a role for α-synuclein in normal 

synaptic regulation.  As yet other described studies have not confirmed this, which may be due 

to the fact that these were cultured neurons or simply because not all studies have looked at 

the ultra-structural synaptic morphology of such cultures.   It is likely that the variability within 

these studies is down to the different methods used to deliver the knockdown as well as how 

efficient the knockdown was.  It is also very difficult to compare studies carried out across 

different species, making it appropriate to further investigate the loss of function of α-

synuclein in more models. 

Double Synuclein Knockout Mouse Models 

As well as the single synuclein knockouts discussed above double knockout models have also 

been created and investigated with the aim of more clearly defining the roles of the protein 

family.  By producing these models it was hoped that the apparent functional compensation 

seen in the single knockout lines would be overcome.   

Double αβ-/-synuclein knockout animals were produced by Chandra et al by crossing previously 

produced α-synuclein null animals from Schulter et al, discussed above, with newly created β-

synuclein null mice (Chandra et al., 2004b, Schluter et al., 2003).  The resulting animals were 

viable, fertile and show no overt phenotype.  When quantitative analyses of protein levels 

were assessed in these animals changes were observed in γ-synuclein, which was increased by 

50%, as well as a 30% increase in both 14-3-3ε and complexin.   The 14-3-3 protein family are 
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involved in cellular signalling whereas complexins are known to bind to SNARE complexes 

helping to control synaptic vesicle release.  The upregulation seen in both of these proteins 

may suggest a functional interaction with the synucleins or that they are acting in a 

compensatory mechanism.  Ultra-structural analysis of these animals failed to reveal any 

alterations in synaptic vesicle density or distribution as well as changes in synaptic markers or 

synaptic bouton area as assessed in cultured cortical neurons.  This along with the fact that no 

dopaminergic neuron loss in the SNpc was noted suggests that these two synucleins are not 

required for the survival of this population of neurons.  Although dramatic changes were not 

seen in most parameters that were investigated there was a clear 18% reduction in striatal 

dopamine levels, but no changes were noted in its metabolites, 3,4-Dihydroxyphenylacetic acid 

(DOPAC) and Homovanillic acid (HVA), suggesting catabolism of dopamine was not affected.  

The study also assessed both single α- and β-synuclein null mice and found no alterations in 

their dopamine concentrations.  Further to this when αβ-/-synuclein mice were crossed with 

CSP-α-/- mice there was enhanced progression of the neurodegenerative phenotype when 

compared to the CSP-α-/- mice being crossed with only alpha-synuclein knockout mice 

(Chandra et al., 2005). This lends support to the hypothesis that there is a degree of functional 

compensation that may occur within the synuclein family and in agreement with this γ-

synuclein levels in double knockout animals were found to be increased. 

As well as double αβ-/-synuclein mice αγ-/- mice have also been produced and studied in detail.  

The absence of γ-synuclein alone ultimately leads to a change of the normal balance of the 

synucleins within the cell and in this imbalanced situation α-synuclein may become more toxic 

to the cell.  To test this, mice lacking both α- and γ-synuclein were produced and studied.   

These animals were produced by crossing γ-synuclein null mice produced by Ninkina et al and 

α-synuclein null mice produced by Abeliovich et al which were backcrossed onto a pure 

C57Bl/6J line (Abeliovich et al., 2000, Robertson et al., 2004, Ninkina et al., 2003).  No gross 

morphological changes were seen in the brain of these animals nor were there any significant 

alterations in the striatal concentrations of dopamine and its metabolites.  There was however 

an increase in the protein levels of β-synuclein in the αγ-/-synuclein animals and a significant 

reduction in the number of tyrosine hydroxylase positive neurons in the SNpc but not the 

ventral tegmental area in comparison to WT controls.  This study also went onto challenge the 

double knockout animals with a sub-chronic MPTP regime.  When SNpc neurons were counted 

in WT animals from MPTP treated and untreated cohorts there was a significant decrease in 

the number of neurons in the treated group as would be expected.  However in αγ-/- synuclein 

mice there were no significant differences in the number of TH positive cells between the 
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treated and untreated groups, implying these animals were resistant to the neurotoxic affect 

of MPTP.  This study also revealed that single alpha-synuclein and single gamma-synuclein 

knockout mice also demonstrated resistance to MPTP toxicity.  One possibility for this is that 

these animals have an initial loss of SNpc neurons, as seen from the tyrosine hydroxylase 

positive counts, during a critical phase of development and a compensatory mechanism that is 

initiated to cope with the loss of these two proteins inadvertently makes the remaining 

neurons more resistant to toxic insults.  It is possible that the increased β-synuclein levels play 

a role in this mechanism as it has previously been demonstrated to have a neuroprotective 

role as discussed below. 

Further studies on the αγ-/- synuclein mice revealed that despite their decreased striatal 

dopamine concentration they had a hyperdopaminergic phenotype in novel environments and 

also displayed a lower rate of alternation in the T-maze spontaneous alternation task.  Further 

exploration of this phenotype revealed that the double mutant animals, but not single α- or γ-

synuclein null animals, had a twofold increase in the extracellular striatal dopamine 

concentrations after the application of small electrical stimuli as assessed by fast-scan cyclic 

voltammetry (FCV) (Senior et al., 2008).  It was demonstrated that this increase was not due to 

decreased reuptake of dopamine via the dopamine active transporter, which was consistent 

with findings by Robertson et al, and was considered more likely that the lack of both of these 

synucleins resulted in an increased probability of release of the neurotransmitter (Robertson 

et al., 2004).   

The αγ-/-synuclein mice have also been studied using microarray analysis in order to determine 

any obvious changes that would indicate a specific compensatory mechanism (Kuhn et al., 

2007).  This revealed that the expression of 215 genes was altered in these animals.  However 

there were no specific contenders that were apparent and these results are hard to compare 

with other studies due to different strains and ages of animals being used.   

From the work carried out with double synuclein knockout animals there has been some 

intriguing data to suggest that the synucleins are important in some manner in dopamine 

metabolism.  However there are clear problems in these studies with regards to functional 

compensation that may still be in place from the remaining synuclein.  In order to overcome 

this problem triple synuclein mice have been recently produced with the hope over revealing a 

more defined role for the protein family (Anwar et al., 2011).  This will be discussed in detail in 

chapter 3. 
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Beta-Synuclein 

Beta-synuclein Structure and Aggregation Properties 

Beta-synuclein was first purified from the bovine brain and was originally named as PNP 14 

before it was recognised as a member of the synuclein family (Nakajo et al., 1993).  It encodes 

a 134 amino acid protein which differs from the other members of the synuclein family as it 

lacks the 11 amino acid sequence corresponding to the non-amyloid component (NAC) found 

in these proteins (Lavedan, 1998).  The human gene is located at chromosome 5q35 and is 

arranged into 6 exons, five of which are coding (Spillantini et al., 1995).  The protein shares 

61% homology with α-synuclein making it more conserved within the family than γ-synuclein 

whilst mouse and rat β-synuclein share 97.8% homology with the human protein 

demonstrating the high level of conservation of this protein between species (Spillantini et al., 

1995, Jakes et al., 1994).  The distribution of β-synuclein throughout the cell is similar to that 

of α-synuclein with both proteins being found localised to the synapse.  Throughout the brain 

β-synuclein expression pattern overlaps the regions in which α-synuclein is expressed with no 

evidence currently existing that shows synapses that are specific for only α- or only β-synuclein 

(Lincoln et al., 1999).   

Unlike α- and γ-synuclein the free state secondary structure of β-synuclein is much less 

predisposed to forming a helical structure which is most likely due to the proteins lack of the 

NAC domain which results in the protein having a less compact structure than the other two 

synucleins.  The aggregation properties of β-synuclein are also dramatically altered in 

comparison to α- and γ-synuclein, β-synuclein is the family member least prone to aggregate. 

Even when relatively high concentrations of the protein are shaken at 37°C for several weeks 

the material remains in a soluble form which is not the case for either α- or γ-synuclein (Biere 

et al., 2000, Uversky et al., 2002).  This is most likely explained by β-synuclein lacking the 11 

amino acid residue of a hydrophobic NAC region thought to be responsible for the fast 

aggregation kinetics of α-synuclein.  β-synuclein has also been shown to behave in a different 

manner to α-synuclein by the fact that it is unable to form pore-like oligomeric structures (Park 

and Lansbury, 2003).  Although the general consensus is that β-synuclein is not normally 

inclined to aggregate, fibrillation of the protein can be initiated in the presence of zinc, iron or 

copper ions (Yamin et al., 2005).  Like γ-synuclein, β-synuclein has been shown to be able to 

almost completely inhibit α-synuclein aggregation at a 4:1 molar excess (Uversky et al., 2002).  
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Accordingly, two independent in vivo studies have found that over-expression of β-synuclein in 

mice over-expressing α-synuclein is enough to alleviate some of the associated phenotypes 

normally found in the α-synuclein transgenic animals (Hashimoto et al., 2001, Fan et al., 2006).  

Beta-Synuclein and disease 

Βeta-synuclein is not generally considered a causative factor in human diseases, having never 

been clearly linked to the disease process.  The protein is not a component of LBs, however 

there is some documentation of β-synuclein positive abnormal structures but it should be 

stressed that these are highly uncommon (Galvin et al., 1999).  In 2004 two rarely occurring 

mutations, V70M and P123H, were described in a highly conserved portion of β-synuclein and 

were shown to be a risk factor for dementia with Lewy bodies.  However these findings are 

only suggestive of β-synuclein having a role in disease and failed to show a clear mechanism by 

which these alterations may cause disease.  One possibility is that β-synuclein is unable to 

carry out its role in modulating α-synuclein behaviour which is supported by the fact that β-

synuclein aggregation was absent in a single patient with the P123H mutation at post-mortem 

whereas α-synuclein pathology was present as expected.  More recently transgenic mice have 

been produced expressing the P123H variant of β-synuclein under the Thy-1 promoter.  

Surprisingly these animals revealed β-synuclein positive inclusions, which were not detected in 

wild type littermates or animals over-expressing wild type β-synuclein, that were particularly 

concentrated in the striatum and globus pallidus and were observed in an age dependent 

manner.  As well as this the animals also showed cognitive and some minor motor 

abnormalities.  This work would support the hypothesis that P123H β-synuclein is itself 

pathogenic, which is supported by evidence that when these animals were crossed with α-

synuclein null animals no differences were demonstrated in these animals.  However when the 

P123H β-synuclein line was crossed with mice over-expressing α-synuclein their 

neuropathology was enhanced as was mortality (Fujita et al., 2010).  These results show that 

β-synuclein has the potential to be pathogenic but there is still very little clear evidence 

directly linking it to human disease. 

Beta-synuclein mouse models 

Mice lacking the β-synuclein gene have been produced and studied.  These animals were 

created by floxing the first coding exon for the β-synuclein gene, allowing it to be removed 

when required.  However there are no apparent studies on animals which were aged prior to 

the knockout of β-synuclein occurring.  Instead the study opted to knockout the gene and then 

breed these animals to create a cohort lacking β-synuclein, essentially removing the 
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conditional mechanism of the knockout and producing mice of constitutive knockout (Chandra 

et al., 2004b).  The resulting animals were shown to be viable and fertile, being comparable 

with wild type littermates even when aged.  No reduction in striatal dopamine concentrations 

or in synaptic vesicle pool size was found, suggesting some degree of functional redundancy 

across the synuclein family, supported by the fact that αβ-/- synuclein animals do have a 

significant decrease in their striatal dopamine content.  When β-synuclein null animals were 

crossed with mice that over-express mutant human α-synuclein there were no changes 

detected in the onset or extent of the neurodegenerative phenotype normally observed in 

these animals, as may have been expected.  This suggests that endogenous β-synuclein is not 

capable of protecting against pathological changes caused by over-expressed α-synuclein. 

Animals that over-express β-synuclein have also been produced and have not been reported to 

suffer any side effects to this over-expression.  In a study in which human β-synuclein was 

expressed under the Thy-1 promoter there were no overt affects.  Behavioural analysis 

revealed them to be normal as did striatal dopaminergic synapse studies.  This study clearly 

demonstrated that the over-expression of β-synuclein was not detrimental to mice and 

doesn’t appear to have any adverse affects on the normal survival of various neuronal 

populations.  In addition to this when double transgenic mice were produced expressing 

human forms of both α- and β-synuclein it was found that this was enough to ameliorate the 

motor dysfunction normally associated with α-synuclein expression as well as the 

accumulation of α-synuclein.  On top of this significantly better rotarod performance was 

demonstrated in bigenic animals in comparison to single α-synuclein transgenic mice.  Taken 

together these results may  suggest that β-synuclein may be able to provide a neuroprotective 

role as a negative regulator of α-synuclein aggregation (Hashimoto et al., 2001).  A second 

study that produced mice over-expressing human β-synuclein under the PrP promoter also 

found the adult and aging animals to be undistinguishable from their wild type counterparts 

even in the highest expressing line, where β-synuclein was approximately eight times higher 

than endogenous levels.  When the levels of endogenous α-synuclein were investigated in the 

cerebral cortex of these animals the protein levels, but not mRNA, were found to be 

moderately reduced which only reached significance in the line of mice expressing the highest 

levels of β-synuclein.  These animals were crossed with a line of A53T α-synuclein transgenic 

mice with the resulting animals showing ameliorated phenotypes with a longer survival, a 

lesser motor phenotype observed using rotarod and a significant reduction of subcortical α-

synuclein aggregation (Fan et al., 2006).  Both of these studies support that β-synuclein over-

expression does not appear to be detrimental and is possibly acting neuroprotectively.  This 
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highlights the importance of having the correct balance of synucleins throughout the nervous 

system. 

 

Gamma-Synuclein 

Gamma-synuclein structure and aggregation properties 

Gamma-synuclein was the last of the three proteins in the synuclein family to be identified.  

The human gene was first identified in in silico analysis of breast cancer transcriptomes and 

was therefore named breast cancer-specific gene 1 (Ji et al., 1997).  Mouse cDNA clones were 

obtained in a subtraction cloning experiment and the encoded protein, at that time named 

persyn, was identified as a member of the synuclein family with expression mainly in the 

primary sensory neurons, sympathetic neurons and motor neurons as assessed in mice and rat 

tissues (Buchman et al., 1998).  It was revealed that the gene, SNCG, was located at human 

chromosome 10q23, and consists of five exons encoding a 127 amino acid protein which was 

found to be expressed to some extent in the substantia nigra, thalamus, subthalamic nucleus, 

hippocampus and amygdala (Lavedan et al., 1998, Ninkina et al., 1998, Alimova-Kost et al., 

1999).  The γ-synuclein protein is the least conserved of the family sharing 55.9% homology 

with alpha-synuclein and 54.3% with beta-synuclein however it is still an evolutionary 

conserved protein with the human protein having 66% amino acid identity with the primitive 

chordate lamprey  (Lavedan et al., 1998, Lavedan, 1998).  The C-terminus of the protein is the 

most diverse in comparison to the other family members whereas the N-terminus contains the 

entire non-amyloid component sequence, like α-synuclein, and 6 copies of the KTKEGV 

imperfect repeat (Lavedan et al., 1998).  The major difference seen in γ-synuclein compared to 

β- and α-synuclein is its cellular distribution.  Unlike α- and β-synuclein, that are located 

predominantly to the presynaptic terminals, large amounts of γ-synuclein is also found in 

axons and in some neurons, in the perikaryal cytoplasm (Ninkina et al., 2003).  

The structure that γ-synuclein undertakes when lipid bound is more comparable to β-

synuclein, whereas in its free-state secondary structure it has the tendency to form ordered 

helical structures meaning it is more  analogous with α-synuclein (Sung and Eliezer, 2007).  In 

cell free conditions it has been shown that compared to α-synuclein, γ-synuclein aggregates 

less but is still able to form amyloid fibrils (Uversky et al., 2002).  γ-synuclein takes three times 

longer to form fibrils than α-synuclein showing clearly that it is less inclined to spontaneously 

aggregate (Biere et al., 2000).  Despite this, like β-synuclein, γ-synuclein has the ability to 
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inhibit the formation of α-synuclein fibrils at a ratio of 1:1 with the efficiency of inhibition 

increasing with the increasing ratio of γ-synuclein to α-synuclein (Uversky et al., 2002). 

Gamma-synuclein in disease 

 Although γ-synuclein has not been shown to have a role in PD it may potentially be implicated 

in other diseases. No pathogenic mutations have been discovered in γ-synuclein however 

there are two known polymorphisms in SNCG (Ninkina et al., 1998).  More recently a 

polymorphism in the non-coding region of γ-synuclein, which might affect the expression 

levels of the gene has been linked with diffuse Lewy body disease (Nishioka et al., 2010).  

Although it is uncommon, γ-synuclein positive axonal spheroids have been described in 

diseases such as Hallervorden-Spatz and Lewy body dementia (Galvin et al., 2000, Galvin et al., 

1999).  An example of a neurodegenerative disorder with strong links to γ-synuclein 

dysfunction is glaucoma, a disease that leads to permanent blindness due to increased 

intraocular pressure leading to the loss of retinal ganglion cells (RCGs). In the eye γ-synuclein is 

known to be specifically expressed in RGCs with the level of this expression being shown to be 

decrease in patients suffering glaucoma (Surgucheva et al., 2002).  A common glaucoma 

animal model, the DBA/2J mouse, also demonstrates a down regulation of γ-synuclein through 

the progression of the disease, which correlates with the loss of RGCs(Soto et al., 2008).  A 

recent study has implicated the protein in the response to increased intraocular pressure with 

it up-regulating Mac-2 at the myelination transition zone and providing some protection in the 

axons.  In animals lacking γ-synuclein no up-regulation of Mac-2 was seen following increased 

intraocular pressure and a greater degree of axonal loss occurred.  In mouse models of 

glaucoma proteinase K resistant forms of γ-synuclein were identified suggesting that aberrant 

forms of the protein may have a pathological role (Nguyen et al., 2011).   

As mentioned γ-synuclein was first recognised as a breast cancer specific gene, it is apparent 

that the protein seems to exist at high concentrations specifically in more progressed and 

malignant tumours and is not expressed in normal breast epithelia (Ji et al., 1997). As well as in 

breast cancers, elevated expression of γ-synuclein has also been noted in ovarian, as well as 

other types of tumours (Bruening et al., 2000, Ahmad et al., 2007, Liu et al., 2005).  Both in 

vitro and in vivo over-expression of γ-synuclein has been demonstrated to have detrimental 

effect on the metastatic capabilities of tumour cells.  When breast cancer cells over-express γ-

synuclein they become more motile and invasive but do not grow any faster than non-γ-

synuclein expressing controls.  Further to this when cells over-expressing γ-synuclein were 

implanted into nude mice a similar number of tumours grew when compared to implants not 
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over-expressing γ-synuclein and their growth had a comparative time course.  However those 

positive for γ-synuclein expression caused a significantly greater number of metastases (Jia et 

al., 1999).  It is so far unclear how γ-synuclein initiates these changes and to what extent it 

alone is responsible for these changes.  Moreover, a recent study in our laboratory 

demonstrated that γ-synuclein is not required for mammary gland tumourigenesis and 

metastasis. 

Recently it has become apparent that γ-synuclein appears to have a role in adipocyte 

physiology.  Increased expression of γ-synuclein has been consistently observed in adipose 

tissue of obese patients and this can be decreased through dieting (Oort et al., 2008).  Further 

work unveiled the relationship between γ-synuclein and brain lipid composition through the 

use of γ-synuclein null mice (Guschina et al., 2011).  Recent work has confirmed that γ-

synuclein is nutritionally regulated in white adipose tissue (Millership et al., 2012). γ-synuclein 

null mice exposed to a high fat diet were protected from obesity and its associated 

complications, unlike WT mice fed the same diet.  This could not be explained by altered food 

intake or the amount of lipids adsorbed from their diet.  When γ-synuclein was reintroduced 

into subcutaneous fat pads, via lentiviral expression, the size of adipocytes was seen to 

increase in transduced cells and not in non-transduced cells or those injected with a control 

lentivirus.  This supports a role for γ-synuclein in the control of adipocyte size in vivo.  To 

explore how γ-synuclein may be exerting its control on adipocyte metabolism the levels of 

SNARE complexes were investigated.  SNARE complexes are thought to be required for lipid 

droplet formation and as described above, α-synuclein has been shown to modulate assembly 

of neuronal SNARE complexes.  A 35% decrease in SNARE complexes was observed in γ-

synuclein null mice fed a high fat diet, despite the fact that individual SNARE proteins where 

not down-regulated, suggesting that γ-synuclein is able to regulate SNARE complex formation 

during times of nutrient excess.  It is suggested that γ-synuclein is able to deliver SNAP-23 

during the formation of the SNARE complexes and this allows the increase in lipid droplet 

volume.  Previously α-synuclein have been shown to interact with lipid rafts and lipid droplets 

and so it is not entirely surprising that γ-synuclein may also cooperate with cellular lipid 

metabolism  (Cole et al., 2002, Fortin et al., 2004).   

Gamma-synuclein mouse models 

Homozygous mice that over-express mouse γ-synuclein under the Thy-1 promoter were found 

to develop an age and transgene dose dependent motor deficits and neuropathology, 

eventually leading to paralysis, as well as early lethality (Ninkina et al., 2009). γ-synuclein 
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positive inclusions were also apparent in the cytoplasm in subsets of neurons which in some 

cases were eosinophilic but the majority were spheroids or dystrophic neurites.  Fractionation 

of spinal cords from these animals showed evidence that large proportions of the γ-synuclein 

was in fact insoluble and forms amyloid-like fibrils.  By 12 months of age these animals had lost 

over 60% of their spinal cord motor neurons when compared to wild type controls.  Further 

investigation of these animals revealed that they appear to recapitulate certain aspects of 

amyotrophic lateral sclerosis (ALS), including selective damage and loss of certain subsets of 

upper and lower motor neurons whilst the sensory neurons remain relatively unscathed 

(Peters et al., 2012).  Unpublished work from our lab has shown that in some cases of ALS 

there appears to be some neuronal inclusions immunopositive for γ-synuclein however this 

will require further study before any firm conclusions are drawn from it.  This model proves 

that γ-synuclein is capable of causing detrimental effects to neurons of the central nervous 

system that resemble effects of α-synuclein rather than β-synuclein. 

Gamma-synuclein null mice have also been created, using a targeted knockout approach, and 

studies show that the resulting animals are viable and have a normal phenotype.  There was 

no evidence of any motor or peripheral sensory neuronal cell loss, cell populations that 

normally express high amounts of γ-synuclein, nor were any ultra-structural changes seen in 

these cells (Ninkina et al., 2003).  These results would suggest that either the protein is a non-

essential for normal functioning of these cells or compensation is occurring.  A later study was 

able to demonstrate that β-synuclein expression is slightly up-regulated in animals that lack γ-

synuclein and to a larger extent in animals lacking both γ- and α-synuclein (Robertson et al., 

2004).  When midbrain dopaminergic populations were studied in γ-synuclein null mice it was 

noted that early post natal and adult animals had a 15-20% decrease in the numbers of 

dopaminergic neurons in the SNpc but not the VTA.  However when these cells had been 

counted at E18 embryos their numbers had been comparable to wild type animals.  Upon 

challenging these animals with MPTP, unlike wild type controls, there was no significant loss of 

the SNpc dopaminergic neurons (Robertson et al., 2004).  A possible explanation for this 

apparent resistance to the neurotoxin could be that during a critical development stage a 

compensation mechanism is activated to ensure the survival of these neurons in the absence 

of γ-synuclein resulting in a population of more robust cells which can resist the toxic insult of 

MPTP. A possible role of upregulated β-synuclein in this process should not be overlooked. 

As is clear from the discussions above the biological function(s) of the synucleins are still far 

from clear and further work and more appropriate models will be required to help reveal this.  



 51 

One clear issue is that animal models can never fully recapitulate the human disease as there is 

often unrealistic levels of expression or inappropriate localised expression of the proteins.  A 

second major problem is that many studies concentrate on the changes triggered during early 

development and therefore not in an aged nervous system which is highly relevant to the 

study of age related diseases.  With improved models that represent a more physiologically 

relevant view it is likely that more can be revealed about these elusive proteins.  It is hoped 

that the work in this thesis is able to contribute some further insight into the synuclein family. 
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Aims 

1. To characterise the midbrain dopaminergic system of triple synuclein knockout mice in 

order to better understand the importance of the synuclein family in this subset of 

neurons in the absence of any possible familial compensation. 

 

a. Assess the survival of VTA and SNpc dopaminergic neurons in the absence of 

three synucleins 

b. Assess synaptic structure and condition including neurotransmitter 

concentrations 

c. Assess any behavioural phenotypes 

 

2. To investigate the survival of midbrain dopaminergic neurons of triple synuclein null 

animals following exposure to MPTP 

 

3. Produce a conditional tamoxifen inducible alpha-synuclein knockout mouse model and 

undertake initial characterisation of the model 
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Chapter 2 
 

Methods 
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Animals 

Generation of TKO mice 

Triple synuclein knockout (TKO) mice were produced as described by Anwar et al (Anwar et al., 

2011).  Briefly, animals already possessed by our lab lacking both α- and γ-synuclein on a pure 

C57Bl/6 Charles River background, as described in Robertson et al., 2004, were crossed with 

beta-synuclein null animals previously produced by Chandra et al (Chandra et al., 2004, 

Robertson et al., 2004).  Animals homozygous for knockout of all synucleins were then further 

backcrossed for 6 generations with Charles River C57Bl/6 animals to produce cohorts of triple 

synuclein knockout and wild type litter mate animals.  Unless specifically stated otherwise 

male animals of 4-5 months were used in all experiments. 

Husbandry 

All animal husbandry was carried out in accordance with the United Kingdom Animals 

(Scientific Procedures) Act (1986).  Animals were housed individually or in cages of 5 or less 

with a 12 hour light cycle followed by a 12 hour dark cycle.  All animals had free access to food 

and water. 

Histology 

Fixation 

Animals were sacrificed using a schedule 1 method and tissues rapidly harvested and placed 

into cassettes ready to be immersed in Carnoy’s fixative overnight.  Following this the samples 

were dehydrated as below and were then infiltrated with paraffin wax (RA Lamb) at 60°C for 3 

hours prior to being embedded in fresh wax and left to set on a chilled ice plate. 

 

Carnoy’s Fixative: 

60% Ethanol 

30% Chloroform 

10% Glacial Acetic Acid 
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Dehydration following overnight Carnoy’s fixation at 4°C: 

95% Ethanol    5 mins (x3) 

100% Ethanol   10 mins 

100% Ethanol   30 mins  

1:1 Ethanol:Chloroform  30 mins 

Chloroform   60 mins 

Chloroform 4°C   Overnight 

Sectioning 

Once embedded the samples were then ready to section.  Sectioning samples in preparation 

for histological examination occurred using a Microm HM310 microtome set to section 8μm 

sections using a razor-cutting blade.  The sections were then floated in a water bath filled with 

dH20 and warmed to 40°C.  Sections were collected appropriately onto poly-L-lysine coated 

slides (Fisher) and allowed to dry overnight at room temperature. 

Immunostaining 

Samples were first dewaxed in xylene, followed by a graded rehydration series through 

decreasing strengths of ethanol before being brought to water.  Antigen retrieval occurred by 

microwaving slides at 750W for 10 minutes in 10mM sodium citrate (pH 6.0).  After the 

samples were cooled any endogenous peroxidase activity was quenched using a solution of 3% 

H2O2 in methanol for 30 minutes at 4 οC.  Following this samples were washed using PBS after 

which a blocking solution of 10 % appropriate serum (e.g. horse serum) in 0.4% T-PBS was 

applied, followed by a further wash in PBS.  Samples were then incubated with the primary 

antibody at the appropriate dilution.  The antibody was prepared in blocking solution and 

incubated for one hour at room temperature.  This was washed off using PBS before applying 

the a secondary biotinylated antibody at a dilution of 1:1000 prepared in 0.4% T-PBS and 

incubated for one and a half hours at room temperature.  Samples were then washed with PBS 

followed by application of ABC solution (Vector Laboratories).  This was left for 30 minutes and 

then washed with PBS.  3,3'-Diaminobenzidine (DAB) (Sigma) was then added to the samples in 

order to visualise the antibody and left for a further 5-15 minutes until sufficient staining was 
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apparent.  Slides were then washed using dH20 twice and the samples were serially 

dehydrated and taken to xylene before glass coverslips were mounted using DPX (RA Lamb). 

Quantification of dopaminergic neurons of the SNpc and VTA 

Tyrosine hydroxylase stained slides were used to count the dopaminergic cell populations of 

the SNpc and VTA.  Prior to staining SNpc and VTA were serial sectioned and mounted to slides 

in a manner that produced two duplicate sets of slides as demonstrated below in figure 2.1.  

This meant one set could be stained whilst the other remained for replication or for further 

analysis where required.  Mouse anti-tyrosine hydroxalase monoclonal antibody (TH-2, Sigma) 

at a dilution of 1:1000 were used to identify dopaminergic cell bodies. The criteria for deciding 

if a cell should be counted depended on there being a clear space in the middle of the cell 

body, indicating the cells nucleus.  The criteria for counting are clearly demonstrated in 

appendix 1.  All counts were carried out blindly and every tenth section on the slides was 

counted at 40x magnification and recorded separately for both left and right regions of the 

VTA and SNpc.  Following this the mean nuclear diameter was measured using AnalySIS 

imaging software for 30 cells per animals.  Total cell populations of each structure were then 

calculated using the Abercrombie correction technique as shown below. 

 

P = (1/f) x A(M/D+M) 

 

Where P = the corrected cell count; F = frequency of cell count (i.e 1/10 = 0.1); M = section 

thickness (μm); D = average nuclear diameter. 

 

 

 

Figure 2.1 Layout of Slides for Stereological Counts 

Demonstrating the method in which serial sections were laid out over slides allowing duplicate 

sets to be produced.  This meant that one set could be used for analysis by tyrosine 

hydroxylase counts and the other for repeats or any other required purposes. 
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Quench Solution 

 Hydrogen Peroxide     3% 

 Methanol 

 

Sodium Citrate buffer (pH 6.0) 

 Sodium citrate tribasic salt dehydrate  10 mM 

 dH2O 

 Adjuist pH to 6.0 using HCl 

 

 

Table 2.1 List of Primary Antibodies used for Immunohistochemistry 

Target Additional 

Information 

Supplier Working Dilution 

Tyrosine Hydroxylase Clone TH-2 

Mouse Monoclonal 

Sigma 1:1000 

Dopamine Active 

Transporter 

MAB369 

Rat Monoclonal 

Chemicon 1:500 

Alpha-synuclein Clone 42 

Mouse Monoclonal  

BD Transduction 

Laboratories 

1:500 

Beta-synuclein Clone 8 

Mouse Monoclonal 

BD Transduction 

Laboratories 

1:5000 

Gamma-synuclein SK23 

Rabbit Polyclonal 

(Buchman et al., 

1998) 

1:1000 
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Secondary Antibody    Supplier  Concentration  

Biotinylated Secondary antibodies  Vector   1:1000 
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Assessment of Protein and Neurotransmitter Levels 

Western Blotting  

To asses protein levels from various samples Western blot analysis was carried out.  The 

Western blotting technique is a convenient method to visualise a specific protein from an array 

of others in a semi-quantitative manner and is reliant on the protein macromolecules being 

separated depending on their size and charge.  

 

Snap frozen or fresh tissue/cell samples were homogenised in Laemilli buffer and boiled at 

100οC for 10 minutes.  Where required total protein content of a sample was measured using a 

commercially available kit (Biorad) that is based on the Bradford assay to allow all samples to 

be normalised and loaded with an equal amount of total protein.  These samples were then 

run through a two phase gel, the upper part being a 6% “stacking gel” and the lower a higher 

percentage “resolving gel” at 200V for the appropriate amount of time to separate desired 

protein bands.  The resolving gel contained an appropriate percentage of acrylamide to 

satisfactorily separate proteins required for assessment i.e. a high percentage for lower 

molecular weight proteins and a low percentage for those of a high molecular weight.  A pre-

stained protein ladder was also loaded on each gel to allow easy identification of protein size 

(Fermentas).  The percentage of polyacrylamide in the resolving gel was typically between 8-

16%.  

 

6% stacking gel 

H20        3.3ml 

30% Acrylamide/BisAcrylamide solution    1.0ml 

1.25 M Tris pH 6.8      620μl 

10% SDS         50μl 

10% APS            50μl 
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Resolving Gel – varying percentages    

10%    16% 

H20   3.97ml     2.00ml   

30% Acrylamide/BisAcrylamide solution    

 3.33ml    5.30ml 

1.25 M Tris pH 8.8      

 2.50ml    2.50ml 

10% SDS  

     100μl      100μl 

10% APS   

         100μl     100μl 

 

10μl of TEMED was added to each gel to start the polymerisation reaction. 

 

Following electrophoresis the gel was assembled into a transfer stack using a dry blot 

approach (Techware, Sigma).  In this manner proteins were transferred to a PVDF membrane 

at a constant of 6-9 mA for 1.30 hours after which the membrane was retrieved and washed in 

TBS-T before being blocked for 1 hour in 4% non fat milk (Marvel).  Following this the 

membrane was incubated overnight at +4 οC with the appropriate primary antibody in 4% milk.  

The membrane was then washed repeatedly with TBS-T and placed in 4% milk containing the 

appropriate secondary HRP conjugated antibody (Amersham) at a concentration of 1:3000 for 

1 hour.  After the membrane was washed in TBS-T the protein bands were visualised with 

either ECL or ECL+ chemiluminescent detection system in accordance with the manufacturer’s 

instructions (Amersham).  Should the membrane be required for reprobing it was again 

washed in TBS-T, reblocked and then appropriate primary and secondary antibodies applied 

before visualising.   
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2x LB Laemmli buffer: 

100 mM Tris-HCl pH 6.8                   

20% Glycerol       

0.2% Bromophenol blue 

200 mM 2-mercaptoethanol  

4% SDS                        

 

10x Running Buffer 

250 mM Tris Base  

2.0 M Gycine   

1% SDS 

Diluted to 1x working solution with dH20 

 

10x Transfer Buffer 

250 mM Tris Base 

1.5 M Glycine   

Diluted to 1x working solution with dH20 and the addition of 20% methanol 

 

TBS-T 

TBS (Sigma) dissolved in 990ml ddH20 

10% Electran Tween20 (VWR)      10ml 
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Table 2.2 List of Primary Antibodies used for Immunoblotting 

Target Additional 
Information 

Supplier Working Dilution 

VMAT-2 Rabbit Polyclonal Santa Cruz 1:500 

SNAP-25 Clone 20 

Mouse Monoclonal 

BD Transduction 
Laboratories 

1:1000 

VAMP2 Rabbit Polyclonal Sigma 1:1000 

Alpha-synuclein Clone 42 

Mouse Monoclonal 

BD Transduction 
Laboratories 

1:500 

Tyrosine Hydroxylase Clone TH-2 

Mouse Monoclonal 

Sigma 1:5000 

Synaptophysin Clone 2 

Mouse Monoclonal 

BD Transduction 
Laboratories 

1:25000 

Synaptotagmin Clone ASV48 

Mouse Monoclonal 

QED 1:5000 

Amphiphysin Clone 15 

Mouse Monoclonal 

BD Transduction 
Laboratories 

1:10000 

 

 

Complexin 2 Clone 48 

Mouse Monoclonal 

BD Transduction 
Laboratories 

1:500 

Synapsin IIa Clone 1 

Mouse Monoclonal 

BD Transduction 
Laboratories 

1:10000 

CSP Rabbit Polyclonal Santa Cruz 1:1000 

β-actin Clone AC-15 

Mouse Monoclonal 

Sigma 1:10000 

GAPDH Clone 6C5 

Mouse Monoclonal 

Santa Cruz 1:1000 
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Secondary Antibody    Supplier   Concentration 

HRP conjugated secondary antibodies  Amersham   1:3000 

High-Performance Liquid Chromatography (HPLC) 

In order to accurately assess striatal levels of dopamine and its metabolites HPLC was 

employed.  Samples were prepared using approximately 5mg of freshly dissected dorsal 

striatum which were homogenised in 0.5ml of 0.06M HClO4 and the resulting homogenate was 

centrifuged at 16000g for 15 minutes at +4οC.  Following this the supernatant was carefully 

removed and kept on ice until it was injected into the HPLC column.   A 4.6 x 150mm 

electrochemical detection microsorb C18 reverse-phase column (Varian) and Decade II ECD 

with a Glassy carbon-working electrode set to +0.7 V, with a Ag/AgCl reference electrode 

(Antec Leyden).  To measure the concentrations of dopamine and its metabolites the mobile 

phase consisted of 12% methanol (v/v), 0.1 M monosodium phosphate, 0.68 mM EDTA and 

2.4mM 1-octane sulfonicacid (OSA), pH 3.1. 

NSD-1015 Administration 

To measure the rate of dopamine synthesis in vitro animals were given a 100mg/kg 

intraperitoneal injection of NSD-1015.  Animals were killed 40 minutes following the injection 

and their dorsal striata collected to ascertain L-DOPA accumulation using HPLC analysis. 

Isolation of Synaptic Vesicle  

All procedures were carried out at +4 οC.  The dorsal striata of 6 mice were homogenised in 0.5 

ml of lysis buffer using a glass homogeniser.  Following this the samples were centrifuged at 

1000g for 10 minutes to sediment the nuclei and debris.  The supernatant was carefully 

collected and then centrifuged at 20000g for a further 20 minutes to obtain the cytosolic 

supernatant and a pellet containing the crude synaptosome fraction.  . For synaptic vesicle 

isolation the pellet was resuspended in 0.5 ml 0.32M sucrose, diluted to 2 ml with ddH20, 

homogenised in a glass-teflon homogeniser and left for 10 minutes on ice before the addition 

of 0.3 ml of 250 mM HEPES, pH 7.4 and 0.3 ml of 1 M potassium tartrate.  This was then 

centrifuged at 20000g for 20 minutes in order to pellet synaptic membranes.  Following this 

the supernatant was taken to a fresh ultracentrifuge-capable eppindorf tube and centrifuged 

at 120000g for 40 minutes to obtain a pellet of synaptic vesicles.  This pellet was then 

resuspended in 1 ml of vesicular uptake assay buffer using a 25 gauge needle. 
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Lysis Buffer 

0.32 M Sucrose 

5 mM HEPES pH 7.4 

Protease inhibitors (Complete Mini, Roche) – 1 tablet per 10ml of buffer 

Vesicular uptake assay buffer 

25 mM HEPES  pH 7.4 

100 mM potassium tartrate 

0.1 mM EDTA 

0.05 mM EGTA 

1.7 mM ascorbic acid 

2 mM ATP 

Recombinant β-Synuclein 

The pCS19 β-synuclein cDNA containing vector had previously been produced in our lab.  The 

vector contains the coding region of the human β-synuclein gene and was used to transform 

KU98 E.coli.  Bacterial expression of the β-synuclein protein was induced when the bacterial 

culture, growing at 37οC, reached 0.6 OD600 using 0.5mM IPTG.  Following IPTG induction the 

bacterial cultures were grown for a further 4 hours at 26 οC.  The recombinant protein was 

then purified as described previously (Jakes et al., 1994). 

Behavioural Testing 

Rotarod 

The rotarod is designed to assess the balance and endurance of the mice.  It is a horizontal 

beam placed above a trip switch which has an incorporated timer meaning that the time to fall 

is recorded for each animal.  The Ugo Basil 7650 Rotarod was set up in order to accelerate 

from 4 to 40 rpm in 30 second intervals over a 5 minute test period.  Prior to the test being 

performed the animals were moved in their home cage to the procedure room for 60 minutes 

to acclimatise to the new environment.  Animals were then given a practise session on the 

apparatus set to a constant speed of 24 rpm followed by a 60 minute rest period before the 
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test began.  Mice were tested 3 times with a minimum rest period of 40 minutes between 

tests and their mean latency to fall time was recorded (Robertson., et al 2004). 

Inverted Grid Test 

This test can be used to asses both the strength and coordination of a mouse.  The grid is a 

30x30cm square mesh made up of 5mm squares from 0.05mm diameter wire. The mouse is 

placed on the grid and the grid is then slowly rotated 180 degrees bringing it into an inverted 

position.  This is held 30cm above a thick layer of bedding material.  The mouse is then tested 

for 1 minute and the latency to fall was noted of any animals that didn’t complete an entire 

minute.  The mouse was then returned to rest in its home cage and the test repeated allowing 

the mean of three attempts to be compiled. 

Home-like Cage Activity 

This test was used to measure the locomotor activity levels of the mice and also assess how 

they react in a new environment.  Prior to the test beginning the animals were moved to the 

test room in which the light cycle is the same as in the animals holding room.  They were 

allowed a 30 minute acclimatisation period in the test room before the test was started.  The 

animals were placed in a clear Perspex box measuring 40x40cm and were left for the 

appropriate amount of time.  In the case of testing locomotor activity in novel environments 

the test lasted a total of 26 hours.  However, when animals were exposed to pyschostimulants 

they were placed in the home-like cage as described below.  The apparatus is equipped with 

infrared beams and is able to record when these are broken.  The number of beam breaks was 

recorded every 4 minutes over the test period.   

 

MPTP and Psychostimulant Administration 

Subchronic MPTP treatment 

Male mice aged to 4 months were given one intraperitoneal injection of 30mg/kg MPTP 

(Sigma) or PBS a day for 5 consecutive days whilst being carefully monitored for any severe 

changes in their health.  Twenty one days following the last MPTP injection animals were 

euthanized by phenobarbital overdose and brains were dissected for fixation or biochemical 

analysis. 
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 Psychostimulant treatment 

In all cases drugs were prepared and dissolved in sterile 0.9% saline.  All drugs were sourced 

from Sigma and in the case of both cocaine and D-amphetamine (dAMPH) animals received a 

single 10mg/kg or a 4mg/kg intraperitoneal injection respectively after being placed in the 

activity camera apparatus for 30 minutes in order to allow acclimatisation.  Following the 

injection the animals were returned to the recording apparatus for an additional 90 minutes of 

recording.  In the case of methyl L-3, 4-dihydroxyphenylalanine (L-DOPA), animals were 

allowed 20 minutes to acclimatise to the testing room before being administered a single 

intraperitoneal injection of 50mg/kg and returned to the home cage.  After a 20 minute 

interval the animal was then placed in the recording equipment and dAMPH injections were 

administered as described above. 

Cloning 

PCR 

Isolation of genomic DNA (gDNA) was undertaken using a Wizard SV gDNA purification system 

(Promega).  After the optimisation of each set of primers gDNA was then either used to create 

nested fragments using 5μl gDNA and 45μl of amplification mastermix (table 2.3) and 

amplified for 45 cycles or used to create blunt ended fragments ready for immediate cloning.  

In this case 1.5μl of gDNA plus 0.5μl of each forward and reverse primer was added directly to 

the Accuprime Pfx SuperMix (Invitrogen) and cycled at appropriate conditions for the fragment 

required.  In the case of nested primers after the first reaction in a normal mastermix but with 

fewer cycles a further 15 cycles using the resultant template DNA (1.5μl) was carried out using 

the Accuprime system with the non-nested primers to ensure blunt ends for subsequent 

cloning.  All primers used can be found in appendix 3. 
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Amplification 

Mastermix 
Concentration 

Typical Cycling 

Conditions 

dNTP 0.2 mM 94οC – 15 sec 

Primers (each) 0.25 μM 60οC – 30 Sec 

KCl 50 mM 72οC – 40 Sec 

 Tris-HCl pH 9.0  10 mM  

 MgCl2  1.5 mM  

 Taq Polymerase  5 units  

 Triton X-100  0.1%  

 

 

Table2.3 PCR Mastermix 

Components of the amplification mastermix, including buffer and concentrations along with 

typical cycling conditions used unless stated otherwise. 

Agarose Gel Electrophoresis 

Typically a 1% agarose gel was prepared using 1xTAE, ethidium bromide (Sigma) and agarose 

(Eurogenetec).  5μl of DNA ladder and 10μl of sample were loaded and ran to visualise 

fragment size.  In some cases it was necessary to produce low melting point (LMP) agarose gels 

(Metaphore) in order to purify fragments from the gel, in which case the entirety of the 

appropriate sample was loaded. 
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TAE 50X 1L       

242 g of Tris Base      

57.1 ml Glacial Acetic Acid     

100 ml 0.5 M EDTA (pH 8.0) 

Diluted to 1x working solution 

 

Gel Loading Buffer 

100 mM Tris-Cl 

4 % (w/v) SDS 

0.2 % (w/v) Bromophenol Blue 

20 % (v/v) Glycerol 

Agarose gel purification of DNA fragments 

Some PCR reactions could not be optimised to produce only one clear band of correct sized 

DNA.  In this case, following the PCR reaction the resultant DNA was ran on an agarose gel and 

visualised on the UV lamp at 312 nm.  Using a clean scalpel the correct sized fragment was 

excised from the gel.  The selected portion of the gel was then weighed and the DNA purified 

from it using the QIAquick gel extraction kit (Qiagen).  This was done following the supplied 

manufactures instructions.  This method was also required once correct fragments for cloning 

into the construct had been identified and therefore needed to be extracted from the pCR-

Blunt II-TOPO vector after enzymatic digests. In this case approximately 10 μg of DNA would 

first be digested and the resulting fragments were purified ready for insertion into the vector.   

Transformation of Competent Cells 

Correctly sized fragments from AccuPrime™ Pfx DNA Polymerase (Invitrogen) PCR reactions 

underwent ligation into the pCR-Blunt II-TOPO vector (appendix 2 shows plasmid map).  A 

mastermix containing 2μl fresh PCR product, 0.5μl salt solution and 0.5μl of pCR II-Blunt-TOPO 

vector and made to 6μl with dH20 were mixed according to the manufactures protocol 

(Invitrogen).  Following this 3μl of the mastermix was added directly to chemically competent 

cells, with the appropriate efficiency: most commonly one shot max efficiency DH5α-T1R 
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(Invitrogen) otherwise one Shot Stbl3 chemically competent E. coli (Invitrogen) or DH5αTH high 

efficiency cells (New England Biolabs). These were defrosted on ice and 2-4μl of the 

appropriate plasmid in the case of retransforming or TOPO blunt cloning reaction was added 

before incubating on ice for a further 15 minutes.  The cells then underwent heat shock at 

42°C for 30 seconds to allow the bacterial membranes to become permeable, allowing the 

passage of plasmid DNA across them.  The cells were then placed back on ice for 2 minutes to 

allow the membranes to recover.  SOC medium was then added to the competent cells and 

incubated for 1 hour at 37°C in a shaking incubator to allow the expression of antibiotic 

resistance genes before the cells were spun for 5 minutes at 5000g and most of the media 

aspirated.  The cells were then gently resuspended and spread on appropriate selective agar 

plates and incubated overnight at 37°C.   

Preparation of Agar Plates and Luria Broth 

Luria broth was produced by adding 25g of Luria Broth Base (Invitogen) per 1L of dH2O.  The 

addition of select agar (Invitrogen) to a final concentration of 2% in 300ml of Luria broth was 

used to generate agar.  These were then both autoclaved before use and then stored until 

required.  Selective antibiotics were added to both agar and Luria broth at 50μg/ml 

concentrations. 

Selection of bacterial colonies 

After plates were incubated at 37οC overnight they were then used to select single bacterial 

colonies in order to further amplify recombinant plasmid DNA. Single colonies were picked 

from plates using sterile pipette tips and placed in 5ml selective Luria broth overnight at 37οC 

whilst being rocked in order to aerate the suspension. 

Purification of Bacterial Plasmid DNA 

Overnight inoculations were spun at 5000g for 5 minutes and the resulting suspension 

discarded to leave only a pellet.  The bacterial pellet was then re-suspended and the DNA 

purified using the manufacturer’s instructions for the Qiagen qiaprep miniprep column 

purification system.  This system relies on alkaline lysis of the bacterial cells followed by 

adsorption of the DNA onto a silica membrane under high salt conditions.  The resulting DNA 

was eluted in 50-100μl dH20 and used for further analysis of the clone.  
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DNA extraction using Phenol Chloroform  

Mouse tissues were lysed for 4-16 h at 55οC in digestion solution containing Proteinase K. In 

the case of ES cells, medium was aspirated, plates were frozen at -20οC until required following 

which digestion solution was added and cells collected by scraping. Following incubation the 

lysed material was transferred to a fresh eppendorf tube, an equal volume of phenol (pH 8.0) 

was added and after gentle but thorough mixing spun for 10 minutes at max speed. The 

supernatant was then transferred to a new eppindorf tube and again an equal volume of 

phenol was added and contents mixed before spinning at max speed for 10 minutes.  This was 

repeated with phenol-chloroform 1:1 before the final supernatant was removed to a fresh 

eppindorf tube.  Precipitation of the DNA followed with the addition of 2 M NaAc at 10% total 

volume and 2.5 volumes of 100% ethanol.  If a DNA clot was visible it was transferred to a new 

eppindorf tube containing 70% ethanol.  If no clot was visible the sample was spun for 2 

minutes at max speed.  Following this both spun down pellets and DNA clots were washed 3 

times in 70% ethanol.  After the final rinse excess ethanol was removed and the sample left at 

room temperature until any remaining ethanol had evaporated.  The resulting DNA was eluted 

in dH20 to an appropriate volume and left at 4οC overnight until properly dissolved. 

 

Digestion solution: 

100 mM NaCl 

50 mM Tris (pH 8.0) 

2 mM EDTA 

1% SDS 

2 mg/ml Proteinase K 

 

Restriction Enzyme Analysis 

Restriction enzyme digests were employed to check the presence or absence of the correct 

fragment within a vector and also for Southern analysis of targeted ES clones.  In both cases a 

mastermix containing DNA, the appropriate enzyme at 1 unit/μg DNA and the correct buffer at 

10% of the total volume was incubated at 37οC (unless stated otherwise by the manufacturer’s 
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guidelines) for a minimum of one hour.   For genomic DNA being digested for Southern blot 

analysis the digests were left overnight and used excess restriction enzyme in order to ensure 

complete digest.  The reaction was then run on an agarose gel to assess fragment size. 

Sequencing 

To ensure that all cloned fragments were correct they were sequenced using a variety of 

primers (appendix 3).  In the case of any fragments within the pCR-Blunt II-TOPO vector these 

were sequenced using either T7 or SP6 primers.  All sequencing was carried out by the Cardiff 

University sequencing core.  Analysis of the sequences was carried out using ApE (A plasmid 

Editor v1.17) software. 

DNA Quantification 

DNA concentration was estimated by measuring solution absorbance at 260nm on the 

Nanodrop (Labtech International).   

Ligation Reactions 

When fragments with the correct sequence were identified they could then be used for further 

cloning.  Once fragment and vector had been digested and purified their aliquots were run on 

a gel alongside each other in order for an estimation of vector/insert ratio to be made.  A 

ligation mastermix was prepared containing vector and insert at the estimated molar ratio of 

1:5, ligase buffer and T4 DNA ligase.  Once mixed it was placed into a water bath at 17οC, 

which was then placed in the cold room overnight to create a falling temperature gradient.  

Following this 2μl of the reaction was used for transformation of high efficiency competent 

cells. 
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Cell Culture 

In order to produce cells that could be used for blastocyst injection and ultimately produce a 

line of mice the targeting procedure required a suitable line of embryonic stem (ES) cells.   In 

this instance the JM8A3N ES cell line was selected as it is derived from the C57Bl/6N mouse 

strain, meaning this would limit the number of backcrosses required to produce a pure 

C57Bl/6 line over other conventional ES lines produced on the more traditional S129 

background.  Importantly this line also displays high germline competency which is an 

important consideration when producing a new animal model (Pettitt et al., 2009). 

Culturing of JM8 Feeder Free ES Cells 

Cells were cultured on 0.1% gelatin coated plates (Nunc) in full media at 37οC and 5% CO2.  The 

plate surface was covered with 0.1% gelatin solution for 5 minutes before it was aspirated and 

the plates were then left to dry for 1 hour prior to cells being applied.  Once cells reached 70-

80% confluence they were passaged.  Media was aspirated, cells washed with pre-warmed D-

PBS and trypsin applied for 5 minutes at 37οC (table 2.4 demonstrates appropriate volumes).    

To inactivate trypsin 5-10 volumes of full media was added and 1/6th of the cell suspension 

split to each new plate.  Unless stated otherwise all cell culture components were purchased 

from Invitrogen. 

 

Dish Diameter 

(cm) 

Volume of 

Gelatin/D-PBS 

(ml) 

Volume of 

Trypsin (ml) 

Volume of full 

Media (ml) 

Volume of full 

media & 

DMSO (ml) 

Number of 

Freezing Vials 

3 3 0.5  5 1 2 

10 5 1  10 2.5 5 

 

Table 2.4 Volumes for Cell Culture 

Examples of appropriate volumes of media, trypsin, gelatine, D-PBS and freezing components 

for different dish sizes of JM8 cells. 
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Titration of Leukaemia Inhibitory Factor (LIF) 

Stocks of murine LIF purified previously in the lab were tested against a commercially available 

comparison, ESGRO (Millipore), used as directed by manufacturers specifications.  Cells were 

cultured in varying concentrations of each LIF and scored over 14 days for the amount of 

differentiated and migrating cells.  Following this the most appropriate LIF was decided on and 

used in the media at 1ml per 500ml of full media.  LIF was present in all media except that 

used the day before blastocyst injections. 

Freezing JM8 Cells for Liquid Nitrogen Storage and Defrosting 

Freezing was carried out using freezing medium and table 2.4 indicates appropriate volumes. 

Media was aspirated and cells washed with pre-warmed D-PBS before adding pre-warmed 

trypsin for 5 minutes at 37οC.  Trypsin was inactivated with full media and the cell containing 

suspension transferred to a falcon and spun for 3 minutes at 300g.  Media was aspirated and 

the pellet re-suspended in freezing medium which acts as a cryoprotectant, reducing ice crystal 

formation. The cell suspension was transferred to cryovials and placed at -80 οC overnight 

before transferring to liquid nitrogen. 

To defrost cells the vial was thawed as quickly as possible at 37 οC and with gentle agitation.  

Once thawed the cell suspension was added to full media and spun for 2 minutes.  Media was 

Aspirated and the pellet re-suspended in full media and transferred to a gelatinised plate of 

the appropriate size. 

Titration of Antibiotics 

Working concentrations of selective antibiotics were titrated using naïve cells.  The criterion 

for the correct concentration was that it should kill all cells in 3-5 days of application. G418 was 

tested at 105 mg/ml and Gancyclovir at 2.2 mM, concentrations previously used for another ES 

line and it was concluded that these concentrations are also suitable for the JM8A3N line and 

therefore were used in future experiments.  In the case of puromycin 10μg/ml, 5μg/ml, 3μg/ml 

and 1μg/ml were tested.  It was decided that 3μg/ml concentration would be used for further 

experiments.     

Lipofectamine Transfection of Positive ES Cell Clones 

Cells were first split the day before transfection took place allowing the cells to reach 

approximately 60% confluency the following day.  For a 10cm dish 2 eppendorfs were 

prepared, one containing ~6μg DNA and the other 40μl Lipofectamine 2000 (Invitrogen) which 
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were diluted in media in the absence of antibiotics and FBS.  This was allowed 10 minutes at 

room temperature before they were combined and left for an additional 20 minutes at room 

temperature in order for the DNA and Lipofectamine 2000 to produce adequate complexes.  

Following this further KODMEM minus antibiotics and serum were added to make 7ml of 

medium.  Cells had media aspirated and were rinsed in D-PBS before the media containing the 

transfection reagent and DNA complexes was supplied.  Following this the cells were incubated 

at 37°C at 5% CO2 for 3 hours before having the transfection media aspirated.  The cells were 

then washed in D-PBS and normal full media was replaced. 

Selection of ES Cell Clones following transfection 

The day after transfection cells were exposed to selective antibiotics, in the case of the 

pCAGGs-Flpe vector this was puromycin at 3μg/ml.  This was continued for approximately 10 

days until colonies could be identified and picked as described below.  Once the cells had been 

split across two wells one was exposed to G418 in order to confirm the loss of the neomycin 

cassette. 
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Full Media 

500ml KO-DMEM 

50ml ES certified FBS 

5ml 100x Penicillin-Streptomycin 

5ml 100x L-Glutamine 

3.2% β-mercaptoethanol (Sigma) 

 1ml LIF 

Antibiotics added only when required for targeting experiments 

 

Freezing Medium 

Full medium with 20% FBS and 10%DMSO (Sigma) 

Freshly prepared when required 

 

0.1% Gelatin Solution 

2.5ml prewarmed 2% Gelatin (Sigma) 

50 ml D-PBS 

 

Trypsin 

500ml D-PBS 

0.1 g EDTA (Sigma) 

0.5 g D-glucose (Sigma) 

0.22µm filter sterilise before addition of the following 

5ml Checken Serum 
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20ml 2.5% trypsin  

Solution was aliquoted into appropriate volumes and frozen 
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Targeting 

DNA preparation 

Construct DNA was purified and linearized by complete digest with NotI (New England 

Biolabs).  After running a sample on an agarose gel to ensure complete digest the digested 

DNA was recovered using ethanol precipitation.  After the DNA was purified it was kept under 

70% ethanol at -20 οC until required.  Once the DNA was required the DNA pellet was spun, 

ethanol aspirated and the pellet was left to dry in a sterile tissue culture hood. DNA was 

diluted in sterile ddH20 water in order to provide a final concentration of 30μg in 30μl.   

ES Cell Preperation and Electroporation 

Cells were cultured on 5 gelatinised 10cm plates until 70-80% confluency was reached and 

washed in D-PBS before being trypsinised for 5 minutes.  Following this the cells were spun for 

5 minutes at 300g and resuspended in 800μl D-PBS. 30μl of DNA solution was added to the 

resuspended cells and transferred as quickly as possible to a sterile electroporation cuvette 

(Biorad).  This was placed into the electroporator and pulsed at 240 V/500μF.  The cuvette was 

then placed back in the tissue culture hood and left to stand at room temperature for 20 

minutes.   During this time 10 new plates were prepared with gelatine.  The cells were carefully 

removed from the cuvette and resuspended in 50ml of full media without selective antibiotics.  

The cells were then split across the plates as shown in table 2.5.to give plates of varying cell 

concentrations. 



 78 

 

 

Dish Amount of Full 

Media (ml) 

Amount of cell re-

suspension (ml) 

1 1 9 

2 2 8 

3 3 7 

4 4 6 

5 5 5 

6 6 4 

7 7 3 

8 8 2 

9 9 1 

10 10 Rinse out tube 

 

 

Table 2.5 Volumes for ES Cell Resuspension Following Electroporation 

Volumes of media and cell resuspension for plating following electroporation. 

After overnight incubation the medium was changed and 48 hours after electroporation 

changed again to medium containing the selective antibiotic G418 at 105 mg/ml.  72 hours 

after the electroporation gancyclovier was also added to the medium to a final concentration 

of 2.2 mM.  The plates were then incubated and medium changed daily until approximately 

day 10 when clones began to appear.   
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Once the clones were clearly visible they were carefully picked using a different sterile tip for 

each colony and placed into a bubble of trypsin for 5 minutes, following which the trypsin 

suspension was plated onto one well of a pre-gelatinised 4 well plate filled with the G418-

containing medium.  Once confluent, cells from this well were split onto one 3cm dish and two 

separate 4 well plates as demonstrated in figure 2.2.  When each 4 well plate was nearly 

confluent freezing medium was applied and the dishes were placed in sealed polysterine 

boxes, to ensure slow freezing, before being stored at -80οC.  At all times the selective 

antibiotics were present in the normal ES medium unless stated otherwise.  Once the 3 cm 

plate was confluent the medium was removed and the plate rinsed with 1x PBS before being 

frozen at -20 οC until required for Southern blot analysis. 

 

 

Figure 2.2 The Targeting Process 

Schematic representation of ES cells taken from electroporation to analysis and freezing.   

Analysis of clones by Southern blots 

Southern blotting is a highly sensitive technique allowing one copy of a gene to be detected 

(Southern, 1975).  This is important when producing targeted animal models as the presence 

or absence of the targeted DNA needs to be confirmed. The technique uses specific probes 

that can hybridise to known DNA sequences that have been digested with restriction enzymes.  
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This allows the recognition of either the targeted or wild type gene through the difference in 

size of the digested DNA fragment. 

DNA was isolated from individual ES cell clones grown on 3 cm dishes using phenol-chloroform 

as described above.  The resulting concentrated DNA for each clone then underwent initial 

Southern screens using BamHI digests.  If a clone then appeared to have been correctly 

targeted further restriction enzyme digests and a second hybridisation probe were used to 

confirm this.   

Digested DNA of ES clones were run on a 0.9% agarose gel at a low voltage to begin while 

samples cleared the wells.  After this the voltage was increased and ran until the DNA was 

sufficiently separated.  The gel was imaged before being cut to an appropriate size using a 

clean razor blade and inverted so that the flattest side of the gel would be exposed to the 

membrane ensuring maximal transfer of DNA.  The gel was then placed in depurination 0.25M 

HCl solution for 20 minutes due to the large nature of the expected fragments and this was 

then replaced with fresh for a further 20 minutes.  The gel was then rinsed twice with dH20 

before denaturation buffer was added.  This was left gently rocking for 20 minutes before the 

buffer was drained and fresh was added for a further 20 minutes.  Following this the gel was 

rinsed in dH20 and placed into neutralisation buffer for 20 minutes after which this solution 

was replaced with fresh. 

Blotting membrane was prepared by cutting hybond N+ nylon membrane (Amersham) with 

clean scissors to the same size of the gel.  This was then soaked in boiling ddH20 before being 

placed briefly in 2x SSC. DNA from the gel was transferred to this membrane overnight using 

standard capillary blotting in 10xSSC.  The following morning the membrane was removed 

using clean forceps and allowed to dry.  Once dry the membrane was placed on a UV lamp to 

check the transfer and to highlight any visible landmarks e.g. ladder and position of lanes.  The 

membrane was then baked at 80οC for 2 hours before being rinsed in 2xSSC. 

To prepare the desired probe for Southern hybridisation, the production of which is described 

in chapter 5, approximately 20µg of DNA was EcoRI digested after which the DNA was run and 

an eukaryotic insert was eluted from a 1% agarose gel. 100 ng of eluted DNA was then labelled 

with 0.1mCi of α32P-dCTP in a nick translation reaction using Nick-translation kit (GE 

Healthcare). The labelled DNA was separated from unincorporated dNTPs by passing through 

Sephadex G-50 Nick-column (GE Healthcare).  Labelled DNA was denatured by incubation at 

100οC for 5 minutes, followed by immediately mixing it with ice cold hybridisation buffer.  The 
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probe was then hybridised to the Sothern membrane to allow visualisation of the transferred 

DNA fragments.  The membrane was placed into a hybridisation tube with 5 ml of 

prehybridisation buffer.  This was then left rolling at 67οC for 4 hours after which the 

prehybridisation buffer was removed and replaced with prehybridisation buffer containing 32P-

labelled probe.  The hybridisation reaction was left rolling at 67οC for 16-20 hours before the 

membrane was removed and washed 3 times, 15 minutes each, in 2xSSC with 0.2% SDS at 

67οC.  The membrane was then wrapped in cling film and X-ray film placed on top in order to 

allow visualisation of the hybridised DNA.  The cassette containing the membrane and X-ray 

film were placed at -80 οC for 1-12days to allow the best exposure before the film was 

developed.   
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Depurination Solution 

 0.25 M HCl  

 

Denaturation Solution 

1.5 M NaCl 

0.5 M NaOH 

 

Neutralisation Buffer 

1 M Tris-Cl (pH 7.4) 

3 M NaCl 

 

10x SSC 

1.5 M NaCl 

0.15 M Sodium citrate 

 

Pre-hybridisation Buffer 

4x SSC 

0.5% SDS 

5x Denchardt’s solution 

100 μg/ml denatured salmon testis DNA 
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Production of Chimeric Mice 

Preparation of Cells for Blastocyst Injections 

Cells were defrosted 3 days prior to the injections occurring in order for them to reach 

subconfluency but not require passaging, thus allowing them the best opportunity to remain 

pluripotent. The day before the injections were due to take place medium was aspirated and 

cells rinsed in pre-warmed D-PBS.  Medium was replaced with full medium without LIF and 

selective agents to prepare the cells for injection. On the day of injections cells were washed in 

pre-warmed D-PBS, this was aspirated and trypsin applied as described previously.  Trypsin 

was inactivated with full medium without LIF and selective agents.  The cell suspension was 

transferred to a Falcon tube and spun 300g for 3 minutes, before media was aspirated and 

cells washed with D-PBS.  Cells were spun once more and then re-suspended in 1 ml M2 

medium (Sigma) and spun again.  Following this cells were re-suspended in 100μl M2 and kept 

on ice until injection. 

Blastocyst Injections 

C57Bl/6 breeding pairs were set up 4 days prior to blastocyst harvesting and vaginal plugs 

checked the next morning.  On the day of blastocyst injections uteri were collected from 

plugged females and flushed with M2 medium.  Any blastocysts or morulas were collected and 

transferred to fresh M2 medium and kept at 37 οC until required.  An aliquot of ES cells 

suspension was put in a drop of M2 medium in a depression slide under mineral oil along with 

several collected blastocysts.  The slide was placed onto a microscope stage and prepared for 

injections.  The holding pipette was used to hold the blastocyst in position and round; similar 

sized ES cells were selected with the injection needle.  Between 7 and 12 ES cells per blastocyst 

were injected by Bridget Allen or Orosia Asby of the Cardiff University Transgenic mouse 

Facility. 

Uterine Transfer 

To produce recipient female CD1 mice were housed with vasectomised males 3 days prior to 

injection day, vaginal plugs were checked the next day and plugged mice were recorded as 

pseudo-pregnant recipients. On the day of transfer they were prepared for surgery by 

anesthetizing with avertin (0.25-0.5mg/g).  Once the mice were under anesthesia they were 

placed on a heat pad and their fur cleaned using 70% ethanol prior to making an incision 

across the lower back, in line with the first lumbar vertebra.  The ovary, oviduct and some 
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uterus were exposed, using the fat pad of the ovary to pull them out of the peritoneal cavity.  

Using a 27 gauge needle a hole was made in the uterus and the tip of the transfer pipette 

carefully placed into the pre-made hole and up to 12 blastocysts were gently transferred into 

each side of the uterus.  The uterus, oviduct and ovary were returned back into the peritoneal 

cavity and the incision closed with a wound clip, which was later easily removed.  The animal 

was given pain relief and placed into a clean cage, kept warm and observed until recovered 

from the anesthesia.  These procedures were carried out by Bridget Allen or Orosia Asby of 

Cardiff University Transgenic mouse Facility. 

Statistics 

Statistical analysis was performed to confirm that differences between groups of data were 

significant or not.  All statistical analysis was carried out using Minitab software with guidance 

described in the Practical Data Analysis Workbook for Biologists (Bowker and Randerson., 

2010).   
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Chapter 3 

 

Characterisation of Triple Synuclein 
Knockout Mice 
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Introduction 

The existence of the synuclein family has long been known and the role of α-synuclein in 

disease has been studied for over a decade.  However as yet studies designed to unveil the 

role of these abundant presynaptic proteins have proved unfruitful.  Studies carried out 

previously on single and double synuclein KO animals have given inconclusive results with 

regards to the role of these proteins (summarised in chapter 1).  One clear confounding factor 

is that members of the synuclein family are highly homologous and therefore it has often been 

considered that the remaining member or members of the family in knockout models have 

been able to functionally compensate for the loss of the missing protein.  This is supported by 

the fact that the remaining synuclein in both αγ-/- and αβ-/- synuclein knockout animals is 

upregulated suggesting at least some functional overlap in the synuclein family (Chandra et al., 

2004, Robertson et al., 2004).  Another result that supports this hypothesis is that the 

pathology of animals lacking cysteine string protein alpha (CSP-α) is heightened in the absence 

of both α- and β-synuclein rather than either alone (Chandra et al., 2005).  

As it is well accepted that there is a clear association between the pathology of the midbrain 

dopaminergic system in Parkinson’s disease and α-synuclein, it is important that the proteins 

normal function is correctly understood in order to unravel how dysfunction can lead to 

disease. The only way to clearly resolve the predicament of familial redundancy was to 

produce and study triple synuclein knockout mice.   Both β- and γ- synuclein are also highly 

expressed in the SNpc and unbalance of the synucleins may add to pathological processes.  For 

this reason the nigrostriatal system of these TKO animals was explored in the hope of revealing 

a function for the synucleins.  
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Results  

The production of the triple knockout animals used in this chapter is described in Anwar et al., 

2011.  Briefly, heterozygous β-synuclein KO animals produced by Chandra et al. (2004) were 

backcrossed onto a pure C57Bl/6J background before being crossed with αγ-/- synuclein double 

knockout animals on the same background, already possessed by our lab.  Therefore the 

resulting animals were on a pure background. 

Unless stated otherwise all animals used were male in order to limit any impact that hormonal 

cycles in female animals may have on the brain and were between the ages of 4-5 months of 

age. The absence of all three synucleins in the brain of TKO mice was confirmed by 

immunohistoche

mistry as 

illustrated in 

figure 3.1. 

 

 

Figure 3.3 Lack of Synuclein Expression in TKO Mice 

Detection of the synucleins in both WT and triple synuclein null mice brains.  Coronal sections 

at the Bregma 0.38mm level stained with antibodies against either α-, β- or γ-synuclein.  

Normal distribution of each synuclein is shown in the WT brain whereas in the triple synuclein 

null animal the expression of all three synucleins is absent. Scale bar represents 1mm. 
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Survival of Dopaminergic Neurons 

The synucleins, in particular α-synuclein have been linked to dopaminergic neuronal survival.  

In order to assess the effect of the loss of all three synucleins on the midbrain dopaminergic 

neurons the number of TH positive cells of the venteral tegmental area (VTA) and the SNpc 

were stereologically counted in 4 month old male mice (figure 3.2).  A total of 18 WT and 28 

αβγ-/- synuclein mice were used and both sides of the VTA and SNpc were assessed as 

described in Materials and Methods.  As can be seen in figure 3.2 these counts revealed no 

significant differences in the number of TH positive cells in either the VTA or SNpc of αβγ-/- 

synuclein animals in comparison to their WT counterparts.  Aged animals of 24 months also 

showed no alternations in their number of TH cells in the VTA or SNpc (figure 3.2). 

 

Figure 3.4 Midbrain Dopaminergic Cell Counts for TKO Mice 

(A) Total number of TH-positive neurons in SNpc  of 4-month old animals,  wild type (n=18) and 

TKO (n=28), and 24 month old WT (n=9) and αβγ-/- (n=18).  (B) Total number of TH-positive 

neurons in the VTA of 4-month old mice, wild type (n=18) and TKO (n=28) mice and 24 month 

old WT (n=9) and αβγ-/- (n=18).   
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Synaptic Marker Expression and Distribution 

Figure 3.3 A and B demonstrates that there were no alterations in the levels of various synaptic 

markers as shown by quantitative Western blot.  To assess normal gross distribution of striatal 

synapses coronal sections were taken of both  WT and αβγ-/- synuclein 4 month old animals 

and immunostained for TH and the dopamine active transporter (DAT).  Again there were no 

alterations in the gross morphology of the striatum of TKO animals in comparison to WT 

controls (figure 3.3, C).   

 

Figure 3.5 Synaptic Marker Expression Analysis 

(A) Representative Western blots showing synaptic markers in the striatum of both WT and 

αβγ-/- mice. Striatum samples from 3-4 individual animals per genotype were used to assess 
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the mean expression level of synaptic markers. Fluorescently labeled secondary antibodies 

were used to calculate band density ratio between target protein and β-actin.  Bar chart shows 

means ±SEM of these ratios normalised to the mean ratio for WT animal samples as 100% (B).  

(C) Coronal sections of WT and αβγ-/- 4 month old animals.  Images represent Bregma 0.38mm 

level and have a 1mm scale bar applicable to all images. 

Concentrations of Striatal Dopamine and its Metabolites 

The work described in this paragraph was carried out in collaboration with Steven Millership.  

Although it was apparent that the αβγ-/- synuclein animals had a full complement of their 

dopaminergic neurons in the SNpc it was important to investigate if these cells were 

functioning correctly with regard to dopamine production at their terminals in the striatum.  

Previous synuclein knockout models have shown alterations in the normal levels of striatal 

dopamine, pointing to it as an important factor to investigate.  Dorsal striatum of 4 month old 

male TKO and WT animals were collected, monoamines extracted and their concentrations 

were analysed by HPLC with electrochemical detection.  As seen in figure 3.4 there was a 

significant decrease in the amount of striatal dopamine in the TKO mice compared to WT 

animals.  Significant decreases in both DOPAC and HVA, dopamine (DA) metabolites, were also 

seen in the TKO mice, however these were less affected than the levels of dopamine.  Due to 

the alterations in the normal equilibrium between dopamine and its metabolites, these TKO 

animals have a significantly higher DOPAC/dopamine ratio than WT animals, and while we 

observed a trend towards decreasing HVA/dopamine ratios in TKO mice, the difference does 

not reach statistical significance (Table 3.3, B). 
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Figure 3.6 Striatal Dopamine Concentrations  

Striatal concentrations (pmol/mg protein) of dopamine (DA) and its metabolites, DOPAC and 

HVA, were normalised to the mean value for wild type animals (100%). Means±SEM of data 

obtained from 15 wild type (WT) and 14 αβγ-/- mouse samples are shown (**p<0.01; 

Kolmogorov-Smirnov test). (B) Metabolite to dopamine concentration ratios of WT and αβγ-/- 

from striatal samples.  Statistical significance was tested by Kolmogorov‐Smirnov two sample 

non parametric test where ** represents p<0.01. 

TKO Mice Display Normal Striatal Tyrosine Hydroxylase Activity 

As it was evident that the TKO animals displayed a reduction in striatal dopamine 

concentrations the activity of TH, the rate limiting enzyme in dopamine synthesis, was 

assessed.   Mice were treated with NSD-1015, an inhibitor of aromatic L-amino acid 

decarboxylase (AADC).  AADC is the enzyme directly downstream of TH and therefore 

accumulation of L-DOPA could be assessed by HPLC.  As shown in figure 3.5 there were no 
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significant changes in L-DOPA concentrations following the inhibition of AADC confirming that 

TKO mice had normal functioning TH.  

 

 
 

Figure 3.7 Tyrosine Hydroxylase Activity 

The rate of L-DOPA accumulation in the striatum of both WT (n=5) and TKO (n=5) mice 

following inhibition of AADC.   

 

Behavioural Analysis 

Work described in this section was done in collaboration with Owen Peters.  Having shown 

significant alterations in striatal dopamine concentrations in the αβγ-/- synuclein mice it was 

apparent that any behavioural deficits should also be investigated.  Endurance, co-ordination 

and balance were tested using the accelerating rotarod test.  By 4 months αβγ-/- synuclein 

animals already showed a significant loss in their ability to stay on the accelerating rotarod for 

the duration of the test in comparison to age matched WT animals (figure 3.6, B).  The mice 

were also tested using the inverted grid test, in which co-ordination and balance are assessed.  

As can be seen in figure 3.6 (A) TKO animals are able to complete a 60 sec test up until 12 

months of age but showed a decreasing ability to complete this task with age.  By 24 months 

there was a significant reduction in the time that TKO animals could stay on the inverted grid 

compared to their WT counterparts. 
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Figure 3.8 Assessment of TKO Mice on the Inverted Grid and Rotarod 

Means ±SEM of experimental 12 month (n=24), 18 month (n= 17) and 24 month (n=10) aged 

TKO and 24 month (n=16) old WT animals were tested using the inverted grid test (A).  (B) 4 

month old αβγ-/- (n=30) were compared with aged matched WT (n=27) animals with 

accelerating rotarod and their latency to fall was recorded.  The best result for each animal 

was used for calculation of the group mean. Statistical testing by the Kolmogorov–Smirnov test 

is represented as p=<0.01 **. 

Four month old animals were also tested for locomotor activity by placing them in a home-like 

cage environment for a 28 hour period.  During this time the number of infrared beam breaks 

were recorded and it was apparent that the TKO animals responded to a change of 

environment with increased locomotor activity in comparison to WT animals.  For the first 4 

hours in the new cage the TKO animals showed a significant increase in motor activity 

compared to WT animals (figure 3.7, A, B).  Following acclimatisation to these changes their 

levels of activity again matched that of the WT animals and only altered when the lights in the 

room where turned off as part of the normal light dark cycle maintained in the animal house. 

This is a sign of a hyperdopaminergic phenotype, which was also noticed for TKO mice in 

parallel experiments carried out by our collaborators in the University of Oxford using different 

behavioral tests. 
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Figure 3.9 Assesment of Activity Levels in TKO Mice 

(A) The locomotor activity of αβγ-/- (n=13; grey diamonds) and WT (n= 13; white diamonds) 

animals measured by the number of breaks of infrared beams over of a 28 hour period in a 

home-like cage.  Note that the rise in activity in hour 10 corresponds with the light in the test 

room being turned off.  The number of beam breaks in the first and last 4 hour intervals is 

shown in B which both correspond to the period between 10.00am – 2.00pm.  Statistical 

testing by the Kolmogorov–Smirnov test is represented as p=<0.05 * and p=<0.01 **. 

Response of TKO Mice to Psychostimulants 

Due to the apparent DA deficit paired with the hyperdopaminergic phenotype DA dynamics 

were further explored in these TKO mice using various psychostimulants.  Animals were 

injected with D-amphetamine (dAMP) which displaces dopamine stored in the synaptic 

vesicles into the synaptic cleft.  TKO mice injected with 4mg/kg dAMP displayed a lesser 

locomotor activity response and this response was also developed later in comparison to age-

matched WT animals (figure 3.8, B).  

TKO mice were also treated with 10mg/kg cocaine, which acts by blocking dopamine reuptake 

from the synaptic cleft.  In contrast to the results of the dAMP TKO mice responded to cocaine 

with the same dynamics and amplitude of locomotion increase as WT animals figure 3.8, A)   

L-DOPA is a widely used drug in the treatment of PD which works to overcome the rate limiting 

step in the DA synthesis pathway.  This dopamine precursor is able to cross the blood brain 

barrier and enter the central nervous system (CNS) where it is then converted by AADC into DA 

to help increase the diminished concentrations of DA in PD patients.  50mg/kg methyl L-DOPA 

WT 

αβγ-/- 
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was administered to TKO mice 20 minutes prior to dAMP injections and was found to restore 

the locomotor response of dAMP treated TKO animals to that of their WT counterparts (figure 

3.8, C). 

 

Figure 3.10 Psychostimulent Assessment of TKO Mice 

For all tests measuring locomotor activity in response to treatment with psychostimulants WT 

animals are represented by white diamonds and αβγ-/- animals by grey squares.  Statistical 

analysis between groups for each 4 minute interval by Kolmogorov-Smirnov is represented at 

**,## for p= < 0.01 and * for p= <0.05.  (A) Animals were subjected to 10mg/kg cocaine after a 

30 minute acclimatisation period in the home-like cage.  Following the injection the animal was 

returned to the same cage and activity recorded for a further 90 min.  (B) Mice were given 

4mg/kg dAMP following the same procedure as described in D.  (C) 20 minutes prior to being 

WT 

αβγ-/- 

WT 

αβγ-/- 

WT 

αβγ-/- 

L-DOPA pre-treated αβγ-/- 
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placed in the recording apparatus animals were pre-treated with 50mg/kg L-DOPA and were 

consequently injected with dAMP.  Animals pretreated with L-DOPA are represented by black 

circles which overlay the same graph as B.  Statistical differences are represented with ## 

between L-DOPA treated and naive αβγ-/- and ** between L-DOPA treated mice and wild-type 

mice 

Discussion 

As shown above, triple synuclein null mice have proved a useful model in revealing some 

insight to the role of the synucleins in the midbrain dopaminergic neurons.  It would appear 

that this family of proteins is required for normal dopamine handling, bolstering previous 

studies also hinting at this.  However it is also clear that the synucleins are not required for the 

normal development and survival of dopaminergic neurons.   

To investigate the effect caused to the nigrostriatal system by the removal of all three 

synucleins TH positive cell bodies of both the VTA and SNpc were counted in a stereological 

manner.  TKO animals had no significant alterations in either of these structures when 

compared to WT mice at both 4 and 24 month time points.  This is consistent with results of 

another recent study which showed no change in the number of neurons in the CA3 and CA1 

subfields of the hippocampus (Greten-Harrison et al., 2010).  However, it should be noted that 

a previous study looking at single α-/- and γ-/- synuclein animals as well as double αγ-/- synuclein 

mice did show a small (15%) reduction of dopaminergic neurons, which was not progressive, in 

the SNpc but not in the VTA (Robertson et al., 2004).  This may be due to a compensatory 

mechanism only being partially activated in these animals, an idea which will be discussed 

later.  The fact that the TKO mice have a full complement of dopaminergic neurons in both the 

SNpc and VTA suggests that losing all three synucleins is not detrimental to cell development 

or survival. 

 Although there were no gross morphological changes in these animals it was also important to 

explore any obvious changes in synaptic marker expression and distribution as an indicator for 

synaptic dysfunction.   Using an array of synaptic markers, striatal samples were assessed in 

both WT and TKO mice but revealed no changes in protein expression levels by Western blot 

analysis.  Gross morphological examinations of the striatum using coronal sections 

immunostained with DAT and TH, both specific markers of dopaminergic nerve terminals, also 

highlighted that there were no differences morphologically between the two genotypes.  This 

is in agreement with other single and double synuclein animals that have been previously 
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characterized.  However changes to the levels of CSP-α and VAMP2 have been noted in aged 

TKO mice produced independently to our own animals, which we have not been able to verify. 

Burré et al noted that there was a significant decrease in the levels of VAMP2 and a significant 

increase in CSP-α levels in their TKO mice which in turn lead them to describe a decrease in 

SNARE-complex assembly in these animals (Burré et al., 2010).  Changes in the levels of VAMP2 

were also shown in aged TKO animals, in which the animals are derived in the same manner 

(Greten-Harrison et al., 2010).  However we were unable to replicate these results in our own 

line of TKO animals and these discrepancies may be down to the fact that different neuronal 

populations were studied.  In both aforementioned papers protein markers were assessed in 

total brain samples while we studied a specific region of the brain, dorsal striatum. Moreover, 

the results presented in this chapter were obtained for 4-month old but not ageing TKO mice 

and for this reason are not directly comparable.  It should also be noted that these TKO mice 

described by Burre et al. and Greten-Harrison et al. have a distinct age-related motor 

phenotype and diminished survival neither of which have been demonstrated in the TKO 

animals produced in our lab (Anwar et al., 2011).  This may be down to differences between 

mouse strains - our animals are on a pure C57Bl/6J whereas those described by Burre et al. 

and Greten-Harrison et al. are not (Burré et al., 2010, Greten-Harrison et al., 2010).  

Following on from the synaptic characterisation the levels of striatal dopamine and its 

metabolites HVA and DOPAC were quantified using HPLC.   Despite there being no 

morphological changes in these TKO mice there was a clear dopamine deficit in the dorsal 

striatum at 4 months of approximately 40% in comparison to WT counterparts.  Although HVA 

and DOPAC showed significant reductions of 38.5% and 20.3%respectively, they were to less of 

an extent than DA (41.1%) therefore resulting in increased metabolite/DA ratios, which for 

DOPAC/DA reached statistical significance, suggesting a high turnover of DA.  One possible 

reason that DA levels may have been lower than WT animals is due to reduced activity of TH, 

the rate limiting enzyme in the production of DA.  However this was dismissed by inhibiting 

AADC, the enzyme downstream of TH, and then measuring the levels of L-DOPA using HPLC.  

This showed that there were no differences in the amount of L-DOPA, the precursor of 

dopamine, produced between TKO and WT animals.  

A dopamine deficit has been noted in some previous studies of single and double synuclein 

null mice, but to a lesser extent than that seen in TKO animals.  Both αβ-/- and a line of α-/- 

synuclein mice have been shown to harbor an 18% reduction in their striatal DA content  

(Abeliovich et al., 2000, Chandra et al., 2004).  However, αγ-/- synuclein mice were not 
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described as having any dopamine deficit.  This may suggest that β-synuclein may be more 

readily able to act in a compensatory mechanism. The only study which has shown a similar 

level of DA loss involved aged (more than 2 years of age) α-/- synuclein mice.  This study was 

able to demonstrate that in these aged animals there was a DA deficit of 36% (Al-Wandi et al., 

2010).  This may be explained by a possible compensatory mechanism not being able to 

sufficiently cope in old age when other challenges may be occurring in the affected neurons. 

Despite displaying a clear reduction in dopamine concentrations these TKO animals displayed a 

hyperdopaminergic phenotype, as shown by the fact that they react to changes in their 

environment with a much larger increase in locomotive activity than that observed in WT mice.   

However once the TKO animals have become habituated to these changes in their 

environment their level of activity returns to similar levels of their WT counterparts.  Work 

done by our collaborators also supports this notion: they were able to show that TKO mice 

were more active in the nonanxiogenic open field test and also in the hole board test, 

demonstrating a significantly higher number of nose pokes for TKO mice compared to WT.  

Increased levels of synucleins have been associated with anxiety and so to ensure anxiety was 

not the cause of this increased activity in novel environments TKO mice were also tested in the 

bright open field and the elevated plus maze (Graham and Sidhu, 2010, George et al., 2008). 

TKO mice showed no differences in their response in these tests compared to WT animals, 

suggesting that loss of all three synucleins does not affect anxiety levels, in agreement with a 

study of α-synuclein knockout animals tested for anxiety (Anwar et al., 2011, Pena-Oliver et al., 

2010). 

To further explore apparent abnormalities in dopamine neurotransmission the use of 

psychostimulants were employed.  dAMP is able to displace DA from synaptic vesicles by 

entering them via the vesicular monoamine transporter (VMAT2) in exchange for dopamine.  

The resulting cytosolic increase in dopamine concentration is able to initiate the reversal of 

DAT which in turn allows dopamine efflux into the synaptic cleft  (SuIzer et al., 1995).  The 

effect of dAMP is dependent on the size of the presynaptic pool of dopamine and its effects 

are not dependent on regulated exocytosis.  When mice were injected with 4mg/kg dAMP TKO 

animals responded at a slower rate and to less of an extent than WT mice.  This is not 

surprising; due to the 40% reduction in DA there is less overall DA to displace.  However, when 

TKO mice were pre-treated with an injection of L-DOPA, a drug that overcomes the rate 

limiting step in DA synthesis, prior to injecting with dAMP the response was restored to that of 

WT levels.  When TKO mice were exposed to cocaine, which works by blocking the reuptake of 
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DA from the presynaptic cleft, the response was similar to that of WT mice.   The responses 

seen in the TKO animals when challenged with drugs that alter normal DA neurotransmission 

suggest that these animals have less DA stored in their synaptic vesicles.  The number and 

intrasynaptic distribution of synaptic vesicles had been shown by our collaborators to not be 

significantly altered compared to that of WT animals and this has also been confirmed in 

hippocampal neurons of TKO mice produced independently of those used here (Anwar et al., 

2011, Greten-Harrison et al., 2010).  Thus it is unlikely that the diminished response to dAMP is 

due to a smaller pool of synaptic vesicles, a more plausible explanation is that these vesicles 

are less loaded with the neurotransmitter. 

The results above appear to be contradictory, i.e. TKO mice have a hyperdopaminergic 

phenotype in novel environments but have significantly decreased levels of DA which appears 

to arise due to problems in DA synaptic vesicle storage.  Our collaborators used fast-scan cyclic 

voltametry to investigate the release and reuptake dynamics of dopamine in striatal slices and 

found that although TKO mice have less dopamine they had a >2 fold increase in the 

realeasabilty of dopamine in the caudate-putamen (CPu), but not in the nucleus accumbens 

(NAc).  They also found that the DA loss was specific to the CPu and that the concentration of 

DA in the NAc was similar to WT animals, possibly suggesting that SNpc dopaminergic neurons 

that send their synapses to the CPu are a more sensitive population to the loss of all three 

synucleins than VTA dopaminergic neurons that send their synapses to the NAc (Anwar et al., 

2011).  This increased releasability helps explain the hyperdopaminergic phenotype seen in the 

TKO animals. 

When TKO animals were assessed on the accelerating rotarod they already displayed a 

significant decline in the time that they could stay on the apparatus by 4 months, compared to 

WT animals.  This signifies that these TKO mice are suffering with their ability to balance and 

coordinate movement effectively.  TKO mice also show a progressive loss in their ability to 

perform the inverted grid test with age compared to WT animals.  One possible explanation to 

this is that there is a compensatory mechanism that is put in place in these TKO mice during a 

critical development period to overcome the loss of all three synucleins at the synapse.  This 

may mean that although these animals manage to survive and have a reasonably non-overt 

phenotype that the mechanism put in place is not as effective at replacing the synucleins once 

the animals start to age and other insults in the neurons begin to occur.  This compensation 

mechanism is likely set up prior to birth so that the animals are able to develop as normal 

despite having lost a group of highly abundant proteins at their synapses.   
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From the above it is apparent that, although the synucleins are not required for the survival of 

dopaminergic neurons of the midbrain, it is evident that they do contribute to the normal 

handling of dopamine.  It is clear that the loss of all three synucleins loads this dopaminergic 

system with a greater burden than when either one or two members of the family are 

removed.   It is also evident that although there may be some extent of functional redundancy 

within the synuclein family, it is unlikely that this alone that has masked any overt phenotypes 

being revealed in the previous single and double knockout animals.  Intriguingly some of the 

results above may suggest that another mechanism may be able to functionally compensate 

for the lack of all three synucleins, which appears to be less effective with age.  Most 

importantly this work has revealed details on the extent of the synucleins role in the normal 

dynamics of dopamine at the synapse.  It will be important that these mechanisms are further 

explored to allow a more pinpointed role for each member of the synuclein family to be 

revealed.
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Chapter 4 
 

The Effects of MPTP on Triple 
Synuclein Knockout Animals 
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Introduction 

The discovery and mechanism of action of MPTP has been previously discussed in chapter 1.  

This specific dopaminergic neurotoxin has become a very important model for the study of PD 

due to its ability to replicate SNpc cell loss and is often referred to as the gold standard of toxin 

induced models of PD.  Importantly this model has received validation in human subjects 

through the unfortunate contamination of heroin which was later injected by addicts 

(Langston et al., 1983).  MPTP’s structural similarity to dopamine, illustrated in figure 4.1, is 

considered important in allowing its characteristic targeting of dopaminergic neurons. 

It has been shown in previous studies that mice lacking α-, γ- or both αγ-/- synuclein knockouts 

have various degrees of resistance to the dopaminergic neurotoxin MPTP (Dauer et al., 2002, 

Drolet et al., 2004, Robertson et al., 2004).  This has led the field to hypothesise that these two 

synucleins are involved in the MPTP toxicity mechanism and that they are required for the loss 

of SNpc dopaminergic cells by such a mechanism.  A clear way in which to further explore this 

relationship between the synuclein family and MPTP was to expose TKO mice to the 

neurotoxin.  TKO mice were administered a sub-chronic regime of MPTP and their midbrain 

dopaminergic architecture investigated.  It was hypothesised that animals lacking all members 

of the synuclein family should display at least an equal level of resistance to MPTP as α-, γ- or 

both αγ-/- synuclein null animals. 

 

Figure 4.11 Dopamine, MPTP, MPP+ Structures 

The molecular structures of dopamine, MPTP and MPTPs active metabolite MPP+.  Image 

adapted from (Blandini and Armentero, 2012). 
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Results 

MPTP Sensitivity of TKO Mice 

Sub-chronic MPTP administration was given as has been previously described (Robertson et al., 

2004).  Briefly, male mice between 8-10 weeks of age were injected intreperitoneally with 

either PBS or 30mg/kg MPTP at 24 hour intervals for 5 consecutive days.  Tissues were then 

harvested 21 days following the final injection.  Both VTA and SNpc TH positive neurons were 

stereotactically counted for all genotypes mentioned (figure 4.2).   As expected WT mice were 

sensitive to MPTP showing a 35.4% reduction in SNpc dopaminergic neurons (figure 4.2 I).  A 

greater degree of sensitivity to MPTP treatment was revealed for SNpc TH positive neurons of 

TKO mice.   These animals had a 56.0% decrease in the number of their TH positive neurons 

which was approximately 21% more than seen in WT mice.  A significant, 22.3% loss of VTA 

neurons in TKO animals was also Identified whilst in the WT animals treated with MPTP the 

VTA was found to be resistant to the effects of MPTP toxicity as would be expected (figure 4.2, 

J). 
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Figure 4.12 Assessment of SNpc and VTA structures following MPTP treatment in TKO 
Mice 

A-H representative images of MPTP treated (B, D, F, H) and untreated (A, C, E, G) WT and triple 

synuclein knockout animals.  Images show both VTA and SNpc structures immunostained with 

tyrosine hydroxylase. Scales bars represent 250µm (A, B, E, F) and 100µm (C. D, G, H).  (I) Total 

mean number ± SEM of SNpc TH positive neurons of MPTP treated and untreated WT and TKO 

animals. (J) Total of VTA TH positive neurons in both treated and untreated WT and TKO 

animals.  In both cases statistical significance was assessed using the nonparametric 

Kolmogorov-Smirnov test and is  demonstrated using ** where p=<0.01. 

MPTP Sensitivity in Mice lacking β-Synuclein 

Further to this, knockout mice lacking β-synuclein, which have never been assessed for their 

sensitivity to MPTP, were investigated in an attempt to shed more light on the role of this 

synuclein in MPTP toxicity.  Following the same sub-chronic MPTP injection regime brain 

sections from mice lacking either β-synuclein only, or in combination with αβ-/- or βγ-/- 

synuclein, were immunostained with anti-TH antibody and TH-positive neurons were counted 
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both in VTA and SNpc.  In β-synuclein knockout mice 44.0% of DA neuron loss was revealed in 

SNpc, in βγ-/- mice - 30.6% and in αβ-/- mice – 34.3%, all statistically not different from 35.4% 

loss in WT mice (figure 4.3).  This suggests that SNpc DA neurons of all three studied groups of 

knockout animals are as sensitive to MPTP toxicity as correspondent neurons of WT animals.  

DA neurons of VTA were resistant to MPTP toxicity with the exception of neurons of αβ-/- mice 

that showed slight but statistically significant 16.2% loss.  

 

Figure 4.13 Affect of MPTP Treatment on the SNpc and VTA in Mice Lacking β-
Synuclein 

Total TH positive cell counts of the SNpc in MPTP treated and untreated groups of various β-

synuclein knockout combinations (A).  (B) Total TH positive cell counts of the VTA in MPTP 

treated and untreated groups of various β-synuclein knockout combinations.  In all cases 9-11 

animals were used per treatment per genotype and statistical significance was determined by 
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nonparametric Kolmogorov-Smirnov test demonstrated using ** where p=<0.01 and * where 

p= <0.05. 

Synaptic Vesicle Uptake 

In order for neurons to limit the damage obtained by MPP+, MPTPs active metabolite, it must 

be sequestered in synaptic vesicles in a VMAT2 dependent manner (Liu et al., 1992).  As TKO 

animals show higher sensitivity to MPTP than WT or other combinations of synuclein 

knockouts a possible mechanism may lie in the TKO animals not being able to sequester MPP+ 

as effectively as other synuclein knockout combinations.  As the sequestering process of MPP+ 

is similar to the process of vesicular DA uptake and is VMAT2-dependent the amount of 

VMAT2 protein in the synaptic vesicle fractions of both WT and TKO animals was first assessed 

and found to be equal (figure 4.4).  To further explore this hypothesis synaptic vesicles were 

collected from the striata of 4 month old male TKO and WT animals and uptake of 3H-

dopamine at a concentration of 10nM was measured as described in Materials and Methods.  

Results from this experiment, seen in figure 4.4 (B), showed that TKO animals had a 38.5 ± 

4.71% reduction in tetrabenazine-sensitive dopamine uptake.   

 

Figure 4.14 Vesicular Dopamine Uptake in TKO Mice 

(A) Western blot showing protein fractions from WT mouse striatum.  S1 was obtained by 

centrifugation at 5,000 x g. for 10 minutes of crude homogenate. The resulting supernatant 

was centrifuged at 20,000 x g for 20 minutes and represents the post nuclear supernatant. S2. 

The consequential pellet contained crude synaptosomes; P2.  Following this P2 was 

resuspended and centrifuged at 20,000g for 20 minutes giving P3 containing synaptic 

membranes and S3 which was centrifuged at 120,000g for a further 40 minutes to pellet any 

synaptic membranes.  This resulted in S4 and the final pellet, P5, which contained synaptic 

vesicles for further analysis.  As can be seen all three synucleins are present in the vesicle 
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fraction.  (B) Graph representing the mean ± SEM of dopamine uptake of synaptic vesicles 

purified from the striatum of WT and αβγ-/- synuclein animals.  In both groups 15 animals were 

used split across 3 separate experiments.  A representative Western blot shows equal amounts 

of VMAT2 in vesicular fractions of both genotypes (inset).  Statistical significance was 

determined using the non-parametric Kolmogorov-Smirnov test and ** represents p=<0.01.  

Synaptic Vesicle Uptake in the Presence of β-Synuclein 

As it was apparent from the results of the MPTP experiments that dopaminergic neurons 

lacking β-synuclein as well as other synuclein(s) appear to be more sensitive to the toxin than 

dopaminergic neurons possessing β-synuclein it was important to further evaluate a possible 

role for β-synuclein in the ability of DA neurons to ameliorate MPTP toxicity in the absence of 

other synucleins. Therefore, recombinant β-synuclein was used to see if the protein could 

rescue the vesicular dopamine uptake deficit seen in TKO mice.  First, recombinant β-synuclein 

was preincubated with isolated synaptic vesicles for 15 minutes prior to the introduction of 3H-

dopamine.  No significant effect on dopamine uptake was observed in these experiments 

(figure 4.5, A).  In another set of experiments recombinant β-synuclein was preincubated at 

the same concentration and for the same time with supernatant S3 before further purification 

of vesicles from this fraction by high-speed centrifugation. When resulting vesicles were used 

in the uptake reaction, a small but statistically significant increase in 3H-dopamine uptake was 

observed (figure 4.5, B). 

 

Figure 4.15 TKO Vesicular Dopamine Uptake in the Presence of β-Synuclein 

(A) Graph representing the mean ± SEM of vesicular dopamine uptake in the presence of 

20ug/ml recombinant β-synuclein only and (B) in the presence of both β-synuclein and the S3 

fraction in vesicles purified from αβγ-/- synuclein mice.  In both cases statistical significance was 
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tested using the non-parametric Kolmogorov-Smirnov test and ** represents p=<0.01 and non 

significant (NS) where p=>0.05. 

Discussion 

Previous studies carried out by a number of groups have shown that α-synuclein null mice 

harbour a clear resistance to MPTP toxicity (Klivenyi et al., 2006, Schluter et al., 2003, Dauer et 

al., 2002, Drolet et al., 2004, Robertson et al., 2004).  As previously stated, double αγ-/- 

synuclein mice have also shown a degree of resistance to this neurotoxin with 85.9 ± 6.6% of 

SNpc TH positive neurons remaining following the same MPTP treatment as described here 

(Robertson et al., 2004).  It was therefore sensible to hypothesise that TKO animals would also 

be resistant to the affects of MPTP.  However our results presented in this chapter clearly 

demonstrate that the TKO animals show a greater degree of sensitivity to MPTP in SNpc 

dopaminergic neurons than WT animals.  The sensitivity of WT animals to the drug in our 

experiments was comparable to the sensitivity of SNpc neurons observed in other studies that 

used a similar protocol of MPTP administration (Robertson et al., 2004, Klivenyi et al., 2006, 

Dauer et al., 2003).  It is also apparent from these experiments that β-synuclein seems to play 

a crucial role in being able to alleviate MPTP toxicity in the absence of other synucleins. 

Animals lacking β-synuclein either on its own or in combination i.e. αβ-/-, βγ-/- synuclein or as 

TKOs show apparent sensitivity to MPTP. 

On top of this the TKO mice and to lesser extent αβ-/- mice display sensitivity of the 

dopaminergic population of the VTA which has not been noted in any other previously studied 

synuclein knockout combination or in WT animals when exposed to MPTP (Robertson et al., 

2004).  Normally VTA neurons are completely resistant to MPTP and therefore they are often 

used as an internal control in such studies.  It is generally considered that the reason for this 

selective loss is due to the differences in the ratios of DAT to VMAT2 that are expressed in the 

two neuronal populations.  MPP+ requires DAT to enter the neuron, following which it either 

inhibits complex one of the mitochondria or is stored in synaptic vesicles in a VMAT2 

dependent manner.  This latter process seems to allow the cell to protect itself from certain 

cell death should the selective toxin reach the mitochondria.    Therefore if a cell had a higher 

concentration of DAT to VMAT2 then more MPP+ will gain access to the cytosol but will be 

inefficiently  sequestered into vesicles by VMAT2 therefore causing a large degree of toxicity.  

The opposite of this is the more desired option when dealing with MPP+ toxicity, as less of the 

toxin will enter the cell and that that does is properly stored in the synaptic vesicles, thus 

limiting the potential damage.  Mouse models provide evidence for this hypothesis with DAT 
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knockout mice showing resistance to MPTP toxicity as MPP+ is unable to be transported into 

the cells whereas mice that are heterozygous VMAT2 knockout have been shown to lose more 

than twice the amount of dopaminergic neurons compared to WT animals when treated with 

MPTP (Gainetdinov et al., 1997, Takahashi et al., 1997).  It is also known that in brains of PD 

patients the putamen displays a large degree of damage and that this brain region has a  high 

ratio of DAT to VMAT2, which may in turn mean that DA is not well compartmentalised within 

the  cell leading to a string of toxicity problems (Miller et al., 1999).   It is possible that the TKO 

and αβ-/- animals display a more sensitive response to MPTP in the VTA as they are unable to 

cope with the complete lack of synucleins.  This is indeed supported by the apparent role of β-

synuclein in participation of DA sequestering in the synaptic terminals.  With the loss of all 

synucleins it is possible that this function cannot be adequately replaced.   

A parallel study has shown that TKO mice have normal DAT function (Anwar et al., 2011) and 

so, knowing that levels of VMAT2 are also important for the effective sequestering of MPP+ 

within the cell, the concentration of VMAT2 was compared in the synaptic vesicle fraction of 

striatal tissue from both TKO and WT animals.  VAMT2 concentrations of TKO mice were 

shown to be comparable to WT animals suggesting that the MPP+ could be sequestered as 

normal within the synaptic vesicles providing it is functioning normally.  To ensure this was the 

case normal DA uptake dynamics were explored.  It is only due to the structure of MPP+ being 

similar to DA that it can enter the neuron via DAT and then be sequestered into synaptic 

vesicles in a VMAT2 dependent manner; looking at the normal physiological functioning of 

these cells it would allow some estimation of what was happening to MPP+. 

As expected all 3 synucleins were purified in the cytosolic fraction and they were also shown to 

co-purify with the synaptic vesicle fraction (figure 4.4, A).  This is unsurprising due to the host 

of literature showing that the synucleins are capable of binding to a number of biological and 

synthetic membranes (Jensen et al., 1998, Eliezer et al., 2001, Davidson et al., 1998).  The next 

step was to see if synucleins affect the transport of dopamine into the synaptic vesicles.  

Purified synaptic vesicles from both 4 month old WT and TKO mice had their ability to uptake 

3H-dopamine at a physiological concentration measured.  This showed a significant reduction 

in the ability of synaptic vesicles purified from TKO mice to uptake dopamine.  This was also 

shown to be a tetrabenazine (a VMAT2 inhibitor) sensitive process, clearly demonstrating that 

the uptake deficit was in some manner related to VMAT2 function.  One possible explanation 

for this reduction in DA uptake would be a decrease in the number of synaptic vesicles in the 

dopaminergic terminals of SNpc neurons.  However this has been shown not to be the case in 
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two separate electron microscopy studies looking at the ultrastructural changes in the 

synapses of TKO mice (Greten-Harrison et al., 2010, Anwar et al., 2011).  This decreased ability 

to uptake DA efficiently into synaptic vesicles may also explain why the TKO animals have a 

high DOPAC/DA ratio, which is likely to help prevent the toxic build up of free cytosolic DA in 

the cell and in turn also results in decreased DA levels in the dorsal striatum.    Another result 

of this diminished DA uptake into the synaptic vesicles would be the attenuated response to 

amphetamine seen in TKO mice as shown previously. 

Synuclein KO animals lacking β-synuclein show an increased sensitivity to MPTP compared to 

other genotypes.  It is possible that the synucleins are somehow involved in the process of 

vesicular uptake and that certain members of this family are simply more efficient at this 

process than others.  If this were the case it could be assumed that β-synuclein may be the 

best candidate for this task and when it substitutes lost members of the family, for example in 

α-/- or αγ-/- synuclein knockout mice, efficiency of vesicular uptake increases leading to 

increased ability to sequester MPP+ and, consequently increased resistance to MPTP toxicity. 

Indeed, this is supported by the fact that β-synuclein protein levels are increased in αγ-/- and α-

/- synuclein animals (Robertson et al., 2004). In contrast, when β-synuclein is removed from the 

process, as in TKO mice, neurons become more sensitive to the drug, as they cannot sequester 

MPP+ into synaptic vesicles with the same competency anymore.  In order to assess if β-

synuclein can indeed directly affect vesicular monoamine uptake, synaptic vesicles were 

purified from TKO animals and were preincubated with β-synuclein.  When purified synaptic 

vesicles alone were used there was no alteration on uptake, however when the vesicle-

containing S3 fraction (figure 4.5, B) was preincubated with β-synuclein there was a significant 

increase in uptake.  This therefore suggests that β-synuclein alone cannot affect VMAT2 

transporter function.  However when β-synuclein has the availability of cytosolic factors, i.e. 

those found in S3, it is able to have an effect on this transport, probably by acting as a 

chaperone and providing some cytosolic factor that in turn can help induce vesicular transport.   

Recent unpublished work carried out by our collaborators in Russia also supports the notion 

that β-synuclein is able to restore vesicle uptake in TKO animals in vivo.  TKO animals were 

given unilateral stereotaxic injections of a lentiviral vector that expressed β-synuclein into the 

SNpc region.  This restored β-synuclein expression and it was transported to the synaptic 

terminals of the dorsal striatum.  When synaptic vesicles were isolated there was a significant 

increase of DA uptake in the vesicles from the injected side in comparison to the non-injected 

striatum.   
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From the work carried out in this chapter it is apparent that animals lacking all three synucleins 

are indeed sensitive to the effects of MPTP and appear more sensitive than any other mouse 

lines with various combinations of synuclein knockouts.  Strikingly, TKO animals show 

sensitivity in their dopaminergic VTA populations.  This is likely due to their decreased ability 

to efficiently sequester dopamine into their synaptic vesicles and as a result of this also display 

poor MPP+ compartmentalisation.  Although it is apparent that β-synuclein can restore this 

defective sequestering ability it is also evident that it cannot do this alone and requires a 

cytosolic factor to enable this mechanism.  It is likely that all the synucleins have this ability, 

but to varying degrees of effectiveness and this is something that should be explored.  As well 

as this, further investigation to reveal the mechanism by which β-synuclein is able to allow 

normal dopamine sequestering will be of interest in allowing a clearer insight into the normal 

roles of the synucleins.
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Chapter 5 
 

Production of a novel conditional α-
synuclein knockout mouse model to 

investigate an adult onset loss of 
function in synaptic pathology  



 113 

 

Introduction  

As has been made clear throughout this thesis the role of the synucleins, in particular that of 

α-synuclein, for a long time remained elusive.  Alpha-synuclein has clearly been linked to 

diseases such as PD through genetic mutations and GWAS and therefore the unveiling of its 

normal role is incredibly important in order to better understand the disease and possibly 

provide new therapies. Recent advances in this field clearly demonstrated the importance of 

α-synuclein in modulation of presynaptic processes involved in neurotransmission. However 

the role of α-synuclein loss of function in pathogenesis of synucleinopathies has not yet been 

properly addressed.  It is plausible that in the adult or ageing nervous system abnormal post-

translational modifications, aggregation and gradual accumulation of insoluble α-synucleins in 

LBs leave little of the normally functioning protein left at the synapse.  This is likely to have an 

adverse impact on normal synaptic function which in turn may add to the pathogenesis of the 

disease.  One of the reasons that this has not yet been studied is due to the lack of an ideal 

model in which to do so.  It is critical that this is studied to assess how this mechanism may 

impact on the progression of PD. 

Another problem that prevails in the study of the synucleins is that of familial redundancy.  

However, results from the TKO mice show that although there is some extent of familial 

redundancy it is most likely not the most important mechanism of compensation.  Results 

arising from TKO mice, such as the aging decline in the ability to perform the inverted grid test, 

have suggested that there may be a compensatory mechanism at play which is initiated in 

critical development periods in these animals, which cannot be due to familial redundancy.  It 

is possible that this compensatory mechanism is able to provide long term functional 

replacement of the synucleins, thereby masking their normal role.  However during aging 

these mechanisms become less efficient and so cannot completely compensate for the loss of 

synucleins.  The result of this incomplete compensation is changes at the synapse which may 

then lead to synaptic dysfunction, as seen with the TKO animals. 

Currently no model is able to satisfactorily overcome possible compensation mechanisms 

initiated during development, making it impossible to study the loss of function impact of α-

synuclein at the synapse clearly.  Previous conventional knockout models rely on a congenital 

knockout of α-synuclein.  It is during embryonic and early postnatal development that the 

brain is at its most plastic and is therefore most likely to instigate a compensatory mechanism.   
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In order to properly investigate a role of α-synuclein loss of function in the adult it is first 

apparent that any compensatory mechanism must be overcome.  It is therefore a requirement 

that α-synuclein can be knocked out at any time point during the animals lifespan.  In doing 

this it also has the advantage of allowing the assessment of this loss of function in an ageing 

nervous system, creating a more realistic model of a degenerative disease process. 

Importantly, this should also ensure that plasticity at a neuronal level is less apparent than it 

may otherwise be in a younger animal and therefore allow us to study the role of α-synuclein 

properly. 

For the reasons described above a conditional α-synuclein knockout model has been 

produced.  This model will simulate the loss of function of α-synuclein that is likely seen in 

patients with PD, which may cause synaptic pathological changes.  It is highly likely that some 

degree of loss of function is working in balance with a gain of function mechanism in PD.  This 

novel model aims to bring valuable new insight into the synucleinopathy field.  The production 

of this model is described in the following chapter and an overview of the work required for 

the creation of this model is illustrated in figure 5.1. 

Figure 5.16 Schematic Representation of the Production of a Conditional Knockout Model 

Schematic showing the path from targeting construct production through to obtaining the final 

mouse model. 
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Design of the α-synuclein conditional knockout targeting construct 

A targeting construct is a carefully designed and created sequence of recombinant DNA 

fragments in a plasmid vector that can be used to replace and manipulate a specific region of 

the target chromosomal locus.  There are some minimal requirements of the sequence which 

include the arms of homology, in which the sequence is entirely homologous to that found in 

the genomic locus to be manipulated, thus allowing homologous recombination.  It is also 

important to have selection components, both positive and negative, in the construct as 

transfection efficiency and proper homologous recombination events are infrequent and so 

enrichment of these events is necessary.  Enclosed between the arms of homology is the 

region of the target vector which replaces the desired segment of a gene, in our case, the α-

synuclein gene within the target locus.   The final important consideration is the requirement 

of a unique restriction site outside of the arms of homology to allow the linearisation of the 

DNA prior to targeting.  This section aims to introduce a detailed overview of how the target 

construct was created and used to produce the α-synuclein conditional knockout mouse 

model. 

In order to allow the knockout of α-synuclein in vivo site specific recombination systems were 

required.  These systems have revolutionised our ability to produce models in which the 

genome can be easily manipulated.  They permit the insertion, inversion, deletion or 

translocation of the DNA associated with these systems.  The Cre-loxP system is one example 

of a site specific recombination system that was first described in 1981 (Sternberg and 

Hamilton, 1981).  It was found within the bacteriaphage P1 genome where it enables the 

circularisation of its linear genome after infection of E.Coli (Segev and Cohen, 1981).  Loci of 

crossing-over in P1 (LoxP) sites act as the recombination hotspots within the bacteriaphage 

genome with each LoxP site consisting of a 34bp sequence that includes two 13bp inverted 

repeats with an 8bp spacer region separating them (figure 5.2) (Hoess et al., 1982).  Cre 

recombinase (cyclisation recombination protein) is a 343 amino acid protein that catalyses the 

recombination process that occurs between the LoxP sites (Hoess and Abremski, 1984).   Since 

this system has been recognised it has been exploited to allow the modification of specific DNA 

sequences at precise time points and in specified tissues.  One method by which a modification 

can be controlled in a temporal manner is through the use of a tamoxifen inducible Cre 

recombinase.  This system relies on the fusion of Cre recombinase to the mutated ligand 

binding domain of the human oestrogen receptor (ER) (Feil et al., 1996).  This mutation 

ensures that the receptor can only be activated by tamoxifen and not endogenous estrogen.   

In the absence of tamoxifen the fusion protein is kept within the cytoplasm but upon exposure 
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to the steroid the receptor dissociates from the Cre recombinase protein thus allowing the 

enzyme access to the nucleus and therefore exerting its activity (Jullien et al., 2008). 

Although the Cre-LoxP recombination system is very widely used there are other established 

systems that can be enrolled.  This includes the highly similar Flp-FRT system, discovered 

shortly after the Cre-LoxP system was described, which is also implemented in this model. It 

was identified in the 2-μm plasmid that is common to a number of yeast strains and has since 

been extensively studied (Vetter et al., 1983).  The enzyme, flippase (Flp), is the recombinase 

which recognises FLP Recombination Target (FRT) sites responsible for the initiation of the 

recombination process (Babineau et al., 1985).  Like the LoxP sites the FRT sequences consist 

of two 13bp inverted repeats with an 8bp spacer region (figure 5.2) (Senecoff et al., 1985).  

The original sequence for the FRT site does have a third repeat, however this was found to be 

unnecessary for recombination.  This system has also proved very simple and efficient to use in 

the manipulation of DNA. 

In both of these systems the recombination event occurs with absolute fidelity, meaning 

overall no nucleotide is lost or gained.  Importantly no cofactors are required for the cleavage 

or ligation of the recombination reaction making the system widely exploitable.  The system 

also lends itself well to the genetic manipulation of model organisms by the fact that the 

recognition sequences are short, thus not interfering with the gene expression, but highly 

unlikely to occur within the host genome at random.  The orientation of two 34bp target sites 

relative to each other on the desired section of DNA is important for directing the type of 

modification that will be undertaken by the recombinase enzyme.   If the two sites lie in the 

same orientation the intervening DNA will be excised but if the two sites are in the opposite 

orientation to each other, i.e. facing each other, the intervening DNA is inverted (Kilby et al., 

1993).  
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Figure 5.17 Nucleotide Sequence of LoxP and FRT 

Diagram of recombinase recognition sites.  The inverted 13bp symmetry elements of the 

recognition site are represented in the blue box.  The remaining 8bp spacer region provides 

the cleavage site for the recombinase enzyme.  It is the 8bp spacer region that imparts 

directionality of the sequence, meaning two directly orientated regions within a sequence 

allow the excision of the intervening DNA, whilst two inverted sites allow the inversion of the 

intervening DNA. 

 

These recombination systems are indispensible in the design of the α-synuclein conditional 

knockout mouse model. The first coding exon of α-synuclein, exon II, was chosen to be floxed 

with LoxP sites thus allowing it to be knocked out in a Cre dependent manner at any time 

point.  The design of the target construct is shown in detail in figure 5.4, which also shows how 

homologous recombination occurred in order to target the recombinant DNA into the genome.  

It is known from previous α-synuclein conventional knockout models that the loss of exon II is 

sufficient to stop mRNA and protein production of α-synuclein (Abeliovich et al., 2000).  In 

order to allow the targeting process to be enriched positive-negative selective agents were 

also incorporated into the targeting construct.  Despite having arms of homologous sequence 

on either side of the target construct targeted DNA undergoes random integration more 

frequently than homologous recombination.  The ratio of random to homologous 

recombination is hard to control experimentally as it depends on things such as the location of 

the target gene within the genome.  Estimates suggest that using a negative selection marker 
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can help enrichment by decreasing the number of clones with random integration by between 

2-20 fold (Hasty et al., 2000).  As well as this the length of the arms of homology are also 

known to affect the degree of successful homologous recombination with the longer the 

homologous sequences the higher the efficiency of homologous recombination (Thomas and 

Capecchi, 1987). 

The targeting construct was designed with the use of the pPNT plasmid as the backbone.  This 

plasmid already has the incorporation of a neomycin resistance cassette and the Herpes 

simplex virus thymidine kinase cassette (HSK-tk) as well as a single LoxP site (see plasmid map 

in figure 5.4).  The HSK-tk cassette acts as the negative selection marker as it sits outside the 

arms of homology in the targeting construct; if the construct has undergone correct 

homologous recombination the cassette is lost.  However if the targeting construct is randomly 

integrated into the ES cell genome the HSK-tk cassette will persist and under ganciclovir 

selection kill the cell.  Ganciclovir acts as a prodrug that is converted into a toxic triphosphate 

nucleotide analog by HSK-tk which is then incorporated into the cells DNA inducing cell death 

(Mar et al., 1985).  The neomycin cassette encodes the resistance to G418 and is therefore 

used as a positive selection marker.  Following the electroporation of ES cells with the 

targeting construct DNA both ganciclovir and G418 were added to the media to allow 

selection.   

Having the neomycin cassette is ideal for the targeting process; however it is important that 

the cassette can be easily removed from the final targeted genome.  It is possible that the 

neomycin cassette promoter, in this case phosphoglycerate kinase 1 (PGK-1) which is 

expressed at many genomic locations, may interfere with expression of other genes which is 

not desirable.  Although this is rare it would create a potentially unusable model and so the 

neomycin cassette is flanked by two FRT sites to allow its removal in a FLP dependent manner.  

This will stop any potential interference with other genes and ensure normal expression of α-

synuclein prior to it being knocked out.  
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Figure 5.18 Targeting Construct Design 

A diagrammatic representation of the target construct undergoing homologous 

recombination with the wild type (WT) alpha-synuclein locus.  Note that the 

thymidine kinase (TK) cassette is lost in the floxed locus as this region of the 

construct falls outside of the arms of homology, so when homologous 

recombination correctly occurs it is lost.  Following this the floxed locus is shown 

to undergo Flp recombination therefore loosing the neomycin cassette.  Finally 

through Cre recombination exon II is removed meaning that there is no further 

expression of alpha-synuclein.   The probes used for Southern blot analysis of ES 

clones are also shown lying outside of the targeting construct. (B) A schematic 

representation of the targeting construct with each separately created part being 

highlighted.  The restriction enzyme sites used to ligate the separate DNA 

fragments into the pPNT vector are also shown.  Notice that one LoxP site was 

already present in the pPNT plasmid and only one had to be inserted through the 

cloning process. (C) A map of the pPNT vector that was used to create the 

targeting construct showing the neomycin and thymidine kinase cassettes as well 

as a LoxP site. 
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Results 

Targeting Construct Production 

The targeting construct was produced using the pPNT vector as a plasmid backbone.  As 

mentioned above this vector contains a LoxP site, neomycin resistance cassette and HSK-tk 

cassette within its sequence, meaning they could be exploited in the design of the targeting 

construct which is shown schematically in figure 5.4 (B).  Sequences of all primers described in 

this chapter can be found in appendix 3.  Primers were first optimised in all cases with a 

standard taq polymerase and only when conditions were correctly established was the 

AccuPrime™ Pfx DNA Polymerase mastermix (Invitrogen) used in order to provide blunt ended 

fragments ready for cloning.   

For the production of the 811bp fragment that contained the sequence for α-synuclein exon II 

and the first FRT site that flanks the neomycin resistance cassette nested PCR had to be 

undertaken due to the length of the reverse primer containing the FRT sequence.  To produce 

the first 770bp template “alpha exonII forward NheI” was used in combination with “alpha 

exon II nested reverse 2”.  An annealing temperature of 58°C and a synthesis time of 1 minute 

were required while all other conditions were kept as described in table 2.3.  After this 

fragment had been cloned in to the pCR-Blunt II-TOPO vector and the sequence checked it was 

then used as template DNA with primers “exon II forward NheI” and “alpha exon II reverse FRT 

NheI” with an extension of 30 seconds.  This resulted in the full 811bp fragment that after NheI 

digestion was cloned into the XbaI site of the pPNT vector, therefore inserting it just after the 

LoxP site contained within the vector.  After selecting clones carrying the insert, the 

orientation of its sequence then had to be checked by digesting plasmid DNA with BamHI and 

Xba (figure 5.1, A).  In the correct orientation fragments of 828bp and 7362bp were produced, 

however in the wrong orientation fragments altered to 67bp and 8123bp, making it apparent 

which clones were correct. 

The next fragment to be synthesised was the 1987bp arm of homology.  This required the use 

of the “alpha short arm forward EcoRI” and “alpha short arm BamHI” primers.   The annealing 

temperature required was 60○C followed by 40 seconds at 72○C for extension.  This was 

cloned, checked for its presence in the TOPO vector with simple EcoRI digest and the positive 

clones sent for sequencing.  After a positive clone was selected and the fragment digested out 

of the TOPO vector using EcoRI and BamHI it was then ligated into the EcoRI/BamHI-digested 
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pPNT-loxP-exII-FRT plasmid.  Colonies were then checked by EcoRI and BamHI for insert and 

sequenced where appropriate. 

Following this the 86bp fragment containing the second FRT and LoxP sites was created.  In 

order to do this a template DNA oligonucleotide sequence (Sbf FRT LoxP Sal) was ordered from 

Sigma. 15ng of this template were used along with the “Sbf FRT forward” and “Not Sal LoxP 

reverse” primers with 42○C annealing temperature and an extension period of 30 seconds at 

68○C.  TOPO clones were then checked for the presence of the insert by EcoRI digest and 

sequenced.  Once a correctly sequenced clone was identified, the fragment was excised by SbfI 

and NotI digestion and used for ligation to create the pPNT-Short Arm-loxP-exII-FRT-neo-FRT-

LoxP containing vector as shown in  figure 5.2.   

Finally the 1594bp arm of homology was produced using the “alpha long arm forward SalI” and 

“alpha long arm reverse NotI” primers. These required an annealing temperature of 56○C and 

an extension of 2 minutes at 72○C.  Following cloning into the pCR-Blunt II-TOPO and a correct 

clone being identified, a fragment was excised by SalI and NotI digestion and purified.  This was 

then ligated into SalI and NotI digested pPNT-Short Arm-loxP-exII-FRT-neo-FRT-LoxP to 

produce the final targeting construct figure 5.2, C.  

Sequencing of the Final Targeting Construct 

Once the construct was completed it then had to be sequenced in order to ensure all the 

individual components were correct as well as checking that all the ligated ends were as 

expected.  This was done using a variety of primers to read across the whole length of the 

construct (see appendix 4 for further details as well as the full sequence of the targeting 

construct). 

Production of probes for use in Southern Hybridisation 

In order to analyse ES clones produced from the targeting experiments for correct homologous 

recombination two probes were produced that could be used for Southern hybridisation.  One 

probe was produced that could hybridise downstream of the long arm of homology and 

another upstream of the short arm.  These could be used to assess the fragments produced by 

various restriction enzyme digests and confirm the position of the targeting construct within 

the α-synuclein locus was as expected.  

The probe upstream of the short arm of homology was produced using the “SAprobeUP” and 

“SAprobeDOWN” primers to amplify a 751bp fragment using the normal PCR conditions. For 
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the probe downstream of the long arm the primers “LAprobeUP” and “LAprobeDOWN” were 

used to create a 1322bp fragment using an extension time of 2 minutes whilst leaving all other 

PCR conditions as normal.  These products were cloned into the pCR-Blunt II-TOPO vector and 

sequences confirmed.  When these probes were required DNA was EcoRI digested out of the 

vector and purified from the agarose gel (figure 5.2, B).  The probes were then labelled as 

needed with 32P in order to allow visualisation of DNA analysed by Southern hybridisation.  

   

 

 

Figure 5.19 The Production of the Targeting Construct and Southern Probe 

(A) Digestions demonstrating expected fragment size for each construct piece as cloned in the 

pCR-Blunt II-TOPO vector.  The presence of the long arm of homology was confirmed by EcoRI 

digest giving fragements of 906bp and 680bp along with the backbone of the pCR-Blunt II-

TOPO vector.  The LoxP FRT fragment was also confirmed by EcoRI digest to reveal a fragment 

approximately 90bp in size.  The presence of the correct short arm section was also checked 

using EcoRI to reveal a 1987bp fragment.  In the case of the excision of the exon II fragment 

from the pCR-Blunt II-TOPO vector BamHI and XbaI were used to reveal an 811bp fragment. (B) 

EcoRI digested fragments from TOPO cloned Southern hybridisation probes.  Probe A 

represents a 1322bp fragment used as the probe that is found outside the long arm of 

homology, whilst Probe B shows the 751bp fragment of the probe found outside of the short 

arm of homology. (C) Step by step correct insertion of construct fragments in the pPNT vector.  

Lane 1 shows the insertion of the exon II fragment into the pPNT vector analysed by digestion 

of the plasmid DNA with BamHI and XbaI to give fragments of 7362bp and 828bp as expected 
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for the correct orientation.  EcoRI and BamHI digest reveals the insertion of the short arm of 

homology into the pPNT plus exon II vector with fragments of 8169bp and 1982bp: lane 2.  

Following this the insertion of the second LoxP and FRT sites occurred with XbaI digestion 

showing fragments of 7187bp, 1856bp, 902bp, 168bp and 111bp in lane 3.  The smaller 

fragments are faint but just visible.  The final lane, lane 4, demonstrates the ligation of the final 

insert, the long arm of homology, into the vector already containing all other components of 

the targeting construct by digestion with NotI and SalI to reveal fragments of 10214bp and 

1574bp.  In all case above 1% agarose gels were used. 

Establishment of conditions for successful chimera production 

Following the successful production of the targeting construct the next step was to insert it 

into the genome of the chosen JM8A3N feeder free ES cell line derived from the C57Bl/6N 

mouse strain (Pettitt et al., 2009).  These cells were specifically picked due to their C57Bl/6 

background meaning animals produced from them would not require numerous back crosses 

to establish a pure C57Bl/6 line as would have been the case should a more traditional ES cell 

line derived from mice of 129 strain have been used.  It is necessary that the new conditional 

α-synuclein model be on a C57Bl/6 background as this strain of mice are one of the best 

characterised inbred strains and importantly are the most commonly used line for studying 

models of neurobiology, making this new model easily comparable to previously existing ones.  

This line of cells also has a high germline competency which is an obvious important 

consideration when producing a new animal model. 

The JM8A3N ES cell line is relatively new and had not been used previously in our laboratory.  

This meant that ideal concentrations of our own recombinant leukaemia inhibitory factor (LIF) 

had to be titrated as well as the correct G418 conditions being established.  LIF is required to 

culture mouse ES cells, in the absence of a feeder layer, to limit differentiation whilst allowing 

the cells to continue to proliferate.  LIF does this by activating the STAT3 transcription factor 

(Matsuda et al., 1999). Serial dilution of several purified recombinant LIF batches obtained by 

expression of recombinant protein in COS7 cells were added to the medium used for 

cultivation of JM8A3N ES cells, which were visually assessed over a course of 10 days.  A 

commercially available LIF (ESGRO, Millipore) used as directed by manufacturers instructions 

acted as a control.  The cells were assessed for the degree of differentiation and migration 

(figure5.5).   Although it is important to maintain undifferentiated cells in culture these cells 

must remain pluripotent ready for their injection into blastocysts.  It is therefore essential that 
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the concentration of LIF is not too high within the culture, allowing the cells to maintain the 

ability to differentiate once injected. 

A requirement of the targeting experiments was the selection of clones resistant to G418 

which indicated that the target construct had been incorporated into the genome of the clone.  

It was therefore necessary to titrate the concentration of G418 that effectively killed cells that 

had not undergone homologous recombination within 5-7 days of selection.  It was decided 

that a concentration of 105mg/ml was sufficient.  It was not possible to titrate gancyclovir in 

the same manner as the target construct had to be present in order for the drug to cause cell 

death.  For this reason a concentration was used that is recommended for other ES cell lines. 

 

Figure  5.20 LIF Comparisons 

Comparisons of different LIF conditions, including culture with no LIF, showing some cell 

migration (M) and differentiation (D).  LIF1 (from our own stocks) shows a rounded colony with 

little differentiation.  The culture in ESGRO LIF is fairly similar to LIF1 but with more 

differentiation.  As can be seen in the culture with no LIF there is a lot more differentiation and 

migration.   

 

Targeting 

The targeting construct was first linearised with NotI, purified using ethanol precipitation and 

the resulting pellet left in the laminar flow hood to allow any remaining ethanol to evaporate.  

Following this the DNA was dissolved in dH20 and added to the ES cell suspension.  The 

suspension was then electroporated at 240 V/500μF for 6.4μsec.  The cells were then split over 

plates at various concentrations and left overnight in full media minus selective antibiotics.  

Twenty-four hours post electroporation cells were put under selective conditions by the 

addition of both G418 and gancyclovir.   After 10 days under selective conditions individual 
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colonies became visible and these were picked and expanded for further analysis as described 

in the Methods section. 

Screening ES cell clones for homologous recombination by Southern hybrydisation 

DNA was extracted from 183 targeted, G418 resistant, JM8A3N clones using phenol-

chloroform and BamHI digests were performed for the initial Southern hybridisation screen. 

BamHI digest and hybridisation with the probe lying outside of the short arm of homology 

identified a band at 16448bp for the targeting construct due to an internal BamHI site within 

the target construct sequence as well as a 32600bp band for the wild type allele (see example 

in figure 5.6, A). Using this combination of DNA digest and hybridisation probe it was possible 

to confirm the presence of 3 positive clones.  These clones were then further analysed using 

BamHI digest in combination with the probe lying outside of the long arm of homology and 

also using NcoI digest with the probe on the short arm side of the mouse genome to confirm 

the finding of the original screen.  In the case of NcoI digest and hybridisation the expected 

band was 3525bp confirming the presence of the targeted DNA as well as the 3815bp band of 

the wild type allele.  BamHI digested DNA hybridised with the probe outside of the long arm of 

homology revealed a targeted band of 18153bp and 32600bp band of the WT allele (figure 

5.6).  
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Figure  5.21 Southern Blot Analysis of Targeted Clones 

 (A) Representative Southern blot showing BamHI digested ES cell DNA which was hybridised 

to a probe located adjacent to the short arm of the targeting construct. Note the positive ES 

clone (*) showing both the 32509bp band expected from the normal C57Bl6 genome as well as 

the 16448bp fragment only present when correct homologous recombination of the target 

construct has occurred and thus inserted another BamHI site responsible for the smaller 

fragment size.  (B) Southern blot showing the 3 positive ES clones digested with NcoI and 

hybridised with the probe adjacent to the short arm of homology.  (C)  BamHI digested positive 

clones along with WT DNA hybridised with the long arm of homology probe to give a band 

positive for homologous recombination at 18153bp and a WT band at 32600bp.  
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Analysis of positive clones by PCR 

Following Southern screening DNA of clones that appeared positive were used for PCR 

amplification of fragments encompassing all FRT and LoxP sites. The following primers were 

used: 

 

alphaLAfor              5’ CATGAGTACTTGTGGCTCAC 3’ 

alphaint1for        5’ TGCTGGGCACAGTGTTGATTG 3’  

alphaint1rev       5’ AAAGGCTGGGCTTCAAGCAG 3’ 

Exon1revnew     5’ GACATGTATGGCAGTAAGCC 3’ 

NeoC                                 5’ CTACCGGTGGATGTGGAATG 3’ 

NeoA                                5’ ATGGAAGGATTGGAGCTACG 3’ 

 

The amplified fragments were gel-purified, if required, and cloned in to the pCR-Blunt II-TOPO 

vector.  Figure 5.7 (A) shows results of the digestion of resulting plasmids with EcoRI that 

excises cloned PCR sequences.  It should be noted that a plasmid analysed on this gel for a 

fragment amplified from DNA of ES clone 134 using the “alphaint1for” and “alphaint1rev” 

combination of primers carries an insert originated from amplification of a WT allele.  However 

another, not shown here plasmid carried a fragment amplified from the mutant locus.  

Eukaryotic inserts of plasmids were sequenced to ensure the presence and correct position of 

these elements in the genome of ES clones. “AlphaLAfor” was used in combination with 

“NeoC” to produce a 234bp fragment, with which the sequence confirmed the presence and 

correct orientation of both the FRT and LoxP site between the neomycin cassette and the long 

arm fragment of the targeting construct.  The “neoA” and “exon1revnew” primer pair was 

used to amplify a 416bp fragment and its sequence demonstrated that the FRT site was 

correctly inserted at the end of exon II in the targeted locus.  Finally “alphaint1for” and 

“alphaint1rev” were used to amplify a 406bp sequence containing the final LoxP site from the 

original pPNT plasmid backbone as well as a 354bp WT allele band.  
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Blastocyst injections of positive ES clones 

Once positive ES clones had been selected by Southern hybridisation and the sequences of all 

LoxP and FRT sites confirmed it was then possible to select one to use for the first attempt of 

blastocyst injections.  The ES clone with the best undifferentiated morphology on the day of 

injection was selected, which happened to be clone 126. Cells were prepared and kept in M2 

medium on ice until required. 15 blastocysts and 2 morulas were flushed with M2 medium 

from uteri of C57BL/6 donor females who had been mated with males 4 days prior to the 

injection day.  Seven to twelve ES cells were injected into the blastocoel cavity of each 

blastocyst and the same into the centre of the morulas. Two CD1 hosts were used with one 

being injected with 9 and the other 8 blastocyst/morulas unilaterally into the uterus whilst 

under anaesthesia.  The animals were then allowed to recover and given pain relief.  Both 

females produced litters on 17th day after the embryo transfer. 
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Figure  5.22 PCR Analysis of Positive ES Clones 

(A) 1% agarose electrophoresis gel showing analysis of fragments amplified from DNA of 

mouse ES cell clones 79, 126 and 134, and cloned into the pCR-Blunt II-TOPO vector.  Plasmids 

were digested with EcoRI.  The primer combination used for amplification of mouse genomic 

fragments and expected insert size are shown below each lane. (B) Schematic map of the 

targeting construct showing the position of the primers described for use in A.  Using these 3 

combinations it was possible to check the sequences of all the FRT and LoxP sites within the 

targeted locus.  
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 Chimeric animals and establishment of germ line transfer 

From these two litters three chimeric animals were produced, 2 males and 1 female.  Once 

these mice had reached 6 weeks old they were paired with C57Bl6 females to assess their 

germ line transfer capabilities.  Offspring were produced from all three animals but only one 

male transferred the ES cell genotype to the next generation as was judged by the brown 

colouration of some pups in the resulting litters (see figure 5.8,.A).  This was confirmed by 

genotyping of all pups using “alphaintfor” and the “alphaintrev” primers. Figure 5.8 (B) shows 

that animal 64 is the only one in the analysed litter of nine that carries the same targeted locus 

as the ES cell clone used for chimera production. 

 

Figure 5.23 Production of Chimeric Animals and Assessment of Germline Transfer 

(A) Chimeric mouse which appears dark brown (left) next to WT litter mate (right) (B) 2% 

agarose gel of PCR showing germline transfer from a 126 ES clone chimera.  Primers “alphaint 

for” and “alphaint rev” were used to genotype these animals.  In the case of germline transfer 

a 406bp band would be apparent alongside the 354bp band from the WT allele.  Targeted ES 

clone DNA is shown as a positive control. 
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Initial Characterisation of Homozygous animals 

After germline transfer had been confirmed the next step was to ensure that mice 

homozygous for the targeted alpha-synuclein locus could be produced.  Following further 

breeding after the first chimeric animals were obtained mice were crossed and produced a 

litter of four pups two of which proved to be homozygous for the targeted locus (figure 5.9, A) 

Upon obtaining homozygous animals it was possible to investigate the level of α-synuclein in 

the presence of the neomycin cassette (figure 5.9,B).  When compared to animals that were 

heterozygous for the targeted allele the homozygous mice displayed much lower expression of 

α-synuclein throughout the cortex, cerebellum and spinal cord.  This reinforces the need for 

these animals to be crossed with the ACTFLPe line in order to remove the neomycin cassette.   

 

Figure 5.24 PCR and Western Analysis of Homozygous Conditional KO Mice 

(A) 2% agarose gel showing the genotyping of a litter of mice from alpha-synuclein conditional 

knockout heterozygous parents.  Primers “alphaint for” and “alphaint rev” were used and a 

406bp band alone demonstrates animals homozygous for the targeted alpha synuclein locus.  

Whereas animals that are heterozygous also display the wild type (WT) alpha-synuclein 

alelle354bp band.  DNA from a positive ES clone was used as a positive control. (B) Western 

blot comparing various brain regions from animals homozygous (Hom) for the targeted allele 

against a heterozygous (Het) animal and a conventional alpha synuclein knockout mouse 
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(AlphaKO).  The 19KDa band represents α-synuclein and the 42KDa band demonstrates β-actin 

expression. 

Testing FLP recombination ability in positive ES clones 

As with all projects of this nature it takes time to produce chimeric animals and gain germline 

transfer.  In addition to this, resulting animals require crosses with FLP and Cre recombinase 

mouse lines before the knockout can be assessed and shown to work.  However it is possible 

to test the potential of the conditional knockout in the positive ES cell clones.   

In order to establish if the neomycin cassette could be effectively removed in the ES clones, 

cells were grown until 70% confluent and transfected with a plasmid encoding the flippase 

enzyme. Lipofectamine was used for transient transfection of a positive ES cell clone 79 with 

the pCAGGS- Flpe vector (figure 5.10, D for map).  This vector contains flippase under the 

chicken β-actin promoter as well as also containing a puromycin resistance cassette which 

could be exploited to identify recombined clones.  Cells were allowed a 24 hour post 

transfection period before being exposed to 7 days of 3μg/ml puromycin selection.  Colonies 

remaining after this selection period were picked and expanded across a number of plates.  In 

order to test for Flp recombination cells on one set of plates were exposed to 105μg/ml G418 

for 5-7 days.  As the neomycin cassette had been flanked with FRT sites it was expected that if 

the clone that had correctly undergone recombination it would have become sensitive to G418 

and died.  DNA was purified from replicate plates of the sensitive clones for analysis by PCR 

and Southern hybrydisation. 

PCR was carried out using the combination of “reverse floxed” and “exonIIrev new” primers.  

This combination of primers allowed a 304bp fragment for a flipped allele (i.e. with no 

neomycin cassette) and an internal control WT allele fragment that gave 633bp product.  

Clones were also analysed by Southern blot using DNA digested with BamHI.  The DNA was 

probed using the probe outside the long arm of hybridisation to result in a WT band of 

32600bp and either a complete positive targeted allele band of 18153bp or a flipped targeted 

allele band of 16298bp. These results are demonstrated in figure.5.10.  

 



 133 

 

Figure 5.25 Assessment of FLP Recombinase Activity in Targeted ES Clones 

(A) 2% agarose gel showing products of PCR amplification of 2 DNA clones positive for Flp 

recombination and two negative controls.  The normal 633bp fragment present in the mouse 

genome is clearly only visible in the negative controls.  The second 304bp fragment is only in 

clones that have undergone Flp recombination in the targeted allele. (B) Representative 

schematic of alpha synuclein alleles, both wild type (WT) and targeted showing the position of 

the primers used for screening the success of Flp recombination.  (C) Southern blot confirming 

the PCR result showing that selected clones had undergone Flp recombination.  DNA was 

digested with BamHI and hybridised with the probe lying outside the long arm of homology.  

(D) A plasmid map of pCAGGS-Flpe used to transiently transfect ES cells positive for 

homologous recombination with the target construct. 

 

Testing Cre recombination ability in positive ES clones 

After clones had been obtained from the Flp recombination experiment and had been 

confirmed both by PCR and Southern blot one clone was selected to test Cre recombination.  

Cells were co-transfected with the pPNT and pMC-Cre vectors using lipofectamine (figure 5.11, 

D for a vector map).  Unfortunately the pMC-Cre vector has no desirable selectable features 
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within it and therefore pPNT was used to allow G418 resistance in transfected cells.  After 7 

days of G418 selection colonies were picked and expanded.   Using the “alphaintfor” and the 

“alphaintrev” primers, a 354bp fragment amplified from the WT allele and 406bp fragment 

amplified from the targeted allele were produced when parental ES clone DNA was used as a 

template.  Cre recombination was successful in three selected clones shown in figure 5.11 (A).  

Only the 354bp fragment was amplified from the WT allele of these clones because of the loss 

of an annealing site for “alphaintrev” primer in the Cre-recombined allele.  Following PCR 

assessment these clones were also screened using Southern hybridisation.  BamHI was again 

used with the probe lying outside of the long arm of homology to produce a 32600bp WT allele 

band and of 15450bp if correctly Cre recombined.  Representative results are shown in figure 

5.11 C.  

 

 

Figure 5.26 Assessment of Cre Recombinase Activity in Targeted ES Clones 

(A) 1% agarose gel showing examples of Cre recombined ES clones and a control targeted but 

non recombined clone displaying both the WT 354bp band and the targeted 416bp band which 

is lost in Cre recombined clones. (B) Schematic of the floxed alpha synuclein locus undergoing 

Cre recombination.  WT and targeted loci show the position of the primers used for PCR 

screening of successful Cre recombination.  (C) Confirmation of postive Cre recombination by 

Southern hybridisation.  DNA was digested with BamHI and hybridised with the probe adjacent 

to the long arm of homology.  The WT allele is represented by the 32600bp band and the 
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targeted allele by the 18153bp band.  When Flp recombination occurs the targeted allele 

become 16298bp and when positive for Cre recombination this decreases further in size to 

15450bp. (D) Plasmid map of pMC-Cre used to transfect Flp positive clones.  Note the lack of 

any usable resistance cassettes meaning co-transfection was required to allow easy 

identification of transfected cells. 

Discussion 

As has been shown above a targeting construct that allows the conditional knockout of α-

syunuclein has been produced and successfully used to achieve homologous recombination in 

ES cells.  These cells have been used to successfully create chimeric animals capable of germ 

line transfer.  F3 animals have already been established and continued breeding of these 

animals is required to ensure a large cohort for further experiments. A breeding strategy is in 

place and we already possess the required lines for crossing.  As has been established through 

studying mice homozygous for the targeted alpha-synuclein allele α-synuclein expression is 

greatly reduced in the presence of the neomycin cassette.   This reaffirms that these animals 

will need to be crossed with the ACTFLPe expressing line in order to remove the cassette.  The 

ACTFLPe line was first described in 2000 and has since become a common line for allowing FLP 

recombination (Rodriguez et al., 2000).   This line expresses FLPe under the human β-actin 

(ACTB) promoter.  FLPe is a naturally occurring variant of FLP which contains 4 amino acid 

substitutions which collectively make the recombinase more thermostable and thus increase 

recombination activity by 4 fold at 37οC and by more than 10 fold at 40οC (Buchholz et al., 

1998).  This line has been assessed and shown a wide array of FLPe expression across many 

tissues including the nervous system, the cardiovascular system and, most importantly the 

reproductive system.  The recombinase activity is known to occur as early as embryonic day 

10.5 and can therefore allow fast removal of the neomycin cassette in the conditional alpha-

synuclein animals, which will then be transmitted to F2 progeny.  

Having successfully removed the neomycin cassette, thus ensuring the normal expression of α-

synuclein prior to knockout, the animals will then be crossed with the NSE-CreER line of mice 

in order for the conditional α-synuclein mice to possess tamoxifen inducible Cre recombinase 

activity (Frugier et al., 2000).  This line expresses Cre under the rat neuron-specific enolase 

gene (NSE), ensuring that the Cre recombination activity is specific to neuronal populations.  

The NSE promoter is not active in the embryonic nervous system before E18, when the level of 

ER-Cre is still very low. In postnatal development of transgenic mice the pattern of ER-Cre 

expression is similar to that of endogenous NSE (Forss-Petter et al., 1990).  As mentioned 
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above the Cre protein is fused to the ligand binding domain of the estrogen receptor (ER) 

meaning that the recombinase activity is inducible with the use of 4-hydroxytamoxifen.  This 

will therefore allow the conditional knockout of α-synulcien with injections of 4-

hydroxytamoxifen.  The line of NSE-CreER animals that are possessed in the lab also express 

the ROSA26Sor sequence (Soriano, 1999).  This entails a stop codon flanked by LoxP sites 

upstream of the LacZ gene meaning that when Cre recombinase is initiated the stop sequence 

is excised and β-galactosidase is expressed.  Staining the resulting tissue with X-gal allows the 

areas in which efficient Cre recombinase activity has occurred.  This will therefore enable the 

Cre recombination activity to be assessed in the brain regions of interest.  

Alpha-synuclein conditional knockout animals that have been crossed with ACTFLPe and NSE-

CreER lines will be bred to produce a number of cohorts for aging.  It will of course be 

important to first assess the knockout, which will be achieved by assessing protein and mRNA 

levels of α-synuclein by Western blotting and qRT-PCR respectivey.  X-gal staining will also be 

used to assess the degree of Cre recombination in the midbrain dopaminergic system.  As well 

as these methods immunohistochemistry will also be employed against α-synuclein to ensure 

that the knockout is successful.  It is expected that the knockout should be efficient as shown 

by the ability to induce both FLP and Cre recombination in targeted ES clones.   

After initial analysis of the capabilities of the conditional knockout cohorts of animals will be 

aged and knockout induced at 3-, 9-, 12- and 24-months of age.  Throughout the period of 

aging and following the induction of α-synuclein knockout the animals will be subjected to a 

variety of behavioural tests.  These tests will include rotarod, inverted grid and horizontal 

beam tests, all as a measure of the function of the nigrostriatal system.  It is anticipated that 

following the knockout the animals will perform less well at these tests and particularly those 

aged furthest before the knockout as brain plasticity decreases with age.  These animals will 

also be challenged with psychostimulants such as amphetamine and cocaine to assess their 

locomotor response.  These drugs work by different mechanism as described in chapter 3 and 

will allow an insight into the dopamine handling capacity at the striatal synapses.   Further to 

this, tissues will be harvested at 3 and 6 months following the induction of the conditional 

knockout.  These tissues will be assessed in a number of ways to explore any changes in the 

nigrostriatal system.  HPLC will be used to measure any alterations in striatal dopamine levels, 

as well as that of its metabolites, and Western blotting will be employed to ascertain any 

changes to synaptic markers in the striatum. Immunohistochemistry coupled with stereological 

counting will be used to determine the number of dopaminergic neurons of the SNpc and VTA.  
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It is hoped that electron microscopy can be used to assess changes to the synapses in the 

striatum.  This would include the evaluation of synaptic vesicle density and arrangement into 

their various pools, the size of synaptic boutons and length of the active zone as well as the 

number of mitochondria.  These measurements will be carried out on projections to the 

striatum as well as those to the VTA.  Following on from this fast-scan cyclic voltametry will 

also be used to explore the release and reuptake dynamics of dopamine at the synapse in the 

striatum.  These techniques have all be previously employed to look at conventional knockout 

models and have been useful in helping to unravel some intriguing data.  It is hoped that these 

techniques will also allow a clear insight into the changes that occur in the absence of α-

synuclein at the dopaminergic synapse. 

In order to explore any compensation mechanism that may occur in the conventional knockout 

animals during critical development periods as previously discussed, animals could be crossed 

with a reporter strain of GFP mice that show expression in the midbrain structures.  This could 

be done with both conventional and conditional knockout α-synuclein animals as well and WT 

controls and the GFP positive SNpc and VTA neurons laser dissected.  These neurons could 

then be used to extract mRNA that could be used for comparative whole genome expression 

profiles of these dopaminergic neurons.  Any significant changes can then be confirmed using 

other methods such as qRT-PCR.  Through this process it would be hoped that pathways which 

are altered during changes in normal α-synuclein expression, and thus in the neurons response 

to diminishing α-synuclein levels seen in disease, could be identified for further study.   

This novel conditional α-synuclein model could also be used to further investigate the role of 

α-synuclein in MPTP toxicity.  Animals could be aged to 6- months prior to induction of the 

knockout and then after a month be exposed to MPTP.  This may provide further knowledge 

with regards to the scenario of conventional knockout of α-synuclein possibly causing a more 

robust population of midbrain neurons and thus being described in a number of studies as 

resistant to the effects of MPTP (Drolet et al., 2004, Robertson et al., 2004). 

It is hoped that the development of the novel model will give a new insight into the role of α-

synuclein loss of function in the disease process.  This is an important facet of knowledge that 

as yet has not been properly explored.  Previous α-synuclein knockout animals have failed to 

reveal any overt phenotypes, as discussed in the introduction in detail, which may be due to 

functional compensation of the other synuclein family members or that of a prenatally induced 

mechanism not related to β- or γ-synuclein which allows for the functional compensation of α-

synuclein.  Identification of mechanisms which dopaminergic neurons use to cope with 
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depletion of α-synuclein may also represent important new pathways that could be targeted 

therapeutically to limit the loss of these neurons. 
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This thesis has studied the role of the synuclein family within the midbrain dopaminergic 

system in detail and has revealed evidence to further bolster support for the involvement of 

these proteins in normal dopamine neurotransmission.  This is in agreement with a previous 

body of work which suggests this population of neurons is sensitive to small changes in the 

levels of the synucleins.  Further to this it is hoped that the creation of the conditional α-

synuclein knockout model will allow for a more specific role for the protein to be determined 

and produce insight into its role in the disease process. 

The role of the synucleins in dopamine neurotransmission 

As yet there has been no single clearly defined role identified for any of the synucleins.  

Previous work has concentrated mainly on the role of α-synuclein due to its clear function in 

disease and has linked it to a role in neurotransmission, including dopamine 

neurotransmission.  Although less work has focussed on the other two synucleins, tentative 

hints have also pointed to a similar role for them in normal neurotransmission (Chandra et al., 

2005, Senior et al., 2008).  This is not surprising due to their highly similar amino acid 

sequences and overlapping expression patterns with α-synuclein.  To gain a better general 

insight into the role of the synuclein family, triple synuclein null mice have proved insightful.  

Work presented in this thesis with the triple synuclein null mice supports this sentiment of a 

role in dopaminergic neurotransmission, and in particular suggests that these proteins are 

involved in dopamine neurotransmission at the vesicular level.  

A previous study on an independently produced line of triple synuclein null mice demonstrated 

no neuronal loss in the CA1 and CA3 subfields of the hippocampus (Greten-Harrison et al., 

2010).  To expand on this dopaminergic midbrain populations of the SNpc and VTA were 

investigated in the triple knockout mice obtained in our laboratory. This confirmed that there 

were no significant alterations in the number of TH positive cells in these regions therefore 

supporting previously obtained evidence that these proteins are not essential for the survival 

or development of the dopaminergic midbrain neurons.  Work carried out on γ-, α- and αγ-

synuclein null mice has previously shown that there is a small but significant decrease in the 

number of tyrosine hydroxalse positive neurons in the SNpc (Robertson et al., 2004). However 

another study investigating the loss of α-synuclein on the survival of midbrain dopaminergic 

neurons failed to describe any cell loss (Abeliovich et al., 2000).  It is likely that the disparities 

in the two described studies arose from strain background variations as the mice used in the 

Robertson et al study were on a pure C57Bl6 background whereas those in the Abeliovich et al 

study were intercrosses between C57Bl6 and 129SV/j mice.  A possible explanation for the 
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differences between the triple synuclein null mice and other combinations is that in the case 

where all synucleins are absent a compensatory mechanism may be established that can fully 

compensate for the loss of the synucleins, but where at least one of the synucleins is 

remaining it is probable that this mechanism cannot be fully established and therefore leads to 

the loss of a subset of dopaminergic neurons that are particularly sensitive to changes in 

synuclein levels.   

No changes were noted in levels or distribution of synaptic markers in the triple synuclein null 

animals, but a significant reduction of 40% in striatal dopamine concentrations was apparent.  

Despite this the animals proved to have a hyperdopaminergic phenotype which can be 

explained by increased releasability of dopamine that was demonstrated in these animals 

using FCV studies (Anwar et al., 2011).  Interestingly the impact that the loss of all three 

synucleins has on dopamine releasability was specific to the dorsal striatum with no significant 

changes being noted in the ventral striatum, therefore displaying clear differences in the 

sensitivities of these different subsets of dopaminergic populations to the loss of the 

synucleins (Anwar et al., 2011).  The differences in susceptibility to PD pathology is well 

described in these two sets of dopaminergic neurons and it is generally considered that SNpc 

dopaminergic neurons that innervate the dorsal striatum differ in many ways from those that 

arise in the VTA and innervate the ventral striatum.  These differences include heterogeneity 

of ion channels and protein expression which includes specific markers of dopaminergic 

neurons such as VMAT2 and DAT (Lissa and Roeperb, 2008, Bjorklund and Dunnett, 2007, 

Korotkova et al., 2004).   This disparity is considered to explain the apparent increased 

sensitivity of the dorsal striatal neurons to the neurodegenerative process.  Due to previously 

well described differences in these two neuronal populations it is not surprising that they 

display varying sensitivities to the loss of synuclein expression.  This work has uncovered clear 

differences in these two regions with regards to the role of the synuclein family and may 

suggest that different areas of the brain are more dependent on these proteins than others.  

This highlights the importance of exploring various subpopulations of neurons in such studies 

to unveil any disparities in sensitivity. 

Earlier work has shown α-synuclein can regulate the dynamics of dopamine release at the 

presynaptic membrane.  Previous α-synuclein as well as double synuclein knockout animal 

models identified increased releasability (Abeliovich et al., 2000, Senior et al., 2008, Yamada et 

al., 2004).  In contrast to this, studies that have used mice overexpressing α-synuclein have 

demonstrated an inhibition of dopamine release, possibly through alterations in normal 
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synaptic vesicle pool dynamics (Nemani et al., 2010, Larsen et al., 2006).  This evidence 

suggests that α-synuclein levels are important in the normal release dynamics of dopamine 

and that the protein may act as a negative regulator for dopamine release under normal 

circumstances.  However the method by which this is instated remains unclear.  One possibility 

is through the regulation of the synaptic vesicle pools. 

Much of the work relating to the investigation of the affects of the synucleins on vesicle pool 

dynamics has been obtained through studies on hippocampal neurons.  These neurons are 

distinctly different from those of the striatum as the midbrain dopaminergic neurons lack any 

clearly defined reserve and recycling pools of vesicles.  Although these studies are very useful 

in terms of studying basic aspects of neural transmission this use of different neuronal 

populations for studies of this nature cannot be directly compared and for this reason it is 

likely the cause of differing results between studies. Early work on cultured hippocampal 

neurons that were treated with antisense oligonucleotides in order to knockdown α-synuclein 

expression showed a decreased availability of a reserve pool of synaptic vesicles (Murphy et 

al., 2000).  Consistent with this Cabin et al demonstrated that α-synuclein knockout animals 

have a significant impairment to prolonged repeated stimulation which depleted the docked 

vesicle population and due to the reserve pool being diminished, replenishment of the readily 

releasable pool was slower (Cabin et al., 2002).  Recently a study in which α-synuclein was 

over-expressed at levels predicted to mirror those seen in patients with multiplication 

mutations, but which were not great enough to display any marked toxicity, also displayed a 

specific reduction in the size of the recycling pool of synaptic vesicles and therefore resulted in 

inhibition of normal neurotransmitter release which was evident prior to any  detectable 

pathology (Nemani et al., 2010).  As well as this when either of the mutant forms of α-

synuclein, A53T or E46K, were overexpressed in cultured hippocampal neurons, there was a 

noted inhibition of exocytosis of synaptic vesicles.  Taken together these studies demonstrate 

an important role for α-synuclein and highlight the problems that even small alterations in the 

expression level of this protein can cause.  

Indeed, in an independent study using triple synuclein null mice there were measurable 

alterations in hippocampal neurotransmission, but this was not attributed to changes in 

neurotransmitter releasability dynamics (Greten-Harrison et al., 2010). This study failed to 

reveal any changes in the number of synaptic vesicles in hippocamal neurons.  In agreement 

with this, work done by our collaborators on the triple synuclein null mice produced in our lab 

showed no significant alterations in the number of synaptic vesicles, however these results 
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were gained from neurons of the dorsal striatum (Anwar et al., 2011).  These results from two 

independent cohorts of triple synulcien null animals and in two different populations of 

neurons are not in agreement with some previous studies that would suggest that a decrease 

in the number of the synaptic vesicles would be expected.  One possibility is that in the triple 

synuclein null mice a more effective compensation mechanism is activated whereas in animals 

only lacking a single synuclein this is not the case.  Although the results of these two studies 

are not completely in agreement with each other on certain phenotypes seen in these animals, 

they do both consistently display alterations of normal basic neurotransmission suggesting an 

important role for the synucleins.   

In our studies regarding synaptic vesicle dynamics in the triple synuclein null mice it was 

revealed that although normal levels of synaptic vesicles were present they contained less 

dopamine due to a reduced capacity to compartmentalise it.  It was demonstrated through 

studies investigating 3H-dopamine uptake in synaptic vesicles purified from triple synuclein null 

mice, as described in chapter 4, that β-synuclein appears to have an important role in allowing 

efficient dopamine transport into the these vesicles and it is likely that the other two members 

of the synuclein family also posses this capability, but to different degrees.  Further 

investigation is required in order to explore this hypothesis.  Previous work carried out by 

Schulter et al supports this work by demonstrating that synaptic vesicles purified from α-

synuclein null animals show no alteration in their ability to sequester dopamine in comparison 

to those purified from WT animals.  In this case it could be proposed that due to β-synuclein 

still being present it could function to help in vesicle dopamine storage (Schluter et al., 2003).    

This data is consistent with the body of work showing the synucleins to have a role in synaptic 

vesicle management. 

Continuing on the theme of dopamine neurotransmission, α-synuclein has also been 

implicated in a role allowing it to interfere with normal dopamine synthesis.  It is apparent, at 

least in cell culture systems, that the overexpression of α-synuclein is able to reduce the 

activity of tyrosine hydroxylase, the rate limiting enzyme in the dopamine synthetic pathway, 

whereas conversely the knockdown of α-synuclein leads to increased activity of this enzyme 

(Liu et al., 2008, Yu et al., 2004, Gao et al., 2007).  In the triple synuclein null mice used in this 

study it is apparent that the activity of tyrosine hydroxylase is normal and so the translation 

between in vitro and in vivo studies may not hold true. 

Although the work above along with numerous other studies clearly links the synucleins to 

dopamine neurotransmission their specific role remains poorly defined.  This will require 
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further studies that do not solely concentrate on the dopaminergic nigrostriatal or 

hippocampal circuits.  It will be important that other dopaminergic systems are researched as 

well as non-dopaminergic systems.  It is apparent from the work carried out on the triple 

synuclein null animals that the loss of the synucleins affects different closely related 

subpopulations of dopaminergic neurons, suggesting that different neuronal subtypes have 

different sensitivities to changes in the levels of these proteins.  This may help explain why the 

dopaminergic neurons of the SNpc are particularly sensitive to pathology in PD.  Helping to 

reveal why this may be so will also be important in order to better understand the disease 

process.  As yet most research has concentrated on the dopaminergic system due to its clear 

link to the motor symptoms of PD but little is known about the impact of changes in synuclein 

levels on the non dopaminergic systems of the brain, despite the fact many symptoms seen in 

patients with PD arise from non dopaminergic circuits, and so studying these may prove 

insightful.  The triple synuclein null model should prove a valuable tool in the hunt for the 

affects of altered synuclein dynamics on neurotransmission in other neuronal populations and 

may help explain some of the more varied symptoms of the disease.  This is a very important 

area that needs to be researched as these symptoms are often debilitating to the patients, but 

also because it may allow new insight into the role of the synucleins that could be translated 

back to the dopaminergic system. 

The role of familial redundancy within the synuclein family 

In the lack of a member of the synuclein family it has always been considered that the 

remaining protein(s) can effectively allow functional compensation.  Although the work 

presented in this thesis demonstrates this to an extent it is unlikely to be the most important 

source of compensation in these models.  Even in triple synuclein null animals there were no 

overt phenotypes and those that were observed were not drastically altered from those 

previously observed in other knockout models. The loss of dopamine, despite normal TH 

activity, in the nigrostriatal system was greater than has been demonstrated in other synuclein 

knockout combinations and this severity of loss was observed in 4 month old animals 

(Abeliovich et al., 2000, Chandra et al., 2004).  The only comparable loss of dopamine was 

reported in α-synuclein knockout animals that were aged to 24 months (Al-Wandi et al., 2010).  

It therefore appears that there is a degree of familial compensation amongst the synuclein 

family that can work at least temporarily but it is more likely that a developmental 

compensatory mechanism is responsible for the diminished phenotypes in these animals that 

lack three abundant synaptic proteins.   



 145 

Further evidence that supports this hypothesis comes from small changes in behavioural tests 

in an age dependent manner in the triple synuclein null animals.  These knockout animals 

illustrate a significantly diminished ability to perform the accelerating rotorod test by 4 

months, whereas they display a progressive inability to carry out the inverted grid test.  This 

may infer that the compensation mechanism that these triple synuclein null animals have is 

less effective, particularly with age when other stresses on the nervous system are apparent. 

Put together it is likely that another compensatory mechanism is instated during embryonic 

development of these animals  in the loss of the synucleins which are abundant synaptic 

proteins and it is this reason that a clear role for the synucleins remains masked. 

The importance of the novel α-synuclein conditional knockout model 

As has been detailed in this thesis a novel α-synuclein conditional knockout model has been 

successfully produced.  Using targeted ES clones both FLP and Cre-recombinase activity has 

been confirmed to induce knockout of the neomycin cassette and α-synuclein respectively.  

However due to the nature of this project as yet it remains to be confirmed in the mice 

themselves.  Currently, germline transfer has been established and these animals are being 

crossed with ACTFLPe mice, following which they will be bred initially with NSECreER but also 

at a later date with DAT/ER-Cre mice to produce working cohorts.  These mice will be kept on a 

pure C57Bl/6 background in line with the rest of the synuclein knockout animals we obtain.  

The issue of background is important as variation in strain does appear to cause varied results 

as discussed above and the chosen background is one of the most commonly used for PD 

modelling.  It is also the strain of choice for the EUCOMM project, which aims to produce a 

conditional knockout model of disease related genes, highlighting the importance of having 

animal models on comparable backgrounds. 

This model has been produced in order to give further and clearer insight into the role of α-

synuclein with particular interest in the degree to which a loss of function of the protein 

contributes to the disease process in PD.  The fact that the model is conditional allows the 

aging of the animals prior to the knockout of the gene occurring; meaning the role of α-

synuclein can be fully assessed in the aged nervous system, an important consideration in the 

study of diseases of aging.  As well as this it is hoped that any compensatory mechanism, which 

seems apparent in previously produced synuclein knockout animals, will be overcome as the 

brain will be less plastic and therefore unable to adapt.  This is something that as yet no other 

knockout model of α-synuclein has been able to achieve.   
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This model will first be used to assess the midbrain dopaminergic system in these animals as 

has been described in detail in the case of the triple synuclein null animals.  The numbers of 

dopaminergic neurons will be assessed in the SNpc and VTA structures along with their gross 

morphology.  Importantly, ultrastructure analysis using electron microscopy will be employed 

to assess the number of synaptic vesicles, synaptic bouton size, distance of vesicles to the 

synapse and other synaptic parameters.  This model will also be carefully assessed using FCV 

and dopaminergic neurotransmission-altering drugs in order to gain insight into 

neurotransmitter release dynamics, which as discussed above appears highly important.  

Behavioural assessment will also occur to consider how the aged loss of α-synuclein impacts 

on normal motor ability.  However, the fact that the inducible NSECre-recombinase is not 

specific to any one subtype of neuron will allow the effects of the loss of α-synuclein to be 

assessed in any population of neurons throughout the brain.  As has been demonstrated from 

the studies of the triple synuclein null animals, it is apparent that different subpopulations of 

neurons show varying sensitivities to the loss of the synucleins, meaning it should be expected 

that the loss of α-synuclein will have similar outcomes.  For this reason categorical assessment 

of other neurotransmitter systems should be carried out, for example the hippocampus could 

be explored as it was in the Greten-Harrison et al study which proved fruitful and will also 

allow for more direct comparisons between previous studies (Greten-Harrison et al., 2010).  As 

well as crossing these animals with NSECreER mice to induce the knockout of α-synuclein, a 

separate line will be created in which CreER recombinase expression is under the control of 

the DAT promoter meaning that the knockout is specific to dopaminergic neurons only.  This 

will allow for the detailed investigation of the dopaminergic system with no possible 

interference from other neuronal subpopulations that may be affected by the inactivation of 

α-synuclein.    Taken together this should allow for an unprecedented insight into the loss of α-

synuclein on synaptic function both in specific populations of neurons as well as enabling a 

wider outlook with the use of a more broadly expressed Cre recombinase line.   This may 

ultimately lead to new therapeutic strategies. 

Final Conclusions 

This thesis has contributed further evidence of the role of the synucleins in normal 

dopaminergic synaptic function.  Work with triple synuclein null mice has revealed that these 

animals have a normal complement of SNpc and VTA neurons and normal gross brain 

architecture with no overt phenotypes.  However, significant reductions in dopamine 

concentrations were observed and despite this a clear hyperdopaminergic phenotype was 

revealed.  This body of work has also disproved the hypothesis that the synucleins are required 
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for MPTP toxicity and that triple knockout animals are in fact more sensitive to MPTP than WT 

animals.  In addition to this it was revealed that synaptic vesicles of triple synuclein null 

animals are not able to efficiently store dopamine and that β-synuclein expression can restore 

this deficit.  However, as with many previous studies this project has concentrated on the 

midbrain dopaminergic systems due to their clear association with PD.  It is clear that although 

the main movement related symptoms of PD are caused by the loss of the SNpc dopaminergic 

neurons many of the other symptoms are not.  This is a complex disorder that should not be 

simplified to one system and for this reason it will be fruitful to carry out similar studies in 

other affected regions.  This will not only impact on our understanding on the disease process 

but is also likely to allow a broader understanding to the role of the synucleins at a basic level 

and how this may differ in different neuronal populations. 

The work completed for this thesis has also involved the development of a completely novel 

conditional α-synuclein knockout model, which is important to allow the study of the effect of 

a loss of normal function of α-synuclein at the synapse.  Although this is a very plausible idea it 

has until recently gained little attention.  The main school of thought regarding α-synucleins 

role in PD pathogenesis is through a simple gain of function mechanism.  However, as is 

becoming ever clearer, this seems to be a somewhat naïve view of events and it is likely that 

there is an interplay between gain and loss of function of α-synuclein that leads to a complex 

pathway of events which begins with subtle alterations in the normal dynamics of the affected 

neurons but which eventually culminate in cell death.  It is hoped that the characterisation of 

this new model will allow for the role of α-synuclein at the synapse to be made clear and that 

this model will therefore impact on the way that PD pathogenesis is viewed. 
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Appendix 1: the separation of VTA and SNpc and cell body diameter 

measurements 

The below diagram shows how the VTA, area eight and SNpc were defined for counting of TH 

positive cells.  This definition was kept constant throughout all counting.  Images were taken at 

10x and scale bar represents 200μm. 

 

1) VTA is shown to the left side of the blue line.  On 

the right side of the line area 8 is present which was 

not counted. 

2) The VTA is shown to the right of the picture and 

the remainder of area 8 is highlighted in the triangle.  

To the left of the blue line the beginning of the SNpc 

is seen. 

3) Here the VTA and SNpc become hard to separate.  

To the right of the blue line was counted as VTA and 

to the left of the blue line was counted as the SNpc. 

4) The VTA is coming to its end on the left of the line 

and to the right of the line the SNpc is now very 

clear. 
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TH immunostained sections of the SNpc at 10x and 40x magnification.  In the third inlay, in 

which only one cell body is present, the method of measuring cell body diameter is 

demonstrated.  This was done across the middle horizontal plain of a random selection of cell 

bodies from each slide in order to calculate the Abercrobie correction factor.  The cell body 

must have a clear centre in order to be counted as demonstrated in the inlay showing the 

single cell body. 10x scale bar represents 200μm and 40x scale bar represents 50μm. 
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Appendix 2: pCR-Blunt II-TOPO (Invitrogen) plasmid map 
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Appendix 3: table of primers 
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Appendix 4: Sequencing of final construct 

 

 

 

Presented above is the completed targeting construct with primers used for sequencing highlighted.   
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Appendix 5: Sequence of targeted α-synuclein locus also showing Southern hybridisation probes 

 

TGATTTATGCAACAGCATAGGTGAACTAACACATCATGCTGACTGGTATAAACAAAGGCCATATACTCCATGGATATGTACAGAATCAAATAGAATTATAAACATAGTTCAAAGGGATGA

AACATTTCCTTTTATCTTTTGAGATTTCACTCAGGTCAGATAACTGGCCAGACTGTGTGACTGAAGATAATAGAAACCAGACAGTGCTGATGTTAGGAGCAACACCCTGACCAGTACCGCT

TAGTTTTGCATGCAATGAGTGTTCTAGATATTGAAATAGTCTCTCTTTAAAATGGTATGCTATCACTTGGACTTTTTCAAAATCTGCAGACACAAAATCAGAGCAGTTCACTCTATAAACTA

TAATTCAATGTAGAATATCATTTGATGCCATCCTGGGTATTTCAGTCATTCTCACATTTATTAATGTGTGCTAGAATGTTCCCAGATGGAAAAACATGAAAAGCTTAAATCTCTAGAAGGA

GAGAAGTCGATAGTGACAGAGTAGCCATGCTGAAGGCACAGAATGATGCTTGTGGAAGCTGGTGATATTTATGTAGGAATCTTAGTCTCACAACTGTAAATATGTTTAAATGTTTTACAT

TCTAAAATTTTAGAGGAGAGGTGTCATCTCAATTCACTTTCTCTTCTATAATAGAAAAAAAAAAAACCTGGCTAAATAGAACATAACTTGGTAAAGTTCTGAGAGGCAGAAAACCAACGC

CCAGACGCAACCAAAACAGGCCTGGCAAAACATTATCCCGAGGAAACGTTTGTGTCCTCTCATCTGGCTTTAGACTATTGACAAATAGACCCCAAGAAATTGGAAGTCCTCCAGGAATTT

GCTGAGGGAAGGAAAAGGCTGAAGCCTTGTGTCAATTACAGGGTGAGCATGTCTCCCAGGAAGAAATATCAGATATCAGATACTTAGTCAGACCTCCTTGCAGAAGAGACTGGAGCGG

AGACAGAGACAGTAGCTGGAAGCACACTTTGACCTACTGCTTAGTCATACATACATCCTGACCTCTATCTAAACAAGATGAACTTGGGGCACTAAACCTCTGTTCCTCTTCTTAACGTGGC

CACATTGAATTACTCCCATTTCTAGTATTTCACTATTTATATGTCACTTTACCTGGCTGGTTGAGGACAGGTGTCCTAACTTGGCAGGATGGGGATGCTAGAGCCCAGGATCTAACCCTATC

TACTGCAGAGGTGCCACCTTTTCCTTTAATTTCAAGTAAACATGGTATGTGCCACTAGTGTGTAGGAAGGTTGATTTTTAAAGGGAATAAGAATTGAAGGCGTTGCTTAAACAGTTAATTT

CTGTCACATTACTTGTACTCTGCATTTGTGGTTTTATCTGCCTCCTTCCTTTATAGCATGCCAAACAAGCTGCTTGTCCCTTGTTTCAAATGCTTTTTTAGACTTCAATTTATTTATTTATTTATT

TATTTATTTATTTATTTTTCAGGATTCAGAAGTCAACTGACTTCAAGGATCAGAGAAAGCATTCCCTCCTACGACCCCCCCCCCCTTTTAATACAGTAAACGCTTGATTTAGCTTCCAGTGCC

CAACACAAGTTCAGAATACAAGAAAGGAAAAGCAAGGCACTCTGCTGGGGGAGGAGCTTGGCACTCAAATCCACTCTGCTATAAAACAGTGGTATTCTGCTCATCTCAGAGAGAAGTG

GGAACGTGTTAAGTAACACAGAAATTGTCTCAAAGCCTGTGCATCTATCTGCGCGTGTGCTTGGATTGGAAGAAGAGTCTGTTCGCTGGAGCTCCACGCAGCCAGAAGTCGGAAAGGTA

AGAGGTGTGCAAAATCTGCCATTAAGTAGGGACTAAGGAAGAAACTGCCTGTGATGGTCCCAGAGGGTGAATCCCACAGCCGCTACCTTCCTATCCTGTAACTCTATAGTAAGCCACTTT

CTCAAGTGCAAAAAAGCCTTGAGGCAGCTGGTTTTCGACGGTTGGGGGATATTTATTCCCTTGCTCCCACAGATGGGGAAAAAAAAATCAGCGTCTGGCAGCCGCTGATTGGTGGAAAA

GAAAATGGTGATAGTGGAGTGGGAATGAGGATTTGCTGAGCCTCCCCCTGCTTTCTTCGACCTGTAACTCTTCCTTAGTCGGCTCCCCTTTGCACCCAGAACCCTTTTAGACTCCTCCGGG

GTAAAAACAAATGGAAATCTTAAGCTGTGTGAACAAAAGCAACCCCAAGGGTGTGTGCTCCCTCTCCATTGCCTGGCTCCGCACACAGACCATTTCAGGCGGTCCAGCTCTCTGGTGTGG

CATCTGGGCTCGTCCTGGAGGAGGGGGTCGCCTAGAGGAACTGGGAACAGACTGAGGCAGGGAAGGAGGGGGGTGGGGCAGGAGAGGCGCCAGCTCAAGTTCAGCCACGATAAAA

CTGAGGGCCCTCTGAACTCGAGGGGAGGCTCAGGCCGTCCTCTCTTCCTTCCATCCGGGGGAATGTGCTCCAGATACCCACAGCCCTCACGCACCGCACCTCCAACCAACCCGTCCCCTCC
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CTAGGAAGAGGAGCGAAGGCACGAGGCAGGCGAGGGGCGGGGAGAGGCGCTGACAAATCAGCTGCGGGGGCGACGTGAAGGAGCCAGGGAGCCAGAGCGCCCGGCAGCAGGCAG

CAGACGGCAGGAGACCAGCAGGTGTTCCCCCTGCCCCTGCCTGCCCTTGCCTCTTTCATTGAAATTAGATTGGGGAAAACAGGAAGAATCGGAGTTCTTCAGAAGCCTAGGGAGCCGGT

AAGTACCTGTAGATGGGGCAGCTCTGGGGATCTTAGCTAGCCGGAGCAAAGAGCCGGGACGCCTAGAGAAGACCAACTACAGCTGCTTTGGCGGTGGGGACTGGGCCAGTGCGTGGA

AAGTACATCACTCGGCTTTCCTTTCGCTGGAGACATGCCCTTCCATCCTGTCAAAGCCCGAGGGAAAGGCCAGGTTGCCTGTGGCATCTGCTTTTTCAAGCGGAAACGCTAGGGTGTTTC

ATGTTGAGTGCTGGATGGTGGAAGCTTAGTGCTGGGCATTGGGTGGAATTTGAGCATCCAACTTTCATGCTCCAACCCCAGGCATTTCAGCTTCTTTCTGTAGAGGAAGAAGGGTGCCTT

TGGCCCATGATTAATAGAAGTGCAGAGGACAGTAGGCAACAGGTGATAAAGGGTTAATGAGCATGGGGTGCAGGGTCTTCTAGAGGATTCCAGCTGAGGACAGAGCTTCTTGGTTGG

GTGGTGCTCAAGTGAGACTGCTCAAGTGTATGGACAGCGCCTGCTCTGGGCAGATAGCAGGCAAAGAGCTAGTGGTGGGCAGAAGGTCTTGCAAGATTAGAAAGGCTGGGCTTCAAG

CAGTTCCCTACTTCTAGATTAAACAGTTCCCCTCCCTTCCTTCTCCAAAGACTGACTCCTCTCTGGGTCTTTTATCCTCTTGCCCCCACTCCATCTCTGTACGCCCACCTCCCATGTTCCTTTTC

TAGATAGTCTTTTTACTTTGAATGTAACCTTTGGGCCCTGGGAACTTGATGGGGTAGAGGATGCCCACCTCCGGATCCATAACTTCGTATAGCATACATTATACGAAGTTATCCATGGTCT

AGCCCTTCTGCAACTCTTCTTCTGAAATATGTATGTAAGAGCAGTCGAATGATCAAACTAGATCCATCCCATCCTTAAGTGACATGACTTTTTCCTAGTATTGAGTGACATAACTCAACAAT

CAATCAACACTGTGCCCAGCACCCCCACATCCCCCCACCCAAGAAATCACACTTACACCAGGACTTGGGGGAAGGCATACTGATTTTTCCCCCTCAATTTCCTTTCTTTCTCTAGCTGTTTTA

AACCTTATTATTATTATTTTTTTACCCAAATTTTCTAATTCAAAATGTATTCTGTATTCTCTAGTGTGGAGCAAAAATACATCTTTAGCCATGGATGTGTTCATGAAAGGACTTTCAAAGGCC

AAGGAGGGAGTTGTGGCTGCTGCTGAGAAAACCAAGCAGGGTGTGGCAGAGGCAGCTGGAAAGACAAAAGAGGGAGTCCTCTATGTAGGTAGGTAGTGACACTGTGACTAATGAATT

GGGGTGGCTGGTGTGTGGTGTCTGATTCGTGTGCATCACAGCTTCTCAGAAGAGTGACAGCTGTGTGGAGGTGAGAGAATATGAACCTGCATATTAGCTCTCAGAAACAAACAGGGAC

AATGTTTTCTGTCCTTAGATTCATTAATCTTGTTATTTATGTAGGTTTTTTATTTGGTTTTCTGTTTCTGTGTATGAATACACTGAATTTTAAAAATTGGCAACCCATGAAAAATAACCAAGAA

TATGCTTATGAATCAAAGACATGTATGGCAGTAAGCCTGGAAGTTCCTATTCTCTAGAAAGTATAGGAACTTCGCTAGAGTCAGCTTCTGATGGAATTAGAACTTGGCAAAACAATACTG

AGAATGAAGTGTATGTGGAACAGAGGCTGCTGATCTCGTTCTTCAGGCTATGAAACTGACACATTTGGAAACCACAGTACTTAGAACCACAAAGTGGGAATCAAGAGAAAAACAATGAT

CCCACGAGAGATCTATAGATCTATAGATCATGAGTGGGAGGAATGAGCTGGCCCTTAATTTGGTTTTGCTTGTTTAAATTATGATATCCAACTATGAAACATTATCATAAAGCAATAGTAA

AGAGCCTTCAGTAAAGAGCAGGCATTTATCTAATCCCACCCCACCCCCACCCCCGTAGCTCCAATCCTTCCATTCAAAATGTAGGTACTCTGTTCTCACCCTTCTTAACAAAGTATGACAGG

AAAAACTTCCATTTTAGTGGACATCTTTATTGTTTAATAGATCATCAATTTCTGCAGACTTACAGGACGGATCGATCCCCTCAGAAGAACTCGTCAAGAAGGCGATAGAAGGCGATGCGCT

GCGAATCGGGAGCGGCGATACCGTAAAGCACGAGGAAGCGGTCAGCCCATTCGCCGCCAAGCTCTTCAGCAATATCACGGGTAGCCAACGCTATGTCCTGATAGCGGTCCGCCACACCC

AGCCGGCCACAGTCGATGAATCCAGAAAAGCGGCCATTTTCCACCATGATATTCGGCAAGCAGGCATCGCCATGGGTCACGACGAGATCATCGCCGTCGGGCATGCGCGCCTTGAGCCT

GGCGAACAGTTCGGCTGGCGCGAGCCCCTGATGCTCTTCGTCCAGATCATCCTGATCGACAAGACCGGCTTCCATCCGAGTACGTGCTCGCTCGATGCGATGTTTCGCTTGGTGGTCGAA

TGGGCAGGTAGCCGGATCAAGCGTATGCAGCCGCCGCATTGCATCAGCCATGATGGATACTTTCTCGGCAGGAGCAAGGTGAGATGACAGGAGATCCTGCCCCGGCACTTCGCCCAAT
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AGCAGCCAGTCCCTTCCCGCTTCAGTGACAACGTCGAGCACAGCTGCGCAAGGAACGCCCGTCGTGGCCAGCCACGATAGCCGCGCTGCCTCGTCCTGCAGTTCATTCAGGGCACCGGA

CAGGTCGGTCTTGACAAAAAGAACCGGGCGCCCCTGCGCTGACAGCCGGAACACGGCGGCATCAGAGCAGCCGATTGTCTGTTGTGCCCAGTCATAGCCGAATAGCCTCTCCACCCAAG

CGGCCGGAGAACCTGCGTGCAATCCATCTTGTTCAATGGCCGATCCCATATTGGCTGCAGGTCGAAAGGCCCGGAGATGAGGAAGAGGAGAACAGCGCGGCAGACGTGCGCTTTTGAA

GCGTGCGAGAATGCCGGGCCTCGGGAGGACCTTCGCGCCCGCCCCGCCCCTGAGCCCGCCCCTGAGCCCGCCCCCGGACCCACCCCTTCCCAGCCTCTGAGCCCAGAAAGCGAAGGAG

CAAAGCTGCTATTGGCCGCTGCCCCAAAGGCCTACCCGCTTCCATTGCTCAGCGGTGCTGTCCATCTGCACGAGACTAGTGAGACGTGCTACTTCCATTTGTCACGTCCTGCACGACGCGA

GCTGCGGGGCGGGGGGGAACTTCCTGACTAGGGGAGGAGTAGAAGGTGGCGCGAAGGGGCCACCAAAGAACGGAGCCGGTTGGCGCTACCGGTGGATGTGGAATGTGTGCGAGGC

CAGAGGCCACTTGTGTAGCGCCAAGTGCCAGCGGGGCTGCTAAAGCGCATGCTCCAGACTGCCTTGGGAAAAGCGCCTCCCCTACCCGGTAGAATTGACCTGCAGGGAAGTTCCTATTC

TCTAGAAAGTATAGGAACTTCCCAAATAACTTCGTATAGCATACATTATACGAAGTTATGTCGACGTGAGCCACAAGTACTCATGGGACTTTGATTTCTTTCATCATCACTATAGGTAATAC

CTGCTAAGTTTAATAAATTATAAAGCTTAAACAATAGTTTGCATAATTTATTTACAACTGTGAAAATACACTCCTTGACCTTCAAATAGAAGAAAGAAAGCAAGTCTTCTTTGGTGGATCTC

CTTTTAGGGATCACTTGTCAGTGGGACAGCGGGACTTAAGGAACTTCAGAAATGTTTGTTTAGTTCACCTGTCAGAGATCATACATGCTGAACAGTAAGAGGTTGATATTTAGTGCCATTT

TCTGCCTGACTGTACACATTGAAAGGAAGCCAACACTCCCTTTCTCTGTCTTTCCCTGTGTTAAATTGGCTGTAACTTTACAAATCCCTTCTAGTACTTTCATGGAAGGAATAGACACCCAT

GCACACATGCTTATCCCCAGCAGAGACACAGGTGCACATGGGAGCACAGTTGCAGGGTTCATCTACCTCTCTTTCCTCCTGTGAACACTGTTTCCACCTTCTTAGGAGGGCATCTCTCTTG

GTGGAAGACTCAGGGTAAACATTCAGGCTGAAAAGGAGCAGAACAGGTGGCAAAAGTGATGCAGATGCTACCCAGAGTACCAATCGGGGGAAGCCATGCTGACCCTCCAAACGATCA

GTGAGGAATTGATACTTGTAAACATTTTCATGAATGTGTCTTTTCATTGAAGTTTCTAGCAGATCACCTTTCCTAATTCTTCACAGAATAATTTTACATTGAATTAATTCTCTTTTTCTACTTA

AAACATCCTTTCAGAAAGTCTTGTAATGAGTATTGTAAGAGAAGGGTGTCAATGAGCTAATTTTAGAGTGTTTTTTTTTTAATGAATTGTGAAGTATAATGTTTTAGATAGAATTCAGAAT

ATAAAAGCAGTAATTTGTAGATTTGGGGAAAAACTCAATTCTTCCACAACTACAGGCTTGTGACTGATTTTTTTTTTTTTACTTCAGTTGCTTAAGAAACATATCTGTAGATCACTAATTTAA

AGCAAATTTAGAAGTTGTTGAATATTAATTTAGTATATTACTCTTTCTGGATAATAAATGGATTTTGTCAAGCAGAACACTTCTTTGTTTTTATTGTTAATTTTGAGTTTGGGCAAATAAAGT

GATTATATTTTTCAAAGATTAATTTTGTTGGTCTCTGTGAGGCCATTATATTGAAAGTGTAATTTTAATATGTCTAATATTATTAAAATTATCAATGTCTGTTATTATATTTAAAACATGTTTA

ATTAATCAATTGCTTATTATGTTCTGGAATCTAATTAAAAGCTGAACACATGCATAGAGTTTGGGATGAAGAGTAATGTGTGAAGATAAGAATGATAGCTCAGATATTTGTCAACTTCTGT

TAATGTTCCAACACATATTAGAAAATCTGTCATAGATAATCAGCTGTACTGTTGGCTATACTGATTATTGCTTAGATAATCAACTGTGCTGTTAAAGTATGAAAACAACCATAGGCAAAAA

ACAGTGTGACTCTGCCTCTGTCTTTATTGACTCAGAGACTATAGAGAAATGAAAGGAATGTAGACTCTGGACTTGACTTGATACAGACAGAAATTTAATTCAAGCCACATGATTTCTGCCT

TTAGCATCTGCAGGAGGTAACTTGATATCTTTGAGTCTCCTCCCCTTTTTCACATACACATAGTTCATAAAAATGCAACTGCTTTGTAAAGTTACTAAAGTTATGTAGTTAAGGTAGTAACT

GAGTGCACTTTCATATTTAGGAAACTTGAATCTTGTCAGAGAAGTTGTTCAATCTATCTGTTACTCAGTCAACCTAATTTCTTACTTTTTATCCAAGATATGAAACTATTATTAATACCTAAC

CTGAAGGATTAGAAATAATCTGGACTTTGGACATAGCTCCCGTGGCACAGTGCTTGTCTGCCAGCATGCAGCCCTGGGTTCTATTCCCGTACCAGAAAAACAAAAGATTAAAAATAAAAG
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GTTAGAAGTAATCAAAGAAAAACAATGTAAACTTCAGCACTTATGGCTGAAAAGGCTTGGCAGAAGTCTCATCTCATCTCTAATAACAAATGCCTTGGACAACTGCCTTTCAATGAATTGA

AGACCTGCCATACTAATCAGTGTGCTGATTGTCTCTGTGATATTTGCACAAAAAATTCAATTAACATATTTTAGCTTCATAATCAACAGTCTCAATGGCGTGATGTATAATTATAAATTGAA

TTTAAAGTCAAAAAGTTTTCTTCACTTCATGTTAGTTTTATTAATACTATAAAGAAAATCACCTTCAAGTTCTGTTTCACTGCCTGGTGAAGAGCTGTGGTCACACATCTAACTCCTAAGTCT

CACATGTGAGACTTAACTACATGTTGCTAAGTAGTCAGCATATAAACCAATGATATGACTCATTTCTCACATTCCTCTTAGGTCCGTATCCTTGTAATATTCCAAATAAACAAGACAGGGTG

GGGTGGAAGGCAGGGTACATTTCTAGGCTCAGAGAAGCCATTATTATATTGTTCCCCAGCTTCCATATCTTACTTCTTATTTGCTACTTGATGACTAATTTTTTTTTGCTATATCTTATCAGT

TAGATCTCACCTGTAAACTGAAGATAAACTATCATTTATAACTTAGCTGATAATTAGGATAACAAAGGTGAGAGGTATGGTTTGAGATACAGGGCCTTCAAGACTCATTTGTCTTTCATTA

AAGAGGCATTCCATGATTTTACCAAACGTCAAATTCTCTGTTACTGCTGAGGCAAAGAAGACAGACAAGAGACCAGCCAGTGAGCATTAGTTTTCCTTGGTCATGCTTTTTTTTTAATTGG

GTATTTTATGTATTTACATTTTAAACGTTATCCCCTATTCTATTCTAAACCCCTTCCCTGGCTTCTATGAGAATGCTCCCCTGCCACCCATATACTTTCACCTCACGGCCCTGGCATTCCCCTAC

ACTAGCGAATCCAGCCTTCACAGGTCCAAGGGCTCTTCTTCTATTGATGCCAGACAATGCCATCCTCTACTACATATGCAGCTGGAGCTATGGGTTCCTCTATGTGTACTTTTTGGTTGGTG

GTTTATGGGAGCTCTGGAGGGTCTTGTTGATTGATATTCCTATGGGGTTTCAAAATGGTTGGCTTCCAGCATCCGAATCTGTATTGATCAGGCTCTAGCCGAGCCTCTCAGGAGACAGCT

GTATCAGGCTCCTTTCAGCAAGCAGTTCTTGGTATTAGCAGTAGTGTCTGGGTTTGGTGTCTGCAAATAAAATGAAGCCTTTCCTTCAGTCTCTGCTCCACTCTTTGTCCCTGTGTCTCCTCT

AGACAGGAGCTCTTAAAGCTTGTTGTAGTGAAGATGATACAGAAGAGTTGAGTTCTCTCACGCAAGCTGTTCTACTACTTGTGCAGGGTGCCCTGCCCACCACCATTTCCAGTTGTGATGT

GAATAGCACCTGTCTCATAAAGCACAACTTAAACACCTGTGATTGCAGTGCATAAATTAATAGTAATTATTCGAGGTACAAACTTTACTGCTAGCACTTCACCCTAAAAATTATCGCAAAA

ATAATGAAAGCCCAATGTAATTGGTGACTACATTAAACTACTTCTTTCAGAATTTGTCCATGAGCTGCCACTTTCCATCTGTTACAAGATTTGCACAAAAAGCAGCACCTGTGGGTGTGCT

GTCTTTTGTAACCTGCTAATAAATCCGTGTGATATTTTTACAGACACACATCTCAGAAAGGGGAAACTGACCAGCTGAGGTGAAGTCACATCAAGGCAATAAAGTGCAAAATCCTGGGAG

CAATTTGTTTATAGAAAAATAACAGCTGAATATTCAGATTGCAGAAATGTAAATTGAATATTTAATAATTTTGGAAATAGCAATTGGTTCATACCCGGGTTAGTGTATATCAACTTGAAAG

AAAGTAGAGCTAGCATATGTGGTCTCTAGTGTAGTCCTAGATAGTATGTACACACTTCAGGGTCAGGAGGTAAATGTACAAGCTTACACTGAGGATTGTGACATATCAGAAGCCATTGTC

TCAGAGGAAGTAATGCCTTCTTAACCCCATGCTAAAAGAACTATCAGAGTCAGATCGCGGCATGAAGAGTTGTGGTGGTTTGAATAGGAATGCCACCCAGAGTCTCATGAACCTGGTAC

CAGCCAGTGGTACTGTTTGGGAAGGAATATGCAGTGTAGCCTTGGTAGCCGAGGTATGTCACAGGGAGAGGCAGTGAAGGTTTAATAGCCACCCATCATTCCCAGTGTACTCTTGGTCC

CCTGCTTTTGGATCAATATGCAAGCTCTCCATTGTTCCTGCTGCCCTTCCCTTCCTACTCCACTGTGGATTCTAACACACCCAATGTTTTAGGACATGAAAAAGATACCCACACCGTAAAGG

CATATGCAATGAGAAGAAGGCAAGCTTTGTTGAAACTACTTAATAAGCACATTGTTTTTGCAAAAATTAAAAATTCTAAACTACAAAATATAAAATAAATATTAGCTTTAACATTTTATCAT

TTCCCAACATACTTGTGTTTAATAATTTGACTCATAGCCCCCTCACCATCCACTGCTTATACAGTTTCCCCATTCATTGTTAGGTTCTGTACACTGATCAGCTCAGCTTGTCCTCACAGCTCTA

CAGTCCCTTGCAAAATGAGCAGTGCCTATGAAATGCATGCAGACAGCACCCATGCAGAACACATATCCGTTCCTGCTAACAAGTGTGCCTTTCTCTCTGCGCTGCTTCTAGTGCGGTGATC

TTTCCTGTGCTTTCAGCTTCAGCTTCTCCTTCAGAGGCATTTGTATGGGTAAGAACAAGAGTTTGCACCATGTCTGTATCATGCATTCAACAGTACTGAGGGCTTTACTTCAACGATTTCCTT
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TTATTCTTTTGCCAAGATCATGATGCAGATTTCGTTAACCTTTAGTGAAGTGAAGAGTTAAATCTGGACTCTGTATCGGGGTGGGGGTGGGTGGTTCTTTATTTTCAAAATAAAAGTTCCT

ACATATGCTTTTTTAATTAATGAGGGTTTAATTGACTCCTTTCTAAAATATTATTTTAAATAAAATAGACAAAAATTCTCTTAAGGCTATATGTATATATCTTCAAAACTATTTACTAAATAAT

TTAACATACTTTTGTACATGTACTTAGGTTATCTTATTGATCATATTATTCAGCTTGTAGAAATGCACATCTGAATTTTAAGCAATTTTGGAATTAGAAATTACCTCATAGTTAGTGTTTGTC

AACTTGACAGGAAGTAGAGATATGTGGGAAGAGGACATAACATTTGAGGAAATGTCTACCTCTGATTTACCCATAGTAATGTTTGTGAGGATATTTTCCTGATTGACAACTGATGGAGGA

GCACCCAGCCCACTGTGGGTGGCACCACCCCTAGGCAGGTATTTTTGAGTGTTATAAGAAAGCAGGCTGAGCAAGATATGGAGAGCAAACCAGTGAGCAGCATTTTCCCGAGGTCTCCA

CATCAGAGCCTGCCTCCAGGTTCCTGCCATGCTTGGAGTTTCTACTTTTGGTTCCCTCGATAATGAACTTCCAAACTGGAAGCTGAGAAATCTCCTTTTCCACACTTTGTGTTTGGTCACAG

TGTTCATCACCAAACAGAAGACTTTGATTGGCAAGTTAGTTATGTACAGGGAATGTTTACTCTAAATGTTGGTATCTGTACTTTATGACTGAGCAGTTGGCTTCTAGGAAGCTATGTATAT

GATATAGTTTTTGTACTAGTTTTTTTTCCTCTTCTTGTTTTCTGTCCATGTAGCAAGACATTTTTTTTCTTCTCAAATAGTGCATTTTTAAAATCCACTATTTTAAAGTTTTAAAATTCCCCCCCC

CCCACATGCTGGCCTAAGTCTTTTTCAGCTTATATGTCCTCATGTCCTTTTTATCCTTTGCATTCTTCTGTGTCTAGATAAGATTATTTTAGTTAATGTTCCTCTCTCCATCTCTTTAGTCCTTTC

TTCCTTGGTTTCTTGGTAATATTGGGGATCAAATTTAGGTCCTTAAACATCAGAAAACAGTGCTGCACTAAGAACTATGTCTTTATCCCTATAGGATAGCTTTCACTTAAAAATGTGTATTTT

TATATGTATGTATATATAATATGCATGTATATTGTATATATATACAGATATATAAAAATTTTATGCATGCAGATAAAATTATCAGTATTGATTGTACAAAGTGAGAGGCCTCATTATGATGT

GTGGGTCTCCCCTTCCTTGGAGGTAATTGGCAACTGGCCTAATAGGCTGAGGGGAGCAGAGGCGGTTCAGGCTTCAGACTACCATAAGTATGATGGATTGACTTCTGGGATCAGCTTTA

GTGAGACATAACAACTTAGACAGTGCTAGGGATTTCTGGGTGGGTGTAGATTATTGGCTAGGTTCGAGGTGCTGAGGATGTGTCATTTAAAGAAAGAGGAATTCCAGGAATTATTGGG

AGAGAGGTTGTTGAATCTGTAATCTGGCCATTGACAACATGATTGTCTTTATAGGTGAGGGACATAGAGGCCTGATGCCACAGCAAGTAGACTAAGAATAGGGAGAGAGTGATCCTAAC

TCCTGCCTGTCTAAGGATGAGATTTGTCAGCATCTTGATCCCGTCTCACTCTTGCTCCAGGCTAGCTCTGCTGGCTGCACATTCTCACAATGATCTTCCCACAGATGCATTTAATATACAAG

GTTATAGCCACCCTTCTATTACTAGTTTTTTATTATTATTTGTAGAGATAATGCTTTTTATATTTTTATTTGCTTTGTTATTCCTGCGCTTTCATTTTTGTTGTGTATACTCATTGTTCATGGTTC

CATTCCATAAGGACATTTTTATATAAGTATATAGAACACGATTTTTCACAATTCATGAATGTATTTTGATCATAACTCCTCTCCTTTATTCTTTCTCCCCCTTGCTCTTCCTCTCCACTTCTTTAG

TAAAGCCCAGCTGCTTTTGCGTACTTTTTATCACTCTATGCATATCTGGGAGAAAAAATGATGCTATGTTTTTCTCTGTGAGCTGGGTCATTTCATTGAACATGATGATCTGACTTTTTCCCT

ACACATATCATAATTTCCTTCTTTTTTATTTCCGACTACAAGTCAATTATGAAACCCAGTGTGTGGAGAATTCTTAAAAAGTAAGAAATAAAATTTCCAGCCATGCCACTTCTGTGCAACCAC

CAGAGCCACCATACAAGAATGATGTACTGCATACCATGCATATTTGACTATTCAACCATAGAGTGTTATGGAAGCAACCCAGATACTCACCAGTGGATGACTGGAAGAAGAGACTCTGGT

ATAAATCAAAACCAGAGTTTTTCAAATGAACCTTAAATCTCCAAACTATTTAATCAAATGGTGGTCATTATACTGAAATTTTAAGCATTAGAAAGATTATTTTTAAAATGATTAACAAACTT

ACTTTTAATAATATGTGCAATAGCTATTTCTTTGTTTAGTAATGGCTCAAGGCATAGGTGAAATTCTTATCTTACATACAGTCCTAGTTTGAAAGTAACATGCTGTTACTTAATAATTATGCA

AATCACTTAATTATGATTTTTAGTTTCCTTATGTATGAAATGGGTATTGAATGGCTGCATCAGAGATGATGTGAGGTCAATCTGTACCAGGGGTTGGGCAGACGCTGATATCTTCTTTCCT

CTCCCTTTTTTGTTGTGGATTGTGCAGTCTCTGCTCTGTTGTGCTTTTACAGCATTCTCAGGTCTGCACAGAGAATCTTACTATGCCTGTGTTATCTTCCCTTTCCTTCTCTCTGTAAATTGAT
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GAAGAAAGCATCAAGCAAGGGTTATGTAAAGAGTCGTTATGTTTTGTGCATTGTGTTTTATGTTTTATCTGATAAATAAAGGCACAAAACTTTTACCAGTGTTGCCTCTGGTGCAGTTCCC

ATCCATGTTCACATTGTGTGGTCAAGCTACACATATCTGTTGCCTCTAACATATGTCAGATCTTTATGATATTAACCACTGAAGCTTGTAGCCTTTTGAGATCCACAGTGCCCAGTTGCTGTC

TATTATCTCCCAGGTGGAACAGCACAGGAGCTTCATACTGCTGACTAACTCAACTGGCTACCCACTAAACCCTCTCCAGGCTTCCCTCCTGAACTCAACCTGGATAGGCTGGTGGTAGCTT

TCCTCTGGGGTGGTGGCCAGATCCCCCCCACTTTAGTGATTTCTGAGTGTGATTGGTGGTTGTTAGTCTTCTGAAGTTATCTTTGTACATTCCCTTCTGAATATTGAGAATTTTTAATTGGCT

GCTGTAAATTGAAGGACAGTTTAATATTTATGCGTTCAATTTCTTTGTTCTTTAGGTTCCAAAACTAAGGAAGGAGTGGTTCATGGAGTGACAACAGGTAAGCTCTGTTGTCTTTTATCCA

GGGGTGATATGCCGAATGCCTTCTAGGCTAAATTAACTTGATGCTTATACTTCAAGATATAAGTGTAAGAGCCATTGTCTACAGAGGAACATGGGTCAATTTATTTTTTTATGTATCTAATT

TTTAATTTTGGTATGGTGAGATGGAGTTTAGCTACACAAGCCAGAACAGCTTCTGCTTCAATCTTCTAAGAACTGGGAGTACAGGTATCACCAATGGACCTTGCATATTGGCTTTGTTTAA

AGTTTAATGTTTATGCAATGAAATATTTTTAAGTAGACAAATATGGATTAAAAATGTATAGCCCAATATTCTAATGGCTAAGAATGACGGATTTAGATTTGTCAATGGTATTTAATTCTAAT

AATTTGGTATTTGGGTAGTAGGCTAAATAAATAAAATATAATGATGCTATTATTAATTTAAATATTTGATGTAAACATTTCTTTAGTATTTAGTATTTATACCATCAGTTATACTGATTAGAT

ATTTCCTCTGTGATTAACAATCCTTTTTAGAAAATATACTTAGTAGTGTGTTATTTTTAAAAAGCTGTATATTTTTATTTTATTTGTATCCACTTGTCATATCTTCAAAAAGATTTTCAATAAGA

CTAAAATAATAAATATTGAACTAATATGACTAAAATTATAATGATCAAAAATGACAAAGACAATGAATTTACTGTGGGAGGAAAAGCAACAGGAGAACAATAAGAAGGGAAAAACCAA

AGAGAAAATGATAAACATAACCAAGCTGCCAAAGCTTGGTGGTAGCTAAAGTTCCTTATGTCCATTTGCCATGCATCAGACTACCTTAAGTGGGAAAAGACCTGTCAGGAATGAACTTGA

TATGATCAGGAACCTTGGCCATGACACCACATAACAAAGCAAATGCACTGCATAAGATAGCATCACACAGTGGCAACCTGTGTCTTCCAGTGGCTCTTTCCCAAGAATCATTTGCTGGCCA

TGGAGGAAAAGAACTCATTCTTTTTAGCACACTGATAAAGAATAATGATGCTAAAGCAACACTGAAGCCCAGGAACAAGACCCTTTTGGAAGTTCACAATGGTGAGGACTTCTTTCAGTT

GCTGTCCCACAAAAAGTGCAGATAGCAAGAGAGTAAGCAGACTGATTGGTTCCTGGAAGCTGAAACTTAGGCTTGACTCTCATAAGACAGATAAGACAGGTACAGAGTGCTGGAGGCC

CACATCCAGAGCCACGATGTTCCAGCTTCCATAGTTGAGGGAGAAGGAACTGGTGAGATTCAGAGTCTATTGTGGATGCATTGTTCTCTATTGACAACTTTGGAAATTTTTAATATTCCCT

GAATGACAAGGATATAAAGCATGAGTTTTTATACTGTGTGGAAAAGAGAGTGGGGGCTGGAGGAGCAAGAGAGGTCAGAGGGGTGTGGAAAGTTTCTGCAGTAGGCAACATTTTAGA

AATATTTTCTAGAAAATAATTGTCAGCAAGCTTGCATTTCCATAGTTTTATAATGTTGACAATTTACATGCCTTTTATATATCCTTTTAGTCTATTAAGGAACTTGAAATGCTCCACAGTAGG

TAAAGACACATTATATAATATAACCCAGGATTCTTGAATATTTACTACTGAAAGTTCCCTTCCATATTTAACTGTATCAAATCTAGTGTTAACAAAACACTATAAGAGACACGTTTTTGTTTG

TTTGTTTTTTGTTTTGTTTTTGTTTTTGCTTTTTGGGACAGGGTTTCTCTGTATAGCCCTGGCTGTCCTGGAACTCACTTTGTAGACCAGGTTGGCCTCAAGCTCAGAAATCTGTCTTTGCCTC

CCAAGTGTTGGGATTAAAGGCATGCACCTCCCGGCTATAAGAGACACTGTTAAGCAGCAAGGACACAGTGGTGTGGTTGTGGCACCTTGTACCACCATTCTACCAGTTTAGAAACCTGAC

AGTAATATATAATATCAAATATACTGTCACAATTAGTCAGACTATGAAGAAATGCATTGTCAAGAAAGGCCACAGTAAGTGCTATCTCTCCCCATCACATATAAATAAATTGCGTAATTTA

TTGAGTAGTATTTGTGCTGCTCAAAAGTTAAGAATTTAGGAACATTTTGAATTCTGGACTTTCAAAGAAGTGCCACTACATATGTTTGAAATGTTACTTAGAAGGGATAATAGAAGTGACT

TTGGGAAGTGAGGTCACAGAGCTAGCTGGCTTTGATACTGAAATTGTATAGCAATGCTCAGACTTGACACTGCACCTGGCTGCAATGTTTTGTGTCCACTCACCTCAATGCAAACCAAATC
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CAATTCACTTGTTGCTATGTGTTATAATTAAACTCCCAATATTTTCTAATTTCTGCACTAAATTCATATTCAGTGTTTGGCTGAAACATGTCTCTTCTACCTTGCTGTCTTGTTTCTTCAGACTC

CTGTTACCTATGATATATGTGTCTATAGAAGTTGACAGCTGCTAGAAGTGGAATTATTAAAGTCTCTGTCACACCATCATCTTTTACTCTGTTGTCACTCTTGATTTTCTTAAGTGGCTGAGA

AGACCAAAGAGCAAGTGACAAATGTTGGAGGAGCAGTGGTGACTGGTGTGACAGCAGTCGCTCAGAAGACAGTGGAGGGAGCTGGGAATATAGCTGCTGCCACTGGCTTTGTCAAGA

AGGACCAGATGGGCAAGGTATGGCTGCCTGTTTTATGCTCAGTAATAACCCTGGACACCATGTCCTTGCATGCATCATAGAGCATGCACATGATGCACACTGTGGGGAACACTGCCTTTA

AAGGGCTCTTATTTTGATGCACTGATGTCCTTGGGAAATGTCATGCACACAATAACCCTGATTGTTTTAGTTTCTGGAAGAAAGATATAGAACTAAAAAAACGTAGTAAACACTAAGAGA

CCAGTGACATTTCAGAAAGAATAACCGCTTTCATGTAAATGGTAGGTCTGGAATTCCTCTTTATAGCAATAGCAAGCATTTTCATGAGTAATTTTTACACTGAACTTAGCCAAAAGGTTGA

GAAGCAATCATGAGTAATTTCTAAATTTTCAGAAAGAAGATCTTTCATTTGATTTATTTGGAATGACATCATCTCTTATTAAATGACATATTTGCATATCATGTAACAACTCATTTCCAAATA

TGATTTTGCCAACTGGGAGACTTAAAGTTCATACCAAACACAGATCATGGTTTCATATGGTGATTCTTACATTTTCAGAATTTTAAATTTGCTTCTGGATAAATATGAGGCTGCAGTGACAT

ATTCTAGGTATAATTTTCCTATCAAATGTTAAAGGAACAGAAAATGAGGACCCCTGGAAGATGACGTTTCACAAACCTCATGATCTTACAGTAGGATGAGTTTTGCATTTTTATGTCACAT

GTACTTTTATACTTTTTTTGAGAGATTCCAGCTTCCCCCCAAAAAAGCCCATCTCAGTTTCTCTTGCTCTGGGTCTTTGTTAAATGACATCTTCCTTGCAATGCCTAATTTATTTAAAGTTGGA

ACCATTCTCACCCATGAAAACCATAACCTTTCTATTCTAATTTCTTCTTGTTTGATAAAGTGTCATTGCATTTAAAATAAATTAAATAATCTACTTGTTTTGAGTATGTTATTTTTCTTTGTCTA

TGTAGGCACTATCATAATGTAAATATTTATTTTGCTTGTTGATACTTCATGTGTCTAGGCAAGTTCCTAACTACAAATTCAGTAATGAATAAGAGCTTATTAAGGATCGAAAGAATGGATA

AATGACAATTTTCTAAGGATTAATAATCATATACATGGTGTAAAACCTTTGGCTATTGACTGATCCAAAAGTTGTAATCAAATGGGTTCTGAAGTAGACATCCTGAAACACAAAAGAAAG

ATACTTTCACCTGTGGGCAGACT 
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