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Abstract

In this paper we present a method for adding Hidden Markov Models.
The main advantages of our method are that it does not require the data the
models had been trained on, allows a change in the number of components,
does not assume independence of the components to be added and is resistant
to the order in which the training data arrives. We assessed the method in the
experiments with synthetic data, which showed good accuracy. Finally, we
present an application in computer vision.

1 Introduction

Hidden Markov Models (HMMs) have been used in the speech recognition community
since the early 1970s [1]. Their popularity is due to sound mathematical structure and
wide applicability. More recently, they found use in computer vision for modelling tem-
poral structure of gestures and articulated motion [7, 12].

A facility to update HMMs incrementally is a very desirable one. Among the advan-
tages of incremental update are faster training times, as each time a model is trained only
on the part of the data. Another advantage is the possibility of updating a model with new
data as it becomes available, thus keeping the model consistent with any changes in the
input data, or extending the model to represent a larger data set.

The HMMs that are usually used in computer vision applications are continuous,
where the underlying data distribution is modelled with a mixture of Gaussians and each
state is represented with a single Gaussian. Among the desirable features of a method
to update such a HMM would be not only the ability to update the parameters of the
Gaussian components, but also the ability to change the number of these components
to represent the data in the most efficient way. Another desirable feature would be the
absence of requirement to access the data the HMM had been trained on previously.

There has been recent research in the speech recognition community on incremental
update of HMMs [3, 11]. Most of these methods work by updating the Gaussian Mixture



Model (GMM) representing the underlying data distribution and then updating the HMM
transitions on the basis of the updated GMM. Among them, the method developed by
Gotoh, [3] does not require the previous data, however, it does not allow updating of the
number of Gaussians in the mixture, but only of their parameters. The method developed
by Lu and Zhang [11] allows updating of the number of components in the mixture as
well as their parameters. However, the last method depends on the temporal order of the
data used to update a HMM.

There has been also research on updating just GMMs [5, 13, 15] as opposed to HMMs.
Most notably, a method developed by Vasconcelos and Lippman [13], allows a change in
the number of components in the model, however, it assumes independence between the
components, which is not the case if we allow the Gaussians to overlap.

Most recently, a method for adding two or more GMMs, which allows a change in
the number of components, does not assume independence between the components to
be added, and largely is independent from the temporal order of the input data has been
proposed [4]. Moreover, this method does not require any of the original data the GMMs
had been trained on, nor does it need to resample the data from the GMMs. The result
of adding two GMMs is a third GMM, which closely approximates the one which would
have been constructed by a standard algorithm given as input all the data sets used for
training of both original GMMs. The method not only allows the addition of two arbitrary
GMMs but it also selects the optimum number of clusters to represent the underlying
distributions. Up to date, this is the most general method for adding GMMs we know of.

In this paper we propose to utilise the above method [4] to update the underlying
HMM data distribution and use the updated GMM to evaluate the transition probabilities
between the states. We analyse the performance of the algorithm on a synthetic data set
and apply it to the incremental learning of models of human motion from real world data.

2 Adding GMMs

In this section we describe a method for adding GMMs presented in detail in [4], which
we then extend to adding HMMs.

Suppose we are given a pair of GMMs; an N-component GMM G 1 made from a data
set having Nx points, and an M-component GMM G2 constructed from a data set of Ny

points. The GMMs G1 and G2 represent the distributions p�x� and q�x�, respectively:

p�x� �
N

∑
i�1

α �

i g�x; µ �i�C
�

i� (1)

q�x� �
N

∑
i�1

α ��

i g�x; µ ��i�C
��

i� (2)

The process of adding these GMMs starts with their concatenation, which consists
of concatenating their descriptions and updating the priors in such a way that the sum of
the new set of priors remains equal to one. This can be done by taking into account the
respective numbers of points the two original distributions had been trained on. The result
of this concatenation operation is a new GMM G3 consisting of N �M components from
G1 and G2 respectively, and representing the distribution r�x�



r�x� �
N�M

∑
i�1

αig�x; µi�Ci� (3)

In the second stage G3 is “simplified” to a K-component GMM G4, where K �N�M,
through the application of �N �M��K scalars wi j, which are used to specify the contri-
bution that the ith component of G3 makes to the jth component of G4. G4 represents the
distribution s�x�:

s�x� �
K

∑
i�1

βig�x;νi�Di� (4)

where the parameters are calculated in the following way:

β j �
N�M

∑
i�1

wi jαi (5)

ν j �
1
β j

N�M

∑
i�1

wi jαiµi (6)

D j �
1
β j

�
N�M

∑
i�1

wi jαi�Ci �µµT ���ννT (7)

with the following constraints:

N�M

∑
i�1

wi j � 1 (8)

0 �
N�M

∑
i�1

wi jαi � 1 (9)

The weights wi j for transforming �N �M�-component GMM G3 to a K-component

GMM G4 are found through minimising the χ 2 distance between the N �M-component
and K-component GMMs using Nelder-Mead search and the constraints (8) and (9).

The number of components K which represents best the sum of G 1 and G2 is found
through consequently simplifying the N �M-component GMM to 1,2,3,...,N � M� 1
components and evaluating the penalised log-likelihood of each simplified GMM. The
GMM with the largest value of the penalised log-likelihood is chosen as the result of
addition of the two original GMMs G1 and G2.

3 Adding HMMs

In this section we consider adding two continuous HMMs where each state is represented
using a single Gaussian.

Suppose we have two HMMs: λ1 � �π1�A1�B1� consisting of M states, and λ2 �
�π2�A2�B2� consisting of N states, where π i are the initial state probability vectors, A i

are the state transition probability matrices, and B i are the Gaussians representing the
states. Let the result of the addition be a HMM λ3 � �π3�A3�B3�



To add λ1 and λ2 we firstly add the two underlying observation distributions B 1 and B2

using the method described above for adding GMMs to estimate the combined distribution
B3� and then use the obtained matrix W to a estimate the new transition matrix and the
new initial state probability vector.

The first stage of estimating the probability transition matrix of HMM λ 3 is to combine
the two original transition matrices A1 of size MxM and A2 of size NxN into a single
matrix Ac of size nxn, where n � N �M, as detailed below.

Ac �

�
���������

a11 a12 � � � a1M a1M�1 � � � a1M�N
a21 a22 � � � a2M a2M�1 � � � a2M�N
...

...
. . .

...
...

. . .
aM1 aM2 � � � aM aMM�1 � � � aMM�N

...
...

. . .
...

...
. . .

aM�N1 aM�N2 � � � aM�NM aM�NM�1 � � � aM�NM�N

�
���������

where ai j �

��
	

�A1�i j if i�M and j �M
�A2�i�M� j�M if i � M and j � M
0 otherwise

The elements of the probability transition matrix A3 are obtained using the formula
below, where αi are B3 the component priors, ai j are the elements of the matrix Ac and
wi j are the elements of the matrix W.

�A3�i j �
∑n

l�1 ∑n
k�1 αkwkiwl jakl

∑N
j�1 ∑n

l�1 ∑n
k�1 αkwkiwl jakl

(10)

Finally, we estimate the initial state probability vector π 3 of λ3. To obtain its values
we first concatenate the two initial state probability vectors π 1 and π2 into a single vector
πc and then update the vector elements in the following way.

π3
i �

∑n
k�1 wkiπ

c
k

∑N
i�1 ∑n

k�1 wkiπc
k

(11)

Sometimes the nominator value in the above expression takes on a negative value, in
such eventuality we set it to zero before estimating the rest of the elements of π 3.

This approach seems to be sensible considering that minimising over the distances be-
tween different HMMs rather than GMMs as in [4] would involve calculating more com-
putationally expensive measures than χ 2, such as, for example, Kullback-Liebler mea-
sure. Moreover, a standard distance measure used for assessing dissimilarity between two
ergodic HMMs [6] is more sensitive to the difference between the underlying observation
distributions than to the difference in the transition matrices. Thus, optimising the result
of the addition of the HMM state probability densities first and then using the result to ad-
just the transition probability matrix has good theoretical and practical foundations. In the
next sections we experimentally evaluate the proposed method and show that it produces
very good results.



4 Experiments with synthetic data

In this section we present a series of experiments designed to measure the accuracy and
efficiency of our method for adding HMMs. Unless otherwise stated, the data used in the
experiments is three-dimensional. When we construct a random HMM of N components
we ensure the data is separable in the sense that under full automation the optimal number
of components for an ab initio GMM turned out to be N also, thus avoiding strongly
overlapping components.

The random HMMs were generated by choosing random transition matrices, means
and covariance matrices. The means were randomly distributed in a hypercube of edge
d. A low value of d increased the likelihood of ”overlapping” components, making sepa-
ration, simplification, and selecting the correct number of components when adding two
GMMs a more difficult task. We found when d � 20 the components were usually sepa-
rable with some exclusions when another HMM had to be generated.

4.1 Measuring distance between two HMMs

In the next section we will describe the experiments we have undertaken to measure the
accuracy and efficiency of our method to add two HMMs. To do so we need to employ a
measure of distance between two HMMs.

There have been several HMM dissimilarity measures proposed in recent years. Early
approaches were based on the Euclidian distance of the discrete observation probabili-
ties [10]. However, these kinds of measures did not take into account the temporal struc-
ture represented in the Markov chain.

One of the first distance measures to take into account the temporal structure of
Markov chains was proposed by B.-H.Juang et.al. [6], and is based on the Kullback-
Liebler distance [9], which characterises the discriminating properties of two probabilistic
models λ and ξ :

DKL�λ �ξ � �
�

Oλ

1

G�Oλ �
log

pλ �O
λ �

pξ �O
λ �

pλ �O
λ �dOλ (12)

In the above expression Oλ is an observation generated by the model λ , and p λ �O
λ �

is the likelihood of the sequence Oλ being generated by the model λ .
The measure proposed by Juang is an approximation based on the Monte Carlo method,

with T being the length of the observation.

DJ�λ �ξ � � lim
T�∞

1
T

log
pλ �O

λ �

pξ �O
λ �

(13)

Different variants of the above measure were proposed by Kohler [8], Falkhausen
et.al. [2] and M.Vihola et.al. [14], but they were mainly concerned with adapting the above
measure to left-to-right HMMs, which are usually used in speech recognition applications,
or with finding an approximation to the original definition which could be estimated more
efficiently.



In the following experiments we use the following variant proposed by Kohler to work
with N observations:

D�λ �ξ � �
1
N

N

∑
i�1

1
Ti

log
pλ �O

λ
i �

pξ �O
λ
i �

(14)

However, the distance D�λ �ξ � is not symmetric. We symmetrise it in the following
way:

Ds�λ �ξ � �
1
2
�D�λ �ξ ��D�ξ �λ �� (15)

4.2 Accuracy of adding two HMMs

In order to assess the accuracy of our method for HMM addition we require some com-
parison of the results our method produces to the ground truth. To achieve this objective
we performed a series of experiments, where in each experiment we produce a random
HMM λ0, which is to be the ground truth. We use it to generate several observations O i
of time-lengths Ti, which we use to estimate an ab initio HMM λ init

Next we separate the observations Oi into two sets, X1 and X2. We train two new
HMMs λ1 and λ2 on the sets X1 and X2 respectively. Finally, we add λ1 and λ2 to produce
λadd using the proposed method and then measure the distance between the ground truth
HMM λ0 and the result of the addition λadd , as well as the distance between λ0 and λinit .
If the two distances are close, it means our method has performed as well as an automatic
method for estimating HMM given all the data. We also find the distance between λ init
and λadd , which tells us how close the result of addition is to the original HMM.

We repeat the above procedure 10 times for each number K of states in HMM, which
we change from 1 to 5. We also investigate how the number of samples used to train the
HMMs affects the accuracy of the ab initio and added HMM by repeating the whole series
of experiments for 200, 400, 800 and 1600 samples from the underlying HMM distribu-
tion. The results are shown in Figure 1. In theory, when dealing with the observations
of infinite length, the distance propose by Juang (13) will always stay positive. However,
when we are dealing with observations of finite length, sometimes it can happen that the
result of the expression (14) is a negative number. The longer the observations are, the
smaller is the chance that the expression will produce a negative number. As we can see in
the graphs, the distances between λ0 and λinit , and between λ0 and λadd are comparable.
The results improve further when the number of samples increases (Figure 1), but they
are more than acceptable even with the smallest number of samples (200) that we used.

5 Experiments with 3D human motion data

In this section we present the result of adding two HMMs, each trained on the 3D motion
data collected from one of two people. The data represents the 3D Cartesian positions of
17 markers, attached to the body of a person in places such as elbows and knees, in the
course of several cycles of walking motion. The origin of the coordinate system is placed
approximately at the centre of gravity of a person’s body and hence moves together with
the person. Prior to HMM training the data had been normalised with respect to the
person’s height and to have zero mean. Finally, the dimensionality of the data has been
reduced from 51 to 3 for visualisation purposes through PCA analysis.
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Figure 1: The mean distances, over 10 trials, between λ init and λadd (solid line), λ0 and
λadd (dashed line), λ0 and λinit (dash-dot line). The distances are calculated for 200, 400,
800 and 1600 samples (displayed in left to right, top down order.)

Wishing to obtain a single model representing the walking motion of both people we
add the above HMMs (Figures 2, 3). Both of the original HMMs have been initialised to
have 12 Gaussian components, the number chosen by ourselves.

The resulting HMM (Figure 4) has 22 Gaussian components chosen automatically by
the method. The number is close to the total number of components in both of the original
HMMs. However, as you can see in Figure 4, most of the new components model the
data from both distributions, complete with the state transitions, thus providing us with a
single model of motion of two people.

6 Conclusions

We presented a novel method for HMM addition, which does not require the data the
HMMs had been trained on, allows a change in the number of components, does not
assume independence of the components to be added and is resistant to the order in which
the training data arrives. The method allows for incremental learning of HMMs as the
new data becomes available.

We assessed the method in the experiments with synthetic data, which showed good
accuracy. We also presented a practical application of adding two HMMs modelling the
walking motion of two different people. The resulting HMM is more compact than the
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Figure 2: The motion data of two people (dots refer to the first person, triangles refer
to the second person) with an overlaid HMM trained on the data of the first person. The
Gaussians are represented with the ellipsoids, the possible state transitions are represented
with the lines connecting the ellipsoids.

two separate models together, whilst representing the motion of two people. The added
HMM, same as the original HMMs, can be used for tracking of walking people in video
as proposed in [7]. However, the new model will be able to track the motion of both
people.
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