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Abstract

The goal of the research reported in this thesis is to contribute to early and

accurate detection of dementia. Early detection of dementia is essential to

maximising the effectiveness of treatment against memory loss. This goal is

pursued by interpreting the Mini-Mental State Examination (MMSE) in novel

ways. The MMSE is the most widely used screening tool for dementia, it is a

questionnaire of 30 items. The objectives of the research are as follows:

• to reduce the dimensions of the MMSE to the most relevant ones in order

to inform a predictive model by using computational methods on a data

set of MMSE results,

• to construct a model predicting a diagnosis informed by the features

extracted from the previous step by applying, comparing and combining

traditional and novel modelling methods,

• to propose a semantic analysis of the sentence writing question in the

MMSE in order to utilise information recorded in MMS examinations

which has not been considered previously.

Traditional methods of analysis are inadequate for questionnaire data such

as the MMSE due to assumptions of normally distributed data. Alternative

methods for analysis of discrete data are investigated and a novel method for

computing information theoretic measures is proposed. The methods are used

to demonstrate that an automated analysis of the MMSE sentence improves

the accuracy of differentiating between types of dementia. Finally, models are

proposed which integrate the semantic annotations with the MMSE data to

derive rules for difficult to distinguish types of dementia.

ii



Contents

Acknowledgements i

Abstract ii

Nomenclature xiv

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Aims and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Literature Review 6

2.1 Componential Analysis of the MMSE . . . . . . . . . . . . . . . . 6

2.1.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Information Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Principal Components Analysis . . . . . . . . . . . . . . . . . . . 12

2.3.1 PCA with a Tetrachoric Correlation Coefficient . . . . . . . 14

2.3.2 Kernel PCA . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.3 Homogeneity Analysis . . . . . . . . . . . . . . . . . . . . 17

2.3.4 Entropic PCA . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Variable Selection with Information Theoretic Criteria . . . . . . . 21

2.4.1 Goal Function . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.2 Naive Approach . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.3 Classical Method . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.4 Conditional Mutual Information . . . . . . . . . . . . . . . 23

2.4.5 Approximating CMI . . . . . . . . . . . . . . . . . . . . . 25

2.4.6 Search Strategies . . . . . . . . . . . . . . . . . . . . . . . 26

iii



CONTENTS iv

2.4.7 Three-way interactions . . . . . . . . . . . . . . . . . . . . 27

2.4.8 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5 Sentence Writing Analysis . . . . . . . . . . . . . . . . . . . . . . 30

2.5.1 Linguistic Markers for Dementia . . . . . . . . . . . . . . . 30

2.5.2 Automated Assessment of Linguistic Markers for Dementia . 32

2.5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.6 Findings of the Literature Review . . . . . . . . . . . . . . . . . . 33

3 Research Methodology 35

3.1 MMSE Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Reference Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 Parallel Computation 45

4.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Parallel Computing Methods . . . . . . . . . . . . . . . . . . . . . 46

4.3 Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4 Control Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4.1 Search Space Traversal . . . . . . . . . . . . . . . . . . . 52

4.4.2 Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4.3 Duplicate Counting . . . . . . . . . . . . . . . . . . . . . 55

4.5 Comparison With Sequential Method . . . . . . . . . . . . . . . . 57

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5 PCA for Discrete Data 60

5.1 Entropic Covariance Measures . . . . . . . . . . . . . . . . . . . . 60

5.2 Comparison of PCA Methods for Discrete Data . . . . . . . . . . . 64

5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76



CONTENTS v

6 Variable Selection 78

6.1 Goal Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.2.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.3 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . 90

7 Semantic Analysis of the MMSE Sentence 93

7.1 Linguistic Processing . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

8 Predictive Model 103

8.1 Descriptive Statistics . . . . . . . . . . . . . . . . . . . . . . . . . 103

8.2 Exploratory Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 108

8.3 Predictive Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

8.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

9 Conclusions and Future Work 122

9.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Appendices 127

Appendices 127

A Classification Accuracy Results 128

A.1 Results for MMSE data without semantic annotation . . . . . . . . 129

A.2 Results for MMSE data with semantic annotation . . . . . . . . . 137



List of Figures

1.1 Percentage of population over age 60 in the UK. Data sourced

from the United Nations Population Division online database. . 2

2.1 Example of an empirical and theoretical bivariate normal dis-

tribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 Work flow diagram. . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1 Data projection algorithm. . . . . . . . . . . . . . . . . . . . . . 49

4.2 Search space traversal. . . . . . . . . . . . . . . . . . . . . . . . 52

4.3 Scheduler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4 Duplicate counting. . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.1 Classification rate versus running time for different PCA methods. 66

5.2 Class separation along first 2 PCs for a) PCA and b) HOMALS

methods on Zoo data. . . . . . . . . . . . . . . . . . . . . . . . 68

5.3 Cumulative explained variance for a) PCA and b) HOMALS

methods on Zoo data. . . . . . . . . . . . . . . . . . . . . . . . 69

5.4 Class separation along the first 2 PCs with the a) MIPCA, b)

mRRPCA and c) SMIFE2 methods on simulated data. . . . . . 71

5.5 Cumulative explained variance for the a) MIPCA, b) mRRPCA

and c) SMIFE2 methods on simulated data. . . . . . . . . . . . 72

5.6 Class separation along first 2 PCs for a) PCA and b) mRRPCA

methods on mmsesub data. . . . . . . . . . . . . . . . . . . . . 75

5.7 Cumulative explained variance for a) PCA and b) mRRPCA

methods on mmsesub data. . . . . . . . . . . . . . . . . . . . . 76

6.1 Classifcation performances with the 3, 6 and 10 best variables

using various methods. . . . . . . . . . . . . . . . . . . . . . . . 88

6.2 Runtime versus accuracy for all experiments. . . . . . . . . . . . 89

vi



LIST OF FIGURES vii

6.3 Classification accuracy of random forest classifier on MMSE

data with 3 to 40 out 45 selected variables. . . . . . . . . . . . . 91

7.1 Distribution of the number of words per sentence in the MMSE

data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.2 Information of linguistic markers about diagnosis measured in

bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.3 Comparison of words per sentence in different patient groups. . 97

7.4 Comparison of the length of the longest word in a sentence for

different patient groups. . . . . . . . . . . . . . . . . . . . . . . 98

7.5 Comparison of adjectives per sentence in different patient groups. 99

7.6 Comparison of nouns per sentence in different patient groups. . 99

7.7 Comparison of verbs per sentence in different patient groups. . . 100

7.8 Comparison of subject clauses per sentence in different patient

groups. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

8.1 Gender ratio in the MMSE data. . . . . . . . . . . . . . . . . . 104

8.2 Diagnostic group ratios in the MMSE data. . . . . . . . . . . . 104

8.3 Total MMSE score frequencies. . . . . . . . . . . . . . . . . . . 105

8.4 Total MMSE score for both genders. . . . . . . . . . . . . . . . 106

8.5 Total MMSE score for each diagnostic group. . . . . . . . . . . . 106

8.6 Gender ratios for each diagnostic group. . . . . . . . . . . . . . 107

8.7 Scatter plot of HOMALS rotated MMSE data without semantic

analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

8.8 Scatter plot of HOMALS rotated MMSE data with semantic

analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

8.9 Category quantification for plot MMSE data with semantic anal-

ysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

8.10 Loading plot for MMSE data with semantic analysis. . . . . . . 112



LIST OF FIGURES viii

8.11 Class separation along first 2 PCs for a) PCA and b) mRRPCA

methods on MMSE data. . . . . . . . . . . . . . . . . . . . . . . 114

8.12 Cumulative explained variance for a) PCA and b) mRRPCA

methods on MMSE data. . . . . . . . . . . . . . . . . . . . . . . 115



List of Tables

2.1 Fish species in each lake. . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Fish species in each lake – indicator matrix. . . . . . . . . . . . 17

3.1 Absolute frequencies of diagnostic groups. . . . . . . . . . . . . 37

3.2 Summary of the data used in the evaluation. . . . . . . . . . . . 41

4.1 Example data and projections. . . . . . . . . . . . . . . . . . . . 50

4.2 Comparison of runtimes for CPU and GPU implementation in

seconds with one conditional variable. . . . . . . . . . . . . . . . 58

4.3 Comparison of runtimes for CPU and GPU implementation in

seconds with two conditional variables. . . . . . . . . . . . . . . 58

5.1 Comparison of classification accuracy for different PCA methods. 67

5.2 Comparison of running time in seconds for different PCA methods. 67

5.3 Comparision of accuracy of rotation forests and pca with ran-

dom forest combinations. . . . . . . . . . . . . . . . . . . . . . . 74

6.1 Summary of data . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.2 Summary of runtimes for GPU and CPU mRR implementations

in seconds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.3 Best subset of variables of the MMSE data for discrimination

between Alzheimer’s Disease and Vascular Dementia using ran-

dom forests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

8.1 Abbreviations used in graphs and tables. . . . . . . . . . . . . . 105

8.2 Conditional probabilities of sex versus depression or norm. . . . 115

8.3 Conditional probabilities of score on question 12 versus depres-

sion or norm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

8.4 Conditional probabilities of score on question 28 depression or

norm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

ix



LIST OF TABLES x

8.5 Variable importance of variables for discrimination between AD

and VaD in decreased Gini coefficient. . . . . . . . . . . . . . . 117

8.6 Decision tree which dinstiguishes between norm and neurode-

generative types of types of dementia. . . . . . . . . . . . . . . . 118

8.7 Rules which dinstiguish between Norm and MCI or Depression

with 86.7% certainty. . . . . . . . . . . . . . . . . . . . . . . . . 119

8.8 Rules which dinstiguish between AD and VaD. . . . . . . . . . . 119

8.9 Rules which dinstiguish between norm and neurodegenerative

types of types of dementia. . . . . . . . . . . . . . . . . . . . . . 120

A.1 Classification 1vs1 classification accuracy of naiveBayes on mm-

sepure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

A.2 Classification 1vs1 classification accuracy of train.kknn on mm-

sepure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

A.3 Classification 1vs1 classification accuracy of C5.0 on mmsepure . 131

A.4 Classification 1vs1 classification accuracy of randomForest on

mmsepure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

A.5 Classification 1vs1 classification accuracy of svm on mmsepure . 132

A.6 Classification 1 vs all classification accuracy of mmsepure . . . . 132

A.7 Classification 1vs1 classification accuracy of naiveBayes on mm-

sepureinfgain . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

A.8 Classification 1vs1 classification accuracy of train.kknn on mm-

sepureinfgain . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

A.9 Classification 1vs1 classification accuracy of C5.0 on mmsepure-

infgain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

A.10 Classification 1vs1 classification accuracy of randomForest on

mmsepureinfgain . . . . . . . . . . . . . . . . . . . . . . . . . . 134

A.11 Classification 1vs1 classification accuracy of svm on mmsepure-

infgain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

A.12 Classification 1 vs all classification accuracy of mmsepureinfgain 135



LIST OF TABLES xi

A.13 Classification 1vs1 classification accuracy of naiveBayes on mm-

sepuremrrpca . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

A.14 Classification 1vs1 classification accuracy of train.kknn on mm-

sepuremrrpca . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

A.15 Classification 1vs1 classification accuracy of C5.0 on mmsepurem-

rrpca . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

A.16 Classification 1vs1 classification accuracy of randomForest on

mmsepuremrrpca . . . . . . . . . . . . . . . . . . . . . . . . . . 138

A.17 Classification 1vs1 classification accuracy of svm on mmsepurem-

rrpca . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

A.18 Classification 1 vs all classification accuracy of mmsepuremrrpca 139

A.19 Classification 1vs1 classification accuracy of naiveBayes on mm-

sepurehomals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

A.20 Classification 1vs1 classification accuracy of train.kknn on mm-

sepurehomals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

A.21 Classification 1vs1 classification accuracy of C5.0 on mmsepure-

homals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

A.22 Classification 1vs1 classification accuracy of randomForest on

mmsepurehomals . . . . . . . . . . . . . . . . . . . . . . . . . . 141

A.23 Classification 1vs1 classification accuracy of svm on mmsepure-

homals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

A.24 Classification 1 vs all classification accuracy of mmsepurehomals 142

A.25 Classification 1vs1 classification accuracy of naiveBayes on mm-

sesent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

A.26 Classification 1vs1 classification accuracy of train.kknn on mm-

sesent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

A.27 Classification 1vs1 classification accuracy of C5.0 on mmsesent . 143

A.28 Classification 1vs1 classification accuracy of randomForest on

mmsesent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144



LIST OF TABLES xii

A.29 Classification 1vs1 classification accuracy of svm on mmsesent . 144

A.30 Classification 1vs1 classification accuracy of naiveBayes on mm-

sesentinfgain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

A.31 Classification 1vs1 classification accuracy of train.kknn on mm-

sesentinfgain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

A.32 Classification 1vs1 classification accuracy of C5.0 on mmsesentin-

fgain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

A.33 Classification 1vs1 classification accuracy of randomForest on

mmsesentinfgain . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

A.34 Classification 1vs1 classification accuracy of svm on mmsesentin-

fgain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

A.35 Classification 1vs1 classification accuracy of naiveBayes on mm-

sesentmrrc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

A.36 Classification 1vs1 classification accuracy of train.kknn on mm-

sesentmrrc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

A.37 Classification 1vs1 classification accuracy of C5.0 on mmsesentm-

rrc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

A.38 Classification 1vs1 classification accuracy of randomForest on

mmsesentmrrc . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

A.39 Classification 1vs1 classification accuracy of svm on mmsesentmrrc149

A.40 Classification 1vs1 classification accuracy of naiveBayes on mm-

sesenthomals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

A.41 Classification 1vs1 classification accuracy of train.kknn on mm-

sesenthomals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

A.42 Classification 1vs1 classification accuracy of C5.0 on mmsesen-

thomals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

A.43 Classification 1vs1 classification accuracy of randomForest on

mmsesenthomals . . . . . . . . . . . . . . . . . . . . . . . . . . 151



LIST OF TABLES xiii

A.44 Classification 1vs1 classification accuracy of svm on mmsesen-

thomals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

A.45 Classification 1 vs all classification accuracy of mmsesent . . . . 152

A.46 Classification 1 vs all classification accuracy of mmsesentinfgain 152

A.47 Classification 1 vs all classification accuracy of mmsesentmrrc . 153

A.48 Classification 1 vs all classification accuracy of mmsesenthomals 153



Nomenclature

X, Y, Z multi-dimensional random variables

Xi ith dimension of X

Xi=u Xi taking the value u

XS selected dimensions of X

X−S not selected dimensions of X

H(X) entropy of X

I(X;Y ) mutual information between X and Y

I(X;Y ;Z) three-way interactions between X,Y , and Z

xiv



Chapter 1

Introduction

1.1 Motivation

The goal of the research reported in this thesis is to contribute to early and

accurate detection of dementia. Early detection of dementia is essential to

maximising the effectiveness of treatment against memory loss.

The probability of developing dementia symptoms becomes significant after

the age of 65 (Ott et al. 1995). Because of the dramatically increased life

expectancy in developed countries (see Figure 1.1), addressing issues related

to dementia is essential in sustaining high quality of life. The 2005 report

to the Alzheimer‘s Society on dementia (Knapp and Prince 2005) estimates

that there were over 680,000 (1.1% of the population in the UK) cases of

dementia in 2005. It also reports projected increase of 38% until 2021 and an

increase of 154% until 2051. The Alzheimer’s Society report on dementia for

2012 estimates that there are 800,000 people with dementia in the Britain with

another 670,000 family and friends acting as primary carers (Lakey et al. 2012).

Although dementia is very common – 9.4% percent of those aged over 65

suffer from dementia (Ott et al. 1995) – only about half of those affected are

diagnosed (Nicholl 2009). For this reason early detection of dementia is one of

the key points in the National Dementia Strategy of England (Palethorpe 2009)

and the National Dementia Plan for Wales (2009).

Dementia is a term describing a set of symptoms which includes loss of

cognitive faculties such as memory, communication and abstract thinking or

reasoning. The most widely used tool to screen for dementia is the Mini-

Mental State Examination (MMSE) (Ismail, Rajji and Shulman 2010). The

MMSE is a questionnaire with 30 questions which assess orientation to time

and place; productive and receptive language faculties; attention and recall

1
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Figure 1.1: Percentage of population over age 60 in the UK. Data sourced from
the United Nations Population Division online database.

as well as as visuoconstructive skills. Typically the test is scored by counting

one point for each correct answer and using a cut-off point on the total score

to decide upon further investigation (O’Bryant et al. 2008). Proposed cut-off

points lie between 23 and 27 out of 30. A positive aspect of the MMSE is that

it can be administered by practitioners with little or no training as a tool to

rule out a diagnosis of dementia. This makes it applicable in community and

primary care. Although evidence is limited, provisionally the MMSE is found

to be of less value in making a diagnosis of Mild Cognitive Impairment (MCI)

(Mitchell 2009).

There is a common agreement, even among lay evaluators, of what com-

prises an impaired cognitive state. Evidence shows that lay interpretation of

the sentence writing question correlates with the overall MMSE score (Shenkin

et al. 2008). The goal of formal screening tests however lies in assessing the

cognitive state of a patient objectively. The MMSE is an externalisation of

what was previously a “vague and subjective impression of cognitive disability”

(Folstein, Folstein and McHugh 1975).

The performance of screening tests is a trade-off between accuracy and
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applicability. The greatest accuracy is provided by complex screening tests.

According to Bush, Kozak and Elmslie (1997) and Haubois et al. (2011) the

majority of general practitioners find screening for dementia important however

only 24% routinely screen their patients. Reasons cited include lack of time

and fear of offending the patients. In this context complex screening tests find

less acceptance than tests, which are less accurate but quicker and easier to

administer.

To increase the accuracy of the MMSE it is necessary to interpret the

MMSE beyond comparing the total score against a cut-off point. However,

this additional information needs to be extracted in a manner which does not

compromise the simple application of the MMSE. In this thesis an additional

layer of interpretation is proposed as an extension to the traditional MMSE

scoring method. In this layer, using inductive reasoning, patterns of answers

will be identified, which are typical for specific progressions of the future cog-

nitive state of a patient. The challenge of the project is to identify patterns of

answers, which predict the type of dementia a patient has with high probabil-

ity.

Unfortunately the MMSE has become subject to strictly enforced copyright

restrictions (Newman and Feldman 2011) allowing the reprint of only up to

three MMSE questions. For this reason the individual questions of the MMSE

in this thesis are referred to by their number only. An exception is the question

which asks the patient to write a sentence which is treated in more detail. The

test itself can be found in the seminal paper of Folstein, Folstein and McHugh

(1975).

1.2 Aims and Objectives

The scope of this research is the early and accurate detection of dementia by

means of the Mini Mental State Examination. Its overall aim is to introduce

an automated layer of interpretation to the traditional MMSE scoring process.
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In this layer scoring rules will be evaluated which would otherwise compromise

the brief nature of the MMSE due to their complexity.

The MMSE will be analysed to extract information which is recorded but

not considered in the current evaluation model.

The construction of the proposed interpretation method is pursued in a

three staged process. In the first stage the most relevant factors of the MMSE

are identified. Two types of methods for dimensionality reduction are being

investigated: traditional principal components analysis and an approach with

foundations in information theory. In the second stage a predictive model is

devised, which associates patterns of answers to MMSE questions with types

of dementia. The model will be informed by the factors extracted in the first

stage. In the third stage further improvements to the model are attempted

by extracting more information than just a binary score from the sentence

writing question. More concretely, the reported research pursues the following

objectives:

• to reduce the dimensions of the MMSE to the most relevant ones in order

to inform a predictive model by using computational methods on a data

set of MMSE results,

• to construct a model predicting a diagnosis informed by the features

extracted from the previous step by applying, comparing and combining

traditional and novel modelling methods,

• to propose a semantic analysis of the sentence writing question in the

MMSE in order to utilise information recorded in MMS examinations

which has not been considered previously.

1.3 Outline

The remainder of this thesis is organised as follows: chapter 2 reviews related

literature on dimensionality reduction of MMSE data, semantic analysis of the
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sentence writing question in the MMSE as well as on general methods suitable

for data shaped like the MMSE; chapter 3 gives an overview of the process of

collecting and analysing the data; chapters 4, 5 and 6 propose novel methods

for dimensionality reduction of discrete data such as the MMSE; chapter 7

proposes linguistic markers on the MMSE sentence suitable for discriminating

between diagnoses; and finally, chapter 8 applies the methods proposed in

previous chapters to meet the objectives of this research.



Chapter 2

Literature Review

In this chapter an overview of related work on the MMSE data and on ana-

lytical methods is given. The chapter is organised as follows: section 2.1 gives

an overview of related studies and identifies methodological limitations in re-

ported research; information theory is identified as an adequate foundation

for further analysis and a review of concepts is given in section 2.2; section

2.3 gives an overview of methods for analysing covariance with an emphasis

on applicability to discrete data, such as the MMSE data; section 2.4 reviews

methods for investigating the relevance of individual multivariate dimensions

to a class variable using information theory; and finally, section 2.5 reviews

research attempting to extract information from the MMSE sentence writ-

ing question as well as general research in identifying linguistic markers for

dementia.

2.1 Componential Analysis of the MMSE

The purpose of analysing components of the MMSE is to identify groups of

questions which account for most of the variation in examination results. Ques-

tions which are identified as good predictors for the different types of dementia

can then be used to construct models which give more insight into the patient’s

mental state than just the total score.

Magni et al. (1996) have conducted a factor analysis on MMSE results in an

attempt to find factors which discriminate best between two types of dementia,

Alzheimer’s disease and multi-infarct dementia. The authors have found that

the more sophisticated method is necessary, because the total score of the

MMSE provided insufficient information to distinguish between both types

of dementia. In their analysis they identify two components of the MMSE

6
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which together explain 56.6% of the variance in the data. They found that

the component which explains most of the variance is also a good criterion for

discriminating between both types of dementia. The questions contained in

this component are the same as the ones identified by Wind et al. (1997) with

a stepwise logistic regression, namely ones concerning orientation in time and

space. The second component was more heterogeneous in terms of question

topics. It had a strong correlation with the education level of the patients.

The authors conclude that although the MMSE is a simple tool, it provides

more information than expected when thoroughly analysed.

Wind et al. (1997) attempted to identify which questions of the MMSE

are the most accurate predictor for dementia according to an external crite-

rion. Their external criterion was the outcome of a Geriatric Mental State

interview. The authors attempted to identify such questions by constructing a

logistic regression model using the MMSE questions as explanatory variables

and the external criterion as the predicted value. They applied a stepwise ap-

proach in constructing their model by incrementally increasing the number of

explanatory variables in the model and only keeping the ones with the largest

contribution to the predictive quality of the model. Using this method the

authors identified four questions which had the best predictive ability in diag-

nosing dementia. These questions were about the date, the day of the week,

the patient’s address and the current prime minister. It should be noted that,

the question about the prime minister is not part of the original MMSE. It

was added to compensate for the lack of testing of general knowledge and long

term memory in the MMSE. A limitation of this study is that the quality of

questions as explanatory variables was only assessed for one variable at a time.

Jefferson et al. (2002) proposed an MMSE index which adds up the points

of the different domains of the MMSE and scores the intersecting pentagons

and the sentence writing questions on scales from 0 to 8 points each. The au-

thors developed these scales deductively, by developing operational definitions
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for a wide variety of impairments. To evaluate the index, the score for each do-

main was statistically compared for groups of patients with different dementia

diagnoses. The authors report that taking scores of separate domains of the

MMSE into consideration can assist professionals in gaining more information

on the patients cognitive impairment. A limitation of this study is that each

domain of questions was evaluated separately and combinations of domains

were not taken into consideration as a multivariate predictor.

In a more recent publication of Guerrero-Berroa et al. (2009) the use of a

similar approach to predict cognitive decline of the elderly was implemented.

The authors took into consideration pairwise combinations of four MMSE do-

mains: temporal and spatial orientation, delayed recall and attention. Other

domains were excluded either based on previous research suggesting that they

are affected only in progressed dementia states or because they only include

one question making the scoring range too narrow for statistical analysis. The

study shows that the temporal orientation is a strong predictor of cognitive

decline.

The domains of questions used in these studies are chosen deductively and

empirical studies were only able to verify up to five of them. The classical data

driven approach for finding correlated dimensions in multidimensional data is

factor analysis (FA) or principal components analysis (PCA). Magni et al.

(1996) have used principal components analysis to identify groups of questions

through which the groups carry information orthogonal to other groups. The

authors report that the component which was most useful in differentiating be-

tween Alzheimer’s Disease (AD) and Multi-Infarct Dementia (MID) was most

influenced by questions from the temporal orientation domain. This result is

consistent with other studies (Guerrero-Berroa et al. 2009), which have found

that temporal orientation is the MMSE domain impaired earliest in the pro-

gression of AD. A limitation of this study is that factor analysis and principal

components analysis in their classical form rely strongly on the classical co-
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variance measure, which in turn assumes normal distribution. The values of

individual dimensions of the MMSE however are either 0 or 1. In this specific

case, the covariance measure becomes hard to interpret and other correlation

measures are more appropriate (Jolliffe 2002, Kolenikov and Angeles 2004).

Castro-Costa et al. (2009) propose replacing the covariance measure with

the tetrachoric correlation coefficient. They have identified five components,

which explain most of the variation in MMSE data. Their finding is consistent

with other studies (Baos and Franklin 2002) suggesting that the underlying

structure of the MMSE is robust. A limitation of this study is that the sentence

writing question and the intersecting pentagons question are scored on a 0 to 1

scale although both questions test for several different cognitive impairments.

2.1.1 Conclusions

Although several studies investigate the correlation structure of MMSE data,

few of the reported studies employ methods which are adequate for the shape

of the data. In this research methods are identified which are adequate for the

data, and where such methods are not available new methods are proposed.

A notable feature of the MMSE data, which plays a role in the choice of

a method, is that the number of dimensions is relatively low, there are only

30. Many variable selection methods are designed to yield useful results for

tens of thousands of variables. Although 30 dimensions are more than can

be feasibly analysed with purely explorative approaches, the number is low

enough to allow a more exhaustive search than would be feasible with 30000

dimensions for example. A second characteristic of the MMSE data is that its

values are binary. A measure particularly suitable for the analysis of discrete

data is entropy. Section 2.2 gives a review of concepts in information theory.

Methods which analyse the correlation structure of data are typically meth-

ods for dimensionality reduction of which there are two general types: filter

approaches and wrapper approaches (Guyon et al. 2006). In filter approaches
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the dimensionality reduction process is run before the construction of a pre-

dictive model. In wrapper approaches the predictive model is treated as a

black box which is used to evalute the quality of subsets of dimensions. In the

scope of this thesis dimensionality reduction is considered a preliminary step

in devising a predictive model.

Filter approaches for dimensionality reduction can be further classified into

feature extraction and variable selection methods. Feature extraction methods

attempt to project the original data so that characteristics of the data become

more apparent. Variable selection methods on the other hand, attempt to

order variables by the information they contribute to the target dimension.

Both families of methods will be considered for the analysis of the MMSE

data.

A covariance measure based on the assumption of a normal distribution is

inadequate for the analysis of MMSE data. In related research(Castro-Costa

et al. 2009) the alternative tetrachoric correlation coefficient has been con-

sidered. In this research, a departure from traditional covariance measures is

proposed and information theory is identified as a measure particularly suit-

able for the analysis of discrete data. The following section gives a review of

concepts in information theory.

2.2 Information Theory

The fundamental definition of information theory is entropy. Entropy is a mea-

sure of the uncertainty about a random variable (Cover and Thomas 1991). In

statistics derived from the assumption of a normal distribution it is equivalent

to the variance of a random variable. Entropy is defined as:

H(X) = −
∑
u

p(XX=u)log(p(XX=u)) (2.1)

Where X is a random variable, u is a value which X can take and p(XX=u)
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is the probability that X will take the value u. When the logarithm is to the

base of 2, entropy is measured in bits. The value of entropy is always greater

or equal to zero and its upper limit is bounded by the number of values u

which X can take. When the value is high, a lot of information is obtained by

observing X. On the other hand, if the value is zero, when there is only one

value u with p(XX=u) = 1, no information is obtained by observing X.

A closely related concept is conditional entropy. Conditional entropy is an

extention of this idea so that instead of a univariate probability a conditional

probability is estimated. It is defined as:

H(Y |X) = −
∑
u,v

p(YY=u, XX=v)log(p(YY=u|XX=v)) (2.2)

where u are values which Y can take, v are values which X can take and

p(YY=u|XX=v) is the probability that Y will take the value u when X is known

to have taken the value v. The magnitude of conditional entropy is measured in

bits. Its value is always non-negative and is equal to zero when all probabilities

p(Y |X) are equal to 1. In other words, if Y can be predicted with absolute

certainty when X is known.

The magnitude of H(Y |X) is dependent on the entropy of H(Y ). In order

to compare the measure across models, it is necessary to derive a measure for

the distance between Y and X which is not dependent on the structure of Y

and X themselves. Mutual information I(X;Y ) is such a measure, which is

interpreted as the amount of uncertainty about Y reduced due to the knowledge

of X. It is defined as:

I(Y ;X) = H(Y )−H(Y |X) (2.3)

Mutual information is always non-zero and exactly zero whenH(Y ) = H(Y |X)

or in other words when knowing X does not reduce the uncertainty of Y . The

upper bound of the function is H(Y ) and is reached when H(Y |X) is zero.
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This is the case when Y is functionally dependent on X. Mutual information

corresponds to covariance in conventional statistics.

When Xi is a dimension of a multivariate data set X, it is of interest to

measure not only the uncertainty Xi reduces about Y but also the redundancy

between Xi and and Xj. A measure derived from entropy which takes these two

factors into account is conditional mutual information (CMIM). It is calculated

as the difference between the entropy of Y conditional on a variable X and

the entropy of Y conditional on two variables Xi and Xj.:

I(Y ;Xi|Xj) = H(Y |Xj)−H(Y |Xi, Xj) (2.4)

Intuitively the meaning of CMIM can be interpreted as the amount of un-

certainty reduced by Xi about Y when Xj is known. Conditional mutual

information has no trivial equivalent in traditional statistics.

2.3 Principal Components Analysis

The most widely used method (Tinklenberg et al. 1990, Hill and Backman

1995, Magni et al. 1996, Brugnolo et al. 2009) for the analysis of components

in the Mini-Mental State Examination is factor analysis. Factor analysis is

a method closely related to the more common principal component analysis

(PCA). Principal component analysis relies on the accuracy of the covariance

matrix of the data. However, the variance and covariance measures become

less intuitively interpretable when they are estimated from binary data. In

literature it is recommended (Jolliffe 2002) to use a tetrachoric correlation

coefficient to adjust the measure.

PCA identifies linear combinations of variables with maximal sample vari-

ance among all possible linear combinations such that the principal compo-

nents are minimally correlated with each other. Such combinations are iden-

tified by analysing the variance-covariance matrix. Maximising a function of
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several variables subject to one or more constraints is done by application of

the method of Lagrange multipliers. It can be derived that the solution is

equivalent to finding the eigenvectors and eigenvalues of the covariance matrix

(equation 2.5).



var(X1) cov(X1, X2) . . . cov(X1, Xi) . . . cov(X1, Xp)

cov(X2, x1) var(X2) . . . cov(X2, Xi) . . . cov(X2, Xp)

...
...

...
...

cov(Xp, x1) cov(Xp, X2) . . . cov(Xp, Xi) . . . var(Xp, Xp)


(2.5)

whereXi are dimensions of the random variableX and var(Xi) and cov(Xi, Xj)

are defined as:

var(Xi) =
n∑

j=1

(Xij − X̄i)
2

n− 1
(2.6)

cov(Xi, Xj) =
n∑

k=1

(Xik − X̄i)(Xjk − X̄j)

n− 1
(2.7)

Once the eigenvectors are derived, they are sorted in descending order

of their eigenvalues. The ith eigenvalue is equal to the variance of the ith

principal component. Subsequently it follows that the principal component

with the largest eigenvalue corresponds to the variable explaining most of the

variance in the data.

The method as it is described above has a bias towards variables on a larger

scale. The reason for this is that if x is scaled by a constant, the variance is

scaled by the square of the constant. Since the PCA method is looking for

variables with large variance, it is biased towards variables on a larger scale.

This issue can be resolved by using a correlation matrix instead of a covariance

matrix. The correlation is defined as the variance of the data after it has been
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transformed so it is on a scale between −1 and 1:

ρ(Xi, Xj) =
cov(Xi, Xj)√
var(Xi)var(Xj)

(2.8)

2.3.1 PCA with a Tetrachoric Correlation Coefficient

When the variables of the data are binary, the classical estimation of the cor-

relation coefficient becomes difficult to interpret. A more natural estimation

method is using a tetrachoric coefficient. In this method it is assumed that

the variables, although they are observed in a binary fashion, have an under-

lying standard normal distribution. Let X be a normally distributed random

variable. If an observation of X is beyond a certain threshold, the value is

recorded as 1 or 0 otherwise. The task is to find parameters of a normal dis-

tribution which satisfy the frequencies on both sides of the threshold. When

calculating a correlation coefficient there are two variables which are split along

one threshold each. Assuming that the frequencies in the four quadrants thus

formed are known and assuming that the variables are sampled from a bivari-

ate normal distribution, paramaters for such a distribution can be estimated

numerically. Similarly if the observations are not binary but are categorical, a

polychoric correlation coefficient can be estimated by matching frequencies in

more than four sections of a multivariate normal distribution. The resulting

estimate for the correlation can be used to build a correlation matrix which is

then used to do an otherwise classical principal components analysis.

In figure 2.1 for example, all points in quadrant I might be coded as (0, 0),

in quadrant II as (0, 1), in III as (1, 1), and as (1, 0) in quadrant IV. In order to

estimate the theoretical bivariate normal distribution these points were drawn

from (represented as an ellipse), one would count the number of points in

each quadrant and then approximate the parameters of a normal distribution

(covariance matrix and a mean) which are most likely to have produced the

observed counts in each quadrant.
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Figure 2.1: Example of an empirical and theoretical bivariate normal distribu-
tion.

2.3.2 Kernel PCA

In traditional PCA the goal is to solve the eigenproblem

λα = Σα s.t. α′α = 1 (2.9)

where Σ is the covariance matrix, λ are the eigenvalues and α the eigenvec-

tors (Jolliffe 2002). Because the method can be expressed purely in terms of a

dot product, it can be reformulated to make use of the kernel trick (Schlkopf,

Smola and Müller 1999). Application of the kernel trick is equivalent to pro-

jecting the data onto a space with a higher (not necessarily finite) dimension-

ality before analysis. If the covariance matrix is denoted as:

Σ =
1

d

d∑
j=1

xjx
T
j , (2.10)

and Φ(X) denotes a projection of the type:

Φ : RN → F, (2.11)
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then kernel PCA is equivalent to solving the eigenproblem:

C =
1

d

d∑
j=1

Φ(xj)Φ(xj)
T

λα = Cα.

(2.12)

A kernel function K is a function which performs in closed form the pro-

jection Φ together with the dot product (Φ(xi),Φ(xj)) in such a way, that

the evaluation of K is significantly easier than explicitely projecting X before

calculating the dot product of xi and xj. In cases where the data is projected

onto a space with an infinite number of dimensions, an explicite calculation of

the dot product is impossible even theoretically. To make the use of a kernel

function applicable in PCA, the eigenvalue problem is reformulated as:

dλα = Kα (2.13)

Kernel PCA for Discrete Data

Until this time, no research is available which reports a componential analysis

of the Mini-Mental State Examination by means of kernel PCA. However,

several researchers report applying kernel PCA on data with binary variables

(Wu, Su and Carpuat 2004) and data which includes categorical variables

(Rosipal et al. 2001). A limitation found throughout literature reporting kernel

PCA of discrete data is that there is no comparison of different kernel functions.

One of the benefits of kernel methods is that kernel functions can be re-

placed for one another independently of the method. Limited work on the error

estimation of kernel PCA models is reported by Twining and Taylor (2003)

and Heafield (2005).
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lake1 lake2 lake3
fish1 1 5 4
fish2 12 5 2
fish3 15 8 2

Table 2.1: Fish species in each lake.

2.3.3 Homogeneity Analysis

A less traditional approach to non-linear PCA, and multivariate data analysis

in general, is the Gifi system (Gifi 1990, De Leeuw and Mair 2009). The

Gifi system is designed for categorical variables and any continuous variables

are first converted to categories. Under the Gifi System, observations and

measurements are recognised equally. If for example data is collected about

the prevalence of different fish species in different lakes (table 2.1) then the

data can be interpreted as information about the differenes in lakes but also

as information about the differences between the numbers of fish species on a

national level..

lake1;1 lake1;12 lake1;15 lake2;5 lake2;8 lake3;4 lake3;2
fish1 1 0 0 1 0 1 0
fish2 0 1 0 1 0 0 1
fish3 0 0 1 0 1 0 1

Table 2.2: Fish species in each lake – indicator matrix.

To represent this relation, the data is coded in the form of an indicator

matrix where each column represents the occurence of a specific value in a

given row (see table 2.2). Let this binary indicator matrix be denoted as G

and the columns corresponding to the ith column in the original matrix be

denoted as Gi, then the function to be optimised is defined as:

tr{
p∑

j=1

(Gjcj − Yjbj)′(Gjcj − Yjbj)} (2.14)

where tr denotes the trace of a matrix, or the sum of its elements on the

diagonal. The relation between rows and columns is captured in the matrix
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C where each column cj contains the weights of each category for the jth

column of the original matrix. The matrix Y is composed of the scores of p

principal components and the matrix B has the coefficient bj of each principal

component in its diagonal. The minimisation of the function takes place with

respect to cj and Yjbj at the same time. The difference from linear PCA is that

in addition to the optimisation of the scores on the p principal components,

there is also an optimisation over the values of the variables. A solution is

found by applying an alternating least squares algorithm which fixes cj and

optimises Yjbj and then fixes Yjbj and optimises cj until convergence is reached.

This algorithmic optimisation of the function implies that the non-linear

projection of the data cannot be expressed in closed form. In other words,

the method does not provide a model explaining the data but instead provides

insight into the structure of the data.

2.3.4 Entropic PCA

Data projection methods which are based on information theory are surpris-

ingly few. Most of the recent advances in the field (Hild et al. 2006, Qiu and

Wu 2009, He et al. 2010) extend seminal work of Torkkola (2003) where an

entropy measure is proposed which uses a Parzen window to estimate the prob-

abilities necessary to compute the entropy of a variable. In the Parzen window

method a Gaussian kernel is placed ontop of each sample and the probability

density function is estimated as a sum of the kernels. While this method yields

good results for continuous data, the difficulty of applying it on discrete data

begins on a conceptual level. When a variable is nominal, say the profession

of a person, estimating probabilities as a multi-modal Gaussian distribution

is unreasonable. Such a model would imply not only that there is a mea-

surable distance between the professions “Medical Doctor” and “Lawyer” for

example, but also that along this distance there is an infinite number of other

professions. For this reason, these methods are excluded from the review.
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Although the relation between correlation functions and mutual informa-

tion has been thoroughly investigated (Cover and Thomas 1991), only one

publication reports a principial component analysis based on mutual informa-

tion (Bollacker and Ghosh 1996) which is applicable to discrete data. The

authors propose two covariance measures based on entropy which they use

to construct a covariance matrix in a supervised manner. The methods they

propose, SMIFE1 and SMIFE2 (Separated Mutual Information Feature Ex-

tractor) are a composition of terms with foundations in information theory.

Both methods use a term denoted as I(Xi;Xj;Y ) named “three-variable mu-

tual information”. This term is in concept related but not equivalent to the

3-way interaction gain term proposed by Jakulin and Bratko (2004). Three-

variable mutual information is defined as:

I(Xi;Xj;Y )SMIFE1 = H(Xi, Xj, Y )−H(Xi)−H(Xj) (2.15)

−H(Y ) + I(Xi;Y ) + I(Xj;Y ) (2.16)

+I(Xi;Xj) (2.17)

and is used as a covariance function in the SMIFE1 method without further

change. The SMIFE2 method is derived from the above and defined as:

I(Xi;Xj;Y )SMIFE2 = I(Xi;Y ) + I(Xj;Y )− I(Xi, Xj;Y ). (2.18)

in order to interpret the term it is informative to reformulate SMIFE2 by

substitution as:
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I(Xi;Xj;Y )SMIFE2 = I(Xi;Y ) + I(Xj;Y )−H(Xi, Xj, Y ) (2.19)

−H(Xi)−H(Xj)−H(Y ) (2.20)

+I(Xi;Y ) + I(Xj;Y ) + I(Xi;Xj) (2.21)

which simplifies to:

I(Xi;Xj;Y )SMIFE2 = H(Xi, Xj, Y )−H(Xi)−H(Xj) (2.22)

−H(Y ) +H(Xi)−H(Xi|Xj) (2.23)

= H(Xi, Xj, Y )−H(Xj)−H(Y ) (2.24)

−H(Xi|Xj). (2.25)

If multivariable entropy is visualised in terms of set theory for the purpose

of understanding (Cover and Thomas 1991), then H(Xi, Xj, Y ) can be read

as the union of information conveyed by each of the three variables. After

subtraction of the termsH(Xj andH(Y ), the remainder can be roughly read as

H(Xj|Xi, Y ) however under violation of the inclusion/exclusion principle since

the intersection of H(Xi) and H(Y ) is subtracted twice from H(Xi, Xj, Y ).

From this remainder which approximates H(Xj|Xi, Y ) the set H(Xi) under

exclusion of H(Xj) is removed. Unfortunately the authors do not provide any

reasoning for this unusual treatment of entropy quantities.

2.3.5 Conclusion

While projection methods for analysing covariance structure in discrete data

are available, the MMSE has not been analysed with them – a notable excep-

tion is reported by Castro-Costa et al. (2009). A research gap is identified in

projection methods which are based on entropic covariance estimates.
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2.4 Variable Selection with Information Theoretic Criteria

While the previous section introduced dimensionality reduction by means of

projection, the following section discusses dimensionality reduction by variable

selection. The goal of variable selection is to select a subset of variables of a

high dimensional dataset so that the subset predicts the class of an observa-

tion with as little redundancy as possible. Information theoretic methods for

variable selection are particularly well suited for the analysis of discrete data.

This type of methods are computationally intensive and have recently gained

in popularity due to the increased availability of powerful hardware.

A considerable research effort on information theoretic methods for variable

selection with continuous variables is reported in related literature (Torkkola

2003). However in this section only discrete variables are considered.

In the remainder of the thesis Y denotes the class of an observation; Xi

denotes the ith dimension of a multi dimensional random variable X; Xi=u

denotes the random variable Xi taking the value u; XS denotes a projection

of X such that only dimensions are included which are selected according to

some criterion; X−S is a projection of X such that only dimensions are included

which have not been selected but are potential candidates for inclusion into XS;

d denotes the number of dimensions of X; n denotes the number of observations

of X.

2.4.1 Goal Function

Dimensionality reduction is usually treated as an optimisation problem. To

solve or approximate an optimisation problem, a precise definition is needed of

what is being optimised. In variable selection a function is maximised which

estimates the amount of information about the class of observations contained

in a subset of dimensions. One extremum of this function is reached when the

class variable is functionally dependent on the subset of dimensions. The other

extremum is reached when the subset of dimensions is independent from the
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class variable.

2.4.2 Naive Approach

Mutual information I(Y ;X) (see section 2.2) can be used for variable selection

without alteration. Let X be a p dimensional multivariate random variable and

X1...k be a random variable composed by a subset of k < p dimensions of X.

The measure I(Y ;X1...k) will then be interpretable as the uncertainty about Y

which is reduced by the knowledge of X1...k. If this quantity is estimated for all

subsets of dimensions of X with size k, then the subset with the largest value

of the metric can be considered the subset of variables which best explain Y .

Several problems are inherent to this naive approach. Firstly, the metric

needs to be estimated for
(
p
k

)
subsets of dimensions. With increasing p and

k, this requirement leads to computational infeasibility due to combinatorial

explosion. Secondly, to estimate H(Y |X1...k), one needs an estimate of the

probability distribution P (Y |X1..k). The amount of data required to estimate

this function becomes prohibitive with a k larger than 3-4 (Battiti 1994). Con-

sider that even if enough data were available, the probability of each value of Y

conditional on any combination of values of X1, ..., Xk needs to be estimated.

The number of probabilities to be estimated grows exponentially in the num-

ber of values that the variables can take. If Y,X1, ..., Xk are binary variables,

then 2k+1 probabilities have to be estimated for each of the
(
p
k

)
subsets of di-

mensions. A third problem with the naive approach is that although the ideal

subset of variables can be determined, the metric does not give information

about the quality of each of the selected variables.

2.4.3 Classical Method

The classical method, Information Gain (IG) (Manning, Raghavan and Schtze

2008), to address the difficulties of the naive approach is to consider the amount

of uncertainty about the target variable that is reduced by selecting a single
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dimension Xi of X. To select a subset of k dimensions of X, I(Y ;X) is

evaluated for all Xi and Y pairs and k dimensions are chosen with the highest

mutual information with Y . Note that the function requires the estimation of

at most two dimensional probabilities and that it is evaluated p times, where p

is the number of dimensions of X. This brings the computational complexity

and the data sparsity problems under control. In addition, the contribution

of each individual variable to the explanation of Y is measured. A limitation

of this method is that it disregards redundancy in the data. Let Xi and Xj

be two variables which explain Y very well, but which are also functionally

dependent on each other (there is an f(x) such that f(Xi) = Xj). If Xj is

included in the model, when Xi has already been chosen, Xj contributes no

additional information. The goal function will however still score Xj as high

as Xi.

2.4.4 Conditional Mutual Information

An approach which is a compromise between the naive and classical method is

to use conditional mutual information I(Y ;Xi|Xj) (see section 2.2) as the goal

function. When using this goal function, at most three dimensional probability

functions need to be estimated. The complexity of an exhaustive search using

this approach is
(
d
2

)
where d is the number of dimensions. The reason for this

is that the conditional mutual information has to be evaluated for all pairs of

dimensions Xi and Xj (i 6= j). While this complexity is a lot more manageable

than the exponential complexity of the naive method it can still become hard

to compute for even simple problems. For example, a relatively small image

of 100 by 100 pixels will have 10000 dimensions, if each pixel is treated as

a dimension. Even for an image of this size the function would need to be

evaluated for close to 50 × 106 pairs of dimensions. If the evaluation of the

function could be performed in 1 millisecond (which is an unrealistically low

estimate) the computation would still take almost 14 hours to complete.
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Fleuret (2004) propose an algorithm which makes variable selection with

a conditional mutual information criterion computationally feasible for very

high-dimensional data as typically found in image recognition. Their method

relies on two crucial ideas: bit counting using look-up tables and a heuristic

forward search through the space of subsets of dimensions.

The most time-consuming part of estimating entropy based measures is

estimating point-wise probabilities. In the context of this thesis they are com-

puted by counting the number of observations, in which the variable X takes

a given value u, and dividing this number by the total number of observations.

While related literature proposes other methods for estimating CMI under as-

sumptions of probability distributions (Jung, Seo and Kang 2011, Tsimpiris,

Vlachos and Kugiumtzis 2012), such methods are designed for continuous data

and have limited applicability in the discrete case.

In the estimation method proposed by Fleuret (2004) the data is arranged

in such a way, that each 32 values of one column of the data are stored in one

of the 32 bits of an integer variable. A look-up table provides information on

how many of the 32 bits of the integer value obtained that way are set to one.

The combinatorial explosion of the search space is dealt with by using

a directed search rather than an exhaustive computation. Variables are first

sorted by their mutual information with the class. In the first step, the variable

with the highest score is selected. In subsequent steps variables are selected

so that the minimal conditional mutual information I(Y ;Xj|Xs) is maximal,

where Y is the class, Xj is the candidate variable and Xs is each of the selected

variables.

XS1 = max
Xi∈X

(I(Y ;Xi)) (2.26)

XS>1 = max
Xj∈X−S

( min
Xi∈XS

(I(Y ;Xj|Xi))) (2.27)

where XS denotes the set of selected variables, X−S denotes the set of
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candidate variables, XS1 denotes the first selected variable and XS>1 denotes

all variables selected after the first.

The procedure is repeated until the most informative variables are selected.

The benefit of this approach is that 32 (or 64, depending on the platform) rows

of data can be examined at a time. However, because the values are stored in

single bits, the method is limited to analysing only binary data in not more

than two classes.

2.4.5 Approximating CMI

An approach to estimating CMI while avoiding computational complexity is

to avoid calculating the exact CMI estimate and instead approximate it with

terms which are easier to calculate.

One such approach is the Mutual Information Feature Selection under Uni-

form Information (MIFS-U) method proposed by Kwak and Choi (2002). The

authors recognise that direct computation of CMI is expensive and propose

a form of CMI which is equivalent under certain assumptions but only re-

quires calculating MI. The assumption they make is that conditioning on the

class variable Y does not alter the ratio of information between the candidate

variable Xi and the selected variable Xj:

H(Xj|Y )

H(Xj)
=
I(Xj;Xi|Y )

I(Xj;Xi)
(2.28)

.

Under this assumption the following equivalency can be used to approxi-

mate CMI:

I(Y ;Xi|Xj) = I(Y ;Xi)−
(I(Y ;Xi) ∗ I(Xi;Xj))

H(Xj)
(2.29)

Although this method can be be used as a goal function in a greedy forward

search, the authors propose using the Taguchi method, a form of wrapper



CHAPTER 2. LITERATURE REVIEW 26

method which uses training neural networks to guide the search.

Another approach which avoids direct computation of CMI is the Maximal

Relevance Minimal Redundancy (MRMR) method proposed by (Peng, Long

and Ding 2005). The authors propose a measure which maximises mutual

information but which also contains a term to adjust for redundancy within

the subset of selected variables. The criterion for selecting Xi with the MRMR

method is formulated as:

XMRMR = max
Xi /∈S

(I(Y ;Xi)−
1

|S| − 1

∑
Xj∈S

I(Xi;Xj)) (2.30)

,

where S is the subset of selected variables and Xi is a candidate variable not

in S. The method proceeds to select variables from the remaining candidates

with a greedy forward search.

2.4.6 Search Strategies

Typically variable selection using information gain is done using sequential

forward search. The forward search can be greedy, as proposed by Quinlan

(1993), or guided by a meta-heuristic approach (Huang, Cai and Xu 2007). One

difficulty with forward search methods is that they are biased to overestimate

the quality of variables which are selected in later iterations. Methods based

on the mutual information criterion deal with this issue by altering the goal

function with a penalising term, which grows as a function of the number of

selected variables. A recent example of such a method is the normalized mutual

information criterion which is reported to yield significantly better results than

other methods when 10 or more variables have been selected (Estévez et al.

2009). The authors define normalized mutual information NI(X1, X2) as:

NI(X1, X2) =
I(X1;X2)

min{H(X1), H(X2)}
(2.31)
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This term is averaged over the selected variables to yield the goal function

GNI :

GNI(Xi) = I(Y ;Xi)−
1

|Xs|
∑

Xj∈Xs

NI(Xi;Xj) (2.32)

where Xi is the variable which is a candidate for selection.

Liu et al. (2009) propose an algorithmic adjustment of the mutual informa-

tion criterion to account for the bias toward lately chosen variables. Instead of

relying on a penalising term, their algorithm partitions the data after each iter-

ation. The partitioning is done in such a way, that observations, which predict

the class without ambiguity by using only the selected variables, are not consid-

ered for the estimation of probabilities in subsequent iterations. The authors

report good results when comparing their algorithm with classical methods.

They do not compare their method with conditional mutual information based

goal functions as currently the only feasible method for this computation is

limited to binary variables and two classes. This limitation is satisified only

by few well known data sets and thus makes it difficult to compare the method

with other methods.

2.4.7 Three-way interactions

A recently published method for variable selection with information theoretic

ranking criteria is based on three-way interaction gain (3IG) (Akadi, Ouardighi

and Aboutajdine 2008). This measure is defined by Jakulin and Bratko (2004)

as:

I(Xi;Xj;Y ) = I(Xi, Xj;Y )− I(Xi;Y )− I(Xj;Y ) (2.33)

It can be interpreted as a measure for the reduction of uncertainty caused by

joining the variables X1 and X2 in a Cartesian product. It is important to note

that this measure can be negative when X1 and X2 carry the same information.
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Akadi, Ouardighi and Aboutajdine (2008) propose a variable selection goal

function based on 3IG. This function incorporates mutual information, 3IG

and an adjustment to devalue variables which are selected in later iterations.

The Interaction Gain Feature Selection (IGFS) is defined as:

XIGFS = max
Xi∈X−S

I(Xi;Y ) +
1

|S|
∑

Xj∈XS

I(Xi;Xj;Y ) (2.34)

The authors report better results than other state-of-the-art information

theoretic methods for variable selection including the conditional mutual in-

formation criterion.

A limitation of the IGFS goal function is that it requires the computation

of three-way interactions which is a time consuming task. It can be shown,

that IGFS can be transformed into an equivalent form in which the hardest to

compute term is an estimate of conditional mutual information. A proof can

be found in section 6.1.

2.4.8 Clustering

The methods presented above demonstrate that sequential forward search does

not yield the best results. The attempts to resolve this issue range from al-

gorithmic solutions (Kwak and Choi 2002) to introducing corrective terms

(Estévez et al. 2009). A theoretical treatise of forward and backward search

bias is given by Van Dijck and Van Hulle (2010). One approach which cir-

cumvents the issue of sequential searching is Minimal Relevant Redundancy

Clustering (mRRC) proposed by Mart́ınez Sotoca and Pla (2010). In this

approach the authors propose a distance metric based on CMI. A complete

distance matrix is calculated for each pair of variables after which the matrix

is used to perform a clustering of variables. The distance measure is defined
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as:

D(Xi;Xj) = I(Y ;Xi|Xj) + I(Y ;Xj|Xi) (2.35)

and the clustering algorithm used is Ward’s method. The reasoning behind

using a clustering approach is that variables which carry similar information

will be close to each other within the proposed metric and thus will be in the

same cluster. The number of clusters required of the clustering method is equal

to the number of desired variables. Once each variable has been labelled, one

variable per cluster is chosen for the final subset of selected variables. Since

it can be assumed that variables Xi belonging to a cluster Cj carry the same

information, the variable Xi with the maximal mutual information I(Y ;Xi)

can be chosen as representative for the cluster.

2.4.9 Conclusion

In order to alleviate the difficulties of the naive approach, several methods have

been proposed. To achieve computational feasibility, (i) the search space is lim-

ited by reducing the dimensionality of the goal function, (ii) a guided forward

search through the problem space is used instead of an exhaustive search and

(iii) the domains of application are restricted, for example by only considering

binary data. One method which does not make any of those compromises is

mRRC, however mRRC runs prohibitavely long on large data based on several

thousands of observations.

Works cited in this thesis consistently report an improvement of results

by using conditional mutual information instead of just mutual information.

This is interpreted as evidence that increasing the dimensionality of the goal

function reduces redundancy in the resulting model.
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2.5 Sentence Writing Analysis

Previous research has investigated the answer to the question of the MMSE

asking a patient to write a sentence for additional information. Shenkin et al.

(2008) compared several metrics (including word count, frequency, first person

use, time orientation and letter case). In addition lay raters were asked to

assess the state of patients by reading the MMSE sentence. The authors found

that although the objective criteria they proposed showed no association with

variables of the MMSE or cognitive impairments, the naive rating was a a

good estimate of the test score. The conclusion of this study is that criteria

exist which can differentiate between different states of cognitive impairment

and furthermore the challenge is to identify these. Press et al. (2012) measure

the number of words per sentence in the MMSE as well as positive or negative

emotional polarity. The authors find that the number of words correlates well

with the degree of cognitive impairement while polarity can be associated with

depression.

2.5.1 Linguistic Markers for Dementia

Several authors have researched the difference in language use between people

with and without dementia.

Deleon et al. (2012) prompt testees to produce sentences with varying syn-

tactic complexity. They then draw conclusions from the number of successfully

produced sentences. The study targets 11 sentence structures with two items

for each of them. For example, a test administrator will prompt: “She owes

her friend a dollar. She goes to see her friend. She takes out a dollar. What

next?” expecting the response: “She gives her the dollar.” The goal is to use

the test results to discriminate between different types of neurodegenerative

dementias and normal aging. The authors report that patients with non-fluent

agrammatic PPA produce fewer correct sentences when compared to the norm

or other forms of dementia. However, due to the relatively small sample of
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58 individuals and the imbalance of group sizes it stands to reason that the

reported outcome may be the result of sample bias.

Gross et al. (2012) sentence processing rather than producing. They present

testees with a sentence and ask them to match the sentence to one of two

pictures. The result of the test is used to discriminate between patients with

Parkinsons Disease and patients Parkinson Dementia (PD) or Dementia with

Lewy Bodies (DLB). The authors report that sentences lenghtened with a

prepositional phrase as well as sentences with a centre embedded clause were

good discriminators. The result is consistent with other research (Roark et al.

2011) which argues that deviations from the typical parse tree of the english

language, which tends to be right-heavy, indicate increased syntactic difficulty.

These findings are of limited value in investigating the MMSE as the re-

searchers assume an imposed linguistic difficulty. In the MMSE on the other

hand, the testees are free to vary the complexity of the sentence, typically

choosing to write a sentence of up to 9 words (see section 7.1). This length is

too short to demonstrate complex sentence structure.

A more directly applicable finding is reported by Vigliocco et al (Vigliocco

et al. 2011) – the report reviews whether nouns and verbs are processed in sep-

arate neural networks in the brain. The outcome is that the neural network is

shared implicating that grammatical class is not an organizational principle in

the brain. Nevertheless the authors argue that verbs demand higher cognitive

load than nouns because verbs have necessarily more participants than nouns

and because verbs are more complex morphologically. They find that while

the count of verbs and nouns may give indication to impairment, it does not

point at disease in specific brain regions.

A further question, investigated by Bencini et al. (Bencini et al. 2011), is

wether linguistic markers for cognitive impairment are language specific. The

authors compare the underuse of subject phrases between 12 Italian and 10

English speaking patients with dementia and conclude that Italian speakers
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omit more subjects than English speakers. This can be explained with the

grammatical structure of the italian language which allows subject omission.

2.5.2 Automated Assessment of Linguistic Markers for Dementia

While there is ample research reporting on sentence structure in language used

by patients with dementia, the availability of automated sentence analysis tools

has been largely neglected with some noteable exceptions.

Roark et al. (2011) derive measures for detecting Mild Cognitive Impair-

ment (MCI) in spoken language. To produce a corpus of data, the authors

ask 74 testees (37 with MCI and 37 at norm) to retell a story. The audio

is recorded, transcribed and analysed with natural language processing tools

based on the Stanford language parser (Klein and Manning 2003). The hy-

pothesis of the analysis is that when english sentences are parsed, the parse

tree tends to branch to the right. Three metrics are applied to measure the

right tendency of sentences: Yingve and Frazier scores as well as dependency

distance. In addition, the number of propositions and content density are also

measured. The authors report that the number of words per sentence clause

and the Yingve score are highly significant in identifying MCI. The other mea-

sures are beneath the significance threshold. The results are consistent with

the findings of Ahmed et al. (2013) in their study of 18 cases of autopsy con-

firmed dementia at an early stage.

The research conducted on the largest number of sentences per patient

however also on the smallest number of patients is reported by S et al. (2011).

The authors analyse 4 books written by Iris Murdoch, an irish author with

Alzheimer’s Dementia. Murdoch was known to prohibit editing of his works

prior to publishing and is thus particularly suitable for an analysis of the

progression of language impairment as the disease progresses. The metrics

with significant decline between books are words per sentence as well as Yingve

and Frazier score.
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2.5.3 Conclusion

The research reviewed in this section is conducted on spoken language and on

connected text. This differs from the MMSE where a testee is asked to write

a sentence with a pen. While the findings are not directly applicable to the

MMSE, the research demonstrates that by using automated sentence parsing,

the number of sentences and the number of indicators which can be tested can

be dramatically increased in comparison to the manual approach.

2.6 Findings of the Literature Review

The remainder of this thesis is strongly guided by the conclusions drawn from

the literature reviewed in this chapter:

1. Related research does not report analysis of the MMSE with non-linear

methods or methods which do not assume a normal distribution (see

section 2.1) despite the shape of MMSE data which is inherently non-

normally distributed.

2. Measures derived from Information Theory are a suitable alternative to

assuming a normal distribution (see section 2.2).

3. The MMSE has been analysed componentially, however there are no

reports of applying variable ranking methods to the MMSE. The result

of variable ranking methods (typically variable selection methods) are

more easily interpretable than componential analysis methods.

4. There is a research gap in projection methods for discrete data using

information theory as their foundation (see section 2.3).

5. Measures from information theory are computationally intensive and

thus a time-efficient method to estimate them is needed (see section

2.4).
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6. Although related research reports evidence for value of the MMSE sen-

tence writing question beyond a binary score, no concrete findings appli-

cable in practice are reported (see section 2.5).

These issues are addressed in the following chapters. A time-efficient com-

putational method for estimating information theory measures is proposed in

chapter 4; a method suitable for componential analysis of the MMSE is pro-

posed in chapter 5; a method suitable for variable ranking (or selection) of

discrete data, such as the MMSE data, is proposed in chapter 6; the MMSE is

analysed with the proposed methods and a predictive model transferrable into

practice is proposed in chapter 8.



Chapter 3

Research Methodology

The study is designed to systematically investigate the relation between an-

swers to questions of the MMSE and the diagnosis of patients. Once identified,

this relation is used to predict the type of dementia a patient may have.

3.1 MMSE Data

The data analysed in this study were provided by the Memory Clinic at Uni-

versity Hospital Llandough (Great Britain). It was collected between the years

1991 and 2009 from 778 patients and includes answers given to each MMSE

question, patient age, gender and diagnosis. Of the 778 records analysed, 472

are of female patients and 316 are of male patients. Patient age varies be-

tween 35 and 96 years, with the vast majority of patients being between 60

and 95 years old. The imbalance in gender can be explained with the higher

life expectancy of women.

The study includes patients who were referred to the Memory Centre at

Llandough hospital. Patients who exhibit dementia symptoms but are not

in treatment are excluded. These criteria select the population which would

benefit most from an improved MMSE. To avoid selection bias patients were

not asked for consent to participate in this project. This decision raises two

major ethical issues: the issue of asking patients for consent and the issue of

handling confidential data. The decision not to ask participants for consent is

merited for two reasons: first, the project pursues a goal of recognised benefit

for the population considered in the study – namely early and accurate diag-

nosis of dementia; second, the study does not expose patients to any potential

risks. The second issue is addressed by observing only data which is not person

35



CHAPTER 3. RESEARCH METHODOLOGY 36

identifiable.

The size of the sample is dictated by the size of readily available data at

Llandough Hospital. Its size guarantees a power level for multivariate corre-

lation very close to one, even though up to 45 regression variables are taken

into consideration. One difficulty with the shape generally found in medical

data is that different classes of observations usually vary in size. Data min-

ing methods, such as neural networks or decision tree induction, are sensitive

towards unequal sizes of classes in the training data and usually bias towards

the larger classes.

The score of the MMSE has been found to correlate with age, sex and

educational background of patients (Crum et al. 1993). To account for these

biases age and sex are included in the data as additional variables. Educa-

tional background has not been considered in this study as this variable is not

recorded as part of the routine screening procedure.

Twenty-seven different diagnoses are found within the dataset. All diag-

noses were made using standard criteria. Many of these 27 types of dementia

have been observed too infrequently to allow quantitative analysis. Before

analysis, the types of dementia were grouped by difference in clinical manage-

ment. The frequencies of different types of dementia and the grouping of the

dementia types is listed in table 3.1.

A second clinically motivated transformation of the data is the interpre-

tation of missing answers. In this study missing answers are interpreted as

wrong. Some more severly impaired patients are not asked every question if it

is clear that they would not be able to provide an answer, for example in the

case of comprehension problems. Another example are questions the correct

answer of which depends on the correct answer of previous questions. For in-

stance, if the patient struggled with the previous question, the administrator

of the test has to skip any questions which build on it.
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Group Diagnosis Frequency Total
1 Alzheimer’s Disease 316 316
2 Vascular Dementia 129

Vascular Cognitive Impairment 38
Mixed Dementia 57 224

3 Cognitive Impairment no Dementia 15
Mild Cognitive Impairment 40 55

4 Depression 39
Anxiety 14 53

5 Parkinson’s Disease 10
Dementia with Lewey Bodies 19 29

6 Alcoholism 16
Fronto-temporal Dementia 13
Stroke 25
Brain Tumour 4
Epilepsy 2
Head Injury 3
Cerebellar Ataxia 1
low B12 1
low education 1
post-encephalitis 1
post neurosurgery 1
Primary Progressive Aphasia 1
side effects of drugs 1
Subarachnoid Haemorrhage 1 71

7 Norm 40 40
Total 778

Table 3.1: Absolute frequencies of diagnostic groups.
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3.2 Analysis

The study is conducted in two phases. First, a pilot study is performed using

100 observations taken from the entire sample. The pilot study ensures that

the data preparation procedure is robust and that the analysis methods are

appropriate and integrate well with each other. Upon the successful completion

of the pilot study, the entire data set is used to formulate and validate a

predictive model.

The private nature of the data has repercussions on the data preservation

policy for this project. After completion of the research, the digital as well as

the paper form of the data will be returned to Llandough hospital where it

can be made available to future research projects subject to ethical approval

by the NHS research ethical committee.

The work flow of the project, depicted in Figure 3.1, is designed to make

the process easily reproducible so that results can be re-evaluated quickly if

one of the steps is modified. After the data has been prepared for analysis, it

is run through a dimensionality reduction process in order to identify groups

of questions best suited to be used as indicators in models. The semantic

analysis of the sentence writing question is parallel to the rest of the work flow

- its outcome is necessary but not critical to the outcome of the study. As

additional potential predictor variables are identified in the semantic analysis

step, the variable selection process is re-evaluated with the new input vari-

ables. The predictive modeling step critically depends on the outcome of the

dimensionality reduction step as a simple model is more readily transferable

into clinical practice.

3.3 Methods

A traditional approach to feature extraction is principal components analy-

sis (PCA). PCA with a tetrachoric corellation coefficient has been previously
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Figure 3.1: Work flow diagram.

applied to analyse the structure of the MMSE (Castro-Costa et al. 2009).

Kernel PCA, homogeneity analysis, random orthogonal projections, principal

component grid search, random rotation forests and independent component

analysis (ICA) are evaluated as alternative methods and are compared with a

novel method proposed in chapter 5.

In chapter 6 a novel entropic (see section for related work 2.4) variable selec-

tion method is proposed. 14 variations of the proposed method are compared

with 36 state-of-the-art and classical variable selection methods are compared

in the same chapter.

In chapter 8 the optimal subset of variables identified in chapter 6, a version

of the data rotated using the method proposed in chapter 5 and the unmodified

data are used to train a predictive model. The models which were considered

are: C5.0 tree induction, random forests, K-nearest neighbours, naive Bayes

and support vector machines with a radial basis function as a kernel. Random

forests yield a good result which however is not easily interpretable due to the

ensamble nature of the method. With the findings gained from the random
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forest model, trees were induced from subsets of the data using the C5.0 tree

induction algorithm in an effort to induce rules transferable into practice.

Using automated semantic annotation, the MMSE data is used to extract

linguistic cues aiding in the screening for dementia. The annotation is per-

formed using the method proposed by Klein and Manning (2003). Parts of

speech (such as noun, verb etc.) and grammatical dependencies such as (sub-

ject to object) are considered as predictors.

The technologies, which are used in this project were chosen using the three

guiding criteria:

1. When available, use software packages which are being maintained by a

scientific community.

2. Integrate different software packages so that quality does not have to be

sacrificed for compatibility.

3. Experiments should be easily reproducible so that after introduction of

changes to the modelling process, the results can be easily re-evaluated.

PCA, kernel PCA, homogeneity analysis, random orthogonal projections

and PCA grid search are carried out in the R1 statistical package. The im-

plementation used for random rotation forests is available in Weka2 and is

integrated with R using the RWeka package. Conditional mutual information

estimation is implemented in C++ and utilises the CUDA3 parallel process-

ing framework. The CPU implementation used as a comparison benchmark is

available in the R package (package inftheo) The CMIM algorithm (described

in chapter 4) is integrated in the R environment. The stanford lexical parser 4

is used to annotate the MMSE data with semantic information. The annota-

tion itself is automated with the Ruby scripting language 5 and the resulting

1http://www.r-project.org
2http://weka.sourceforge.net
3http://www.nvidia.com/object/cuda_home_new.html
4http://nlp.stanford.edu/software/lex-parser.shtml
5http://www.ruby-lang.org/en/

http://www.r-project.org
http://weka.sourceforge.net
http://www.nvidia.com/object/cuda_home_new.html
http://nlp.stanford.edu/software/lex-parser.shtml
http://www.ruby-lang.org/en/
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annotated data is imported in the R statistical environment. The prediction

methods C5.0, random forests, support vector machines, naive Bayes and K-

nearest neighbours are used in implementations available with the R software

package.

3.4 Reference Data

To demonstrate the generalisability of the methods proposed in the chapters 5

and 6, use was made of eight different data sets from various domains. All data

is publically available from the UCI machine learning repository 6. Table 3.2

lists characteristic properties of the different data. In the table, the dimension

count includes the class label.

dimensions observations classes
Zoo 17 101 7
SPECT 23 266 2
Dermatology 35 366 6
Soybean 36 307 19
Sonar 61 208 2
KR vs KP 37 3196 2
Mushroom 23 8124 2
Splice 61 3190 3
Simulated 2000 61 2

Table 3.2: Summary of the data used in the evaluation.

Zoo

The zoo dataset is made up of 16 variables, each describing an animal attribute.

The class variable is the animal type. The classification goal is to identify an

animal type (e.g. “gorilla”) using the attributes (e.g. “airborne”).

SPECT Image Analysis

SPECT imaging is a tool for diagnosing myocardial perfusion. The original

data (Kurgan et al. 2001) was collected as two sets of three-dimensional im-

6http://archive.ics.uci.edu/ml/
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ages. The data used in this evaluation only contains 22 variables which were

extracted from the original images.

Dermatology

The dermatology data (Güvenir, Demiröz and Ilter 1998) was collected to

identify rules for differential diagnosis of erythemato-squamous diseases. The

difficulty in analysing the data is that many of the diseases share histopatho-

logical features and that a disease may have its characteristic features only in

late stages.

King Rook VS King Pawn

The King Rook vs King Pawn (KRvsKP) data (Bain and Muggleton 1995) is an

analysis of the chess endgame with these figures. This setup is of fundamental

importance in the game as many other endgames can be reduced to this one.

Different board configurations are described with 37 binary attributes and the

class label denotes whether white can win.

Mushroom

The mushroom data (Duch et al. 1997) is used to deduce rules for distin-

guishing between poisonous and edible mushrooms. The variables are various

characteristics of the plant. Although there are no simple rules to distinguish

between the two classes, a 99.9% correct classification was reported using 4

out of 22 variables (Schlimmer 1987).

Soybean Disease Diagnosis

The soybean data (Tan and Eshelman 1988) is used to diagnose diseases typical

for the plant. Several attributes were collected from the sampled plant itself

as well as its enviroment. Each plant is labelled with a diagnosis and the goal

is to deduce the diagnosis from the collected attributes.
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Splice Data

This data (Noordewier, Towell and Shavlik 1990) was collected to analyse

splice-junction gene sequences. When proteins are formed from DNA strands,

splice junctions are the points at which DNA is removed. The challenge in

this data is to determine the boundaries between DNA which is retained and

DNA which is removed after splicing. The data, which consists of DNA sub-

sequences, is labelled in three classes: a boundary between retained and re-

moved DNA (EI), a boundary between removed and retained DNA (IE), as

well as spurious sequences (N).

Sonar Data

The sonar data has 61 variables. The first 60 are reflected energy in different

frequency bands and last variable is the class label – rock or metal cylinder.

The version used in the comparison is a discrete version with 2 values for each

variable.

Simulated Data

In the analysis described in the following chapters, many of the compared

methods perform similarly on the reference data chosen in this project. To

demonstrate the difference of methods, data was generated which has a large

number of observations but also has a structure which makes it challenging for

methods which do not take redundancy into account.

The simulated data has 60 variables and a response variable which contains

a class label. The 60 variables are structured in 10 groups. The variables within

each group are correlated with a correlation coefficient of 0.85 but are indepen-

dent from any of the variables outside the group. For example ρ(Xi, Xj) = 0.85

for 1 ≤ i, j ≤ 6 and ρ(Xk, Xl) = 0 for 1 ≤ k < 6 and 6 < l ≤ 60. Each of the

variables has a domain of 5 values. The class label Y is a function of 10 of the
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variables with one variable from each group of correlated variables:

Y =

 0 if
∑

iXi < 25

1 otherwise,
(3.1)

where i goes over the variables characteristic for each group.



Chapter 4

Parallel Computation Method for

Estimating Conditional Mutual

Information

In chapter 2 the problem of dimensionality reduction of discrete multivariate

data is discussed and entropic methods are identified as the most suitable

approach. The main issue with this family of methods is that reduction of

redundancy in the model is limited by computational feasibility in addition to

availability of data.

In this chapter, an algorithm is proposed which leverages modern graphics

card hardware to push the boundaries of computational feasibility of con-

ditional mutual information. By making the process of conditional mutual

information faster, the severity of the trade-offs made can be reduced. The

algorithm can process data with discrete variables, rather than only data with

binary variables. Finally, the algorithm can estimate conditional mutual infor-

mation with more than one conditional variable. This makes the availability

of data rather than computational infeasibility the main challenge in practical

applications.

4.1 Problem Definition

The computational complexity of estimating conditional mutual information

is dominated by the estimation of point-wise probabilties. Conditional mutual

information is defined in terms of entropy. Entropy, H(X), is defined as the

sum of l terms where l is the number of values X can take – in other words,

the length of the alphabet U of X. Each of the l terms is an operation on

45
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the occurance probability of a value u ∈ U . This probabilty is estimated from

data by counting the number of observations taking the value u dividing by the

total number of observations. The question that needs to be answered is how

many duplicates of the value u were encountered in the series of observations

that make up the data. A method which increases the speed of duplicate

counting,can be applied directly to speed up the estimation of conditional

mutual information.

In section 2.4.2 it is argued that estimating CMI for variable selection with

k − 1 conditional variables, where k is the number of selected variables, is

infeasible for two reasons: first, the amount of required data unrealistic for

large k, and secondly, estimating conditional mutual information
(
p
k

)
times is

not computationally feasible. A design requirement of the proposed algorithm

is that the algorithm completes computation in reasonable time for a k, which

is limited not by computation speed but by the amount of available data.

4.2 Parallel Computing Methods

To solve the problem defined in the previous section, it is crucial that the

proposed algorithm counts duplicates efficiently with respect to time. Serial

algorithms for duplicate counting typically operate in two steps: first the data

are sorted, then, in a second phase, the number of consecutive repetitions of

each value in the sorted sequence is counted. Although the process can be

formulated in a similar way for parallel computation, the building blocks of

the algorithm are different from their sequential counterparts.

Counting duplicates is done most efficiently by sorting the entire sequence

and then iterating through it while incrementing a counter, which is reset ev-

ery time the successor of an element is not equal to the current element. This

process has complexity O(n + nlog(n)) and its performance is limited by the

efficiency of the sorting algorithm. In related literature, several sorting algo-

rithms have been proposed which, by using the parallel hardware on graphics
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adapters, are significantly faster than sequential sorting algorithms running on

a CPU (Satish, Harris and Garland 2009).

The sorting algorithm used in this research (Merrill and Grimshaw 2011).

is reported to reach up to a tenfold increase in speed when comparing a readily

available GPU to a 32-core CPU.

To count duplicates in a sorted sequence, the method proposed in this

research employs a parallel prefix sum (scan) algorithm (Reif 1993). A scan

is defined as a procedure which takes a binary associative operator
⊕

and an

ordered list of n elements

{a0, a1, ..., an} (4.1)

as input and returns the ordered list

{a0, (a0
⊕

a1), ..., (a0
⊕

a1
⊕

...
⊕

an)} (4.2)

For example, if the operator is addition, and the array is 1, 4, 2, 3, 5, the result

of the procedure would be 1, 5, 7, 10, 15.

The sorting algorithm (Merrill and Grimshaw 2011) used in the proposed

method relies on efficient scan algorithms to achieve its high performance.

While the parallel sorting algorithm is the source of the largest perfor-

mance gain in the proposed algorithm over equivalent sequential algorithms,

additional steps in the process of counting duplicates have been parallelised to

further reduce the computation time. The most notable extension of the pro-

posed algorithm allows it to run most efficiently when the conditional mutual

information I(Y ;Xi|Xj) is estimated for thousands of < Y,Xi, Xj > triplets

at the same time.
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4.3 Data Model

Two crucial data structures are used in the proposed parallel duplicate count-

ing algorithm: a sort buffer and an index buffer. The sort buffer is used to

store a sorted array which is an intermediate result for counting duplicates.

The parallel nature of the algorithm allows counting the duplicates in more

than one array at the same time. In this case index buffer is used to map each

element to its corresponding array.

Parallel sorting algorithms operate most efficiently on 32 bit integers. The

method would remain unchanged if the data model is extended to 64 bits, which

may be required in case compromising computation time for expressiveness is

acceptable. The decision to represent the data data in terms of 32 bit integers is

based on two reasons: first, the inadequate tool support for 64 bit GPU enabled

software across platforms would severely limit the applicability of the method;

and secondly, sorting 32 bit sequences is currently faster when compared to

sorting 64 bit sequences of the same length. Making the algorithm available to

a large audience requires the implementation to work on a Windows operating

system, depending only on freely available software. However, on a Windows

operating system, the NVidia GPU compiler supports 64 bit applications only

for the commercially, but not the freely available version of the Visual Studio

development environment.

The algorithm stores the entire data in form of an array in the RAM of

the graphics card. Each row of the array represents one row of the original

data. To ensure efficient processing, the rows are padded in order to corre-

spond to the number of elements which the hardware can process in parallel.

For example, a GeForce 580GTX graphics card can process 512 elements con-

currently. If the data has 60 dimensions then the first 60 elements of the data

representation in the RAM contain the cells of the first row. The second row is

stored at offset 512. When evaluating the goal function for a set of dimensions

X1, ..., Xk, Y , only those dimensions are copied into a separate buffer array for



CHAPTER 4. PARALLEL COMPUTATION 49

1. reduce the row to the variables of interest e.g. Y,X1, ..., Xp → Y,X1, X2

2. represent the values of the reduced variables in base 2 e.g. 2→ 10

3. concatenate the base 2 digits starting from right to left e.g. 1, 2, 0 →
011000 – in this example each of the variable occupies 2 bits.

4. if Y is one of the variables of interest, prepend the digit 1 to the thus
obtained number e.g. 011000→ 1011000. If Y is not one of the variables
of interest, the digit 0 is prepended.

Figure 4.1: Data projection algorithm.

further processing.

Each observation is projected from k + 2 dimensions onto a single, 32 bit

wide, whole-numbered dimension. This projection is only applicable under

the assumption that all the dimensions being evaluated are narrow enough

to fit into 31 bits (the remaining bit is used for a different purpose). While

this restriction may seem severe, it is justifiable: first, the wider the range of

a dimension, the larger the training data needs to be to achieve an accurate

probability estimation; secondly, if more than 4 to 5 dimensions are analysed at

the same time, the problem of sparse data arises again. The data is projected

by using the following algorithm listed in figure 4.1.

Table 4.1 shows an illustrative example of the projection algorithm on data.

To ensure optimal use of the 32 bits, each column is allocated with the minimal

number of bits required to encode all values as radix 2 numbers. For example,

if a variable X1 can take the values 1, 2, 3, 4, 5, the minimal number of bits

required to represent X1 is dlog2(5)e = 3. In this example, the value 1 of X1

would be encoded as 001.

The algorithm processes variables of different width by using the minimal

required width for each variable. For example if Y requires 2 bits, X1 requires

4 bits, X2 requires 5 bits and X3 requires 1 bit, the algorithm would use 12

out of 32 bits (2 + 4 + 5 and one additional bit for distinguishing between

Y,X1, X2 and X1, X2). In theory, if Y,X1, and X3 are considered, only 8 bits
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Y X1 X2 X3 Y,X1,X2 X1,X2
0 0 2 2 1000010 0000010
2 2 2 1 1101010 0001010
0 0 1 2 1000001 0000001
2 1 0 0 1100100 0000100
0 2 1 2 1001001 0001001
1 2 0 2 1011000 0001000
1 1 2 0 1010110 0000110
2 2 2 0 1101010 0001010
2 1 2 0 1100110 0000110
2 1 2 1 1100110 0000110

Table 4.1: Example data and projections.

are required. However, due to the parallel nature of the algorithm, the cases

Y,X1, X2 and Y,X1, X3 may be considered in the same iteration. This limits

the minimal number of bits required to the sum of the bits of the widest k+ 1

variables, where k is the number of conditional variables, plus the width of the

class label. In this example, the limit would be the combined width of X2, X1

and Y .

The last step of the algorithm – setting the leftmost bit to 1 if Y is one

of the variables – ensures that any value which includes Y in its projection is

always larger than any value which does not include Y . The advantage of this

property is explained explained by observing that a conditional probability can

be estimated as a result of two non-conditional probabilities:

P (Y |X1, X2) =
P (Y,X1, X2)

P (X1, X2)
(4.3)

Consider a situation where the projections of the tuples < Y,X1, X2 >

and < X1, X2 > are in one array, allowing that after the sorting procedure

each value can be mapped to one of the two original sets. Only one duplicate

counting iteration is necessary to estimate a value for the probability. The

data in table 4.1 represented as described would be an array A(X1|X2) with
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the following values:

[0000010, ..., 0000110,︸ ︷︷ ︸
X1,X2

1000010, ..., 1100110︸ ︷︷ ︸
Y,X1,X2

] (4.4)

This array is used to estimate I(Y ;X1|X2) from equation 2.4. If this es-

timation were to be calculated on a state-of-the-art graphics processing unit

with several hundred processing cores, many of the processing cores would idle

while a small number of cores processed the 10 rows of data. Although this

example is presented only for illustrative purposes, the issue of maximising

the utilisation of processing power remains when working with real data. In

order to reduce the idle time between iterations of the duplicate counting algo-

rithm, the data representation needs to ensure that the amount of computation

carried out in each step is limited by the hardware capabilities and not the

algorithm itself.

High occupancy of the hardware is achieved by processing the duplicate

counting step for several combinations of variables at the same time. For

example, to assess the quality of X1, the algorithm needs to estimate:

I(Y ;X1|X2), I(Y ;X1|X3), I(Y ;X1|X4), ..., I(Y ;X1|Xp) (4.5)

where p is the total number of variables. The duplicate counting algorithm

then receives an array as input which is the concatenation of

A(X1|X2), A(X1|X3), A(X1|X4), ..., A(X1|Xk) (4.6)

where k is the index of the last array that can be fitted into the memory of

the graphics card. The array thus produced is the sort buffer denoted as S.

As noted in section 4.2, duplicate counting is achieved by sorting the array

S and counting subsequent repetitions of its elements. However, after S has

been sorted, elements from different arrays A may be next to each other. In

order to map individual array elements to a specific array Ai, each of the arrays
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in: X ... p x q - 1 data vectors

Y ... q element target vector

out: weights ... q element vector

1 queue = {}, allweights = {}, result = {}

2

3 for each subset U of X of size k

4 queue = queue + <Y, U>

5 for each X_i in X / U

6 queue = queue + <Y, X_i, U>

7 if queue full

8 process(allweights)

9 end

10 end

11 end

12 return allweights

Figure 4.2: Search space traversal.

A is assigned an index i. A second array, M , is created such that the element

mk ∈ M , corresponding to the element sk ∈ S, has the value i – the index of

the projection Ai by means of which sk was produced. In the example above,

the element sk for k = 15 is produced from the second projection in S, which

is A(X1|X3), and thus mk = 2. The array M is the index buffer.

4.4 Control Flow

The parallel CMI algorirthm consists of two modules: a top-level module which

directs the search space traversal and evaluates the results, a scheduling mod-

ule executing iteration batches queued for parallel processing and a duplicate

counting module making use of parallel hardware.

4.4.1 Search Space Traversal

Figure 4.2 lists the algorithm module which iterates through all combinations

of variables of size k. The calculation of weights is deferred to the scheduling

module listed in figure 4.3. The iteration over k-sized subsets is done in lexical
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order using the LEXSUB algorithm (Nijenhuis and Will 1978). Each subset

is queued for processing and, once the queue is full, the scheduling module is

invoked.

The size of the queue is determined by the amount of physical memory

available on the GPU. A rough estimate of the memory occupancy of the

queue is the number of iterations in the queue multiplied by the size of the

data times two (once for the sort buffer and once for the index buffer) and

times 4 (4 bytes in an integer). For example, if a GPU has a total of 1024

megabytes of RAM and a given data-set has 2000 observations, the maximal

queue size can be estimated in bytes as 1048576/(2000 ∗ 4 ∗ 2) = 65536. It is

advisable to choose a queue size at least 10-20% smaller than this number. For

one, the computation itself requires some working memory. Furthermore, if the

GPU is used for display purposes as well as computation a queue size which is

approaching the physical amount of memory may render the system unstable.

The algorithm is distributed with a conservative queue size per default and the

option to set the queue size manually. Note that the version of the algorithm

discussed in this thesis is built for 32 bit platforms and thus can only address

up to 4Gbyte of working memory imposing a further constraint on the queue

size.

4.4.2 Scheduling

The second module, listed in figure 4.3, mediates between the parallel and

sequential components. The first task of this module is to invoke the dupli-

cate counting module described in section 4.4.3. This module returns a data

structure containing a set of tuples < t, d > for each component array A of

the sort buffer, where t is the projection of a data-point and d is its number

of repetitions in A.

For example, the data point X1 = 1, X2 = 2, X3 = 0 in table 4.1 would

be represented as < 6, 2 > – 6 being the integer equivalent of 0000110 and 2
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1 begin process(out allweights)

2 H(Y|U), H(Y|X,U), I(Y;X|U)

3 dall, dcond = count_duplicates(queue)

4 for each array A_i in queue

5 if(X not in A_i)

6 H(Y|U) = dall[A_i] / n * log(dall[A_i] / dcond[A_i])

7 else

8 H(Y|X,U) = dall[A_i] / n * log(dall[A_i] / dcond[A_i])

9 I(Y;X|U) = H(Y|U) - H(Y|X,U)

10 allweights[A_i] = I(Y;X|U)

11 end

12 end

13 end

Figure 4.3: Scheduler

being the number of occurances of the value 0000110 in the last column of the

table.

This data structure is described as dall, dcond in the algorithm listing for

brevity. If < Y,Xi, Xj1 , ..., Xjk > is a projection of a data-point, then dall rep-

resents the number of its repetitions and dcond represents the number of rep-

etitions of the projection < Xi, Xj1 , ..., Xjk >. If, for example, the queue con-

tained the sets of variables {Y,X1, X2} and {X1, X2} at the time of invocation

of the duplicate counter, then dall would be {< 1010110, 1 >,< 1100110, 1 >}

and dcond would contain {< 0000110, 2 >}. These tuples are needed to esti-

mate the conditional entropy as:

H(Y |Xi, U) =
dall

n
log(

dall

dcond
), (4.7)

where U = {Xj1 , ..., Xjk}.

The structure of the top-level component ensures that an iteration which

estimates H(Y |Xj1 , ..., Xjk) is always followed by q iterations which estimate

H(Y |Xi, Xj1 , ..., Xjk) (one for each Xi). This assumption is used in lines

5 to 11 of the scheduling module. In these lines the algorithm estimates

H(Y |Xj1 , ..., Xjk) only once for all H(Y |Xi, Xj1 , ..., Xjk) with 1 ≤ i ≤ q. The
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1 begin count_duplicates for all p in queue

2 sort_buffer = {}, index_buffer = {}, h_counts = {}

3 begin in parallel

4 for each p in queue

5 A_i = project data along p

6 sort_buffer append A_i

7 index_buffer append n repetitions of i

8 end

9 stable sort index_buffer using sort_buffer as key

10 stable sort sort_buffer using index_buffer as key

11 end

12

13 for each A in sort_buffer

14 begin in parallel

15 stencil = { A[i-1] == A[i] ? 0 : 1 }

16 scanned_counts = { stencil[i] = 1 ? 0 :

17 scanned_counts[i-1] + }

18 h_counts[tuple] = { stencil[i] = 1 ?

19 tuple = A[i],

20 count = scanned_counts[i] }

21 end

22 end

23 return h_counts

24 end

Figure 4.4: Duplicate counting.

algorithm evaluates

I(Y ;Xi|Xj1 , ..., Xjk) = H(Y |Xj1 , ..., Xjk)−H(Y |Xi, Xj1 , ..., Xjk) (4.8)

for all variable subsets of size k. The results are stored in allweights and

returned to the top-level component.

4.4.3 Duplicate Counting

The core of the algorithm is the parallel duplicate counting module listed in

figure 4.4. In the notation of this listing begin in parallel denotes the beginning

of a section in which each statement is processed in parallel. The statements

are invoked sequentially however. For example, lines 9 and 10 sort arrays, and



CHAPTER 4. PARALLEL COMPUTATION 56

although the sorting is done in parallel, line 9 is guaranteed to complete before

line 10 begins.

The module can be subdivided into three larger steps. In the first step, the

contents of the arrays Ai are calculated by applying step four of the algorithm

in figure 4.1 for each subset of variables in the queue. Following this, the sort

buffer and index buffer are initialised.

In the second step, the arrays Ai are sorted so that duplicate elements

are adjacent. The sorting takes place in two steps: first, the index buffer is

sorted using the sort buffer as an index. Although this ensures that duplicates

are adjacent, it does not ensure that all elements of Ai are placed before the

elements of Ai+1. To ensure that elements from different arrays A are separate,

the sort buffer is sorted, this time using the index buffer as a key. Using a stable

sorting algorithm ensures that if an element ai is placed before ai+j in the sort

buffer as ordered after the execution of line 9, then the same order persists

after the execution of line 10 assuming both elements are in the same sequence

Ai. After line 10, the sort buffer contains the sequences A1, ...An guaranteeing

that the sequence Ai is adjacent to Ai+1 and the elements of each sequence are

sorted in ascending order.

In the third step of the duplicate counting algorithm, the number of repe-

titions of each element in the sort buffer is counted. The structure of this step

is strongly governed by the architecture of the parallel hardware it is designed

for. For this reason, an indepth discussion is not possible without a thorough

review of the parallel architecture. To avoid such a review, which would go

beyond the scope of the thesis, this part of the algorithm is discussed only

briefly.

To count the duplicates, first a stencil is calculated. The stencil is an array

of the same length as the sort buffer, which contains 0 at the index i if the

element ai equals ai+1 in the sort buffer and 1 if the two elements differ. The

last element of the stencil is always 1. For example, if the sort buffer contains
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the values {1, 1, 2, 3, 3}, the stencil would contain the values {0, 1, 1, 0, 1}.

The scanned counts array is calculated by incrementing a running variable

and resetting it to 1 at the indices where the stencil contains a 1 at the following

index. This is achieved by using a prefix sum (described in section 4.2) with

the binary operator:

ai
⊕

ai+1 =

 i← i+ 1 if ai 6= ai+1

i← 1 otherwise
(4.9)

The scanned counts array for the values {1, 1, 2, 3, 3} computed in this way

would be {1, 2, 1, 1, 2}. Finally, the elements of the scanned counts buffer and

the elements of the sort buffer coinciding with elements of the stencil that are

equal to 1 are returned as results of the duplicate counting phase. In the above

example, the second, third and last element of the scanned counts array are

used in combination with the sort buffer to return a data structure of the form

{< 1, 2 >,< 2, 1 >,< 3, 2 >}.

The counting step is parallel for each component Ai of the sort buffer but

is invoked n times, where n is the number of components A of the sort buffer.

To further improve the speed of the algorithm, this step can be redesigned to

count duplicates in parallel for the whole sort buffer rather than just for one

component at a time.

4.5 Comparison With Sequential Method

The GPU imlementation of the algorithm was compared against a CPU imple-

mentation of the same method using a state-of-the-art information theoretic

estimator (Meyer 2008). To perform the comparison, the metric proposed by

Mart́ınez Sotoca and Pla (2010) was calculated on CPU and on GPU. The

runtime for both approaches is shown in table 4.2.

Two conclusions can be deduced from this comparison. First, the speed of
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CPU GPU
Zoo 0.37 0.95
SPECT 0.72 1.0
KR vs KP 7.4 4.13
Mushroom 4.2 3.26
Simulated 15.0 7.24

Table 4.2: Comparison of runtimes for CPU and GPU implementation in
seconds with one conditional variable.

CPU GPU
Zoo 3.04 1.72
SPECT 12.05 5.14
KR vs KP 357.0 12.82
Mushroom 63.47 37.91
Simulated 2103.70 156.0

Table 4.3: Comparison of runtimes for CPU and GPU implementation in
seconds with two conditional variables.

the GPU method is not a linear function of the number of samples. For small

data of a few hundred observations such as Zoo and Spect, the CPU method

is more appropriate. However, as the complexity of the data and the sample

size grows, the GPU method can be up to 50% faster. While this does not

have a large impact in the metric of this comparison, it yields large benefits

when CMIM with more than one conditional variable is estimated.

The non-linear increase in speed of the GPU method becomes much more

significant when probabilities with more than one conditional are estimated

(see table 4.3). When I(Y ;Xi|Xj, Xk) is estimated on large data with many

variables, such as KR vs KP or the simulated data, the speed gain can be more

than tenfold.

4.6 Conclusion

In this chapter an algorithm is proposed which leverages parallel graphics

hardware to explore the boundaries of computational feasibility in variable

selection.

The merit of the PCMIM algorithm is two-fold: First, its efficiency makes it
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feasible to experiment with using more than one conditional dimension. This

is achieved by pushing back infeasibility caused by combinatorial explosion.

Secondly, the proposed algorithm expands the application domains of the cur-

rent state-of-the-art CMIM algorithm by relaxing the requirement for binary

data to discrete data.

A limitation of the algorithm is that it is constrained to discrete data with

a limited domain. As such, the algorithm is not suitable for continuous data

or for application domains such as image recognition or bio-informatics where

data typically has several thousand variables. The method is designed largely

with applications in medical diagnostic support in mind, but, as demonstrated

in chapters 5 and 6, it is equally well applicable to other domains with data that

is discrete and that has a medium number of variables (up to 100). The method

is particularly advantegeous for data with upwards of 1000 observations.

Additional performance improvement of the proposed parallel algorithm is

achievable with a parallel reformulation of lines 13 to 22 in figure 4.4 such

that more than one variable at a time is processed for every iteration of this

phase of the algorithm. The proposed implementation of the algorithm as-

sumes that the entire data fits in the RAM of the graphics card. To make the

algorithm applicable for very large data, it would be beneficial to extend it

so that partitions of a data can be analysed allowing the results to be recom-

bined at a later stage. Lastly, for data with a large number of dimensions an

exhaustive search through the problem space is not computationally feasible

with currently available hardware.



Chapter 5

PCA for Discrete Data

In this chapter a method for supervised entropic PCA – mRRPCA – is pro-

posed. In addition, 4 types of principal component analysis are compared for

their applicability to discrete data as it is found in the Mini-Mental State Ex-

amination. The methods compared are: classical (linear) PCA, kernel PCA,

homogeneity analysis and PCA using entropic covariance measures.

5.1 Entropic Covariance Measures

In linear PCA, use is made of the fact that the covariance and in turn the

correlation matrix of a data is symmetrical and full rank (nonsingular). The

latter assumption is not strict; if the correlation matrix has less than full rank,

then decomposition methods exist which can extract less eigenvectors than the

matrix has columns. To motivate the formulation of the mRRPCA method it is

necessary to highlight the properties of an eigenvalue decomposition of a matrix

which is square, symmetrical and nonsingular (Shifrin and Adams 2011):

Theorem 5.1. Let A be a symmetric n× n matrix. Then

1. The eigenvalues of A are real.

2. There is an orthonormal basis {v1, ..., vk} for Rn consisting of eigenvec-

tors of A. That is, there is an orthogonal matrix Q so that Q−1AQ = Λ

is diagonal.

where an orthonormal basis of A is defined as:

Definition 5.1. Let v1, ..., vk ∈ Rk. We say {v1, ..., vk} is an orthognoal set

of vectors provided viv̇j = 0 whenever i 6= j. We say {v1, ..., vk} is an orthog-

onal basis for a subspace V if {v1, ..., vk} is a basis for V and an orthogonal

60
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set. Moreover, we say {v1, ..., vk} is an orthonormal basis for V if it is an

orthogonal basis consisting of unit vectors.

a basis of A is defined as:

Definition 5.2. Let V ⊂ Rn be a subspace. The set of vectors {v1, ..., vk} is

called a basis for V if:

1. V = Span(v1, ..., vk) and

2. {v1, ..., vk} are linearly independent.

and the span of {v1, ..., vk} is defined as:

Definition 5.3. Let v1, ..., vk ∈ Rk. The set of all linear combinations {v1, ..., vk}

is called their span, denoted Span(v1, ..., vk). That is,

Span(v1, ..., vk) = {v ∈ Rk = c1v1 + ...+ ckvk|ci ∈ R1} (5.1)

In other words, because a covariance matrix is square, symmetrical and

usually nonsingular, a corollary from definition 5.1 is that it can be decomposed

in the form of:

AQ = Λ (5.2)

where A is the covariance matrix, Q is an orthonormal basis of A (see definition

5.1) and Λ is a diagonal matrix of scaling coefficients. Or less formally, finding

an eigendecomposition of A is the same as finding directions in the data which

maximise variance but are at the same time orthogonal to each other (for a

more formal treatise refer to Jolliffe (2002)).

If the covariance matrix is replaced with a different matrix which is square,

symmetrical, nonsingular and describes the data in some measure, its eigen-

value decomposition will still be an orthonormal basis of the new matrix. Clas-

sically, use is made of this fact by replacing the covariance matrix with the
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correlation matrix and more recently with a matrix estimating covariance in a

higher dimensional projection space as described in section 2.3. The latter is

more commonly known as kernel PCA.

A less commonly accepted idea is to estimate the covariance between columns

in the data using information theory (see section 2.3.4 for a review of related

work). The adoption of such non-linear covariance measures has been slow be-

cause the classical method typically performs well and most non-linear meth-

ods add significant computational load. This fact is investigated further in the

following section 5.2.

The availability of the algorithm for estimating conditional mutual infor-

mation proposed in chapter 4 alleviates the issue of computational feasibility

thus allowing the exploration of new covariance estimates. The covariance

measure considered in this chapter has been proposed by Mart́ınez Sotoca and

Pla (2010) for variable selection and is calculated as:

I(Xi;Y |Xj) + I(Xj;Y |Xi) = 2I(Xi, Xj;Y )− I(Xi;Y )− I(Xj;Y ) (5.3)

which is rewritten as:

H(Y |Xi) +H(Y |Xj)−H(Y |Xi, Xj) (5.4)

In spite of the efficient form, the estimation of this function on CPU be-

comes infeasible for data with more than 1000 observations. With the method

described in chapter 4 the function can be estimated within seconds for large

data. More direct evidence for the speed comparison of Sotoca’s method im-

plemented on CPU and GPU is presented in chapter 6. In the following, the

metric proposed by Sotoca is considered as an alternative covariance metric for

finding principal components in the data. The function is estimated without
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reformulation in the more intuitively interpretable form:

aij = I(Y ;Xi|Xj) + I(Y ;Xj|Xi) (5.5)

where aij is the cell at the ith column and the jth row of the covariance matrix

estimate. For i = j the cell contains an estimate of 2I(Y ;Xi).

An advantage of estimating the function without reformulating it is that

each rewriting of the function makes impractical assumptions about the struc-

ture of the data. The strongest evidence in support of this claim is the

structure of the function itself. In information theory I(Y ;Xi|Xj) is equal

to I(Y ;Xj|Xi). However when Xi and Xj are not linearly independent, the

Bayes theorem for rewriting probabilities does not apply. When investigating

principal components, assumption of linear independency goes against all rea-

son as the purpose of PCA is to identify redundancy (linear dependency) in the

data. When estimated on real data the equality I(Y ;Xj|Xi) = I(Y ;Xi|Xj)

does not necesserily hold, which is the reason why both directions are taken

into account when estimating the covariance of the variables Xi and Xj.

A final adjustment which needs to be made to the goal function for it to

be an adequate replacement for variance is to formulate it as a minimisation

problem. As elaborated in section 2.2, conditional mutual information (CMIM)

is the amount of uncertainty reduced about Y by knowing Xi and Xj. It is

desirable that this measure be high so that a large amount of uncertainty

is reduced. However in a covariance matrix a large value is interpreted as

high correlation of Xi and Xj and is undesirable when the goal is to minimise

redundancy. The function is reformulated into a minimisation problem by

subtracting all values in the matrix A from the maximum value in a cell of A:

A = max(A)− A (5.6)

This method of constructing an entropic covariance matrix and analysing
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its eigenvalue decomposition is denoted as mRRPCA (maximum Relevance,

minimum Redundancy Principal Component Analysis).

Since the metric cannot be feasibly compared for speed against an equiva-

lent CPU implementation, a simpler version of the metric is formulated instead:

aij = I(Xi;Xj) + I(Xj;Xi). (5.7)

The main difference to the previous method is that this simpler version is

not supervised – it only considers the explanatory variables in the data to

uncover structure. Along the diagonal aii the matrix contains a multiple of

the estimate of the entropy of the ith column 2H(Xi). This latter method

is also not reported in related literature. It is denoted as MIPCA (Mutual

Information Principal Component Analysis) in the rest of the thesis.

5.2 Comparison of PCA Methods for Discrete Data

In this section 9 PCA methods are compared for their performance on discrete

data. The methods are compared for amount of variation explained by the first

few components and computation speed. The variation explained by a subset

of the components is compared in terms of relative magnitude of component

coefficients and by class separability after rotating the original data along the

directions of maximal variance. Class separability is compared by splitting

the rotated data in a training and test set and evaluating the accuracy of a

naive Bayes classifier. The stability of the accuracy is gauged with tenfold

cross-validation.

All methods were compared on 5 of the data described in section 3.4: Zoo,

SPECT, KR vs KP, Mushroom as well as the simulated data. Further, the

methods are compared on the MMSE data with semantic annotations as de-

scribed in chapter 7 reduced to only patients diagnosed with either Alzheimer’s

Disease or Vascular Dementia (mmsesub). The Zoo data was chosen for its
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relatively small size and simplicity. The remaining 4 data were chosen because

they group the observations in two classes. When plotted onto two-dimensional

space, the separability of two classes can easily be inspected visually. To avoid

undue verbosity, the separability of the data is presented visually only in cases

where it yields insight into the comparison of two of the methods.

The methods which are compared with the two methods proposed in the

previous section are described in section 2.3. Those methods are: the classical

method (PCA), kernel PCA with an RBF kernel (KPCA RBF), homogeneity

analysis (HOMALS), the SMIFE2 method (SMIFE2), independent compo-

nents analysis in the fastICA variation (fastICA) (Hyvrinen, Karhunen and

Oja 2001) as well as two projection methods which look for projections algo-

rithmically rather than analytically: PCAgrid (Croux, Filzmoser and Oliveira

2007) and RPorth (Varmuza, Filzmoser and Liebmann 2010). Those methods

are compared against the supervised method (mRRPCA) and the unsupervised

method (MIPCA) from the previous section. In the list of methods there are

two notable omissions: tetrachoric PCA and SMIFE1. Both of these methods

were considered for inclusion however the tetrachoric (or polychoric in the case

of multinomial distributions) method failed to converge to a solution for any

of the data and the SMIFE1 method gave results which were worse and slower

than SMIFE2.



CHAPTER 5. PCA FOR DISCRETE DATA 66

●

●

●

●

●

●

0 50 100 150 200

20
40

60
80

Time in Seconds

%
 o

f C
or

re
ct

ly
 C

la
ss

ifi
ed

 S
am

pl
es

● PCA
SMIFE2
mRRPCA
MIPCA
fastICA
homals
KPCA RBF
PCAgrid
RPorth

Figure 5.1: Classification rate versus running time for different PCA methods.
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(b) HOMALS

Figure 5.2: Class separation along first 2 PCs for a) PCA and b) HOMALS
methods on Zoo data.

The classification accuracy was tested on data which was reduced to three

dimensions projected along the first 3 principal components. Therefore the

classification accuracy can be viewed as a gauge of how well the different

projection methods eliminate redundancy in the data. The accuracy results

are displayed in table 5.1 with the best result for each data printed in bold face.

The methods each exhibit a difference in time-efficiency for data processing,

with kernel PCA methods being particularly computationally intensive. An

overview of the durations for each experiment is presented in table 5.2.

The data listed in table 5.1 and 5.2 is shown as a graph in figure 5.1 in

which the duration of each experiment is plotted in relation to its outcome.

For example, the point in the far right of the graph shows that while the

HOMALS method has given a competitive result for this experiment, it took

disproportionately long to calculate the solution. Kernel PCA with an RBF

kernel on the other hand finishes its calculations in more reasonable time frames

but it also has yielded some of the worst results.

The spirit of the comparisons presented in the following is demonstrated

with the example of the result produced by classical PCA projection and by

homogeneity analysis. First, visual separation of the different classes in the
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Figure 5.3: Cumulative explained variance for a) PCA and b) HOMALS meth-
ods on Zoo data.

data is considered (see figures 5.2a and 5.2b). The plot is generated by plot-

ting the data against the first two principal components computed by the

corresponding PCA method and by adding a convex hull around all classes.

The convex hull should not be interpreted as the boundary of the class, it

serves merely as a visual aid in gauging the overlap of classes after the data

is projected. For example, the triangle and diamond class in the Zoo data

are clearly well separated when linear PCA is used as the projection method

(figure 5.2a). If the convex hull is used as a gauge, one can count that when

linear PCA is used, 8 data points cannot be classified unambiguously while

when homogeneity analysis is used only 6 points lie in more than one convex

hull.

In this case, the hull plot does not go very far in clearing up the question

of which method gives a more adequate insight into the data. To further in-

vestigate the difference between the two methods, the relative magnitude of

the component coefficients can be compared. The magnitude of the compo-

nent coefficient is representative for the amount of variation explained by its

corresponding component. The coefficients cannot be compared between data

or between methods without normalisation. The normalisation chosen for this
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comparison is to assume that when all components are taken into account, all

variation in the data is explained. One can then easily calculate what per-

centage of variation each component explains by dividing by the sum of all

coefficients. This correspondence is visualised in a cumulative form. For ex-

ample, the 3rd bar in figure 5.3a can be traced to 0.5, this is interpreted as

the first 3 components, explaining 50% of the variance in the data. Using this

visualisation method and comparing figure 5.3a with figure 5.3b, it can be ob-

served that the first 3 components of the HOMALS method explain over 60%

in the data while the first 3 components in the of the PCA projection only

explain around 50% of the data. These findings suggest that while at first

glance the PCA method projects the data in a direction in which the classes

can be separated well by the classifier, thus the HOMALS method is superior

in explaining the structure of the data.

The results for the SPECT data are similar for all methods suggesting that

the covariance structure in the data is not very complex. An experimental

outcome which provides strong evidence in favor of the mRRPCA method are

the results for the KR vs KP data. While the performance for all other methods

breaks down in this data, mRRPCA yields a high accuracy in a fraction of the

time that any of the other non-linear PCA methods takes. On the Mushroom

data, the best result is produced by the HOMALS method. Regardless of the

accuracy of the HOMALS method, the MIPCA and mRRPCA methods may

be preferable under certain circumstances for two reasons: first, computation

is significantly faster and more importantly, the HOMALS method does not

give a projection which can be reproduced with unseen data while MIPCA and

mRRPCA methods return a rotation matrix which can be used to model or

explain new data. The mRRPCA method is likely preferable over the MIPCA

method as it yields the same accuracy in less than half the time.

The most informative result is the classification accuracy on the synthetic

data. The highest accuracy is achieved by the entropic methods, again provid-
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Figure 5.4: Class separation along the first 2 PCs with the a) MIPCA, b)
mRRPCA and c) SMIFE2 methods on simulated data.
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Figure 5.5: Cumulative explained variance for the a) MIPCA, b) mRRPCA
and c) SMIFE2 methods on simulated data.
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ing evidence in support of considering entropic PCA for discrete data. When

comparing class separability along the first 2 principal components for MIPCA,

mRRPCA and SMIFE2 (see figure 6.1) little can be said about how the three

methods compare beyond what is already known from their classification ac-

curacy. The most convincing gauge in support of mRRPCA is the plot com-

paring the cumulative explained variance for the three methods. The SMIFE2

method fails to uncover any of the structure used to generate the data. The

MIPCA and mRRPCA methods uncover the structure of 10 highly correlated

components. This result is more pronounced with mRRPCA where the first 10

components (corresponding to the 10 components used to generate the data)

explain almost 80% of the variance in the rotated data as opposed to just over

40% when using MIPCA.
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Figure 5.6: Class separation along first 2 PCs for a) PCA and b) mRRPCA
methods on mmsesub data.

While table 5.1 yields insights into the performance of different PCA ap-

proaches on discrete data it is difficult to neglect the poor performance on

the MMSE data. One possible conclusion of this result is that the MMSE

data cannot be modelled with a linear projection model. This supposition is

supported by figures 5.6a, 5.6b, 5.7a and 5.7b. While figures 5.7a and 5.7b

show that the mRRPCA method explains more variance in fewer principal

components, figures 5.6a and 5.6b show that the projection does not actually

improve classification accuracy visibly. For this reason, a second comparison

of methods was undertaken using random forest induction (Breiman 2001) as

the classifier. Random forests can be extended to rotation forests (Rodriguez,

Kuncheva and Alonso 2006) by projecting the subset of rows and columns for

each subtree before inducing the tree. The drawback of this rotation method

is that it gives no information about the correlation structure of the data or

redundant variables in the data.

Accuracy of rotation forests and PCA with random forests as a classifier

are presented in tables 5.3 . In this experiment setup the cross validation

is not repeated as the random forest classifier is already an ensemble learning

method which averages error rates. The runtime for the rotation forest method
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(b) mRRPCA

Figure 5.7: Cumulative explained variance for a) PCA and b) mRRPCA meth-
ods on mmsesub data.

is less than 2 seconds on any of the data. The runtime for the combinations

of projection methods with random forests are bound by the duration of the

PCA computations in table 5.2.

Overall random forests perform better on the data chosen for benchmark-

ing than naive Bayes classification. However, the added improvement seems to

come from the change of the classification method rather than from rotating

each sub-tree individually. Rotating the entire data with classical PCA first

and then classifying performs worse only for the MMSE data. An interest-

ing result is the 71% classification accuracy achieved with random orthogonal

projections (RPorth) in combination with random forests. Unfortunately this

result could not be reproduced in subsequent runs due to the non-deterministic

nature of the rotation algorithm.

5.3 Conclusion

In this chapter two methods for principal components analysis were proposed,

MIPCA and mRRPCA. Evidence is provided using known data and ensur-

ing stability with cross-validation which encourages the use of the proposed
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methods for classification problems with discrete data. A limitation of the

mRRPCA is that in its proposed form it requires graphics hardware capa-

ble of parallel computation. When such hardware is not available, the MIPCA

method is a viable alternative which gives results competitive with the SMIFE2

method in a fraction of the time it takes to calculate the SMIFE2 matrix.



Chapter 6

Variable Selection with Entropic Criteria

In this chapter two novel methods are proposed: a goal function for forward

search in variable selection, which is based on the three-way interaction gain

method proposed by Akadi, Ouardighi and Aboutajdine (2008), and a parallel

algorithm for conditional mutual information maximisation based variable se-

lection which allows pushing back the boundaries of computational feasibility

for information theoretic feature selection methods.

The chapter is structured into two parts: first, the goal function is derived;

second, the new method is experimentally compared with state-of-the-art vari-

able selection methods.

6.1 Goal Function

As noted above a goal function for variable selection will be proposed which

is derived from interaction gain feature selection. Interaction gain feature

selection (IGFS) is defined by Akadi, Ouardighi and Aboutajdine (2008):

XIGFS = max
X∈X−S

(I(Xi;Y ) +
1

d

∑
Xj∈XS

I(Xi;Xj;Y )) (6.1)

The authors report that this goal function performs better than the con-

ditional mutual information criterion. In the following it is argued that inter-

action gain feature selection is equivalent to conditional mutual information

algorithms with an added adjustment for devaluing dimensions selected in later

iterations. The argument of equivalency is based on reformulating the IGFS

78
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goal function:

XIGFSgoal
= I(Xi;Y ) +

1

d

|Xs|∑
j=1

I(Xi;Xj;Y ) (6.2)

Firstly, it is important to note, that the term being reformulated is the

goal function of the IGFS method (equation 6.2). In this equation, d refers to

the number of selected variables. In the following it will be written as |XS| for

clarity.

XIGFSgoal
= I(Xi;Y ) +

1

|XS|

|Xs|∑
j=1

I(Xi;Xj;Y ) =

= I(Xi;Y ) +
1

|XS|

|XS |∑
j=1

I(Xi, Xj;Y )− I(Xi;Y )− I(Xj;Y )

(6.3)

In the first step (equation 6.3) the 3IG part of the term is replaced with it

is definition (equation 2.33). After this first step, the equation is in a form that

only requires the computation of the traditional mutual information (defined

in equation 2.3). This has the added benefit that its structure can be analysed

with a multitude of equivalency theorems available in literature (most notably

Cover and Thomas (1991)).

XIGFSgoal
= I(Xi;Y ) +

1

|XS|

|XS |∑
j=1

I(Xi, Xj;Y )− I(Xi;Y )− I(Xj;Y ) =

=
|XS|I(Xi;Y )

|XS|
− |Xs|I(Xi;Y )

|XS|
+

1

|XS|

|XS |∑
j=1

I(Xi, Xj;Y )− I(Xj;Y )

(6.4)

The second step (equation 6.4) makes use of the fact that the sum is over

the index j. This implies, that the term −I(Xi;Y ) remains constant for all

summands. The term is taken out of the sum by multiplying it by the number

of summands, |XS|, and by the scaling factor 1
|XS |

. The term I(Xi;Y ), which
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was originally infront of the sum, is multiplied and divided by |XS| to allow

the combination of it with the term that was just taken out of the sum.

XIGFSgoal
=

1

|XS|

|XS |∑
j=1

I(Xi, Xj;Y )− I(Xj;Y ) =

=
1

|XS|

|XS |∑
j=1

H(Y )−H(Y |Xi, Xj)−H(Y ) +H(Y |Xj)

(6.5)

In step three (equation 6.5) the two terms infront of the sum eliminate

each other. The more crucial rewriting in this step is the replacement of the

mutual information terms by the conditional entropy terms they are based

on. See also equation 2.4 for the definition of mutual information in terms of

entropy. Note that mutual information is symmetrical which implies several

possible expansions in terms of entropy. The expansion in this transformation

was chosen because it allows the elimination of H(Y ) easily by showing that

it is added and subtracted to the same term.

XIGFSgoal
=

1

|XS|

|XS |∑
j=1

H(Y |Xj)−H(Y |Xi, Xj) (6.6)

In step four (equation 6.6), H(Y ) is eliminated from the sum because it is

added as well as subtracted from the term.

XIGFSgoal
=

1

|XS|

|XS |∑
j=1

I(Y ;Xi|Xj) (6.7)

And finally, it is observed that the term which remains inside the sum,

H(Y |Xj)−H(Xi|Xj), is in a form which corresponds to the definition of condi-

tional mutual information (see equation 2.4). After rewriting it as I(Y ;Xi|Xj),

it is demonstrated, that XIGFSgoal
can be rewritten into an equivalent form



CHAPTER 6. VARIABLE SELECTION 81

which only requires the computation of conditional mutual information.

In this form the function is immediately reminiscent of the feature selection

method proposed by Fleuret (2004). The main difference is that the new

function reduces the weight of dimensions chosen under a large cardinality of

XS. In literature it is consistently reported that forward search methods are

biased (Van Dijck and Van Hulle 2010) towards dimensions which were chosen

in late iterations and that introducing an adjustment for this bias improves

performance. It can therefore be argued that this difference is what contributes

to the performance improvement of IGFS over Fleuret’s CMIM method.

Further possible directions for performance improvement of this new goal

function are motivated by the difficulties of the naive method for information

theoretic variable selection. In the naive variable selection method, the goal is

to optimise H(Y |XS) (see equation 2.2).

The reasons for which this method is difficult to compute are in the ne-

cessity to iterate over all possible subsets of dimensions XS as well as the

estimation of high dimensional probability distributions. In IGFS and CMIM

the first difficulty is dealt with by applying a forward search strategy. The sec-

ond is dealt with by calculating the conditional mutual information which only

requires the estimation of up to 3-dimensional distributions. There are thus

two options for approaching the theoretical performance of the naive method:

to conduct a more exhaustive search in the subset space or to consider more

dimensions when estimating the goal function.

The search strategy is hard to improve beyond meta-heuristics due to the

non-linearity of the goal function. Meta-heuristic methods have been consid-

ered for improving the performance of information theoretic feature selection

(Huang, Cai and Xu 2007). Such methods are applicable regardless of the

shape of the goal function and are not investigated in the scope of this re-

search.

This leaves the second approach which is to increase the number of con-
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ditional variables for the conditional mutual information. Up until now only

one conditional variable was taken into consideration (in this example X1 is

evaluated as conditional on X2):

I(Y ;X1|X2) = H(Y |X2)−H(Y |X1, X2) (6.8)

The conditional variable can be replaced with a multi-dimensional variable

(in this example denoted as Xj) without loss of generality:

I(Y ;X1|Xj1 , ..., Xjk) = H(Y |Xj1 , ..., Xjk)−H(Y |X1, Xj1 , ..., Xjk) (6.9)

where Xj1 , ..., Xjk are the dimensions of X which are already selected. How-

ever if the number k of conditional variables is not limited, the method will

quickly run into problems similar to those found in the naive approach – com-

putational complexity and sparsity of the data. To avoid these problems k

can be limited to a constant. If k is chosen to be large (more than 3) then a

large data set is needed to reliably estimate the required probabilities. In the

original CMIM method
(
n
2

)
evaluations are needed to estimate the theoretical

information contributed by a candidate dimension. If k conditional variables

are taken into account,
(
n
k

)
evaluations are needed. While this number can

grow quickly, it is a lot more manageable than the 2n evaluations in the naive

approach.

A version of the transformed IGFS goal function (equation 6.7) which takes

these considerations into account can be written as:

XIGFSNEW
=

1(|Xs|
k

) (|Xs|
k )∑

j=1

I(Y ;Xi|Xj, ..., Xk) (6.10)

In the version with multiple conditional variables (equation 6.10) there are(|XS |
k

)
summands. For this reason the sum needs to be scaled proportionally
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and is divided by
(|Xs|

k

)
rather than just |XS|.

6.2 Evaluation

The PCMIM algorithm proposed in chapter 4 can be plugged into any fea-

ture selection strategy which requires an exhaustive estimate of CMI. For the

purpose of demonstrating the advantage of the proposed algorithm, its output

was used to calculate a distance matrix for the mRRC method as described in

section 2.4.8. A minor change in the method, which is responsible for the im-

provemed performance of mRRC based on PCMIM in comparison to a CPU

implementation of mRRC, is that the function is calculated in its verbatim

form:

D(Xi;Xj) = I(Y ;Xi|Xj) + I(Y ;Xj|Xi) (6.11)

rather than being rewritten to:

D(Xi;Xj) = H(Y |Xi) +H(Y |Xj)−H(Y |Xi, Xj). (6.12)

an argument in support of this claimed advantage is given in section 5.1. Both

versions of the goal function are implemented and compared

The performance of 51 classifiers was compared on the 10 data. Of these,

one is MRMR (Peng, Long and Ding 2005), 36 are state-of-the-art and classical

feature selection methods implemented in R1 (Robnik-ikonja and Kononenko

2003, Robnik-ikonja 2003, Kononenko 1995) including variants of Relief and

ReliefF, minimum description length (MDL), DKM as well as standard meth-

ods such as information gain, gini, euclidian distance and others. Of the re-

maining 14 one mRRClust algorithm as originally proposed by Mart́ınez Sotoca

and Pla (2010) (mRRCPU). An alteration of his method is that it is calculated

with a state-of-the-art implementation of a CMIM estimator (Meyer 2008) as

1http://cran.r-project.org/web/packages/CORElearn/

 http://cran.r-project.org/web/packages/CORElearn/
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the author’s implementation is prohibitavely slow. Another 6 are variations

of this method with different clustering methods implemented in the hclust R

package. The remaining 7 are the mRRClust method with the exact goal func-

tion implemented on GPU with the 7 clustering methods available in hclust

(mRRGPU). The XIGFSNEW
method was not considered because in section

2.4 ample evidence is given that forward search strategies are sub-optimal.

For brevity the results of the experiments are sumarised and only interesting

outcomes are discussed in detail.

6.2.1 Data

The performance of the proposed algorithm comes at the cost of flexibility.

The implementation imposes some constraints on which data can be analysed

using the parallel CMIM algorithm:

First, the data needs to be discrete. A further, stricter constraint is im-

posed on the number of values a dimension may take. This constraint stems

from the fact that the algorithm is based on sorting 32 bit integers. If the

CMIM criterion is evaluated for 2 conditional dimensions, then every subset of

dimensions with cardinality 4 (1 dimension for the class, 1 for the dimension

that is being evaluated and 2 conditional dimensions) must be representable

in 31 bits (the 32nd bit is used by the sorting algorithm). For example, a

dimension that can take 12 values can be represented in 4 bits. If the four

dimensions in a data set which can take the largest number of different values

all are limited to 12 values, then they can be represented in 4 × 4 = 16 bits

which makes the data suitable for the proposed algorithm.

The second constraint is computational; because the algorithm is exhaus-

tive, care needs to be taken to a k so that
(
d
k

)
remains managable where d is

the total number of dimensions and k is the number of dimensions for which

a multi-dimensional probability is estimated. For example, if a data has 60

dimensions and CMIM is to be calculated with 2 conditional dimensions, the
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dimensions observations classes imbalance max. bits
Zoo 17 101 7 36.63 9
SPECT 23 266 2 58.8 5
Dermatology 35 366 6 25.1 15
Soybean 36 307 19 12.7 14
Sonar 61 208 2 6.73 5
KR vs KP 37 3196 2 4.44 6
Mushroom 23 8124 2 3.59 20
Splice 61 3190 3 27.8 15
Simulated 2000 61 2 66.6 15
mmsesub 45 540 2 17.03 19

Table 6.1: Summary of data

algorithm would evaluate
(
60
4

)
= 487635 combinations of dimensions. Evalu-

ating CMIM with 3 conditional dimensions for the same data would take 11

times as much time.

To demonstrate the generalisability of the PCMIM algorithm, the com-

parison was carried out using eight different data sets from various domains

as well as simulated data. All data is publically available from the UCI ma-

chine learning repository 2 and is included in the R package which implements

the algorithm. A more detailed description of the data is found in section

3.4. A more thorough investigation is carried out on the on the MMSE data

with semantic annotations as described in chapter 7 reduced to only patients

diagnosed with either Alzheimer’s Disease or Vascular Dementia.

For different data it is reasonable to expect different performance depending

on factors such as number of observations, number of dimensions and number

of classes. These factors are listed for all considered data in table 6.1. In the

table the dimension count includes the class label. The last column, max. bits,

shows how many bits are needed to encode the 5 widest dimensions of the data

– for the PCMIM algorithm to be applicable these dimensions need to fit in

31 bits (see also section 4.3).

Another factor which has been taken into account as a possible indicator

of the performance of CMIM feature selection is the number of bits required

2http://archive.ics.uci.edu/ml/

http://archive.ics.uci.edu/ml/
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to represent the 5 dimensions with a widest domain. The rationale for this is

that the number of observations needs to be large to estimate a large number

of pointwise probabilities accurately. Conversely, if the domains of the dimen-

sions are narrow, less data is needed for an accurate estimation. An intuitive

justification is to consider the case of a loaded coin and a loaded die. One

would need more experiments to identify a loaded six-sided die by esimating

its probabilities from observations than to identify a loaded coin which only

has two possible outcomes.

One factor which has been measured but not discussed in the description

of the algorithm is class imbalance. In machine learning literature, class im-

balance is recognised as a source of bias in many algorithms (Japkowicz and

Stephen 2002).

The class imbalance measure used here is the difference of the most preva-

lent class in the data versus the rarest class in the data. It is defined as CI:

CI =
100× (|Cmax obs| − |Cmin obs|)

n
(6.13)

where Cmax obs is the class which was observed most frequently in the data,

Cmin obs is the class which was observed least frequently and n is the total

number of observations. The unit of the measure is a percentage of the total

number of observations.

For example a data with two classes, the first of which has been observed

50 times and the second of which has been observed 100 times has a class

imbalance coefficient of:

100

150
− 50

150
=

1

3
= 33% (6.14)

It is important to note that this coefficient gives only a rough picture of the

spread of the number of observations over classes. While it measures the dis-

tance between the classes with the largest and smallest number of observations
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it gives no information on the distribution of the remaining classes.

6.2.2 Results

Because of the large number of feature selection methods, it is difficult to visu-

alise all results for all methods for all data. For this reason, the classification

accuracy of the different methods is visualised as a box and whiskers plot for

each data. The performance of the proposed methods is highlighted with a

cross for the mRRClust variants based on a CPU approximation and with

an x for the methods based on the exact computation on GPU. Figure 6.1a

shows the performance of a naive Bayes classifier with cross validation on the

best three variables with each method. Figures 6.1b and 6.1c show the same

comparison with 6 and 10 variables respectively. The accuracy variance across

cross validation iterations was estimated but as it was less than one percent

in all cases, it is not reported in detail.

Overall it can be said, that the Zoo, KR vs KP, mushroom data are easy as

most of the methods achieve more than 80% classification accuracy regardless

of how many variables are selected. The simulated data is a good demonstra-

tion for the merit of the proposed exact mRRClust method – the classification

performance of all methods but the GPU based ones decreases as more vari-

ables are selected. Because of the redundancy introduced in the data with its

generation, selecting new variables which do not contain information already

present in the model becomes more difficult as the number of selected variables

increases. Regardless, some of the clustering methods seem to be inadequate

as a replacement for the ward method which overall achieved the best and

most consistent results across the different data. An interesting result is the

performance of mRRCWard on the Soybean data and on the Dermatology

data which demonstrate that there is merit in estimating the mRRC matrix

without rewriting the goal function.

Figure 6.2 summarises the running time for all feature selection methods
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Figure 6.1: Classifcation performances with the 3, 6 and 10 best variables
using various methods.
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Figure 6.2: Runtime versus accuracy for all experiments.

and plots them against the achieved performance. The duration of calculations

for the CPU imlpementation of the goal function are marked with an x and

the runtimes for the GPU imlpementation with a cross. Overall, the GPU

computation is competitive with the other methods although in some cases the

computation takes up to 6 seconds. Table 6.2 shows a summary of the GPU

versus the GPU mRR implementations. This summary suggests that while for

the majority of cases the computation times of both methods are similar, for

the 25% most difficult cases in the 4th quartile the CPU implementation can

take up to five times longer.

Similarly to the PCA methods in chapter 5, all methods seem to perform

poorly on the reduced, semantically annotated MMSE data. In the previous
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GPU CPU
Min. 0.0050 0.0080

1st Qu. 0.0250 0.0250
Median 0.0330 0.0355

Mean 0.4064 1.1681
3rd Qu. 0.0580 0.0600

Max. 6.1120 25.0340

Table 6.2: Summary of runtimes for GPU and CPU mRR implementations in
seconds.

chapter a random forest (Breiman 2001) classifier showed significanntly better

results on the MMSE data than the naive Bayes classifier used in the above

experiment. For this reason, a second experiment was conducted in which

all 51 methods were used to select the best 3, 4, 5, up to 40 variables of the

MMSE data. The quality of the subsets was gauged by the ratio of correctly

classified instances on test set made up of 20% of the original data. Figure

6.3 summarises the result of this experiment. Each of the bars is represents

the best classification accuracy on the particular subset achieved with any of

the 51 feature selection methods. The best result, just over 70% correctly

classified instances, is achieved with 20 variables. Several methods achieved

this accuracy with this subset within a small margin of each other.

The subset of variables is listed in table 6.3. The score is given a high

priority because in this version of the data it is a numeric variable where each

value is treated separately. To achieve a more realistic result, a startification

by ranges of score may be necessary. Such issues are investigated further in

chapter 8.

6.3 Conclusion and Future Work

In this chapter two major propositions were made: a reformulation of a state-

of-the-art feature selection criterion in terms of conditional mutual information

maximisation; a family of efficient algorithms based on the mRRC method

and the PCMIM algorithm proposed in chapter 4. The presented research
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Figure 6.3: Classification accuracy of random forest classifier on MMSE data
with 3 to 40 out 45 selected variables.

demonstrates that shifting from a sequential to a parallel paradigm, can extend

the applicability of existing variable selection strategies to larger data.

The merit of reformulating XIGFS is that by analysing equivalent forms,

its structure can be directly compared to other state-of-the-art methods, most

prominently it can be directly compared to conditional mutual information

maximisation. This comparison yields an understanding of the theoretical

nature of the performance improvement of IGFS when compared to CMIM as

proposed by Fleuret (2004).

In future work a metric for the mRRC method will be designed which takes

more than one conditional variable into account.



CHAPTER 6. VARIABLE SELECTION 92

1 sex
2 score
3 word count
4 A11
5 A8
6 auxiliary
7 adjectives
8 A3
9 A4

10 A21
11 nouns
12 A26
13 subjects
14 adverbs
15 A9
16 determiners
17 A17
18 A7
19 A30
20 modifiers

Table 6.3: Best subset of variables of the MMSE data for discrimination be-
tween Alzheimer’s Disease and Vascular Dementia using random forests.



Chapter 7

Semantic Analysis of the MMSE

Sentence

One of the MMSE questions prompts the testee to write a sentence. The ques-

tion is scored with 1 point for a successful attempt and correct sentence and

0 points otherwise. In this chapter, more diagnostic cues are extracted from

the sentence writing question than just a binary score. Although language im-

pairment in dementia patients is well researched (Kempler and Zelinski 1994),

little literature reports success in identifying linguistic markers applicable to

the MMSE. Nevertheless, researchers report indirect evidence for the relevance

of the sentence in the MMSE (Shenkin et al. 2008, Press et al. 2012).

In this study 101 grammatical and syntactical cues are evaluated for their

contribution to discriminating between Alzheimer’s (AD) and Vascular De-

mentia (VaD) using the MMSE.

The remainder of the chapter is structured as follows: section 7.1 de-

scribes the automated linguistic analysis method used in this study, section

7.2 presents results and discusses selected linguistic markers indepth, and sec-

tion 7.3 concludes by putting the presented research in a larger context and

outlining future work.

7.1 Linguistic Processing

The sentences in the data were parsed using the Stanford semantic parser

(Klein and Manning 2003). The Stanford parser is reported to have high

accuracy when matched against annotations made by linguists. The accuracy

of automated parsing in detecting MCI has been confirmed by Roark et al.

(2011), who report coincident significance levels for data produced manually

93
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and automatically. Automatic parsing allows annotating a larger corpus of

text with more semantic information than is feasible with manual annotation.
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Figure 7.1: Distribution of the number of words per sentence in the MMSE
data.

The 418 sentences were annotated with 48 types of parts of speech (for

example noun, verb, adjective...) and 53 types of grammatical dependencies

(for example subject to object, auxiliar verb to verb...). The median number

of words per sentence is 5 with 75% of the sentences being shorter than 6

words (see figure 7.1). Such relatively short sentences do not allow for com-

plex grammatical structures to emerge. For this reason, complexity measures

scoring the shape of the parse tree of a sentence were not considered.

Out of the 101 assessed measures, only those are reported in the scope that

carry more information about the diagnosis than the least informative MMSE

question. These measures are (listed in descending order of information):

1. words per sentence

2. maximal word length

3. adjectives (adjectives in the comparative and superlative form are in-

cluded)

4. nouns (singular and plural forms of nouns and proper nouns are counted)
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5. determiners (e.g. which, the, a)

6. auxiliar verb relationships (e.g. should do)

7. adjective complements (e.g in “She looks very beautiful.” the adjective

“beautiful” complements the verb “looks” - it acts as an object of the

verb)

8. verbs (all verb inflections are counted)

9. prepositions

10. adverbs (includes comparative and superlative forms)

11. adjectival, temporal and noun compound modifiers

12. coordinating conjunctions

13. occurences of the word “to”

14. subject clauses

The relevance of the rules matching for nouns, verbs and number of words

per sentence has been confirmed in related research (Vigliocco et al. 2011,

Roark et al. 2011). The rule counting the number of subject clauses has been

investigated by Bencini et al. (2011), who found that, compared to Italian

native speakers, English native speakers do not omit subject clauses.

7.2 Results

To order the measured variables (101 linguistic markers, the 30 MMSE ques-

tions as well as the gender of the patient) in decreasing order according to their

contribution to the diagnosis, an entropic dimensionality reduction method is

chosen. Classical dimensionality reduction methods, such as factor analysis or

principial components analysis, are avoided due to their bias when applied to



CHAPTER 7. SEMANTIC ANALYSIS OF THE MMSE SENTENCE 96

discrete data (Kolenikov and Angeles 2004). The method used in this study

is the parallel mRRCWard method proposed in chapter 6.

After the linguistic markers listed in section 7.1 are assessed and the most

significant markers are identified, the relation between each marker and the di-

agnosis needs to be determined. This relationship is reported in an exploratory

manner for two reasons: first, the discrete distribution of the variables ad-

veresly affects the practicality of classical statistical tools. A χ2 test could

be used to compare the histograms of, for example, the number of words per

sentence for AD and VaD patients, however such a test would yield potentially

misleading results because of the long distributional tails. The second reason

is that the relationship between the variables and the diagnosis is not linear

in all cases. Providing a linear model model would obscure information and a

non-linear model would be more difficult to interpret intuitively.

subjects
to

conjunctive
modifiers
adverbs

prep
verbs

adj compl
auxiliary

determining
nouns

adjectives
word len

words

0.000 0.005 0.010 0.015 0.020 0.025

Figure 7.2: Information of linguistic markers about diagnosis measured in bits.

The amount of information each of the linguistic markers contributes to

the final diagnosis is shown in figure 7.2. Although there are more linguistic

markers which are scoring better than the least informative MMSE question in

discriminating between groups, only the markers with information within the

margins of the best 10 MMSE questions are presented in order to reduce noise.
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Following this, the relation between the best 3 markers (words per sentence,

length the longest word and number of adjectives) and the diagnosis are dis-

cussed more closely. Additionally the results are put in context with related

work by discussing the number of nouns and verbs in sentences (Vigliocco

et al. 2011) as well as the number of subject clauses (Bencini et al. 2011).

The relation between each variable and the class is reported with a graph

containing two histograms, one obtained from the AD patients in the data

and one from VaD patients, and a third graph depicting the difference of

both histograms calculated by subtracting the corresponding variable values

for AD and VaD patients. For example, figure 7.3 depicts the difference in

the number of words per sentence for both patient groups. By examining the

bar representing sentences with 3 words in histogram a) and histogram b)

little difference between patient groups is observed. Graph c) shows that the

difference between both histograms is indeed close to 0.
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Figure 7.3: Comparison of words per sentence in different patient groups.

The most significant linguistic marker for distinguishing between AD and

VaD is also the best predictor among the 30 MMSE questions, the 101 linguistic

markers and knowledge of the gender of the patient. In related literature a

lower number of words per sentence is associated with Alzheimer’s disease

(Bencini et al. 2011, S et al. 2011). This result, while confirmed, only seems to

apply to sentences of up to 6 words. Although this is true for the majority of
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sentences (see also figure 7.1), AD patients have written majority of the longest

sentences. A possible explanation for this difference is that the patients were

asked to write a sentence. Stopping an action is an ability which is affected in

patients with AD.
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Figure 7.4: Comparison of the length of the longest word in a sentence for
different patient groups.

The second most informative linguistic marker, the length of the longest

word in a sentence, is preceded by 6 questions of the original MMSE. From

the histograms in figure 7.4 it can be concluded that there is little difference

between different groups of patients for sentences with the longest word no

more than 5 letters long. However, a significant difference can be observed

for sentences in which the longest word is 6 or 7 letters long. Patients with

AD write fewer sentences in which the longest word is 6 letters long than

sentences in which it is 7 letters long. In VaD patients, this relation is reversed

- the relative difference between patients who prefer 6 letter words and those

who prefer 7 letter words is more than 10%. A preliminary investigation of

differences in the longest words of sentences does not yield additional insight

and further investigation is warranted.

The information content of the maximal word length variable is immediatly

followed by the variable counting the number of adjectives in a sentence. In

figure 7.5 it can be seen that AD patients are more likely to use an adjective
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Figure 7.5: Comparison of adjectives per sentence in different patient groups.

in a sentence than VaD patients. In the english language adjectives are of-

ten associated with overly dramatic, less informative language. Considering

this aspect, these findings are consistent with results reported in related work

(Roark et al. 2011) which associate reduced idea density in use of language

with AD.
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Figure 7.6: Comparison of nouns per sentence in different patient groups.

The comparison of the number of nouns (figure 7.6) and the number of verbs

(figure 7.7) yields less information about the difference between groups. How-

ever, the results found in the data confirm the findings reported by Vigliocco

et al. (2011): verbs place a higher load on working memory - which is im-

paired in AD patients, and the use of nouns and verbs differ in a similar way
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Figure 7.7: Comparison of verbs per sentence in different patient groups.

between groups, which can be explained with the shared brain region used for

producing both types of words. The number of nouns as well as the number of

verbs per sentence is lower in AD patients. The higher difficulty of verbs over

nouns is reflected in the lower overall number of verbs compared to nouns in

all sentences.
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Figure 7.8: Comparison of subject clauses per sentence in different patient
groups.

Bencini et al. (2011) report an affected use of subject clauses in AD patients.

The authors report that English native speakers with AD do not omit subject

clauses while Italian native speakers do. A trend for subject clause omission

however is clearly visible in figure 7.8: AD patients write more sentences with

0 or 1 subject clauses and fewer sentences with more than one subject clause
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than VaD patients. While these findings are consistent with the research of

Bencini et al. (2011), it implies that subject clause usage may be affected across

languages with the difference occuring in the shape of the affection.

Additional experiments providing supporting evidence for the merit of se-

mantic annotations for discriminating between types of dementia are reported

in chapter 8. More specifically: section 8.2 argues against considering MMSE

data without semantic annotation for analysis with additional results presented

in tables A.1 to A.24; section 8.3 discusses the accuracy of discriminating

between all types of dementia listed in table 3.1; table 8.5 reports evidence

supporting the results obtained in this chapter; section A reports accuracy

results using the annotated MMSE data with classification methods, different

dimensionality reduction methods (feature extraction and variable selection)

and considering all 1 vs 1 and 1 vs all combinations of dementia groups.

7.3 Conclusion

This research proposes an automated method for identifying linguistic mark-

ers for discerning between AD and VaD. The automation of the task allows

testing more markers on a larger text corpus than is feasible by manual an-

notation. Related research using automated methods to quantify language for

the purpose of diagnostic support for dementia is scarce (Roark et al. 2011, S

et al. 2011, Ahmed et al. 2013). The findings of comparable related work yield

results which are not readily transferable to screening for dementia in clinical

practice.

In the scope of this research 14 markers are identified which provide more

information about the type of dementia a patient may have than 2 thirds of

the original MMSE questions. The identified markers can be tested for by

test administrators without expert knowledge of linguistics (number of words,

number of adjectives, nouns...). In future work, the significance of adjectives

in distinguishing between AD and VaD patients will be investigated.
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A non-linear model which integrates the MMSE and the identified linguistic

markers for the purpose of predicting the type of dementia is proposed in

chapter 8.



Chapter 8

Predictive Model

In this chapter, the MMSE data is analysed for its applicability beyond a

screening tool for dementia. The data is analysed for answer patterns and

linguistic cues typical for types of dementia. Each of the patients is diagnosed

with one of 24 types of dementia or is classed as norm. The 24 types of

dementia are collected in diagnostic groups according to table 3.1.

The remainder of this chapter is organised as follows: section 8.1 gives a

descriptive overview of the main features of the data; in section 8.2 the data is

analysed in an exploratory manner, without formulating a model; section 8.3

formulates models for the data using the methods proposed in chapters 6 and

5.

8.1 Descriptive Statistics

Traditionally, the main features of a data are described using the central mo-

ments of the data - mean, variance, skewness and kurtosis. Since the MMSE

data is discrete, and in the case of gender nominal, these measures, which

assume a normal distribution, will not be considered. Instead, the data is

presented in relative frequencies and, where appropriate, distributional shapes

are depicted with a boxplot graph (Tukey 1977). A boxplot graph shows the

inter-quartile range (IQR) as the bottom and top edge (hinge) of its box.

The line accross the box is at the median of the data and the top and bot-

tom end of the whiskers are at the 5th and 95th percentile. In addition, the

boxplot graphs contain notches whose top and bottom ends are calculated as

+ − IQR/
√
n where n is the number of observations. These notches overlap

when the medians of two samples are not significantly different.

In the MMSE data, there are roughly 20% more female than male patients

103
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Figure 8.1: Gender ratio in the MMSE data.
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Figure 8.2: Diagnostic group ratios in the MMSE data.
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Group Abbreviation Full Name
1 AD Alzheimer’s Disease
2 Depr Depression
3 MCI Mild Cognitive Impairment
4 ND Neuro Degenrative Dementia
5 Norm Norm
6 Other Other
7 VD Vascular Dementia

Table 8.1: Abbreviations used in graphs and tables.
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Figure 8.3: Total MMSE score frequencies.

(figure 8.1). This can be explained with the generally higher life-expectancy

of women. The two most prevalent diagnoses in the data are Alzheimer’s

Disease and Vascular Dementia (figure 8.2). To keep the width of the graphs

reasonable, the diagnostic groups are abbreviated (see table 8.1).

The median of the MMSE scores is 21 with the IQR between 19 and 22 –

in other words, 50% of the patients had a score between 19 and 22. There is no

significant difference in the spread of scores between male and female patients

as can be seen from the overlapping notches of the boxplots in figure 8.4.

Although with 50% of the patients being scored with one of only 4 values

it is difficult to draw further conclusions from the spread of scores, it is in-
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Figure 8.5: Total MMSE score for each diagnostic group.



CHAPTER 8. PREDICTIVE MODEL 107

AD Depr MCI ND Norm Other VD

F
em

al
e 

   
   

   
   

   
   

   
   

   
M

al
e

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 8.6: Gender ratios for each diagnostic group.

formative to look at the difference in the scores between different diagnoses

(see figure 8.5). The notches of all boxplots overlap, which strongly suggests

that there is no significant difference between the scores for different diagnostic

groups. Curiously, the median score for the patients at norm is indistinguish-

able from the patients with a cognitive impairment. An explanation for this

can be found in the population from which the data was drawn. All MMS

Examinations which were considered in this study were completed by patients

referred by their physician to the Memory Centre at Llangdough hospital. The

general practitioners who referred the patients to the hospital have adherred

to the guideline of the National Institute for Clinical Excellence which suggests

an MMSE score of 26 as a cut-off point for dementia screening.

Finally, structural information can be gleaned by examining the ratio of

genders in each of the diagnoses (see figure 8.6). The most significant finding

is the difference in the gender ratio between Vascular Dementia (VD) and

Alzheimer’s Disease (AD). This is a well known correlation associated with

the higher prevalence of vascular disease in the male population. The over-
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representation of male patients in the group Other can be explained by referring

to table 3.1 – this group is dominated by stroke and alcoholism patients, both

of which are prevalently male.

8.2 Exploratory Analysis

The MMSE data, even in its transformed version, is split into 7 diagnostic

groups. A priori, little is known about how the 7 groups relate to each other.

The relation between groups can be modelled by asking the question: How

well can group A and group B be separated by a statistical model? There are

23 such combinations of pairs of groups. This question can also be asked in the

form: How well can diagnostic group A be separated from all other groups?

Those two relatively simple inquiries already yield 56 possible hypotheses about

the data. However, this number grows further if relations between more than

two groups of patients are considered, for example: how well can the group of

patients at norm be distinguished from the patients diagnosed with either AD

or VaD?

A method for guiding the formulation of hypotheses is exploratory anal-

ysis using homogeneity analysis (HOMALS) as proposed by Gifi (1990) and

described in section 2.3.3. The HOMALS method rotates data in such a way

that variations in the data are maximised considering observations against

variables as well as variables against observations. Because the optimisation

of the rotation is performed iteratively, the rotation cannot be generalised for

new data. On the other hand, the rotation is performed without distributional

assumptions about the data, which yields better results than methods making

such assumptions (see chapter 5 for a comparison).

In this study two sets of data were considered: the original MMSE data

which includes a score for each of the 30 questions and the gender of a pa-

tient, and a subset of the original MMSE data limited to those patients who

attempted the sentence writing question. The linguistic markers identified in
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Figure 8.7: Scatter plot of HOMALS rotated MMSE data without semantic
analysis.

chapter 7 are included in the second data. The reason for the decision to

analyse both sets of data is twofold: First, for some patients who attempted

to write a sentence, this sentence is not available; secondly, integrating the

semantic analysis with the original data would result in 16 columns full of 0

values for all patients who either did not attempt to write a sentence or for

who a sentence is not available. This concentration of equal values in 16 of the

dimensions would skew the analysis.

The first aspect discussed is whether the 7 groups can be separated visually

after rotation with the HOMALS method and projection onto two dimensions.

Figure 8.7 depicts the data cloud produced in this manner from the MMSE

data under exclusion of the semantic analysis. There is large overlap between

the different diagnostic groups. While it may be possible to achieve some sep-

aration by looking at pairs of diagnoses individually, for example by reducing

the data to the two largest diagnostic groups, AD and VaD, the visual separa-

tion of groups discourages further investigation. In light of the results achieved
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Figure 8.8: Scatter plot of HOMALS rotated MMSE data with semantic anal-
ysis.

after the inclusion of linguistic markers from the MMSE sentence, it is deemed

unnecessary to pursue an analysis of the original MMSE data.

Figure 8.8 shows the same graph as before however, for the semantically

annotated MMSE data. Although a large overlap between classes remains,

some interesting separations can be seen. For example, the groups of patients

at norm, patients with MCI and AD seem separable. Distinguishing MCI from

norm is a typically difficult task in clinical practice. A second interesting ob-

servation is that depression can be separated from AD and neuro-degenerative

disorders.

The relations between diagnostic groups can also be observed in the cat-

egory quantification graph of the outcome variable of the data (figure 8.9).

While this graph can be shown for each of the variables in the data, the most

informative graph for the purposes of this analysis is the graph for the diagno-

sis. In a category quantification graph, the centroid of each category is plotted

onto two-dimensional space. The further apart two centroids are on the graph,
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Figure 8.9: Category quantification for plot MMSE data with semantic anal-
ysis.

the larger the between groups variance. The graph supports the observations

made by rough investigation of the scatter plot: the Norm category is far from

all others; depression and MCI are close to each other but far from Neurodegen

and Alzheimer’s Disease. The distance between AD and VaD is larger than to

the other impairments but not as large as to Norm.

Finally, it is informative to investigate the relations of dimensions to each

other. The HOMALS method is equivalent to linear decomposition under

optimal scaling. Although optimal scaling is not generalisable, the linear de-

composition can be interpreted analogous to traditional methods. In linear

decomposition, the data, or an indicator of its structure, such as the covari-

ance matrix, is decomposed into components and coefficients. If the value of a

cell of the first component (corresponding to a column in the original matrix)

is large, this signifies a large contribution to the rotation of the data along

the first component by this column of the original matrix. In a loading plot,

the first two components of the decomposition are plotted as two-dimensional
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Figure 8.10: Loading plot for MMSE data with semantic analysis.

data. If two points on the plot are close, the two columns corresponding to

the points are interpreted as strongly correlated. Two columns are strongly

negatively correlated in the projected space if they are symmetric around the

origin of the graph.

Figure 8.10 shows a loading plot of the MMSE data with semantic analysis.

The numbers from 1 to 30 correspond to one of the MMSE questions. An

observation is that the linguistic markers have much larger contributions to the

rotation than many of the original MMSE questions. For example, the point

corresponding to the number of determiners in a sentence is much further from

the origin than the points corresponding to questions 10, 13, 16, 29 and etc.

This observation is further evidence supporting the value of semantic analysis

of the MMSE data.
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8.3 Predictive Model

In addition to the exploratory analysis, the class imbalance of the data was

addressed by training 1 vs 1 models, in which each pair of diagnoses is used

to train a model discriminating between them and 1 vs all models, in which

each diagnosis is discriminated against all others. Adjusting the models with

a-priori knowledge of the class-sizes was attempted however with poor results.

A possible explanation for this is that adjusting a-priori weights balances the

error between classes which is beneficial when the large classes are recognised

well. However as can be seen from the tables in section A, the large classes

are discriminated against others poorly.

Discrimination was performed with the following classification methods:

naive Bayes, C5.0, random forest, K-nearest neighbours and support vector

machines with a radial basis kernel. The results are presented in tabular form

in section A. The data was used for discrimination in its original and in its

semantically annotated form. Both data were transformed by reducing them

to the 20 most informative variables as discussed in chapter 6, rotated along

the first 20 mRRPCA directions as discussed in chapter 5 as well as along the

first 20 components extracted with the HOMALS method. In addition, models

were trained to discriminate each class against all others.

The results are consistent with the exploratory analysis in the previous

section. Evidence for this is the performance of random forests on the mR-

RPCA transformed data and naive Bayes using transformed with HOMALS.

In both cases, the traditionally difficult to distinguish classes Norm and De-

pression are discriminated against each significantly better than with other

method combinations. However the best result in discriminating between pa-

tients at norm and patients with MCI or depression is achieved reducing the

data with entropic variable selection (as in chapter 6) and using naive Bayes

as the predictive model.

In the following three of the hypotheses are chosen for closer investigation:
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Figure 8.11: Class separation along first 2 PCs for a) PCA and b) mRRPCA
methods on MMSE data.

1. Patients at norm are distinguishable from patients with depression or

MCI.

2. Patients with AD are distinguishable from patients with VaD.

3. Patients at norm are distinguishable from patients with Parkinson’s de-

mentia or dementia with Lewy bodies.

First, the relation of patients at norm with patients with MCI or Depres-

sion are be investigated. As a first step, a linear projection is sought, using

the method proposed in chapter 5, in which the two groups of patients are

separable. Figure 8.11 depicts this attempt which proved unsuccessful. Exam-

ining the cumulative variance explained by adding more principal components

to the model (see figure 8.12), it is clear that the mRRPCA model retains

more information from the original data in fewer components. However, the

amount of explained variance is insufficient for our purposes (see section 5.2

for a detailed explanation of the graph).

The investigation is undertaken with a data set reduced with variable selec-

tion rather than rotation. This is done because in the previous chapters both

methods performed comparably well however results from unrotated data are
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Figure 8.12: Cumulative explained variance for a) PCA and b) mRRPCA
methods on MMSE data.

Female Male
Depression 0.6923077 0.3076923
Norm 0.4062500 0.5937500

Table 8.2: Conditional probabilities of sex versus depression or norm.

easier to interpret. The best results in discriminating between Norm, MCI

and Depression are achieved with entropic dimensionality reduction (table

A.30). In the following a single model was trained with this combination

which achieves the same accuracy as the one estimated with cross-validation.

The MMSE questions and the sex of the patient are treated as categorical vari-

ables. The score and the semantic annotations on the other hand are treated

as numeric variables.

First, the discrimination between Norm and Depression is investigated.

The a-priori probability for the two classes is 0.54 and 0.45 respectively, hence

the number of patients in each class is balanced. A good predictor for discrim-

0 1
Depression 0.2820513 0.7179487
Norm 0.4687500 0.5312500

Table 8.3: Conditional probabilities of score on question 12 versus depression
or norm.
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0 1
Depression 0.3076923 0.6923077
Norm 0.5625000 0.4375000

Table 8.4: Conditional probabilities of score on question 28 depression or norm.

inating between both diagnoses is the sex of a patient (see table 8.2). While

only 30% of the male patients who took the test suffer from depression, 70%

of the patients with this diagnosis are female. The MMSE score is not a good

discriminator between the diagnoses with only half a point difference between

the means of the two groups. The MMSE questions which are in this reduced

data are: 1, 7, 9, 12, 14, 16, 20, 26 and 28. Question 12 is a moderate pre-

dictor (see table 8.3) and question 28 is a more decisive predictor (see table

8.4). The two questions are relatively easy and patients are expected to answer

them correctly unless they are severly impaired. However, patients at norm

seem to get the answers wrong more often than patients diagnosed with de-

pression. On the other hand, patients at norm use more complicated sentence

structures than patients with depression. This is concluded from the larger

number of auxiliary verbs, determiners, modifiers and overall number of words

in their sentences. This trend of patients at norm answering easy questions

wrongly but using more complicated sentence structures is also apparent when

investigating the difference between patients at norm and patients diagnosed

with MCI. The only difference is that in discrimination between Norm and

MCI sex does not play a significant role.

The second hypothesis postulated is: patients with AD are distinguishable

from patients with VaD. The best achieved result is achieved on the data with

the best selected variables using a support vector machine classifier (see table

A.34). Unfortunately, the parameters of a trained SVM model are difficult to

interpret. The result is very close to the one achieved with random forests

leading to conclude that good discrimination can also be achieved with a tree

induction approach. Some of the trees induced with random forests were inves-

tigated for information transferable into clinical practice. A single model was
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trained which achieves 70% accuracy on the semantically annotated MMSE

data after variable selection.

Mean Decrease Gini
score 23.59

word count 19.51
nouns 14.84
verbs 11.70

determiners 9.33
subjects 8.65

prepositions 8.50
adverbs 7.88

sex 7.65
auxiliary 7.01
modifiers 6.87

A1 6.01
A7 5.81

A20 5.47
A28 5.46
A14 5.14
A26 5.07
A9 4.89

A12 4.59
A16 4.54

Table 8.5: Variable importance of variables for discrimination between AD and
VaD in decreased Gini coefficient.

The random forest method was parametrised to induce 500 trees from the

data which makes it difficult to extract explicit rules from the model. However,

the model does make it possible to assess which variables are most important

in the classification of an instance. The score and word count should not be

interpreted in this table as the random forest method treats these variables

as categorical although they are numerical. These variables aside, the model

strongly suggests that linguistic markers and the sex of a patient are more im-

portant in discerning between AD and VaD than the original MMSE questions

(see table 8.5).

The third hypothesis tested in this study is the ability to distinguish be-

tween patients at norm and patients with a neuro-degenerative disease such

as Parkinson’s dementia or dementia with Lewey bodies. Using the C5.0 al-
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adverbs > 0
Q12 0 Norm
Q12 1 Neurodegen

adverbs ≤ 0
Q20 1 Norm

nouns ≤ 3 Neurodegen
nouns > 3 Norm

Table 8.6: Decision tree which dinstiguishes between norm and neurodegener-
ative types of types of dementia.

gorithm, a model is constructed which separates the two groups with 60%

certainty (see table 8.9). The tree is simple simple and only has 5 nodes. The

variables used are the number of adverbs and nouns as well as the answers to

questions 12 and 20. The question 12 is relatively simple and question 20 is

considered difficult. Similarly to the discrimination between patients at norm,

MCI or depression, if a patient answers an easy question wrongly but a difficult

question correctly and if a patient uses more complicated sentence structure

with a larger number of nouns, the patient is more likely to be at norm.

Another widely used classification method using an entropic criterion is

C4.5 (Quinlan 1996). Here, an extended version, C5.0 is used to induce rules

that discriminate between groups.

With the C5.0 algorithm, the groups Norm and MCI or Depression can be

separated with 86.7% certainty. These rules are listed in table 8.7 (the confi-

dence of each rule is the number in brackets next to the predicted group). An

interesting result is that 97.66% of the model’s accuracy is achieved by dis-

tinguishing between patients who use more than 1 auxiliary verb and patients

who use 1 or no auxiliary verbs.

The second hypothesis postulated is: patients with AD are distinguishable

from patients with VaD. Applying the C5.0 algorithm on the semantically

annotated MMSE data returns 29 rules which together classify 88% of the

data correctly. However, the number of rules is fairly large and the rules

themselves depend on many variables. To reduce the complexity of the model,

the 44 variables are reduced to 10 using the algorhithm proposed in chapter
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Rule 1 Q28 1
not Norm (0.798)

Rule 2 auxiliary ≤ 1
not Norm (0.746)

Rule 3 Sex Male
Q6 1
Q14 1
Q28 0

Norm (0.889)
Rule 4 Q28 0

auxiliary > 1
Norm (0.857)

Rule 5 Sex Male
Q8 1
Q28 0

Norm (0.833)
Rule 6 Sex Female

Q6 0
Q30 1

Norm (0.800)
Rule 7 Q30 1

determiners > 2
Norm (0.750)

Table 8.7: Rules which dinstiguish between Norm and MCI or Depression with
86.7% certainty.

Rule 1 Sex Male
adverbs > 1

AD (0.900)
Rule 2 Sex Male

word count > 7
max word length > 6
adverbs > 0

AD (0.857)
Rule 3 Q3 0

determiners 0
max word length > 7
adverbs > 0

VaD (0.833)
Rule 4 determiners 0

word count > 8
max word length ≤ 7
adverbs > 0

VaD (0.833)

Table 8.8: Rules which dinstiguish between AD and VaD.
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Rule 1 score ≤ 23
Q1 1
Q7 1
Q26 1
determiners > 0

Neurodegen (0.800)
Rule 2 score ≤ 23

Q7 0
Neurodegen (0.650)

Rule 3 Q1 1
Q7 1
Q26 0

Norm (0.889)
Rule 4 score > 23

Norm (0.889)
Rule 5 Q7 1

determiners < 1
Norm (0.857)

Rule 6 Q1 0
Q7 1

Norm (0.857)

Table 8.9: Rules which dinstiguish between norm and neurodegenerative types
of types of dementia.

6. This reduces the overall accuracy to 70% but produces simpler rules which

distinguish between the two patient groups with high confidence. A selection

of the rules is listed in table 8.8. It is noteworthy that all of the rules strongly

rely on linguistic markers to distinguish betwen patients with AD and patients

with VaD.

The third hypothesis tested in this study is the ability to distinguish be-

tween patients at norm and patients with a neuro-degenerative disease such

as Parkinson’s dementia or dementia with Lewey bodies. Using the C5.0 algo-

rithm, a model can be constructed which separates the two groups with 83.9%

certainty (see table 8.9). The model consists of 6 rules using only 5 variables

from the data: questions 1, 7 and 26 as well as the total score and the number

of determiners.
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8.4 Conclusion

In this chapter the structure of the MMSE data is analysed using descriptive,

explorative and modelling methods. Although distinguishing MCI from Norm

using the MMSE is dismissed in related literature (Mitchell 2009), a model is

proposed which distinguishes between these two groups of patients with 71%

accuracy (see table A.30)

A limitation of the study is that, other than the groups of patients with AD

and VaD, the sample sizes are not large enough to ensure statistical stability of

the proposed models. However, some rules of thumb can be derived from these

seductively precise models. First, a patient who is at norm rather than with

MCI or depression will answer seemingly simple questions wrongly, but difficult

questions correctly. This patient is also likely to use more complex sentence

structure than a patient with depression or MCI. When deciding between AD

and VaD, linguistic markers are a stronger predictor than MMSE questions.



Chapter 9

Conclusions and Future Work

This chapter reviews the objectives of the reported research; the achievement

of those objectives is summarised, limitations of the results are outlined and

directions for future work are set.

The objectives of this thesis are driven by the need for an analysis of the

MMSE by using methods appropriate for the data. This need is in part due

to the lack of suitable methods. The research objectives as listed in chapter

1.2 are:

• to reduce the dimensions of the MMSE to the most relevant ones in order

to inform a predictive model by using computational methods on a data

set of MMSE results,

• to construct a model predicting a diagnosis informed by the features

extracted from the previous step by applying, comparing and combining

traditional and novel modelling methods,

• to propose a semantic analysis of the sentence writing question in the

MMSE in order to utilise information recorded in MMS examinations

which has not been considered previously.

Two general approaches to dimensionality reduction are identified: feature

extraction and variable selection (see sections 2.3 and 2.4 for a review of both

types of methods). Feature extraction methods are considered since the vast

majority of related work conducts componential analysis of MMSE data using

feature extraction methods. Variable selection methods are largely neglected

in MMSE research although their output is more intuitively interpretable than

the output of feature extraction methods.

122
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Information theory is investigated closely as a foundation of an alternative

method for both types of analysis because of its inherent suitability for discrete

data. This investigation poses several questions: there is a research gap in

methods for feature extraction from discrete data using information theory

(see section 2.3.4); methods for variable selection using information theory are

often designed with continuous data in mind and are often not proposed and

evaluated in a way which enables an informed choice of a method (see section

2.4); methods based on information theory are computationally intensive when

the data is large.

The issue of computational intensity is addressed by proposing a parallel

computation method for estimating measures from information theory. The

parallel algorithm, proposed in chapter 4, leverages parallel graphics hardware

to explore the boundaries of computational feasibility in variable selection. A

limitation of the proposed method is its requirement for discrete data with a

discrete range of values. This makes the algorithm unsuitable for continuous

data. Regardless of this limitation, the algorithm is applicable to various

research domains and is adaptable to any methods which require an estimate

of conditional mutual information (see chapter 6 for examples).

The gap in feature extraction methods using entropic criteria is addressed

by proposing two methods for PCA of discrete data were proposed: MIPCA

and mRRPCA. Evidence is provided for the superiority of the proposed meth-

ods over general state-of-the-art PCA methods and over entropic PCA methods

specifically (see chapter 5).

A limitation of the proposed PCA method as well as the variable selec-

tion method is that the metric which is considered only takes one conditional

variable into account. In chapter 4 however it is demonstrated that the par-

allel CMIM algorithm brings the largest benefit in models taking two or more

conditional variables into account.

The third objective is achieved using the linguistic analysis method pro-
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posed in chapter 7. The method allows testing more markers on a larger text

corpus than is feasible by manual annotation. Fourteen linguistic markers are

proposed which provide more information about the patient and which specif-

ically help to discriminate between the two most prevalent types of dementia,

Alzheimer’s Disease and Vascular Dementia (see also chapter 8 for evidence).

A limitation of the study is that the markers were induced from data of patients

with either AD or VaD.

The objective of proposing a predictive model is met in chapter 8. The

findings of the other chapters are consolidated into a predictive model which

distinguishes between types of dementia. Although the profile of different types

of dementia is not clearly separable, a model is proposed which distinguishes

between mental states previously thought indistinguishable solely on the basis

of the MMSE. The most notable separation of groups of patients (Mitchell

2009) is between patients at norm and patients with mild cognitive impairment

or depression. A limitation of the study is that other than the groups of

patients with AD and VaD, the sample sizes are not large enough to ensure

statistical stability of the proposed models.

The contributions of this thesis are:

• A parallel algorithm for estimating conditional mutual information.

• A feature extraction method suited for discrete data.

• An extension of a state-of-the-art variable selection method making it

applicable to larger data.

• 14 linguistic markers which are more informative about the diagnosis of

a patient than the 10 most informative MMSE questions.

• A predictive model for differentiating between types of dementia impair-

ments and most notably between patients and norm and patients with

depression or MCI.
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9.1 Future Work

The parallel algorithm proposed in chapter 4 will be utilised to its full potential

by proposing variable selection metrics with more than one conditional vari-

able. Considering that mutual information is computed by summing terms, a

starting point for such a metric could be:

I(Y ;Xi, Xj, Xk) = I(Y ;Xi) + I(Y ;Xi, Xj) + I(Y ;Xk|Xi, Xj) (9.1)

where Xk is the candidate variable. Investigations are necessary to determine

the amount of data required for an accurate estimate, and the number of

variables with which estimating this goal function is feasible.

Measures from information theory will be considered as a replacement for

the traditional maximum-likelihood estimates. The convincing results pro-

duced with mRRPCA encourage extending the method to a comprehensive

framework for analysis of multi-variate discrete data by investigating the ap-

plicability of the proposed concepts to linear regression and linear discriminant

analysis. A model for extending the method is provided by principal compo-

nent regression (PCR). In PCR, the data is projected along the principal com-

ponents, a regression model is found in the projected data and the prediction of

the regression model is projected back to the original space. This approach of

conducting analysis in the projected space and then returning it to the original

space is a promising venue for further investigation of the mRRPCA method.

In chapter 7 linguistic markers for distinguishing between AD and VaD

are identified. Further investigation is necessary to understand the informa-

tion such indications represent about patients when no prior information on

their potential impairment is available. One of the identified markers for dis-

tinguishing diagnoses is the number of adjectives in a sentence. This marker

has not been previously reported as a discriminator between AD and VaD.
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Investigation is necessary to determine whether the significance of the marker

is due to the specific sample of the population or whether a change in the use

of adjectives is typical for patients with AD.

Chapter 8 discusses the MMSE data using a descriptive as well as ex-

ploratory approach. The findings of these two steps are used to formulate

hypotheses for constructing a predictive model. The predictive model is en-

riched with information from analysing a qualitative component of the MMSE

in a quantitative manner. In future work the process of analysis used in de-

vising a predictive model will be investigated for its transferrability to other

domains where data similar to the MMSE is studied. Typically such data is

found in psychology, sociology, but also in economy and politology.
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