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Abstract

This letter deals with the global exponential stability of discrete-time bidirectional asso-
ciative memory (BAM) neural networks with variable delays. Using a Lyapunov functional,
and linear matrix inequality techniques (LMI), we derive a new delay-dependent exponential
stability criterion for BAM neural networks with variable delays. As this criterion has no
extra constraints on the variable delay functions, it can be applied to quite general BAM
neural networks with a broad range of time delay functions. It is also easy to use in practice.
An example is provided to illustrate the theoretical development.

Keywords: BAM neural network; Discrete-time; Global exponential stability; Variable
delay; Linear matrix inequality (LMI); Delay-dependent.

1 Introduction

The dynamics of neural networks have been extensively investigated. The BAM neural network
model, an extension of the unidirectional autoassociator of Hopfield [1], was first introduced by
Kosko [2, 3]. A BAM neural network is composed of neurons arranged in two layers: the X-
and Y -layers. The neurons in one layer are fully interconnected to the neurons in the other layer
and have associated connection weights. Through iterations of forward and backward information
flows between the two layers, the network performs a two-way associative search for stored bipolar
vector pairs, and generalizes the single-layer autoassociative Hebbian correlation to a two-layer
pattern matched heteroassociative circuit. BAM neural networks have potential applications in
many fields such as artificial intelligence. Many papers have studied the stability of this type
of neural networks model (see, for example, [4]—[12]). The stability criteria for continuous-time
BAM neural network models obtained in [13]–[17] are explicit and easily verified in practice.
However, these stability criteria only take into account the absolute values of the entries in the
connection matrices, neglecting their signs, and thus the differences between neuronal excitatory
and inhibitory effects are ignored.

Recently, many papers have focused on the dynamics of continuous-time BAM neural networks.
Although several papers (e.g. [16],[18]–[23]) have studied the dynamics of certain discrete-time
neural networks, few papers have studied the stability of discrete-time BAM neural networks.
Results concerning the exponential stability of discrete-time BAM neural networks with variable
delays are fewer. However, in numerical simulations and practical implementations continuous-
time neural networks, discretization is necessary. We note that in practice, the dynamics of
discrete-time neural networks may be quite different from those of continuous-time ones. In
particular, the stability criteria established for continuous-time BAM neural networks model are
not necessarily applicable to discrete-time systems. Therefore, the dynamics of discrete-time neural
networks are of both theoretical and practical importance.
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Recently, Wang and Zou [24] employed various fundamental mathematical techniques instead
of the bifurcation method to investigate the existence, stability and number of stable periodic
solutions for discrete-time BAM neural networks with constant delays. Applying Lyapunov func-
tionals and Halanay-type inequalities, Mohamad [16] derived delay-independent sufficient condi-
tions under which continuous-time BAM neural networks converge exponentially to the equilibria
associated with temporally uniform external inputs to the networks. Discrete-time analogues of
continuous-time BAM neural networks were formulated and their dynamical characteristics stud-
ied in [16]. However, the exponential convergence sufficiency conditions derived in [16] are only
applicable to BAM neural networks with constant delays.

Using M -matrix methods, Liang and Cao [25] studied the exponential stability of continuous-
time BAM with constant delays and its discrete analogue. Liang et al. [26] also studied the
dynamics of discrete-time BAM neural networks with variable time delays k(n) and l(n) in the
system model (see later for definitions), where n represents discrete time. They obtained various
delay-dependent and delay-independent stability criteria. However, their delay-dependent criteria
are based on unreasonably severe constraints on the delay functions: 1 < k(n+ 1) < 1 + k(n) and
1 < l(n+ 1) < 1 + l(n). Most delay functions in practice do not satisfy such severe constraints.

The purpose of this paper is to further consider the global exponential stability of discrete-
time BAM neural networks. Our results avoid the constraints on delay functions in [26]. Using a
new Lyapunov functional, and techniques involving linear matrix inequalities (LMIs), we are able
to give a new delay-dependent stability criterion for BAM neural networks with variable delays.
Since our result imposes few constraints on the system, it can be applied to more general BAM
neural networks with a broad range of time delay functions. Moreover, our criterion is easy to
check and apply in practice, and is thus of significance and interest both to application fields, and
the design of neural networks.

The following notation is used: λmax(Q) and λmin(Q) denote the maximum and minimum
eigenvalues of a symmetric matrix Q. QT and Q−1 denote its transpose and inverse. Q > 0 (or
Q ≥ 0) means that Q is a real, symmetric and positive definite (or semi-positive definite) matrix.
‖Q‖ = (λmax(Q

TQ))1/2. We write N(−k, 0) for {−k,−k + 1, . . . , 1, 0}, N(1,m) for {1, . . . ,m},
and N(k) for {k, k+ 1, . . . }. We define x = (x1, x2, . . . , xm)T ∈ Rm, and ‖x‖ = (

∑m
i=1 x

2
i )

1/2. We
use the notation kmin = min{k(n)}, kmax = max{k(n)}, lmin = min{l(n)}, and lmax = max{l(n)}.

2 System description

Consider the following discrete-time BAM neural network with time-varying delays described by
a set of non-linear difference equations

xi(n+ 1) = aixi(n) +
m
∑

j=1

cijfj(yj(n− k(n))) + Ii (1)

yj(n+ 1) = bjyj(n) +
m
∑

i=1

djigi(xi(n− l(n))) + Jj

where i, j ∈ N(1,m). xi(n) and yj(n) are the states of the ith neuron from the neural field FX and
the jth neuron from the neural field FY at time n, respectively, where x(n) = (x1(n), . . . , xm(n))T

and y(n) = (y1(n), . . . , ym(n))T . ai, bj ∈ (0, 1) describe the stability of internal neuron processes
on the X-layer and the Y -layer, respectively. fj(·) and gi(·) denote the activation functions of
the jth neuron from the neural field FY and the ith neuron from the neural field FX , respectively.
The connection weights cij and dji are real numbers, which denote the strengths of connectivity
between the ith neuron from the neural field FX and the jth neuron from the neural field FY . k(n)
and l(n) represent time delays with nonnegative integer values, bounded by kmin ≤ k(n) ≤ kmax

and lmin ≤ l(n) ≤ lmax. Ii and Jj denote the external constant inputs from outside the network
acting on the ith neuron from the neural field FX and the jth neuron from the neural field FY ,
respectively.
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The initial conditions associated with the BAM neural network given in Eq. (1) are

xi(s) = φi1(s), yj(s) = φj2(s), s ∈ N(−k∗, 0), (2)

where k∗ = max{kmax, lmax}.

Definition 1. The vector

(

x∗

y∗

)

= (x∗1, x
∗

2, . . . , x
∗

m, y
∗

1 , y
∗

2 , . . . , y
∗

m)T is said to be an equilibrium

point of the BAM neural network given in Eq. (1) if it satisfies

x∗i = aix
∗

i +
m
∑

j=1

cijfj(y
∗

j ) + Ii, (3)

y∗j = bjy
∗

j +
m
∑

i=1

djigi(x
∗

i ) + Jj .

Definition 2. The BAM neural network given in Eq. (1) is said to be exponentially stable if for

the equilibrium point

(

x∗

y∗

)

there exist scalars r > 1 and θ > 1 such that

‖x(n) − x∗‖2 + ‖y(n) − y∗‖2 ≤ θr−n

(

sup
s∈N(−lmax,0)

‖x(s) − x∗‖2 + sup
s∈N(−kmax,0)

‖y(s) − y∗)‖2

)

.

Through this paper, we assume:

Assumption 1. The non-linear activation functions fj(·), gi(·) are bounded and globally Lipschitz,
i.e. they satisfy

|fj(u)| ≤ Sj1, |fj(u) − fj(v)| ≤Mj |u− v|,

|gi(u)| ≤ Si2, |gi(u) − gi(v)| ≤ Li|u− v|,

for i, j ∈ N(1,m) and u, v ∈ R where Sj1, Si2, Mj, and Li are positive constants.

Assumption 1 ensures that the BAM neural network given in Eq. (1) has an equilibrium point
(

x∗

y∗

)

.

Changing notation for simplicity, let ui(n) = xi(n) − x∗i , vj(n) = yj(n) − y∗j . We can rewrite
Eq. (1) as

u(n+ 1) = Au(n) + Cϕ(v(n− k(n))), (4)

v(n+ 1) = Bv(n) +Dψ(u(n− l(n))),

where u(n) = (u1(n), . . . , um(n))T , v(n) = (v1(n), . . . , vm(n))T , C = (cij)m×m, D = (dij)m×m,
A = diag(a1, . . . , am) , B = diag(b1, . . . , bm), ϕ(v(n)) = (ϕ1(v1(n)), . . . , ϕm(vm(n)))T , ϕj(vj(n)) =
fj(vj(n)+y∗j )−fj(y

∗

j ), ψ(u(n)) = (ψ1(u1(n)), . . . , ψm(um(n)))T , and ψi(ui(n)) = gi(ui(n)+x∗i )−
gi(x

∗

i ).
For s ∈ R, Assumption 1 implies that

|ϕj(s)| ≤ 2Sj1, |ϕj(s)| ≤Mj |s|;

|ψi(s)| ≤ 2Si2, |ψi(s)| ≤ Li|s|. (5)

Therefore, global exponential stability of the BAM neural network given in Eq. (1) is equivalent
to global exponential stability at the origin of the BAM neural network given in Eq. (4).

The problem to be addressed in this paper is to develop a new delay-dependent condition
such that the discrete-time BAM neural network given in Eq. (1) is globally exponentially stable.
More specifically, a new delay-dependent stability criterion for BAM neural networks with variable
delays will be given. We avoid the severe constraints imposed on the delay functions necessary
in [26] and extend certain results in [16] to the case with time-varying delays.
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3 Main result

This section considers the global exponential stability of the discrete-time delayed BAM neural
network given in Eq. (1). We state the result as a theorem:

Theorem 1. Under Assumption 1, the origin of Eq. (4) is globally exponentially stable if a number
r > 1, positive definite matrices P , Q, and positive diagonal matrices Σ1, Σ2 exist such that

[

rAPA− P + F rAPC
rCTPA rCTPC − r−kmaxΣ1

]

< 0, (6)

[

rBQB −Q+G rBQD
rDTQB rDTQD − r−lmaxΣ2

]

< 0, (7)

and furthermore,

‖u(n)‖2 + ‖v(n)‖2 ≤ θr−n

(

sup
s∈N(−lmax,0)

‖u(s)‖2 + sup
s∈N(−kmax,0)

‖v(s)‖2

)

(8)

where θ = d/min{λmin(P ), λmin(Q)}, d = max{λmax(P )+(lmax−lmin+1)δ1λmax(Σ2)‖L‖
2, λmax(Q)+

(kmax − kmin + 1)δ2λmax(Σ1)‖M‖2}, δ1 = (1 − r−lmax)/(r − 1), δ2 = (1 − r−kmax)/(r − 1),
F = (lmax − lmin + 1)LΣ2L, G = (kmax − kmin + 1)MΣ1M , L = diag(L1, . . . , Lm), and M =
diag(M1, . . . ,Mm).

The proof of Theorem 1 is given in the Appendix.
Theorem 1 in this paper is simpler than the criterion arising from Theorem 1 in [26] which

contains four separate LMIs which must be satisfied.

4 Discretization

In this section, we propose a method for formulating a discrete-time analogue of continuous-time
BAM neural networks, and analyze the dynamical characteristics of continuous-time BAM neural
networks using Theorem 1 above.

A class of continuous-time BAM neural networks with time delays is described by the following
set of differential equations:

ẋi(t) = −ãixi(t) +
m
∑

j=1

c̃ijfj(yj(t− τ(t))) + Ĩi, (9)

ẏj(t) = −b̃jyj(t) +
m
∑

i=1

d̃jigi(xi(t− σ(t))) + J̃j .

where xi(t) and yj(t) are the states of the ith neuron from the neural field FX and the jth

neuron from the neural field FY at time t, respectively. We assume the activation functions fj(·),

gi(·) satisfy Assumption 1. Ĩi and J̃j denote external contant inputs to the ith neuron from the

neural field FX and the jth neuron from the neural field FY , respectively. ãi > 0 and b̃j > 0
denote the rates with which these neurons reset their potentials to the resting state in isolation
when disconnected from the network and external inputs, respectively. c̃ij and d̃ji are constants
denoting connection strengths. Time delays τ(t) and σ(t) are nonnegative functions, satisfying
0 ≤ τ(t) < τ and 0 ≤ σ(t) < σ; τ and σ are positive constants.

We reformulate the network in Eq. (9) using the following approximation:

ẋi(t) = −ãixi(t) +
m
∑

j=1

c̃ijfj(yj([t/h]h− [τ(t)/h]h)) + Ĩi, (10)

ẏj(t) = −b̃jyj(t) +
m
∑

i=1

d̃jigi(xi([t/h]h− [σ(t)/h]h)) + J̃j ,
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where i, j ∈ N(1,m). h is a fixed positive real number denoting a uniform arbitrary step-size and
[r] denotes the integer part of the real number r. t ∈ [nh, (n + 1)h); n is a non-negative integer.
For convenience, we use the notation pi(n) and qj(n) to stand for xi(nh) and yj(nh), respectively.
Clearly, for t ∈ [nh, (n+1)h), we have [t/h] = n. Let k(n) = [τ(t)/h], l(n) = [σ(t)/h], kmax = [τ/h],
lmax = [σ/h], k∗ = max{kmax, lmax}. With these preparations we may rewrite the BMA neural
network in Eq. (10) as

ẋi(t) = −ãixi(t) +
m
∑

j=1

c̃ijfj(qj(n− k(n))) + Ĩi, (11)

ẏj(t) = −b̃jyj(t) +
m
∑

i=1

d̃jigi(pi(n− l(n))) + J̃j .

Integrating both sides of Eq. (11) over [nh, t) where nh ≤ t < (n+ 1)h gives

xi(t) = eãi(nh−t)pi(n) + (1 − eãi(nh−t)){
m
∑

j=1

c̃ijfj(qj(n− k(n))) + Ĩi}/ãi, (12)

yj(t) = eb̃j(nh−t)qj(n) + (1 − eb̃j(nh−t)){
m
∑

i=1

d̃jigi(pi(n− l(n))) + J̃j}/b̃j .

Let t→ (n+ 1)h in Eq. (12), giving

pi(n+ 1) = e−ãihpi(n) + (1 − e−ãih){
m
∑

j=1

c̃ijfj(qj(n− k(n))) + Ĩi}/ãi, (13)

qj(n+ 1) = e−b̃jhqj(n) + (1 − e−b̃jh){
m
∑

i=1

d̃jigi(pi(n− l(n))) + J̃j}/b̃j .

One can show that the discrete-time analogue Eq. (13) converges to the continuous-time BAM
neural networks Eq. (9) when h→ 0+. Let

ai = e−ãih, cij = 1−e−ãih

ãi
c̃ij , Ii =

1 − e−ãih

ãi
Ĩi,

bj = e−b̃jh, dji = 1−e−b̃jh

b̃j

d̃ji, Jj =
1 − e−b̃jh

b̃j
J̃j .

When the step-size h is small enough, the question of stability of Eq. (9) can be reduced to the
stability of the following discrete-time BAM neural network

pi(n+ 1) = aipi(n) +
m
∑

j=1

cijfj(qj(n− k(n))) + Ii,

qj(n+ 1) = bjqj(n) +
m
∑

i=1

djigi(pi(n− l(n))) + Jj .

Therefore, we can use Theorem 1 above to analyze the the global exponential stability of continuous-
time BAM neural networks with variable delays. In fact, if the discrete-time analogue of a
continuous-time BAM neural network is globally exponentially stable with a small enough uni-
form arbitrary step-size h, then the continuous-time BAM neural network is globally exponentially
stable. But we should note that the discrete-time analogue in this paper may not preserve the
convergence characteristics of the associated continuous-time BAM neural networks without re-
striction on the size of the uniform discretization step.
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Remark 1. Mohamad [16] and Liang and Cao [25] studied the globally exponential stability of
time-delayed BAM neural networks in the case where the time delays τ(t) and σ(t) are constants.
Mohamad [16] proved that if ãi > Li

∑m
j=1 |d̃ji| and b̃j > Mj

∑m
i=1 |c̃ij |, the continuous-time BAM

neural network in Eq. (9) and its discrete analogue are globally exponentially stable. Liang and
Cao [25] obtained other global exponential stability criteria for the continuous-time BAM neural
network in Eq. (9) and its discrete analogue. However, all stability criteria given in [16, 25] are
delay-independent, and furthermore depend on the absolute values of the connection weights c̃ij
and d̃ji, i.e. |c̃ij | and |d̃ji|, instead of c̃ij and d̃ji. Since these stability criteria neglect the signs
of the entries in the connection matrices, differences between neuronal excitatory and inhibitory
effects are ignored, as is also the case in [27]–[30]. Furthermore, the delays in [16, 25] are both
time-invariant. In contrast, the stability criterion in our paper takes into account the signs of
the entries in the connection matrices, and furthermore is applicable to discrete-time BAM neural
networks with time-varying delays.

Remark 2. Using a similar discretizing method to that in [18], Liang et al [26] earlier discretized
the continuous-time BAM neural network in Eq. (9) into the discrete-time BAM neural network
in Eq. (1) with delay functions k(n) and l(n). They obtained various delay-dependent and delay-
independent stability criteria for the discrete-time BAM neural network in Eq. (1). However,
their delay-dependent criteria are based on unreasonably severe constraints on the delay functions,
requiring 1 < k(n+1) < 1+ k(n) and 1 < l(n+1) < 1+ l(n). Most delay functions in practice do
not satisfy such severe constraints. The delay-dependent stability criterion in our paper removes
such constraints. Based on a new Lyapunov functional and techniques based on inequalities, our
new delay-dependent stability criterion for discrete-time BAM neural networks with variable delays
is given in term of LMIs. Since our result imposes few constraints on the system, it can be applied
to a much more general class of BAM neural networks with a broad range of time delay functions.

5 An illustrative example

To illustrate how our criterion can be applied to more general delayed BAM neural networks than
Theorem 1 in [26], we discuss a BAM neural network with the same coefficients as those in [26]
but different delay functions.

Example 1. Consider the following delayed BAM neural network

x1(n+ 1) =
1

5
x1(n) +

1

8
f(y2(n− k(n))),

x2(n+ 1) =
1

5
x2(n) +

1

8
f(y1(n− k(n))),

y1(n+ 1) =
1

10
y1(n) −

1

20
f(x1(n− l(n))),

y2(n+ 1) =
1

10
y2(n) −

1

20
f(x2(n− l(n))).

For this example, let k(n) ≡ 2, l(n) = 4 + 2(−1)n, and f(x) = (ex − e−x)/(ex + e−x). We have

A =

[

1/5 0
0 1/5

]

, B =

[

1/10 0
0 1/10

]

, C =

[

0 1/8
1/8 0

]

, D =

[

−1/20 0
0 −1/20

]

,

and L = M = I2 where I2 is a 2D unit matrix. Obviously, the delay function l(n) in this
example does not satisfy the condition: 1 < l(n + 1) < 1 + l(n) required by Theorem 1 in [26]—
for example, l(3) = 2, while l(4) = 6. Thus, the delay-dependent stability criterion in [26] can
not be applied to this simple example. Now, lmax = 6, lmin = 2, kmax = 2, kmin = 2. By
applying Theorem 1 above, if we take r = 2, we can use the LMI Toolbox [31] to show that
the linear matrix inequalities (6) and (7) have solutions: P = diag(259.1180, 259.1180), Q =
diag(88.9788, 88.9788), Σ1 = diag(66.0018, 66.0018), Σ2 = diag(39.2799, 39.2799). Our Theorem 1
shows that the equilibrium point of this BAM neural network is exponentially stable.
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6 Conclusion

This paper has considered the global exponential stability of discrete-time BAM neural networks
with variable delays. A delay-dependent exponential stability criterion has been derived by means
of a Lyapunov functional and inequality techniques. Unrealistic constraints on the delay functions
assumed in [26] have been removed. Our result can be applied to a more general class of BAM
neural networks with a broad range of time delay functions. Furthermore, our sufficient condition
for global exponential stability is easily checked in practice.
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Appendix

This appendix gives a proof of Theorem 1. The proof is divided into three steps.

Step 1: Construct a discrete Lyapunov function V (n).

For the real number r > 1, define the discrete Lyapunov function

V (n) = V1(n) + V2(n) + V3(n) + V4(n) + V5(n) + V6(n), where (14)

V1(n) = rnuT (n)Pu(n),

V2(n) =
n−1
∑

s=n−k(n)

rsϕT (v(s))Σ1ϕ(v(s)),

V3(n) =

−kmin+1
∑

j=−kmax+2

n−1
∑

s=n+j−1

rsϕT (v(s))Σ1ϕ(v(s)),

V4(n) = rnvT (n)Qv(n),

V5(n) =
n−1
∑

s=n−l(n)

rsψT (u(s))Σ2ψ(u(s)),

V6(n) =

−lmin+1
∑

i=−lmax+2

n−1
∑

s=n+i−1

rsψT (u(s))Σ2ψ(u(s));

here P , Q are positive definite matrices, and Σ1, Σ2 are positive diagonal matrices.
Using Lyapunov’s Direct Method, we can investigate the qualitative nature of the solutions of

difference equations (4) without actually determining the solutions themselves. In order to analyze
the globally exponential stability of the BAM neural network, we calculate differences ∆V (n) of
the Lyapunov function V (n) along the trajectories of the BAM neural network given in Eq. (4).
From Eq. (14), we have

∆V (n) = ∆V1(n) + ∆V2(n) + ∆V3(n) + ∆V4(n) + ∆V5(n) + ∆V6(n).
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Step 2: Prove ∆V (n) ≤ 0.

Since A is a diagonal matrix, AT = A. First consider ∆V1(n), ∆V2(n), and ∆V3.

∆V1(n) = rn+1uT (n+ 1)Pu(n+ 1) − rnuT (n)Pu(n)

= rn+1[uT (n)APAu(n) + 2uT (n)APCϕ(v(n− k(n)))

+ϕT (v(n− k(n)))CTPCϕ(v(n− k(n)))] − rnuT (n)Pu(n). (15)

Noting that kmin ≤ k(n) ≤ kmax, we have

n− k(n) + 1 ≤ n+ 1 − kmin,

n+ 1 − k(n+ 1) ≥ n+ 1 − kmax.

∆V2(n) =
n
∑

s=n+1−k(n+1)

rsϕT (v(s))Σ1ϕ(v(s)) −
n−1
∑

s=n−k(n)

rsϕT (v(s))Σ1ϕ(v(s))

= rnϕT (v(n))Σ1ϕ(v(n)) − rn−k(n)ϕT (v(n− k(n)))Σ1ϕ(v(n− k(n)))

+
n−1
∑

s=n+1−kmin

rsϕT (v(s))Σ1ϕ(v(s)) +

n−kmin
∑

s=n+1−k(n+1)

rsϕT (v(s))Σ1ϕ(v(s))

−
n−1
∑

s=n−k(n)+1

rsϕT (v(s))Σ1ϕ(v(s))

≤ rnϕT (v(n))Σ1ϕ(v(n)) − rn−k(n)ϕT (v(n− k(n)))Σ1ϕ(v(n− k(n)))

+
n−1
∑

s=n+1−kmin

rsϕT (v(s))Σ1ϕ(v(s)) +

n−kmin
∑

s=n+1−k(n+1)

rsϕT (v(s))Σ1ϕ(v(s))

−
n−1
∑

s=n−kmin+1

rsϕT (v(s))Σ1ϕ(v(s))

= rnϕT (v(n))Σ1ϕ(v(n)) − rn−k(n)ϕT (v(n− k(n)))Σ1ϕ(v(n− k(n)))

+

n−kmin
∑

s=n+1−k(n+1)

rsϕT (v(s))Σ1ϕ(v(s))

≤ rnϕT (v(n))Σ1ϕ(v(n)) − rn−k(n)ϕT (v(n− k(n)))Σ1ϕ(v(n− k(n)))

+

n−kmin
∑

s=n+1−kmax

rsϕT (v(s))Σ1ϕ(v(s)). (16)

∆V3(n) =

−kmin+1
∑

j=−kmax+2

rnϕT (v(n))Σ1ϕ(v(n)) −

−kmin+1
∑

j=−kmax+2

rn+j−1ϕT (v(n+ j − 1))Σ1ϕ(v(n+ j − 1))

= (kmax − kmin)rnϕT (v(n))Σ1ϕ(v(n)) −
n−kmin
∑

s=n+1−kmax

rsϕT (v(s))Σ1ϕ(v(s)). (17)
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Combining Inequality (16) with Eqs. (15) and (17) yields

∆V1(n) + ∆V2(n) + ∆V3(n) ≤ rn+1[uT (n)APAu(n) + 2uT (n)APCϕ(v(n− k(n)))

+ϕT (v(n− k(n)))CTPCϕ(v(n− k(n)))] − rnuT (n)Pu(n)

+(kmax − kmin + 1)rnϕT (v(n))Σ1ϕ(v(n))

−rn−k(n)ϕT (v(n− k(n)))Σ1ϕ(v(n− k(n))). (18)

Since V4(n), V5(n), V6(n) have similar construction to V1(n), V2(n), V3(n) respectively, we can
readily show that

∆V4(n) + ∆V5(n) + ∆V6(n) ≤ rn+1[vT (n)BQBv(n) + 2vT (n)BQDψ(u(n− l(n)))

+ψT (u(n− l(n)))DTQDψ(u(n− l(n))] − rnvT (n)Qv(n)

+(lmax − lmin + 1)rnψT (u(n))Σ2ψ(u(n))

−rn−l(n)ψT (u(n− l(n)))Σ2ψ(u(n− l(n))). (19)

Combining Inequality (18) with Inequality (19) implies that

∆V (n) ≤ uT (n)[rn+1APA− rnP ]u(n) + 2rn+1uT (n)APCϕ(v(n− k(n)))

+ϕT (v(n− k(n)))[rn+1CTPC − rn−k(n)Σ1]ϕ(v(n− k(n)))

+(kmax − kmin + 1)rnϕT (v(n))Σ1ϕ(v(n))

+vT (n)[rn+1BQB − rnQ]v(n) + 2rn+1vT (n)BQDψ(u(n− l(n)))

+ψT (u(n− l(n)))[rn+1DTQD − rn−l(n)Σ2]ψ(u(n− l(n)))

+(lmax − lmin + 1)rnψT (u(n))Σ2ψ(u(n)).

Since Σ1 and Σ2 are diagonal matrices, from Inequality (5), we have

ϕT (v(n))Σ1ϕ(v(n)) ≤ vT (n)MΣ1Mv(n),

ψT (u(n))Σ2ψ(u(n)) ≤ uT (n)LΣ2Lu(n).

Therefore

∆V (n) ≤ uT (n)[rn+1APA− rnP ]u(n) + 2rn+1uT (n)APCϕ(v(n− k(n)))

+ϕT (v(n− k(n)))[rn+1CTPC − rn−kmaxΣ1]ϕ(v(n− k(n)))

+(kmax − kmin + 1)rnvT (n)MΣ1Mv(n)

+vT (n)[rn+1BQB − rnQ]v(n) + 2rn+1vT (n)BQDψ(u(n− l(n)))

+ψT (u(n− l(n)))[rn+1DTQD − rn−lmaxΣ2]ψ(u(n− l(n)))

+(lmax − lmin + 1)rnuT (n)LΣ2Lu(n)

= rnξ(n)

[

rAPA− P + F rAPC
rCTPA rCTPC − r−kmaxΣ1

]

ξ(n)T +

rnη(n)

[

rBQB −Q+G rBQD
rDTQB rDTQD − r−lmaxΣ2

]

η(n)T , (20)

where ξ(n) = [uT (n), ϕT (v(n− k(n)))]T , η(n) = [vT (n), ψT (u(n− l(n)))]T .
From Inequalities (6), (7) and (20), we have

∆V (n) ≤ 0.

Hence,
V (n) ≤ V (0). (21)
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Step 3: Prove the origin is globally exponentially stable.

First, we estimate the size of V (0). From Eq. (14) and Inequality (5), we have

V (0) ≤ uT (0)Pu(0) + (kmax − kmin + 1)
−1
∑

s=−kmax

rsϕT (v(s))Σ1ϕ(v(s))

+vT (0)Qv(0) + (lmax − lmin + 1)
−1
∑

s=−lmax

rsψT (u(s))Σ2ψ(u(s))

≤ uT (0)Pu(0) + (kmax − kmin + 1)λmax(Σ1)‖M‖2
−1
∑

s=−kmax

rsv(s)T v(s)

+vT (0)Qv(0) + (lmax − lmin + 1)λmax(Σ2)‖L‖
2

−1
∑

s=−lmax

rsu(s)Tu(s)

≤ [λmax(P ) + (lmax − lmin + 1)δ1λmax(Σ2)‖L‖
2] sup

s∈N(−lmax,0)

‖u(s)‖2

+[λmax(Q) + (kmax − kmin + 1)δ2λmax(Σ1)‖M‖2] sup
s∈N(−kmax,0)

‖v(s)‖2

≤ d

[

sup
s∈N(−lmax,0)

‖u(s)‖2 + sup
s∈N(−kmax,0)

‖v(s)‖2

]

. (22)

Next, it follows from Inequalities (21) and (22) that

V (n) ≤ d

[

sup
s∈N(−lmax,0)

‖u(s)‖2 + sup
s∈N(−kmax,0)

‖v(s)‖2

]

. (23)

Again, from Eq. (14), we have

V (n) ≥ V1(n) + V4(n)

= rnuT (n)Pu(n) + rnvT (n)Qv(n). (24)

So

V (n) ≥ rn min{λmin(P ), λmin(Q)}[‖u(n)‖2 + ‖v(n)‖2]. (25)

Combining Inequalities (23) and (25) gives Inequality (8), completing the proof.
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