
The Visual Computer manuscript No.
(will be inserted by the editor)

Yu-Kun Lai · Shi-Min Hu · Ralph R. Martin

Surface Mosaics

Abstract This paper considers the problem of placing mo-
saic tiles on a surface to produce asurface mosaic. We as-
sume that the user specifies a mesh model, the size of the
tiles and the amount of grout, and optionally, a few con-
trol vectors at key locations on the surface indicating the
preferred tile orientation at these points. From these inputs,
we place equal-sized rectangular tiles over the mesh such
as to almost cover it, with controlled orientation. The align-
ment of the tiles follows a vector field which is interpolated
over the surface from the control vectors, and also forced
into alignment with any sharp creases, open boundaries, and
boundaries between regions of different colors. Our method
efficiently solves the problem by posing it as one of globally
optimizing a spring-like energy in the Manhattan metric, us-
ing overlapping local parameterizations. We demonstrate the
effectiveness of our algorithm with various examples.

Keywords surface mosaics, particle optimization, Manhat-
tan metric, overlapping local parameterizations

1 Introduction

Mosaics are an art form with a long history: many examples
are known from Graeco-Roman times. The idea is simple:
an image is formed using small colored square tiles which
almost touch, so as to cover some area. Typically, this re-
gion is planar, and the tiles are oriented to emphasise the
distinction between important objects in the foreground, and
the background of the image.

In other cases, the underlying surface may be curved,
e.g. a sculpture. In this case, even if all tiles are of the same

Yu-Kun Lai
Tsinghua University, Beijing, China
E-mail: laiyk03@mails.tsinghua.edu.cn

Shi-Min Hu
Tsinghua University, Beijing, China
E-mail: shimin@tsinghua.edu.cn

Ralph R. Martin
Cardiff University, Cardiff, UK
E-mail: ralph@cs.cf.ac.uk

color, careful placement of tiles is now necessary because of
the curvature of the surface. Clearly, this problem is similar
to the well-studied one of covering a surface with an orthog-
onal parameter net. However, it is also different: the size and
shape of the tiles isconstant, and, in addition, smallgapsare
allowed between them. Furthermore, it is desirable that lo-
cally, the tiling should follow ‘natural’ preferred directions
in the surface. These may be determined by aesthetic choices
made by an artist, or may e.g. be inferred from the principal
directions, from creases, or from color boundaries. Earlier
papers have consideredplanar mosaics, but as far as we are
aware, no-one has yet considered algorithmic production of
surfacemosaics.

1.1 Problem Statement

We assume the input given is: a mesh modelM to be cov-
ered with tiles, possibly with open boundary; the fixed size
of the tiles, which may be squares or rectangles:lx × ly; a
factor giving the fractional areag of the surface to be filled
by grout between the tiles (we typically useg = 0.1); and a
small number of vectors on the surface indicating the pre-
ferred orientation of the tiles at key locations on the surface.
Alternatively, instead of specifying the tile size and grout
factor, the user may specify the desired numberN of tiles
and the aspect ratioη of the tiles; we may convert between
these quantities usingN = (1−g)A/lxly, lx = η ly whereA
is the surface area. We wish to findN mesh sites at which to
placeN tiles, so that all tiles are disjoint, and cover the input
surface, less the amount left for grout. In addition to fol-
lowing user-specified orientation vectors, the method should
automatically align the tiles with anyfeature linesin the sur-
face, corresponding to sharp creases, open boundaries, or
color boundaries. For models without image texture infor-
mation available, the color and other properties of the tiles
can be specified by the user; typically a single value will be
assigned to a connected component separated by features.
For models with image texture available, the color of each
tile could also be decided by averaging color values of the

2 Yu-Kun Lai et al.

Fig. 1 Steps in surface mosaic generation: (a) control vectors andfeatures, (b) vector field and initialization, (c) final result, (d) close-up.

part of the surface covered by the tile, producing richer re-
sults.

The given geometric problem cannot be solved by sim-
ply computing a parameterization and putting one fixed-size
tile at each location of a regular parametric grid, because,
for objects of arbitrary genus, equiareal orthogonal (i.e.iso-
metric) global parameterizations do not in general exist. We
solve the problem by posing it as a global optimization prob-
lem based on a spring-like energy in the Manhattan met-
ric. Using the Manhattan metric naturally tends to give tile
centers on a rectangular grid, as desired—using a Euclidean
metric would lead to a hexagonal grid instead, and would
be suitable for placing hexagonal tiles. However, we prefer
square (or rectangular) tiles because (i) square tiles are more
aesthetically pleasing, and (ii) are usually used in traditional
mosaics; furthermore (iii) square tiles can be placed natu-
rally with edges aligned along sharp curves or other bound-
aries, and hence can better draw attention to features and
global geometric shapes.

To efficiently compute distances in the Manhattan met-
ric, which needs to be done frequently, we use overlapping
local parameterizations and local charts. This simplifies the
distance computation and provides significantly improved
performance and robustness compared to simply tracing over
the mesh.

Related work is discussed in Section 2. Section 3 out-
lines our algorithm. The optimization method used for tile
placement, and handling of singularities and feature lines,
are discussed in Sections 4 and 5. Experimental results are
presented in Section 6 and conclusions are given in Sec-
tion 7.

2 Related Work

Various earlier work has considered production of mosaics
for computer graphics; in some cases the definition of a mo-
saic is more general than the one we gave earlier. Kaplan [9]
solves a particular kind of mosaicing problem calledEscher-
ization, in which a perfect tiling of the plane is achieved
using repeating shapes with complicated boundaries. Given
some input image, of say a head, it is distorted somewhat
to produce the nearest such shape which can tile the plane.

Other work, however [5,8], uses equal-sized tiles, with ap-
propriate orientation, to emphasise feature edges in some
input image, with the aim of producing similar results to
real planar mosaics; they can also generalise the shape of
the tiles.

Photomosaicing [6,15] is another related technique. It
forms a target image using many small image tiles taken
from a library. However, the tiles are always placed in a regu-
lar way, with fixed orientation. Kim [10] extends this idea to
placement of image tiles to fill a region of arbitrary shape;
for good results, however, small deformations of the tiles
are necessary. Klein [11] extends photomosaics to videos.
An input video is decomposed into a collection of small
video tiles taken from a library; efficient retrieval of opti-
mized video samples from the library is of most importance
in this problem.

Work with more similar aims to ours concerns feature-
aligned quad-dominated remeshing. Alliez [1] shows how to
remesh a mesh model using quads locally aligned with the
principal directions on the surface. Marinov [12] improves
the approach by working directly on the 3D surface, so that
models of arbitrary topology can be handled. The periodic
global parameterization proposed in [14] can be used to gen-
erate a quad-dominated remeshing aligned with a specified
vector field (e.g. the principal directions). By using a global
parameterization, this approach can produce a more even
placement of quads than greedy tracing approaches. Other
parameterization methods [7], and methods for texture syn-
thesis on surfaces [18,19] are also relevant.

Clearly, the requirement to tile a mesh model rather than
a planar region leads to a different problem than is addressed
by work on planar mosaics. Furthermore, none of the surface
processing ideas above can be directly used to cover a sur-
face with rectangles of a fixed size, with global optimisation
of distribution of grout.

3 Algorithm Overview

The key problem in mosaicing is positioning of the tiles. For
decorative mosaics, Hausner [8] uses acentroidal Voronoi
diagram and theManhattan metricto solve this problem.
However, this approach cannot easily be extended to mesh

Surface Mosaics 3

models of arbitrary topology, because general mesh mod-
els are not homeomorphic to a disk and so a 2-dimensional
Voronoi diagram is generally not applicable. Instead, we base
our approach on a particle optimization method proposed
in [20], adapted to use the Manhattan metric. We use the
particles to represent the tile centers. This considers non-
oriented particles attached to underlying implicit surfaces,
which leads to simple constraints. Oriented particles have
also previously been used in [17], as a tool for surface mod-
eling. This method can be adapted to mesh models, by pro-
jected gradient descent optimization of the energy functional;
we must take into account the different metric. The opti-
mization method spreads the particles evenly across the sur-
face with respect to the Manhattan metric by means of re-
pulsive forces between them.

The main steps of our algorithm are (see Fig. 1) vec-
tor field generation, initial tile placement, and tile placement
optimization, as outlined next.

3.1 Vector field generation

A vector field is used to guide the local orientation of tiles.
Thus, at each position of the mesh, we determine a local co-
ordinate frame comprising the surface normal plus two or-
thogonal tangent directions in the surface. One way of doing
this (except for planar and spherical regions) would be to use
the principal directions plus the surface normal; for methods
for estimating these, see [4,21]. Using this approach in prac-
tice generally requires a prior smoothing operation [1,12,
14], to reduce the number of umbilics (singularities) where
the orthogonal net nature of the vector field breaks down.
Local frames based on principal directions have the desir-
able property that they are naturally orthogonal to feature
lines such as sharp edges or lines of symmetry.

However, both to provide user control, and to avoid hav-
ing too many singularities, we propose as an alternative to
allow the user to specify the vector field at various key points
of the surface, which we then interpolate to provide a vector
field over the whole surface, as in [18]. This is done by ini-
tially setting the vector field at all unspecified points to zero,
and then iteratively updating the vector field at each point
until convergence. The update is determined as a weighted
difference between the current vector field at each point, and
a weighted sum of the vector fields at its 1-ring neighbors.
Thus, the updated value is given by

X′
0 = X0 + t

k

∑
i=1

Wi(X̂ i −X0), (1)

whereX0 is the vector field at some point being considered,
andX̂ i are the values of the vector field in its 1-ring neigh-
borhood, projected onto the tangent plane at the given point
to ensure the updated vector field lies in the tangent plane.Wi
is a weight, proportional to the reciprocal of the edge length
and normalized to have sum one, so that vertices closer to the
vertex being considered have larger weights.t is a step-size

control; relatively smallt is used to provide stable conver-
gence, and it is set to 0.1 in all our experiments. A second
vector field orthogonal to the first can be determined locally
by taking the cross-product of the first vector field and the
surface normal.

3.2 Initial distribution of tiles

We use an iterative global optimization method to find the
final positions of tiles. Good initial tile placement is im-
portant, both to achieve results of high quality, and for ef-
ficiency. Ideally, each tile should occupy an identical area
on the surface, so we use error diffusion initialization [2]to
evenly distribute theN starting positions over the surface.
Each triangle is assigned a real number indicating its allo-
cated initial number of tiles according to its area. The tiles
are added in a region-growing process: when considering a
triangle, an integer number of tiles closest to the real number
is placed inside the triangle, at random locations. The differ-
ence between the integer used and the real number desired
(either positive or negative) represents an error which is dif-
fused to its neighbors. Thus, each sufficiently large neigh-
borhood contains a number of tiles proportional to its area.

3.3 Tile optimization

After initialization, the positions of the tiles are optimized
using a spring-like energy defined in terms of the Manhat-
tan metric. Details are given in Section 4 and special cases
are considered in Section 5. After optimization, a tile of the
desired size is placed at each position; its orientation is com-
puted by averaging the vector field in its neighborhood. (Us-
ing such an average, rather than the vector field at the po-
sition itself, tends to give better results overall at locations
where the vector field is changing rapidly.)

The next two Sections, together with the problem state-
ment, contain the main new ideas in the paper.

4 Tile Position Optimization

We now discuss the optimization framework, and the key
issue of how the necessary Manhattan distances within it are
efficiently computed.

4.1 Optimization framework

The basic framework used is similar to that in [20], and is
based on energy minimization. The energy leads to a repul-
sive force between tiles, which in equilibrium gives the final
positions of the tiles. The energy between any two tilesTi
andTj is defined as

Ei j = exp(−d(Ti ,Tj)
2/2σ2), (2)

4 Yu-Kun Lai et al.

whered(Ti ,Tj) measures theManhattan distancebetween
the centers of the tiles (as explained later), andσ is theinter-
action radiusthat controls the range of the repulsive force.
Because Manhattan distances are generally larger than cor-
responding Euclidean distances,σ also needs to be larger; in
practice we setσ = 0.9

√

A/N, whereA is the surface area
andN is the desired number of tiles. Note that the interaction
radiusσ only controls the the fall off of potential energy, and
hence interactive forces, with increasing distance, and does
not affect the final inter-tile distances in equilibrium.

The energy for a single tileTi is the sum of the interaction
energies with its neighbours:Ei = ∑n

j=1Ei j . In principle, the
negative gradient of this energy produces the repulsive force.
However, the energyE is defined in terms of the Manhattan
distance, and is only defined on the surface, and not in the
embedding space, and thus∇E itself must be computed by
restricting it to the tangent plane. The computation is quite
involved and does not have a simple closed-form solution.
Thus, following [20], we define a suitable force on theith

tile based on Euclidean distance, by analogy with spring-like
forces:

Fi =
N

∑
j=1

(pi −p j)Ei j , (3)

wherepi is the position of tilei; this approach is found to
work well in practice.

Note that the sum above should be taken over all tile po-
sitions, in principle, but our energy function is designed to
have almost local support, so in practice it is sufficient to
consider thek-nearest neighbors of tilei. Typically we use
k = 20 in our implementation. The required nearest neigh-
bor queries can be accelerated using an approximate nearest
neighbor algorithm [13].

Optimization is carried out using projected gradient de-
scent. At each step, the new positionp′

i for each tile is found
by updatingpi usingp′

i = pi + tFi, and then projecting back
the resulting position onto the mesh;t controls step size and
is usually set to 1.

To prevent the optimization process becoming stuck in
some local minimum,teleportationof tiles may be used.
This can be done by waiting until optimisation has proceeded
far enough, and then periodically checking for ‘large’ holes
(i.e. of at least one tile size). Suppose a numberh exist. We
then also determine theh closest pairs of tiles, and fill each
hole with one tile from one of the pairs. Going further, if the
exact number of tiles does not need to be preserved, direct
insertion of extra tiles into holes is also possible, reducing
the amount of grout. Using these techniques usually slightly
improves the results for most examples, but the differences
are quite small.

Fig. 2 Points with equal Manhattan distance

4.2 Computation of Manhattan distance

4.2.1 Defining Manhattan distance

Using the Euclidean distance ford(i, j) tends to produce
hexagonally distributed tile centers, corresponding to a dens-
est circle packing in the Euclidean metric; this is unsuit-
able for placing rectangular tiles which should be placed on
something similar, locally, to a rectangular grid. To achieve
this, we use theManhattan distanceinstead. In the plane,
the Manhattan distance between pointsP1 at (x1,y1) and
P2 at (x2,y2) is defined as|x1− x2|+ |y1− y2|, i.e. the dis-
tance ‘across’ plus the distance ‘up’. On a mesh, we may
also measure distances in the two preferred directions deter-
mined by the interpolated vector field. However, there is a
small complication—unlike the planar case, summing dis-
tances in a curved surface ‘across’ then ‘up’ generally gives
a different result to going ‘up’ then ‘across’. We simply take
the minimum of these two possibilities.

In a grid, using the Manhattan metric, each point (e.g. the
red one in Fig. 2) has 8 equidistant nearest neighbors (the
blue ones), and simply placing tiles at such points would
lead to a grid rotated by 45◦ from the desired orientation.
Thus, we use preferred directions at 45◦ to the local vector
field orientation. If the user wishes to have non-square tiles
of aspect ratioη, we further compensate by multiplying dis-
tances in the two directions given by the local vector field by
1/
√

η and
√

η .

4.2.2 Computing Manhattan distance

To compute Manhattan distance, we need to measure dis-
tances in the surface in preferred directions relative to the
local vector field. Tracing the vector field, as done in some
remeshing work, is neither efficient nor robust. Instead, we
use overlapping local parameterizations as a basis for mea-
suring distances. An approach similar to that in [16] is used
to maintain a set of local parameterizations. When we need
to compute the distance between two points, we consider
the currently available local parameterizations to see if one
exists which covers both points. If so, we simply use it,
otherwise, a new local parameterization is built and stored
for later reuse. For our specific problem, we use extra con-
straints when building charts (to help us parameterize them),
and a new parameterization method; these are detailed in the
next Section.

Finally, we compute the Manhattan distance using the
parameterization to measure distances. For efficiency, we
approximate the parameterization by a piecewise linear map-
ping across each triangle. Given two points, and a chart with

Surface Mosaics 5

parameterizationX(u,v) that covers both of these points, the
distances along a preferred direction on the surface can be
calculated by integrating the norm of the appropriate direc-
tional derivative in the parameter domain. For point pairs
that appear in more than one chart, we use the smallest dis-
tance in any chart, which amounts to choosing the shortest
path if more than one exists. We efficiently keep track of
which points are in which charts by simply using flags to
indicate whether a face belongs to a specific chart; such in-
formation is recorded when the chart is constructed.

4.3 Charts and Parameterization

4.3.1 Adding a chart

When a new local chart is constructed for parameterization,
we start at one of the two points between which we wish
to measure the distance, and grow a region in breadth-first
manner, until either the region gets too large (forces become
negligible for points far apart from each other—in practice,
the size can be set to say 5σ , as the energy between two
such tiles is< 4× 10−6) or until the accumulated change
in vector field is above a certain threshold (this is to ensure
that the chart can be reliably parameterized in a planar do-
main while following the specified vector fields). The latter
criterion is defined as follows: the vector field at the center
of each face can be computed by averaging the vector field
at its constituent vertices. During region growth, the change
in vector field direction between two adjacent triangles can
be computed by isometrically mapping these two triangles
(along with corresponding directions) onto a planar domain
(by unfolding along the edge between the two triangles), and
measuring the absolute angular differences between these
two mapped vectors. The accumulated vector field change is
found by accumulating such values along a path in the dual
graph of the mesh. The growth of a chart is stopped if they
exceed a threshold independent of mesh curvatures;π/2 is
used in our experiments to make sure that such a mapping is
possible.

4.3.2 Local parameterization

We need a parameterization method which specifically finds
a parameterization of the surfaceS= S(u,v) aligned with the
vector field, allowing us to measure Manhattan distances by
making a corresponding measurement in the planar param-
eter domain. It is sufficient to make sure the reconstructed
vector field follows the prescribed directions. However, the
vectors∇u and∇v cannot be expressed linearly in terms of
the parameter values at the vertices. To make the computa-
tion easier and more efficient, we use a similar approach to
the one in [14]. We formulate the problem in terms of mini-
mizing the following functional over the mesh:

F =

∫

S

(

||∇u−X||2+ ||∇v−Y||2
)

dS, (4)

whereX is the vector field, andY is an orthogonal vec-
tor field on the surface. However, we adapt this approach
to finding alocal parameterization by solving the following
discretized functional

F∗ = ∑
T

FT = ∑
T

(

||∇u−XT ||2+ ||∇v−YT||2
)

AT , (5)

whereT denotes summing over triangles, and values aver-
aged over triangles, within a given chart.

Each local parameterization has low distortion and can
be efficiently computed by solving a sparse linear system,
having chosen some arbitrary vertex as the parameter origin.

5 Singularities and feature lines

Minor modifications to the above algorithm are needed to
handlesingularitiesin the vector field andfeature lines. The
latter comprise any of: open boundaries of the surface, sharp
creases in the surface, and boundaries between differently
colored regions of the surface; all are handled in the same
manner, as they can be characterized by some curve in the
surface. Creases can be extracted using automatic or semi-
automatic methods [3], or they may be manually marked by
the user; the same is true for segmentation to find boundaries
of colored regions.

5.1 Handling singularities

Singularities are where the direction of the vector field is
not well-defined. Singularities interior to a triangle, or on an
edge, can bedetectedby interpolating the vector field from
its values at each vertex of the mesh [1].

To handlea singularity, we place avirtual tile at the lo-
cation of each singularity; it does not move in later optimiza-
tion, nor do we place a tile at this location in the final tiling.
Furthermore, we compute the force it exerts on nearby tiles
using theEuclideanmetric, rather than the Manhattan met-
ric, which gives a more natural radial distribution of tilesin
its neighborhood.

5.2 Handling feature lines

Firstly, we require tiles adjacent to each feature line to be
aligned with it, so we additionally constrain the vector field
to be parallel or perpendicular to each feature line.

Secondly, tiles adjacent to each feature line should be
placed so that their centers arehalf their width from the fea-
ture line, allowing for grout. Thus, during optimization, we
apply an additional force to all points within a region of in-
fluence adjacent to each feature line, of width 3 times the tile
size. This force corresponds totwicetheEuclideandistance
between the point and the feature line, resulting in tiles being
placed half the normal grout width from the feature line.

6 Yu-Kun Lai et al.

Fig. 3 Top left to bottom right: knot, horse, fish, and cube examples

6 Experimental Results

We now present various results produced using our method.
As discussed earlier, rectangular tiles can be handled as well
as square tiles. However, as square tiles are used in most real
mosaics, we prefer to use them in most of our examples. See
Fig. 3, which shows: a knot tiled with rectangular tiles, a
horse tiled with square tiles, a colored fish with feature lines
along the boundaries of colored regions, and a cube with
feature lines along sharp edges and boundaries of colored
regions. The user control in these experiments included a
few user specified vectors to guide the orientation of tiles for
the knot and horse models, and the specification of whether
the vector field is orthogonal or parallel to each boundary or
feature loop in the fish and cube examples. Such user control
is necessary to give the basic desired orientation of tiles over
the model.

Generally good results are obtained, as can be seen. The
knot example shows that our approach works well with rect-
angular tiles; one potential use is to tile a surface in a way

which clearly distinguishes the different principal directions.
On the horse example, the tiling works well, except that it is
rather ragged around the ears. However, it is fairly obvious
that no method can produce an entirely satisfactory result
for any region small compared to the tile size, especially if
having complex shape or boundaries. For the fish and cube
examples, the original models had several regions each of a
different color; the cube also has sharp edges. Feature lines
were extracted using simple color segmentation, and by de-
tecting geometric features. User control was then used to
specify whether the vector field was parallel or orthogonal to
each feature edge in turn. No additional control vectors were
specified for these examples—in such cases they are gener-
ally not needed, although they can be used if desired. The
cube example shows how the approach copes with a combi-
nation of colored regions and geometric features. Note thatit
shows how our method produces an ideal result on a simple
regular face.

Fig. 4 shows the result of tiling a model of genus 2. The
left figure shows the initial tile positions computed by error
diffusion [2]. Although an even distribution is obtained on

Surface Mosaics 7

Fig. 4 Mosaic tiling on genus-2 ‘eight’ model. Left: initial placement
of 3,000 tiles. Right: final positions of these tiles.

a large scale, the positions of each tile within a particular
triangle are chosen at random; also, no vector fields are con-
sidered. Tiles placed in this way include many overlaps and
hence gaps, as shown. The result after optimization demon-
strates that our method can cope well with higher genus
models; note that such models usually have more singulari-
ties.

These examples took from 2 to 10 minutes to compute,
using a Pentium IV 2.4GHz CPU, given meshes containing
50,000 triangles and placing about 10,000 tiles.

While we may treat each example as aglobal problem,
on the other hand, it is natural to consider the tiling of re-
gions separated by feature curves as independent tiling prob-
lems, apart from the cross-boundary constraints. Doing so
leads to improved performance, since the overall problem
is divided into a set of smaller subproblems which can be
solvedindependently. In practice, a speed up factor of be-
tween 2 and 3 is achieved for the fish and cube examples.
This factor depends on the number of separate regions and
their relative sizes.

7 Conclusions

This paper has given an efficient algorithm for covering a
mesh with a mosaic of rectangular tiles, while following a
vector field interpolated from user inputs, and also respect-
ing geometric and color feature lines.

As well as its aesthetic uses, this method could also be
useful as a basis for carrying out quad-dominated remeshing
in which each quad has almost the same size and aspect ratio,
with various potential applications to analysis etc.

Tiles generated by our algorithm are generally evenly
distributed with respect to the vector field. However, due to
the nature of our optimization approach and the underlying
model, a perfectly even distribution is not usually possible.
Although our method generally produces visually accept-
able results, with no visible overlaps (given a sensible choice
of grout factor), an overlapping-free tiling cannot be guaran-
teed by our current algorithm; to provide this, it seems that
a rather different approach would be required.

Our work could be extended in various ways. To improve
tiling quality, a limited number of smaller or triangular tiles
could be added, using a postprocessing step after the cur-
rent algorithm. Other tiling elements with more complicated
shapes could also be of interest.

Acknowledgment

Models in this paper are courtesy of Georgia Institute of
Technology, Bruno Lévy at INRIA, France and the Shape
Repository of AIM@Shape. This work was supported by
the Natural Science Foundation of China (Project Number
60225016, 60321002) and the National Basic Research Project
of China (Project Number 2002CB312101).

References

1. Alliez, P., Cohen-Steiner, D., Devillers, O., Lévy, B.,Desbrun, M.:
Anisotropic polygonal remeshing. ACM Transactions on Graphics
22(3), 485–493 (2003)

2. Alliez, P., de Verdiere, E.C., Devillers, O., Isenburg, M.: Isotropic
surface remeshing. In: Proc. Shape Modeling InternationalCon-
ference, pp. 49–58 (2003)

3. Botsch, M., Kobbelt, L.: Resampling feature and blend regions in
polygonal meshes for surface anti-aliasing. Computer Graphics
Forum20(3), 402–410 (2001)

4. Cohen-Steiner, D., Morvan, J.M.: Curve and surface reconstruc-
tion: Restricted delaunay triangulations and normal cycle. In:
Proc. 19th Annual ACM Symposium on Computational Geom-
etry, pp. 312–321 (2003)

5. Elber, G., Wolberg, G.: Rendering traditional mosaics. The Visual
Computer19, 67–78 (2003)

6. Finkelstein, A., Range, M.: Image mosaics. In: R.D. Hersch,
J. André, H. Brown (eds.) Proc. 7th International Conference on
Electronic Publishing, pp. 11–22 (1998)

7. Floater, M.S., Hormann, K.: Surface parameterization: atutorial
and survey. In: Advances in Multiresolution for Geometric Mod-
elling, pp. 157–186. Springer-Verlag, Heidelberg (2005)

8. Hausner, A.: Simulating decorative mosaics. In: Proc. ACM SIG-
GRAPH, pp. 573–580 (2001)

9. Kaplan, C.S., Salesin, D.H.: Escherization. In: Proc. ACM SIG-
GRAPH, pp. 499–510 (2000)

10. Kim, J., Pellacini, F.: Jigsaw image mosaics. ACM Transactions
on Graphics21(3), 657–664 (2002)

11. Klein, A.W., Grant, T., Finkelstein, A., Cohen, M.F.: Video mo-
saics. In: Second International Symposium on Non Photorealistic
Rendering, pp. 21–28 (2002)

12. Marinov, M., Kobbelt, L.: Direct anisotropic quad-dominant
remeshing. In: Proc. Pacific Graphics, pp. 207–216 (2004)

13. Mount, D., Arya, S.: ANN: A library for approximate nearest
neighbor searching, ver 1.1,http://www.cs.umd.edu/mount/ANN
(2005)

8 Yu-Kun Lai et al.

14. Ray, N., Li, W.C., Lévy, B., Sheffer, A., Alliez, P.: Periodic global
parameterization. ACM Transactions on Graphics p. (to appear)
(2006)

15. Silvers, R., Hawley, M.: Photomosaics. New York: Henry Holt
(1997)

16. Surazhsky, V., Gotsman, C.: Explicit surface remeshing. In: Proc.
Eurographics Symposium on Geometry Processing, pp. 17–28.
Aachen, Germany (2003)

17. Szeliski, R., Tonnesen, D.: Surface modeling with oriented parti-
cle systems. In: Proc. SIGGRAPH, pp. 185–194 (1992)

18. Turk, G.: Texture synthesis on surfaces. In: Proc. ACM SIG-
GRAPH, pp. 347–354 (2001)

19. Wei, L.Y., Levoy, M.: Texture synthesis over arbitrary manifolds.
In: Proc. ACM SIGGRAPH, pp. 355–360 (2001)

20. Witkin, A., Heckbert, P.: Using particles to sample and control im-
plicit surfaces. In: Proc. ACM SIGGRAPH, pp. 269–277 (1994)

21. Yang, Y.L., Lai, Y.K., Hu, S.M., Pottmann, H.: Robust principal
curvatures on multiple scales. In: Proc. Eurographics Symposium
on Geometry Processing, p. (to appear) (2006)

Yu-Kun Lai received the bachelor’s
degree in computer science from
Tsinghua University in 2003. He is
a PhD student in the Department
of Computer Science and Technol-
ogy at Tsinghua University. His re-
search interests include computer
graphics, geometry processing, and
CAGD.

Shi-Min Hu received the PhD de-
gree in 1996 from Zhejiang Uni-
versity. He is currently a profes-
sor of computer science at Tsinghua
University. His research interests
include digital geometry process-
ing, video-based rendering, render-
ing, computer animation, and com-
puter aided geometric design. He is
on the editorial board ofComputer
Aided Design.

Ralph R. Martin obtained his
Ph.D. in 1983 from Cambridge Uni-
versity and is a professor at Cardiff
University. He has published over
160 papers and 10 books cover-
ing such topics as solid and sur-
face modeling, intelligent sketch in-
put, geometric reasoning, reverse
engineering, and various aspects of
computer graphics. He is on the ed-
itorial boards ofComputer Aided
Designand theInternational Jour-
nal of Shape Modelling.

