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We study reaction dynamics on a model potential energy surface exhibiting post-transition state
bifurcation in the vicinity of a valley ridge inflection (VRI) point. We compute fractional yields of
products reached after the VRI region is traversed, both with and without dissipation. It is found
that apparently minor variations in the potential lead to significant changes in the reaction dynamics.
Moreover, when dissipative effects are incorporated, the product ratio depends in a complicated and
highly non-monotonic fashion on the dissipation parameter. Dynamics in the vicinity of the VRI
point itself play essentially no role in determining the product ratio, except in the highly dissipative
regime. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4825155]

I. INTRODUCTION

Much recent experimental and theoretical work has fo-
cussed on recognizing and understanding the manifestations
of nonstatistical dynamics in thermal reactions of organic
molecules (for reviews, see Refs. 1–7; see also the represen-
tative Refs. 8–19). Such research has convincingly demon-
strated that, for an ever-growing number of cases, standard
transition state theory (TST) and Rice–Ramsperger–Kassel–
Marcus approaches20–27 for prediction of rates, product ratios,
stereospecificity, and isotope effects can fail completely. This
work is changing the basic textbook paradigms of physical
organic chemistry (cf. Chap. 7 of Ref. 4).

While absolute rates are usually controllable with
changes of temperature, relative rates (i.e., selectivity) often
are not.28 Hence, understanding the factors that control selec-
tivity is of essential importance for synthesis, especially if ex-
isting models used for analyzing the problem are incomplete
or inapplicable.

A fundamental dynamical assumption underlying con-
ventional statistical theories of reaction rates and selectiv-
ities is the existence of intramolecular vibrational energy
redistribution (IVR) that is rapid compared to the rate of
reaction/isomerization.29–34 Such rapid IVR leads to a “loss
of memory” of particular initial conditions.35 Standard com-
putations based on features (usually critical points, such as
minima and saddle points) of the potential energy surface
(PES) then provide predictions for relative rates associated
with competing reactive channels, temperature dependence of
reaction rates, branching ratios, etc.20–28, 36 Nonstatistical ef-
fects can arise from a number of factors, which are certainly
not mutually exclusive (see, for example, Refs. 37–43, also
Refs. 44–53). The essential underlying reason is the “fail-
ure of ergodicity,” a property which is notoriously difficult

a)CarpenterB1@cardiff.ac.uk
b)gse1@cornell.edu
c)stephen.wiggins@mac.com

either to predict or diagnose. Branching ratios and/or stereo-
chemistries significantly different from statistical predictions
can result from symmetry breaking induced by dynamics.3

The range of thermal organic reactions now believed to
manifest some kind of nonstatistical behavior is extraordi-
narily diverse (see, for example, Refs. 3 and 7, and refer-
ences therein). A general characteristic shared by the sys-
tems for which the standard statistical theories fail is that
the associated PES corresponds poorly if at all to the stan-
dard textbook picture of a 1D reaction coordinate passing
over high barriers connecting deep wells (intermediates or
reactants/products, cf. Fig. 1(a)).2, 3, 7 More specifically, the
reaction coordinate (understood in the broadest sense54, 55)
is inherently multidimensional, as are corresponding rele-
vant phase space structures: there may exist extremely flat,
plateau regions on the PES, with a number of exit chan-
nels characterised by low barriers,2, 3 or the PES may ex-
hibit bifurcations of the reaction path56–60 in the vicinity
of so-called valley-ridge inflection (VRI) points9–11, 16 (see
Fig. 1(b)). In the case of systems having dynamically rele-
vant VRI points on/near the reaction path, outstanding funda-
mental questions remain concerning the effectiveness of ap-
proaches such as variational TST61–63 or modified statistical
theories64 as opposed to full-scale trajectory simulations of
the reaction dynamics.65, 66

Other systems for which the standard 1D reaction coor-
dinate picture is not valid include the growing class of so-
called non-MEP (minimum energy path) reactions2, 43, 67–72

and “roaming” mechanisms;73–80 the dynamics of these reac-
tions is not mediated by a single conventional transition state
associated with an index 1 saddle.

The work just described highlights the basic importance
of momentum for the outcome of a chemical reaction;3, 81 that
is, a phase space82 approach to reaction dynamics is needed,83

as opposed to a view wedded solely to the topography of the
PES.36, 84 For example, a symmetric PES with two symmetry-
related reaction channels can give rise to asymmetric product

0021-9606/2013/139(15)/154108/12/$30.00 © 2013 AIP Publishing LLC139, 154108-1
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FIG. 1. (a) Typical reaction profile of two consecutive transition states (T1, T2) linking starting material (S) with the intermediate (I) and product (P). (b) PES
featuring a VRI as an alternative mechanistic situation featuring two transition states, but no intermediate (Fig. 1 of Ref. 7).

distributions if nonsymmetric initial momentum distributions
are created under experimental conditions.3

There have been significant recent theoretical and com-
putational advances in the application of dynamical systems
theory82, 85–87 to study reaction dynamics and phase space
structure in multimode models of molecular systems, and to
probe the dynamical origins of nonstatistical behavior83, 88–99

(see also Refs. 100–110). A phase space approach is essential
to obtain a rigorous dynamical definition of the TS in multi-
mode systems, this being the Normally Hyperbolic Invariant
Manifold (NHIM).83 The NHIM generalizes the concept of
the periodic orbit dividing surface (PODS)111–113 to N ≥ 3
mode systems. A recent reappraisal of the gap time formal-
ism for unimolecular rates98 has led to novel diagnostics for
nonstatistical behavior (“nonexponential decay”) in isomer-
ization processes, leading to a necessary condition for ergod-
icity. (See also Refs. 114 and 115.)

In the present paper, we study dynamics on a model PES
exhibiting post-transition state bifurcation in the vicinity of a
valley ridge inflection point (cf. Fig. 1(b)). A computed nor-
mal form (NF) is used to sample the dividing surface (DS) at
fixed total energy at the “incoming” TS located at a point of
high potential energy. (For previous discussion of sampling
using normal forms, see Ref. 99.) Bundles of trajectories so
defined are then followed into the region of the PES where
bifurcation of the reaction path occurs, and the subsequent
dynamics studied. A key goal here is to obtain a dynamical
understanding of the computed branching ratio for products
reached after the VRI region is traversed. By changing pa-
rameters in the model potential, it is, for example, possible to
alter the location but not the energy of one of the product min-
ima, while keeping the energies and locations of other critical
points unchanged. We find that apparently minor variations
in the potential can lead to significant changes in the reaction
dynamics.

The work described below leads to the following picture
of the dynamical origin of the selectivity: for the model stud-
ied, the dynamics proceeds on at least 2 timescales. First, on
short times, the bundle of trajectories “reflects” off a hard wall
that is opposite the high energy TS through which it enters the

reaction zone. After this collision, a highly non-statistical and
time-dependent population ratio of products is established,
whose value depends on the direction in which trajectories
are reflected by the (asymmetric) potential wall. These initial
nonstatistical populations then relax on a somewhat longer
timescale to yield the observed product ratio. During this
phase of the reaction, there is the possibility of competition
between IVR and other mechanisms for removing vibrational
energy from active degrees of freedom (DoF) (cf., for exam-
ple, Ref. 18). We explore one aspect of this phase of the dy-
namics by introducing dissipation into the model. Major con-
clusions are that, for this model at least, (i) the dynamics in
the vicinity of the VRI point plays essentially no role in de-
termining the product ratio, except in the highly dissipative
regime, and (ii) the product ratio is a highly nonmonotonic
function of the dissipation strength.

The structure of this paper is as follows: in Sec. II, we
introduce the model potential energy function to be studied.
We compute the IRC path116 connecting the TS to one or
the other product minima, discuss the location of the VRI
point,56–58 and compute Newton trajectories117, 118 and gradi-
ent extremals.119, 120 In Sec. III, we formulate the equations
of motion used to calculate reaction dynamics on our model
surface with and without dissipation, and discuss the specifi-
cation of initial conditions on the DS. Results are presented
in Sec. IV: dynamics of trajectory bundles and product ra-
tios at fixed energies with and without dissipation, and frac-
tional product yields as a function of dissipation parameter.
Section V concludes. Details on the computations required to
locate the VRI point are given in the Appendix.

II. POTENTIAL ENERGY SURFACE

In this work, we investigate, using classical trajectories,
reaction dynamics on a model potential surface exhibiting a
VRI point (cf. Figure 1(b)).

The potential studied exhibits an index 1 saddle (TS) at
high energy. Trajectories are initiated on the DS associated
with this (upper, high energy) saddle, and can form either of
two products. (There is also the possibility that trajectories
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can exit via the high energy transition state; on sufficiently
long timescales, all trajectories [excluding a set of measure
zero] will escape through this “hole” in the potential, pro-
vided that no energy dissipation is present.) Downhill in
energy from the upper saddle point, there is another index
1 saddle point, which forms a “ridge,” which is a conven-
tional transition state for the isomerization reaction that in-
terconverts the two products. Between the two saddle points,
there is therefore a VRI point.56–58 Because the general form
of the potential energy surface studied here is not fully sym-
metric with respect to the coordinate transformation y → −y
(see below), the intrinsic reaction path116 does not in fact
bifurcate, so that the location of the VRI point merely in-
dicates the region of the PES where, in a naïve conven-
tional picture, trajectories “decide” which product well to
enter (see below). Most trajectories initiated on the upper
DS do however pass through the neighborhood of the VRI
point.

In addition to the trajectory studies reported in
Secs. IV A and IV B, we also present here results on
the computation of various theoretical constructs associ-
ated with the concept of “reaction path” for our model
surface.56–58, 116–120 These are the IRC,116 VRI points,56–58

Newton trajectories,117, 118 and gradient extremal paths.119, 120

It is worthwhile emphasizing that the various specific poten-
tial functions studied here do in fact have VRI points, despite
not being fully symmetric. Our results provide a numerical
demonstration that the mathematical conditions for the exis-
tence of a VRI (see below) can readily be satisfied in the ab-
sence of symmetry.

A. Model potential

The system studied has 2 DoF, with associated coordi-
nates (x, y). The functional form is a modified version of
a model potential previously introduced by Carpenter (see

TABLE I. Coefficients ck for the potential Eq. (2.1); sets of coefficients
listed correspond to different values of the coordinate x∗ specifying the loca-
tion of the upper minimum in the potential.

x∗ c1 c2 c3 c4 c5 c6

2.05 0.622088 0.249578 0.401924 0.0040275−0.459044 −0.106126
2.0 0.619384 0.318432 0.484549 −0.131496 −0.63717 −0.0986087
2.1 0.625518 0.183133 0.32219 0.136952 −0.286571 −0.111012

Ref. 2),

V (x, y) = c0
(

1
3x3 − 1

2αx2
) + ω2y2 1

2 (1 − βx) + c1y
4x

+ c2x
2y2 + c3yx2 + c4xy2 + c5xy + c6xy3.

(2.1)

We fix parameter values α = 2, β = 2, c0 = 3, ω = √
3. The

values of the remaining 6 parameters ck, k = 1, . . . , 6 are then
determined by specifying the locations and energies of the
minima of the upper and lower product wells (6 parameters in
all, obtained by solving a set of linear equations).

The upper index-1 saddle point is located at the origin
(0, 0) with energy V0 = 0. The coordinates of the lower prod-
uct well (y < 0) are fixed at (x, y) = (2.4, −1.2), minimum
energy v = −7.5. For the upper product well (y > 0), we take
coordinates (x, y) = (x∗, 1.2), minimum energy v = −6. We
consider 3 cases: x∗ = 2.00, x∗ = 2.05, x∗ = 2.10. Values
of the coefficients ck for the 3 different cases are given in
Table I.

B. Reaction paths, bifurcations, and
valley ridge inflections

Figure 2 shows contour plots of the potentials corre-
sponding to values x∗ = 2.00 and x∗ = 2.10, respectively. Also
shown are the corresponding IRC paths connecting the upper
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FIG. 2. Contour plots of the potentials corresponding to values x∗ = 2.00 and x∗ = 2.10, respectively. Also shown are the corresponding IRC paths (blue)
connecting the upper TS with one of the 2 product minima. The locations of the saddle points and minima are given in Table II. For each value x∗ = 2.0 and x∗
= 2.1, we plot zero contours of the determinant of the Hessian matrix H (red) and of the quantity g · adj[H] · g (green). Each plot exhibits a single VRI point
at the intersection of the 2 contour lines, close to but not actually on the IRC path. Locations and energies of the VRI points are given in Table II.
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TS with one of the 2 product minima. These paths are com-
puted in the standard way116 as solutions of the differential
equation

dr
ds

= −∇V, (2.2)

where r = (x, y) and s parametrizes progress along the IRC.
Since the mass m = 1 for our model problem, there is no dis-
tinction between mass-weighted and unweighted coordinates.

For x∗ = 2.00, the IRC reaction path from the upper
TS terminates at the upper minimum (y > 0), while that for
x∗ = 2.10 terminates at the lower minimum (y < 0). (The
x∗ = 2.05 potential [not shown in Figure 2] is also nonsym-
metric; the IRC terminates at the upper minimum in this case.)
Table II lists coordinates and energies of the critical points
(index-1 saddles and minima) of potential Eq. (2.1), com-
puted for x∗ values 2.00, 2.05, and 2.10.

Additional quantities of interest are included in the con-
tour plots of Fig. 2. The Hessian H is the matrix of second
derivatives

H =
[

Vxx Vxy

Vyx Vyy

]
, (2.3)

where subscripts indicate partial differentiation. (The mass
tensor/kinetic energy is by definition trivial for our model,
as we take mx = my = 1. When defining the Hessian, it is
therefore not necessary to consider covariant derivatives of
the potential, as would be required for the general case of a
Hamiltonian having coordinate dependent kinetic energy.121)
At a VRI point,56–58 (i) the Hessian matrix has a zero eigen-
value and (ii) the gradient vector g = ∇V is perpendicu-
lar to the corresponding eigenvector. As discussed in the
Appendix, VRI points are found at the intersections of zero
contours of the quantities g · adj[H] · g and det[H], where
the adjugate matrix adj[H] = det[H]H−1.

TABLE II. Coordinates (x, y) and energies E of critical points of potential
Eq. (2.1), computed for different values of coordinate x∗. Coordinates and
energies of VRI points are also listed. We indicate whether the IRC initiated
at the upper TS terminates at the upper (U) or lower (L) minimum.

x∗ Critical point x y E

2.0 (U) Upper saddle 0 0 0
Lower saddle (ridge) 1.983 0.093 − 3.969
Upper minimum 2 1.20 − 6.00
Lower minimum 2.4 − 1.20 − 7.50
VRI point 0.508 0.020 − 0.647

2.05 (U) Upper saddle 0 0 0
Lower saddle (ridge) 1.985 0.097 − 3.967
Upper minimum 2.05 1.20 − 6.00
Lower minimum 2.4 − 1.20 − 7.50
VRI point 0.524 0.022 − 0.683

2.1 (L) Upper saddle 0 0 0
Lower saddle (ridge) 1.987 0.101 − 3.964
Upper minimum 2.1 1.20 − 6.00
Lower minimum 2.4 − 1.20 − 7.50
VRI point 0.542 0.025 − 0.723

For each value x∗ = 2.0 and x∗ = 2.1, we show in
Fig. 2 the zero contours of the determinant of the Hessian ma-
trix H (red) and of the quantity g · adj[H] · g (green). Each
plot exhibits a single VRI point at the intersection of the 2
contour lines, close to but not actually on the IRC path. The
locations of the VRI points for x∗ values 2.00, 2.05, and 2.10
are listed in Table II.

In Figure 3(a), we plot a set of Newton trajectories117, 118

for the case x∗ = 2.05. At every point along a Newton tra-
jectory, the gradient vector g points in a fixed direction speci-
fied by a search vector r.118 Figure 3(a) shows Newton trajec-
tories computed for unit search vectors r = {cos[θ ], sin[θ ]},
for a number of angles θ sampled uniformly in the inter-
val 0 ≤ θ ≤ π . (In fact, the “trajectories” are computed
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FIG. 3. (a) Newton trajectories (magenta/green) for the case x∗ = 2.05. The green trajectories are singular trajectories connecting critical points to the VRI
point on the potential. (b) Gradient extremal paths (magenta) for the case x∗ = 2.05. At gradient extremal points, the gradient vector g is an eigenvector of the
Hessian H. The IRC (blue) is also included for comparison.
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as the zero contours of the function f = r⊥ · g, where
r⊥ = {− sin[θ ], cos[θ ]} is a unit vector perpendicular to r.)

Our results illustrate the fact that (complete) Newton
trajectories connect all stationary points on the potential,
and that bifurcations of Newton trajectories occur at VRI
points.118 These properties make Newton trajectories very
useful for exploration of PES features. Nevertheless, compar-
ison with dynamical trajectories (see below) shows that, at
least for the potential studied here, Newton trajectories pro-
vide little insight into the actual reactive dynamics.

In Figure 3(b), we plot gradient extremal paths119, 120 for
the case x∗ = 2.05. At gradient extremal points, the gradient
vector g is an eigenvector of the Hessian

H g ∝ g. (2.4)

The gradient extremal paths plotted are actually obtained by
computing the zero contours of the quantity120, 122

� = Vxy

(
V 2

x − V 2
y

) + (Vyy − Vxx)VxVy. (2.5)

It can be seen that, in contrast to the IRC path, the gradi-
ent extremal path connects the upper and lower index 1 sad-
dles, even for a non-symmetric potential. The two index 1
saddle points are also connected by singular Newton trajecto-
ries (Fig. 3(a)). However, it is also seen that gradient extremal
paths can exhibit loops and turning points, limiting their util-
ity as models for reaction paths.

III. TRAJECTORY CALCULATIONS: HAMILTONIAN,
DISSIPATION, AND INITIAL CONDITIONS

We study reaction dynamics using a Hamiltonian based
on the 2 DoF potential Eq. (2.1). We therefore effectively con-
sider the dynamics on a timescale short enough so that trans-
fer of energy to or from other degrees of freedom (intramolec-
ular vibrational modes, solvent bath modes) is negligible. In
addition, we do however (crudely) model the effect of addi-
tional degrees of freedom by introducing dissipation into our
model. Explicit inclusion of additional degrees of freedom is
left for future investigations.

A. Equations of motion

The Hamiltonian has the form

H (x, y, px, py) = p2
x

2
+ p2

y

2
+ V (x, y), (3.1)

with potential V (x, y) given by Eq. (2.1) and Hamilton’s
equations of motion,

ẋ = px, (3.2a)

ẏ = py, (3.2b)

ṗx = −∂V

∂x
(x, y), (3.2c)

ṗy = −∂V

∂y
(x, y). (3.2d)

The effects of dissipation are modelled by adding a simple
damping term to equations of motion (3.2) as follows:

ẋ = px, (3.3a)

ẏ = py, (3.3b)

ṗx = −∂V

∂x
(x, y) − γxpx, (3.3c)

ṗy = −∂V

∂y
(x, y) − γypy, (3.3d)

for some γ x, γ y > 0, so that the kinetic energy monotonically
decreases along the trajectory. We set γ x = γ y ≡ γ and study
the effects of dissipation for a range of γ values 0 ≤ γ ≤ 1.
In the present calculations, random thermal fluctuations (e.g.,
Langevin dynamics123) are not considered.

B. Initial conditions

Trajectories are initiated on the phase space DS associ-
ated with the transition state located at the high energy saddle
point. A normal form Ref. 83 of degree 10 is computed, and
the dividing surface sampled using a grid in phase space at
a specified energy.99 We integrate trajectories and compute
product fractional yield (equivalently, branching ratio) as a
function of time.

In order to decide whether a trajectory is in the upper or
lower product well, we define a plane in phase space tangent
to the dividing surface separating the two products; this sur-
face is computed from a normal form constructed at the lower
(ridge) saddle point. The sign of the standard inner product of
the displacement vector of a phase point from the lower saddle
with a vector normal to the tangent plane then determines the
well to which the point is assigned. Trajectories are stopped
if they re-cross the upper saddle DS but few such cases were
observed (for the integration times used), and none for any
nonzero values of the dissipation factor γ (see below).

The effects of dissipation are modelled by integrating
Eq. (3.3) for a range of values of the dissipation parameter γ .
Initial conditions for trajectory calculations incorporating dis-
sipation are sampled on the DS in the usual way using Hamil-
tonian (3.2) for a fixed value of the initial energy.

IV. RESULTS

A. Reaction dynamics without dissipation

Figure 4 shows the behavior of bundles of 64 trajectories
initiated on the DS at the upper TS, with energy E = 0.1 above
the saddle energy. (Recall that the energy of the upper saddle
is E = 0, the energy of the lower saddle is E ∼ −4.0, while
the product minima are at energies E = −6.0 and E = −7.5,
respectively.) We show results for the 2 cases x∗ = 2.0 and
x∗ = 2.1, respectively. Trajectories are integrated for tmax = 4
time units, a time comparable to the natural period for motion
in either well.

Figure 5 shows corresponding trajectory bundles at
E = 0.01 above the saddle energy. These lower energy tra-
jectories are integrated for longer times, up to tmax = 8.
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FIG. 4. (a)–(d) Trajectory bundles and fractional product yields for x∗ = 2.0 and x∗ = 2.1 at energy E = 0.1. No dissipation (γ = 0).
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FIG. 5. (a)–(d) Trajectory bundles and fractional product yields for x∗ = 2.0 and x∗ = 2.1 at energy E = 0.01. No dissipation (γ = 0).
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FIG. 6. Fractional product yields for (a) x∗ = 2.0 and (b) x∗ = 2.1 at energy E = 0.01 for times 0 ≤ t ≤ tmax = 100. The dashed blue line shows the cumulative
fraction of trajectories recrossing the upper DS.

All trajectories initially collide with the hard wall of the
potential that is directly “downhill” from the upper TS. This
collision is followed by a number of more or less “coherent”
oscillations of the trajectory bundle between product wells,
with concurrent dephasing. The well occupancies (product
yields) shown in Figs. 4 and 5 clearly demonstrate the co-
herent short-time behavior of the trajectory bundles, and the
dramatic effect on well occupancies brought about by appar-
ently minor changes in potential topography.

Changing the location of the upper minimum, specifi-
cally the x-coordinate x∗, also changes the curvature of the
potential in the vicinity of the “hard wall” encountered by tra-
jectories after they have rolled downhill from the upper TS.
This change in curvature in turn affects the direction in which
the trajectory bundle is predominantly “reflected” by the hard
wall, as can be seen from the time-dependent product yields
(fractions) shown in Figures 4 and 5

Figure 6 shows well occupancies for the 2 cases x∗ = 2.0
and x∗ = 2.1 for 0 ≤ t ≤ tmax = 100. Even at t = tmax, the
ratio of well occupancies apparently has not converged to an
asymptotic (steady state) value. That is, nontrivial isomeriza-
tion dynamics is still occurring. These fluctuations may how-
ever reflect the finite size of the trajectory ensemble used in
our calculations. Figure 6 also shows that the cumulative frac-
tion of trajectories that escape (recross the upper DS) is small
but non-negligible for both cases.

We next consider the addition of dissipative damping,
which ensures that the branching ratio becomes well defined
at relatively short times.

B. Reaction dynamics with dissipation

Figure 7 shows 2 trajectory bundles at E = 0.01 with the
relatively large dissipation factor γ = 0.5 (64 trajectories per
bundle). The trajectories drop into one of the wells within ap-
proximately 4 time units, and, as anticipated for the highly
dissipative case, the predominant product obtained is deter-
mined by the IRC path from the upper TS. Note that the prod-
uct ratio inverts between the two cases, which differ only in
the value of x∗.

Figure 8 shows the behavior of trajectory bundles at
E = 0.01 for a smaller dissipation factor γ = 0.25 together

with corresponding well occupancies, for 0 ≤ t ≤ tmax = 5.
For x∗ = 2.1, the product ratio at long times is now reversed
with respect to the value for γ = 0.5; for the lower dissipation
parameter, trajectories are able to cross the ridge separating
products one more time (on average) before losing energy and
becoming trapped in one or the other well.

These results suggest the interesting possibility that the
branching ratios might exhibit a non-monotonic dependence
on dissipation parameter. This question is explored below.

C. Product ratios as a function
of dissipation parameter

We now examine systematically the behavior of frac-
tional product yields as a function of the dissipation param-
eter. The branching ratio is given in terms of the fraction of
trajectories which are in either of the two wells after the sys-
tem has settled down and trajectories no longer have suffi-
cient energy to cross the ridge. As the dissipation factor γ be-
comes smaller, it is necessary to follow trajectory ensembles
for longer and longer times to determine asymptotic product
ratios.

Note that, although our trajectory calculations examine
the fate of ensembles of trajectories initiated on the DS at a
fixed time, the branching ratios we compute are nevertheless
equally applicable to the situation in which a steady stream of
reactants passes over the upper TS.

We compute fractional product yields for a range of dis-
sipation parameter 0.01 ≤ γ ≤ 1. We have checked that our
results are converged both with respect to the trajectory run
time tmax and the size of the ensemble.

Figure 9 shows the fraction of trajectories in the lower
well as a function of dissipation parameter γ for x∗ = 2.0
(Fig. 9(a)), x∗ = 2.05 (Fig. 9(b)), and x∗ = 2.1 (Fig. 9(c)) for
E = 0.01. For each case, the fraction of given product is
a highly structured non-monotonic function of the dissipa-
tion parameter γ . It is moreover striking that minor varia-
tions in the value of x∗ lead to noticeably different depen-
dence of yield on γ . Figure 9(d) shows the fractional yield for
x∗ = 2.05 at the higher energy E = 0.1 above threshold;
the behavior is very similar to that seen at the lower energy
E = 0.01.
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FIG. 7. (a)–(d) Trajectory bundles and fractional product yields for x∗ = 2.0 and x∗ = 2.1. Initial energy E = 0.01, dissipation parameter γ = 0.5.
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FIG. 8. (a)–(d) Trajectory bundles and fractional product yields for x∗ = 2.0 and x∗ = 2.1. Initial energy E = 0.01, dissipation parameter γ = 0.25.
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FIG. 10. Time-dependent fractional product yields and trajectory segments, t1 ≤ t ≤ t2, t1 = 8.5, t2 = 9.0, x∗ = 2.05, initial energy E = 0.01. (a) Trajectory
segments, γ = 0.13; (b) Fractional yield vs t, γ = 0.13; (c) Trajectory segments, γ = 0.1; (d) Fractional yield vs t, γ = 0.1.
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The nontrivial dependence of branching ratios on γ has
its origin in the interplay between the almost coherent ridge
crossing dynamics of the trajectory bundle and the dissipative
loss of kinetic energy, leading to trapping of trajectories in
one or the other well. The dissipation rate sets the timescale
on which trajectories settle into their final associated product
wells.

This interpretation of the branching ratio results is con-
firmed by examining the dynamics of trajectory bundles in
more detail. For example, Figure 10 shows time-dependent
fractional yields and trajectory segments (t1 ≤ t ≤ t2) for the
intermediate case x∗ = 2.05 at initial energy E = 0.01 for 2
dissipation parameters, γ = 0.13 and γ = 0.1, respectively.
Ensemble trajectory segments for the ensemble are shown
with t1 = 8.5, t2 = 9.0. With these values of t1 and t2, it can be
seen that for the larger dissipation parameter the final product
well is already determined for all trajectories in the ensem-
ble, while reducing the dissipation parameter slightly allows
some additional ridge crossing, changing the branching ratio
significantly.

The coherent crossing of the central ridge causes trajec-
tories to sample one product well and then the other in an
oscillatory fashion. Similar phenomena have been seen in tra-
jectory simulations of a number of unimolecular reactions of
polyatomic systems,17, 124 suggesting that the present behav-
ior might persist on at least some higher dimensional potential
energy surfaces. This question is under active investigation.

V. SUMMARY AND CONCLUSIONS

We have studied reaction dynamics on a model potential
energy surface exhibiting post-transition state bifurcation in
the vicinity of a valley ridge inflection point. Bundles of tra-
jectories initiated on the dividing surface associated with a
high energy TS are followed into the region of the PES where
bifurcation of the reaction path occurs, and the subsequent dy-
namics studied. We have computed fractional yields for prod-
ucts reached after the VRI region is traversed, both with and
without dissipation. It is found that apparently minor varia-
tions in the potential lead to significant changes in the reaction
dynamics. Moreover, the branching ratio depends in a com-
plicated and highly non-monotonic fashion on the dissipation
parameter.

For the model considered here, the dynamics proceeds
on at least two timescales. First, on short times, the bundle of
trajectories “reflects” off a hard wall that is opposite the high
energy TS through which it enters the reaction zone. After this
collision, a highly non-statistical and time-dependent popula-
tion ratio of products is established, whose value depends on
the direction in which trajectories are reflected by the (asym-
metric) potential wall. These initial nonstatistical populations
then relax on a somewhat longer timescale to yield the ob-
served product ratio. During this phase of the reaction, there is
the possibility of competition between IVR and other mech-
anisms for removing vibrational energy from active degrees
of freedom. Introducing dissipation into the model sets the
timescale on which the branching ratio is determined.

One would expect that for real chemical systems, reac-
tions in condensed phases would be characterized by higher

dissipation rates125 and that some control of collision-induced
dissipation might be attainable through the use of supercriti-
cal fluids at variable pressure.126 However, to our knowledge,
such techniques have not yet been applied to any reaction for
which the existence of a chemically significant VRI has been
established.

Overall, we find that dynamics in the vicinity of the VRI
point on the potential play essentially no role in determin-
ing the product ratio, except in the highly dissipative regime.
Extension of these investigations to more realistic theoretical
models of reactions involving VRI points (see, for example,
Refs. 67, 127–130) is a topic of current research.
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APPENDIX: LOCATION OF VRI POINTS

The Hessian matrix H is a real symmetric matrix, and
has 2 real eigenvalues and associated orthonormal eigenvec-
tors. Let the eigenvalues and eigenvectors of H be denoted λα

and vα , respectively, α = 1, 2. The potential gradient vector
g = ∇V is then decomposed as follows:

g =
∑

α

vαcα. (A1)

Defining the adjugate matrix adj[H] ≡ det[H]H−1, we have

g · adj[H] · g =
∑

α

λα′ c2
α, (A2)

where α′ = 2 if α = 1, and vice versa. The quantity g ·
adj[H] · g is the second-order variation in the potential along
a vector perpendicular to g (having the same length). The
condition

g · adj[H] · g = 0 (A3)

therefore implies

c2
1λ2 = −c2

2λ1. (A4)

At the VRI point, there is an eigenvector perpendicular to
the gradient vector g with associated eigenvalue zero. There-
fore, at the VRI point, both condition (A3) and the condition

det[H] = λ1λ2 = 0 (A5)

must hold. We therefore find the VRI point(s) numerically by
locating the intersection(s) of the zero contours of det[H] and
g · adj[H] · g.
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