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ABSTRACT: In this work, we report a method to acquire and
analyze hyperspectral coherent anti-Stokes Raman scattering
(CARS) microscopy images of organic materials and biological
samples resulting in an unbiased quantitative chemical analysis.
The method employs singular value decomposition on the
square root of the CARS intensity, providing an automatic
determination of the components above noise, which are
retained. Complex CARS susceptibility spectra, which are
linear in the chemical composition, are retrieved from the
CARS intensity spectra using the causality of the susceptibility
by two methods, and their performance is evaluated by comparison with Raman spectra. We use non-negative matrix
factorization applied to the imaginary part and the nonresonant real part of the susceptibility with an additional concentration
constraint to obtain absolute susceptibility spectra of independently varying chemical components and their absolute
concentration. We demonstrate the ability of the method to provide quantitative chemical analysis on known lipid mixtures. We
then show the relevance of the method by imaging lipid-rich stem-cell-derived mouse adipocytes as well as differentiated
embryonic stem cells with a low density of lipids. We retrieve and visualize the most significant chemical components with
spectra given by water, lipid, and proteins segmenting the image into the cell surrounding, lipid droplets, cytosol, and the nucleus,
and we reveal the chemical structure of the cells, with details visualized by the projection of the chemical contrast into a few
relevant channels.

Coherent anti-Stokes Raman scattering microscopy has
emerged in the past decade as a powerful multiphoton

microscopy technique for rapid label-free imaging of organic
materials and biological samples with submicrometer spatial
resolution in three-dimensions and high chemical specificity.1,2

CARS is a third-order nonlinear process in which molecular
vibrations are coherently driven by the interference between
two optical fields (pump and Stokes), and the optical field (the
pump in two-pulse CARS) is anti-Stokes Raman scattered by
the driven vibrations. Owing to the coherence of the driving
process, CARS benefits, unlike spontaneous Raman, from the
constructive interference of light scattered by spectrally
overlapping vibrational modes within the focal volume,
enabling fast acquisition at moderate powers compatible with
live cell imaging.
Among the various technical implementations of CARS

microscopy reported to date, hyperspectral CARS imaging is
receiving increasing attention due to its superior chemical
specificity over single-frequency CARS. In hyperspectral CARS,
a CARS spectrum is measured at each spatial position either by
taking a series of spatially resolved images at different
vibrational frequencies3 or by acquiring a spectrum at each
spatial point following simultaneous excitation of several
vibrations.1 Analyzing the resulting multidimensional data set

in order to provide an efficient image visualization and a useful
chemical interpretation is nontrivial. Simple approaches to
reduce the dimensionality by studying spectra acquired at a few
specific positions of the image or by considering images
acquired at a few vibrational frequencies fail to make full use of
the available information. Moreover, for a quantitative chemical
analysis of CARS microspectroscopy images, one has to
consider that the quantity which is linear in the chemical
composition is the complex third-order susceptibility in the
nonlinear process.1 The CARS intensity is instead proportional
to the absolute square of this susceptibility, which contains the
interference between the resonant and nonresonant terms
resulting in a nontrivial line shape. To overcome this
complication, more advanced technical implementations have
been developed such as heterodyne coherent anti-Stokes
Raman scattering (HCARS),4,5 which measures amplitude
and phase and in turn the complex susceptibility, and
stimulated Raman scattering (SRS),6−8 which measures only
the imaginary part of the susceptibility. On the other hand, the
complex susceptibility can also be determined from the more
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commonly measured CARS intensity by phase retrieval9,10 if a
spectrum over a sufficiently large spectral range is acquired.
Two types of phase-retrieval methods have been discussed
recently in the literature, including the modified Kramers−
Kronig transform (MKK)10 and the maximum entropy method
(MEM).11 Both methods have been shown to be able to
retrieve the complex susceptibility with similar accuracy.12 They
show an error of the retrieved phase of the complex
susceptibility, which was partially corrected by subtracting a
slowly varying function from the retrieved phase, determined
by a procedure which was, however, not well documented. To
subsequently represent from the retrieved complex suscepti-
bility a spatially resolved map of spectral components, methods
that have been proposed so far in the literature use principal
component analysis (PCA)13 or hierarchical cluster analysis
(HCA)14 as known from Raman imaging, independent
component analysis (ICA) for SRS,15 classical least-squares
(CLS) analysis for CARS,16 and multivariate curve resolution
(MCR) analysis for SRS.8 However, although these methods
provide a way to sort the spectral information into significant
components, they are not able to make an unsupervised
decomposition into individual chemical species with quantita-
tive absolute concentration determination, which is ultimately
the most meaningful quantitative representation. Among the
mentioned methods, MCR can provide a quantitative
determination of the chemical composition but needs an initial
guess of the spectra17 and is thus not unsupervised.
Here we present a method of quantitative chemical imaging

going from data acquisition using hyperspectral CARS to
unsupervised analysis and visualization of the spatially resolved
absolute concentrations of chemical components. We use a
single source multimodal CARS microscope3 to rapidly acquire
hyperspectral CARS images over a large vibrational range from
1200 to 3800 cm−1. The data are de-noised by singular value
decomposition (SVD), and we develop and use two methods
for the retrieval of the complex susceptibility based on the
causality of the response, where the phase error is corrected as
demanded by causality. For the final step, the decomposition
into spectra of independently varying chemical components
and quantification of their absolute concentrations, we apply a
fast variant of non-negative matrix factorization (NMF) with an
additional concentration constraint using the imaginary part
and the spectrally averaged real part of the susceptibility.

■ MATERIALS AND METHODS
CARS Microspectroscopy. CARS hyperspectral images

have been acquired on a home-built multimodal laser-scanning
microscope based on an inverted Nikon Ti−U with
simultaneous acquisition of CARS, two-photon fluorescence
(TPF), and second harmonic generation (SHG) using a single
5 fs Ti:Sa broadband (660−970 nm) laser source. A detailed
description of the setup can be found in ref 3. In brief, pump
and Stokes beams for CARS excitation are given by the laser
wavelength ranges of 660−730 nm and 730−900 nm,
respectively. We use spectral focusing18,19 by applying an
equal linear chirp to pump and Stokes pulses through glass
dispersion. This provides a tunable vibrational excitation
covering the 1200−3800 cm−1 range with a spectral resolution
of 10 cm−1 by varying the time delay between pump and Stokes
with a 10 ms step response. The data discussed in this paper
were taken with a 20× 0.75 NA dry objective (Nikon CFI Plan
Apochromat λ series) and a 0.72 NA dry condenser for signal
collection in the forward direction, with a resulting spatial

resolution for the material susceptibility (full-width at half-
maximum of the coherent point-spread function amplitude) of
0.9 (3.5) μm in the lateral (axial) direction. The CARS signal is
discriminated by a pair of Semrock band-pass filters FF01-562/
40 for acquisition in the 2400−3800 cm−1 range, or a Semrock
low-pass filter SP01-633RS and a band-pass filter FF01-609/54
for acquisition in the 1200−2500 cm−1 range, and then
detected by a Hamamatsu H7422-40 photomultiplier.

Phase Retrieval. Two methods for the retrieval of the
CARS susceptibility in the spectral domain χ ̃(ω) were
developed and used. They start from the CARS intensity
given by IC(ω) = χ ω̃[ ]( ) with the instrument response .
The instrument response contains two main effects, the
spectrally dependent sensitivity and the finite spectral
resolution, limited, for example, by the finite duration of the
laser pulses. The instrument response is consequently
approximated as the absolute square of the convolution of
the susceptibility with a spectral instrument response s,
multiplied with a spectrally dependent transduction coefficient
T(ω):

χ ω ω χ̃ = | ⊗ ̃ |T[ ]( ) ( ) s
2

(1)

s determines the spectral resolution of the instrument and
is assumed to be independent of the center frequency. We do
not explicitly consider s in the following mathematical
treatment, such that the retrieved χ ̃ will have a spectral
resolution limited by s, which in the present experiments is
approximately 20 cm−1. Separating χ ̃ = χ ̃e+ χ ̃v into a
nonresonant, frequency-independent real electronic contribu-
tion χ ̃e and a complex resonant vibrational contribution χṽ, we
arrive at

χ χ χ χ χ χ= | ̃ + ̃ | = | ̃ | + | ̃ | + ℜ ̃ ̃ *I T/ 2 ( )C v e
2

v
2

e
2

v e (2)

To determine T(ω), we use the CARS intensity Iref(ω)
acquired under otherwise identical conditions in a nonresonant
medium with susceptibility χr̃ef (for example, glass for the
spectral range of our instrument), yielding T = Iref/|χr̃ef|

2. The
CARS ratio is then defined as IC̅ = IC/Iref = |χ ̃/χr̃ef|2, and we
define the normalized susceptibility χ∼ = χ ̃/|χr̃ef|, which will be
used in the following calculations. Making this normalization is
an important advantage of the present work, as will be further
discussed later. Note also that this simple way of referencing
the signal to a known response using glass is an advantage of
CARS compared to SRS because SRS is not sensitive to the
nonresonant susceptibility. Glass thus provides an ubiquitous
calibration standard, typically part of the microscope sample.

Iterative Kramers−Kronig Method (IKK). In this method, we
use the causality of χ∼ . To do this, we note that from eq 2 we
find

χ
χ χ

χ
ℜ =

̅ − | | − | |∼
∼ ∼

∼
I

( )
2v

C v
2

e
2

e (3)

The inverse Fourier transform of the real part of the
susceptibility is related to the susceptibility in time domain
χv̅(t) =

−1(χ∼ v)

χ χ χℜ = ̅ + ̅ −∼− t t2 ( ( )) ( ) ( )1
v v v (4)

where is the Fourier transform operator. The causality of
the susceptibility implies that χv̅(t) = 0 for negative times, t < 0.
We can therefore retrieve χv̅ by multiplying both terms of eq 4
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with the Heaviside function θ(t) and apply a forward Fourier
transform,

χ θ χ= ℜ∼ ∼−t2 ( ( ) ( ( ))v
1

v (5)

In order to determine χ∼ v, we have to know χ∼ e and |χ∼ v|
2.

Both are determined by iteration for self-consistency. χ∼ e is
determined from the average value of IC̅ − |χ∼ v|

2 over the
spectrum,

∫χ
ω

χ ω| | = ̅ − | |∼ ∼
ω

ω

−
I d

1
2

( )e
2

m
C v

2

m

m

(6)

noting that the spectral average of χℜ ∼( )v is zero. The iteration
repeats the sequence eq 3 - eq 5 - eq 6 until sufficient
convergence is achieved. During the iteration, we can self-
consistently determine χ∼ outside of the measured frequency
range. More details on initialization and convergence control of
the iteration are given in the Supporting Information. We
introduce a Gaussian time filter by replacing θ(t) in eq 5 with
θ̃(t) = θ(t) exp (−(t/τ0)2/2), which suppresses noise beyond
the coherence time of the susceptibility and the wrap-around
effects in the fast Fourier transform (FFT) algorithm that was
used. For the data shown in this work, we used τ0 = 3 ps given
by the experimental spectral resolution.
Phase-Corrected Kramers−Kronig Method (PCKK). The

causality of χ∼ results in Kramers−Kronig (KK) relationships
between the real and imaginary parts of χ∼ . However, only |χ∼ |
is known from a CARS measurement, necessitating the above-
described iterative procedure. To alleviate this, one can use the
fact that also ln(χ∼) obeys KK relationships20 and causality.
This provides a relationship between ℜ(ln(χ∼)) = ln((IC̅)

1/2)
which we measure, and ℑ(ln(χ∼)), which is the phase ϕ of χ∼ =
|χ∼ |exp(iϕ). Therefore, no iterative procedure is required, and
we can directly retrieve the phase ϕ(ω) by

ϕ θ= ℑ ̅−t I( ( ( ) (ln( )))1
C (7)

Equation 7 uses the causality principle as in eq 5, but applied
to ln(χ∼) rather than to χ∼ v. We note that IC̅ is not measured
over an infinite spectral range, such that the values outside of
the measured spectral range have to be estimated before
applying eq 7. We use here a constant continuation of the
measured values, as described in the Supporting Information.
This approximation is reasonable for measured ranges with
limits in regions without resonances. In order to correct to
some extent for the resulting error in the phase, we introduce a
rigid phase shift ϕ0 given by the minimum of ϕ over the
measured frequency interval [ω1,ωu], such that the corrected
phase ϕc = ϕ − ϕ0 is larger or equal than zero over [ω1,ωu].
Having retrieved the phase, the real and imaginary part of the
susceptibility are determined by

χ ϕ χ ϕℜ = ̅ ℑ = ̅∼ ∼I I( ) cos( ) , ( ) sin( )c C c C (8)

The numerical complexity of PCKK is thus given by the
calculation of the logarithm and the root, as well as the FFT
forward and backward transform. We employ the time-domain
filtering described in the IKK method also here, replacing θ(t)
with θ̃(t) in eq 7. The time-filtering results in a spectral
smoothing reducing the noise and not systematically
influencing the phase outside spectral resonances. Noise in
the data shifts ϕ0 to lower values as it is the minimum of ϕ. To

suppress this effect, we determine ϕ0 from ϕ retrieved with a τ0,
which is smaller than the one used to retrieve ϕ to determine
ϕc. In the data presented here, we used τ0 = 0.4 ps for ϕ0 and τ0
= 3 ps for ϕc. We note that a similar field retrieval method
(MKK) based on a modified Kramers−Kronig transform was
previously reported.10 In this method, Iref was not used to
normalize IC, but as negative time component in a phase
retrieval similar to eq 7. Using the analytical properties of the
method, we found that this is equivalent to a correction of the
phase error created by T(ω). However, χℑ ∼( ) was then
retrieved using χℑ ∼( ) = sin(ϕc)(IC)

1/2, which is not corrected
for the amplitude factor 1/(T(ω))1/2, and also not normalized
with respect to a known material (see Figure S1 of the
Supporting Information for a comparison between the MKK
and PCKK methods).
In ref 12, the retrieved phase was corrected by subtracting a

spectrally slowly varying baseline. In other previous work using
MKK,16,21 the retrieved spectra are corrected by determining a
polynomial baseline and subtracting the baseline on a pixel by
pixel basis.

Singular Value Decomposition for Noise Filtering and
Spectral Encoding. The compact singular value decom-
position is a factorization of a S × P matrix D into

= ΣD U VT (9)

In the present application, the P elements are the spatial
points of the image, the S elements are the measured spectral
points, and we assume P > S. U is a S × S unitary matrix
containing a new spectral basis (called the left singular vectors),
Σ is a S × S diagonal matrix containing the average
contributions (singular values) of the new spectral basis vectors
in D, and VT (transpose of V) is a S × P matrix containing the
normalized right singular vectors, which are the spatial
distributions in the new spectral basis. Importantly, the new
basis is chosen such that the cross-correlation between the new
spatial distributions vanishes. The SVD thus finds a new
spectral basis with uncorrelated spatial distributions and sorts
them according to their average contributions.

Noise Filtering. The noise in IC is given by the photon shot
noise multiplied by the excess noise factor of the photo-
multiplier used in the detection. The noise is therefore at large
photon numbers proportional to (IC)

1/2, such that IC/(IC)
1/2 =

(IC)
1/2 has a intensity independent (also called whitened)

Gaussian noise. To remove spectral components which are
dominated by this spatially and spectrally uncorrelated noise,
we calculate the SVD for the data D, given by (IC)

1/2 for each
point. The singular values of white Gaussian noise are well
described by a linear decrease versus index as shown in the
Supporting Information Figure S6. Assuming that at least half
of the singular vectors are dominated by noise, we can
determine this dependence by fitting a linear slope to the
singular values with indices larger than S/2. We then classify
singular values as being noise-dominated when they are less
than a factor (2)1/2 larger than the fit (i.e., when their root-
mean-square (RMS) signal is estimated to be less than the RMS
noise), resulting in an index cutoff of imax. We remove these
noise-dominated components by setting their singular values to
zero, resulting in the matrix Σnf, and the noise-filtered data

= ΣD U VT
nf nf (10)

The noise-filtered CARS data is then used for the field
retrieval algorithms. In previous work, this filtering was done

Analytical Chemistry Article

dx.doi.org/10.1021/ac402303g | Anal. Chem. 2013, 85, 10820−1082810822



directly in IC, which is less effective in separating the signal from
the noise, as shown in Figure 3, and the filter cutoff was
determined using a subjective analysis of the spatial
distributions of the singular components.16

Spectral Encoding. The number of independent channels
recognizable in an image is limited to three, given by the
number of color channels in human vision. However, the
number of spectral channels in vibrational spectra is typically
significantly larger than three, so that we need a method to
distill the most significant information of an image into these
three channels. SVD is suited for this, as it calculates a new
basis of ordered importance, allowing us to show the most
important three singular vectors which are capturing the largest
part of information, typically creating more than 90% of the
total variance in the data.
Blind Factorization into Susceptibilities and Concen-

trations of Chemical Components. We assume that the
CARS susceptibility χ∼ p measured at any voxel p of the image is
given by the weighted sum of the susceptibilities χ∼ {k} of
chemical components numbered by k with non-negative
relative volume concentrations cp

{k}, such that

∑χ χ=∼ ∼
=

cp
k

K

p
k k

1

{ } { }

(11)

where K is the number of relevant components. Furthermore,
each component has a susceptibility with a non-negative

imaginary part, χℑ ∼( )k{ } ≥ 0, and a positive nonresonant
background, χ∼ e. The resonant contribution to χℜ ∼( ), which is

χℜ ∼( )v , is fully determined by χℑ ∼( ) = χℑ ∼( )v and thus does not
contain additional information. It is therefore adequate to use
non-negative matrix factorization (NMF) of χℑ ∼( ) over the
measured spectral points and an additional point for χ∼ e. We
determine the value χê of this additional point by the spectral
average of χℜ ∼( ) weighted with the root of the number of
points to provide the same RMS error as each spectral point of

χℑ ∼( ),

∑χ χ̂ = ℜ ∼
=S

1
( )p

s

S

p se
1

,
(12)

The P × (S + 1) matrix of data D = {{ χℑ ∼( )p s, },χêp} is then

factorized into the non-negative P × K matrix of concentrations
C = {cp

{k}} and a non-negative (S + 1) × K matrix of spectra S =

{{ χℑ ∼( )s
k{ }

},χê
{k}} of the components, such that

= × +D C S ET (13)

where E is the residual of Frobenius norm ||E||, which is
minimized by the NMF. We employ the iterative fast block
principal pivoting algorithm22 to perform this minimization.
NMF determines the product of concentrations and spectra,
with an arbitrary scaling between them, such that the resulting
concentrations, as well as the spectra, are in arbitrary units. If
we assume that the voxel volume is completely filled with
components which are measured in CARS, we can use the
physical constraint that the sum of the volume concentrations
at each voxel is equal to one, which determines the scaling and
thus determines the factorization into susceptibilities and
concentrations of the chemical components (FSC3) in absolute
units. To implement this constraint, we modified the algorithm

in ref 22 by adding to each iteration step (which consists of a
minimization of ||E|| over S, followed by a minimization of ||E||
over C) a minimization of the concentration error |EC|, where
EC = {1−∑k = 1

K cp
{k}}, over a position-independent scaling of the

concentration of each component, using the same minimization
algorithm.

■ RESULTS AND DISCUSSION
Phase Retrieval of Simulated Spectra. To verify the

validity of the phase-retrieval methods IKK and PCKK and to
compare their performance with the methods MKK and MEM
reported in the literature, we first use simulated spectra exactly
adhering to the assumptions of the methods, as discussed in the
Supporting Information Figure S2. In essence, all methods lead
to an acceptable result for this simulation, with the MEM and
PCKK showing the smallest errors. The fastest method is
PCKK because it uses only a double Fourier transform
operation.

Phase Retrieval of Measured Spectra.We apply now the
phase retrieval to data measured with our single-source CARS
microscope. The spectra of IC̅ for bulk PS and GTO samples
are shown in Figure 1 (a,c). The sample preparation is
described in the Supporting Information. The CARS intensity

Figure 1. CARS intensity ratio IC̅ measured on bulk samples of PS in
(a) and GTO in (c) and the corresponding retrieved χℑ ∼( ) in (b,d)
for different methods as labeled. Normalized Raman spectra measured
on the same samples are shown as dashed lines. The RMS error in IC̅
of the IKK method versus iteration number is shown in the inset of
(b).

Analytical Chemistry Article

dx.doi.org/10.1021/ac402303g | Anal. Chem. 2013, 85, 10820−1082810823



spectra of the samples and of glass have been acquired in the
spectral ranges of 1200−2400 and 2200−3900 cm−1 using
appropriate filters and dispersion settings,3 and IC̅ was
generated from this data in the range of 1200−3900 cm−1 for
the PCKK, IKK, and MEM methods. For the MKK method,
which uses IC, χℑ ∼( ) was retrieved separately in the two spectral
ranges. The retrieved χℑ ∼( ) values are shown in Figure 1 (b,d),
together with χℑ ∼( ) of the MKK method in arbitrary units. All
major features observed in the Raman spectra (details of the
confocal Raman microspectrometer can be found in the
Supporting Information) acquired on the same samples
(dashed lines) are reproduced in the retrieved χℑ ∼( ), including
the weak resonances at (2980, 3003, 3164, 3203) in the PS
spectrum and the peak at 1744 cm−1 from the CO stretch of
the ester bonds between glycerol and the oleic acid23 in the
GTO spectrum. The IKK and MEM methods produce almost
identical imaginary parts of the susceptibility, while the MKK
result differs mainly because of the only partially corrected
transduction T(ω). χℑ ∼( ) , retrieved by IKK, MEM, and MKK,
shows a negative offset. In the PCKK method, which includes
phase correction, a positive χℑ ∼( ) is obtained. We note that
correcting χℑ ∼( ), as done in ref 16, instead of correcting the
phase, leads according to eq 8 to an inconsistency of retrieved
and measured IC̅. In the inset of Figure 1, the RMS error in the
iterative method is shown as a function of the iteration steps
(see the Supporting Information for details). The minimum
RMS error is obtained within 20 iterations. A further example,
the spectrum of a lipid droplet in a 3T3L1-derived adipocyte, is
shown in Supporting Information Figure S7.
Determination of Spectra and Absolute Concentra-

tions of a Lipid Mixture Using FSC3. Hyperspectral CARS
images and Raman spectra of the octanoic acid/α-linolenic acid
mixtures were acquired in the frequency region of 2400−3800
cm−1. The sample preparation is described in the Supporting
Information. The CARS images cover an area of 10 × 10 μm2,
and a spectral step of 3 cm−1 size has been used. After SVD de-
noising with imax = 20, χℑ ∼( ) has been retrieved using PCKK.
FSC3 with K = 2 was then applied to the ensemble of χℑ ∼( )
(Raman) spectra of the different mixtures, resulting in the
spectra and concentrations shown in Figure 2a,b, respectively.
The FSC3 spectra quantitatively reproduce the spectra of the
pure substances with deviations in the few percent range,
showing that FSC3 is able to determine the component spectra
without supervision. The resulting absolute concentrations of
the FSC3 components are shown in the inset versus the
nominal concentration, showing an error of a few percent.
Interestingly, the performance of FSC3 on Raman and CARS
data is similar, implying that hyperspectral CARS can provide
similar chemical specificity as Raman. We note that the two
components that were used differ only by 24% in their Raman
spectra (given by the norm of the difference). Concentrations
of components with larger differences are expected to be
retrieved with a smaller error. We have compared the
performance of the MCR factorization method used in ref 8
with FSC3 (details given in Figure S8 of the Supporting
Information). We find that apart from being about 2 orders of
magnitude slower, the MCR method fails to deterministically
reproduce the spectra and concentration of the chemical
components if a random initial guess for the spectra is used, as
used in FSC3 and required for an unsupervised and unbiased

determination of the absolute chemical composition of the
sample.

Analysis of Hyperspectral CARS Images of Cells.
Hyperspectral CARS images of fixed 3T3L1-derived adipocytes
were acquired with a pixel size of 0.3 × 0.3 μm2 and 3 cm−1

spectral steps in the two frequency ranges, 1200−2400 and
2200−3900 cm−1. The sample preparation is described in the
Supporting Information. To show the difference between using
(IC)

1/2 or IC in the SVD noise filtering, we show in Figure 3 the
singular values Σi,i for both cases, normalized to the respective

Figure 2. a) FSC3 χℑ ∼( ) spectra s{k} (solid lines) of mixtures of
octanoic and α-linolenic acid, compared with the spectra of the pure
compounds (dashed lines). Inset: FSC3 concentrations (v/v) c{k}

versus nominal concentration. (b) as (a) for Raman spectra.

Figure 3. Singular values of the SVD noise-filtering procedure. Squares
and circles show singular values of (IC)

1/2 and IC, respectively, and the
red line is a linear fit to the singular values of (IC)

1/2 for i > 240. The
gray area indicates the values set to zero for noise filtering.
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largest value Σ1,1. The singular values of (IC)
1/2 are decaying

faster, and they show a linear decay with index for the higher
indices, as expected for white Gaussian noise. The linear fit to
the upper half of the values (i > 240) and the resulting cutoff
(imax = 30) is also shown. The singular values of IC instead do
not show the linear behavior and are not suited for the
unsupervised noise filtering. Using the noise-filtered IC̅, we
retrieve χℑ ∼( ) with PCKK. For visualization, we use SVD on

χℑ ∼( ) and show images of the first five singular components in
Figure 4. The first component is dominant outside the cells and
can be associated to water, in agreement with the spectrum
having a dominant band around 3350 cm−1 that is related to the
O−H stretch modes. The second component shows the lipid
droplets in the cells with a spectrum peaked at 2850 cm−1,
corresponding to the CH2 stretching mode. The third
component is present in the other regions of the cell, including
the cytosol, nuclear membrane, and nucleoli. Its spectrum
shows a peak around 2930 cm−1 which is typical for proteins/
nucleic acids.8 The fourth component relates to inhomogene-
ities in the chemical composition of the lipid droplets. The fifth
component is a modification of the water spectrum and
fluctuates within the cytosol and the nucleus. SVD decom-
position results for IKK-derived χℑ ∼( ) are shown in the
Supporting Information Figure S9.
The spatial distribution of up to three singular components

can be shown in color images. This is illustrated in Figure 4
which shows a RGB image encoding the first component as red,
the second as green, and the third as blue. Using alternative
encodings can vary the contrast, as shown in the RGB image

created with the fourth, fifth, and sixth component as red,
green, and blue channels, respectively.
In the SVD images of (IC)

1/2, shown in the Supporting
Information Figure S10, the lipid droplets are surrounded by a
thin layer of a different component. This is a result of the
interference between χẽ and χṽ in (IC)

1/2. In the corresponding
images of χℑ ∼( ) (see Figure 4 for PCKK and Supporting
Information Figure S9 for IKK), the lipid droplets are
homogeneous in color, indicating a homogeneity in the
chemical composition.
The SVD spectra of χℑ ∼( ) do not correspond to individual

chemical components but rather to differences between
chemical components fluctuating independently. The SVD
analysis helps to determine regions of the samples which
present the same color and that can be identified as a single
substance. Once a substance is identified, one can rotate the
basis by manually defining regions which are assumed to be
pure substances, as detailed in the Supporting Information
Figure S11. However, this is a subjective procedure and does
not apply the physical constraints which are used in the FSC3

method of blind factorization into susceptibilities and
concentrations of chemical components.
The results of FSC3 on χ∼ are shown in Figure 5 for K = 4

chemical components. Both the spatial distribution of the
components concentration and their spectra can be attributed
to expected chemical components. Component 1 has the
largest volume fraction (53%) within the image, and both the
spectrum and spatial distribution are consistent with its
attribution to water. Component 4 has a volume fraction of

Figure 4. Results of a SVD on hyperspectral images of χℑ ∼( ) measured on 3T3L1-derived adipocytes in the 2400−3800 cm−1 range and retrieved
with PCKK. Top: Spatial distribution of ΣVT of the first five singular components on a linear grayscale with black (white) corresponding to the
minimum (maximum) value, respectively. Scale bar indicates 5 μm. Bottom: two images with color encodings labeled by the singular component
number after each color letter. Graphs: (a) first five singular spectra, vertically displaced for clarity, (b) singular values, (c) χℑ ∼( ) spectra at the
positions indicated by the symbols in the R1G2B3 image.
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9%, has a spectrum similar to GTO (compare Figure 1), and is
highly concentrated in the droplet structures. This shows that
these structures are lipid droplets. Component 2 has a volume
fraction of 26%, is spatially located in the cytosolic regions and
in the nucleus, and has a spectrum peaked around 2930 cm−1.
This component is attributed to proteins and nucleic acids .8

Interestingly, it shows not only the CH3 resonance around
2930 cm−1 but also comes with a water component which has a
slightly modified spectrum compared to the bulk water
spectrum of component 1. From the comparison between the
area of the water peak in components 1 and 2, we can estimate
a 57% relative volume fraction of water in this component. This
can be interpreted as the volume of a solvation layer around the
proteins and nucleic acids. Assuming a 1 nm thick solvation
layer,24 the relative volume fraction is expected for core sizes of
4(6) nm for a cylindrical (spherical) geometry, respectively.

These sizes are within a factor of 2, consistent with protein/
nucleic acid sizes, supporting the attribution of the modified
water component to a solvation layer. Finally, component 3 is
mostly present at the membrane of the lipid droplets,
characterized by a small peak at ∼2750 cm−1 and a deformed
water spectrum, but it has a relative concentration much smaller
than the other substances. This is the weakest component and
is attributed to a mixture of components of lower concentration
not captured by the other components. By increasing the
number of components, K, the spectra of component 2 and 4
split into more components with slightly different water/
protein/lipid spectral features. This is expected because there
are many different lipids/proteins and solvation layers in the
complex cell machinery. A color image encoding the
concentrations of components 1 in blue, 4 in green, and 2 in
red gives a good rendering of the chemical structure, as shown

Figure 5. Results of FSC3 with K = 4 on χ∼ described in Figure 4. Top: spatial distributions of the volume concentration C. Grayscale ranges from 0

(black) to 1.1 (white). The corresponding component spectra χℑ ∼( )k{ }
are displayed in (a) together with the spectrally averaged χℜ ∼( )k{ }

(dashed
lines). Middle: color concentration image using the first component as blue, the second as red, and the fourth as green, scaled to saturate at the
concentration maximum. The spatial distribution of the concentration error EC is shown on a grayscale from −0.28 to 0.16, and the spatial
distribution of the spectral error ES is shown on a grayscale from 0.005 to 0.31. Bottom: Results of FSC3 using a restricted spatial range as shown and
spectral range 2500−3100 cm−1. Grayscale ranges from 0 (black) to 0.74 (white). Corresponding component spectra are displayed in (b). Scale bars
indicate 5 μm.
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in Figure 5. The error of the factorization is quantified by the
relative spectral error, Es = (P∑s = 1

S Es,p
2 )1/2/ ||D||, and is shown

in Figure 5. The maximum relative error is 31% and is localized
at large lipid droplets. The average spectral error is 3.5%. The
relative concentration error EC is also shown in Figure 5 and
has a maximum of about 25%. Distortions of the excitation
fields by the spatial refractive index structure lead to a
modulation of the CARS intensity and thus the retrieved
concentration. Furthermore, component spectra might change
if chemical substances are interacting with each other, which is
not captured by the factorization into independent compo-
nents. The spatial distribution of EC shown in Figure 5 indicates
that EC is dominated by the refractive index structure, having
minima at the edges and maxima at the center of the droplets.
The spatial distribution of ES gives complementary information
to EC, indicating regions which contain spectral features and
thus chemical compositions which are not captured by the
FSC3 components. The sensitivity of FSC3 can be enhanced by
selecting regions of interest in the spatial and spectral domain.
To resolve chemical differences between cytosol, nucleus, and
nucleoli, we have analyzed only the corresponding spatial
region, and we have reduced the spectra range to 2500−3100
cm−1 to reject the contribution of the water spectrum. The
result (bottom row of Figure 5) reveals that nucleoli and the
nuclear membrane contain mostly proteins/nucleic acids
(component 2), while the cell cytosol shows a mixed
protein−lipid composition (component 4). Water (component
1) is the dominant component of the nucleoplasm.
The inclusion of the nonresonant susceptibility in the

factorization, afforded by the use of CARS as opposed to SRS,
is specifically important for samples containing components
without significant vibrational resonances in the measured
spectral range. This is the case for water in the characteristic
region. As an example, we have performed FSC3 of the same
cells as Figure 5 in the characteristic region, as discussed in the
Supporting Information Figure S12. We find that the resulting
concentration error EC is in the order of 100% when not
including the nonresonant susceptibility. The FSC3 analysis is
also suited for samples with a weak resonant susceptibility. As
an example of this case, we have imaged differentiated mouse
embryonic stem cells (ESc), as discussed in the Supporting
Information Figure S15.

■ SUMMARY
In summary, we have demonstrated a new method which we
call FSC3 to quantitatively analyze and visualize effectively the
spectral information contained in hyperspectral CARS micros-
copy images. The method employs de-noising by singular value
decomposition on whitened CARS intensity data with an
autonomous identification of noise components. The subse-
quent phase retrieval is done using a fast noniterative algorithm
(PCKK) based on the causality of the response, yielding the
susceptibility, which is linear in the concentration of the
chemical components. We then use the physical constraint of
positive concentrations, the positive imaginary part of the
susceptibility as well as the positive nonresonant real
susceptibility, to determine the susceptibilities and absolute
concentrations of individual chemical components from the
hyperspectral images. The validity and effectiveness of the
PCKK method in comparison to other methods in the
literature is demonstrated using simulated spectra as well as
measured CARS and Raman spectra of polystyrene and lipids.
The ability of FSC3 to quantify absolute concentrations is

demonstrated using lipid mixtures. Finally, the efficacy of the
method to provide an unsupervised analysis and visualization of
the spatially resolved absolute concentrations of chemical
components is shown in adipocytes and differentiated mouse
embryonic stem cells. In conclusion, FSC3 can be used in a
wide range of applications requiring fast and quantitative
volumetric chemical imaging, from live cell microscopy to
material science applications, providing an unsupervised
technique to identify unknown chemical differences within
and between samples.
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