
 ORCA – Online Research @
Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional
repository:https://orca.cardiff.ac.uk/id/eprint/52538/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Hu, Shi-Min , Zhang, Fang-Lue, Wang, Miao, Martin, Ralph Robert and Wang, Jue 2013. PatchNet: a patch-
based image representation for interactive library-driven image editing. ACM Transactions on Graphics 32

(6) , 196. 10.1145/2508363.2508381

Publishers page: http://dx.doi.org/10.1145/2508363.2508381

Please note:
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may
not be reflected in this version. For the definitive version of this publication, please refer to the published

source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made

available in ORCA are retained by the copyright holders.

PatchNet:
A Patch-based Image Representation for Interactive Library-driven Image Editing

Shi-Min Hu1 ∗ Fang-Lue Zhang1 Miao Wang1 Ralph R. Martin2 Jue Wang3
1 Tsinghua National Laboratory for Information Science and Technology, Tsinghua University, Beijing

2 Cardiff University 3 Adobe Research

PatchNet

User input

(a) (b) (c) (d)
Figure 1: PatchNets support interactive library-based image editing. (a) Input image and its PatchNet representation. (b) The user draws
a rough sketch to specify an object synthesis task. (c) Using PatchNets, the system searches a large image library in a few seconds to find
the best candidate regions meeting editing constraints. (d) The user selects candidate regions to synthesize output as desired, or modifies the
sketch to synthesize different object structures (lower-right).

Abstract

We introduce PatchNets, a compact, hierarchical representation de-
scribing structural and appearance characteristics of image regions,
for use in image editing. In a PatchNet, an image region with
coherent appearance is summarized by a graph node, associated
with a single representative patch, while geometric relationships be-
tween different regions are encoded by labelled graph edges giving
contextual information. The hierarchical structure of a PatchNet
allows a coarse-to-fine description of the image. We show how
this PatchNet representation can be used as a basis for interactive,
library-driven, image editing. The user draws rough sketches to
quickly specify editing constraints for the target image. The system
then automatically queries an image library to find semantically-
compatible candidate regions to meet the editing goal. Contextual
image matching is performed using the PatchNet representation, al-
lowing suitable regions to be found and applied in a few seconds,
even from a library containing thousands of images.

CR Categories: I.3.6 [Computing Methodologies]: Com-
puter Graphics—Methodology and Techniques; K.7.m [Comput-
ing Methodologies]: Image Processing and Computer Vision—
Applications

Keywords: PatchNet, image representation, patch synthesis, in-
teractive image editing, contextual features

Links: DL PDF WEB

∗Corresponding author. E-mail:shimin@tsinghua.edu.cn.

1 Introduction

Patch-based synthesis methods have recently emerged as a power-
ful tool for various image and video editing tasks [Kwatra et al.
2003; Barnes et al. 2009; Darabi et al. 2012; Xiao et al. 2011].
Existing patch-based interactive editing systems usually require the
user to provide semantic guidance or constraints to the low-level
patch synthesis algorithms to achieve semantically meaningful re-
sults [Hu et al. 2013]. In particular, for multiple source synthesis,
when new objects are placed in a target image by cloning source re-
gions from other library images, the user must manually specify the
source region to copy. This quickly becomes tedious if the number
of library images is high, as the user must manually search through
the library to find useful source image regions. This could poten-
tially be automated by using dense correspondence algorithms such
as NRDC [HaCohen et al. 2011], but applying such algorithms to
the entire library would be extremely slow, and would need redoing
for each new input image. An alternative approach would be to use
image search methods to find the most similar images in the library
to the input image, giving a smaller reference data set for a partic-
ular input image. However, image search based on global features
may not yield optimal results when local portions of images are to
be used.

The fundamental difficulty in extending patch-based synthesis
methods to a large library lies in the fact that patches only describe
local image appearance, while a high-level representation of image
structure that would allow efficient, semantic search of the library is
missing. Although compact image representations have been exten-
sively used in computer vision for applications such as image clas-
sification and object recognition, such representations are typically
built upon highly abstracted features (e.g. a bag of visual words),
and so cannot be directly applied to local image editing tasks in
which the object scale is relatively small.

In this paper we address the problem of how to efficiently leverage
a large image library for interactive image editing. We present the
PatchNet, a compact, patch-based image representation that cap-
tures characteristics of both the global structure and the local ap-
pearance of an image. As shown in Fig. 2, a PatchNet is a graph
model in which each node represents a contiguous, homogeneous

http://doi.acm.org/10.1145/1111111.2222222
http://portal.acm.org/ft_gateway.cfm?id=2222222&type=pdf
http://cg.cs.tsinghua.edu.cn/people/~fanglue/papers/PatchNet/

image region whose appearance can be well summarized by a sin-
gle patch. Links are placed between nodes representing spatially
adjacent regions. PatchNet represents the image in a hierarchical
fashion, by making use of compound nodes which describe a group
of small structures that together form a semantic region. We give an
efficient algorithm to construct a PatchNet from an input image. By
applying this algorithm to a large image library, we create a Patch-
Net library for image editing. A graph matching algorithm based
on the PatchNet representation can efficiently find similar image
regions in the library to a region of an image being edited.

We show how such a PatchNet library can be used for interactive
image editing, using a novel interface. Our system eliminates the
need for the user to manually search through images in the library
to find suitable candidate regions for editing. Instead, the PatchNet
library is automatically queried to find and rank compatible can-
didate regions suitable for completing an editing task specified by
loose user constraints. For example, if the user wants to insert a new
object in the source image (see Fig. 1), the only input needed is to
roughly specify the desired size and location of the object. This is
converted to a requirement to insert a new node into its PatchNet
representation. Our system then finds all nodes that are in contact
with the new node, to determine a contextual environment for this
editing task, and use it to search the PatchNet library for candidate
objects that are surrounded by the most similar contextual environ-
ments. This takes just a few seconds. The user then can select one
of these candidate regions to synthesize an object with similar ap-
pearance for insertion into the image. The user can also provide ad-
ditional constraints by sketching rough structural lines, as shown in
Fig. 1(d), whereupon the system will synthesize new objects whose
geometric structures match these guide lines.

2 Related Work

We next briefly review representative work closely related to ours.

Patch-based image editing. Patch-based methods have been ex-
tensively explored for various automatic image and video editing
tasks such as image super-resolution [Freedman and Fattal 2011],
denoising [Buades and Coll 2005], stitching [Darabi et al. 2012],
painterly rendering [Zhang et al. 2011], texture synthesis [Efros
and Freeman 2001; Wei et al. 2009; Risser et al. 2010; Lasram and
Lefebvre 2012], and image completion [Sun et al. 2005; Wexler
et al. 2007]. Recently, a series of patch-based fast approximate
nearest-neighbor search algorithms have been proposed [Barnes
et al. 2009; Barnes et al. 2010; Besse et al. 2012], enabling new user
interfaces for real-time image editing based on patches. HaCohen
et al. [2011] performed example-based editing using a patch-based
dense correspondence algorithm for matching large regions in two
images having a certain amount of shared content. However, these
systems do not scale well to work with a large image library. Our
system extends patch-based editing methods to automatically con-
sider all images in an image library, and yet do so while maintaining
interactive performance.

Region matching and contextual similarity. Various approaches
based on optical flow [Brox et al. 2009], sparse feature match-
ing [Lowe 2004], dense feature matching [Liu et al. 2008],
dense patch matching [Gould and Zhang 2012], and graph match-
ing [Chevalier et al. 2007; Baeza-Yates and Valiente 2000; Hlaoui
and Wang 2002] have been proposed to match visually similar ob-
jects across images. However, they cannot be directly applied here
for several reasons. Firstly, most of them involve expensive compu-
tation and so are unsuited to rapidly searching a large image library.
Secondly, the objects to be matched should appear in both images,
but in our application this is not the case: the user indicates a region
in the image being edited where something is to be inserted (e.g. a

Figure 2: The PatchNet representation (left) of an example image
(top-right). Orange edges indicate sibling nodes that are spatially
adjacent, while gray edges connect parents and children. Right:
edges between siblings store a contextual map showing positional
relationships of siblings.

window shaped portion of a wall), but suitable objects (e.g. win-
dows) only exist in the library images. The PatchNet representation
allows us to match the contextual environments of objects, rather
than objects themselves.

Recently, contextual similarities have been used for object track-
ing [Wu and Fan 2009] and matching 3D models [Jain et al. 2012]
and materials [Fisher and Hanrahan 2010]. For image matching,
Malisiewicz et al.[2009] and Lee and Grauman[2010] use contex-
tual relationships between co-occuring objects in images to find
matching objects, or discover new object categories. Labeled im-
ages are required in both methods, while PatchNet does not need
any hand-labeled data. In [Zhang and Tong 2011] and [Liu and Yu
2011], they try to make cloned regions more compatible with the
context. But they cannot avoid artifacts when the object is unsuited
to be cloned to the target position.

Compact image representation. Extracting features for compact
image representation has long been studied in computer vision.
The widely-used bag-of-visual-words model [Sivic and Zisserman
2003; Fei-Fei and Perona 2005] represents an image by a sparse
vector of occurrence counts of visual words, which only contains
abstract, discriminating features that are not expressive enough for
image synthesis. Image epitomes [Jojic 2003] and jigsaws [Kannan
et al. 2006] are condensed summaries of images composed of an
arrangement of patches from the original image. They only repre-
sent the main regions in an image while discarding smaller objects
which may be semantically important. They also do not provide
accurate contextual relationships between different regions. Sim-
ilarly, the object-centric image-level representation proposed by
Russakovsky et al. [2012] does not encode accurate spatial rela-
tionships either. Wei et al. [2008] proposed a method to extract a
texture compaction that best summarizes the original texture. Our
PatchNet representation contains more data, allowing it to accu-
rately describe image structures and their spatial relationships at
various scales, and are thus more suited to image editing.

Figure 3: PatchNets visualized for various images. Top: input image. Bottom: visualization of constructed PatchNet; structure nodes are
shown in different colors, while top level compound nodes are shown in gray with black outlines.

Image segmentation. Constructing a PatchNet involves partition-
ing the image into regions with homogeneous appearance. Image
segmentation has a large literature, and approaches can be broadly
categorized into two types. High level approaches, such as figure-
ground segmentation [Kuettel et al. 2012; Liu and Yu 2012], try
to separate semantically meaningful objects from images. Low
level approaches use image features such as color [Comaniciu et al.
2002], gradients [Bosch et al. 2007], contours [Arbelaez et al. 2011]
and textures [Galun et al. 2003] to group pixels into coherent re-
gions. Our PatchNet construction uses low-level segmentation. As
it is intended for patch-based image editing, it must segment the
image so that each region or patch has coherent appearance. Seg-
mentation approaches based on other features may not provide co-
herent appearance at the patch level, and are thus not suited to this
specific application.

Closely related to our approach is the segmentation by composi-
tion method proposed by Bagon et al. [2008]. It defines a good
image segment as one that can be easily composed from its own
patches. This approach produces high quality results, but since
it allows transformations of patches, finding a good segmentation
involves a complicated, iterative optimization procedure. Our ap-
proach makes heuristic decisions, but is fast and scales well to large
image libraries. Furthermore, our method is not designed to gen-
erate a perfect image segmentation; instead it focuses on yielding
a compact, patch-based representation of an image for interactive
editing applications.

Library-driven interactive editing. Recently, many systems have
been proposed to utilize large datasets for interactive editing. Hays
and Efros [2007] gave a data-driven approach to fill user-defined
holes in a source image with regions from library images of similar
scenes. However, matching to find suitable region in one image is
reportedly slow (taking over one CPU hour), due to the lack of a
highly-abstracted image representation, a problem we overcome in
PatchNets. Kopf et al. [2012] used data-driven methods for eval-
uating image completion results. For sketching applications, the
ShadowDraw system [Lee et al. 2011] provides a realtime inter-
face to guide freeform drawing of objects, but is limited to creating
drawings rather than photorealistic synthesis.

Our approach is closely related to the Sketch2Photo system [Chen
et al. 2009], which turns a user sketch into an image by segment-
ing and combining images of desired objects found in a database.
It requires semantic (text) labels on both the input sketch and the
database images, and is computationally expensive (taking 20 min-
utes to insert a single scene item). A similar system was proposed
by Johnson et al. [2006], with the same limitations. Our system
is completely data-driven and provides realtime feedback. Other
systems, such as Photo Clip Art [Lalonde et al. 2007], Photos-

ketcher [Eitz et al. 2011], CG2Real [Johnson et al. 2011] and the
systems proposed by Hu et al. [2010] and Shrivastave et al. [Shri-
vastava et al. 2011], also provide sketch interfaces for image synthe-
sis or retrieval. They only use the sketched shape for library search,
while our system uses contextual information related to the sketch.
As Figure 1(d) shows, our system gives the user artistic freedom to
synthesize objects with new shapes not present in the image library.
Another significant difference is that previous editing systems try to
match the user sketch to the dominant object in a reference image,
while our system is able to find suitable local regions in reference
images.

3 PatchNets

We now describe the proposed PatchNet representation, and show
how to construct it for a given image.

3.1 Nodes and Edges

The PatchNet representation is motivated by two observations.
Firstly, an image region, i.e., a contiguous, local, spatially coher-
ent part of an image, often has coherent appearance that can be
well summarized by a representative patch (an n× n set of pixels,
n = 13 in our experiments). Secondly, image structure can be de-
scribed in terms of spatial relationships between such regions. To
capture both characteristics, the PatchNet is a graph model, where
each region is represented by a graph node, and relationships be-
tween regions are encoded by graph edges.

Consider the example in Fig. 2(a). Suppose an input image I has
already been partitioned into a few coherent regions (we will dis-
cuss how to do this in Sec. 3.3), denoted as Υi. Let the PatchNet
representation of I be ΨI . Each region Υi is represented by a node
Nr
i in ΨI , and its appearance is summarized by a representative

patch P (Nr
i).

To encode adjacency relationships between image regions, we con-
nect two nodes if their corresponding regions are spatially con-
nected, and assign a contextual map to the edge. In detail, given
two such nodes Na and Nb, their contextual map M(Na, Nb) is a
5×5 grayscale image, describing the spatial distribution of patches
in Nb relative to the positions of patches in Na. For example, in
Fig. 2(b), we show the contextual map linking the sky and the roof
region. Intuitively, this contextual map is a probability map (white
means higher probability) of relative location: where the two re-
gions meet, it shows where sky pixels are likely to appear if the
center pixel is a roof pixel. Here, sky pixels only appear above and
to the left of roof pixels.

3.2 The Hierarchical Structure

A natural image may contain large, visually dominant objects such
as a large region of sky or ground, as well as small, relevant struc-
tures such as a window in a wall (see Fig. 3). A good image repre-
sentation should distinguish between regions with different visual
importance. A flat graph as defined above fails to do so as it treats
all regions equally, resulting in an over-complex graph that is un-
helpful.

To achieve a more meaningful image abstraction, PatchNets employ
a hierarchical structure where regions are placed at different levels
based on their visual dominance. In our implementation, the visual
dominance of a region is simply determined by its size, although
more advanced saliency measures, such as saliency filters [Perazzi
et al. 2012], could be potentially employed to achieve this goal. As
shown in the example in Fig. 2, the top level of the PatchNet graph
contains nodes corresponding to dominant regions of the image.
Other regions are grouped together based on spatial connectivity to
form several compound nodes at this level, yielding a coarse image
overview. A compound node, denoted as Nc

i , does not correspond
to a single coherent region; it instead represents a group of spatially-
connected small regions. To distinguish between compound nodes,
and other nodes which have a one-to-one mapping to image regions,
we call the latter real nodes.

Only compound nodes have children. At the next level of the graph,
compound nodes are further decomposed into finer levels of nodes,
creating a progressive, coarse-to-fine image representation. The hi-
erarchical decomposition ends when there is no compound node at
some level. The whole representation is compact, as each image
region is summarized by a single representative patch stored in the
graph.

3.3 Constructing a PatchNet

We now explain how to efficiently construct the PatchNet represen-
tation for a given image. Our method involves three main steps: (i)
determining representative patches; (ii) determining real nodes and
their corresponding image regions; and (iii) forming a graph.

Finding representative patches. We first extract a list of image
patches that best represent the image appearance. Each patch P is
associated with a mask m, indicating parts of the image that are
well described by the patch. These masks may overlap, and each
mask may contain disjoint parts. Our algorithm makes use of a
pixel-wise occupancy map Q that marks all pixels not yet covered
by any existing masks. Initially all pixels in the image are marked as
unoccupied inQ. We then iteratively apply the following procedure
until all pixels are covered.

1. Choose as the center of a patch Px the pixel location x with
the minimal gradient magnitude amongst all pixels that are
unoccupied in Q.

2. Locally re-center the patch Px as a representative patch, using
Eqn.(1).

3. Find all image patches (anywhere in the image) that can be
represented by Px, and construct a corresponding mask mx.
In detail, for each pixel y, compute the L2 norm color dif-
ference in Lab space between Px and Py as dc(Px, Py). If
dc(Px, Py) < δx,y , an adaptive threshold (see Eqn.(2)), then
Py is merged into mx and y is marked as occupied in Q.

In step 1, we process unoccupied pixels in increasing order of pixel
gradient magnitudes, so that we first extract regions with a relatively
uniform color, before processing more complex regions.

(a) Input image (b) Flat region (c) Textured region

(d) Adaptive thres. (e) Initial masks (f) Merged mask

Figure 4: Adaptive thresholding and mask merging. Given (a), ini-
tial masks generated by a fixed threshold are shown in (b) and (c),
starting from the red seeds. In (c), the mask is too small, while an
adaptive threshold gives the result in (d), covering a larger, visually
coherent region. Several initial masks are shown in (e), while (f) is
the merged mask: most of the water region is now covered by just
one mask, corresponding to a single representative patch.

In step 2, the center position of Px is adjusted to:

xnew =
∑
z∈Px

gzz/
∑
z∈Px

gz, (1)

where z refers to pixel positions in the patch Px, and gz is the gra-
dient magnitude at pixel z. Basically, xnew is the local gradient
centroid. The purpose of shifting the patch is to allow the patch to
snap onto a nearby dominant image structure and better represent
it.

In step 3, when assessing the patch difference dc(Px, Py), we use
an adaptive threshold δx,y defined as:

δx,y = k

(
g(x)

C(x, y)

)α
, (2)

where k and α are constants set to 2 and 0.5 respectively, g(x)
is the average gradient magnitude in patch Px, and C(x, y) is the
average color difference betweenPx andPy , computed in Lab color
space using a range of [0, 255]. Intuitively, this threshold is higher if
Px contains strong gradients (i.e. g(x) is large), so region growing
is less restrictive in a highly textured region. On the other hand,
if Px has a relatively uniform color, then the threshold is mainly
determined by the color difference between Px and Py , preventing
regions with different colors being merged. Fig. 4 compares use
of fixed and adaptive thresholds on an example image with both
textured and smooth regions. Both types of regions are handled
well using this adaptive threshold, but not by a fixed threshold.

Determining real nodes. The above procedure produces a list
of representative patches Pi, each associated with a mask mi, as
shown in Fig. 4(e). To make the representation more compact, we
postprocess the masks. Specifically, if two masks have a significant
amount of overlap (more than 30% of the smaller mask), we merge
them into a single mask, represented by the representative patch
of the bigger mask. This process is iterated until no further merg-
ing occurs. An example of mask merging is shown in Fig. 4(f).
After mask merging, we resolve remaining overlaps by assigning
each image patch in overlapping masks solely to that representative
patch which best describes it.

Each mask corresponds to one or more disjoint regions. We create a
real node for each region: multiple real nodes can thus point to the
same representative patch. For example, two sky regions may be
separated by a mountain, and thus have separate real nodes, but the
same representative patch. Finally, for compactness, we remove all
nodes too small to be of interest (those with fewer than 200 pixels
in our system). The result is a list of real nodes Nr

i , each of which
corresponds to a single, non-overlapping image region Υi that is
well represented by a representative patch Pi.

Graph construction. We first find all real nodes that should be
included in the top level of the graph. To do this for each represen-
tative patch Pi, we evaluate its visual dominance by examining the
number of regions it is associated with and their sizes. Assuming
that the largest region is bigger than a threshold (we use 10% of the
image pixels), we include all nodes with this representative patch
into the top level of the graph. Together these nodes define the
main image structure. The remaining nodes are then divided into
several groups based on spatial connectivity (i.e. using the “flood-
fill” operation on the remaining regions to determine groups). Each
group forms a compound node. If the largest region is too small,
we reject this image as being unsuited to PatchNet representation.
In such a case, it is unlikely to be suitable as an image source for
image editing. We discuss this limitation further later.

We then expand the compound nodes progressively, as formally de-
scribed in Algorithm. 1. At each level, compound node Nc

i is ex-
panded by looking at all the nodes that belong to the region it repre-
sents. Amongst these nodes, those having direct contact with any of
the sibling nodes ofNc

i are treated as its real child nodes. The other
child nodes form several spatially-connected groups, each corre-
sponding to a compound child node of Nc

i . This process continues
to deeper levels until no further compound nodes are found. Fig. 3
visualizes the top level PatchNet nodes for some example images,
showing how a PatchNet can provides a useful summary of image
appearance and structure for different types of images.

Once the hierarchical structure has been determined, we add an
edge between any pair of nodes Na and Nb that are adjacent
to each other at the same level, and compute the 5 ∗ 5 contex-
tual map M(Na, Nb). To calculate the value of location (i, j) in
M(Na, Nb), we count the number of pixels belonging to Nb for
positions with an offset of (i− 2, j− 2) to all the pixels in Na, and
then normalize the map into [0,255].

Algorithm 1 Compound node expansion

1: function EXPAND(NC
i)

2: for every Nr
k do

3: TempSet← ∅
4: if Υk is covered by the region of NC

i then
5: if Nr

k is spatially connected to siblings of Nc
i then

6: Make Nr
k a real child of Nc

i

7: else
8: Put Nr

k in TempSet
9: end if

10: end if
11: for every spatially-connected group in TempSet do
12: Form a new child compound node NC

i+1

13: EXPAND(NC
i+1);

14: end for
15: end for
16: return
17: end function

4 Image Matching using PatchNets

In this section we explain how the PatchNet representation can be
used for efficient contextual graph matching between two images.
Matching lies at the core of our system, allowing rapid search of
a large library during interactive image editing, as we will demon-
strate later.

4.1 Contextual Sub-graph Matching

Given an input image a and its PatchNet Ψa, suppose the user has
marked an area Ωa where a new object is to be inserted. This area is
represented as a new nodeNa which is inserted into Ψa based on its
spatial relationships with existing nodes. Ωa is also subtracted from
the regions of existing nodes to ensure nodes do not overlap. Given
another PatchNet Ψb representing image b, the task is to efficiently
find the node N∗b that best matches Na. Note that N∗b could be a
real or compound node.

To solve this matching problem, we first identify all sibling nodes
of Na, denoted Ns

a,i, i = 1, ..., L, where L is the total number
of such siblings. These nodes are spatially connected to Na and
define its contextual environment. These are the key to finding the
right match N∗b in Ψb. We call this group of nodes the contextual
group for Na.

We examine all nodes Nb in Ψb, and compute the contextual dis-
tance Dc(Na, Nb) to measure the similarity of the contexts of Na
and Nb. The node with minimal distance is chosen as N∗b . To find
it, we extract the contextual group of each Nb, denoted as Ns

b,j ,
j = 1, . . . ,K (note that we allow K 6= L), and compute the con-
textual distance between Na and Nb from their contextual groups
using:

Dc(Na, Nb) =
∑
i

min
j=1,...,K

D
(
Ns
a,i, N

s
b,j

)
, (3)

where D(·, ·) is the distance between two nodes as defined in
Eqn.(5). Intuitively, for each node Ns

a,i in the contextual group
of Na, we find the minimum distance to any node in the contextual
group of Nb (i.e. Ns

b,j), and add it to the total distance measure.

The key to successful matching is to properly define the distance
D
(
Ns
a,i, N

s
b,j

)
in Eqn.(3). Two types of similarity play a role in

defining this distance: appearance similarity between P (Ns
a,i) and

P (Ns
b,j), which are the representative patches of the two nodes, and

positional similarity between (Na, N
s
a,i) and (Nb, N

s
b,j). Specifi-

cally, we expect the contextual map M(Na, N
s
a,i) to have some

overlap with M(Nb, N
s
b,j), meaning that Ns

a,i and Ns
b,j have sim-

ilar (but not exactly the same) locations if we align Na and Nb
spatially. This is under the consideration that image structures in
different images tend to vary, even for the same scenes. For exam-
ple, a sky region could be to the above left of a mountain in one
image, but to the above right of a mountain in another image. A
strict similarity measure of the contextual map between the sky and
mountain would give too low a matching score for these two im-
ages, although they are good matches. To avoid this problem we
use a more flexible contextual overlap defined as:

O(Ns
a,i, N

s
b,j) =

∑(
M(Na, N

s
a,i) ·M(Nb, N

s
b,j)
)
, (4)

which is the sum of the dot-product of the two maps. The overlap
is higher when the two maps share some common high probabil-
ity areas, giving us flexibility to match similar regions in slightly
different image structures.

1

2

3

1

2

1

2

M(,)1 M(,)2 M(,)1 2 3M(,) M(,)M(,)1 M(,)2

Input Candidate image

New node: Candidate nodes:

1 2

1
2

1
2

1
2

1
2

1
2

1 2 Nodes in contextual groups 1 1 Overlap/Not overlap map 1

Valid node Invalid node
distance:∞

Figure 5: PatchNet matching. Left: input image; user-specified
area and its context. Middle: in a candidate image, the vase re-
gion matches the input area well, having similar context. Right: a
different region is a poor match, with an unsuitable context.

The overall distance between two nodes is then defined as:

D
(
Ns
a,i, N

s
b,j

)
=

{
dc(P (Ns

a,i), P (Ns
b,j)), O(Ns

a,i, N
s
b,j) ≥ To

∞, else
(5)

where dc(P (Ns
a,i), P (Ns

b,j)) is the patch appearance difference
defined in Section 3.3: if the contextual overlap between the two
nodes is smaller than a threshold To = 10, we treat these two nodes
as spatially incompatible, assigning them an infinite distance, oth-
erwise their similarity is their patch appearance distance.

Fig. 5 shows an example of the graph matching process. Given
the user-specified yellow area in the input image, we identify two
corresponding contextual nodes: the surrounding gray wall region
and the orange table region underneath. In the candidate image,
the vase region is an identified match because its two contextual
nodes are good matches to the wall and table regions. However,
the alternative region shown on the right in the candidate image is
a poor match, as it has a dramatically different context to the input
region. Note that our region matching method is different from
the region ancestry approach [Lim et al. 2009], which uses only
the ancestors of a target region for the purpose of classification,
while we use the entire contextual group of a target region for better
compatibility in object synthesis.

Quick pruning. The above process gives every node Nb in Ψb

a matching distance to Na. In practice we are only interested in
finding the best matches in the library images, and an exhaustive
search can be truncated in several ways. Firstly, we do not con-
sider any Nb that is more than one level above or below Na in the
PatchNet hierarchical structure, to avoid matching regions differing
significantly in scale. The SSD distance in Lab color space between
representative patches dc(P (Ns

a,i), P (Nb)) in Eqn.(5) is computed
first, where i iterates through the contextual group of Na, and Nb
are all valid candidate nodes in Ψb. If all the appearance distances
are larger than a threshold (800 in our system for color values in
[0, 255]), this library image can be quickly rejected as unrelated.
When searching for the best node in a reference image, if any one
minimum distance is∞ in Eqn.(3), then Nb is abandoned for this
editing task. Note that as more categories of images are added to

A B

C

D
E

Figure 6: Our user interface comprises several panels. A: input im-
age; user-specified constraints are indicated by C. B: current result.
D: visualization and editing toolbar. E: library images, ordered by
matching score.

User input

Quilting

library region

Result

Figure 7: Using curvilinear features of the user sketch to guide
object synthesis. The curvilinear features are extracted from both
the sketch and the library region, and are used for patch matching.
Selected patches are stitched together using image quilting.

the library, a greater proportion will be filtered out, helping our al-
gorithm to scale up to very general image collections.

4.2 Complexity Analysis

Suppose on average the number of nodes in a PatchNet is m, and
each node has c children. In the worst case, using the above match-
ing process, m2 patch color differences in Eqn.(5), and m(c− 1)2

contextual overlap values in Eqn.(4) must be computed. It then
takes (c−1)2 operations to find the minimal d(P (Ns

a,i), P (Ns
b,j)).

Since the patch size and the contextual map size are assumed to be
bounded, the overall complexity of finding the best region in one
image is O(mc2). This complexity only depends on the number
of tree nodes and the number of children, which are both much
smaller than the number of pixels. Matching using PatchNets is
thus much faster than algorithms whose complexity is proportional
to image size. For a sample library we constructed (see Sec. 6.1 for
details), we found that m = 45 and c = 4, requiring on average
2025 13 × 13 patch color difference calculations, and 405 5 × 5
matrix per-element products, which can be computed in about 45
milliseconds. As we perform the same pruning and matching steps
for every library image, the average search time grows linearly with
the size of the library.

5 Interactive Image Editing

We now show how the PatchNet representation and fast matching
algorithm can be used in interactive image editing tasks.

Figure 8: Using color in user sketches to constrain synthesis. These examples show that our system can find library regions (in images with
green borders) that match the color of the user sketch well (in images with yellow borders), leading to desired synthesis results.

5.1 Example-based Synthesis

Our image editing application provides library-driven object syn-
thesis, using the interface shown in Fig. 6. To insert a new object at
a specific location in the target image, the user directly sketches an
approximate object shape over the image. Using the region match-
ing method in Sec. 4, the system quickly finds the best matching
regions from library images and displays them at the bottom of the
interface (see Fig. 6E). The user can then select the desired library
regions and quickly see the corresponding synthesis results in the
output panel, as shown in Fig. 6 and the accompanying video. Note
that in this example, the user sketches not only the shape and loca-
tion of the object, but also further constraints (horizontal and verti-
cal lines interior to the window). How we synthesize an object in
agreement with these further constraints is described in Sec. 5.2.

Note that although the best matching regions are those with mini-
mal contextual distances to the user input area, they are not neces-
sarily of the same shape or size. To synthesize a new object based
on a library region, we first compare the shapes of the library region
and the user input area using Shape-Context method [Belongie et al.
2002]. If they are similar in both shape and size, we use alpha mat-
ting [Levin et al. 2008] to extract the library region from the library
image, and composite it onto the target image. We also check the
average color difference between the representative patches of the
contextual nodes for the area and library region. If color differences
are larger than 80 in L2-norm distance in [0,255] Lab space, we use
an additional Poisson blending step [Pérez et al. 2003] to merge
the library region into the target image, to reduce color incompat-
ibility.The user can also manually enable/disable Poisson blending
through a UI control.

On the other hand, if the library region and the user-specified re-
gion differ significantly in either shape or size (10 times larger or
0.1 times smaller in our implementation), we rely instead on a tex-
ture synthesis method to fill the specified region. We use the image
quilting method [Efros and Freeman 2001] as it is simple, fast and
generates good results. This patch-based image synthesis method
quilts overlapped example patches from the source image by find-
ing optimal seams using dynamic programming where they overlap.
When used for synthesis in natural scenes, this method requires an
extra correspondence map between the library region and the target
shape to ensure that patches are drawn from semantically appropri-
ate locations. By default our system simply builds correspondence
between two regions in the same relative vertical position to gener-
ate results. To synthesize pixel (x, y) (in normalized coordinates)
in the target shape, patches are drawn around the same vertical po-
sition y (with some tolerance) in the library region.

Finally, to ensure that the synthesized region blends into the target
image in a natural way, and without undesirable regularity, we in-

troduce some controlled variability at the boundary. Specifically,
we consider each 7 × 7 patch centered on the boundary pixels and
find its k nearest neighbors in Lab color space for similar sized
patches in the contextual regions of both the target image (exclud-
ing the filled area) and the library image. We then randomly select
one of these patches, and use the color of its center to replace the
color of the original boundary pixel. Refinement is performed on
boundary patches serially, to ensure continuity of the refined ap-
pearance. Although more complicated algorithms such as image
melding [Darabi et al. 2012] could be used, this simple boundary
refinement method runs much faster while generating satisfactory
results in practice.

5.2 Sketch-based Appearance Refinement

Our system has further functionality allowing the user to provide
additional constraints to control the appearance of the synthesized
region. In particular, the user can sketch feature lines within the
specified region as geometric constraints. For example, in Fig. 6C,
as well as drawing a rectangle on the wall to indicate a window
outline, the user can sketch a few lines inside it to specify the grid
structure of the desired window. In this case, our system first finds
the best compound nodes in the library that provide good matches
to the window area. By pre-compositing the region of a compound
node to the target area, we can apply the region matching method
in Sec. 4 to compare the contexts of the sketched sub-areas and the
compound node’s children, to ensure that the structure of the library
region found provides a good match to the sketch.

To synthesize the target region while respecting the additional con-
straints provided by the user, we use curvilinear features as pro-
posed in the recent ImageAdmixture system [Zhang et al. 2012]
to build a correspondence map between the two regions for image
quilting, as shown in Fig. 7. This is followed by boundary refine-
ment as described in Sec. 5.1.

When sketching an object, the user can also specify the color the
object should have. To take the color constraint into account while
searching the library, if the Euclidean distance between the mean
color of a region and the user specified color is larger than 80 in
8-bit Lab color space, it is excluded from the candidate list. An
example is shown in Fig. 8.

5.3 Single image editing

The PatchNet representation can also be used to edit a single image
without the help of a library. In this case the matching algorithm is
simply applied between two copies of the same PatchNet represen-
tation. Examples are shown in Figs. 9 and 10.

a

c db

Figure 9: Single image editing. (a) Input image with a hole marked
by the user. (b) The automatically extracted contextual group used
to find the best matching region. (c) The two best matching regions.
(d) Synthesized result.

6 Experimental Results

6.1 Library and implementation details

We have built an example library with 5,000 images. These images
show various outdoor and indoor scenes and objects, retrieved from
Flickr using keywords such as ‘house’, ‘desert’, ‘river’, and ‘fish’.
Since Flickr images have highly variable contents even within a
fixed category, we used keyword pairs, such as ‘garden + path’ and
‘wall + window’ to query a more restricted range of images, pro-
viding groups with similar content. In total we used 40 keyword
combinations to build the example library, as shown in Table 1.
Sec. 8 further discusses issues surrounding construction of the li-
brary. A PatchNet was pre-computed for each library image. To do
so, each image was scaled to a standard size, with its longest edge
being 800 pixels.

We implemented our approach in C++ on a PC with an Intel Core
i5 CPU and 8GB RAM, running 64bit Windows 7. In our experi-
ments, building a PatchNet for a given input image took about 50s,
while a single query against our whole library took about 10s on
a single CPU core, and about 3.5s using 4 cores in parallel. For
each query, on average about 90% of images were rejected by the
pruning methods in Sec. 4.1.

6.2 Results

Sketch-based synthesis. Fig. 11 shows an example where the sys-
tem provides several editing options based on the user’s input and
library query results. The user can try each library image in turn
to choose the preferred synthesis result. The user can also synthe-
size multiple objects within the target image, using multiple sketch
lines, as shown in Fig. 12. Fig. 8 shows use of color as an addi-
tional constraint on synthesis. Fig. 14 shows a complete, step-by-
step editing sequence using our system.

Table 1: Keyword pairs used to build our library.

garden path boat sea land tree sunset cloud lighthouse sky
house grass bread jam bag man bag woman wall window
basket fruit table wall cup table candle flame pyramid desert
berry bread floor chair apple pie village cabin butterfly flower
bottle desk beach sky car street flower leave soup vegetable
flower vase fish ocean river tree leather purse mountain lake
rock water vase table coral fish dinner soup branch bird
tree ground food plate car road plant desert roof chimney

a b

c

d

Figure 10: Image completion. (a) Source image. (b) User-specified
hole (orange) and the best matching node found by use of PatchNet
(yellow). (c) Result using our method. (d) Result using Photoshop’s
content-aware image completion.

Single image editing. As noted in Sec. 5.3, the PatchNet repre-
sentation can be used to edit a single image. A hole-filling ex-
ample is shown in Fig. 9. Given the user-specified region, our
system finds the best matching node in the same PatchNet and
uses it to fill the hole. Unlike the photomontage-based hole filling
method [Wilczkowiak et al. 2005], we do not require the reference
region to have the same shape as the target region. In Fig. 10 we
compare our approach with the content-aware hole filling tool in
Photoshop. While both approaches achieve seamless hole filling,
our result is more semantically correct as our method finds a more
suitable candidate region to use.

7 Evaluation

We designed and performed a two-phase user study to determine (1)
whether the proposed image searching method based on PatchNets
can help users quickly find relevant library images for editing tasks,
and (2) whether using PatchNets-based search can lead to higher
quality image editing results.

7.1 Phase I

In Phase I of the study, we provided 8 target images which are not in
the library. Each subject was given one target image at a time, and
was asked to synthesize a new object at a specific location in the
image, using our system. Each subject was given three examples of
different scenes. For each example, the subject needed to find a suit-
able object in the library first. Our system randomly chose one of
three orders when offering library images: (1) random order, (2) or-
der according to global-image-similarity, based on widely-adopted
GIST features [Oliva and Torralba 2001] and (3) order according to
PatchNet-based similarity.

After choosing a library object, the subject then used the synthe-
sis method in our system as described in Sec. 5 to synthesize the
selected object on the target image in each example. We recorded
the total time that each subject spent on each example (i.e. from
starting the task until the task was accomplished). Note that if
the PatchNet-based search method was chosen, candidate objects
in library images were automatically generated, so subjects did not
need to manually segment them. Otherwise subjects also spent time
manually selecting the objects in the reference images. To be fair,
we also computed a search time for each task, the time from the
beginning of a task to the time that the user has decided on a library
image to use (i.e. excluding time for manual object selection).

We provided 8 examples of different scenes for this study. 32 sub-

Figure 11: Multiple suggestions for object synthesis. Given the user-specified region in the first image (yellow), our system automatically
suggests various synthesis options (green) after querying the library images (inset).

Figure 12: Synthesizing multiple objects in an ocean scene. (a) For each user specified shape in the input image (left), our system automati-
cally finds semantically useful library regions (center), leading to a successful composition (right).

jects participated, including 18 males and 14 females with age from
20 to 35. 25 of them claimed to be unfamiliar with image editing
software. We trained each subject for 5 minutes on the task and
how to use our system, using a separate example.

The average total time and search time for all tasks are shown in
Table 2. Using PatchNet, both times are significantly lower for the
other methods, suggesting that our method can help users quickly
identify good library regions to complete the tasks. We also ob-
served that library images with smaller distances to the target im-
age according to GIST do not always contain objects suitable for
the local editing task, so GIST-based search only provided limited
help. The supplementary materials contain further statistics on the
user times.

Random GIST Similarity PatchNet
Search time 23.7s 19.8s 5.3s
Total time 33.9s 30.0s 8.2s

Quality score 2.83 2.92 3.5

Table 2: Mean results of the user study. The search time and to-
tal time are defined in Sec. 7.1. More statistics is included in the
supplementary materials.

7.2 Phase II

During the phase I user study, we observed that the subjects almost
never went through the whole library to find a good reference im-
age. Typical behavior was that a subject started scrubbing through
the reference images, and as soon as a reasonable match was identi-
fied, the user stopped and decided to use that reference image. This
observation led us to believe that the semantic compatibility to the
editing tasks of the selected reference objects are different when
different searching methods are used, leading to final synthesis re-
sults with different visual qualities.

To verify this, we conducted a Phase II user study. The Phase I
user study provided 96 synthesized images based on different li-
brary search methods. We measured the quality of each result us-
ing a subjective score ranging from 1 to 5 according to the level of
realism that it achieved (5 being photo-realistic). Each result was
presented to 15 evaluators (who did not take part in Phase I). The
average scores of all results are shown in Table 2. (The supple-
mentary materials include p-values and paired-sample t-test scores,
which indicate that the differences are statistically significant).

The results of this study reveal that PatchNet-based search leads to
more realistic image synthesis, compared to the other two search
methods. As shown in the examples in Fig. 13, although the ref-
erence objects selected using different search methods all have the
correct semantics, the library objects suggested by PatchNets match
the target regions better in terms of contextual similarity, leading to
more natural synthesis results.

8 Limitations and Discussions

Our system has several limitations. Firstly, the library must contain
suitable image regions for use in the user’s editing task. If such re-
gions do not exist, the library cannot help the user accomplish the
task. In order to increase the application range of the system, one
has to build a rich library of images containing many categories. On
the other hand, having a single, large-scale library with too many
image categories is not an ideal solution. This is because PatchNets
lack the ability to filter out outliers on the semantic level, so as the
number of object categories in the library increases, PatchNets may
find candidate objects or regions that match the input constraints
well, but are semantically inappropriate. For instance, as shown in
Fig. 15(a), if the library includes farmland as well as garden im-
ages, a sketch of a grass region may retrieve animals as well as
flowerbeds as replacement regions. In practice we found that our
system works well with a library of 5K to 10K images with a dozen
of categories, as libraries of this size can provide both good match-

Figure 14: A complete editing sequence using our system. Images with orange borders are the input image and final result (top), and all
intermediate results (bottom). User sketches are shown in yellow within them. Images with green borders are selected library images, with
chosen library regions in red. Arrows depict the editing path.

Score:2.9

Score:2.6

Score:4.6

Score:2.7

Score:2.4

Score:3.7

Figure 13: Examples from the user study. From top to bottom,
each row shows the results generated by no search (random order),
global similarity search, and PatchNet-based search, respectively.

ing accuracy and system responsiveness—both are essential for in-
teractive editing. We note that some other previous systems, such as
the Sketch2Photo [Chen et al. 2009], do not share this limitation, as
they directly use semantic image labels for search. From this point
of view, our system is complimentary to many previous systems,
and makes different trade-offs.

There are two possible ways to generalize the system to handle
more images. Firstly, we may divide images into multiple libraries,
based on semantic labeling, instead of putting them all into a sin-
gle library. Secondly, global matching methods may be used during
preprocessing to initially filter out irrelevant matches, eith Patch-

Nets being used for fine search amongst the remaining ones.

A further limitation is that scenes with excessive details cannot
readily be broken into a few large regions and so are not readily
summarized in a meaningful way by a PatchNet, e.g. see Fig. 15(b).
PatchNet is a purely appearance-based approach and there is no
high-level scene understanding involved.

For single image editing, our system relies on repeated image struc-
tures to fill a hole. If such structures are lacking, it cannot find good
matches for filling the hole. As shown in the example in Fig. 15(c),
the user sketched a red shape indicating a place for a red piece of
plum. As there are no plums on the coated rice balls (only the un-
coated ones), our system finds the fawn region as the best library
region, given that it has the desired context of coating. This could
be fixed by manually specifying a correct library region.

9 Conclusion

We have presented a compact, patch-based image representation for
image editing called a PatchNet. A PatchNet summarizes image ap-
pearance in terms of a small number of representative patches for
image regions, linking them in a hierarchical graph model to de-
scribe image structure. Fast region matching can be achieved by
graph matching. We have used various examples to demonstrate
how this representation enables a novel, library-driven user inter-
face for interactive image editing tasks such as sketch-based object
synthesis and image completion.

Acknowledgments We thank the anonymous reviewers for their
valuable comments. This work was supported by National Ba-
sic Research Project of China (2011CB302205), Natural Sci-
ence Foundation of China(61120106007 and 61272226), National
High Technology Research and Development Program of China
(2012AA011801) and Tsinghua University Initiative Scientific Re-
search Program.

References

ARBELAEZ, P., MAIRE, M., FOWLKES, C., AND MALIK, J.
2011. Contour detection and hierarchical image segmentation.
IEEE Trans. Pattern Anal. Mach. Intell. 33, 5 (May).

BAEZA-YATES, R., AND VALIENTE, G. 2000. An image sim-
ilarity measure based on graph matching. In Proc. Interna-

a

b

a

c

input

Figure 15: Limitations. (a) A simple sketch in a grass region re-
trieves objects with quite different semantics as candidate regions.
(b) The PatchNet cannot represent the image in a compact and
meaningful way for a highly complex scene (left), as it has too many
regions. (c) A failure during single image editing. The inset shows
the input sketch. For object synthesis in the user sketched region in
red, our system finds the yellow region as the best candidate, which
is not semantically correct.

tional Symposium on String Processing and Information Re-
trieval, IEEE, 28–38.

BAGON, B., AND IRANI, M. 2008. What is a good image segment?
a unified approach to segment extraction. In Proc. ECCV.

BARNES, C., SHECHTMAN, E., FINKELSTEIN, A., AND GOLD-
MAN, D. B. 2009. Patchmatch: a randomized correspondence
algorithm for structural image editing. ACM Trans. Graph. 28, 3
(July), 24:1–24:11.

BARNES, C., SHECHTMAN, E., GOLDMAN, D. B., AND FINKEL-
STEIN, A. 2010. The generalized PatchMatch correspondence
algorithm. In Proc. ECCV, 29–43.

BELONGIE, S., MALIK, J., AND PUZICHA, J. 2002. Shape match-
ing and object recognition using shape contexts. IEEE TPAMI
24, 4, 509–522.

BESSE, F., ROTHER, C., FITZGIBBON, A., AND KAUTZ, J. 2012.
Pmbp: Patchmatch belief propagation for correspondence field
estimation. In Proc. BMVC.

BOSCH, A., ZISSERMAN, A., AND MUNOZ, X. 2007. Represent-
ing shape with a spatial pyramid kernel. In Proc. CIVR.

BROX, T., BREGLER, C., AND MALIK, J. 2009. Large displace-
ment optical flow. In Proc. CVPR, 41–48.

BUADES, A., AND COLL, B. 2005. A non-local algorithm for
image denoising. In Proc. CVPR, 60–65.

CHEN, T., CHENG, M.-M., TAN, P., SHAMIR, A., AND HU, S.-
M. 2009. Sketch2photo: internet image montage. ACM Trans.
Graph. 28, 5 (Dec.), 124:1–124:10.

CHEVALIER, F., DOMENGER, J.-P., BENOIS-PINEAU, J., AND
DELEST, M. 2007. Retrieval of objects in video by similarity
based on graph matching. Pattern Recognition Letters 28, 8,
939–949.

COMANICIU, D., MEER, P., AND MEMBER, S. 2002. Mean shift:
A robust approach toward feature space analysis. IEEE Trans.
Pattern Anal. Mach. Intell. 24, 603–619.

DARABI, S., SHECHTMAN, E., BARNES, C., GOLDMAN, D. B.,
AND SEN, P. 2012. Image melding: combining inconsistent
images using patch-based synthesis. ACM Trans. Graph. 31, 4
(July), 82:1–82:10.

EFROS, A. A., AND FREEMAN, W. T. 2001. Image quilting for
texture synthesis and transfer. In Proc. SIGGRAPH, ACM, 341–
346.

EITZ, M., RICHTER, R., HILDEBRAND, K., BOUBEKEUR, T.,
AND ALEXA, M. 2011. Photosketcher: interactive sketch-based
image synthesis. IEEE Computer Graphics and Applications.

FEI-FEI, L., AND PERONA, P. 2005. A bayesian hierarchical
model for learning natural scene categories. In Proc. CVPR,
524–531.

FISHER, M., AND HANRAHAN, P. 2010. Context-based search for
3d models. ACM Trans. Graph. 29, 6, 182:1–182:10.

FREEDMAN, G., AND FATTAL, R. 2011. Image and video upscal-
ing from local self-examples. ACM Trans. Graph. 30, 2 (Apr.),
12:1–12:11.

GALUN, M., SHARON, E., BASRI, R., AND BRANDT, A. 2003.
Texture segmentation by multiscale aggregation of filter re-
sponses and shape elements. In Proc. ICCV.

GOULD, S., AND ZHANG, Y. 2012. Patchmatchgraph: building a
graph of dense patch correspondences for label transfer. In Proc.
ECCV, Springer, 439–452.

HACOHEN, Y., SHECHTMAN, E., GOLDMAN, D. B., AND
LISCHINSKI, D. 2011. Non-rigid dense correspondence with
applications for image enhancement. ACM Trans. Graph. 30, 4
(July), 70:1–70:10.

HAYS, J., AND EFROS, A. A. 2007. Scene completion using
millions of photographs. ACM Trans. Graph. 26, 3 (July), 4.

HLAOUI, A., AND WANG, S. 2002. A new algorithm for
graph matching with application to content-based image re-
trieval. In Structural, Syntactic, and Statistical Pattern Recog-
nition. Springer, 291–300.

HU, R., BARNARD, M., AND COLLOMOSSE, J. 2010. Gradient
field descriptor for sketch based retrieval and localization. In
Proc. ICIP, IEEE, 1025–1028.

HU, S.-M., CHEN, T., XU, K., CHENG, M.-M., AND MARTIN,
R. R. 2013. Internet visual media processing: a survey with
graphics and vision applications. The Visual Computer 29, 5,
393–405.

JAIN, A., THORMÄHLEN, T., RITSCHEL, T., AND SEIDEL, H.-P.
2012. Material memex: automatic material suggestions for 3d
objects. ACM Trans. Graph. 31, 6, 143:1–143:8.

JOHNSON, M., BROSTOW, G. J., SHOTTON, J., ARANDJELOVIC,
O., KWATRA, V., AND CIPOLLA, R. 2006. Semantic photo
synthesis. Computer Graphics Forum 25, 3, 407–413.

JOHNSON, M. K., DALE, K., AVIDAN, S., PFISTER, H., FREE-
MAN, W. T., AND MATUSIK, W. 2011. Cg2real: Improving the
realism of computer generated images using a large collection of
photographs. IEEE TVCG 17, 9, 1273–1285.

JOJIC, N. 2003. Epitomic analysis of appearance and shape. In
Proc. ICCV.

KANNAN, A., WINN, J., AND ROTHER, C. 2006. Clustering
appearance and shape by learning jigsaws. In Proc. NIPS.

KOPF, J., KIENZLE, W., DRUCKER, S., AND KANG, S. B. 2012.
Quality prediction for image completion. ACM Trans. Graph.
31, 6 (Nov.), 131:1–131:8.

KUETTEL, D., GUILLAUMIN, M., AND FERRARI, V. 2012.
Figure-ground segmentation by transferring window masks. In
Proc. CVPR.

KWATRA, V., SCHÖDL, A., ESSA, I., TURK, G., AND BOBICK,
A. 2003. Graphcut textures: image and video synthesis using
graph cuts. ACM Trans. Graph. 22, 3, 277–286.

LALONDE, J.-F., HOIEM, D., EFROS, A. A., ROTHER, C.,
WINN, J., AND CRIMINISI, A. 2007. Photo clip art. ACM
Trans. Graph. 26, 3, 3.

LASRAM, A., AND LEFEBVRE, S. 2012. Parallel patch-based
texture synthesis. In Proceedings of the Fourth ACM SIG-
GRAPH/Eurographics conference on High-Performance Graph-
ics, 115–124.

LEE, Y. J., AND GRAUMAN, K. 2010. Object-graphs for context-
aware category discovery. In Proc. CVPR, IEEE, 1–8.

LEE, Y. J., ZITNICK, C. L., AND COHEN, M. F. 2011. Shad-
owdraw: real-time user guidance for freehand drawing. ACM
Trans. Graph. 30, 4 (July), 27:1–27:10.

LEVIN, A., LISCHENSKI, D., AND WEISS, Y. 2008. A closed-
form solution to natural image matting. IEEE TPAMI 30, 2, 228–
242.

LIM, J. J., ARBELÁEZ, P., GU, C., AND MALIK, J. 2009. Context
by region ancestry. In Proc. ICCV, IEEE, 1978–1985.

LIU, Y., AND YU, Y. 2011. Free appearance-editing with improved
poisson image cloning. Journal of Computer Science and Tech-
nology 26, 6, 1011–1016.

LIU, Y., AND YU, Y. 2012. Interactive image segmentation based
on level sets of probabilities. IEEE TVCG 18, 2, 202–213.

LIU, C., YUEN, J., TORRALBA, A., SIVIC, J., AND FREEMAN,
W. T. 2008. Sift flow: Dense correspondence across different
scenes. In Proc. ECCV, vol. 3, 28–42.

LOWE, D. G. 2004. Distinctive image features from scale-invariant
keypoints. Int. J. Comput. Vision 60, 2, 91–110.

MALISIEWICZ, T., AND EFROS, A. 2009. Beyond categories: The
visual memex model for reasoning about object relationships. In
Proc. NIPS.

OLIVA, A., AND TORRALBA, A. 2001. Modeling the shape of the
scene: A holistic representation of the spatial envelope. Interna-
tional Journal of Computer Vision 42, 3, 145–175.

PERAZZI, F., KRAHENBUHL, P., PRITCH, Y., AND HORNUNG,
A. 2012. Saliency filters: Contrast based filtering for salient
region detection. In Proc. CVPR.

PÉREZ, P., GANGNET, M., AND BLAKE, A. 2003. Poisson image
editing. ACM Trans. Graph. 22, 3 (July), 313–318.

RISSER, E., HAN, C., DAHYOT, R., AND GRINSPUN, E. 2010.
Synthesizing structured image hybrids. ACM Trans. Graph. 29
(July), 85:1–85:6.

RUSSAKOVSKY, O., LIN, Y., YU, K., AND FEI-FEI, L. 2012.
Object-centric spatial pooling for image classification. In Proc.
ECCV, Springer, 1–15.

SHRIVASTAVA, A., MALISIEWICZ, T., GUPTA, A., AND EFROS,
A. A. 2011. Data-driven visual similarity for cross-domain im-
age matching. ACM Trans. Graph. 30, 6, 154.

SIVIC, J., AND ZISSERMAN, A. 2003. Video google: A text
retrieval approach to object matching in videos. In Proc. ICCV,
IEEE, 1470–1477.

SUN, J., YUAN, L., JIA, J., AND SHUM, H.-Y. 2005. Image
completion with structure propagation. ACM Trans. Graph. 24,
3, 861–868.

WEI, L.-Y., HAN, J., ZHOU, K., BAO, H., GUO, B., AND SHUM,
H.-Y. 2008. Inverse texture synthesis. ACM Trans. Graph. 27,
3 (Aug.), 52:1–52:9.

WEI, L. Y., LEFEBVRE, S., KWATRA, V., AND TURK, G. 2009.
State of the art in example-based texture synthesis. In EG STAR,
93–117.

WEXLER, Y., SHECHTMAN, E., AND IRANI, M. 2007. Space-
time completion of video. IEEE TPAMI 29, 3, 463–476.

WILCZKOWIAK, M., BROSTOW, G. J., TORDOFF, B., AND
CIPOLLA, R. 2005. Hole filling through photomontage. In
Proc. BMVC.

WU, Y., AND FAN, J. 2009. Contextual flow. In Proc. CVPR,
IEEE, 33–40.

XIAO, C., LIU, M., NIE, Y., AND DONG, Z. 2011. Fast exact
nearest patch matching for patch-based image editing and pro-
cessing. IEEE TVCG 17, 8, 1122–1134.

ZHANG, Y., AND TONG, R. 2011. Environment-sensitive cloning
in images. The Visual Computer 27, 6-8, 739–748.

ZHANG, S.-H., TONG, Q., HU, S.-M., AND MARTIN, R. R.
2011. Painting patches:reducing flicker in painterly re-rendering
of video. Science China-Information Sciences 54, 12, 2592–
2601.

ZHANG, F.-L., CHENG, M.-M., JIA, J., AND HU, S.-M.
2012. Imageadmixture: Putting together dissimilar objects from
groups. IEEE TVCG 18, 11, 1849–1857.

