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Abstract

This paper analyses the noise present in range data measured by a Konica Minolta
Vivid 910 scanner, in order to better characterise real scanner noise. Methods for
denoising 3D mesh data have often assumed the noise to be Gaussian, and indepen-
dently distributed at each mesh point. We show via measurements of an accurately
machined almost planar test surface that real scanner data does not have such prop-
erties: the errors are not quite Gaussian, and more importantly, exhibit significant
short range correlation. We use this to give a simple model for generating noise
with similar characteristics. We also consider how noise varies with such factors as
laser intensity, orientation of the surface, and distance from the scanner. Finally,
we evaluate the performance of three typical mesh denoising algorithms using real
and synthetic test data, and suggest that new denoising algorithms are required for
effective removal of real noise.

Key words: 3D laser scanner, scanner noise analysis, noise modeling, 3D surface
denoising

1 Introduction

Surface mesh models built using data obtained from 3D laser depth scanners
necessarily contain some noise. To remove such noise from surface mesh mod-
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els, many mesh denoising algorithms have been developed—see [1–19] and
other references therein. In evaluating the effectiveness of such denoising al-
gorithms, both visual and numerical comparisons are used [12]. For meshes
corresponding to real scanned data, however, in most cases only visual com-
parisons are performed, because exact ground truth data are almost always
unavailable. However, more objective evaluation requires numerical compar-
isons, and this is generally done using synthetic data—known meshes to which
noise has been added, following a simple model. Better characterisation of real
scanner noise would allow more realistic artificial test data to be produced for
such purposes.

Many authors have assumed, either when formulating mesh denoising algo-
rithms [1,5], or testing them [2,8,12,18,19], that the measurement noise is
Gaussian white noise (independently distributed per measurement point).
However, real 3D laser scanner noise is, as we will show later, not quite Gaus-
sian, and more significantly, is strongly correlated at adjacent mesh points.
Shen [20] has previously observed that real measurement noise on edges does
not exactly follow a pattern expected based on a random number generator,
and gave a method for generating synthetic edge noise. More recently, Van
Gestel et al [21] evaluated the performance of laser line scanners mounted
on coordinate-measuring machines (CMMs). They mainly analysed the influ-
ence of various factors on random and systematic errors of the scanner; they
tested a different scanner arrangement to the one we use, which is fixed in
position rather than being mounted on a CMM. In this paper, we focus on
characterising scanner noise from the point of view of denoising.

One approach to characterising system noise is to combine noise models for
the components of the measurement system. For example, an optical sensor is
used, and intensity noise models for optical sensors have been discussed in the
literature [22]. However, depth values are not computed directly from intensity
values, but instead triangulation is used after locating pixels of maximum in-
tensity. Other sources of noise potentially include optical components such as
the lens, the mirror (and its actuators), and laser, as well as electronic noise.
Furthermore, numerical errors may arise in the proprietary software used to
calculate positions. Ultimately, we do not have access to all the components
of a commercial system, and even if we did, the noise due to some compo-
nents may not be well understood. Thus, a component-wise noise modelling
approach is not practical.

Instead, we analyse overall noise in the measurements provided by a 3D range
scanner, taken over a flat area. The main aim of this paper is to bring the
attention of the mesh processing community to the fact that real scanner
noise is not independent Gaussian noise per mesh vertex. Algorithm
evaluation and development should be based on more realistic assumptions
about 3D scanner noise. We also discuss the different results obtained when
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applying various denoising algorithms to real scanner data and synthetic data
with added Gaussian noise. We furthermore give a method to synthesise noise
with similar characteristics to that observed.

This paper is an extended version of a paper presented at the SMI’08 confer-
ence [23]. Here, we additionally analyse the variation of noise with respect to
ambient lighting conditions, scanner laser intensity, surface distance from the
scanner, and orientation of the surface. We also present a linear correlation
analysis to add further evidence of autocorrelation in the noise. Denoising ex-
periments using synthetic noise generated by our model are also presented,
and a further denoising algorithm is tested, making the experimental results
more representative.

The remainder of this paper is organised as follows. Section 2 discusses ac-
quisition of data for our experiments, considering choice of test specimens,
data preprocessing procedures, and the shape of the underlying test surface.
Section 3 analyses noise in the test data using a quasi-statistical approach; we
also employ the discrete Fourier transform to characterise the scanner noise.
Section 4 describes synthesis of artificial noise based on this analysis, using
the inverse discrete Fourier transform. Section 5 demonstrates the difficulties
of removing real scanner noise, as opposed to synthetic Gaussian white noise,
for three typical mesh denoising algorithms. Section 6 concludes the paper.

2 Data Acquisition and Preprocessing

2.1 Data Acquisition

We now describe the scanner used, the test piece, and our methods of acquiring
data.

The scanner used in our tests was a Konica Minolta Vivid 910 with ‘TELE’
lens (focal distance = 25mm), which has a specified accuracy of 100µm in
the z (depth) direction in ‘FINE’ mode. Boehnen and Flynn [24] evaluated
several different 3D scanners, and found that Konica Minolta Vivid 910 was
the most accurate for use in a face scanning scenario. Here we take it as a
representative commercial scanner using optical triangulation of a laser stripe
to capture range data.

Clearly, the higher the precision of the test specimen, the more certain we can
be that any measured noise is due to the scanning process and not surface
roughness of the specimen. We first considered use of a standard gauge block
as the specimen. While very flat, it was too polished and almost mirror-like,
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and the scanner was unable to acquire satisfactory measurements. Instead, a
slightly rough surface was needed to obtain satisfactory measurements. (The
standard alternative, coating the test part with a white powder, would lead
to an unacceptably uneven surface due to the nature of the powder spraying
process).

We chose to use as our main test surface the N1 specimen from a Microsurf 315
set of test surfaces produced by Rubert & Co Ltd. Such test plates are pro-
duced for the purpose of testing surface roughness measuring machines. This
specimen is a 22.5mm× 15mm rectangular flat metal plate with mean rough-
ness Ra = 0.025µm and mean roughness depth Rz = 0.29µm (see later). To
give confidence that the results obtained were not specific to this particular
test specimen, we also tested the N8 specimen from the same Microsurf 315
set, which is much rougher than N1 with Ra = 3.2µm and Rz = 15.6µm. Anal-
ysis results were similar to those from the N1 specimen, so we do not report
details, but simply show its noise surface in Fig. 3. This visually demonstrates
that the noise from this specimen has similar characteristics, although the
correlation length appears shorter. While it might have been useful to also
consider curved test pieces, we did not do so because of the difficulty in ob-
taining one machined to a known roughness. However, we measured the flat
plate at different orientations, which gives some insight into what might be
expected when scanning a curved surface.

Ra and Rz are parameters of surface roughness as defined by ISO Standard
4287/1:1984 [25]. Ra is the arithmetic average of the absolute values of the
roughness profile ordinates, and Rz is the arithmetic mean value of the single
roughness depths, taken over consecutive sampling lengths [26]. The sampling
length for these test pieces was 0.8mm. Note that for the N1 specimen, both
Ra and Rz are significantly smaller than the depth accuracy of 100µm claimed
for the Konica Minolta Vivid 910 scanner. Henceforth, we simply consider any
sub-area on the test surface with diameter smaller than the sampling length
as planar, and ignore noise due to the surface roughness. However, over sub-
areas larger than 0.8mm in extent, we must be careful not to assume that the
surface is exactly planar—on the scale of the whole test piece, it may exhibit
non-negligible curvature.

We collected measurement data as follows. During scanning, the test plate was
fixed at about 585mm from the focus of the scanner, with its normal approx-
imately aligned with the scanner’s optical axis (unless stated otherwise), and
the centre of the test plate approximately on the optical axis. (Although we
did not use an instrument to align the optical axis precisely, the actual angle
between the optical axis and the normal to the test plate could be computed
accurately from the test data itself). Unless otherwise stated, we aligned the
long side of the N1 specimen with the x direction—the N1 specimen is pro-
duced by grinding, so its surface finish is anisotropic, albeit on a very fine
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scale. For each complete scan we obtained an array of 3D point coordinates
{xi, yi, zi} in the scanning coordinate system, where x and z axes are aligned
with scan lines and the optical axis, respectively, and the x, y, z axes form a
right-hand coordinate system. The {xi, yi} coordinates lie on a grid, and zi

measures distance of a surface point i to the focal plane of the scanner.

We captured data from the test plate in several different ways. Firstly, in or-
der to test the repeatability, we fixed the test plate in the same place and
repeatedly scanned it several times. Test results showed that the noise prop-
erties were repeatable in the statistical sense that the standard deviation of
the noise varied little between scans (see Section 3.1.1), and visually, the scans
had similar raised and sunken areas as are apparent in Fig. 1. We also tried
scanning under different ambient lighting conditions, and again the results
were similar. This repeatability justifies the use of a single set of test data in
our analysis, except as specified later.

Secondly, to analyse the effect of surface orientation on noise, we rotated the
test plate through varying angles about the x-axis before scanning it. The
results showed that varying orientation had little effect—only minor changes
were found in standard deviation of noise and correlation, and obvious raised
and sunken areas still existed. We thus only present our main analysis for data
measured with the test plate approximately orthogonal to the optical axis.

Thirdly, to assess the effect of the scan line direction on the noise, given that
our sample was anisotropic, we took two scans with the test plate aligned
so that first its long side ran approximately in the x-direction, then in the
y-direction. This allowed us to verify that the anisotropy of the test surface
did not have a significant effect on the noise.

2.2 Data Preprocessing

After capturing the raw measurement data we preprocessed the data to sepa-
rate the noise from the background surface, using the following steps:

S1: Trim off measured data near the edges of the test piece, as the noise in such
regions has quite different characteristics from that at interior points, and
needs to be analysed specifically [20]. Our primary trimmed data consists
in each case of 9375 gridded points with 125 columns in the x-direction and
75 rows in the y-direction, with intervals between successive points in the
x- and y-directions of 0.1735mm and 0.1733mm, respectively.

S2: Fit a smooth surface around each measured surface point i in 3D using
the measurement data in its neighbourhood Ni, {(xj, yj, zj) : j ∈ Ni}. The
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fitted surface is represented as

z = f(x, y,p), (1)

where p is a parameter vector defining the surface. Choice of surface model
and neighbourhood size are discussed below.

S3: Estimate the measurement noise ei corresponding to each surface point i as

ei = zi − f(xi, yi,p). (2)

The second preprocessing step requires choice of a surface model and size
of surface fitting neighbourhood. We considered three possible assumptions
about the shape of the underlying test surface:

A1: A plane gives an adequate global fit to the data;
A2: A quadratic surface gives an adequate global fit to the data; or
A3: No assumption is made about the global shape. Instead a procedural model

is used based on iterative fitting of planes to the data in local regions, taking
into account how the ISO standard characterizes noise.

Under Assumption A1, we fit a plane to the whole set of measurement data.
Function f in Eq. (1) is then becomes

f(x, y,p) = a+ bx+ cy. (3)

and the parameter vector is p = [a, b, c].

Fig. 1 shows the estimated measured noise using Eq. (2) together with As-
sumption A1. To help visualise the noise surface, we have magnified the noise
values ei 50 times, and used Phong shading to produce Fig. 1(a); actual noise
heights (in mm) are given by the associated colour bar: shading effects have
been exaggerated while the colouring is unalterated. A similar technique has
also been used later for other Figures. Fig. 1(b) simply shows the sign of the
noise, black being negative. Fig. 1 shows that the noise surface based on this
assumption has obvious raised and sunken areas, and is clearly curved—its
top-right and bottom-left corners are higher than other parts of the surface.

Firstly, we note that bumps of the magnitude indicated by the noise surface
would easily be seen by anyone visually examining the test plate, if they were
actually present. The test plate does not show an appearance anything like
that in Figure 1, but instead, a very fine pattern of x-direction scratches at a
much smaller size (due to the grinding process used to make the test plate).
Thus, the local structure visible in Figure 1 must be due to measurement
errors, and not surface bumps in the test plate. This deduction is backed up
by noting that the measured bumps are much greater than the manufacturer’s
claimed roughness of the test plate.
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(a)

(b)

Fig. 1. Extracted noise for N1 sample given Assumption A1, shown with Phong
shading: (a) measured noise (colour scale in mm), and (b) the sign of the noise:
positive, white; negative, black.

Secondly, the apparent curvature of the noise surface may be due to actual
curvature of the test surface (which is only guaranteed to be locally flat), or
due to systematic error over a long scale produced by the scanner.

To resolve this issue, we rotated the specimen by 90◦ around the z-axis, and
obtained another data set. Fig. 2 shows the extracted noise in this case, again
under Assumption A1. It can be seen that while the detailed noise pattern
is somewhat different, the overall curvature in the noise surface has also ro-
tated with it—its top-left and bottom-right corners are now higher. Thus, the
curvature of the noise surface comes from the specimen itself, and is not due
to systematic errors produced by the scanner—in the latter case, the noise
distribution would not have rotated. We also conclude that Assumption A1 is
unsatisfactory, and a better surface model is needed.
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(a) (b)

Fig. 2. Extracted noise for N1 sample given Assumption A1 (specimen rotated 90◦

relative to Fig. 1 before scanning), else as per Figure 1.

A further observation is that, while in Fig. 1 the noise shows a diagonal struc-
turing tendency, in Fig. 2 this is less clear, and even in some places tends
perhaps more to a horizontal structuring. This is probably due to interaction
between the laser striping system and the anisotropy of the test surface. Apart
from this question of directionality, however, the general structure of the noise
appears similar in both orientations. Thus, subsequent experiments were re-
stricted to data measured with the long side of the specimen aligned with the
x-axis.

Fig. 3 shows the noise for the N8 test piece under Assumption A1. The N8
specimen is clearly curved in a different way to the N1 specimen. Again, there
are obvious bumps on the noise surface, with a similar general pattern as for
the N1 noise surface, although the characteristic size and spacing of bumps
is smaller than for the N1 sample. We thus concentrated solely on the N1
specimen in our further analysis.

Next, we considered Assumption A2 as a potentially better model for the
shape of the N1 test piece, and fitted a quadratic surface to the whole set of
measurement data. In this case the function f takes the form

f(x, y,p) = a+ bx+ cy + dx2 + exy + fy2 (4)

and the parameter vector is p = [a, b, c, d, e, f ].
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(a)

(b)

Fig. 3. Extracted noise for N8 sample given Assumption A1, as per Figure 1.

Fig. 4 shows the estimated noise using Assumption A2. Again, the noise sur-
face again has obvious large scale raised and lowered areas with a similar
distribution to that seen in Fig. 1, except that the overall curvature in Fig. 1
is no longer present. Using the same reasoning as before, we again claim that
the magnitude of the noise is due to the scanner.

We still needed to decide whether a quadratic surface could sufficiently repre-
sent the underlying surface of the N1 specimen. To answer this question, we
also fitted higher order surfaces, e.g. cubic surfaces, to the measurement data,
and extracted the noise using Eq. (2). Visually, the distribution pattern of the
extracted noise in each case is similar to that shown in Fig. 4. Furthermore,
the differences in the residual errors when fitting quadratic, and cubic or other
higher order surfaces, are less than the specified roughness heights Ra and Rz

of the test specimen. Thus, we can safely say that a quadratic surface suffi-
ciently represents the underlying surface of the specimen, and the estimated
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(a)

(b)

Fig. 4. Extracted noise for N1 sample given Assumption A2, as per Figure 1.

noise surface with this assumption is close to the real noise due to the scanner.

We also used assumption A3 as an alternative method of verifying the above
assertion: A3 makes no assumptions about the global shape of the underlying
test surface. Under Assumption A3, we only need to consider the parameters
of roughness. As the roughness of the specimen (measured by Ra and Rz)
is significantly smaller than the scanner accuracy, the true surface can be
effectively considered to be planar over regions with diameter smaller than
the sampling length used to define Ra and Rz.

The sampling length is 0.8mm. Thus, for each measured point on the surface,
we fitted a local plane to the measured data within a circular neighbourhood
of diameter 0.8mm. The measured point was then projected onto the plane,
and the projected point was taken as the estimated position of the real point
on the underlying test surface. However, because the surface fitted to the
noisy measured points has a roughness exceeding the range designated by
Ra and Rz, it is not a good approximation to the true surface. Thus, we
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(a)

(b)

Fig. 5. Extracted noise for N1 sample given Assumption A3, as per Figure 1.

iteratively used the approximate points to fit local planes and provide new
projected approximate points until the roughness of the surface formed by
the new approximate points reached the range designated by Ra and Rz (this
required 323 iterations). The final approximate points can be considered to
be good approximations to the real surface points: the difference between
each measured point and the corresponding approximate point then gives an
estimate of the noise. Note that because of the iteration process, the surface
may exhibit a global shift—in fact, the mean of the differences is −2.3µm, so
we subtract the mean from each difference, to get the final estimated noise
with zero mean.

Fig. 5 shows the extracted noise surface using the above method. The noise
pattern is clearly very similar to that estimated using Assumption A2, shown
in Fig. 4, although actual values differ slightly. The independent assumptions
made for approaches A2 and A3 give us confidence that the similar results
obtained are useful estimates of the actual scanner noise, and that this noise

11



Fig. 6. Differences between Fig. 4 and Fig. 5, in mm.

really does contain the structures visible in Figs. 4 and 5.

We also determined the standard deviation of the differences between noise
values estimated using A2 and A3 to be 4.9µm, which is only 10% of the
specified accuracy of the scanner. While these differences are not negligible,
the difference surface is slowly varying over a long distance with low amplitude
(see Fig. 6). We also computed the standard deviations of the noise based on
A2 and A3, which are 16.2µm and 16.6µm, respectively. They are very close
and both are less than the specified accuracy of the scanner.

For purposes of analysing correlations in noise in x-y, both Assumptions A2
and A3 provide reasonable models of the real scanner noise; however, Assump-
tion A2 leads to a much simpler computation, so in the rest of the paper, our
analysis is based on Assumption A2.

We now make perhaps the most important point in the whole paper, which is
clear from a visual inspection of Figures 4 and 5: noise at each measure-
ment site is not independent. There is a clear correlation between noise
at adjacent measurement sites, and indeed on longer length scales, too. This
is contrary to a common assumption adopted by many papers on mesh de-
noising, which often assume scanner noise to be independent Gaussian noise
at each measurement point [1,2,5,8,18,19].

3 Noise Analysis

We now analyse the properties of the estimated noise. We carry out both
a statistical analysis, and a Fourier analysis of the noise. Because we only
have an estimate of the scanner noise (based on assumption A2), we call our
analysis a quasi-statistical analysis of the real scanner noise.

12



Fig. 7. Normal-optical axis angle θ

3.1 Quasi-Statistical Analysis

3.1.1 Noise Variation under Different Scanning Conditions

We start our quasi-statistical analysis with a discussion of how the noise varies
with different factors, including ambient light, distance of specimen to the
camera, scanner laser intensity, and orientation of the specimen (defined by
θ, the normal-optical axis angle: see Fig. 7). We assess this by computing
the standard deviation of the noise at all sample points, as these various
factors change. Many other environmental factors, such as temperature, may
also influence the level of noise, but because the user typically does not have
control over such factors, we do not analyse variation with respect to them in
this paper.

Firstly, we tested whether typical changes in ambient light have any significant
effect on the standard deviation of noise. (Again, we did not consider subtle
changes under controlled lighting, but rather the gross effects of large changes
in lighting.) To do so, we aligned the sample with 24 different choices of θ, and
for each we scanned the sample first 5 times with the fluorescent ceiling lamp
on (giving normal ‘office’ lighting conditions), and then 5 times with it off
(giving a more-or-less darkened room). We calculated the standard deviation
in noise for each such set of scanned data, denoted by σi,j, where i corresponds
to a different orientation and j numbers the datasets at a given orientation.
For each orientation i, i = 1, ..., 24, we calculated the mean µ′i and standard
deviation σ′i of the above standard deviations themselves σi,j, j = 1, ..., 10,
and then calculated the relative variation: σ′i/µ

′
i. The result shows that the

relative variation for i = 1, ..., 24 lies between 0.46% and 2.05%. Thus, for a
given orientation, the variation in level of noise is very small, irrespective of
the ambient light conditions. This result also implies that the magnitude of
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Fig. 8. Standard deviation of noise: variation with surface distance

Fig. 9. Standard deviation of noise: variation with scanner laser intensity

scanner noise has a high repeatability for a given set of conditions.

Secondly, we adjusted the distance between the scanner and the test piece, to
assess its influence on the standard deviation of noise; we attempted to keep
the the normal-optical axis angle almost constant at zero degrees. (Because
we did not have a precision instrument to fix the angle, we could only keep
the angle approximately unchanged and check it was satisfactory after scan-
ning). Fig. 8 shows the variation of standard deviation of noise with respect
to distance: the standard deviation increases with distance.

Thirdly, we considered the influence of scanner laser intensity on the standard
deviation of noise, for the sample in a fixed position. See Fig. 9. Provided that
the intensity is kept within a suitable range, the variation in noise level is very
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Fig. 10. Standard deviation of noise: variation with normal-optical angle. Dashed
line: original values. Solid line: after removal of outliers.

small—the relative variation over the intensity range from 45 to 85 (using the
manufacturer’s units) is only 5.2%. However, if the intensity is inappropriately
chosen, the standard deviation can become much larger. In this example, when
the intensity is set to 175, the standard deviation reaches 345µm. Looking in
detail at the data captured under these conditions, we found it to contain many
outliers, and such data would not be useful for any practical application. This
emphasises the need to correctly set up the laser scanner to obtain satisfactory
results, following the manufacturer’s procedures. Note that correct choice of
intensity depends on the color and reflectance of the surface being measured.

Fourthly, we considered the influence of the normal-optical axis angle θ on
the standard deviation of noise. See Fig. 10. The dashed line shows the noise
estimated with assumption A2. Unfortunately, it was not possible to pick a
single laser intensity which would both capture a full set of data, and avoid
outliers, over this complete range of angles. We thus processed the raw scans to
remove the outliers, and the solid line in Fig. 10 shows the standard deviation
of noise after outliers in the data have been discarded. To remove outliers,
we iteratively removed those points with noise greater than three times the
standard deviation of the whole data set. After doing so, the variation of
standard deviation of noise with θ becomes much smaller. In particular for
angles of less than −15 degrees, which has fewer outliers, the noise varies little
with angle (the relative variation is 8%). Overall, there is a trend to increasing
noise with increasing normal-optical axis angle, although the variation is not
smooth.

As a final comment, we note that the measurements above show that the
scanner does indeed meet the manufacturer’s claimed accuracy of 100µm.
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Fig. 11. Histogram of estimated noise magnitude. Red line: best fit Gaussian distri-
bution.

3.1.2 Is the Noise Gaussian?

We next discuss the distribution of the estimated noise for a particular scan.
Fig. 11 shows a histogram of the magnitude of the estimated noise taken at
all points of the test surface, together with a zero-mean Gaussian distribu-
tion with the same standard deviation as the estimated distribution. This
histogram has 80 equally spaced bins. The noise histogram appears to agree
fairly with the Gaussian distribution, but to decide this issue more definitely,
a statistical test is necessary.

We need to verify the null hypothesis:

H0 : f(x) =
1√
2πσ

e−
x2

2σ2

with the alternative hypothesis

H1 : f(x) 6= 1√
2πσ

e−
x2

2σ2

where f(x) is a Gaussian function of appropriate standard deviation. The
standard deviation of the estimated noise is σ = 16.2µm. For this we use
Pearson’s chi-square test [27]. Consider the statistic

K =
1

N

m∑
i=1

n2
i

pi

−N, (5)

where N is the number of observations (measurement points: N = 9375), m
is the number of bins in the histogram (discussed later), ni is the number of
observations in the ith bin, and pi is the probability content of the ith bin.
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Under the hypothesis H0, the distribution of K is generally accepted as close
enough to χ2(m − 1) provided that we ensure that the expected numbers of
events per bin, Npi, is greater than five in each case [27]. If the probability
P (χ2(m − 1) > K) < α, the null hypothesis is said to be rejected at the
significance level α. Commonly used α values are 5%, 1%, and 0.1%. The
smaller the α, the stronger the conclusion. We use the α = 5% significance
level.

We generated histograms using m0 = 3, . . . , 100 equal-width bins, except that
we combined neighbouring bins with small expected numbers of events into
larger bins so that each bin was expected to have more than five events. m
was the number of bins after merging small bins.

We then used Eq. (5) to compute K, and computed the probability that
χ2(m− 1) > K. The result shows that except for the cases m0 = 4, 5, 7, 8, 10
(corresponding to m = 4, 5, 5, 6, 7, respectively), the probabilities are all less
then 0.05, and furthermore, except for m = 4 (m0 = 4) and m = 6 (m0 = 8),
there always exists another division of m bins which has a probability of less
than 0.05. This means that except for two special choices of m, we should reject
H0 at the α = 5% level of significance. In simple words, we should reject
the hypothesis that the estimated noise distribution is Gaussian. The
test does not tell us what the true distribution is. Nevertheless, Fig. 11 makes
it clear that the distribution of the estimated noise is quite Gaussian-like.

We must caution that, as well as the direct interpretation that the noise it-
self is not Gaussian, other explanations are available. Errors in the estimated
noise due to the estimation procedure, or the presence of small bumps on the
surface, may also explain the small deviation between the estimated noise and
a Gaussian model.

3.1.3 Noise Correlation

We now consider noise autocorrelation in the x- and y-directions. We use
{i, j}, i = 1, . . . , Nx, j = 1, . . . , Ny, to denote the point in the ith column and
the jth row, and e(i, j) to denote the estimated noise at this point. Nx = 125
and Ny = 75 for our data.

We first discuss the linear autocorrelation. Linear autocorrelation coefficients
are defined by

ρx(k) =

∑Ny
j=1

∑Nx−k
i=1 e(i, j)e(i+ k, j)√∑Ny

j=1

∑Nx−k
i=1 e2(i, j)

√∑Ny
j=1

∑Nx−k
i=1 e2(i+ k, j)

, (6)
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ρy(k) =

∑Nx
i=1

∑Ny−k
j=1 e(i, j)e(i, j + k)√∑Nx

i=1

∑Ny−k
j=1 e2(i, j)

√∑Nx
i=1

∑Ny−k
j=1 e2(i, j + k)

, (7)

Having obtained the autocorrelation coefficients {ρx(k), k = 1, · · · , Nx − 1}
and {ρy(k), k = 1, · · · , Ny − 1}, we consider the null hypothesis that the noise
at each measurement location is uncorrelated, corresponding to

H0 : ρx(i) = 0, {i = 1, · · · , Nx − 1},

and similarly for y. The alternative hypothesis is that the noise at each mea-
surement location is correlated, corresponding to

H1 : ρx(i) 6= 0,

and similarly for y.

If the noise distribution were Gaussian, we could use the t-test to assess the
correlation [28]. However, as we have shown above, the noise distribution is
not strictly Gaussian, and we can only conservatively borrow the conclusions
from performing a t-test. Nevertheless, the noise distribution is quite close
to Gaussian–at least visually–from the histogram shown in Fig. 11, which
suggests that the t-test results will be useful.

Given a correlation coefficient ρ, (ρ could be either ρx(k) or ρy(k)), the statistic

T =
√
M − 2

ρ√
1− ρ2

, (8)

should be close to t(M − 2) (a t-distribution with M − 2 degrees of freedom)
under hypothesis H0, were M is the number of sample points used to compute
ρ. Thus, if the probability P (t(M − 2) > |T |) < α, the null hypothesis is to
be rejected at the significance level α.

Fig. 12 shows how the probability P (t(M − 2) > |T |) varies with k; the green
line is set at P = 5%. From the figure it can be seen that P (t(M − 2) >
|T |) < 5% for all correlation lengths less than 11 in the x-direction and 46
in the y-direction, respectively; other correlation lengths greater than these
values also have P (t(M − 2) > |T |) < 5%. Thus we conclude that the noise is
autocorrelated in both x- and y-directions, at various length scales.

Because the above hypothesis test is based on an assumption of Gaussian
statistics, which the estimated noise does not exactly exhibit, it is more appro-
priate to use a non-parametric test. We used Spearman rank-order correlation
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Fig. 12. Linear autocorrelation showing probability P (t(M − 2) > |T |) in x- and
y-directions.

Fig. 13. Spearman autocorrelation showing probability P (t(M −2) > |T |) in x- and
y-directions.

coefficients, which do not require knowledge of the probability distribution of
the noise [28].

Let k = 1, . . . , Nx − 1 be the autocorrelation length to be considered in the
x-direction, and Rx1k(i, j) and Rx2k(i, j) be the rank values of e(i, j) among
all other e(m,n) in the square areas (m = 1, . . . , Nx − k, n = 1, . . . , Ny) and
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(m = k+ 1, . . . , Nx, n = 1, . . . , Ny), respectively. Furthermore, let Rxk be the
mean of the rank value in either square area, given by ((Nx − k)Ny + 1)/2.
Define R̃x1k(i, j) = Rx1k(i, j) − Rxk and R̃x2k(i, j) = Rx2k(i, j) − Rxk. Then
the rank-order autocorrelation coefficient in the x-direction is computed by

ρSx(k) =

∑Ny
j=1

∑Nx−k
i=1 R̃x1k(i, j)R̃x2k(i+ k, j)√∑Ny

j=1

∑Nx−k
i=1 R̃2

x1k(i, j)
√∑Ny

j=1

∑Nx−k
i=1 R̃2

x2k(i+ k, j)
. (9)

Similarly in the y-direction, the rank-order autocorrelation coefficient is com-
puted by

ρSy(k) =

∑Nx
i=1

∑Ny−k
j=1 R̃y1k(i, j)R̃y2k(i, j + k)√∑Nx

i=1

∑Ny−k
j=1 R̃2

y1k(i, j)
√∑Nx

i=1

∑Ny−k
j=1 R̃2

y2k(i, j + k)
. (10)

Given the rank-order correlation coefficients, we can again use the statistic T
defined in (8) (ρ now is either ρSx(k) or ρSy(k),) to evaluate the autocorrelation
of the estimated noise. Fig. 13 shows how the probability P (t(M − 2) >
|T |) varies with k. From the figure it can be seen that this test yields very
similar results to those obtained with the linear autocorrelation coefficients:
the probability that P (t(M − 2) > |T |) in this case is less than 5% for all
correlation lengths less than 11 in the x-direction and 47 in the y-direction,
respectively. We can rely on the robustness of the non-parametric test [28] to
conclude from the above results that the estimated noise shows significant
autocorrelation.

3.2 Fourier Analysis

The above section provides a quasi-statistical analysis of the estimated noise.
Because this analysis is based on Assumption A2, and hence an estimate of
the noise, we can only state that the above analysis provides a qualitative
analysis. In this section, we perform an alternative Fourier analysis of the
measurements themselves, which does not require any assumption concerning
specimen shape.

We first performed 1D Fourier analysis on the measurement data for a partic-
ular scan (not the extracted noise). Fig. 14 shows a log-log scale plot of the
power spectrum for the x- and y-directions respectively. It can be seen that
the measurement data are correlated, since the power spectra are not constant
in any band. However, the correlation here could be from either the measure-
ment noise, or from the surface signal itself of the specimen. Considering that
the specimen surface is quite smooth and its fluctuations are quite small, such
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Fig. 14. Power spectrum along x- (top) and y- (bottom) directions; the green vertical
lines are at a frequency 1/0.8mm.

a signal will mainly exist at low frequencies, and the high-frequency compo-
nents will mainly consist of measurement noise. The vertical green line shown
in Fig. 14 is at the frequency f = 1/0.8mm, corresponding to the roughness
sampling length. Above this frequency, surface shape effects are negligible,
and we can assume the surface is flat. Thus, the spectral power for frequencies
f > 1/0.8mm (to the right of each green line) is certainly due to scanner noise.
(It may also be mainly due to scanner noise below this cut-off, but we cannot
guarantee this). Since the power spectra are not constant above this cut-off,
the measurement noise is not white noise.

To consider the noise as a 2D process, we also performed a 2D Fourier analysis
of the measurement data. Fig. 15 shows its 2D discrete Fourier transform. As
for the 1D Fourier transforms, the magnitude of the 2D Fourier transform
decreases with frequency, varying less at high frequencies. It can also be seen
that the phase of the 2D discrete Fourier transform varies randomly with
little regularity. The 2D Fourier transform shown here again tells us that the
measurement data are correlated, and furthermore, the measurement noise is
not white noise.

4 Noise Synthesis

We now know that the noise is not white and its distribution is not quite
Gaussian, so we cannot generate realistic synthetic noise using straightforward
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Fig. 15. 2D discrete Fourier transform (zero-frequency at the centre). Top: logarith-
mic magnitude of the spectrum. Bottom: phase of the spectrum, in degrees.

pseudo-random noise sequences. However, using the Fourier analysis results
from Section 3.2, we may generate synthetic noise by using the inverse Fourier
transforms.

The Fourier transform of the measured data represents both the noise, and
an underlying signal (due to non-planarity of the test specimen). Because the
signal is potentially significant mainly at low frequencies, noise represents
most of the amplitude of the transform at high frequencies, so we may simply
set the lowest frequency components of the Fourier transform to zero, and use
the remaining components to approximately model the noise. While a sharp
cut-off filter can introduce ringing artifacts, these were negligible in practice.

The top of Fig. 16 shows the inverse Fourier transform of the original scan
data with the lowest 5 frequency components in both x- and y-directions set
to zero. Clearly, using the inverse Fourier transform in this way preserves the
general structure of the original noise seen in Figs. 1, 4 and 5, while removing
the obvious curvature of the specimen surface visible in Fig. 1.

Having obtained the Fourier transform of the measurement data, we can use
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Fig. 16. Generating noise by inverse Fourier transform with low frequency compo-
nents zeroed. Top: original magnitude and phase except for low frequencies; Middle:
synthetic noise with fitted magnitude and original phase except for low frequencies;
Bottom: synthetic noise with fitted magnitude and random phase except for low
frequencies.
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a simple model to fit the magnitudes with respect to frequency. We tried
several models, and selected that particular model which gave minimum fitting
residual among those models. The model we use is

Z(i, j)
1
4 =


a0 + b0i+ c0j + d0i

2 + e0ij + f0j
2 i 6= 0, j 6= 0,

a1 + b1i+ d1i
2 j = 0,

a2 + b2j + f2j
2 i = 0,

(11)

where Z(i, j) is the magnitude at frequency fx = i/Lx, fy = j/Ly, and Lx

and Ly are the specimen side lengths in the x- and y-directions respectively.
The parameters giving a best fit are a0 = 1.5600, b0 = −0.0185, c0 = −0.0176,
d0 = 0.0001, e0 = 0.0003, f0 = 0.0000, a1 = 1.9134, b1 = −0.0417, d1 = 0.0005,
a2 = 1.8352, b2 = −0.0530, f2 = 0.0008; with these values, the squared sum of
the residual errors is 2.2% of the squared sum of the noise magnitudes. Fig. 16,
middle, shows the result of computing an inverse Fourier transform using the
modelled magnitude together with the original phase data. This generated
noise has a structure quite close to the original structure, verifying the utility
of this model.

Because the phase spectrum is rather unstructured—see Fig. 15—we cannot
easily fit a model to it, but we do not wish to store it as a table of values, either.
Instead, we suggest the use of random phases to generate synthetic noise.
Fig. 16, bottom, shows noise synthesised by inverse Fourier transform of the
modelled amplitudes and random phases. The synthetic noise in this case has a
slightly different structure to the original one, which is to be expected as there
is some structure in the phase of the noise—again see Fig. 15. Nevertheless,
the structure of this synthetic noise is quite similar to that of the original
noise at least with respect to the magnitudes, sizes, shapes and density of
the bumps. In practice, synthetic noise is not necessarily an exact copy of
any original noise, and we consider the noise generated using inverse discrete
Fourier transforms of fitted magnitudes and random phase as acceptable. It is
certainly closer to real scanner noise than white Gaussian noise.

5 Denoising experiments

As demonstrated, scanner noise is neither strictly Gaussian, nor independent
at each location or white in nature, contrary to the most common assumptions
adopted by many papers considering denoising or other processing of scanner
data. We compare denoising results by various algorithms on three sets of
data: real scanner data, data generated by adding synthetic noise described
in Section 4 to the best quadratic surface fitted to the scanning data, and
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Fig. 17. Denoising using Laplacian smoothing [14]: real scanner data (left), data
with synthetic noise (middle), and data with Gaussian white noise (right). Top:
original data. Other rows: denoising results after 5, 20, and 50 iterations.

data obtained by adding Gaussian white noise with the same standard devi-
ation as that of the scanned data, again to the best fitted quadratic surface.
Gaussian noise has often been used in the past to assess denoising algorithms.
Three representative denoising algorithms were chosen: the original Laplacian
smoothing algorithm [14], the bilateral filtering algorithm [6], and our own
feature-preserving denoising algorithm [12].

Fig. 17 shows the denoising results obtained for each kind of noise using the
original Laplacian smoothing algorithm [14] with 5, 20, and 50 iterations, as
commonly used in the literature. The Figure shows that fewer iterations are
needed to remove Gaussian white noise than to remove the synthetic noise
generated by our method, and real scanner noise requires yet more iterations.
Furthermore, although the original Laplacian algorithm can effectively remove
Gaussian noise, it is less successful at completely removing the bumpy struc-
tures present in real scanner noise, and to a lesser degree, in the synthetic
noise generated by our method.

Figs. 18 and 19 show comparable denoising results for the bilateral filter-
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Fig. 18. Denoising using bilateral filtering [6]: real scanner data (left), data with
synthetic noise (middle), and data with Gaussian white noise (right). Rows: results
after 5, 20, and 50 iterations.

Fig. 19. Denoising using feature-preserving denoising [12]: real scanner data (left),
data with synthetic noise (middle), and data with Gaussian white noise (right).
Rows: denoising results after 5, 20, and 50 iterations.

ing algorithm [6] and our feature-preserving denoising algorithm [12]. Both
algorithms show similar results to those obtained for Laplacian smoothing:
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Gaussian noise is easiest to remove, then our synthetic noise, and finally real
scanner noise. However, because these two algorithms are designed to preserve
features, unlike Laplacian smoothing [14], these algorithms have more diffi-
culty than Laplacian smoothing in removing the structured features (bumps)
due to correlations in real scanner noise and our synthetic noise. Compared
to our algorithm, bilateral filtering is slightly more efficient in removing such
structural features of the noise.

From these experiments, we see that although the synthetic noise generated
by our method does not behave exactly in the same way as real noise, it more
closely resembles real noise than does Gaussian noise, and it is somewhat
better at predicting how algorithms will perform in removing real noise.

We have shown that denoising algorithms, whether feature-preserving or not,
cannot effectively deal with the structured nature of real scanner noise. We
thus conclude that many previous papers claiming good denoising re-
sults based on experiments with synthetic Gaussian noise are over-
optimistic in their assessment of the ability of algorithms to remove
real scanner noise. Synthetic noise of the type generated by our method
described in Section 4 would be a better basis for evaluating smoothing algo-
rithms.

There would seem to be plenty of scope to carefully design new algorithms
which take into account the real, rather than assumed, nature of scanner
noise. This does not necessarily require precise modelling of the scanner noise.
Instead, by just assuming the noise to be non-Gaussian and correlated, we may
be able to make better generic algorithms than if we assume uncorrelated
Gaussian noise, even if the optimal filters would involve too many specific
parameters dependent on the precise scanning conditions.

6 Conclusions

We have investigated the noise characteristics in measurement data obtained
by a Konica Minolta Vivid 910 scanner. We have found that there is little
systematic variation in noise resulting from different scanning conditions, pro-
viding that care is taken in choice of laser intensity.

Consideration of careful estimates of the noise has shown that real scanner
noise is not quite Gaussian, but more importantly, neither is it indepen-
dently distributed. Fourier analysis has further demonstrated that such noise
is not white noise. Based on the Fourier analysis, we have proposed a noise
synthesis method which applies the inverse discrete Fourier transform to a
model-generated power spectrum with random phase. Such synthetic noise
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has broadly the same visual structural features as real scanner noise. Exper-
imentally, our synthetic noise behaves in a qualitatively similar way to real
scanner noise in denoising algorithms, and thus is more suitable than Gaussian
white noise for algorithm evaluation.

Our above analysis is based on scanning an N1 specimen from a Microsurf 315
set of test surfaces. An N8 specimen from the same set was also tested and
gave qualitatively similar results are similar, so we do not report the details
here. Note, however, that the precise numerical results, and suggested syn-
thetic noise model, only hold for this specific type of surface material and this
specific laser scanner. For other types of surface material or other kinds of
laser scanners, the results may be quite different.

We have also tested the effectiveness of three typical mesh denoising algo-
rithms against real measurement data, Gaussian synthetic white noise, and
our synthetic noise. The results have shown that it is more difficult to remove
noise from real measurement data than from data with our synthetic noise,
and it is easiest to remove Gaussian white noise.

New denoising algorithms are required which take into account the real na-
ture of scanner noise; we intend to investigate such methods in the future.
Improvement on robust estimation algorithms such as robust moving least-
squares fitting [29] may be of use here.
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