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Abstract

An approach to mesh denoising based on the concept of random walks is exam-
ined. The proposed method consists of two stages: face normal filtering, followed by
vertex position updating to integrate the denoised face normals in a least-squares
manner. Face normal filtering is performed by weighted averaging of normals in a
neighbourhood. A novel approach to determining weights is to compute the proba-
bility of arriving at each neighbour following a fixed-length random walk of a virtual
particle starting at a given face of the mesh. The probability of the particle stepping
from its current face to some neighbouring face is a function of the angle between
the two face normals, based on a Gaussian distribution whose variance is adap-
tively adjusted to enhance the feature-preserving property of the algorithm. The
vertex position updating procedure uses the conjugate gradient algorithm for speed
of convergence. Analysis and experiments show that random walks of different step
lengths yield similar denoising results. Our experiments show that, in fact, iterative
application of a one-step random walk in a progressive manner effectively preserves
detailed features while denoising the mesh very well. This approach is faster than
many other feature-preserving mesh denoising algorithms.
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1 Introduction

3D surface mesh denoising has been an active research field for several years.
Although much progress has been made, mesh denoising technology is still
not mature. The presence of intrinsic fine details and sharp features in a noisy
mesh makes it hard to simultaneously denoise the mesh and preserve the
features. In this paper, we present a new approach to feature-preserving mesh
denoising based on a random walk model.

Mesh denoising is usually posed as a problem of adjusting vertex positions
while keeping the connectivity of the mesh unchanged. In the literature, mesh
denoising is often confused with surface smoothing or fairing (Sun et al., 2007),
because all of them use vertex adjustment to make the mesh surface smooth.
However, they have different purposes, and different algorithms are needed to
meet their specific requirements, and we should keep in mind the distinctions.
Tasdizen et al. (2002), Shen et al. (2005) and Sun et al. (2007) already distin-
guish the different concepts well. Here, we only emphasise that the main goal
of mesh fairing is related to aesthetics, while the goal of mesh denoising has
more to do with fidelity, and mesh smoothing generally attempts to remove
small scale details. Another commonly used term—mesh filtering—is also of-
ten used in place of mesh fairing, smoothing or denoising. Filtering, however,
is a rather general term which simply refers to some black box which processes
a signal to produce a new signal, and could, in principle, perform some quite
different function such as feature enhancement.

In the early literature, mesh denoising was mostly done in the context of
surface smoothing or fairing. Because the main objective of surface smoothing
is the smoothness of the mesh surface, together with removal of the noise,
prominent features in the resulting mesh surface may also be removed. In
recent years, accompanied by increasing requirements on model fidelity, more
and more attention has been given to the feature-preserving noise removal
problem. Our work considers the feature-preserving problem, and in particular,
the preservation of sharp edges.

There are two different approaches used for adjusting vertex positions : one is
to directly adjust vertex positions in one step, and the other is to adjust vertex
positions in two steps, by first computing appropriate new surface normals,
and then computing the vertex positions from them. For a discussion of these
two approaches, the reader is referred to Sun et al. (2007). This work adopts a
two-step scheme. We first filter face normals iteratively, and then update vertex
positions based on the filtered normals, also iteratively. Simply, our algorithm
can be described as (Step 1)n1 + (Step 2)n2 , where Step 1 performs one pass
of normal filtering, Step 2 performs one pass of vertex position updating,
and n1 and n2 are numbers of iterations. We choose to separately update
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face normals and vertex positions because small normal errors, but not vertex
position errors, may cause significant aliasing problems (Botsch and Kobbelt,
2001). In addition, it is also face normals, but not vertex positions, that greatly
affect the appearance of rendered surfaces (Jones et al., 2004). We thus need
to pay careful attention to the normal updating step. The novelty of our work
is that the normal filtering is based on a random walk process.

Random walks are used as models in many areas of mathematics and physics.
Use of random walk models in computer vision and image processing first
appeared in Wechsler and Kidode (1979), where they were used for texture
discrimination. More recently, random walks have been applied to other prob-
lems such as image enhancement (Smolka and Wojciechowski, 2001; Azzabou
et al., 2006), image filtering (Smolka and Wojciechowski, 2001; Szczepanski
et al., 2003), and image segmentation (Grady, 2006). Although image process-
ing is closely linked to mesh processing, random walks on an image only have
to deal with a 2D domain, which furthermore has a regular neighbourhood
structure. It is not straightforward to extend such 2D methods to 3D meshes
with irregular connectivity. The application of random walks to mesh pro-
cessing appears to be new. In this paper, we consider a method of applying
random walks to 3D mesh denoising, motivated by the random walk based
image denoising approach proposed by Smolka and Wojciechowski (2001).

The rest of the paper is organised as follows. Section 2 reviews previous
work on mesh denoising. Section 3 describes the notation we use, while Sec-
tion 4 presents a simple introduction to random walk models. Section 5 is
the core of the paper, discussing mesh normal filtering using random walks.
We also present an adaptive parameter adjustment method, and analyse the
feature-preserving properties of our approach. Section 6 explains how we per-
form vertex position updating using the conjugate gradient method. Sec-
tion 7 presents experimental results and compares our method to other recent
feature-preserving mesh denoising methods. Finally, Section 8 concludes the
paper and gives some directions for future work.

2 Related work

In recent years, many mesh surface smoothing, fairing and denoising methods
have been proposed. Many of the surface fairing and smoothing methods have
also been used for noise removal, so we also consider them along with mesh
denoising methods.

Most of the earlier surface fairing algorithms are based on minimisation of cer-
tain energy functionals. The most commonly used functionals are membrane
energy, thin plate energy (Kobbelt et al., 1998) and total curvature (Welch and
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Witkin, 1994). In general, minimising these continuous functionals is computa-
tionally complicated. However, after discretisation and parameterisation, the
minimisation of the continuous functionals can be reduced to a linear or non-
linear system with respect to vertex positions (Shen et al., 2005). For example,
the variational derivatives of the membrane energy and thin plate energy lead
to the Laplacian operator and the second Laplacian operator (Kobbelt et al.,
1998; Desbrun et al., 1999), which with special discretisation and parametri-
sation turn out to be a simple umbrella operator (the discrete Laplacian op-

erator) and a second-order umbrella operator, respectively (Kobbelt et al.,
1998).

Classical Laplacian smoothing or fairing (Field, 1988) is the fastest and sim-
plest surface smoothing method. However, when applied to a noisy 3D sur-
face, significant shape distortion and surface shrinkage can result in addition
to noise removal. To overcome these problems, Vollmer et al. (1999) proposed
various improvements to classical Laplacian smoothing, but they still did not
solve these problems completely. Starting from the viewpoint of signal process-
ing, Taubin (1995) improved upon Laplacian fairing and proposed a second-
order moving averaging filter to overcome shrinkage, but his approach still
suffers from distortion of prominent mesh features. Moreover, if the two pa-
rameters of the filter are not chosen suitably, the algorithm can be numerically
unstable. Desbrun et al. (1999) proposed a first-order autoregressive filter to
tackle numerical stability. They overcome the problem of shrinkage by re-
scaling the mesh to preserve its volume. They also discussed diffusion and
introduced curvature flow into surface fairing. Again, however, distortion of
prominent mesh features occurs in their algorithm. Kim and Rossignac (2005)
developed a general autoregressive moving average filter approach. Through
suitable choice of parameters, the filter can act as a low-pass, band-pass, high-
pass, notch, or band amplification or attenuation filter. Thus it can filter out,
for example, high-frequency noise, and at the same time, enhance or suppress
certain features. However, it is difficult to design a suitable filter that does
both well.

All of the above methods were developed in the context of fairing and hence
paid little or no attention to feature preservation. In fact, the above are all
isotropic filtering methods, in which the filter acts independently of direction.
This makes it hard for such filters to preserve prominent directional mesh
features, especially edges. Recently various anisotropic filtering schemes have
been proposed which smooth surfaces while simultaneously preserving promi-
nent features. Sun et al. (2007) divided feature-preserving mesh denoising
methods into four classes: one class is based on anisotropic geometric diffu-
sion (Clarenz et al., 2000; Desbrun et al., 2000; Tasdizen et al., 2002; Bajaj
and Xu, 2003; Hildebrandt and Polthier, 2004); the second class is based on
bilateral filters and their variants (Jones et al., 2003; Fleishman et al., 2003;
Choudhury and Tumblin, 2003; Yu et al., 2004; Lee and Wang, 2005; Shimizu
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et al., 2005; Li et al., 2005); among them Yu et al. (2004), Lee and Wang
(2005) and Li et al. (2005) can also be assigned to a third class, which is
based on combining normal filtering and vertex position updating (Ohtake
et al., 2001; Taubin, 2001; Yagou et al., 2002, 2003; Shen and Barner, 2004;
Chen and Cheng, 2005; Sun et al., 2007). The last class consists of remaining
methods that do not simply fit into the above three classes (Shen et al., 2005;
Nehab et al., 2005; Diebel et al., 2006; Yoshizawa et al., 2006; Schall et al.,
2007). A fuller discussions of these methods is given in Sun et al. (2007).

The denoising approach proposed in this paper belongs to the third class.
Compared to the aforementioned approaches, our approach either preserves
features more efficiently or is computationally less expensive.

3 Notation

Here we briefly state the notation used in the rest of the paper.

We use T = (V, E, F,X) to represent a triangle mesh, where V = {i : i =
1, . . . , n} are the vertices, E = {(i, j) : (i, j) ∈ V × V } are the edges, F =
{(i, j, k) : (i, j), (i, k), (j, k) ∈ E} are the faces, and X = {xi : xi ∈ R

3, i ∈ V }
are the vertex coordinates. We use | · | to denote the cardinality of a set, so
e.g. |V | denotes the number of vertices. A vertex, edge, or face is sometimes
loosely represented by its corresponding index, i.e. a number i may be used
to denote the ith vertex Vi, edge Ei, or face Fi, where this is not ambiguous.
The normal to face Fi is denoted by ni. ∂Fi denotes the set of edges bounding
face Fi.

In algorithms, various quantities are iteratively updated. We use ′ to represent
the updated value, relative to the current value: e.g. n′

i denotes the updated
value of ni.

The 1-ring vertex neighbourhood of a vertex Vi, denoted by NV (i), comprises
those vertices that are connected to Vi by an edge. The set of faces that share
a common vertex Vi is denoted by FV (i). The faces in the 1-ring face neigh-

bourhood of a face Fi can be divided into two types. The first type, denoted by
NFI(i), comprises those faces that have a vertex or edge in common with face
Fi, and the second type, denoted by NFII(i), comprises those faces that share
an edge with face Fi. Fig. 1 shows the two types of face neighbourhoods. Note
that the NFI(i) ⊃ NFII(i). We refer to the union of Fi and its neighbourhood
by N∗

FI(i) = NFI(i)
⋃

{Fi} and N∗
FII(i) = NFII(i)

⋃

{Fi}.
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Fig. 1. Face neighbourhoods: faces labelled I belong to NFI(i); faces labelled II
belong to NFII(i).

4 Markov chains and random walks

In this section, we introduce random walks from a practical point of view to
help readers unfamiliar with this topic understand the rest of the paper. For a
more mathematical treatment, the reader is referred to a standard textbook,
e.g. Spitzer (2001). Because random walks are closely related to Markov chains,
we begin with an explanation of Markov chains.

A Markov chain is a sequence of random variables {Xt : t = 0, 1, 2, . . .} with
the property that, the future state depends only on the current state, and is
conditionally independent of states before the present state, i.e.

P (Xt+1 = xt+1|Xt = xt, Xt−1 = xt−1, . . . , X0 = x0)

= P (Xt+1 = xt+1|Xt = xt). (1)

The possible values Xt may take form a countable set called the state space;
this may be finite or infinite. Here we simply use the index set I = {1, . . . , N}
to represent the state space, as we only consider finite state spaces.

In general, P (Xt+1 = x|Xt = y) need not equal P (Xt = x|Xt−1 = y). However,
if P (Xt+1 = x|Xt = y) = P (Xt = x|Xt−1 = y) for all t, we have a stationary

Markov chain, a stochastic process in which the transition probabilities do not
depend on t.

The transition probability from state i to state j at the tth time step is denoted
by pi,j(t) = P (Xt = j|Xt−1 = i). We may construct an N × N matrix Π(t),
the transition probability matrix, whose (i, j)th entry is pi,j(t), where i, j ∈ I.
Thus, Π(t) is a stochastic matrix in which each row sums to 1. We denote
the probability that the Markov chain reaches the state i at time step t by
pi(t) = P (Xt = i). We can now use a vector P (t) = [p1(t), . . . , pN(t)] to
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represent the probability distribution of the Markov chain over all states at
time t. Note that

∑

i∈I pi(t) = 1.

The transition probability matrices together with the initial probability dis-
tribution completely determine the Markov chain. Let the initial distribution
be denoted by P (0). Then the distribution of the Markov chain is P (1) =
P (0)Π(1) after one step, and is P (t) = P (0)Πt after t steps, where Πt =
Π(1) · · ·Π(t). We call Πt the t-step transition probability matrix. The (i, j)th

element of Πt is denoted by pt
i,j, and is the probability of going from state i

to j after t steps.

Finally, a random walk is a discrete stochastic process consisting of a sequence
of steps, each in a random direction. A random walk is a restricted type of
Markov chain, where, in general, a single step can only move to a small set of
states in the state space: the neighbouring states of the current state. Thus,
its transition matrix Π(t) is sparse for small t. However, in the limit after
many steps, a random walk can reach any state, and as t grows, Πt becomes
non-sparse.

5 Normal filtering

We now discuss how a random walk model can be used to denoise face nor-
mals. There are two basic concepts. Firstly, the probability of stepping from
one triangle to another should be greater, the more similar their normals are.
Secondly, after walking has finished, new normals are found by averaging sur-
rounding normals; the final probabilities of reaching surrounding triangles are
used as weights in this averaging process. We thus give greater weight to simi-
lar triangles (belonging to similar parts of the surface) and less weight to ones
that are, for example, on the other side of an edge feature. Related ideas have
been used in Smolka and Wojciechowski (2001) for image denoising.

5.1 Random walk for normal filtering

We now give further details. We assume that initially a single virtual particle
is placed on each face of the mesh, and this particle remembers the normal of
its original face. At each step, the virtual particle may move to a neighbour
of its current face, or stay in its current position; the probabilities depend
on the face normals. After t steps of such a random walk, the particles will
have been redistributed on the mesh surface according to the t-step transition
probability matrix Πt, which we then use to compute the new face normals
in our normal filtering algorithm. We perform normal updating as weighted
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averaging of the normals of all faces on the mesh,

n′
i =

∑

j∈F pt
i,jnj

∣

∣

∣

∑

j∈F pt
i,jnj

∣

∣

∣

. (2)

Note that weighted averaging is a frequently used approach to updating nor-
mals (Taubin, 2001; Ohtake et al., 2001, 2002; Yagou et al., 2002, 2003; Shen
and Barner, 2004; Sun et al., 2007).

To implement Equation (2), we need to know how to compute pt
i,j. This de-

pends on two elements: the choice of t, the number of steps, and pi,j(t), the
transition probabilities. We first discuss the single-step transition probability.

Intuitively, the larger the difference between the normals of two neighbouring
faces, the less similar they are, and hence the less appropriate it is that they
should be included in the same average. Thus, the larger the difference, the
smaller the probability should be of the virtual particle on one face visiting
the other face. Hence, the single-step transition probability pi,j(t) should be a
decreasing function of the normal difference ‖ni −nj‖. Moreover, it is reason-
able to require that this function should also be convex in [0,∞), and should
tend to zero as its argument goes towards infinity (of course, the normal differ-
ence is in the range [0, 2], rather than [0,∞), but this makes little difference).
Numerous functions satisfy the above conditions. Typical functions found in
the literature (Szczepanski et al., 2003) are

f1(x) = Ce−βx2

, (3)

f2(x) = Ce−βx, (4)

f3(x) = C
1

1 + βx
, (5)

f4(x) = C
1

(1 + x)β
, (6)

f5(x) = C
(

1 −
2

π
arctan(βx)

)

, (7)

f6(x) = C
2

(1 + eβx)
, (8)

f7(x) = C
1

1 + xβ
, (9)

f8(x) =











C(1 − βx) if x < 1/β,

0 if x ≥ 1/β,
(10)

where β ∈ (0,∞) is a parameter altering in detail how the function varies
with respect to its argument, and C is a normalisation constant which ensures
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that probabilities sum to one.

Clearly, many functions satisfy our basic requirements. A priori knowledge
and experiments help us to choose a suitable function. In our experiments, we
have found that functions f3, f5 and f7 do not preserve sharp edges effectively
whilst denoising meshes, but all the other functions perform well, as we show
later in the paper. Ultimately, we chose to use the Gaussian function f1(x)
since a Gaussian noise distribution occurs commonly in the real world, and our
experiments show that it yields very good results (see Section 7.1.1). A further
benefit is that the Gaussian function can be easily used in conjunction with
the adaptive parameter adjustment procedure described in the next section.

We note that Ohtake et al. (2001, 2002) also use a Gaussian function as a
weighting function in their weighted averaging of normals. The difference be-
tween our approach and that of Ohtake et al. (2001, 2002) is that we have cho-
sen different arguments to the weighting function, and that our argument—the
normal difference—is simpler than their variable—the directional curvature.

Because

‖ni − nj‖
2 = 2(1 − ni · nj), (11)

we may write (after combining constant factors into the coefficient C and the
parameter β of the Gaussian function f1(x))

pi,j(t) =











Ceβni·nj if j ∈ NF (i),

0 otherwise,
(12)

where the normalisation coefficient C is given by

C = 1/
∑

k∈NF (i)

eβni·nk . (13)

Here, NF (i) is the 1-ring face neighbourhood of the face Fi, which we may
take to be either NFI(i) or NFII(i).

Next, we consider how to choose the number of steps t for the walk. As dis-
cussed in Section 4, as t becomes larger, more non-zero elements appear in the
matrix Πt, which means that more face normals are used in the computation
of the new normal in Equation (2), and better results can be expected. How-
ever, because the number of non-zero elements increases, the computational
cost of Equation (2) also becomes larger. We must seek a tradeoff between
computational cost and quality of results.
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If we adopt a non-iterative scheme to update face normals, t must be large
enough to obtain a result satisfying the qualitative requirements of denoising.
However, if we adopt an iterative scheme, then using small t can also produce
good results if we use several iterations of normal updating. Because a non-
iterative scheme only needs to update face normals once, it might appear that a
non-iterative scheme would be computationally more efficient than an iterative
scheme. However, just as was found in a comparison of computational cost
between two bilateral filtering schemes (Fleishman et al., 2003; Jones et al.,
2003), the non-iterative scheme is in practice more time-consuming. Thus, we
adopt an iterative scheme to update face normals.

To investigate the effect of t on the final quality and computational cost, we
first consider the face normal updating formulae for different t. In the simplest
case t = 1, we get p1

i,j = pi,j(1). Thus, the face normal updating formula in
Equation (2) becomes

n′
i =

∑

j∈N∗

F
(i) eβni·njnj

∣

∣

∣

∑

j∈N∗

F
(i) eβni·njnj

∣

∣

∣

, (14)

or,

n′
i =

∑

j∈NF (i) eβni·njnj
∣

∣

∣

∑

j∈NF (i) eβni·njnj

∣

∣

∣

, (15)

where N∗
F (i) is the union of Fi and NF (i). These alternatives correspond to the

cases in which the virtual particle on the current face Fi is or is not allowed
to stay on Fi in the next step, respectively. The normalisation coefficient C
does not need to explicitly appear in the above formulae because the last step
of computing n′

i is to normalise it.

Note that in each iteration, n′
i is computed sequentially from i = 1 to i = |F |.

Thus when we compute n′
i using Equation (14) or (15), some right-hand-

side normals nj may have a new value n′
j available. We can either use their

old values nj obtained in the last iteration, or the new values n′
j already

obtained in this iteration when computing n′
i. We call the former scheme the

batch scheme and the latter the progressive scheme. The progressive scheme
is expected to more quickly give a result of the same quality than the batch
scheme because n′

j used in the progressive scheme is closer to the required
denoised normal than nj used in the batch scheme. Our experiments justify
this conclusion.

Now consider the case t > 1. If we directly use Equation (2) to update normals,
we need to compute Πt. Because Πt will become non-sparse as t grows, the
computational cost will grow quickly, and additional memory will be required
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to store the whole matrix Πt. To save memory and computation time, we
suggest that normals should be updated sequentially:

ni(k) =
∑

j∈N∗

F
(i)

pi,j(k)nj(k − 1), k = {1, . . . , t}, (16)

or, using the alternative neighbourhood,

ni(k) =
∑

j∈NF (i)

pi,j(k)nj(k − 1), k = {1, . . . , t}, (17)

and finally,

n′
i =

ni(t)

|ni(t)|
. (18)

The algorithm given by Equation (16) or (17) updates normals {ni(k), i ∈ V }
starting from k = 1 with known {nj(0) : j ∈ V } which take the values {nj}
of the last iteration (or the initial normals during the first iteration). This is
repeated until the normal values for k = t are computed. Then Equation (18)
is used to give n′

i. It can easily be shown that Equation (18) together with
Equation (16) or (17) is equivalent to Equation (2). However, because for a
given k, only a sparse matrix Π(k) is required in the computation of Equa-
tions (16) or (17), the memory requirement and the computational cost are
greatly reduced.

Note that the above implementation is a batch scheme for the case t > 1. If
we adopt a progressive scheme, i.e. once we obtain a ni(k), we immediately
normalise it, take it as ni(k−1), and use it in the computation of pi,j(k), then
one iteration of the t-step algorithm in Equation (16) or (17) is equivalent to t
iterations of the 1-step algorithm in Equation (14) or (15), respectively. Thus,
when considering the progressive scheme, it makes no difference whether we
talk about it as 1-step or t-step algorithm. While the progressive scheme has
the advantage of generally converging more quickly than the batch scheme,
due to its use of more up-to-date information, the need to normalise normals
immediately in the case of t > 1 incurs an extra cost which counterbalances
this advantage.

Another explanation of the progressive scheme can be given. We can consider
it as random walks in which different virtual particles on the surface start
walking at different times—the particle on face 1 begins walking first (which
causes the first normal and corresponding probabilities to be changed), and
then the one on face 2, and so on. After all the particles have taken one step,
the first particle begins its second step, then the second particle, and so on.
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This process of updating normals and probabilities continues until all particles
have finished their t-step walks. We can consider this procedure as t iterations
of 1-step random walks. We can also consider it as one iteration of t-step
random walks, but with different probabilities for different steps.

5.2 Adaptive parameter adjustment

In the computation of n′
i, the only parameter involved is β. Choosing a suit-

able parameter value affects the quality of the result. Since we have chosen
a Gaussian function for the probability distribution function, and β is in-
versely proportional to the variance, we can immediately see qualitatively how
to choose β: if the model noise is high, β should be small, and vice versa.
However, if preservation of surface features such as sharp edges and corners
is important, we should make β large so that neighbouring normals which
deviate far from the current normal ni make a very small contribution to the
computation of n′

i. Further investigation is needed to quantitatively determine
β. One method of doing so is through experiments: our experiments show that
β ∈ [8, 12] generally works well for most models we have tested.

If an iterative approach is used to denoising, normal noise should reduce af-
ter each iteration. The qualitative analysis suggests that we should dynam-
ically adjust β so that it becomes larger after each iteration. Smolka and
Wojciechowski (2001) suggest in their application that β should be adjusted
using β′ = δβ, where δ > 1; see also (Szczepanski et al., 2003). We have
performed experiments using such a parameter adjustment scheme, but found
that it only provides a minor improvement.

Instead, we introduce an alternative adaptive method for parameter adjust-
ment, using a similar idea to one introduced by Shen and Barner (2004). We
adjust β to give us minimum overall change in normals between the original,
noisy, model, and the final denoised model, the goal being to preserve as much
available information as possible about the features of the model. Let ni0 be
the initial noisy normal of face Fi, and let n′

i(β) be the updated normal using
a parameter value of β. Then, we wish to find the value of β which minimises
the cost function J(β) = E(|ni0−n′

i(β)|), where E is the expectation operator.
This is equivalent to minimising

J(β) = E (−ni0 · n
′
i(β)) . (19)

We use a stochastic gradient-based algorithm to solve the problem of minimis-
ing J(β). The parameter is updated using

β′ = β − µ
∂J

∂β
, (20)
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where µ is a damping factor, and J is the current value of |ni0 − n′
i(β)|. In

the following derivation, we use Equation (14) as a specific example definition
for n′

i(β); using Equation (15) gives similar results. When Equations (16)–
(18) are used to update normals, it is not as easy to derive similar results.
However, fortunately, when we adopt the progressive scheme, this is not a
problem because, as we have pointed out, one iteration of the t-step scheme
in Equation (16) or (17) is equivalent to t iterations of the 1-step scheme in
Equation (14) or (15), respectively. Let us now define

ñi =
∑

j∈N∗

F
(i)

eβni·njnj. (21)

The derivative of ñi with respect to β is given by

˙̃ni =
∂ñi

∂β
=

∑

j∈N∗

F
(i)

(ni · nj)e
βni·njnj. (22)

As n′
i(β) = ñi/‖ñi‖, the gradient can be written as

∂J

∂β
=

1

‖ñi‖2

(

ni0 · ñi

∂‖ñi‖

∂β
− ni0 · ˙̃ni‖ñi‖

)

. (23)

By further noting that ‖ñi‖∂‖ñi‖/∂β = ñi · ˙̃ni, Equation (23) becomes

∂J

∂β
=

1

‖ñi‖3

(

(ni0 · ñi)(ñi · ˙̃ni) − (ni0 · ˙̃ni)‖ñi‖
2
)

. (24)

Combining (20) and (24), we obtain the parameter updating formula

β′ = β −
µ

‖ñi‖3

(

(ni0 · ñi)(ñi · ˙̃ni) − (ni0 · ˙̃ni)‖ñi‖
2
)

. (25)

This gives a method of updating β which is only based on one face of the
mesh. Because the optimal update depends on all faces, we keep the parameter
unchanged during each iteration, and update the parameter only after a whole
iteration step is finished. The magnitude of the parameter update from one
iteration to the next is the accumulated update magnitude for all faces (while
an average might be more intuitively correct, we allow for this by scaling µ
appropriately, as described shortly), i.e.,

β′ = β −
∑

i∈F

µ

‖ñi‖3

(

(ni0 · ñi)(ñi · ˙̃ni) − (ni0 · ˙̃ni)‖ñi‖
2
)

. (26)
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To implement the idea in Equation (26), µ and an initial value of β need to
be given. We have chosen µ = 500/|F | in all of our experiments, which seems
to work well. Our experiments show that β can vary over a large range with
little difference in experimental results. As initial value for β we have used 8
in most of our experiments.

5.3 Feature-preserving property

Equations (14)–(18) show that the updated normal of each face is a weighted
average of the normals of its neighbouring faces. Because the weight function
is a decreasing function of the difference between the normal of the central face
and that of a neighbouring face, the further these normals deviate, the less
influence this neighbouring face has on the central face normal. Where part
of a mesh lies on a feature, it is required that neighbouring faces have only
a small influence on each other during updating. This is satisfied as normals
of neighbouring faces usually substantially deviate from each other. Hence,
our algorithm has an inbuilt feature-preserving property. In addition, because
the parameter β is adaptively adjusted to minimise the cost of the difference
between the initial normal and the updated normal, the feature-preserving
property is further improved.

Various other anisotropic mesh filtering algorithms also compute weighted
averages of neighbouring face normals. Mean filtering algorithms (Taubin,
2001; Yagou et al., 2002) treat all neighbouring faces the same, and so do
not have a feature-preserving property. Median filtering algorithms (Yagou
et al., 2002) use the median of neighbouring face normals for the updated
normal. This can preserve features but cannot satisfactorily smooth the mesh
surface. The alpha-trimming filtering algorithm (Yagou et al., 2003) is a simple
compromise between mean and median filtering algorithms. However, it is
not a good compromise because the feature-preserving property can easily be
ruined. The fuzzy vector median filtering algorithm (Shen and Barner, 2004)
can effectively preserve features and smooth the mesh. However, it is more
time-consuming than our algorithm given here.

6 Vertex position updating

After adjusting the face normals, the vertex positions are updated based on the
new normals. Several algorithms exist for this purpose (Taubin, 2001; Ohtake
et al., 2001, 2002; Yu et al., 2004; Sun et al., 2007). Taubin (2001) uses or-
thogonality between the face normal and the face plane on the mesh to give a
system of linear equations for vertex position updating. In general, this system
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of equations has no non-trivial solution, so he solves it in a least-squares sense
using the gradient descent method (see also Shen and Barner (2004)). Un-
fortunately, this method converges slowly, and if the step size is not suitably
chosen, it may be unstable. Ohtake et al. (2001) also gives a vertex updating
algorithm similar to Taubin’s with a particular step size and additional area
weights. Again, as it a gradient descent based method, it converges slowly.
Sun et al. (2007) further improves the vertex position updating algorithm of
Ohtake et al. (2001) by removing its area weights; they also prove the conver-
gence of the vertex updating algorithms of Ohtake et al. (2001) and Sun et al.
(2007). Still, their algorithm also converges slowly. Ohtake et al. (2002) pro-
pose another vertex position updating algorithm based on the minimisation of
the area-weighted sum of the squared differences between the original and the
new face normals. The solution to this minimisation problem is also performed
using gradient descent. However, since the gradient computation involved is
more complicated, it is computationally more expensive than Taubin’s algo-
rithm. It also has the problem of choosing a suitable step size. The method of
Yu et al. (2004) is an implicit method which updates vertex positions through
gradient field manipulation. A gradient field is first computed using a local
rotation matrix derived from ni and n′

i, which is then used in a Poisson equa-
tion to compute the updated vertex positions. Because the Poisson equation
is linear, a linear system solver can be used. Compared to Taubin’s method,
Yu et al.’s method is computationally more complex, however, because of its
extra requirement to compute the gradient field.

The least-squares problem for vertex position updating is linear, and its nor-
mal equations are given by a symmetric sparse matrix, so there are various
efficient linear solvers available which could be used. Botsch et al. (2005) dis-
cuss various linear solvers and their respective advantages and disadvantages.
Here, we adopt a simple and yet relatively efficient approach, the conjugate
gradient method. We start with the face orthogonality conditions which yield
the following family of simultaneous linear equations (Taubin, 2001):



























n′
k · (xk1

− xk2
) = 0

n′
k · (xk2

− xk3
) = 0

n′
k · (xk3

− xk1
) = 0

, ∀k ∈ F, (27)

where k1, k2, and k3 are the vertices of face k. The least-squares cost function
corresponding to the above system is

e(X) =
∑

k∈F

∑

(i,j)∈∂Fk

(n′
k · (xi − xj))

2
. (28)

We could generalise the right hand side of Equation (28) to add weights re-
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lated to the triangle areas, edge lengths, or shapes. Suitably chosen weight
functions might produce better quality meshes according to particular criteria.
However, introducing weight functions also requires additional computational
effort. Because many meshes in practice have fairly uniform triangle sizes, we
only consider Equation (28) itself in this paper. Indeed, our experiments show
that we can obtain satisfactory results by simply using Equation (28) even for
nonuniform meshes.

General formulae for solving least-squares problems using the conjugate gra-
dient method can be found in many standard textbooks, e.g. (Press et al.,
1992). However, as the problem here is reduced to solving a sparse system, we
give detailed formulae, allowing our paper to be self-contained.

We introduce vectors {gi ∈ R
3, i ∈ V }, {pi ∈ R

3, i ∈ V }, and {qk ∈ R
3, k ∈

F}, and separately concatenate {gi}, {pi}, and {qk}, respectively, to form
three long vectors G ∈ R

3|V |, P ∈ R
3|V |, and Q ∈ R

3|F |. The initial values of
gi and pi are computed by

gi = pi = 3
∑

k∈FV (i)

n′
k(n

′
k · (x̄k − xi)), (29)

where x̄k = 1
3

∑3
j=1 xkj

is the mid-point of face k. The conjugate gradient
method then updates the vertex positions xi together with gi, pi, and qk in
the following way:

qk =















nk · (pk1
− pk2

)

nk · (pk2
− pk3

)

nk · (pk3
− pk1

)















, ∀k ∈ F, (30)

α = ‖G‖2/‖Q‖2, (31)

x′
i = xi + αpi, ∀i ∈ V, (32)

g′
i = gi + 3α

∑

k∈FV (i)

n′
k(n

′
k · (p̄k − pi)), ∀i ∈ V, (33)

γ = ‖G′‖2/‖G‖2, (34)

p′
i = g′

i + γpi, ∀i ∈ V, (35)

where p̄k = 1
3

∑3
j=1 pkj

, and G′ is formed by concatenating {g′
i}.

The conjugate gradient algorithm in Equations (29)–(35) is iterated until it
reaches a given maximum number of iterations, n2, or meets a given tolerance
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ǫ such that ‖X ′ − X‖ < ǫ, or ‖G‖ < ǫ. In all of our experiments, we have set
a fixed maximum n2 = 50 and the tolerance ‖G‖2 < 10−6|V |.

7 Results and discussion

This Section presents results of tests carried out on our random walk filtering
(RF) approach, which we also compare to several other approaches: median
filtering (MF, Yagou et al., 2002), bilateral filtering (BF, Fleishman et al.,
2003), and fuzzy vector median filtering (FF, Shen and Barner, 2004). The
algorithms were implemented in VC++.net, and our experiments were per-
formed on a PC with a 3.2GHz Intel Xeon CPU with 2GB of RAM. Both
synthetic and scanned models were used.

7.1 Experiments on random walk filtering

In Section 5 we presented several alternative schemes of implementing the ran-
dom walk-based normal filtering algorithm. Here, we compare these schemes
experimentally to determine which is best. In some cases, it is easy to dis-
tinguish the quality of different schemes by means of a visual comparison.
However, when only small visual differences are apparent, we need a numeri-
cal criterion to distinguish them. The criterion used here is the mean square
angular error (MSAE) between the ideal and the denoised normals. This crite-
rion was also used in Nehorai and Hawkes (2000) and Shen and Barner (2004).
It is defined as

MSAE = E (∠ (nd,n)) , (36)

where ∠ (nd,n) is the angle between the denoised normal nd and the original
normal n: we compare the normals produced by each scheme with those of the
original synthetic model (before addition of noise). To implement the expec-
tation operator, we take a simple average over all face normals in the mesh.
We conducted experiments with various meshes; all the experiments result in
the same conclusions.

7.1.1 Choice of transition probability function

This section presents experimental results concerning the use of different tran-
sition probability functions in our approach. The eight functions used in our
experiments were f1–f8 given in Equations (3)-(10).
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N2/F1/I50/β8 N2/F2/I50/β8 N2/F3/I50/β300 N2/F4/I50/β8

0.0287491 0.0309454 — 0.0233557

N2/F5/I50/β300 N2/F6/I50/β8 N2/F7/I3/β8000 N2/F8/I50/β1

— 0.0299379 — 0.0357103

Fig. 2. Experimental results for a double-torus model for different transition prob-
ability functions, original model courtesy of Y. Ohtake.

Experimental results are shown in Figs. 2–5, where the notation Nx/Fy/Iz/βw
below each figure means that the model noise is x/10 times the mean edge
length of the mesh, the function used is function number y, the number of
iterations of normal updating is z, and the parameter β has the value w. The
lower number beneath each figure is the value of MSAE. Note that in some
cases we have not provided an MSAE value (denoted by ‘—’) since a visual
comparison is sufficient by itself to determine that they are unsatisfactory
results.

The results presented show that functions f3(x), f5(x) and f7(x) do not ef-
fectively preserve features for models with sharp edges, but can effectively
denoise relatively smooth models, such as the bunny model. Function f4(x)
generally results in the smallest MSAE for models with sharp edges, except
for the cylinder model. The other functions are also able to preserve sharp
edges. Generally, functions f2(x) and f6(x) produce better results than f1(x)
and f8(x).

Table 1 shows the time taken for 50 iterations of normal updating for each
function, using several models. From the table we can see that using f1(x)
is fastest while using f4(x) is slowest. Thus if we want the fastest denoising
process, we can use f1(x), while if we want to obtain the best qualitative results
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N2/F1/I10/β8 N2/F2/I10/β5 N2/F3/I10/β100 N2/F4/I10/β6

0.0214954 0.0163723 — 0.0171964

N2/F5/I10/β30 N2/F6/I10/β6 N2/F7/I3/β8000 N2/F8/I10/β1

— 0.0161438 — 0.0215581

Fig. 3. Experimental results for a cylinder model for different transition probability
functions.

for models with sharp edges, we should use f4(x). Function f2(x) provides a
compromise between good quality and low computational cost. Note that the
difference in computation time between the slowest and fastest approach is
little more than a factor of two, however. We have used the Gaussian function
f1(x) elsewhere in the paper when discussing further details because it is the
fastest function of the functions we have considered, and we note that Gaussian
noise is the most common noise distribution.

Table 1 also shows that the time taken for normal updating varies approxi-
mately linearly with the number of faces no matter which function is used in
our approach, as expected.

7.1.2 Experiments on variants using a given transition probability function

Next, we discuss experimental results on variants when using a given transition
probability function. The transition probability function used hereafter is the
Gaussian function f1(x).

Firstly, we discuss the effect of varying the number of random walk steps t.
Fig. 6 shows the optimal MSAEs achieved, the corresponding total computa-
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N1/F1/I4/β8 N1/F2/I4/β7 N1/F3/I4/β40 N1/F4/I4/β8

0.00237084 0.00171023 — 0.00168811

N1/F5/I4/β30 N1/F6/I4/β8 N1/F7/I3/β8000 N1/F8/I4/β2

— 0.00177429 — 0.00228405

Fig. 4. Experimental results for a fandisk model for different transition probability
functions, original model courtesy of H. Hoppe.

tion times, and the numbers of iterations needed for convergence for several
models illustrated elsewhere in the paper. It can be seen that lower t gener-
ally produces slightly smaller optimal MSAE, but there are no clear trends in
overall computation time. Because the variations in these optimal MSAEs and
computation times are not significant, no clear preference exists for the choice
of t. We suggest choosing t = 1 for simplicity. It can also be seen from Fig. 6
that the optimal number of iterations reduces gradually as t increases, and in
the limit, only one iteration is required, which corresponds to a non-iterative
scheme. This corresponds with the qualitative analysis in Section 5.1.

Secondly, we consider the relationship between the MSAE and the number of
iterations n1. Fig. 7 shows the variation of MSAE with n1 for several models.
It can be seen that for the double-torus model, which has sharp edges and
flat surfaces, as n1 grows, the MSAE first decreases and then, after reaching a
minimum, increases slightly. For other models having similar sharp features to
the double-torus model, we can safely choose large n1 to obtain good quality
results. For the bunny model, which has a curved, textured surface, as n1

grows, MSAE first decreases and then increases notably. Thus for models with
similar features to the bunny model, careful choice of n1 is necessary to get
good quality results. Fig. 7 also shows that MSAE reaches a minimum faster
for large t. Specifically, when t = 10, only one iteration leads to the minimum
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N2/F1/I3/β8 N2/F2/I3/β4 N2/F3/I3/β8 N2/F4/I3/β5

0.0233303 0.0196158 0.0199059 0.0191672

N2/F5/I3/β8 N2/F6/I3/β5 N2/F7/I3/β8000 N2/F8/I3/β1

0.0189331 0.0199932 0.0308846 0.0235621

Fig. 5. Experimental results for an “iH” embossed Standard bunny model for dif-
ferent transition probability functions, original model courtesy of Y. Ohtake.

MSAE for the bunny model.

In the rest of this section, we only discuss the case t = 1 since, as we have
shown above, the results obtained for t ≥ 2 do not differ significantly from
those for t = 1; we only analyse results from the double-torus model for reasons
of space.

Thirdly, we discuss the effect of adaptively adjusting the parameter β. Exper-
iments show that when β ∈ [6, 12], both adaptive and non-adaptive schemes
yield good results (for adaptive schemes the β here is the initial value). How-
ever, if β is chosen smaller, the non-adaptive scheme causes sharp edges to
become rounded, while the adaptive scheme can still yield good results if
β > 3. Fig. 8 shows the results obtained after n1 successive iterations using
adaptive and non-adaptive schemes when β = 8, and β = 5. It can be seen
that when β = 8, both schemes produce almost perfect results. However, when
β = 5, the non-adaptive scheme distorts the mesh, while the adaptive scheme
still yields very good result. This experiment shows that the adaptive scheme
can robustly adjust the parameter β.

Fourthly, we discuss whether it is preferable to include or exclude the central
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Table 1
Normal updating times for different transition probability functions (in seconds, for
50 iterations)

Fandisk “iH” Bunny Igea

|V | 6,475 34,834 134,345

|F | 12,946 69,451 268,686

f1 0.75 4.156 15.813

f2 1.031 5.656 21.704

f3 0.75 4.172 15.828

f4 1.766 9.39 36.578

f5 1.516 8.094 30.14

f6 1.141 6.219 24.14

f7 1.641 8.953 34.782

f8 0.828 4.5 17.109

2 4 6 8 10
0

0.01

0.02

M
S

A
E

2 4 6 8 10
0

0.5

1

T
im

e
 (

s
e
c
s
.)

2 4 6 8 10
0

10

20

t

It
e
ra

ti
o
n
s

 

 
Double−torus

Fandisk

BunnyiH

Fig. 6. Effect of varying numbers of random walk steps t = 1, . . . , 10. Top: optimal
mean square angular errors achieved. Centre: computational times. Bottom: number
of iterations needed for optimal errors.

face normal in the computation. Fig. 9 shows variation in MSAE with n1 for
the double-torus model when using the alternative methods with and without
the central face. It can be seen that using the central face yields larger MSAE
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Fig. 7. MSAE for varying numbers of iterations n1.

at first, but produces smaller MSAE after several iterations. Note that for
models with sharp edges like the double-torus, a large value for n1 produces
good-quality results, while for models with a generally curved surface like
the bunny, a relatively small value for n1 yields better results. Overall, it is
thus preferable to include the use of the central face for models with sharp
edges, but to exclude its use for models lacking sharp edges. In our work, we
generally work with models for which we wish to preserve sharp edges, and
we thus normally use the central face.

Fifthly, we compare the results of our approach when used in either a pro-
gressive or a batch scheme. Fig. 10 shows variation in MSAE with n1 when
applying each scheme to the double-torus model. The progressive scheme al-
most always yields smaller MSAE than the batch scheme. Thus the algorithm
based on a progressive scheme is preferable to one based on a batch scheme.

Finally, we briefly discuss the two possible types of face neighbourhood. Our
experiments show that our algorithm using Type I face neighbourhoods gen-
erally produces better qualitative mesh results than using Type II face neigh-
bourhoods. On the other hand, the algorithm is faster when using Type II
face neighbourhoods. On balance, we suggest using Type I face neighbour-
hoods in our approach; all other comparisons are based on using Type I face
neighbourhoods.

In summary, our experiments show that progressively using Equation (14) with
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(a) (b) (c)

(d) (e) (f)

Fig. 8. Denoising a double-torus model (|V | = 2, 686, |F | = 5, 376) using our ap-
proach. (a) Original model, (b) noisy model (Gaussian noise, standard deviation
= 0.2 mean edge length), (c) β = 8, no adaptive parameter (t = 1, n1 = 50), (d)
β = 8, adaptive parameter (t = 1, n1 = 50), (e) β = 5, no adaptive parameter
(t = 1, n1 = 50), (f) β = 5, adaptive parameter (t = 1, n1 = 50).

β adjusted adaptively is the best scheme when using our approach. Thus, we
use this scheme in the rest of our experiments and comparisons.

7.1.3 Experiments on poor-quality triangle meshes

The models used in the above experiments are mainly regular triangle meshes.
In this section, we show some results on triangle meshes with poor quality and
different sampling density in different regions. Fig. 11(a)-(d) shows the results
of our method used on a synthetic cube model with some long triangles. From
the figures it can be seen that our method denoises this model very well.
Fig. 11(e)-(h) shows the results of our method used on a laser-scanned human
face model which has much larger triangles at the mouth, nose and eyes com-
pared to the rest of the face. Note that there are even a few topological errors
in the mouth and nose regions. Experimental results show that our method
can effectively denoise this model, although it cannot correct its topological
errors. We have also made experiments on other irregular triangle meshes; all
of them have yielded satisfactory results.
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Fig. 9. Algorithms with and without centre face, using the double-torus model.
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Fig. 10. Progressive and batch schemes, using the double-torus model.

7.2 Comparisons with other approaches

We now turn our attention to comparing our chosen RF approach with the MF
(Yagou et al., 2002), BF (Fleishman et al., 2003), and FF (Shen and Barner,
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 11. Experimental results on poor-quality triangle meshes. (a) a noisy cube
model with long triangles, (b) the denoising result (n1 = 50, β = 8) of (a); (c) and
(d) the triangle edges of (a) and (b), respectively; (e) a laser-scanned human face
model with different triangle areas and topological errors at the mouth and nose
parts, (f) the denoising result (n1 = 5, β = 8) of (e), (g) and (h) the triangle edges
of (e) and (f), respectively.

2004) approaches mentioned earlier.

7.2.1 Quality

We first visually compare the results obtained. In each case, we show the
best results we were able to obtain for each approach after carefully tuning
its parameters. All models are rendered using flat shading to aid the visual
comparison of normals.

Fig. 12 shows denoising results for a CAD-like model with sharp edges—a
double-pyramid. It can be seen that all the four filtering methods preserve
sharp features to some extent. However, the BF approach cannot smooth ver-
tices with large errors, as Fleishman et al. (2003) point out. The MF approach
cannot smooth flat areas completely, and cannot preserve corner features. In
contrast, the FF approach and our RF approach produce surfaces that look
very much like the original model. (We also tested mean filtering (Yagou et al.,
2002) and alpha-trimming filtering (Yagou et al., 2003), but both methods blur
sharp edges, so we have not illustrated the corresponding poor results).

Fig. 13 shows denoising results for a faceted and triangulated cylinder, which
has both flat and curved areas, and sharp edges. It can be seen that the
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(a) (b) (c)

(d) (e) (f)

Fig. 12. Denoising of a double-pyramid model (|V | = 1026, |F | = 2048). (a) Orig-
inal model, (b) noisy model (Gaussian noise, standard deviation = 0.2 mean edge
length), (c) BF result, (d) MF result, (e) FF result, (f) RF result (n1 = 10, β = 12).

BF approach does not preserve sharp edges in this case. The MF approach
preserves sharp edges, but also introduces spurious additional sharp edges.
The FF approach and our RF approach again preserve both sharp edges and
the surface characteristics.

Fig. 14 shows denoising results for a fandisk model. All four approaches pre-
serve most of the sharp edges. The BF and MF approaches even preserve those
sharp edges with small angles between the neighbouring surfaces, but on the
other hand some corner vertices are not correctly smoothed. Furthermore, the
round side edge produced by the BF approach and much of the curved surfaces
produced by the MF approach are not particularly smooth. The FF approach
and our RF approach produce smooth surfaces and preserve most sharp edges,
but have a greater tendency to blur edges with small angles. Although the BF
approach appears to preserve sharp edges better on this model than on the
previous models, it blurs the sharp edges heavily on the same model if higher
levels of noise are added (e.g. 20% of the mean edge length), if adjusted to
achieve a reasonably smooth final surface.

Fig. 15 shows denoising results on a mesh model with details at various sizes—
the ‘iH’ embossed Stanford Bunny Model. All approaches do well apart from
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(a) (b) (c)

(d) (e) (f)

Fig. 13. Denoising of a cylinder model (|V | = 404, |F | = 804). (a) Original model,
(b) noisy model (Gaussian noise, standard deviation = 0.2 mean edge length), (c)
BF result, (d) MF result, (e) FM result, (f) RF result (n1 = 10, β = 8).

the MF approach. The MF approach has a tendency to enhance features in the
noisy model, and the resulting surface is not smooth. For this model, perhaps
the BF approach provides the best overall result; the FF approach, and to a
lesser extent the RF approach, lose a little of the finer detail.

Fig. 16 shows results of denoising a scanned model with tiny details—the Moai
model. For this model, MF cannot effectively smooth the surface. FF smooths
some tiny details away. The BF and RF approaches both preserve tiny details
and smooth the surface better. Again, the BF approach seems provides the
best overall result.

Figs. 17, 18, and 19 show the results of denoising three 3D photography mesh
models. From the figures it can be seen that, as for the Moai model, the MF
method enhances certain details, but cannot effectively smooth the surfaces.
All three other methods smooth the mesh surfaces while preserving tiny details
to some extent. The differences between the results of these three methods are
visually very small. From Figs. 17 and 18, it seems that the results of the
BF approach and our RF approach are very close and preserve details a little
better than the FF approach. However, from Fig. 19, it seems that the results
of the FF approach are the best. The result of our RF approach is very close
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(a) (b) (c)

(d) (e) (f)

Fig. 14. Denoising of a fandisk model (|V | = 6, 475, |F | = 12, 946). (a) Origi-
nal model, (b) noisy model (Gaussian noise, standard deviation = 0.1 mean edge
length), (c) BF result, (d) MF result, (e) FF result, (f) RF result (n1 = 4, β = 8).

to that of the FF approach, and both results of FF and RF approaches are a
little better than that of the BF approach.

From the above comparisons using several models of varying types, we can
see that the results from the FF approach and our RF approach are generally
visually similar, and both produce better results than either the BF or MF
approach in cases where sharp edges exist in the models. In cases where there
are tiny details in the models, the BF approach probably produces the best
results, while our RF approach produces results slightly better than the FF
approach.

7.2.2 Speed

We now compare the computational cost of the approaches discussed above.
Since the FF approach (Shen and Barner, 2004) generally produces similar
results to our RF approach, we first compare these two approaches. Because
the vertex position updating stage takes very little time compared to the
normal updating stage, we first compare specifically the times taken by the
normal updating stages of the RF and BF approaches. Table 2 shows the
CPU times recorded in our experiments, including some large (well-known)
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(a) (b) (c)

(d) (e) (f)

Fig. 15. Denoising of an “iH” embossed Stanford Bunny model
(|V | = 34, 834, |F | = 69, 451). (a) Original model, (b) noisy model (Gaus-
sian noise, standard deviation = 0.2 mean edge length), (c) BF result, (d) MF
result, (e) FF result, (f) RF result (n1 = 3, β = 8).

(a) (b) (c) (d) (e)

Fig. 16. Denoising of the Moai model (|V | = 10, 002, |F | = 20, 000). (a) Original
model, courtesy of Y. Ohtake, (b) BF result, (c) MF result, (d) FF result, (e) RF
result (n1 = 3, β = 30).

models whose denoising results are not shown in this paper. For comparative
purposes, we performed 50 iterations of normal updating for each algorithm,
although it is not necessary in practice to use so many iterations. From the
table it can be seen that our RF approach is more than ten times faster than
the FF approach.
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(a) (b) (c) (d) (e)

Fig. 17. Denoising of a 3D photography model (|V | = 14, 770, |F | = 28, 878). (a)
Original model, courtesy of J.-Y. Bouguet, (b) BF result, (c) MF result, (d) FF
result, (e) RF result (n1 = 5, β = 30).

(a) (b) (c) (d) (e)

Fig. 18. Denoising of a head model (|V | = 19, 324, |F | = 37, 922). (a) Original model,
courtesy of J.-Y. Bouguet, (b) BF result, (c) MF result, (d) FF result, (e) RF result
(n1 = 3, β = 30).

(a) (b) (c) (d) (e)

Fig. 19. Denoising of a angel model (|V | = 24, 566, |F | = 48, 090). (a) Original
model, courtesy of J.-Y. Bouguet, (b) BF result, (c) MF result, (d) FF result, (e)
RF result (n1 = 10, β = 30).

We continue in Table 3 by comparing the overall time taken by our approach
with that required by other approaches. The values in parentheses are the
numbers of iterations we found necessary to satisfactorily denoise the models.
For the BF and MF approaches these correspond to the only iteration param-
eter, for the FF approach to n1, n2 and for our RF approach to n1. Overall,
the BF approach is generally fastest. However, our approach requires a time
similar to that of BF; sometimes, our approach is even faster than BF. The
other approaches take significantly longer.

In summary, we conclude that our new method has significant advantages,
providing denoising results of a quality often comparable to the slowest of
these methods, with nearly the speed of the fastest.
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Table 2
Normal updating times for RF and FF methods (seconds, for 50 iterations)

Fandisk iH Bunny Igea Dragon Buddha

|V | 6475 34834 134345 437645 757490

|F | 12946 69451 268686 871414 1514962

RF 0.703 4.078 15.391 47.657 83.078

FF 9.391 48.406 196.531 677.719 1263.06

Table 3
Overall times for various methods (seconds, for given numbers of iterations)

Fandisk iH Bunny Igea Dragon Buddha

BF 0.046 0.313 1.313 3.75 7.094

(5) (5) (5) (5) (5)

MF 0.281 2.594 7.25 33.219 39.047

(10) (15) (10) (15) (10)

FF 1.891 5.141 12.641 140.438 70.093

(10, 10) (5, 20) (3, 10) (10, 15) (3, 10)

RF 0.078 0.422 1.484 6.078 6.922

(4) (3) (3) (5) (3)

8 Conclusions and future work

In this paper, we have shown how to use random walks for mesh denoising,
and proposed a new two-stage mesh denoising algorithm. Initially, the face
normals are updated through weighted averaging of the face normals, with
the weights being determined by probabilities of random walk steps between
each face and its neighbours; these probabilities in turn depend on differences
in face normals. Analysis and experiments show that the scheme in Equa-
tion (14), together with adaptively adjusting parameter β, and progressively
updating face normals, provides the best implementation of our approach.
To find the final vertex positions, we use a conjugate gradient algorithm to
solve the appropriate least-squares problem, rather than the more generally
used gradient descent algorithm (Taubin, 2001; Ohtake et al., 2001; Shen and
Barner, 2004; Sun et al., 2007). The conjugate gradient approach is stable and
converges rapidly, and is particularly suitable for solving the least-squares
problem arising here as it leads to a sparse system.

A basic requirement for a mesh denoising algorithm is that it can both remove
noise and preserve mesh features effectively. However, many early mesh de-

32



noising algorithms did not consider the feature-preserving requirement. Several
more recent mesh denoising methods do consider it, but most such methods
are computationally expensive. Our proposed mesh denoising algorithm effec-
tively preserves features and yet is very simple and computationally cheap.
Experiments presented here have compared our approach with other recent
feature-preserving mesh denoising approaches. Bilateral filtering (Fleishman
et al., 2003) is a fast feature-preserving mesh denoising approach. Experiments
show that our approach is as fast as the bilateral filtering approach (Fleishman
et al., 2003): e.g. it can denoise the well-known Buddha model with 1.5 mil-
lion triangles within 7 seconds; however, our approach preserves sharp edges
better than the bilateral filtering approach. Compared to the fuzzy vector
median filtering approach (Shen and Barner, 2004), our approach is over ten
times faster, yet produces a final surface quality similar to or better than that
approach.

We have also compared our current RF approach with the algorithm proposed
in Sun et al. (2007). In general, the difference between the results of the cur-
rent approach and that in Sun et al. (2007) is small, so that it is hard to
distinguish them visually. Also, their time costs are quite close. Although the
RF approach proposed in this paper does not produce results that are signifi-
cantly better than that in Sun et al. (2007), it is still very useful as it provides
a general framework for researchers to develop new mesh denoising methods,
maybe with quite different requirements. In addition, the distribution func-
tion used in this method has a control parameter which may be adaptively
adjusted to further enhance the feature-preserving properties of the method,
which the approach in Sun et al. (2007) cannot achieve. Furthermore, and
most importantly, it is expected that the idea of using random walks has the
potential for application to many other problems in mesh processing, such as
mesh edge detection, mesh segmentation, saliency detection, feature point and
feature triangle detection.

Although our algorithm is simple and efficient for feature-preserving mesh
denoising, it is not immune to certain problems that other algorithms also
meet. One is that we have to interactively determine the number of normal
updating iterations. Using too few iterations fails to fully denoise the mesh
normals, while too many causes oversmoothing of the mesh. Future work is
needed to find an automatic method of determining the optimal number of
iterations. Other problems such as mesh folding, self-interaction and poorly-
shaped triangles caused by vertex position updates should also be considered
in future work.
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