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Abstract 

 

TMEFF2 (transmembrane protein with EGF-like and two follistatin motifs 2) is a 

transmembrane protein expressed in brain and prostate and over-expressed in prostate 

cancer (Uchida et al. 1999; Horie et al. 2000). The role of TMEFF2 in prostate cancer is 

controversial. Several data indicate that TMEFF2 has cancer-promoting activity (Glynne-

Jones et al. 2001; Ali and Knäuper 2007), while others suggest that TMEFF2 inhibits 

progression of cancer (Gery et al. 2002; Gery and Koeffler 2003). TMEFF2 is cleaved by 

membrane-anchored proteases, including disintegrin and metalloproteases (ADAMs) and 

γ-secretase (Ali and Knäuper 2007), but the biological meaning of TMEFF2 shedding is 

not known. It was hypothesized that the opposing findings describing the role of TMEFF2 

in prostate cancer result from proteolytic processing of TMEFF2 by different proteases 

which are co-expressed with TMEFF2 in prostate cancer cells, such as the type II 

transmembrane serine proteases (TTSPs), prostasin and ADAMs. To support this 

hypothesis co-expression of TMEFF2 and serine proteases was analyzed in prostate 

cancer cell lines and clinical samples. The shedding of TMEFF2 by ADAMs and serine 

proteases was investigated using HEK293 cells expressing AP/V5 TMEFF2 or shedding 

resistant AP/V5 ∆303-320TMEFF2 mutant (Ali and Knäuper 2007). The data obtained from 

AP activity assay and Western blot analysis of cell lysates showed that TMEFF2 is 

cleaved by serine proteases (matriptase and hepsin) and ADAMs (ADAM9, ADAM12). 

Moreover, serine proteases and ADAMs cleave TMEFF2 in different positions, generating 

several soluble TMEFF2 fragments. To establish the biological role of TMEFF2 

processing, N-terminal TMEFF2 fragments predicted to be generated by TTSPs and 

ADAMs were expressed in E. coli and mammalian cells. Preliminary experiments using 

HEK293 and PNT2-C2 cells indicated that soluble TMEFF2 does not signal through ErbB 

receptors and suggested several signaling pathways that might be regulated by TMEFF2. 

The fate of TMEFF2 C-terminus following ectodomain shedding was examined by 

confocal microscopy and Western blotting, indicating that TMEFF2 cytoplasmic domain is 

likely degraded following the release of TMEFF2-ECD. 
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1.1 Prostate cancer 

Prostate cancer is the most common type of cancer in men in the UK and the second 

most common cause of cancer death, after lung cancer. According to Cancer Research 

UK statistics, about 30,800 patients were diagnosed with prostate cancer in 2009 in the 

UK. Worldwide, this disease is diagnosed in more than 670,000 men every year, 

accounting for almost one in seven (14%) of all new cancer cases in males. Prostate 

cancer risk strongly correlates with age: around three-quarters of cases occur in men over 

65 years old with the largest number of cases in those aged 70-74. It is estimated from 

post-mortem data that around a half of men in their fifties and 80% of men aged 80 have 

histological evidence of cancer in the prostate. In addition to age another important risk 

factor for prostate cancer is family history of this disease. Men with one or more first-

degree relatives diagnosed with prostate cancer have an increased risk of prostate 

cancer, especially if the relative was diagnosed at an early age. In 1970s only 20% of men 

diagnosed with prostate cancer survived their disease for at least 10 years. Thanks to the 

improved diagnostic procedures allowing to detect prostate cancer at early stages the 

survival rate over 10 years increased to about 70% (data obtained from Cancer Research 

UK website, May 2013). 

The prostate is the largest male accessory gland with round, elliptical or triangular 

shape, surrounding the urethra at the neck of the bladder. The prostate contains multiple 

acini and ductal structures producing components of the seminal fluid (Figure 1.1 A). This 

gland is composed of two major compartments - epithelium and stroma. Prostate 

epithelium consists of two distinct layers, named the luminal and basal layers (Figure 1.1 

B). The luminal cell layer contains columnar cells responsible for the production of seminal 

fluid components. The basal layer is populated by morphologically distinct flattened cells 

called basal epithelial cells as well as rare neuroendocrine cells that are thought to 

release paracrine hormones necessary for luminal cells. Prostate stroma is composed of 

specialised smooth muscle cells and fibroblasts and accounts for about half of the volume 

of the prostate. Both epithelial and stromal cells are completely dependent on each other 

for their survival and produce the extracellular matrix proteins contributing to the 

basement membrane separating these two compartments (Kumar & Majumder 1995; 

Vasioukhin 2004). 
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Figure 1.1 Hematoxylin and eosin staining of the normal human prostate gland, A. lower 

magnification, B. higher magnification(from SCGAP Urologic Epithelial Stem Cells Project, 

http://scgap.systemsbiology.net/ontology/). 
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Development of prostate cancer requires alterations in gene expression leading to 

specific morphological changes. Multiple genes have been implicated in the development 

of prostate cancer, including regulators of cell proliferation, apoptosis and response to 

stress factors (DeMarzo et al. 2003; De Marzo et al. 2004). A universally accepted 

precursor of prostate cancer is prostatic intraepithelial neoplasia (PIN), characterized by 

intra-acinar proliferation with cells often showing nuclear anaplasia. The basement 

membrane is intact and all the morphologic changes are confined to the epithelial layer 

within the prostate acini. The basal layer is usually present but the number of basal cells is 

decreased (Vasioukhin 2004). Most common genetic alterations observed in PIN lesions 

include chromosomal deletion in region 8p21 (occurs in 63% of PIN lesions) (De Marzo et 

al. 2004), loss of prostate-specific homeobox protein NKX3.1 expression (20% of PIN 

lesions) (Bowen et al. 2000) and down-regulation of reactive oxygen species scavenger 

GSTP1 (Lee et al. 1994). Transition from PIN to prostate carcinoma is characterized by 

the loss of basal cells and change in cellular morphology caused by the nuclear and 

nucleoli enlargement. The basement membrane is disrupted and the overall epithelial 

organization is lost with tumour progression, evolving from well differentiated to 

moderately and poorly differentiated (Vasioukhin 2004). The histological pattern of 

carcinoma cell arrangement is commonly used to determine the pathological stage of 

prostate cancer. The disorganization of prostate cells is classified using the Gleason 

grading system (Gleason 1966). There are five basic grades in the Gleason system, 

where grade 1 corresponds to the morphologically normal prostate tissue and grade 5 is 

given to poorly differentiated prostate gland (Figure 1.2). Analysing the prostate tissue 

biopsy, the pathologist assigns a primary grade to the most common tumour pattern and a 

secondary grade to the next most common tumour pattern. The two grades are added to 

obtain the Gleason score which is directly related to the pathological stage and is one of 

the most powerful predictors of prostate cancer clinical outcome. The Gleason score 

ranges from 2 to 10, with 10 having the worst clinical prognosis. For Gleason score 7, 4+3 

is more aggressive than 3+4 and also there is no significant difference between the 

aggressiveness of Gleason score 9 and 10 tumours (Epstein 2010). 
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Figure 1.2 Gleason grading system, original drawing (from Gleason 1966). 

 

In addition to the Gleason score, the diagnosis of prostate cancer includes also the 

description of cancer stage.  The stage indicates certain aspects of the cancer such as the 

tumour size, depth of its penetration, extent to which the cancer has spread and to which 

organs it has metastasized. Determination of stage at the diagnosis of cancer determines 

the required therapy and is an important indicator of patient’s survival (Madu & Lu 2010). 

One of the two most common staging systems is the TNM system, that describes the 

extend of the tumour size and grade (T), detection of the lymph nodes (N) and other 

metastases (M) by adding an appropriate number (X-4) to the letter. For example, 

T3N1M0 describes a prostate tumour that extended through the prostate capsule (T3), 

spread to one lymph node smaller than 2 cm (N1) and there are no distant metastases 

(M0) (Madu & Lu 2010).  

The most important genetic changes associated with the transition of PIN to 

prostate carcinoma are inactivation of the transcription factor KLF6 (occurs in 55% of 

primary tumours) (Narla et al. 2001), loss of the negative regulator of the PI3K 

phosphatase PTEN (10-15% of primary tumours) (Wang et al. 1998) and inactivating 

mutations of the tyrosine kinase receptor EphB2 (12% of primary tumours) (Huusko et al. 

2004). Additionally, advanced, poorly differentiated prostate tumours often display loss of 

adhesion proteins such as E-cadherin, CD44 and integrins α6β4 and α6β1 as well as 

basement membrane proteins laminin-332 and collagen VII (Umbas et al. 1994; Nagle et 

al. 1995; Gao et al. 1997). As these proteins play important roles in mediating cell-cell and 

cell-matrix interactions their loss is responsible for tissue disorganization and invasion of 
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the primary tumour. A further hallmark of prostate cancer progression is spreading of the 

tumour cells through the lymphatic system and blood vessels to the distant organs. 

Metastatic lesions of prostate cancer usually appear in lymph nodes and bones but it can 

also metastasize to lung and liver. Spreading of prostate cancer is crucial in the 

development of the disease because while the prostate-defined tumour is curable, the 

advanced metastatic cancer is usually lethal (Vasioukhin 2004). The genetic changes 

associated with prostate cancer metastasis include further inactivation of PTEN (30-43% 

of metastatic lesions) and amplification of the c-myc gene (21% of metastatic lesions) 

(Cairns et al. 1997; Jenkins et al. 1997). 

Normal prostate epithelial cells as well as majority of prostate carcinomas require 

androgens for growth and survival (Colombel et al. 1992). Androgens belong to steroid 

hormones that act through the androgen receptor (AR), a steroid hormone-binding protein 

composed of N-terminal transcriptional regulatory region, central DNA-binding domain and 

C-terminal ligand-binding domain (LBD). In the absence of ligand binding, AR resides in 

the cytoplasm in complex with chaperones that prevent its interaction with DNA. Binding 

of androgen facilitates conformational changes in the AR protein and leads to the 

dissociation of AR-chaperone complex. The androgen-AR complexes form homodimers 

and translocate to the nucleus where they bind to specific DNA regions termed androgen-

responsive elements and stimulate the transcription of androgen-regulated genes (Evans 

1988; Edwards & Bartlett 2005). Growth and survival of prostate cancer cells, at least at 

the initial stages of the disease, are also regulated by androgens. For that reason ablation 

of androgens is usually the most effective treatment of prostate cancer. However, while 

most of the prostate cancer cases initially regress in response to androgen deprivation, in 

most cases the tumour stops responding to this treatment, due to becoming androgen 

independent. The molecular mechanisms allowing prostate cancer cells to proliferate and 

survive in the absence of androgens are diverse. Normal expression of AR and androgen-

dependent genes in androgen-independent prostate cancer tissue suggest that AR 

signalling is inappropriately restored, allowing the cells to proliferate and survive. 

Apparently, although this type of prostate cancer is androgen-independent it remains 

dependent on AR signalling. Activation of AR in androgen-independent cancer cells may 

be achieved through several mechanisms. Amplification of AR gene or mutations causing 

AR hypersensitivity allow prostate cancer cells to survive in the presence of minimal 

concentrations of androgens (Visakorpi et al. 1995; Gregory et al. 2001). Expression of 

constitutively active AR variant that lacks he ligand-binding domain cause constant 

transcription of AR-dependent genes (Guo et al. 2009). Finally, mutations of the LBD may 

change AR specificity and enable its activation by other hormones such as estrogens 

(Tilley et al. 1996; Fenton et al. 1997) or non-steroidal growth factors as shown for insulin 

growth factor 1 (IGF1), keratinocyte growth factor (KGF) and EGF (Culig et al. 1994). 

However, it is more likely that there is no single mechanism responsible for the survival 
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and proliferation of androgen-independent cells in every tumour and for that reason 

individual characterization of each prostate cancer case seems to be the future of prostate 

cancer therapy (Vis & Schröder 2009).  

In recent years the number of patients diagnosed with prostate cancer increased 

significantly, mostly due to the improvement of prostate cancer diagnostic procedures. 

The most widely used biomarker for screening and early detection of prostate cancer is 

prostate specific antigen (PSA, also known as kallikrein-3), a serine protease secreted by 

prostate cancer cells as well as normal prostate secretory epithelial cells (Lilja 1985). High 

levels of PSA are directly associated with the risk of cancer and high grade disease as 

well as with tumour stage. The biological function of PSA is liquefaction of the seminal 

fluid and the expression of PSA gene is under the control of AR. In addition to semen, 

PSA can also be detected in the serum. Although prostate cancer cells produce less PSA 

than normal prostate epithelial cells, it is thought that the disruption of the prostate gland 

structure observed in tumours results in the leakage of PSA into the blood and raises the 

PSA serum levels up to 105 fold. Serum PSA levels higher than 4 ng/ml prompt a 

recommendation that the patient should undergo prostate biopsy (Lilja et al. 2008). 

However, the level of PSA in the serum rise not only in prostate cancer but also in a 

number of non-malignant conditions such as benign prostate hyperplasia, infection or 

chronic inflammation (Pienta 2009). Serum PSA levels are also influenced by ejaculation, 

body weight, intake of carbohydrates and insulin resistance (Parekh et al. 2008). In some 

of these circumstances patients with primary prostate cancer might have serum PSA 

levels below 4 ng/ml, which do not classify them for further biopsy and cause 

misdiagnosis of the disease. On the other hand, PSA concentrations higher than 4 ng/ml 

might also be measured in healthy men, subjecting them to undergo unnecessary 

biopsies. To improve PSA testing several modifications have been introduced like the 

change of PSA ratio in time (PSA velocity) or the ratio of PSA to prostate volume (PSA 

density) (Benson et al. 1992; Carter et al. 1992).  

In addition to the search for prognostic and diagnostic biomarkers of prostate 

cancer much attention is paid to the development of novel therapies targeting prostate 

cancer. Whereas the androgen ablation therapy is quite successful in treatment of 

primary, androgen-dependent prostate tumours, there is no efficient therapy for hormone-

insensitive metastatic prostate cancer which is usually lethal. For that reason every newly 

identified protein expressed by prostate cancer cells is carefully investigated in order to 

better understand the mechanisms responsible for the development of an aggressive 

prostate cancer phenotype. One of these novel proteins, potentially involved in the 

development and progression of prostate cancer and thus being a promising targets for 

new anti-prostate cancer therapies is TMEFF2. 
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1.2 TMEFF2 – a novel protein expressed in prostate cancer 

1.2.1 TMEFF2 protein structure 

TMEFF2 (a transmembrane protein with EGF-like and two follistatin-like domains 

2) is also known in literature as tomoregulin-2, TENB2, HPP1 or TPF. It is a type I 

transmembrane protein composed of two follistatin-like (FS) domains, an EGF-like 

domain, transmembrane (TM) domain and short cytoplasmic tail (Figure 1.3). Analysis of 

TMEFF2 protein sequence revealed the presence of potential G-protein activating motifs 

within the TMEFF2 cytoplasmic domain, defined as at least two basic residues in the N-

terminus and BBxB at the C-terminus, where B stands for basic residue. The extracellular 

domain of TMEFF2 contains two sites for N-glycosylation and two potential 

glycosaminoglycan attachment sites but no heparin-binding region (Uchida et al. 1999). 

 

 

Figure 1.3 Schematic structure of TMEFF2. 

 

 

1.2.2 Expression of TMEFF2 

Despite the fact that the Tmeff2 gene was isolated for the first time from stomach 

fibroblasts (Uchida et al. 1999) the highest expression of the TMEFF2 protein was 

detected in two organs: brain and prostate (Liang et al. 2000; Horie et al. 2000). Elevated 

expression of TMEFF2 was also found in prostate cancer cell lines and clinical samples 

(Glynne-Jones et al. 2001; Gery et al. 2002; Afar et al. 2004), indicating that TMEFF2 

could play a significant role in prostate cancer progression. High TMEFF2 expression was 

also recently reported in human primary oocytes (Markholt et al. 2012), suggesting that 

TMEFF2 could be involved in embryonic development. 
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1.2.3 Regulation of Tmeff2 gene expression 

The expression of the Tmeff2 gene is under the control of the androgen receptor. 

Gery and co-workers shown that TMEFF2 expression in the LNCaP cells increased 

following treatment with dihydrotestosterone (DHT) in a dose- and time-dependent 

manner. Moreover, TMEFF2 mRNA levels in CWR22R xenografts propagated in male 

mice decreased following castration. In vitro studies on LNCaP cell line showed that  

TMEFF2 expression is also up-regulated in response to treatment with 17b-estradiol (E2) 

and 1,25-dihydroxyvitamin D3 (VD3) (Gery et al. 2002) which can activate the androgen 

receptor  (Veldscholte et al. 1990; Hsieh et al. 1996). 

1.2.4 TMEFF2 null mice 

In 2012 Chen and co-workers generated TMEFF2 null mouse in order to gain 

more insight into the physiological function of TMEFF2 in the prostate and nervous 

system. Inactivation of the Tmeff2 gene was achieved by replacing the first coding exon of 

Tmeff2 with cDNA encoding human placental alkaline phosphatase (hPLAP). 

Tmeff2hPLAP/hPLAP animals did not express TMEFF2 as confirmed by in-situ hybridization 

and were used to examine TMEFF2 expression within the body by performing simple AP-

staining of tissue sections. The first observation about the TMEFF2 null mice was that 

they were born normal with a Mendelian ratio but failed to gain weight and appeared 

smaller in size when compared with heterozygous or wild type littermates. Moreover, all 

TMEFF2 null mice died around weaning time (about 3 weeks old). As TMEFF2 expression 

was found predominantly in the prostate and brain it was suspected that some 

abnormalities in these two organs might cause TMEFF2 null mice death. However, the 

histology of the prostate gland as well as central, peripheral and enteric nervous systems 

appeared normal. There were also no differences in neuronal differentiation markers 

expression between TMEFF2 null and wild type mice and no spontaneous tumors were 

developed in aged TMEFF2 heterozygous mice. The only significant difference between 

TMEFF2 null and wild type mice was reduction of the white adipose tissue (WAT) in the 

body. Subsequently, the AP-staining revealed that TMEFF2 is expressed strongly in WAT. 

However, the in vitro adipocyte differentiation is not affected by TMEFF2 deficiency (Chen 

et al. 2012). So far, the characterization of the TMEFF2 null mice did not answer the 

question about the biological role of TMEFF2 due to premature death. Transgenic mice 

bearing organ-specific deletions of Tmeff2 gene would be a better in vivo model to study 

physiological role of TMEFF2 and could potentially explain its role in the brain and 

prostate. 

1.2.5 The role of TMEFF2 in the central nervous system 

As mentioned previously, TMEFF2 is abundantly expressed not only in the prostate 

but also in the brain (Horie et al. 2000). The biological role of TMEFF2 in the central 
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nervous system was studied less extensively than TMEFF2 involvement in prostate 

cancer but it was shown that TMEFF2 is a survival factor for primary cultured neurons 

(Horie et al. 2000). Interestingly, TMEFF2 was also found in β-amyloid Alzheimer plaques; 

however, not all plaques contain TMEFF2. The biological significance of TMEFF2 

expression in some plaques is unknown (Siegel et al. 2006). 

1.2.6 Controversial role of TMEFF2 in normal prostate and prostate cancer 

Due to the almost exclusive expression of TMEFF2 in two organs - brain and prostate 

as well as its up-regulation in primary prostate cancer and metastatic lesions from lymph 

nodes and bones (Uchida et al. 1999; Horie et al. 2000; Afar et al. 2004) TMEFF2 was 

intensively studied as a potential target for novel anti-cancer therapies. Afar and co-

workers generated monoclonal antibody recognizing the extracellular part of TMEFF2 that 

was internalized upon TMEFF2 binding and was used to deliver toxic agents to prostate 

cancer cells. The side effects of this toxin-conjugated antibody would be minimized due to 

the low expression of TMEFF2 in other organs and the inability of antibody complexes to 

cross the blood-brain barrier (Afar et al. 2004). Several studies showed significant 

reduction of cancer growth in LNCaP tumor xenograft model following treatment with 

monoclonal anti-TMEFF2 antibody conjugated with radioactive isotopes (Zhao et al. 2005) 

or toxins (Afar et al. 2004). However, the current knowledge about TMEFF2 ectodomain 

shedding and possible presence of TMEFF2-ECD in the circulation must be considered in 

designing future anti-cancer therapies. It is also important to better understand the biology 

of this protein before using it as a target in prostate cancer treatment.  

The data published to date regarding TMEFF2 involvement in the development and 

progression of prostate cancer is controversial. Some publications indicate that TMEFF2 

has cancer-promoting activity while others suggest that TMEFF2 inhibits progression of 

cancer. Analysis of TMEFF2 expression pattern in biopsies from prostate cancer patients 

showed elevated expression of TMEFF2 in the malignant compartments of the tumor 

compared to the surrounding benign tissue (Glynne-Jones et al. 2001). These data 

suggest that TMEFF2 expression correlates with prostate cancer malignancy. Moreover, 

recombinant TMEFF2-ECD promoted proliferation of HEK293 cells (Ali & Knäuper 2007; 

Chen et al. 2011). However, data from in vitro experiments indicate that TMEFF2 is down-

regulated upon prostate cancer progression. TMEFF2 was found in androgen-dependent 

prostate cancer cell line LNCaP but not in more invasive, androgen-independent DU145 

and PC3 cells. Additionally, forced expression of TMEFF2 in DU145 and PC3 cells 

reduced their growth by 34-66% when compared to empty vector controls (Gery et al. 

2002). A similar conclusion came from the study on a colon cancer model. Over-

expression of TMEFF2 in colon cancer cell line HCT116 reduced their proliferation rate 

and tumorigenic potential when implanted in nude mice. Comparison of gene expression 

between parental cell line and TMEFF2 expressing HCT116 cells revealed that TMEFF2 
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over-expression increase expression of STAT1 (Elahi et al. 2008), a tumor suppressor 

gene that impairs angiogenesis, growth and metastasis of cancer cells (Huang et al. 

2002). All this information suggests that TMEFF2 inhibits growth of more advanced cancer 

and is down-regulated during cancer progression. 

The hypothesis that TMEFF2 inhibits growth of cancer is also supported by the fact 

that the Tmeff2 gene is frequently hypermethylated in cancer cells. 5’ hypermethylation 

and silencing of the Tmeff2 gene was detected in prostate, colon and bladder cancer cell 

lines (Liang et al. 2000) as well as samples obtained from patients suffering from oral 

squamous cell carcinoma, gastric, breast, bladder and colorectal cancer and gliomas 

(Nagata et al. 2012; Shibata et al. 2002; Park et al. 2011; Costa et al. 2010; Young et al. 

2001; Sato et al. 2002; Lin et al. 2011). Additionally, Tmeff2 gene expression can be 

repressed by c-Myc (Gery & Koeffler 2003). Moreover, theTmeff2 gene is located on 

chromosome 2q33, where a high frequency of loss was associated with lung, colon, 

bladder, prostate, breast and esophageal squamous cell carcinoma (Liang et al. 2000).  

1.2.7 Soluble TMEFF2 fragments 

The ectodomain of TMEFF2 (TMEFF2-ECD) is shed from the cell surface by ADAM10 

and ADAM17 and the membrane-retained fragment undergoes further processing by a 

large membrane enzymatic complex, called the γ-secretase (Ali & Knäuper 2007). 

Shedding of TMEFF2-ECD can be induced by pro-inflammatory cytokines TNFα and IL-1β 

and involves NF-κB signaling (Lin et al. 2003). Interestingly, in the conditioned medium of 

CHO cells stably transfected with TMEFF2 two soluble TMEFF2 fragments were detected 

– TMEFF2-ECD and a fragment composed of two FS domains only (Uchida et al. 1999). 

Moreover, in the conditioned medium of LNCaP cells that endogenously express TMEFF2 

one more soluble TMEFF2 variant was found, composed of the first follistatin domain and 

a novel, C-terminal amino acid sequence that does not exist in the full length protein 

(Quayle & Sadar 2006). The three variants of TMEFF2 found in conditioned media are 

schematically presented in Figure 1.4. Whereas it is not known how the FS1-FS2 

TMEFF2 fragment is generated, the form containing FS1 and the novel amino acid 

sequence is a secreted splice variant of TMEFF2, resulting from the transcription 

termination by a premature stop codon (Quayle & Sadar 2006).  
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Figure 1.4 Schematic picture of soluble TMEFF2 variants isolated from the conditioned 

media of stably transected CHO cells and LNCaP cell that endogenously express 

TMEFF2; FS-follistatin domain, EGF-EGF-like domain (based on Quayle and Sadar 2006; 

Uchida et al. 1999). 

 

The physiological role of TMEFF2 variants composed of the two FS domains and 

FS1 domain and a novel amino acid sequence is currently not known. The role of 

TMEFF2-ECD, which is generated by ADAM10 and ADAM17, remains controversial. 

Initial findings by Uchida and co-workers indicated that recombinant TMEFF2-ECD weakly 

induced phosphorylation of epidermal growth factor receptor ErbB-4 in MKN28 gastric 

cancer cells (Uchida et al. 1999). These data were supported by Ali and Knäuper who 

showed that TMEFF2-ECD treatment induced phosphorylation of ERK1/2 kinases in 

HEK293 cells (Ali & Knäuper 2007). However, a recently published analysis of 

recombinant TMEFF2-ECD binding to different growth factors and receptors did not show 

any interaction between TMEFF2 and ErbB receptors (Lin et al. 2011). The only known 

binding partner of TMEFF2-ECD is platelet-derived growth factor isoform AA (PDGF-AA), 

whereas other PDGF variants (AB, BB, CC and DD) do not interact with TMEFF2-ECD. 

The interaction between TMEFF2-ECD and PDGF-AA might be of biological significance 

as the pre-incubation of PDGF-AA with TMEFF2-ECD significantly reduced PDGF-AA-

dependent proliferation of NR6 murine fibroblastsin vitro. The data indicate that TMEFF2-

ECD and PDGR-AA receptor, PDGFRα, compete for PDGF-AA binding, leading to 

inhibition of cell growth through inactivation of PDGF-AA (Lin et al. 2011). However, 

several other studies showed that treatment of HEK293 cells with TMEFF2-ECD 

increased cell growth (Ali & Knäuper 2007; Chen et al. 2011), indicating that the biological 

activity of TMEFF2-ECD needs to be further investigated in order to explain the role of 

TMEFF2 and TMEFF2 shedding in the context of prostate cancer. 

1.2.8 The role of TMEFF2 cytoplasmic domain 

Processing by the γ-secretase complex produces a small C-terminal fragment of 

TMEFF2 that is released from the cell membrane into the cytoplasm. The biological role of 

this secondary cleavage as well as the activity of TMEFF2 cytoplasmic domain is very 

enigmatic. Immunoprecipitation of the TMEFF2 cytoplasmic tail from lysates of stably 



13 

 

transfected HEK293 helped to identify sarcosine dehydrogenase (SARDH) as a TMEFF2 

C-terminus interaction partner (Chen et al. 2011). This enzyme is present mostly in 

mitochondria but also in the cytoplasm and catalyzes the conversion of sarcosine into 

glycine (Porter et al. 1985). Co-precipitation of TMEFF2 and SARDH was also observed in 

cell lysates of LNCaP that endogenously express TMEFF2. The biological role of 

TMEFF2-SARDH interaction is not clear, however it was shown that over-expression of 

TMEFF2 in HEK293 significantly reduces cytoplasmic sarcosine levels, suggesting that 

binding to TMEFF2 increased the activity of SARDH (Chen et al. 2011). 

 

1.3  Differential processing of TMEFF2 – possible explanation of TMEFF2 controversial 

role in prostate cancer 

 

1.3.1 Proteolysis on the cell surface – an important regulatory mechanism of protein 

function 

The biological activity of many cell surface proteins depends on or is regulated by 

proteolysis. Proteolytic processing is responsible for activation of membrane-anchored 

protein precursors, removal of regulatory proteins when they are not needed or if they 

require cellular translocation, for example from the cell membrane to the nucleus. 

Proteolytic processing is involved in regulation of several signaling pathways, including 

EGFR and Notch signaling pathways (Blobel 2005; Groot & Vooijs 2012; Weber & Saftig 

2012). 

In many cases, membrane proteins are proteolytically modified by proteases that are 

also attached to the cell surface via specific membrane-anchoring domains. These 

enzymes are ideally positioned to interact with other cell surface molecules as well as 

soluble proteins, components of extracellular matrix and proteins on adjacent cells. 

Proteolysis on the cell surface can be mediated by at least three classes of enzymes 

(Seiki 1999; Edwards et al. 2008; Hooper et al. 2001):  

� membrane-type matrix metalloproteinases (MT-MMPs),  

� a disintegrin and metalloproteinases (ADAMs)  

� membrane-anchored serine proteases.  

Members of the membrane-anchored serine proteases can be divided further, depending 

on their membrane-anchoring unit into three groups (Netzel-Arnett et al. 2003): 

� type I transmembrane serine proteases that are anchored in the membrane 

via their C-terminal transmembrane domain;  
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� type II transmembrane serine proteases (TTSPs), anchored via the  

N-terminal domain; 

� serine proteases that do not contain a transmembrane domain and are 

attached to the outer leaflet of the plasma membrane through a 

glycophosphatidyloinositol (GPI) anchor. 

The specificity of the mentioned proteases in identifying and processing their substrates 

depends on the structural properties of the protease active site, the accessibility of the 

potential cleavage sites within the substrate as well as localization of enzyme and 

substrate on the same cell or cellular compartment (Ehrmann & Clausen 2004). 

1.3.1.1 Ectodomain shedding 

ADAMs, MT-MMPs and membrane-anchored serine proteases are key mediators of 

the proteolytic process called ectodomain shedding in which the extracellular domain of 

membrane-anchored protein undergo regulated release from the cell surface. The 

ectodomain shedding of most of transmembrane proteins is usually low in basal 

conditions and increases dramatically upon cellular activation. The most common 

inducers of ectodomain shedding are phorbol esters which activate protein kinase C 

(PKC) due to their structural similarity to diacylglycerol (DAG), a naturally occurring PKC 

activator (Brose & Rosenmund 2002). Ectodomain shedding is also increased following 

treatment with G-protein coupled receptors (GPCRs) agonists, calcium ionophores, and 

ceramide as well as stress conditions such as UV radiation or hypertonic osmotic 

pressure. The data from in vitro experiments showed that ectodomain shedding 

decreases in the presence of protein tyrosine kinases (PTKs) and mitogen-activated 

protein kinases (MAPKs) inhibitors, indicating that this process is regulated by several 

intracellular signaling pathways. Consistently with this observation, ectodomain shedding 

is activated also by agonists of these signaling pathways such as cytokines, growth 

factors and bacterial toxins (Hayashida et al. 2010). 

The list of membrane proteins undergoing ectodomain shedding is constantly 

expanding and includes precursors of tumor necrosis factor α (pro-TNFα) (Black et al. 

1997), heparin-binding epidermal growth factor (pro-HB-EGF) (Suzuki 1997), epidermal 

growth factor (pro-EGF), amphiregulin, betacellulin, epiregulin, neuregulin (Sahin et al. 

2004) and many others. The extracellular part of several cell surface receptors is also 

shed by membrane-bound proteases, reducing the amount of receptor present on the 

plasma membrane and causing the release of decoy receptors that bind and neutralize 

specific signaling molecules. Among several receptors undergoing ectodomain shedding 

are EGF receptors (Lin & Clinton 1991), interleukin-6 receptor (IL-6R) (Croucher et al. 

1999), TNF receptors type I and type II (TNFRI, TNFRII) (Porteu & Nathan 1990) and 

CD23, a low affinity IgE receptor (Letellier et al. 1990). Proteolytic down-regulation of cell 
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surface proteins is also involved in modification of cellular adhesion properties. 

Extracellular domains of vascular adhesion molecule-1 (VCAM-1) and intracellular 

adhesion molecule 1 (ICAM-1) (Singh et al. 2005; Becker et al. 1991) and well as E-, L- 

and P-selectins (Wyble et al. 1997; Migaki 1995; Semenov et al. 1999) are shed from the 

cell surface and this process is an important regulatory mechanism for leukocyte homing. 

Ectodomain shedding of CD44, a receptor for hyaluronic acid that also binds collagens 

and matrix metalloproteinases affect cell-extracellular matrix interactions (Bazil & 

Strominger 1994). Finally, for some proteins ectodomain shedding is prerequisite step for 

further proteolytic processing called regulated intramembrane proteolysis (RIP), leading to 

the liberation of the cytoplasmic domain that can play several biological functions inside 

the cell.  

1.3.1.2  Regulated intramembrane proteolysis (RIP) 

RIP was described for the first time in 2000 by Brown et al. as a conserved 

mechanism observed from bacteria to higher eukaryotes, including humans (Brown et al. 

2000) in which a membrane protein is proteolytically processed within the transmembrane 

domain, in a hydrophobic environment of the lipid bilayer. Proteolysis within the 

membrane can be catalyzed by four groups of enzymes:  

� presenilins (aspartyl proteinases),  

� site 2 proteases (S2P) (zinc dependent metalloproteinases),  

� rhomboids (serine proteinases)  

� Signal-peptide peptidases (SPP) (aspartyl proteinases). 

Presenilins and rhomboids are able to proteolytically process only type I 

transmembrane proteins, containing a carboxy-terminal cytoplasmic domain whereas S2P 

and SPP cleave type II transmembrane proteins (Urban & Freeman 2002).  

Most of the described RIP substrates in mammals are cleaved by presenilins (presenilin 1 

and presenilin 2), ~50 kDa multiple membrane-spanning heterodimers, composed of N- 

and C-terminal fragments resulting from endoproteolytic auto activation (Li et al. 2009). 

Presenilins are present in the membrane as a part of a large protein complex called the γ-

secretase complex, containing also three other essential components: APH-1, PEN2 and 

nicastrin (Figure 1.5 A) (Wolfe et al. 1999). APH-1 has seven transmembrane domains 

with a cytosolic carboxyl terminus (Fortna et al. 2004) whereas PEN-2 is a double-

transmembrane hairpin-like protein with both ends located extracellularly (Crystal et al. 

2003).  APH-1 and PEN-2 are thought to play a structural role in assembly and maturation 

of the γ-secretase complex. Nicastrin is a type I transmembrane glycoprotein with a large 

extracellular part, that consists of about 45% of the calculated protein molecular mass of 

the entire γ-secretase complex (Herreman et al. 2003). Nicastrin plays a receptor function 

for the γ-secretase substrates – its extracellular domain recognizes the new amino-
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terminus of type I transmembrane protein generated by ectodomain shedding. The 

recognized substrate is then recruited to the γ-secretase complex and cleaved by 

presenilin (Shah et al. 2005) (Figure 1.5 B). 

 

 

Figure 1.5 Schematic representation of the γ-secretase complex and its role in regulated 

intramembrane proteolysis (RIP). 

(A) The γ-secretase complex consists of four transmembrane proteins: APH-1, PEN-2, 

presenilin and nicastrin and is involved in regulated intramembrane proteolysis (RIP). (B) 

In addition to the γ-secretase, RIP requires also a sheddase (1) that cleaves the 

extracellular part of the type I transmembrane substrate (2). Newly generated N-terminus 

of the substrate is then recognized by the large receptor ectodomain of nicastrin (3) and 

the protein is recruited into the γ-secretase complex (4). The intracellular domain of the 

substrate is then released into the cytoplasm by the catalytic unit of the γ-secretase 

complex, presenilin (5) (Shah et al. 2005).  
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The sequential proteolysis of transmembrane proteins (ectodomain shedding 

followed by RIP) generates two fragments with potentially distinct biological fate and 

function. The fate of several intracellular RIP products was already identified and includes 

regulation of gene transcription, induction of apoptosis, regulation of cytoplasmic kinases 

and proteosomal degradation (Figure 1.6). 

 

 

 

Figure 1.6 The fate of proteins’ cytoplasmic domains following RIP. 
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1.3.1.2.1 RIP-dependent release of transcription factors 

The most prominent example of the transmembrane protein that following ectodomain 

shedding and RIP releases cytoplasmic domain with transcription factor activity is Notch 

receptor, a type I transmembrane protein controlling development and tissue renewal. 

Deregulation or loss of the Notch signalling causes a wide range of pathologies, from 

developmental disorders to adult-onset diseases and cancer. The large extracellular 

domain of Notch is composed of 29-36 EGF-like repeats which participate in the 

interaction between Notch and its ligands, followed by unique negative regulatory region 

(NRR) that plays an important role in preventing receptor activation in the absence of the 

ligand. Notch ligands are type I transmembrane proteins which can be divided into two 

subclasses: the Delta and the Serrate/Jagged (Kopan & Ilagan 2009). Ligand binding 

leads to the cleavage of Notch ectodomain by ADAM10 or 17 at the cleavage site located 

~12 amino acids before the transmembrane domain, within the NRR region. The shedding 

of the Notch ectodomain creates a membrane-tethered fragment called Notch 

extracellular truncation (NEXT) that is a substrate for the γ-secretase complex. Cleavage 

by presenilin releases free Notch intracellular domain (NICD) that translocates to the 

nucleus were it forms a complex the DNA-binding protein CSL (CBF1/RBPjК/Su(H)/Lag-1) 

and the transcriptional co-activator Mastermind (MAM). This tri-protein complex recruits 

additional co-activators and activate the transcription of Notch-targeted genes (Fortini & 

Bilder 2009; Kopan & Ilagan 2009; Wang 2011).   

Another example of a transcription factor released by RIP is the cytoplasmic domain of 

epithelial cell adhesion molecule (EpCAM). EpCAM is a transmembrane glycoprotein 

frequently over-expressed in human cancers, considered to be a novel marker of cancer 

initiating cells of the colon, breast, pancreas and prostate carcinomas (Went et al. 2006; 

Al-Hajj et al. 2003; Ricci-Vitiani et al. 2007; O’Brien et al. 2007). Following ADAM17-

mediated ectodomain shedding, EpCAM is further processed by the γ-secretase complex. 

The released 5 kDa intracellular domain (EpICD) binds to “four and a half LIM domain” 

protein 2 (FHL2), a nucleocytoplasmic protein that links intracellular EpCAM signaling with 

the components of the Wnt pathway: β-catenin and Lef-1. The EpICD/FHL2/β-catenin/Lef-

1 complex translocates to the nucleus and binds to DNA at Lef-1 consensus sites, 

inducing transcription of targeted genes (Maetzel et al. 2009). EpICD signaling targets 

mostly genes regulating the cell cycle, like c-myc and cyclin D1 (Münz et al. 2004; 

Chaves-Pérez et al. 2012; Maaser & Borlak 2008) but also other genes, for example 

MMP7 (Denzel et al. 2012). In embryonic stem cells, EpICD is recruited to promoters of 

genes associated with stem cell features such as c-Myc, Oct-4, Sox2 and Nanog (Lu et al. 

2010). Interestingly, the accumulation of EpICD in the cytoplasm and nucleus was 

associated with the development of human epithelial cancers (Ralhan et al. 2010).  
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The cytoplasmic domain of an EGF receptor ErbB-4 is also a transcription factor 

released by RIP. Processing of ErbB-4 by the γ-secretase produces a ~80 kDa 

cytoplasmic protein that can be found in the nucleus (Rio et al. 2000; Ni et al. 2001; Lee et 

al. 2002).  Recent studies indicate that the intracellular ErbB-4 fragment (ErbB4-ICD) is a 

chaperone that facilitates the nuclear entry of transcription factor signal transducer and 

activator of transcription 5A (STAT5A),  YES-associated protein 1 (YAP1) and Eto2, a 

transcriptional co-repressor involved in erythrocyte differentiation (Komuro et al. 2003; 

Williams et al. 2004; Linggi & Carpenter 2006). The ErbB4-ICD can be detected also in 

mitochondria where it is believed to induce cell death due to the presence of the BH3 

domain within ErbB4-ICD. ErbB4-ICD pro-apoptotic activity is lost upon mutation of this 

domain. Moreover, the ErbB4-ICD interacts with an anti-apoptotic protein Bcl-2,  which 

when over-expressed abrogates ErbB4-ICD induced cell death (Vidal et al. 2005; Naresh 

et al. 2006). 

1.3.1.2.2 Regulation of cytoplasmic proteins by RIP products 

In addition to acting as transcription regulators, liberated cytoplasmic domains 

generated by RIP can also remain in the cytoplasm.  An interesting example is ephrinB2, 

a ligand for the tyrosine kinase receptor EphB (Tuzi & Gullick 1994). Since ephrins and 

Eph receptors are both membrane-bound proteins, activation of ephrin/Eph intracellular 

signalling pathways can only occur via direct cell-cell interaction. The unique property of 

ephrins is the capacity to generate a ‘reverse’ signal that is separate and distinct from the 

intracellular signal activated in Eph receptor-expressing cells. An early event that follows 

EphB-ephrin binding is phosphorylation of Src kinase (Boyd & Lackmann 2001). Binding 

of ephrinB2 by EphB receptor induces ectodomain shedding and RIP of ephrinB2, 

resulting in the release of ephrinB2 intracellular domain (ephrinB2-ICD). EphrinB2-ICD 

remains in the cytoplasm where it binds to Src kinase and prevents its association with the 

inhibitory kinase Csk, allowing auto phosphorylation of Src. Moreover, ephrinB2-ICD-

activated Src phosphorylates ephrinB2 and inhibits its processing by γ-secretase, 

providing a mechanism controlling the level of phosphorylated Src and regulating 

sprouting of endothelial cells (Georgakopoulos et al. 2006). 

1.3.1.2.3 Degradation of RIP products 

The biological function of some transmembrane proteins depends entirely on their 

extracellular part and following ectodomain shedding the membrane-stub is no longer 

needed. An example of the involvement of RIP in the degradation process is removal of 

the interleukin-6 receptor (IL-6R) membrane stub. IL-6, a critical regulator of the immune 

system, signals through a complex of IL-6R and membrane protein gp130. Membrane-

anchored IL-6R undergoes induced and constitutive shedding mediated by ADAM17 and 

10 (Matthews et al. 2003). Unlike most of the soluble receptors, soluble IL-6R (sIL6R) 
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does not act as decoy receptor but as an agonist of IL-6 signaling. The sIL6-R/IL-6 

complexes stimulate cells that express only gp130 on their surface and normally do not 

respond to IL-6 treatment (Rose-John & Heinrich 1994). Due to the involvement of IL-6 

signaling in chronic inflammation (Rose-John et al. 2006), the fate of IL-6R membrane 

stub generated by ADAMs was also investigated. The work published by Chalaris and co-

workers showed that the transmembrane fragment of IL-6R was processed by the γ-

secretase but did not translocate to the nucleus. Labeling of cells expressing GFP-tagged 

IL-6R with antibody detecting the lysosomal marker LAMP1 showed co-localization of 

these two proteins, indicating that the cytoplasmic domain of IL-6R is rapidly degraded 

upon ectodomain shedding (Chalaris et al. 2010). 

1.3.2 Biological consequences of dysregulated cell surface proteolysis 

Deregulated proteolysis of cell surface proteins may result in severe pathological 

conditions, of which the most prominent example is Alzheimer’s disease. For many years 

the progressive accumulation of amyloid plaques containing peptide derivate of amyloid 

precursor protein (APP) was recognized as a key feature of this incurable 

neurodegenerative disease. APP is a type I transmembrane protein composed of 770 

amino acids with a large ectodomain, a transmembrane domain and short, 47 amino acids 

cytoplasmic domain. The extracellular domain of APP is released from the cell surface 

either by α-secretases such as ADAM9, ADAM10 and ADAM17 or β-secretases BACE1 

and BACE2. In both α and β pathway the membrane-retained fragment is further 

processed by the γ-secretase complex. In the α pathway γ-secretase cleavage produces a 

small peptide p3, whereas in the β pathway this processing generates Aβ peptide that 

accumulates as plaques in brains of the Alzheimer’s disease patients (Figure 1.7). 

Cleavage position heterogeneity for the γ-secretase complex produce Aβ peptides 

composed of 40 or 42 amino acids and called Aβ40 and Aβ42, respectively (Fortini 2002). 

Generation of the Aβ peptides is a physiological event (Pearson & Peers 2006), however 

their overproduction as well as high ratio of Aβ42 to Aβ40 peptide is responsible for 

development of Alzheimer’s disease (Glenner & Wong 1984). Aβ peptides reduce the 

level of the neurotransmitter acetylcholine, disrupts ion channels essential for nerve 

excitation leading to progressive loss of signal transduction and  severe impairment of 

neurological functions (Lichtenthaler 2006). Aβ42 shows greater neurotoxicity that Aβ40. 

The direct mechanism responsible for the imbalance of α and β secretase APP processing 

as well as accelerated production of more toxic Aβ42 are not known, however genetic 

studies of families suffering from early-onset Alzheimer’s disease established that 

mutations of APP and presenilin genes are linked to early neurodegenerative disease 

progression. (Bertram et al. 2010). 
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Figure 1.7 Processing of amyloid precursor protein (APP) by α, β and γ secretases. 

APP is a type I transmembrane protein undergoing ectodomain shedding and RIP. The 

extracellular part of APP can be cleaved by α secretases ADAM9, 10 and 17 (upper 

panel) or β secretases BACE1 and BACE2 (bottom panel), releasing soluble ectodomain. 

In both the α and β pathways the membrane-remained fragment is further cleaved by the 

γ-secretase complex, resulting in generation of a small p3 peptide (α pathway) or larger 

Aβ peptide (β pathway). Accelerated production of the Aβ peptide leads to amyloid 

plaques formation and development of Alzheimer’s disease. 
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1.3.3 The role of proteolysis in modulating TMEFF2 function 

As a transmembrane protein TMEFF2 is exposed for proteolytic processing by 

membrane-anchored proteases, as showed already for ADAM10 and ADAM17 (Ali & 

Knäuper 2007). Examples of several other membrane-anchored proteins described in 

previous paragraphs indicate that proteolysis may significantly modulate protein function 

through the generation of several biologically active protein fragments from one 

transmembrane molecule. Based on this fact it was hypothesized that the controversial 

data about the role of TMEFF2 in prostate cancer result from proteolytic processing of 

TMEFF2 by different membrane-anchored proteases which are co-expressed with 

TMEFF2 in prostate cancer cells. Due to the failure of targeting MMPs in anti-cancer 

therapies in recent years more attention was paid to characterize the role of other 

proteases present in tumor cells, such as ADAMs and membrane-anchored serine 

proteases.  Several members of these two families were found to be expressed in 

prostate cancer and their expression was shown to influence cancer cell behavior 

(Mochizuki & Okada 2007; Netzel-Arnett et al. 2003). For these reasons ADAMs and 

membrane-anchored serine proteases are proposed to be responsible for the regulation of 

TMEFF2 biological activity in prostate cancer. 
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1.4 Membrane-anchored proteases implicated in prostate cancer 

1.4.1 ADAMs 

The ADAMs (a disintegrin and metalloproteinases) are a family of membrane-

associated proteins with functions in cell adhesion and proteolytic processing of several 

cell surface receptors and signaling molecules. There are 40 members of the ADAM 

family identified to date in the mammalian genome, of which 37 were found in mice and 22 

are thought to be expressed in humans. The first ADAMs to be described, ADAM1 and 

ADAM2 are the two subunits of the sperm protein fertilin, known also as fertilin-α and 

fertilin-β, respectively (Wolfsberg et al. 1993; Wolfsberg et al. 1995). 

1.4.1.1 Expression of ADAMs 

Expression pattern of ADAMs vary considerably. Some ADAMs, including ADAM2, 

7, 18, 20, 21, 29 and 30 are expressed predominantly in the testis as their main biological 

roles are regulation of spermatogenesis and sperm function. The expression of ADAM8 

was found primarily in hematopoietic cell types, whereas other ADAMs show rather broad 

somatic tissues distribution (Seals & Courtneidge 2003; Edwards et al. 2008). Additionally, 

many ADAM genes undergo alternative splicing, giving rise to several protein variants. For 

example, there are two known variants of ADAM12 (Wewer et al. 2006), ADAM9 

(Mazzocca et al. 2005)  and ADAM28 (Fourie et al. 2003), whereas ADAM15 has about 

13 splice variants identified to date (Kleino et al. 2007). 

1.4.1.2 ADAM domain structure 

A common characteristic of all ADAM family members is a complex multi-domain 

structure, usually containing a prodomain, a metalloproteinase domain, a disintegrin 

domain, a cysteine-rich domain, an EGF-like unit, a transmembrane domain and a 

cytoplasmic tail. The modular structure of a typical ADAM is schematically presented in 

Figure 1.8. 
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Figure 1.8 Schematic structure of a disintegrin and metalloproteinase (ADAM). 

A typical ADAM molecule is composed of N-terminal signal sequence, prodomain (PRO), 

metalloproteinase domain (MP), disintegrin domain (DIS), cysteine-rich motif (Cys), EGF-

like unit (EGF), transmembrane domain (TM) and C-terminal cytoplasmic domain (cyto). 

 

The N-terminus of all ADAMs contains a signal sequence that directs them to the 

secretory pathway as a type I transmembrane protein. The signal sequence is followed by 

a prodomain that is responsible for keeping the catalytic domain of ADAMs in an inactive 

state. A conserved cysteine residue within the prodomain coordinates the zinc atom 

present in the metalloproteinase domain’s active site, sequestering the catalytic domain in 

an inactive conformation. The prodomain is usually removed during transport through the 

Golgi system by the pro-protein convertases which cleave the consensus RX(R/K)K motif 

and release the prodomain from the enzyme (Edwards et al. 2008, Seals and Courtneidge 

2003). In some cases ADAMs may undergo autocatalytic activation, as shown for ADAM8 

and ADAM28 (Howard et al. 2000; Schlomann et al. 2002). Interestingly, the isolated 

prodomain of some ADAMs can act as potent, selective inhibitors of the mature forms of 

these enzymes as demonstrated for ADAM10, ADAM17 (Gonzales et al. 2004; Moss et al. 

2007) and ADAM9 (Moss et al. 2011). The other function of the prodomain is to 

chaperone proper folding of ADAMs, particularly the metalloproteinase domain. It was 

demonstrated experimentally by several groups that the deletion of the prodomain from 

ADAMs expression constructs resulted in the synthesis of inactive, improperly folded 

proteins (Seals & Courtneidge 2003; Edwards et al. 2008). 

The metalloproteinase domain of ADAMs has a globular structure divided into two 

subdomains with the active site cleft running between them which are characteristic for 

the metzincin family. The catalytic zinc atom is located at the bottom of the groove 

between the subdomains and is coordinated by three conserved histidine residues and a 

downstream methionine. The methionine lies in a Met turn motif that loops around and 
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faces the consensus HEXXHXXGXXH site, present within the metalloproteinase domain 

of catalytically active ADAMs: ADAM8, 9, 10, 12, 15, 17, 19, 20, 21, 28, 30 and 33. In 

contrast, ADAM2, 7, 11, 18, 22, 23, 29 and 32 lack one or more critical features within the 

Zn-binding active site and are thought to play non-proteolytic functions in the cell (Seals & 

Courtneidge 2003; Edwards et al. 2008; Weber & Saftig 2012). 

 The disintegrin domain is about 90 amino acids long and is named after its 

homology to the small proteins found in hemorrhagic snake venoms, SVMPs (snake 

venom metalloproteinases). SVMPs competitively inhibit integrin-mediated adhesion of 

platelets to RGD sequences in fibrinogen at the wound site through RGD or related 

sequences present at the end of an extended loop, known as a disintegrin loop. The 

disintegrin domains of the majority of ADAMs do not contain the RGD sequence, with an 

exception of human ADAM15. However, there is now considerable evidence that the 

disintegrin domains of many ADAMs are able to interact with integrins and modify cell 

adhesion and cell-cell interactions through the consensus CRXXXXXCDXXEXC motif 

within their disintegrin loops (Seals & Courtneidge 2003). 

The disintegrin domain is followed by the cysteine-rich domain that seems to be 

involved in determining substrate specificity and/or regulation of catalytic activity (Weber & 

Saftig 2012). The cysteine-rich domain of ADAM12 mediates its interactions with 

syndecans, leading to engagement of integrins (Iba et al. 2000) whereas this domain in 

ADAM17 is required for shedding of IL-1 receptor-II (Reddy et al. 2000). Determination of 

the crystal structure of a conserved snake venom homolog of ADAMs, a vascular 

apoptosis-inducing factor-1 (VAP1) indicated that the 

metalloproteinase/disintegrin/cyteine-rich part of extracellular domain forms a C-shape, 

with part of the cysteine-rich domain being in close contact with the catalytic site of the 

metalloproteinase domain (Takeda et al. 2006). 

Most of the ADAMs, with exception of ADAM10 and 17, contain an EGF-like unit 

between the cysteine-rich domain and the transmembrane region (Janes et al. 2005). The 

EGF-like domain is thought to participate in the substrate binding and in the interactions 

with cell surface proteoglycans (Weber & Saftig 2012). The corresponding membrane-

proximal domain present in ADAM17 was found to be involved in protease multimerization 

and ligand recognition (Lorenzen et al. 2011; Lorenzen et al. 2012).  

The hydrophobic membrane-spanning region of ADAMs is followed by a 

cytoplasmic domain that is considered to be the most variable domain of ADAMs. It varies 

extensively in length and sequence, ranging from 11 amino acids in ADAM11 to 231 

residues in ADAM19. The cytoplasmic domain contains several specialized motifs that are 

involved in the inside-out regulation of ADAM activity, the outside-in regulation of cell 

signaling and the control of maturation and subcellular localization of ADAMs. The most 
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common motifs within the cytoplasmic domain are proline-rich sequences (PXXP) that act 

as docking sites for proteins containing Src-homology region 3 (SH3) domains. The 

cytoplasmic domains of several ADAMs contain potential phosphorylation sites for serine-

threonine or tyrosine kinases. The phosphorylation of the cytoplasmic domain may directly 

regulate ADAM activity as well as serve as binding sites for proteins containing Src-

homology 2 (SH2) domains (Seals & Courtneidge 2003; Edwards et al. 2008). 

1.4.1.3  ADAMs proteolytic activity 

As mentioned previously, twelve of known human ADAMs contain a consensus 

catalytic sequence HEXGHXXGXXHD within their metalloproteinase domain and are 

active metalloproteinases, classified to the adamalysin subfamily of metzincins (Edwards 

et al. 2008; Weber & Saftig 2012).The adamalysin subfamily includes also snake venom 

metalloproteinases and ADAM-TS (a disintegrin and metalloproteinase with 

thrombospondin motif) (Seals & Courtneidge 2003). The main function of proteolytically 

active ADAMs is shedding of various membrane-anchored proteins, including growth 

factor precursors, cytokines and their receptors as well as components of the extracellular 

matrix. ADAM-mediated shedding can occur constitutively or is induced by different stimuli 

such as ligands for G-protein coupled receptors (GPCRs), activators of protein kinase C 

(PKC) and calcium ionophores, as described in more details in the introduction to Chapter 

4. The activity of ADAMs is naturally regulated by tissue inhibitors of metalloproteinases 

(TIMPs) which inhibit also MMPs. There are four TIMPs identified in mammals, named 

TIMP-1-4. Human TIMPs comprise of two domains - N-terminal inhibitory domain and C-

terminal domain without inhibitory function, providing an additional site for protease-

inhibitor interactions. TIMPs inhibit ADAMs and MMPs by forming tight complexes with a 

1:1 molar ratio (Brew & Nagase 2010; Murphy 2011). In general, TIMPs display much 

greater selectivity towards ADAMs than MMPs. For example, several ADAMs are 

exclusively inhibited by TIMP-3 (Baker et al. 2002), whereas ADAM8, 9 and 19 are 

insensitive for TIMPs inhibition (Amour et al. 2002; Chesneau et al. 2003). 

Due to the involvement of ADAMs in the regulation of various physiological processes 

aberrant expression or deregulated activity of ADAMs are implicated in many pathologies, 

including Alzheimer’s disease, multiple sclerosis, rheumatoid arthritis, asthma and several 

types of cancers (Seals & Courtneidge 2003; Edwards et al. 2008). In the area of prostate 

cancer research increased attention was paid recently to three ADAM family members: 

ADAM9, ADAM12 and ADAM15 which are described below. 
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1.4.1.4  ADAM9 

1.4.1.4.1 Expression of ADAM9 

ADAM9, also known as meltrin-γ or MDC9 was originally cloned as a 84 kDa 

protein, widely expressed in mouse and human tissues (Weskamp et al. 1996). Alternative 

splicing of ADAM9 gene results in two variants of this metalloproteinase – a full length, 

transmembrane ADAM9-L and secreted ADAM9-S, that lacks transmembrane and 

cytoplasmic domains (Hotoda et al. 2002). Similarly to the full length ADAM9-L, ADAM9-S 

is catalytically active and is expressed in a wide range of human tissues, including brain, 

liver, lung, heart, kidney and trachea (Hotoda et al. 2002; Mazzocca et al. 2005). 

1.4.1.4.2 ADAM9 substrates 

The first described substrate processed by ADAM9 is the precursor of heparin-

binding epidermal growth factor (pro-HB-EGF). ADAM9-mediated shedding of pro-HB-

EGF is induced by TPA, a protein kinase C (PKC) activator and involves direct interaction 

between PKC and ADAM9 cytoplasmic domain (Izumi et al. 1998). The list of ADAM9 

substrates includes amyloid precursor protein (APP) (Hotoda et al. 2002), insulin-like 

growth factor binding protein-5 (IGFBP-5) (Mohan et al. 2002), ADAM10 (Cissé et al. 

2005), collagen XVII (Franzke et al. 2004), laminin (Mazzocca et al. 2005), precursor of 

epidermal growth factor (pro-EGF) and fibroblast growth factor receptor iiib (FGFRiiib) 

(Peduto et al. 2005). ADAM9 was also implicated in the processing of angiotensin-I 

converting enzyme (ACE), a zinc-dependent metallopeptidase regulating vasoactive 

peptide metabolism that is activated by shedding from the cell surface (Coates 2003). 

ADAM9-mediated shedding of ACE is induced by bacterial lipopolysaccharide (LPS) but 

not by TPA and does require membrane anchorage of ADAM9 (English et al. 2012). In 

contrast with most of the membrane-associated metalloproteinases, ADAM9 is insensitive 

to inhibition by TIMPs (Amour et al. 2002).  

1.4.1.4.3 ADAM9 as an adhesion molecule 

In addition to shedding of several membrane-anchored proteins, ADAM9 plays 

also an important role in the regulation of cell adhesion. The ADAM9 disintegrin domain is 

a ligand for specific integrin heterodimers, including multiple β1 (Mahimkar et al. 2005; 

Zigrino et al. 2007), α6β4 (Mazzocca et al. 2005), αvβ5 (Karadag et al. 2006) and αVβ3 

(Cominetti et al. 2009).  The biological significance of some of these ADAM9-integrins 

interactions in the context of cancer progression is described in paragraph 1.4.1.4.6 

1.4.1.4.4. Cytoplasmic domain of ADAM9 

The cytoplasmic domain of ADAM9 contains proline-rich motifs that are known to 

interact with proteins containing SH3-domain. Yeast two-hybrid screen and 
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immunoprecipitation from mammalian cells experiments identified two SH3 domain-

containing binding partners of ADAM9 intracellular domain: endophilin I and SH3PX1. As 

these molecues binds preferentially with ADAM9 precursor but not with the mature, 

processed form it is hypothesized that they are involved in regulation of intracellular 

processing, transport and subcellular localization of ADAM9 (Howard et al. 1999). 

1.4.1.4.5 ADAM9 null mice 

Despite the ubiquitous expression pattern as well as high levels in some tissues, 

ADAM9-deficient mice are viable, fertile and do not display any obvious pathologies. 

Analysis of the constitutive and induced pro-HB-EGF shedding from embryonic fibroblasts 

isolated from ADAM9-deficient mice did not shown any reduction in HB-EGF release 

when compared with pro-HB-EGF shedding from wild type fibroblasts. Furthermore, there 

were no differences in the production of the APP α- and γ- secretase cleavage product 

(p3) and of β- and γ-secretase cleavage product (Aβ) in cultured hippocampal neurons 

from wild-type and ADAM9-deficient mice (Weskamp et al. 2002). The normal levels of 

HB-EGF and APP shedding in ADAM9-deficient animals may be explained by the 

compensation of ADAM9-mediated shedding by other members of the ADAM family. 

Interestingly, in 2009 Parry and co-workers identified that the mutation of ADAM9 gene is 

responsible for the development of a cone-rod dystrophy (CRD), an inherited progressive 

retinal dystrophy affecting the function of cone and rod photoreceptors. Studies on aged 

ADAM9-deficient mice confirmed that the lack of ADAM9 causes retinal degeneration. 

Here, retinal dysfunction in ADAM9-deficient mice and CRD patients results from impaired 

remodelling of the extracellular matrix (ECM) between the retinal pigment epithelium and 

photoreceptor outer segments or decreased shedding of factors essential for the 

maintenance of ECM (Parry et al. 2009).. 

1.4.1.4.6 ADAM9 in cancer 

ADAM9 is one of the ADAM family members that are intensively studied in the 

context of cancer development and progression as its expression is significantly elevated 

in various types of cancers, including renal (Fritzsche, Wassermann, et al. 2008), 

pancreatic (Grützmann et al. 2004), gastric (Carl-McGrath et al. 2005), breast (O’Shea et 

al. 2003) and prostate cancer (Sung et al. 2006). High levels of ADAM9 in these cancers 

correlate with tumor progression. ADAM9 is also present in non-small cell lung carcinoma 

where it was demonstrated to enhance cell adhesion and invasion via modulation of α3β1 

integrin and sensitivity to growth factors, and thus promote brain metastasis (Shintani et 

al. 2004). 

In breast cancer ADAM9 over-expression was found in cell lines and clinical 

samples, with significantly higher expression in breast cancers with lymph node 

metastases (O’Shea et al. 2003; Lendeckel et al. 2005).  Analysis of ADAM9 expression 
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using splice variant specific antibodies demonstrated that breast cancer cells express both 

forms of ADAM9 – transmembrane ADAM9-L and secreted ADAM9-S. Interestingly, these 

splice variants seem to have opposing effect on the breast cancer progression. ADAM9-S 

promotes migration of cancer cells that requires metalloproteinase activity, whereas 

ADAM9-L suppresses cell migration independently of its catalytic functions. Suppression 

of migration by ADAM9-L depends on disintegrin domain and involves integrin binding. 

Therefore, the relative levels of ADAM9-L and S may determine the aggressive migratory 

phenotype associated with breast cancer progression (Fry & Toker 2010). Human colon 

and breast cancer cell lines grown in the presence of ADAM9-S-containing medium were 

more invasive when tested in a Matrigel invasion assay. The induction of the invasive 

phenotype by ADAM9-S required its catalytic activity as well as the ability of the 

disintegrin domain to directly bind to α6β4 and α2β1 integrins on the surface of carcinoma 

cells. The same group investigated ADAM9 expression in sections from human liver 

metastases by immunohistochemistry. This analysis showed that ADAM9 is expressed by 

stromal liver myofibroblasts in close proximity of the invasive front of the tumour. These 

results emphasize the importance of tumour-stromal interactions in cancer invasion and 

metastasis and suggest that ADAM9-S can be an important determinant in the ability of 

cancer cells to invade and colonize the liver (Mazzocca et al. 2005). 

ADAM9 over-expression is also associated with prostate cancer with higher 

ADAM9 levels found in malignant than in benign prostate tissue (Sung et al. 2006). 

Moreover, ADAM9 expression correlates with PSA relapse following prostatectomy and 

was proposed to be a novel prognostic marker for prostate cancer patients (Fritzsche, 

Jung, et al. 2008). In vitro studies showed that ADAM9 increases the therapeutic 

resistance of prostate cancer cells to radiation and chemotherapy, as the down-regulation 

of ADAM9 expression in C4-2 prostate cancer cell line significantly increases apoptosis 

following radiation and sensitizes them to treatment with chemotherapeutic agents. 

Moreover, knock-down of ADAM9 induces E-cadherin and integrin expression in C4-2 

prostate cancer cell line and drives C4-2 cell transition to an epithelial phenotype, 

decreasing their invasive potential (Josson et al. 2011). Microarray analysis revealed that 

ADAM9 is one of the most up-regulated genes during the transition of LNCaP prostate 

cancer cells from an androgen-dependent to an androgen-independent and metastatic 

state. ADAM9 mRNA and protein levels in prostate cancer cells increase also on 

exposure to stress conditions such as cell crowding, hypoxia, and hydrogen peroxide 

(Sung et al. 2006). 

The role of ADAM9 expression in the development of prostate cancer in vivo was 

investigated using W10 mouse model of prostate cancer, in which the SV40 large T 

antigen is expressed in prostate epithelium under control of the probasin promoter, a 

prostate-specific gene (Shaffer et al. 2005). In the absence of ADAM9 expression most 
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tumours in a W10 mouse were well differentiated, whereas the ADAM9-positive tumours 

were poorly differentiated and significantly larger. Moreover, ADAM9-positive tumours 

showed significant abnormalities, including intraepithelial hyperplasia and prostate 

intraepithelial neoplasia (PIN), a putative precursor lesion of prostate cancer. The tumour-

promoting activity of ADAM9 can be explained by the ability of this metalloproteinase to 

shed two proteins with a pivotal function in the pathogenesis of prostate cancer – 

fibroblast growth factor receptor iiib (FGFRiiib) and epidermal growth factor (EGF) (Peduto 

et al. 2005). FGFR signalling was previously shown to regulate the pathogenesis of 

prostate cancer and the phenotype of the mice expressing a dominant-negative FGFRiiib 

resembles that seen in animals over-expressing ADAM9 (Jin et al. 2003). Another ADAM9 

substrate, EGF, is known to be over-expressed in benign prostatic hyperplasia as well as 

in tumours (De Miguel et al. 1999) and was implicated in promoting tumour progression 

for example by increasing proliferation of epithelial and stromal prostate cells 

(Schuurmans et al. 1988), enhancing growth of androgen-independent prostate cancer by 

trans-activation of the androgen receptor (Culig et al. 1994; Gregory et al. 2004). 

1.4.1.5  ADAM12 

1.4.1.5.1 Expression of ADAM12 

ADAM12, initially known as meltrin-α, was identified in 1995 as a transmembrane 

protein expressed by myoblasts and involved in muscle cell fusion (Yagami-Hiromasa et 

al. 1995). but was found also in other mesenchymal cell types, such as osteoblasts, 

chondroblasts, adipocytes, hepatic stellate cells and oligodendrocytes (Kveiborg et al. 

2008). Alternative splicing of the ADAM12 gene results in the expression of two ADAM12 

variants – a transmembrane, full length ADAM12-L and secreted ADAM12-S, in which the 

transmembrane and cytoplasmic domains are replaced by unique 33 amino acids 

sequence (Gilpin et al. 1998).The mechanisms regulating ADAM12 expression, in 

particular those that might be responsible for altered expression of this metalloproteinase 

in pathological conditions are poorly understood. The expression of ADAM12 is induced 

by TGF-β (Le Pabic et al. 2003), a multifunctional growth factor that acts through type I 

and type II receptors with serine/threonine activity and Smad proteins (Heldin & 

Moustakas 2012). The expression of ADAM12 decreases following stimulation with SnoN 

(Solomon et al. 2010), a negative regulator of TGF-β signaling, preventing transcription 

(Deheuninck & Luo 2009). Interestingly, the disintegrin and cysteine-rich domains of 

ADAM12 interacts with TGF-β receptor type II (TGFβRII), enhancing TGF-β-dependent 

activation of transcription (Atfi et al. 2007).  

1.4.1.5.2 ADAM12 synthesis and activation 

ADAM12 is synthesized in the rough ER and matures in the Golgi compartment. 

Activation of ADAM12 zymogen occurs during transit in the trans-Golgi network and 
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requires removal of the prodomain by furin-like pro-protein convertases (Loechel et al. 

1999). Interestingly, following activation the prodomain remains non-covalently attached to 

the mature ADAM12 molecule, forming the shape of a four-leafed clover (Wewer et al. 

2006). The biological function of the attached ADAM12 prodomain is not clear, there is 

however some evidence suggesting its involvement in regulation of ADAM12 proteolytic 

activity (Sørensen et al. 2008). Mature, catalytically active ADAM12 is stored intracellular 

and translocates to the cell surface in response to external cell stimulation by phorbol 

esters or integrin engagement (Hougaard et al. 2000). Transport of the ADAM12-

containing vesicles to the plasma membrane is a dynamic process that involves activation 

of PKC (Sundberg et al. 2004), recruitment of receptor for activated PKC 1 (RACK1) to 

the ADAM12 cytoplasmic domain (Bourd-Boittin et al. 2008) and transient interaction with 

c-Src kinase (Stautz et al. 2010).  

1.4.1.5.3 ADAM12 substrates 

As an active metalloproteinase (Loechel et al. 1998), ADAM12 is involved in the 

processing of various substrates, including ligands for EGF receptors: HB-EGF, EGF and 

betacellulin (Asakura et al. 2002; Kurisaki et al. 2003; Horiuchi et al. 2007), a ligand for 

Notch receptor, Delta-like-1 (Dyczynska et al. 2007) and placental leucine aminopeptidase 

(Ito et al. 2004). Initial studies implicated ADAM12 in the proteolytic modification of the 

extracellular matrix components such as gelatin, type IV collagen and fibronectin (Roy et 

al. 2004), which were not confirmed later on, questioning the involvement of ADAM12 in 

matrix remodelling (Jacobsen et al. 2008). The secreted ADAM12-S variant is also 

catalytically active and cleaves insulin-like growth factor binding protein-3 (IGFBP-3) and 

IGFBP-5 (Loechel et al. 2000). Interestingly, ADAM12-S does not shed Delta-like 1 

(Dyczynska et al. 2007), suggesting that the transmembrane and cytoplasmic domains of 

ADAM12 have an important influence on substrate specificity. The activity of ADAM12 

variants is regulated by TIMPs. The most potent physiological inhibitors of ADAM12 are 

TIMP-3 (Loechel et al. 2000) and TIMP-2. TIMP-1 is also able to inhibit ADAM12 but with 

much lower affinity (Jacobsen et al. 2008). 

1.4.1.5.4 The role of ADAM12 in cell adhesion 

In addition to the proteolytic activity ADAM12 also modulates cell adhesive functions. 

The disintegrin and cysteine-rich domains of ADAM12 interact with α9β1, α7β1 and α4β1 

integrins (Eto et al. 2000; Zhao et al. 2004; Huang et al. 2005). The cysteine-rich domain 

binds cell surface proteoglycans, such as syndecans. The interaction of syndecan-4 with 

ADAM12 cysteine-rich domain promotes β1 integrin-dependent cell spreading, stress fiber 

assembly and focal adhesion formation via signaling pathway involving protein kinase C 

(PKC) and RhoA protein (Thodeti et al. 2003).  
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1.4.1.5.5 Cytoplasmic domain of ADAM12 

In addition to the extracellular domain, the cytoplasmic tail of ADAM12L splice 

variant is implicated in several signaling pathways. The cytoplasmic domain of ADAM12-L 

is relatively long and contains several motifs potentially involved in protein-protein 

interactions. The proline-rich regions of ADAM12-L bind SH3 domains of c-Src and Yes 

non-receptor tyrosine kinases, as well as Src-substrate and adaptor protein Grb2 (Kang et 

al. 2000). Other SH3 domain-containing proteins associating with the ADAM12-L 

cytoplasmic tail are Eve-1, a protein abundantly expressed in skeletal muscle, heart and 

several cancer cell lines and PACSIN3, a cytoplasmic molecule involved in endocytosis. 

The biological significance of these interactions is unclear; it is however hypothesized that 

they are required for ADAM12-mediated ectodomain shedding (Mori et al. 2003; Tanaka 

et al. 2004). The cytoplasmic domain of ADAM12-L binds the adaptor protein Tks5/FISH 

which is implicated in podosome formation and subsequent matrix degradation in human 

breast cancer cells (Abram et al. 2003; Seals et al. 2005).  

1.4.1.5.6 ADAM12 deficiency in mice 

Generation of transgenic mice lacking ADAM12 expression showed that these animals 

do not display any major histological abnormalities in muscles and bones. They are also 

fertile and the pups are born in a normal Mendelian ratio, however about 30% of new born 

ADAM12-deficient mice die in the first week after birth. Detailed characterization of the 

ADAM12-deficient mice revealed impaired formation of the neck and interscapular 

muscles and reduction of the interscapular brown adipose tissue (Kurisaki et al. 2003).  

Characterization of the ADAM12-deficient mice as well as ADAM12 expression pattern 

suggests that this metalloproteinase regulates development and functions of muscles and 

adipose tissue. Endogenous ADAM12 expression in muscle tissue is up-regulated during 

regeneration (Borneman et al. 2000; Galliano et al. 2000) and increased expression of 

ADAM12 in mouse skeletal muscles improves muscle regeneration following mild freeze 

injury. Moreover, transgenic expression of ADAM12 alleviates the pathology of young 

dystrophin-deficient mdx mice, a model for Duchenne muscular dystrophy (Kronqvist et al. 

2002), a severe musculoskeletal disease characterized by degradation and gradual 

replacement of the skeletal muscles by connective tissue and adipocytes (Emery 2002). 

ADAM12 is hypothesized to compensate for the lack of dystrophin through increasing the 

expression of dystrophin homologue utrophin, as well as α7 integrin and dystroglycans 

(Moghadaszadeh et al. 2003). Interestingly, long-term effect of ADAM12 over-expression 

in mdx mice caused decreased skeletal muscles mass with accelerated fibrosis and 

adipogenesis, indicating that the ADAM12-mediated therapeutic effect is not sufficient to 

provide protection during prolonged disease (Jørgensen et al. 2007). 
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1.4.1.5.7 ADAM12 in cancer 

As previously mentioned, ADAM12 is implicated in the development and 

progression of various carcinomas, with high expression in breast, prostate, liver, 

stomach, colon, bladder and brain cancers. In contrast, its expression is almost 

undetectable in normal breast, prostate, colon and liver epithelium (Kveiborg et al. 2005; 

Peduto et al. 2006; Le Pabic et al. 2003; Carl-McGrath et al. 2005; Fröhlich et al. 2006). 

Most of the reports describing elevated levels of ADAM12 in cancer samples do not 

distinguish between ADAM12-L and ADAM12-S variants. However, the soluble ADAM12-

S variant was found in the urine of patients suffering from bladder or breast cancers and 

high levels of ADAM12-S correlates with the advanced stage of disease (Roy et al. 2004; 

Fröhlich et al. 2006). The levels of ADAM12-S in the urine of bladder cancer patients 

decrease following surgical removal of the tumor and increase upon recurrence of the 

disease (Fröhlich et al. 2006), indicating that ADAM12-S is a potential biomarker for 

bladder and breast cancer diagnosis. 

The data obtained from mouse models of prostate and breast cancers indicate that 

ADAM12 has cancer promoting activity. As described previously, ADAM12 has proteolytic 

activity as well as the ability to module cellular adhesion and probably both of these 

functions are involved in cancer progression. Elevated ADAM12 levels correlate with 

increased proliferation of human glioblastoma cells, as well as the amount of shed HB-

EGF, suggesting that the increased proliferation is mediated through HB-EGF signalling 

(Kodama et al. 2004). This finding is in agreement with in vitro results, showing decreased 

proliferation of various cancer cell lines following treatment with anti-ADAM12 antibodies 

(Carl-McGrath et al. 2005; Lendeckel et al. 2005). 

The most extensive data explaining the role of ADAM12 in cancer progression 

derive from studies on PyMT mice model of breast carcinoma. PyMT animals develop 

breast tumour due to the expression of the polyoma virus middle T oncogene under the 

control of mouse mammary tumour virus. Over-expression of ADAM12 in mammary gland 

of PyMT mice increase cancer aggressiveness, tumour grade and metastasis to the lungs 

(Kveiborg et al. 2005). On the other hand, ADAM12 deficiency reduces tumour 

progression in PyMT mouse breast cancer model. Interestingly, endogenous expression 

of ADAM12 by the tumour-associated stroma in the PyMT model does not influence 

tumour progression and the presence of ADAM12 in tumour cells is necessary for cancer 

development in these mice.  

In human breast carcinoma ADAM12 localizes almost exclusively in tumour cells 

and is only rarely detected in the tumour-associated stroma (Fröhlich et al. 2011). The 

stromal cells are known to release TGF-β (Massagué 2008) that up-regulates ADAM12 

expression. It could be hypothesized that tumour stroma is responsible for increased 
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ADAM12 levels in breast tumour cells (Ray et al. 2010; Fröhlich et al. 2011). Whereas 

both ADAM12 variants are over-expressed in breast cancer tissue, recently published 

data indicate that only the secreted ADAM12-S variant has cancer-promoting activity. 

Increased expression of ADAM12-S in breast cancer cells enhances migration and 

invasion in vitro and promotes development of distant metastases in vivo (Roy et al. 

2011). 

ADAM12 was also implicated in the progression of triple-negative breast cancer, 

an aggressive form of this disease, with poor prognosis and limited treatment options. 

Triple-negative breast cancer is characterized by the absence of estrogen receptor (ER) 

and progesterone receptor (PR) as well as the lack of  human epidermal growth factor 

receptor 2 (HER2) over-expression (Carey et al. 2010). Proliferation of triple-negative 

breast cancer cells rely on signaling through EGFR (HER1) and the ligand-mediated 

activation of EGFR1 become critical for tumor progression (Wilson et al. 2009). ADAM12 

was shown to be involved in the shedding of at least two EGFR ligands, EGF and 

betacellulin (Horiuchi et al. 2007) and ADAM12-L is responsible for activation of EGFR in 

early stage, lymph-node negative triple-negative breast cancer (Li et al. 2012). 

In contrast, some studies showed inactivation of ADAM12 in the breast cancer 

cells. A genome-wide analysis of somatic mutations in human genes in breast and 

colorectal cancers identified three ADAM12 mutations to be associated with breast 

cancer: D301H mutation within the metalloprotease domain, G479E in the disintegrin 

domain, and L792F in the cytoplasmic tail (Sjöblom et al. 2006). Two of these mutations 

(D301H and G479E) were found to prevent ADAM12 maturation, leading to ER retention 

and loss of ADAM12 function at the cell surface (Dyczynska et al. 2008). The third 

mutation (L792F) that was localized in one of two di-leucine motifs within ADAM12 

cytoplasmic domain does not affect protein maturation, trafficking and internalization. 

There are also no significant differences in proliferation or ectodomain shedding between 

cells expressing wild-type ADAM12 and ADAM12 L792F mutant (Stautz et al. 2012). 

Therefore the L792F mutation does not contribute to the development of breast cancer 

phenotype. The influence of D301H and G479E mutations on breast cancer progression 

as well as their potential use in therapy and diagnosis of breast cancer requires additional 

verification.  

The role of ADAM12 in the development and progression of prostate cancer is 

poorly understood. Evaluation of ADAM12 expression in normal prostate tissue, as well as 

well-differentiated and poorly-differentiated prostate tumours from W10 mice model of 

prostate carcinoma showed that ADAM12 is not expressed in normal prostate but it is up-

regulated in prostate cancer. Moreover, the expression of ADAM12 in well-differentiated 

prostate tumours localizes in a subpopulation of α-smooth muscle actin-positive stromal 

cells, adjacent to cancer cells. In poorly-differentiated tumours, which lack glandular 
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epithelial structures, ADAM12 expression was more widespread but still limited to certain 

areas of the tumour. Comparison of the prostate tumours from W10 mice lacking ADAM12 

expression and W10 animals expressing normal levels of ADAM12 indicate that 

inactivation of ADAM12 significantly reduces tumour size and the progression of well-

differentiated tumours to the poorly-differentiated phenotype (Peduto et al. 2006). These 

data suggest that the over-expression of ADAM12 in tumour-associated stromal cells 

plays an important role in prostate cancer progression in vivo. However, these findings as 

well as ADAM12 expression pattern in human prostate tumours require further 

experimental verification. 

1.4.1.6 ADAM15 

1.4.1.6.1 ADAM15 expression 

ADAM15 has quite ubiquitous expression pattern, however the highest levels of 

this metalloproteinase are present in vascular cells, the endocardium, and hypertrophic 

cells in developing bone as well as specific areas of the hippocampus and cerebellum. 

During mouse embryonic development prominent ADAM15 expression was found from 

embryonic day 9.5 in the developing vasculature, suggesting its critical role in 

vascularisation (Horiuchi et al. 2003). 

1.4.1.6.2 The role of ADAM15 in adhesion 

Human ADAM15 is the only known member of the ADAM family that contains a 

consensus RGD integrin-binding sequence in its disintegrin domain. For that reason an 

alternative name of ADAM15 is metargidin, for metalloprotease-RGD-disintegrin 

(Krätzschmar et al. 1996). Interestingly, mouse ADAM15 does not contain this sequence 

and has a TDD motif instead (Lum et al. 1998). The RGD sequence indicates that 

ADAM15 plays a role in mediating cell-cell interaction through binding of integrins. Several 

experimental data show that ADAM15 interacts with αvβ3 and α5β1 integrins through the 

RGD sequence (Zhang et al. 1998; Nath et al. 1999). Additionally, ADAM15 interacts with 

integrins in a RGD-independent manner, for example with integrin α9β1 (Eto et al. 2000). 

The involvement of ADAM15 in modulating cell adhesion is supported by the co-

localization of this metalloproteinase with vascular-endothelial (VE)-cadherin, an adhesion 

molecule involved in endothelial cell adherens junction formation (Ham et al. 2002). 

The ability of ADAM15 to interact with integrins is thought to contribute to the 

development of atherosclerosis, as elevated expression of ADAM15 was detected in 

developing atherosclerotic lesions (Herren et al. 1997). Interestingly, αvβ3 and α5β1 

integrins which interact with the ADAM15 disintegrin domain are also up-regulated in 

arteriosclerotic arteries and immunohistochemical analysis showed their co-localization 

with ADAM15 in smooth muscle cells (SMCs) present in vessel walls. In vitro stimulation 
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of human arterial or venous SMCs with platelet-derived growth factor (PDGF) induces up-

regulation of αvβ3 and α5β1 integrin’s followed by up-regulation of ADAM15 expression. 

Therefore it is thought that ADAM15 expression is up-regulated in response to increased 

integrin expression in order to modulate integrin-matrix interactions (Al-Fakhri et al. 2003). 

1.4.1.6.3 ADAM15 proteolytic activity 

ADAM15 is an active metalloproteinase, involved in proteolytic processing of several 

cell surface proteins such as the pro-forms of TNFα, HB-EGF and amphiregulin (Schäfer 

et al. 2004; Hart et al. 2005), the low-affinity IgE receptor CD23 (Fourie et al. 2003), 

fibroblast growth factor receptor 2iiib (FGFR2iiib) (Maretzky, Yang, et al. 2009), as well as 

extracellular matrix molecules, for example collagen type VII and gelatin (Martin et al. 

2002). ADAM15-mediated shedding is not induced by phorbol esters or calcium 

ionophores and is inhibited by TIMP-3 but not by TIMP-1 and only weakly by TIMP-2 

(Maretzky, Yang, et al. 2009). 

It is important to notice that due to its integrin-binding and proteolytic activities 

ADAM15 can either support or inhibit cell migration. Proteolytic modification of 

extracellular matrix components such as collagen type VII and gelatin by ADAM15 

disrupts cell-matrix bonds and supports cell migration as shown in glomerular mesengial 

cells (Martin et al. 2002). Binding of ADAM15 to αVβ3 integrin favors cell migration by 

competing with αVβ3 integrin-vitronectin interaction that  suppresses cell migration (Beck 

et. al. 2005). On the other hand, over-expression of ADAM15 inhibits cell migration though 

enhancing cell-cell interactions as shown for ADAM15 over-expressing NIH3T3 

fibroblastic cell line (Herren et al. 2001). 

1.4.1.6.4 ADAM15 cytoplasmic domain 

Alternative splicing of ADAM15 gene is much more complicated than in other 

ADAMs. The 23 exons present in the ADAM15 gene give rise to at least 13 different 

ADAM15 protein variants, all of which arise from differential use of exons 18 to 23, 

encoding the cytoplasmic domain. Analysis of tissue distribution of ADAM15 isoforms 

showed that the relative ADAM15 variant levels varied from 1-59%, with the least diverse 

variant profile found in the placenta and the most diverse in spleen and peripheral 

leukocytes (Kleino et al. 2007). The cytoplasmic domains of ADAM15 variants contain 

proline-rich sequences binding SH3 domain-containing proteins, tyrosine phosphorylation 

sites involved in the interactions with proteins containing SH2 domain and potential 

serine/threonine phosphorylation motifs (Krätzschmar et al. 1996; Poghosyan et al. 2002; 

Charrier et al. 2005), suggesting the involvement of ADAM15 cytoplasmic tail in cell 

signaling. Initial experiments using yeast two-hybrid screening and immunoprecipitation of 

mammalian cell lysates identified binding partners of the ADAM15 cytoplasmic tail: 

endophilin I and SH3PX1. These proteins also interact with the intracellular domain of 
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ADAM9. Due to their role in intracellular protein transport, as well as preferential binding 

of ADAM15 precursor over the mature form it is hypothesized that these proteins regulate 

ADAM15 processing and trafficking(Howard et al. 1999). 

The cytoplasmic domain of ADAM15 is able to specifically bind to Src family 

protein-tyrosine kinases, such as Src, Lck, Fyn and Abl and to the adaptor protein Grb2 in 

various hematopoietic cell lines. The intracellular domain of ADAM15 is phosphorylated by 

Hck and Lck kinases and the phosphorylation of ADAM15 is required for ADAM15 

interactions with Src family protein-tyrosine kinases (Poghosyan et al. 2002). The 

differences in the cytoplasmic domains of ADAM15 isoforms is determined by the number 

of proline-rich regions, as well as other motifs involved in the interaction of ADAM15 

intracellular domain with cytoplasmic proteins. Thus, it could be concluded that alternative 

splicing provides a regulatory mechanism of ADAM15 intracellular signaling and activity 

(Kleino et al. 2009). 

1.4.1.6.5 ADAM15 null mice 

Despite a ubiquitous expression pattern and significant levels in some tissues 

ADAM15-deficient mice do not display any obvious developmental defects or pathological 

phenotypes (Horiuchi et al. 2003), similarly to ADAM9- and ADAM12-deficient animals 

(Weskamp et al. 2002; Kurisaki et al. 2003). Moreover, double knock-out mice lacking 

ADAM9/15 expression or triple ADAM9/12/15 knock-out mice are viable, fertile and do not 

display any obvious pathologies. The lack of developmental and phenotypic defects was 

explained by the compensatory effect of other ADAM family members, as most of the 

ADAM9, 12 and 15 substrates were shown to be processed by other ADAM family 

members. Of the six EGFR ligands (EGF, HB-EGF, TFGα, amphiregulin, betacellulin, 

epiregulin) only epiregulin shedding was significantly reduced in ADAM9/12/15-deficient 

mice. These results suggest that  ADAM9, 12 and 15 are not major sheddases of EGFR 

ligands, they can however contribute their release in the cells with high ADAM9, 12 and 

15 expression (Sahin et al. 2004).. 

1.4.1.6.6 ADAM15 in cancer 

The expression of ADAM15 is often deregulated in pathological conditions and there 

is a growing evidence linking ADAM15 with arteriosclerosis, chronic inflammatory 

diseases such as rheumatoid arthritis (RA) and inflammatory bowel disease (IBD) 

(Charrier-Hisamuddin et al. 2008). ADAM15 is also aberrantly expressed in several types 

of cancer, including breast, stomach, lung, prostate and pancreas carcinomas (Mochizuki 

& Okada 2007; Yamada et al. 2007) and increased ADAM15 is generally associated with 

aggressive phenotype of the tumor (Kuefer et al. 2006). ADAM15 likely supports cancer 

progression differentially through the action of its various functional domains. ADAM15 

may down-regulate adhesion of tumour cells to the extracellular matrix, reduce cell-cell 
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adhesion, and promote metastasis through the activity of its disintegrin and 

metalloproteinase domains. ADAM15 can influence cell signalling by shedding 

membrane-bound growth factors and other proteins that interact with receptor tyrosine 

kinases, leading to receptor activation.  

There is also some evidence supporting a role for ADAM15 in angiogenesis that is 

critical for tumour growth and metastatic spread (Lucas & Day 2009). Due to the 

particularly high expression of ADAM15 in vascular cells, the biological role of ADAM15 in 

neovascularization was investigated in a mouse model of proliferative retinopathy. Young 

mice were placed for several days in high oxygen (75%) conditions and then returned to 

normal air. The drop of oxygen concentration triggered a strong angiogenic stimulus, 

resulting in pathological neovascularization in the retina. ADAM15-deficient mice had a 

64% lower angiogenic response than wild-type controls. Analysis of ADAM15 expression 

in the retina of wild type mice following hypoxia showed increased ADAM15 protein levels, 

whereas ADAM15 protein expression did not change  in untreated age-matched controls 

(Horiuchi et al. 2003). Based on these data it was concluded that ADAM15 plays a 

significant role in blood vessel formation. 

Due to its cancer-supporting activity ADAM15 is a potential target for anti-cancer 

therapy. Anti-ADAM15 antibodies were successfully used in vitro to reduce proliferation of 

breast and gastric carcinoma cells (Lendeckel et al. 2005; Carl-McGrath et al. 2005). 

The influence of ADAM15 expression on tumor growth was initially assessed by 

implanting B16F0 mouse melanoma cells into ADAM15-deficient or wild type mice. The 

tumors developed in animals lacking ADAM15 were significantly smaller than in wild-type 

controls (Horiuchi et al. 2003). The influence of recombinant disintegrin domain (RDD) of 

human ADAM15 on progression, metastasis and angiogenesis in a mouse model of 

breast cancer was also assessed. RDD treatment decreased the growth of the tumor from 

inoculated breast cancer cells by 78%. Morphological analysis of the RDD-treated tumors 

reveled 53% fewer blood vessels in comparison with tumors from non-treated controls 

(Trochon-Joseph et al. 2004).The ADAM15 disintegrin domain is also involved in tumor 

progression through regulation of cancer cell migration and invasion. Over-expression of 

ADAM15-RGD in human ovarian OV-MZ-6 cancer cells reduced their αvβ3 integrin-

mediated adhesion to vitronectin and impaired tumour cell adhesion to the extracellular 

matrix (Beck et al. 2005). In breast cancer cell lines, ADAM15-mediated cancer-promoting 

activity depends on the ability to shed the extracellular part of E-cadherin following 

deprivation of growth factors. The cleaved E-cadherin binds and activates HER2/HER3 

receptor dimers, resulting in increased migration and cell proliferation (Najy et al. 2008b). 

This result suggests that ADAM15 can contribute to the cancer progression through 

enhancing HER2/HER3 signaling. 
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In prostate cancer ADAM15 expression is elevated at the mRNA and protein levels 

which correlates with metastatic progression (Lucas & Day 2009).The reduction of 

ADAM15 expression using shRNA in malignant prostate cancer cell line PC3 attenuates 

cell migration and their ability to adhere to fibronectin, laminin, and vitronectin impairing 

the malignant characteristics of this cell line in vitro as well as in vivo. This is associated 

with alterations of metastatic-associated cell surface proteins, such as E-cadherin, αV 

integrin and CD44 receptor (Najy et al. 2008a). 

It was also investigated if the expression of ADAM15 splice variants changes in cancer 

and if the presence of particular ADAM15 isoforms may be associated with malignant 

phenotype of the tumor. Analysis of four ADAM15 variants, named ADAM15A, B, C and D 

in human breast cancer tissue samples revealed that the expression pattern of these 

isoforms is different than in normal breast tissue. The expression of the individual isoforms 

did not correlate with patient’s age, tumor size, grade and nodal status but the presence of 

two isoforms, ADAM15A and ADAM15B was associated with poor outcome in node-

negative patients. On the other hand, elevated levels of ADAM15C variant correlated with 

better relapse-free survival only in node-positive patients. Over-expression of ADAM15A 

or B in MDA-MB-435 breast cancer cell line significantly influenced cell morphology. 

Whereas ADAM15A-expressing cells were well spread and displayed prominent actin 

stress fibers, the cells transfected with ADAM15B appeared smaller with fewer and 

shorter actin fibers. These morphological differences influence the migratory properties of 

the ADAM15A and B-expressing cells. The expression of ADAM15A enhanced adhesion, 

migration and invasion of MDA-MB-435 cells in in vitro assays, whereas the presence of 

ADAM15B reduced adhesion. ADAM15 variants display also isoform-specific association 

with intracellular signaling proteins. ADAM15A, B and C equivalently bind to extracellular 

signal-regulated kinases 1 and 2 (ERK1/2) and the adaptor molecules Grb2 and 

Tks5/Fish, but associate in an isoform-specific fashion with adaptor protein Nck and 

tyrosine kinases Src and Brk (breast tumor tyrosine kinase). Nck and Src interact strongly 

with ADAM15B and C but weakly with ADAM15A whereas Brk strongly binds to 

ADAM15A and B but not C (Zhong et al. 2008). Further experiments showed that the 

interaction of ADAM15B that is associated with aggressive breast cancer phenotype with 

Src increases ADAM15B catalytic activity, providing insight into the mechanism of how the 

selective expression of ADAM15 variants in breast cancers determine tumor 

aggressiveness (Maretzky, Le Gall, et al. 2009). 
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1.4.2 Type II transmembrane serine proteases (TTSPs) 

Serine proteases, with 175 predicted members in the human genome, are the 

oldest and one of the largest of protease families (Lander et al. 2001). Since the discovery 

of the first members of the serine protease family, trypsin and enteropeptidase, serine 

proteases were found to regulate number of physiological processes, including blood 

coagulation, digestion, and regulation of blood pressure and wound healing. They are also 

implicated in several pathologies related to these systems. Recent advances in 

deciphering the mammalian genome helped to identify novel serine proteases, as well as 

expanded the knowledge about those already known. One of the most interesting, 

recently separated subfamilies of these enzymes are type II transmembrane serine 

proteases (TTSPs), which contain a characteristic N-terminal transmembrane domain that 

anchors them in the plasma membrane (Hooper et al. 2001). 

1.4.2.1 The structure of TTSPs 

The TTSPs share a number of common structural features including a C-terminal 

proteolytic domain, a transmembrane domain, a short cytoplasmic domain and a variable 

length stem region containing modular structural domains, linking the transmembrane and 

catalytic domains (Hooper et al. 2001). 

The catalytic domain present in all TTSPs is highly conserved and can be classified as 

chymotrypsin-like serine protease (Hooper et al. 2001). The activity of this domain 

depends on the presence of the catalytic triad residues, histidine, aspartate, and serine, 

within the substrate binding pocket, which is a major determinant of substrate specificity 

(Szabo & Bugge 2008). The serine protease domains are approximately 225-250 amino 

acids in size and are oriented at the terminus of an extracellular region that is directly 

exposed to the pericellular environment. All TTSPs show a preference for cleavage of 

substrates with basic amino acids (lysine or arginine) in the P1 position, although each 

enzyme displays different substrate specificity. For example, matriptase and hepsin prefer 

basic residues in the P4-P1 positions (Antalis et al. 2010). 

The cytoplasmic domains of TTSPs consist of 20-160 amino acids and often contain 

consensus sites for serine, threonine or tyrosine phosphorylation that may participate in 

communication between the cell and extracellular environment. Whether these domains 

are able to interact with cytoskeletal proteins and signalling molecules is not known but it 

is hypothesized that cytoplasmic domains of TTSPs contribute to the targeting of these 

enzymes to particular areas of the cell membrane (Netzel-Arnett et al. 2003). 

The most complex part of the TTSP structure is the stem region that may contain 1-11 

domains of six different types, as indicated below (Hooper et al. 2001; Netzel-Arnett et al. 

2003; Antalis et al. 2010): 
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• The LDLA (low density lipoprotein receptor class A) domain is the most 

common domain in TTSPs. The function of this domain in TTSPs was not 

described, however, in other proteins this Ca2+ binding domain mediates 

internalization of macromolecules, such as lipoproteins or protease-inhibitor 

complexes; 

• the group A scavenger receptor domain may function as a mediator of TTSP 

binding to polyanionic molecules, including modified lipoproteins, cell surface 

lipids and sulfated polysaccharides; 

• The Frizzled domain, is only present in one member of TTSP family, corin. 

Frizzled domains function as receptors for Wnt proteins during development; 

• the CUB (Cls/Clr, urchin embryonic growth factor and bone morphogenic 

protein 1) domain is present in the stem region of matriptase, matriptase-2 and 

matriptase-3 as well as enteropeptidase; 

• the SEA (sea urchin sperm protein, enterokinase, agrin) domain, present in all 

proteases from the HAT/DESC subfamily (see below), as well as 

enteropeptidase and three matriptases; 

• The MAM (a meprin, A5 antigen, and receptor protein phosphatase µ) domain 

is only found in enteropeptidase. 

The stem region of TTSPs contributes to their cell surface orientation and modulates 

proteolysis by regulating enzyme activation, substrate binding and interactions with other 

proteins (Hooper et al. 2001; Netzel-Arnett et al. 2003; Antalis et al. 2010). For example, 

the stem region of enteropeptidase is required for efficient cleavage of its substrate 

trypsinogen (Lu et al. 1997).   

1.4.2.2 Classification of TTSPs 

To date 19 members of the TTSP family were identified in mouse and humans. They 

are organized into four subfamilies, based on the homology of the catalytic domain and 

the structure of the stem region (Szabo et al. 2003; Bugge et al. 2009): 

• the HAT/DESC (human airway trypsin-like protease/ differentially expressed in 

squamous cell carcinoma) subfamily consists of 7 members: HAT, DESC1, 

TMPRSS11A (transmembrane protease/serine 11A), HAT-like 2, HAT-like 3, HAT-

like 4, HAT-like 5, with the simplest stem region of all TTSPs, composed of  a 

single SEA domain. 

• the hepsin/TMPRSS (transmembrane protease/serine) subfamily includes hepsin, 

MSPL (mosaic serine protease, large form), TMPRSS2, TMPRSS3, TMPRSS4, 

spinesin and enteropeptidase. All members of this subfamily have a group A 

scavenger receptor domain in their stem regions. In TMPRSS2, 3, 4 and MSPL 

this domain is preceded by a single LDLA domain. The stem region of 
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enteropeptidase is more complex and contains an array of SEA, LDLA, CUB and 

MEM domains. 

• the matriptase subfamily contains three highly homologous proteases: 

matriptase, matriptase-2, matriptase-3 and one with a rather unique and atypical 

structure -  polyserase-1. Polyserase-2 and polyserase-3 were recently identified 

in murine and human tissues, but both lack the transmembrane domain and 

therefore cannot be classified as TTSPs (Cal et al. 2005; Cal et al. 2006). All 

matriptases have a SEA domain, two CUB domains, and three to four LDLA 

domains in their stem region, whereas polyserase-1 stem region consists of one 

LDLA domain and two active and one catalytically inactive serine protease 

domains. 

• Corin subfamily with a single member corin that displays a complex stem region, 

not found in any other TTSP which is composed of two frizzled domains, eight 

LDLA domains, and one group A scavenger receptor domain. 

 

Schematic structures of all known TTSPs are presented in Figure 1.9 
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Figure 1.9 Subfamilies of type II transmembrane serine proteases. 

The 19 described to date type II transmembrane serine proteases (TTSPs) are divided 

into four subfamilies: HAT/DESC, Hepsin/TMPRSS, Matriptase and Corin. Each TTSP 

consist of an N-terminal transmembrane domain (TM), stem region and C-terminal 

extracellular serine protease domain. The stem region may contain six different types of 

domains: SEA (sea urichin sperm protein/enteropeptidase/argin domain), LDLA (low-

density lipoprotein receptor class A), Scavenger (group A scavenger receptor domain), 

Frizzled, CUB (Cls/Clr, urichin embryonic growth factor, bone morphogenic protein-1) and 

MAM (merpin/A5 antigen/receptor antigen phospatase µ) (from Bugge et al. 2009). 
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1.4.2.3 Activation of TTSPs 

All TTSPs are synthesized as single-chain inactive zymogens with an N-terminal 

propeptide and require proteolytic cleavage following an arginine or lysine present in a 

highly conserved activation motif to generate the active enzyme. Activation results in a 

two-chain form of the enzyme that remains attached to the membrane due to the 

presence of a disulphide bridge, linking the pro- and catalytic domains (Hooper et al. 

2001). An unusual feature of several TTSPs, including matriptase (Takeuchi et al. 2000), 

matriptase-2 (Velasco et al. 2002), hepsin (Qiu et al. 2007), TMPRSS2 (Afar et al. 2001) 

and TMPRSS3 (Guipponi et al. 2002) is their ability to undergo autocatalytic activation. In 

addition to the activating cleavage, at least some of the TTSPs undergo processing within 

their SEA domains. This additional cleavage severs the covalent link between the catalytic 

domain and the membrane anchor, allowing shedding of the protease from the cell 

surface (Szabo & Bugge 2008). Indeed, soluble forms of enteropeptidase (Fonseca & 

Light 1983), HAT (Yasuoka et al. 1997), TMPRSS2 (Afar et al. 2001) and matriptase (Lin, 

Anders, Johnson & Dickson 1999) were detected in vivo, presenting a novel, interesting 

aspect of regulation of the TTSPs function by shedding. 

1.4.2.4 Expression of TTSPs 

Although a few of the TTSPs are expressed across several tissues and cell types, 

in general these enzymes show relatively restricted expression patterns, indicating that 

they have tissue-specific functions. For example, the expression of enteropeptidase is 

restricted in normal tissues to enterocytes of the proximal small intestine (Yuan et al. 

1998), whereas corin is present almost exclusively in the heart (Yan et al. 1999) and HAT 

is expressed predominantly in trachea (Yamaoka et al. 1998). Similarly to ADAMs, many 

TTSPs are aberrantly expressed in cancers and are considered novel biomarkers 

predicting the stage of the disease. In most cases serine proteases are over-expressed in 

tumor cells and are implicated in promoting tumor development and progression. Up-

regulation of hepsin expression occurs in ovarian (Tanimoto et al. 1997) and prostate 

tumors (Magee et al. 2001). TMPRSS3 is strongly over-expressed in pancreatic cancer 

(Wallrapp et al. 2000) and significantly elevated levels of matriptase were found in ovarian 

and breast tumors (Oberst et al. 2002; C. M. Benaud et al. 2002). TTSPs promote 

progression of cancer by activating growth factors that stimulate proliferation of tumor 

cells or processing of extracellular matrix or basement membrane components and 

modulating metastasis (Netzel-Arnett et al. 2003; Antalis et al. 2010). In contrast, the 

expression of several TTSPs can be down-regulated in malignancy. For example, DESC1 

is expressed in normal epithelial cells of prostate, skin, testis, head and neck but not in 

cancer cells derived from these tissues (Lang & Schuller 2001).  
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1.4.2.5 Regulation of TTSPs activity 

The involvement of membrane-anchored serine proteases in many physiological 

processes and their frequent association with cancer and other diseases indicate that the 

activity of these enzymes must be tightly regulated. A part of this regulatory system are 

their endogenous inhibitors, including serpins and Kunitz-type inhibitors. Serpins interact 

with serine proteases via their reactive centre loop that mimics serine protease substrates 

and upon cleavage covalently traps the protease by undergoing an irreversible 

conformational rearrangement. The nature of serpin inhibition is an effective strategy for 

regulation of proteolytic activity by removal of unwanted proteases via membrane-bound 

endocytic receptors. Secreted serpins, like anti-thrombin III, α2-antiplasmin or 

plasminogen-activator inhibitor 1 (PAI-1) were found to form complexes with matriptase 

and DESC1. Kunitz-type inhibitors regulate the activity of serine proteases by forming very 

tight but reversible complexes with target proteases. In contrast, Kunitz-type inhibitors 

compete with physiological substrates to reduce the availability of the protease. The 

transmembrane Kunitz-type inhibitors HAI-1 (hepatocyte growth factor activator inhibitor 

type 1) and HAI-2 regulate the activity of matriptase and hepsin (Antalis et al. 2010).  

1.4.2.6 TTSPs implicated in prostate cancer. 

1.4.2.6.1 Matriptase 

Matriptase, also known as epithrin, suppression of tumorigenicity 14 (ST14) or 

membrane-type serine protease 1 (MT-SP1), was described for the first time as a 

gelatinolytic enzyme released by cultured breast cancer cells (Shi et al. 1993) . In the 

healthy organism matriptase expression is not restricted to any particular organ, but rather 

to the epithelial compartments of many embryonic and adult tissues (Oberst, Singh, et al. 

2003). In addition to epithelia, matriptase was found in monocytes, macrophages 

(Kilpatrick et al. 2006) and neural progenitor cells (Fang et al. 2011). Matriptase 

expression during mouse embryo development is detected from embryonic day 10 (E10) 

in the epithelial lining of several tissues and from E14-16 matriptase can be found in 

developing hair follicles and the interfollicular epidermis. Matriptase was also detected in 

the mouse and human placenta (List, Szabo, et al. 2006; Fan et al. 2007; Szabo et al. 

2007). As presented in Figure 1.3, matriptase stem region consists of four LDLR and two 

CUB domains. The first CUB domain contains an RGD integrin binding motif (Lin, Anders, 

Johnson, Sang, et al. 1999). Similarly to other TTSPs, matriptase cleaves substrates with 

Lys or Arg in P1 position and prefers small side chain amino acids such as Gly or Ala in 

position P2. The list of matriptase substrates is constantly expanding and includes pro-

hepatocyte growth factor (pro-HGF) and pro-urokinase plasminogen activator (pro-uPA) 

(Lee et al. 2000) as well as several adhesion molecules, matrix proteins, growth factors 

and receptors. Additionally, matriptase activates other proteases that are unable to 
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undergo autocatalytic activation, such as GPI-anchored serine protease prostasin (Chen 

et al. 2008). 

Matriptase is synthesized as an inactive, single-chain zymogen and requires cleavage 

at the canonical activation motif resulting in two-chain active protease which remains 

linked to the cell surface via a disulphide bond between the pro- and catalytic domains. 

The activation of matriptase is unique among other proteases, it requires two sequential 

endoproteolytic cleavages and transient interaction with matriptase inhibitor HAI-1 (Karin 

List, Thomas H Bugge, et al. 2006, Figure 1.4). The first cleavage occurs after Gly present 

in the conserved GSVI motif within the SEA domain and is mediated by an unknown 

protease. The cleaved fragment remains attached to the rest of the molecule, possibly 

through noncovalent interactions within the SEA domain (Kojima & Inouye 2011). This 

cleavage is thought to occur in the secretory pathway, as only the SEA-domain cleaved 

matriptase zymogens reach the cell surface  (Cho et al. 2001). Subsequently, matriptase 

undergoes secondary cleavage after Arg in the RVVGG activation cleavage site within the 

serine protease domain and is converted into its active, two-chain form. This is an 

autocatalytic event as the mutation of amino acids in the catalytic triad prevents 

matriptase activation. It is hypothesized that activation of matriptase is mediated through a 

transactivation mechanism in which the SEA domain-cleaved matriptase zymogen is 

cleaved by weak proteolytic activity of another SEA domain-cleaved zymogen molecule. 

(List, Bugge, et al. 2006; Kojima & Inouye 2011). As mentioned previously, HAI-1 inhibitor 

is necessary for the activation of matriptase. In the absence of active HAI-1 matriptase 

processing is suppressed and matriptase zymogen accumulates in the Golgi apparatus 

(Oberst, Williams, et al. 2003; Oberst et al. 2005). The lack of matriptase activation in the 

absence of HAI-1 is considered to protect cells from the uncontrolled, harmful activity of 

matriptase.   
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Figure 1.10 Proposed model of  matriptase activation. 

Matriptase zymogen is synthesized on the rough endoplasmic reticulum as a single-span 

type II transmembrane protein (1). The activation of matriptase begins already in the 

secretory pathway with the endoproteolytic cleavage after Gly within the SEA domain (2). 

SEA domain-cleaved matriptase associates with HAI-1 (3) and the matriptase-HAi-1 

complex is transported to the plasma membrane (4) where the second autocatalytic 

cleavage occurs (5). Activated matriptase is rapidly inhibited by HAI-1 (6) and the 

matriptase-HAI-1 complex may be shed from the cell surface (8) (List, Bugge, et al. 2006). 
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The matriptase activation occurs in response to several factors which can be cell-type 

or organ specific. In mammary epithelial cells matriptase is activated by sphingosine 1-

phosphate (S1P), a phospholipid present in the blood (C. Benaud et al. 2002). In the 

LNCaP prostate cancer cell line matriptase undergoes activation in response to androgen 

treatment through AR-dependent signaling pathway (Kiyomiya et al. 2006). In contrast, 

breast cancer cells respond to neither S1P nor androgens as they activate matriptase 

constitutively (C. M. Benaud et al. 2002). Exposure of matriptase-expressing epithelial 

cells from various organs to mildly acidic pH (pH 5.2-6.8, with the optimum at pH 6.0) 

resulted in rapid activation of matriptase zymogen (Tseng et al. 2010). 

As for other TTSPs, the activity of matriptase is strictly regulated by the two Kunitz-

type serine protease inhibitors – hepatocyte growth factor activator inhibitor 1 (HAI-1) and 

HAI-2 (Lin, Anders, Johnson & Dickson 1999; Kataoka et al. 2003). HAI-1 is co-expressed 

with matriptase in many embryonic and adult tissues and forms complexes with soluble 

matriptase which can be found in human milk or conditioned medium from some cancer 

cells (Shi et al. 1993; Lin, Anders, Johnson & Dickson 1999; Oberst et al. 2001). 

Formation of matriptase-HAI-1 complex requires interactions between Kunitz domain-1 

and LDLR domain of HAI-1 and serine protease and second CUB domain of matriptase 

(Denda et al. 2002; Oberst, Williams, et al. 2003; Inouye et al. 2010).  

In addition to HAI-1 and HAI-2 inhibition, the activity of matriptase is also regulated by 

glycosylation. The addition of β 1-6 N-acetylglucosamine (GlcNAc) branching mediated by 

N- acetylglucosaminyltransferase (GnT-V) protects matriptase from degradation (Ihara et 

al. 2002). 

The isolation of soluble matriptase in complex with HAI-1 or serpin inhibitors from 

human milk led to the discovery that activated matriptase may be shed from the cell 

surface (Lin, Anders, Johnson & Dickson 1999). The shedding of matriptase can occur 

constitutively as a result of zymogen activation and HAI-I-mediated inhibition (Wang et al. 

2009) or can be induced with phorbol esters, such as by phorbol 12-myristate 13-acetate 

(PMA). Interaction of the matriptase cytoplasmic domain with the cytoskeletal linker 

protein filamin is essential for shedding. PMA-induced shedding is inhibited by the 

metalloproteinase inhibitor GM6001, implicating the involvement of metalloproteinases in 

the shedding process (C. Kim et al. 2005).  

Better understanding of the role of matriptase in embryonic development and normal 

physiology has come from the study of transgenic matriptase-null mice. These animals 

develop to term but uniformly die within 48 hours after birth, due to severe dehydration 

that results from impaired epidermal barrier function. The newborn matriptase-null animals 

display dry, red, shiny and wrinkled skin, hair follicle hypoplasia, lack of whiskers as well 

as accelerated apoptosis of immature T cells in the thymus (List et al. 2002). 
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Immunohistochemistry studies showed that the defective epidermal function in matriptase-

null mice is caused by impaired processing of profilaggrin, a large epidermal polyprotein 

composed of multiple filaggrin monomers and Ca2+-binding regulatory N-terminal S-100 

protein. In the absence of matriptase-mediated processing profilaggrin accumulates in the 

stratum corneum, leading to a defective epidermal structure (List et al. 2003). Aberrant 

profilaggrin processing can also be responsible for hair follicle hypoplasia and thymocyte 

depletion in matriptase-deficient mice as profilaggrin is expressed in hair follicle and 

thymic epithelium (Dale et al. 1985; Favre 1989).  

The lack of proteolytically active matriptase was recently linked with a rare form of skin 

disease, an autosomal recessive ichthyosis with hypotrichosis (ARIH). Patients suffering 

from ARIH display ichthyosis and hair follicle hypoplasia associated with fragile, dry, and 

slow-growing scalp hair. Based on recent reports, describing a single amino acid mutation 

within a highly conserved region of the catalytic domain of matriptase in ARIH patients it 

could be hypothesized that ARIH phenotype results from aberrant processing of 

profilaggrin (Basel-Vanagaite et al. 2007). 

Matriptase is abundantly expressed in various tumors of epithelial origin, including 

breast, prostate, ovarian, cervical, gastric, colon, and renal cell, esophageal and oral 

squamous cell carcinoma. In most cancers, over-expression of matriptase mRNA and 

protein correlates with the disease progression (reviewed by Uhland 2006). In addition, 

the ratio of matriptase to its inhibitor HAI-1 is frequently shifted towards matriptase in the 

late stage tumors, indicating that the loss of matriptase inhibition might be involved in 

cancer progression and correlates with poor clinical outcome. The matriptase/HAI-1 ratio 

is considered as a good informative marker of cervical, prostate and colorectal carcinoma 

(Oberst et al. 2002; Saleem et al. 2006; Vogel et al. 2006).  

The oncogenic potential of matriptase was evaluated using transgenic mice over-

expressing this protease in skin. Increased levels of matriptase caused severe hyper 

proliferation of epidermal keratinocytes, leading to spontaneous skin squamous cell 

carcinoma (List et al. 2005). The pro-oncogenic potential of matriptase may result from the 

fact that matriptase activates several growth factors associated with tumor progression,  

such as pro-HGF, pro-uPA, pro-MSP-1 (pro-macrophage stimulating protein-1) or IGFBP-

rP1 (iinsulin-like growth factor binding protein-related protein-1) (Lee et al. 2000; Bhatt et 

al. 2005; Ahmed et al. 2006). Matriptase may also promote invasion of epithelial-derived 

tumor cells through cleavage of desmoglein-2, a desmosome protein participating in cell-

cell adhesion (Wadhawan et al. 2012). 

Analysis of matriptase levels in normal prostate glands and prostate cancer tissue 

revealed a several-fold increase of matriptase expression in malignant cells and positive 

correlation between the level of matriptase and the Gleason score of the tumor (Riddick et 
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al. 2005). Additionally, over-expression of matriptase in prostate cancer cells was 

associated with significant down-regulation of matriptase inhibitors, HAI-1 and HAI-2. 

These findings strongly indicate that the progression of prostate cancer depends on 

increased proteolytic activity of matriptase (Saleem et al. 2006; Bergum & List 2010). The 

cancer-promoting activity of matriptase was confirmed in in vitro studies using prostate 

cancer cell lines. Reduced expression of matriptase in PC3 and DU145 prostate cancer 

cell lines inhibited their growth, proliferation and invasion by 50% (Sanders et al. 2006). 

Moreover, down-regulation of HAI-1 expression in the same cells significantly increased 

their invasiveness and motility (Sanders et al. 2007). It is believed that the increased 

invasiveness of prostate cancer cells over-expressing matriptase results from proteolytic 

processing of laminin-332, a basement membrane protein found in many epithelia, 

including prostate. DU145 cells showed increased motility in transwell migration assay 

when plated on matriptase-cleaved laminin-332 and LNCaP cells over-expressing 

matriptase plated on laminin-332 migrated faster than normal LNCaP cells (Tripathi et al. 

2011). In addition to laminin-332, matriptase cleaves other basement membrane  

components - collagen IV and fibronectin (Shi et al. 1993; Satomi et al. 2001), contributing 

to increased motility of cancer cells. Finally, matriptase activates platelet-derived growth 

factor DD (PDGF-DD), a ligand for PDGFR- β (platelet-derived growth factor receptor β), 

which is frequently over-expressed in prostate cancer cells (Singh et al. 2002). 

 

1.4.2.6.2 Matriptase-2 

 Matriptase-2 (TMPRSS6) was named after its structural homology to matriptase 

(Velasco et al. 2002). Similarly to matriptase, matriptase-2 contains two CUB domains 

within the stem region but has only three LDLR domains. Active matriptase-2 is a two 

chain protease generated from a single chain zymogen. Proteolytically activated 

matriptase-2 remains attached to the cell surface via disulphide bond linkage between the 

pro- and catalytic domains, however the soluble form of matriptase-2 can also be detected 

(Silvestri et al. 2008; Ramsay, Quesada, et al. 2009). Recent reports showed that the 

soluble form of matriptase-2 corresponds mainly to the two chains, highly active variant 

whereas membrane-associated matriptase-2 is an inactive single chain zymogen. N-

terminal sequencing of the shed matriptase revealed that matriptase-2 shedding occurs 

within the second CUB domain. Mutation of the Ser residue of the catalytic triad blocks 

shedding and activation of matriptase-2. These data suggest that matriptase-2 is 

proteolytically activated and shed from the cell surface by neighboring matriptase-2 

molecules (Stirnberg et al. 2010). In contrast with matriptase, the activity of matriptase-2 is 

not controlled by HAI inhibitors but by endocytosis, which removes matriptase-2 from the 

cell surface, preventing matriptase-2 interaction with its substrates. Internalization of 

matriptase-2 depends on specific residues within its N-terminal cytoplasmic domain, as 
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site-directed mutagenesis of these amino acids abrogated internalization and maintained 

the enzyme at the cell surface (Béliveau et al. 2011). 

In comparison with matriptase, matriptase-2 has a more restricted expression pattern. 

Human  matriptase-2 was found predominantly in adult and fetal liver, although in mice 

matriptase-2 expression was also detected in kidney, uterus and nasal cavity (Velasco et 

al. 2002; Hooper et al. 2003). 

Matriptase-2 degrades extracellular matrix and basement membrane components 

such as fibronectin, fibrinogen and collagen type I. Similarly to matriptase, matriptase-2 

activates pro-uPA but with much lower efficiency (Velasco et al. 2002). Mutations of the 

matriptase-2 gene in humans are linked to the iron metabolism disorder called IRIDA 

(iron-refractory iron deficiency anemia) and correlates with elevated hepcidin levels in the 

urine of IRIDA patients (Finberg et al. 2008; Guillem et al. 2008). The critical role of 

matriptase-2 in maintaining iron homeostasis was deciphered in further studies using two 

mouse models with reduced matriptase-2 expression – matriptase-2 KO mouse and Mask 

mouse, a recessive, chemically induced mutant mouse that expresses matriptase-2 

lacking its serine protease domain. Both of these models of matriptase-2 deficiency are 

characterized by the gradual loss of body but not facial hair, resulting in a complete nudity 

of the trunk. This phenotype could be reversed by keeping Mask and matriptase-2 KO 

animals on a high-iron diet, indicating deregulated iron metabolism in these mice. 

Matriptase-2 KO and Mask mice display microcytic anemia, low iron plasma levels and 

depleted iron stores, caused by the over-expression of hepcidin (Du et al. 2008; Folgueras 

et al. 2008). Studies by Silvestri and colleagues showed that matriptase-2 negatively 

regulates hepcidin expression through proteolysis of hemojuvelin (Silvestri et al. 2008), a 

GPI-anchored membrane protein synthesized by hepatocytes that acts as a co-receptor 

for bone morphogenic factor-2 (BMP-2), BMP-4 and BMP-6 (Babitt et al. 2006). These 

members of the TGF-β superfamily of growth factors are primary activators of hepcidin 

expression in hepatocytes (Truksa et al. 2006; Andriopoulos et al. 2009). Cleavage of 

hemojuvelin by matriptase-2 prevents hepcidin expression directly by inactivating BMP 

signaling and indirectly by creating an imbalance in levels of BMP co-receptor and 

antagonist (Ramsay, Hooper, et al. 2009). The lack of matriptase-2 causes over-

expression of hepcidin and leads to severe iron deficiency.  

The expression of hepcidin in the liver was also found to be dramatically down-

regulated in response to hypoxic conditions (Nicolas et al. 2002). Recent studies 

demonstrated that one of the transcription factors induced by the low oxygen levels, the 

hypoxia-inducible factor (HIF) up-regulates expression of matriptase-2 through direct 

binding to the hypoxia responsive element (HRE) in matriptase-2 gene promoter (Lakhal 

et al. 2011; Maurer et al. 2012). These data confirm the central role of matriptase-2 in the 

regulation of iron metabolism. 
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In healthy humans and mice matriptase-2 is expressed almost exclusively in the liver.  

Significant levels of this serine protease are also found in some types of cancers. 

Matriptase-2 mRNA expression was detected in Leydig tumor cells (Odet et al. 2006) as 

well as in prostate cell lines with low invasive potential, like P2HPV-7 and PNT2-C2. No 

matriptase-2 was detected in more invasive DU145 and PC3 cells (Sanders et al. 2008). 

Matriptase-2 seems to suppress growth of cancer cells and its expression in the tumors 

correlates with good clinical prognosis, as concluded from studies on breast and prostate 

cancers. For example, low levels of matriptase-2 correlate with overall poor prognosis for 

breast cancer patients. Transfection of the highly invasive breast cancer cell line MDA-

MB231 with matriptase-2 significantly reduced its tumorigenic potential following 

administration into CD1 athymic mice as well as invasion and migration in in vitro 

experiments (Parr et al. 2007). Over-expression of matriptase-2 in PC3 prostate cancer 

cells impaired their invasiveness and migration rates in vitro and reduced their growth and 

survival following administration into CD1 nude mice. To explain the impaired migration 

rates of matriptase-2 over-expressing PC3 cell line, the cells were immune labelled for 

paxillin and focal adhesion kinase (FAK), revealing increased expression of these 

adhesion molecules, especially within the focal adhesion complexes. Therefore 

matriptase-2 may have anti-metastatic functions in cancer cells (Sanders et al. 2008). 

1.4.2.6.3 Hepsin 

Hepsin was named due to its significant expression in hepatocytes (Leytus et al. 

1988). In addition to the liver cells, hepsin is present also in a number of other tissues 

including thymus, thyroid, lung, pancreas, pituitary gland, prostate, and kidney (Tsuji et al. 

1991; Szabo & Bugge 2008). The most prominent hepsin substrate is pro-uPA. The 

catalytic efficiency of pro-uPA activation by hepsin is similar to that of plasmin which is 

considered to be the most potent pro-uPA activator and is about six fold higher than that 

of matriptase (Moran et al. 2006). Other substrates cleaved by hepsin include laminin-332 

(Tripathi et al. 2008), prostasin (M. Chen et al. 2010) and pro-macrophage stimulating 

protein (pro-MSP), a plasminogen-related growth factor, implicated in promoting wound 

healing and tumor invasion and suppressing pro-inflammatory immune response 

(Ganesan et al. 2011). Similarly to matriptase, hepsin was shown to release the 

extracellular part of EGFR, however hepsin-mediated processing occurs in a different 

position than cleavage by matriptase (M. Chen et al. 2010). Hepsin converts the single-

chain hepatocyte growth factor (pro-HGF) into biologically active two-chain HGF (Herter et 

al. 2005; Kirchhofer et al. 2005) and activates zymogen factor VII to factor VIIa (Kazama 

et al. 1995).  

Hepsin is synthesized as inactive zymogen and undergoes autocatalytic activation 

(Qiu et al. 2007), however the detailed mechanism of this process has not been described 
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to date. The activity of mature hepsin is regulated by HAI-1B and HAI-2 (Kirchhofer et al. 

2005). 

Hepsin-deficient mice develop and breed normally, have no histological abnormalities 

in major organs, including liver and display no defects in blood coagulation (Wu et al. 

1998). The only exhibited defect in these animals is severe hearing loss caused by 

abnormal cochlear tectorial membrane and defective compaction of spiral ganglion 

neurons (Guipponi et al. 2007). 

As for many other TTSPs, hepsin is implicated in several types of cancer. Hepsin 

expression is markedly elevated in ovarian (Tanimoto et al. 1997), renal cell (Zacharski et 

al. 1998), endometrial (Matsuo et al. 2008), breast (Xing et al. 2011) and prostate 

carcinomas. Hepsin mRNA is over-expressed in 90% of prostate tumors and this up-

regulation is accompanied by an increase in protein level. Moreover, expression of hepsin 

localizes to the cancer cells rather than to the stroma (Dhanasekaran et al. 2001; Jun Luo 

et al. 2001; Magee et al. 2001; Chen et al. 2003; Stephan et al. 2004; Riddick et al. 2005). 

Elevated levels of hepsin correlate with high Gleason score and serum PSA levels and 

were indicative of poor clinical outcome and disease relapse following radical 

prostatectomy (Dhanasekaran et al. 2001; Magee et al. 2001; Chen et al. 2003; Stephan 

et al. 2004; Goel et al. 2011). Significant up-regulation of hepsin in prostate cancer as well 

as the correlation between hepsin and the clinical outcome suggests that hepsin could be 

a potential target for anti-cancer therapy. Recently two groups described allosteric anti-

hepsin inhibitory antibodies which can be potentially tested as a new treatment for 

prostate cancer patients (Ganesan et al. 2012; Koschubs et al. 2012). Several groups are 

also proposing to use hepsin as a prognostic marker that can be used alone or in 

combination with PSA testing. The lack of detectable hepsin in blood or urine allows to 

measure its levels only in prostate biopsies (Dhanasekaran et al. 2001; Stephan et al. 

2004; Kelly et al. 2008; Pace et al. 2012).  

To better understand the role of hepsin in prostate epithelium in vivo transgenic 

mice over-expressing hepsin under the control of the probasin promoter (PB-hepsin mice) 

were generated. Immunofluorescent staining and electron microscopic analysis revealed 

that over-expression of hepsin causes weakening of epithelial-stromal adhesion and 

disorganization of the basement membrane in the prostate gland. To investigate the 

influence of hepsin on prostate cancer progression PB-hepsin mice were then crossed 

with LBP-Tag mice, a transgenic model of prostate cancer. LBP-tag mice express SV40 

large T antigen in the prostate epithelium and develop PIN and primary prostate 

carcinoma but do not develop metastases. Interestingly, 65% of double transgenic LBP-

Tag/PB-hepsin mice developed metastatic lesion in bones, liver and lung by the 21 week 

of age (Klezovitch et al. 2004). Therefore hepsin promotes primary cancer progression 

and metastasis, possibly by direct disruption of the basement membrane through 
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degradation of extracellular matrix components. In vitro studies, showing enhanced 

motility of DU145 prostate cancer cells plated on hepsin-cleaved laminin-332 support this 

hypothesis (Tripathi et al. 2008). In another study investigating the role of hepsin in 

prostate cancer progression in vivo, PB-hepsin mice were crossed with the probasin 

directed myc mouse model of prostate carcinoma (myc mice). The double-transgenic 

animals (PB-hepsin/myc) progressed faster to carcinoma stage than the myc mice. 

Moreover, the PB-hepsin/myc mice developed a pathologically higher grade of tumour in 

comparison with the age-matched myc mice, confirming the cancer-promoting activity of 

hepsin (Ellwood-Yen et al. 2003; Nandana et al. 2010). 

In contrast with hepsin over-expression in localized prostate tumors, hepsin is 

down-regulated in metastatic lesions (Dhanasekaran et al. 2001), suggesting that this 

serine protease is necessary only in the initial stages of tumorigenesis, mediating 

disruption of the epithelial organization. This activity of hepsin may not be needed when 

the metastasizing cells are establishing themselves at distant sites (Vasioukhin 2004). 

This presumption is supported by the finding that metastasis-derived prostate cancer cell 

lines DU145 and PC3 do not express hepsin (Srikantan et al. 2002; Wittig-Blaich et al. 

2011). Furthermore, over-expression of hepsin in PC3 cells results in 75% growth 

inhibition and about 50% reduction of invasion in Matrigel migration assay (Srikantan et al. 

2002). Hepsin-mediated loss of viability and adhesion of PC3 cells was linked to reduced 

phosphorylation of Akt kinase at Ser473 (Wittig-Blaich et al. 2011). Akt is an effector 

kinase of phosphatidylinositide 3-kinase (PI3K) signaling pathway that is the major 

regulatory mechanism of PC3 growth and viability (Bertram et al. 2006). Over-expression 

of hepsin was also shown to suppress growth and induce apoptosis in ovarian and 

endometrial cancer cell lines (Nakamura et al. 2006; Nakamura et al. 2008). 

1.4.3 Prostasin – a GPI-anchored serine protease 

The first isolated GPI-anchored serine protease was prostasin, also known as 

PRSS8 (Yu et al. 1994). Similarly to other GPI-anchored proteins, prostasin localizes in 

lipid rafts, cell membrane compartments enriched in cholesterol and glycolipids (Simons & 

Ikonen 1997; Verghese et al. 2006). Prostasin can also be isolated as a soluble protein 

from seminal fluid and at lower levels from urine. The highest expression of the GPI-

anchored prostasin variant was found in prostate epithelium but it can also detected in 

colon, lung, liver, pancreas, kidney, salivary gland and bronchus (Yu et al. 1994; Yu et al. 

1995). Prostasin is synthesized as an inactive zymogen that requires a site-specific 

proteolytic cleavage for activation. However, in contrast to some TTSPs prostasin is not 

able to undergo auto activation and requires processing by upstream proteases (Shipway 

et al. 2004). Among enzymes able to activate prostasin are matriptase and hepsin, 

indicating that membrane serine proteases may form catalytic cascades (Netzel-Arnett et 

al. 2006; M. Chen et al. 2010). The activity of prostasin following activation is regulated by 
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a serpin inhibitor, protease nexin-1 (PN-1) and HAI-1 which are co-expressed with 

prostasin in epithelial cells  (Chen et al. 2004; Fan et al. 2005). 

The soluble variant of prostasin is generated by cleavage at Arg323 (Arg322 in 

mouse prostasin) by trypsin-like proteases to remove the COOH-terminal hydrophobic 

domain (Yu et al. 1994). In contrast to prostate epithelium, prostasin is not efficiently 

released from the airway epithelial cells (Tong et al. 2004), indicating that the mechanism 

of soluble prostasin production is cell type specific. Indeed, analysis of various prostasin 

mutants expressed in kidney and lung epithelial cells showed that the secretion of 

prostasin in these cells is mediated by endogenous GPI-specific phospholipase D1 

(Gpld1) (Verghese et al. 2006). 

The first biological function of prostasin to be described was the activation of 

epithelial sodium channels (ENaC) (Adachi et al. 2001). ENaC are present in the distal 

segments of the kidney tubule, colon, urinary bladder, skin and airways and their function 

is critical for maintaining salt and fluid balance in these organs (Schild & Kellenberger 

2001). Proteolytic cleavage has an important role in regulating ENaC activity as it 

increases the probability of an open channel conformation.  

The other important function of prostasin is maintaining epithelial barrier function, 

as concluded from the observation of prostasin-deficient mice. Interestingly, the lack of 

prostasin in keratinized tissues results in the same phenotype as described previously in 

matriptase-deficient mice, including impaired stratum corneum formation, hair follicle 

defects, thymic abnormalities and postnatal lethality (Leyvraz et al. 2005). As mentioned 

previously, prostasin and matriptase are components of the same proteolytic cascade that 

regulates epidermal function, with matriptase acting upstream of prostasin (Netzel-Arnett 

et al. 2006). The matriptase-prostasin cascade is tightly regulated in differentiating 

epidermis by HAI-1, limiting the opportunity to act on substrates and at the same time 

protecting the tissue from uncontrolled proteolytic activity (Y.-W. Chen et al. 2010). The 

activation of prostasin by matriptase is additionally regulated by the spatial separation of 

the two serine proteases. In polarized epithelial cells matriptase is mainly located on the 

basolateral plasma membrane (Tsuzuki et al. 2005), whereas most of prostasin localizes 

on the apical plasma membrane (Chen et al. 2008; Selzer-Plon et al. 2009). These two 

compartments are separated by the tight junctions in order to prevent diffusion of 

membrane proteins between the two membranes. However, the proteolytic activation of 

prostasin by matriptase is possibly due to the brief co-localization of these two enzymes at 

the basolateral plasma membrane. A minor fraction of prostasin can be found on the 

basolateral plasma membrane where it undergoes matriptase-mediated activation, 

followed by endocytosis and transcytosis to the apical membrane where its long retention 

time causes the accumulation of active prostasin (Friis et al. 2011). 
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The molecular mechanisms of how the matriptase-prostasin axis regulates the 

differentiation of epidermis are not fully understood. One of the signaling pathways 

controlled by the matriptase-prostasin cascade is EGFR signaling. Co-expression of 

matriptase and prostasin in EGFR-expressing cells results in the generation of two 

truncated EGFR fragments, lacking the ligand binding domain and unresponsive to EGF 

stimulation (Chen et al. 2008). Recent experimental evidence suggests that the 

proteolysis-activated receptor-2 (PAR-2) is a major downstream effector of the matriptase-

prostasin proteolytic cascade. Transgenic mice lacking prostasin and PAR-2 expression 

do not display any epidermal abnormalities, implicating PAR2 as a potential mediator of 

pathologies linked to loss of serine protease regulation in skin (Frateschi et al. 2011). 

In the healthy organism the highest expression of prostasin is found in prostate 

epithelial cells but prostasin is also aberrantly expressed in some types of tumors. For 

example, high levels of prostasin are found in ovarian cancer (Mok et al. 2001), whereas 

the expression of prostasin decreases in prostate cancer. The levels of prostasin in 

biopsies from patients with hormone-refractory prostate cancer are about 6 times lower 

than in organ-confined tumors (Takahashi et al. 2003). Similar observation can be made 

from the analysis of prostasin expression in prostate cancer cell lines. Prostasin is 

expressed by LNCaP cells with low invasive potential but not by more invasive DU145 

and PC3 cells  (Yu et al. 1995; Chen, Hodge, et al. 2001). Down-regulation of prostasin in 

these cell lines is caused by hypermethylation of the prostasin gene promoter (Chen et al. 

2004). Transfection of DU145 and PC3 cells with prostasin reduced their invasiveness in 

vitro by 68% and 42%, respectively (Chen, Hodge, et al. 2001).  

To define the molecular mechanisms by which prostasin affects the behavior of 

prostate cancer cells, the PC3 cell line was transfected with prostasin followed by analysis 

of mRNA and protein levels of several molecules implicated in prostate cancer invasion. 

The molecular changes observed in cells over-expressing prostasin were down-regulation 

of EGFR mRNA and protein levels, inhibition of ERK1/2 phosphorylation in response to 

EGF treatment and decreased expression of uPA. Interestingly, both active and mutated 

prostasin caused significant down-regulation of the expression of two inflammation-

induced genes, cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) 

(Chen et al. 2007). The protease-dependent changes partially explain the reduction of 

prostate cancer cell invasion by prostasin; however the relevance of protease-

independent effects requires further investigation. Silencing of prostasin expression in 

human benign prostatic hyperplasia cell line BPH-1 using siRNA resulted in up-regulation 

of iNOS, intracellular adhesion molecule-1(ICAM-1), interleukin-6 and interleukin-8, as 

well as down-regulation of cyclin D1 leading to reduced proliferation and invasion. Further 

experiments showed that prostasin is a negative regulator of PAR-2-mediated signalling 

and this function of prostasin is critical for inhibition of prostate cancer cells invasiveness 
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(Chen et al. 2009). Prostasin in also present in normal human mammary epithelial cells, 

poorly invasive breast carcinoma cell line MCF-7 and the non-metastatic breast carcinoma 

cell line MDA-MB-453, while highly invasive and metastatic breast carcinoma cell lines 

MDA-MB-231 and MDA-MB-435 lack prostasin expression. Similarly to invasive prostate 

cancer cell lines, the lack of prostasin expression in MDA-MB-231 and MDA-MB-435 is 

caused by methylation of the prostasin gene promoter. Enforced expression of prostasin 

in these cells reduced their invasiveness in vitro by 50% (Chen & Chai 2002).Expression 

of prostasin is breast cancer cell lines and clinical samples strongly correlated with the 

expression of matriptase, suggesting the involvement of matriptase-prostasin cascade is 

the progression of breast cancer (Bergum et al. 2012). 
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1.5 Aims of the thesis. 

TMEFF2 is novel transmembrane protein implicated in the development and 

progression of prostate cancer. However, the literature data describing the role of 

TMEFF2 in prostate cancer are controversial, indicating that this protein might be involved 

in both enhancement and suppression of prostate cancer growth and progression. Based 

on these findings it was hypothesized that the dual action of TMEFF2 in prostate cancer 

results from differential processing of the full-length, transmembrane TMEFF2 by 

membrane-anchored proteases over-expressed by normal prostate epithelium and 

prostate cancer cells. To verify this hypothesis the following experiments were performed 

and discussed in this thesis: 

� analysis of the co-expression of TMEFF2 and membrane-anchored serine 

proteases in prostate cancer cell lines and clinical samples (Chapter 3); 

� characterization of AP/V5 TMEFF2 and AP/V5∆303-320TMEFF2 HEK293 cells as an 

in vitro model to study TMEFF2 shedding from the cell surface and generation of 

different C-terminal fragments (Chapter 4); 

� analysis of TMEFF2 processing by serine proteases (matriptase, matriptase-2, 

hepsin, prostasin) and ADAMs (ADAM9, ADAM12, ADAM15A, ADAM15B, 

ADAM15C) implicated in prostate cancer (Chapter 4); 

� production and purification of recombinant TMEFF2 fragments, corresponding to 

N-terminal products of serine protease and ADAM-mediated processing in E. coli 

and mammalian cells (Chapters 5 and 6); 

� characterization of the biological activity of purified TMEFF2 fragments in vitro, 

using ERK1/2 phosphorylation and XTT proliferation assays (Chapters 5 and 6); 

� investigation of the fate of TMEFF2 C-terminal fragments generated by serine 

proteases and ADAMs following ectodomain cleavage using fluorescent confocal 

microscopy and Western blotting (Chapter 7). 
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Chapter 2: 

Materials and methods 
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The formulations of all used solutions are summarized in Appendix I. All chemical 

components were purchased from Fisher Scientific unless otherwise stated. 

2.1 Cell culture 

Cell lines were maintained at 37°C in humidified air with 5% CO2 and passaged 

upon confluency by washing once with PBS and incubating with 1-2 ml trypsin/EDTA 

(GIBCO) for 5 minutes at 37°C. The trypsin/EDTA solution was then neutralised by adding 

6 ml of culture medium containing 10% foetal bovine serum (FBS) and the cell suspension 

was centrifuged to remove trypsin. Specific culture media formulations for each cell line 

are presented in Table 2.1. All media were purchased from Lonza, FBS from GIBCO and 

Hygromycin B solution from Invitrogen. Tissue culture plastic ware was obtained from 

Sarstedt unless otherwise stated. 

To prepare aliquots for freezing, cells were suspended in freezing medium (50% 

FBS, 40% medium, 10% DMSO) following trypsinization and stored overnight at -80°C 

before being transferred into liquid nitrogen. 

Table 2.1. List of used cell lines. 

Cell line Growth medium: Obtained from: 

PNT2-C2 
RPMI 1640 + 10% FBS Dr Anne Collins,  

University of York, 

UK 

LNCaP 

DU145 EMEM + 10% FBS 

PC3 Ham’s F12 + 10% FBS 

CHO Flp-In 
Ham’s F12 + 10% FBS  

+ 100 µg/ml Zeocin 
Invitrogen 

HEK293 Flp-In 
DMEM + 10% FBS 

+ 100 µg/ml Zeocin 

HA/V5 TMEFF2 CHO 

AP/V5 HB-EGF CHO 

Ham’s F12 + 10% FBS  

+ 500 µg/ml Hygromycin B 

Dr Vera Knäuper 
HA/V5 TMEFF2 HEK293 

HA/V5 ∆303-320TMEFF2 HEK293 

AP/V5 TMEFF2 HEK293 

AP/V5 ∆303-320TMEFF2 HEK293 

DMEM + 10% FBS  

+ 100 µg/ml Hygromycin B 
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2.2 Immunolocalisation of TMEFF2 and ∆303-320TMEFF2 in HEK293 

HA/V5 TMEFF2 and HA/V5 ∆303-320TMEFF2 HEK293 cells were seeded at the 

density of 5x105 cells per well in a 6-well plate on poly-L-lysine (Sigma Aldrich) coated 

coverslips and grown overnight. In some experiments cells were treated with 5 µM DAPT, 

25 µM GM6001 or 100 ng/ml PMA (all purchased from Enzo). After performing the 

experiment cells were washed once with PBS, fixed in 4% paraformaldehyde (Fisher 

Scientific) in PBS solution for 7 minutes and washed 3 x 5 minutes in PBS. Cells were 

permeabilised by incubation in 0.5% saponin (Sigma-Aldrich) in PBS for 10 minutes 

followed by 3 x 5 minutes washing in PBS. Cells were then blocked with 1% BSA (Sigma-

Aldrich) in PBS solution for 30 minutes and incubated with primary antibody (mouse anti-

V5 1:500, Invitrogen) for 2 hours in a humidified chamber. After 3 x 5 minutes washing in 

PBS coverslips were incubated with secondary antibody (goat anti-mouse AlexaFluor 596 

1:500, Cell Signaling) for 1 hour in the dark. Following 3 x 5 minutes washing in PBS, 

coverslips were mounted in DAPI-containing Vectashield (Vector Labs) and analyzed 

using Leica SP5 Confocal Microscope. 

2.3 Transient transfection of HEK293 cells 

2.3.1 Transfection of HE293 cells for shedding experiments. 

HEK293 cells were plated onto a 24-well plate at a density of 1x105 cells per well 

and grown overnight. Next day medium was removed from the wells and replaced with 1 

ml of DMEM supplemented with 10% FBS. To transiently transfect 4 wells of cells 6 µl of 

FuGENE 6 Transfection Reagent (Roche) were pre-incubated with 2 µg of plasmid DNA in 

serum-free DMEM to form the FuGENE:DNA complex. Following 30 minutes incubation 

the transfection mixture was added to the cells. For co-transfection experiments HEK293 

cells were transfected with 6 µl of FuGENE, 1 µg of AP/V5 TMEFF2 pcDNA5 and 1 µg of 

plasmid encoding the appropriate protease. 

2.3.2 Transfection of HEK293 cells with EGFP-TMEFF2 and TMEFF2-YFP. 

HEK293 cells were plated at the density of 2.5 x105 cells per well in a 6-well plate 

on poly-L-lysine (Sigma Aldrich) coated coverslips and grown overnight. Next day medium 

was removed and replaced with 2 ml of DMEM supplemented with 10% FBS. To 

transiently transfect 1 well of cells 6 µl of FuGENE 6 Transfection Reagent (Roche) were 

dissolved in 100 µl of serum-free DMEM and mixed 2 µg of plasmid DNA, encoding 

EGFP-TMEFF2 or TMEFF2-YFP. The transfection mixture was pre-incubated for 30 

minutes to form FuGENE:DNA complex and added to the cells. Expression of EGFP-

TMEFF2 and TMEFF2-YFP was analyzed 48 hours post-transfection. 
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2.4 Assay for alkaline phosphatase activity (AP assay) 

48 hours post-transfection the conditioned medium from transfected cells was 

taken off. Cells were washed with 200 µl of warmed, gassed OptiMEM (GIBCO) and 

incubated for 1 or 3 hours in 250 µl of fresh OptiMEM at 37 °C. In experiments with ADAM 

inhibitors transfected cells were incubated for 3 hours in 250 µl of OptiMEM containing 10 

µM GI254023X and 10 µM GW280264X (GlaxoSmithKline). PMA-induced shedding of 

AP/V5 TMEFF2 and AP/V5 ∆303-320TMEFF2 was monitored after 1 hour treatment with 

different concentrations of PMA (Enzo) in 250 µl OptiMEM. An influence of PDGF-AA on 

AP/V5 TMEFF2 shedding was monitored after 1 hour or overnight incubation in 300 µl 

OptiMEM containing 10 or 100 ng/ml of recombinant human PDGF-AA (Peprotech). At the 

end of the incubation the culture medium was collected and centrifuged for 3 minutes at 

13000 rpm. 100 µl of AP-TMEFF2 containing medium was placed in duplicates into a 96-

well plate. 2 mg/ml 4-nitrophenyl phosphate (4-NPP) solution was prepared by dissolving 

appropriate amount of 4-NPP (Fisher Scientific) in AP buffer (100 mM This-HCl pH 9.5, 

100 mM NaCl, 20 mM MgCl2) and mixed at 1:1 ratio with culture medium on the plate. The 

accumulation of alkaline phosphatase product 4-nitrophenol (OD405) was measured using 

FLUOstar Optima Microplate Reader (BMG Labtech) at the following time-points: 0h, 1h, 

2h, 3h, 4h, 5h, 23h, 24h, 25h. Collected data were then analyzed using GraphPad Prism 

software by linear regression. The slope values were then used to calculate statistical 

significance between experimental conditions as described under each experiment. 

2.5 Analysis of cell lysates by Western blotting 

2.5.1 Cell lysis 

Cells were lysed using RIPA lysis buffer (20 mM sodium phosphate pH 7.4, 150 

mM NaCl, 1% v/v Triton-X-100) supplemented with protease inhibitor cocktail (Sigma-

Aldrich, 10 µl per 1 ml of RIPA buffer), 10 mM 1,10-phenantroline (Sigma-Aldrich), 1.5 mM 

Na3VO4 (Sigma-Aldrich) and 5 mM NaF (Sigma-Aldrich). 35 µl (24-well plate) or 100 µl (6-

well plate) of lysis buffer were added per well and incubated for 30 minutes on ice. Cell 

lysates were collected into eppendorf tubes and clarified by centrifugation for 3 minutes at 

13000 rpm. 

2.5.2 Protein concentration assay 

Protein concentration in cell lysates was determined by the DC protein assay 

system (Bio-Rad) according to manufacturer’s instructions. Briefly, bovine serum albumin 

(BSA) standards were prepared at concentrations ranging from 0-1.5 mg/ml in 0.15 M 

NaCl. 5 µl of BSA standard or sample were put onto 96-well plate in duplicates. 25 µl of 

reagent A’ (20 µl of reagent S per 1 ml of reagent A) and 200 µl of reagent B were added 

to the plate. Following 15 min incubation at room temperature the absorbance was 



63 

 

measured at 570 nm. To determine the protein concentration readings were compared to 

the standard curve of known BSA standards and calculated using linear regression. 

2.5.3 SDS-PAGE 

The volume of cell lysate that contained required amount of protein was mixed 

with equal volume of 2x reducing sample buffer, denatured at 95°C for 5 minutes and 

spun for 1 minute at 13000 rpm. Samples were separated on 4% stacking gel and 

appropriate resolving gel at 50 mA until the dye front reached the bottom. 

2.5.4 Western blotting 

Gels were equilibrated in Western blot transfer buffer and proteins were 

transferred to PVDF membrane (Amersham Biosciences) at 75 V for 1 hour using transfer 

tanks containing transfer buffer and cooling blocks. After the transfer, the membrane was 

blocked in 5% skimmed milk-TBST solution for 1 hour at room temperature. Primary 

antibodies were diluted in 5% skimmed milk-TBST solution and incubated with the 

membrane overnight at 4°C on a rotating shaker. The list of primary and secondary 

antibodies used in this thesis is presented in Table II. Following 3x5 minutes washing with 

TBST, the membrane was incubated with secondary antibodies diluted in 5% skimmed 

milk-TBST for 1 hour at room temperature. The membrane was then washed with TBST 

for 15, 10 and 5 minutes followed by 5 minutes washing in TBS. Each membrane was 

incubated with 1 ml EZ-ECL Chemiluminescence Detection Reagent (Biological 

Industries, 1:1 Reagent A: Reagent B v/v) for 3 minutes and exposed to ECLTM Hyperfilm 

(Amersham Biosciences) for the appropriate amount of time. Films were developed using 

a CURIX 60 automated developer (AGFA – Healthcare N.V.). 

2.5.5 Stripping for re-probing Western blots 

To re-probe Western blot with another antibody the PVDF membrane was 

incubated for 30 minutes at 50°C in a stripping buffer and then washed 3x 5 minutes in 

TBS followed by 1 hour blocking in 5% skimmed milk-TBST. Incubation with primary and 

secondary antibody was performed as described above. 
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Table 2.2. Primary and secondary antibodies used for Western blotting. 

Antibody Manufacturer 
Catalogue 

number 
Dilution 

Working 

concentration 

Primary antibody:  

mouse anti-V5 Invitrogen R960-25 1:5000 20 ng/ml 

mouse anti-GAPDH Sigma-Aldrich G8795 1:2500 25 ng/ml 

rabbit anti-

matriptase 
Calbiochem IM1014 1:1000 25 ng/ml 

mouse anti-

matriptase (M32) 
- - 1:2000 50 ng/ml 

sheep anti-hepsin R&D Systems AF4776 1:1000 200 ng/ml 

mouse anti-prostasin Becton Dickinson 612173 1:1000 250 ng/ml 

rabbit anti-ADAM9 R&D Systems MAB939 1:1000 250 ng/ml 

rabbit anti-ADAM15 Abcam Ab4834 1:2000 250 ng/ml 

mouse anti-FLAG Sigma-Aldrich F7425 1:5000 20 ng/ml 

rabbit anti-pERK1/2 Cell Signaling 4370 1:5000 88 ng/ml 

mouse anti-ERK1/2 Cell Signaling 9107 1:5000-1:1000 120-240 ng/ml 

goat anti-PDGFRα R&D Systems AF-307-NA 1:4000 50 ng/ml 

mouse anti-β-tubulin Sigma-Aldrich T4026 1:2000 200 ng/ml 

goat anti-TMEFF2 R&D Systems AF1867 1:4000 50 ng/ml 

Secondary antibody:  

donkey anti-mouse  

F(ab')2 Fragment,  

HRP conjugated 

Jackson 

ImmunoResearch 
715-036-151 1:5000 16 ng/ml 

donkey anti-rabbit,  

HRP conjugated 

Jackson 

ImmunoResearch 
711-005-152 1:5000 20 ng/ml 

rabbit anti-goat,  

HRP conjugated 

Jackson 

ImmunoResearch 
305-035-045 1:5000 20 ng/ml 

donkey anti-sheep,  

HRP conjugated 

Jackson 

ImmunoResearch 
713-005-147 1:5000 20 ng/ml 
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2.6 Coomassie Blue R-250 staining 

Following electrophoresis polyacrylamide gels were incubated in Coomassie staining 

solution (3% Coomassie Brillinat Blue R-250, 10% acetic acid, 45% methanol) for 30 

minutes and destained for required amount of time in Coomassie destain solution (10% 

acetic acid, 50% methanol). 

2.7 Silver staining 

To detect nanogram amounts of proteins present in the sample polyacrylamide gels 

were stained with silver according to the following steps (all reagents purchased from 

Sigma Aldrich except of ethanol and acetic acid purchased from Fisher Scientific): 

Step: Solution: Incubation time: 

1. Fix 
ethanol/acetic acid/H2O 

50/12/38 
minimum 1 hour 

2. Wash 50% ethanol (v/v) 3x 5 minutes 

3. Sensitize 0.02% Na2S2O3 
5 minutes 

 

4. Wash H2O 2x 20 seconds 

5. Impregnation 
0.2% AgNO3 + 0,015% 

formaldehyde 
20 minutes 

6. Wash H2O 2x 20 seconds 

7. Develop 
4% Na2CO3 + 0.015% 

formaldehyde 
as required 

8. Wash H2O 2x 20 seconds 

9. Stop 
ethanol/acetic acid/H2O 

50/12/38 
 

 

2.8 Construction of HREGF TMEFF2 MBP-fusion expression vector 

 

2.8.1 Overlap extension polymerase chain reaction (PCR) 

The overlap extension PCR method was used in order to introduce a point 

mutation substituting the His39 codon (CAC) within the sequence of an EGF-like domain 

of TMEFF2 with the codon for Arg (CGC). This method enables the mutation of a single 

base pair as well as the incorporation of desired restriction sites flanking the sequence of 

interest by performing three PCR reactions. The sequences of primers used in these 

reactions are presented below: 
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 Sequence Tm [°C] 

Primer A 5’ GTTATACTGGACAACGCTGTGAAAAAAAGGACTAC 3’ 67.1 

Primer B 5’ GCAGCCGGATCAAGCTTAGACATACTGAAATCG 3’ 69.5 

Primer C 5’ GCAGAATTCGGGCATTATGCAAGAACAGATTATGCA 3’ 68.3 

Primer D 5’ ATGGTCCTTTTTTTCACAGCGTTGTCCAGTATAAC 3’ 67.1 

 

Primers A and D contained the designed point mutation (indicated in red) whereas 

primers B and C carried HindIII and EcoRI restriction sites, marked in the table above in 

green and blue, respectively. All primers were synthesised by MWG Operon (Germany). 

First two PCR reaction (PCR1 and PCR2) were carried out using a 2ndFS+EGF 

TMEFF2 MAL pRSET B plasmid template and two primers – one carrying the point 

mutation (primer A or D) and one introducing the restriction site (primer C or D). Products 

of these reactions contained the point mutation (Both products) as well as HindIII (PCR1 

product) or EcoRI (PCR2 product) restriction site and were partially complemented. PCR1 

and PCR2 products were mixed with 5x loading buffer (QIAgen) and separated under 

constant voltage (100V) in 2% agarose gel containing ethidium bromide (Sigma-Aldrich) in 

1xTEA buffer. The fragments were then extracted from the gel using QIAquick Gel 

Extraction Kit (QIAgen) according to manufacturer’s instructions, mixed in appropriate 

ratio and used as a template in PCR3. PCR3 reaction was performed using primers A and 

D in order to amplify the whole HREGF TMEFF2 fragment. The product of PCR3 (HREGF 

TMEFF2) was analyzed by electrophoresis using 1% agarose gel (1xTEA buffer, 100V) 

and purified using QIAquick Gel Extraction Kit (QIAgen). 

The composition of each PCR master mix as well as programmes used to amplify 

DNA fragments are summarised in Table 2.5. All three PCR reactions were carried out 

using 96-well thermal cycler from VWR. 
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Table 2.3. Summary of overlap extension PCR reactions. 

 Reaction components PCR program 

PCR 1 

• 1 µl of plasmid template 

• 1 µl Herculase II DNA 

polymerase (Agilent) 

• 1x Herculase II buffer 

(Agilent) 

• 5 mM dNTP (Agilent) 

• 1 µl DMSO 

• 1 µl primer A 

• 1 µl primer B 

• 34 µl nuclease-free 

water 

 

• Initialization step: 98°C 2min 

• Denaturation: 98°C 30 sec 

• Annealing: 60°C 30 sec 

• Elongation step: 72°C 3 min 

• Final elongation: 72°C 15 min 

• Store: 4°C 

 

PCR 2 

• 1 µl of plasmid template 

• 1 µl Herculase II DNA 

polymerase (Agilent) 

• 1x Herculase II buffer 

(Agilent) 

• 5 mM dNTP (Agilent) 

• 1 µl DMSO (NEB) 

• 1 µl primer C 

• 1 µl primer D 

• 34 µl nuclease-free 

water (GIBCO) 

 

• Initialization step: 98°C 2min 

• Denaturation: 98°C 30 sec 

• Annealing: 60°C 30 sec 

• Elongation step: 72°C 3 min 

• Final elongation: 72°C 15 min 

• Store: 4°C 

 

PCR 3 

• 10 µl of PCR1 product 

• 1 µl of PCR2 product 

• 1 µl Herculase II DNA 

polymerase (Agilent) 

• 1x Herculase II buffer 

(Agilent) 

• 5 mM dNTP (Agilent) 

• 1 µl DMSO (NEB) 

• 1 µl primer A 

• 1 µl primer D 

• 24 µl nuclease-free 

water (GIBCO) 

 

• Initialization step: 98°C 2min 

• Denaturation: 98°C 30 sec 

• Annealing: 60°C 30 sec 

• Elongation step: 72°C 1 min 

• Final elongation: 72°C 4 min 

• Store: 4°C 

 

  

20 cycles 

20 cycles 

20 cycles 
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2.8.2 Restriction digest 

Purified HREGF TMEFF2 PCR fragment as well as MAL pRSET vector were 

digested for 1 hour at 37°C with HindIII and EcoRI restriction enzymes (New England 

Biolabs) in the presence of NEBuffer 2, separated in 1% agarose gel and extracted from 

the gel using QIAquick Gel Extraction Kit (QIAgen).  

2.8.3 Ligation 

1 µl of MAL pRSET vector and 3 µl of PCR3 product were used to perform ligation 

in the presence of 1 µl T4 DNA ligase and 5 µl of 2x T4 ligation buffer (Promega) for 1 

hour at room temperature. 

2.8.4 H-REGF TMEFF2 MAL pRSET amplification 

5 µl of the ligation mixture were added to 50 µl of NovaBlue GigaSingles 

competent E. coli and incubated for 10 minutes on ice followed by 30 sec heat shock at 

42°C in a water bath. Transformed cells were then plated in several dilutions on LB agar 

plates containing 50 µg/ml carbenicillin and grown overnight at 37°C. Next day single 

colonies were picked randomly, mixed with 3 ml of LB containing 50 µg/ml carbenicillin 

and grown for 6 hours at 37°C on a shaking platform. 1.5 ml of each culture was used to 

extract plasmid DNA using QIAprep Spin MiniPrep Kit. DNA was then cleaved with HindIII 

and EcoRI and analyzed in 1% agarose gel. E. coli clone containing an insert of the 

correct length was grown in 100 ml LB + 50 µg/ml carbenicillin and used to extract plasmid 

DNA with GenElute HP Plasmid DNA Midiprep Kit (Sigma-Aldrich). 

2.9 Expression and purification of MBP-fusion proteins in E.coli 

 

2.9.1 Transformation of bacteria 

TMEFF2-ECD, 2xFS, 2ndFS+EGF and EGF TMEFF2 MAL pRSET vectors were 

cloned and purified by Dr Vera Knäuper. All plasmids were sequenced before they were 

used to transform bacteria. Sequences of all MBP-fusion proteins are included in 

Appendix II. 

50-100 pg of plasmid DNA was mixed with Origami B(DE3)pLysS (Novagen) or 

SHuffle T7 Express lysY (New England Biolabs) competent E. coli and incubated on ice 

for 30 min.  After 30 seconds heat shock at 42°C 500 µl of LB medium was added to the 

cells and the bacteria were grown for 1 hour at 37°C on a shaking platform. Transformed 

bacteria were then diluted and plated on LB agar plates containing the following antibiotics 

(Sigma-Aldrich): 
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• Origami B(DE3)pLysS: 50 µg/ml carbenicillin, 12.5 µg/ml tetracycline, 15 µg/ml 

kanamycin, 34 µg/ml chloramphenicol 

• SHuffle T7 Express lysY: 50 µg/ml carbenicillin 

Randomly picked single colonies were used to inoculate 10 ml liquid cultures and 

these were grown overnight at 37°C on a shaking platform. Glycerol stocks of transformed 

bacteria were prepared by mixing 0.5 ml of overnight culture with 0.5 ml of sterile 50% 

glycerol in LB solution and stored at -80°C. 

2.9.2 Expression of recombinant proteins 

10 ml of overnight Origami B(DE3)pLysS or Shuffle T7 Express lysY culture was 

added to 400 ml of rich broth containing the appropriate antibiotics and grown at 37°C 

until the OD600 reached the value 0.4-0.5. The OD was monitored using DU 800 

Spectrophotometer (Beckman Coulter). At this point IPTG (Sigma-Aldrich) was added to 

the final concentration of 1 mM to induce protein expression and the culture was grown 

overnight at 16°C in a shaking incubator. The non-induced culture was maintained as a 

non-induced control. 

2.9.3 Analysis of protein expression following IPTG induction 

1 ml of the non-induced and induced culture was centrifuged for 15 minutes at 

4000 rpm. The pellet was mixed with 200 µl of 2x reducing sample buffer and denatured 

for 5 minutes at 95°C. Expression of the MBP-fusion proteins was analyzed using SDS-

PAGE electrophoresis using 4% stacking gel and 11% resolving gel. The gel was stained 

with Coomassie Brilliant Blue R-250 as described in the previous sections. 

2.9.4 First step purification: affinity chromatography on amylose resin 

500 ml of overnight bacteria culture were harvested by centrifugation for 20 

minutes at 4000 rpm and resuspend in 50 ml of column buffer (20 mM Tris-HCl pH 7.4, 

200 mM NaCl, 1 mM EDTA) containing a Complete protease inhibitor cocktail tablet 

(Roche, 1 tablet per 50 ml of buffer) and 1 mM PMSF (Sigma-Aldrich). Bacteria were 

stored frozen overnight, thawed and lysed by sonication. The extract was clarified by 

centrifugation for 30 minutes at 20000 rpm. 5 ml of amylose-resin (New England BioLabs) 

was equilibrated by incubating 2x10 minutes with 20 ml of column buffer at 4°C. The 

column buffer was removed and the amylose resin was incubated with bacterial extract 

overnight at 4°C on a rotating wheel. Next day the amylose-resin was loaded into the 

column and washed with column buffer until no protein was detected in the flow-through 

(OD280 of the flow-through = OD280 of the column buffer). The MBP fusion proteins were 

eluted with column buffer containing 10 mM maltose (Sigma-Aldrich). Elution of 

recombinant proteins was monitored by measuring OD280 on NanoVue Spectrophotometer 
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(GE Healthcare). Fractions containing the highest amount of protein were combined and 

dialysed overnight at 4°C into 20 mM sodium phosphate pH 6.4 containing 25 mM NaCl. 

2.9.5 Second step purification: gel filtration 

In order to further purify MBP-fusion proteins Superdex 200 10/300 GL column 

(GE Healthcare) was connected to ÄKTApurifier system (Amersham Pharmacia Biotech 

Inc.) and equilibrated with 20 mM sodium phosphate pH 6.4 containing 25 mM NaCl. 200 

µl of recombinant protein sample was injected into the column and separated with the flow 

rate of 0.4 ml/min. Samples containing less than 1 mg/ml of MBP-fusion protein were 

concentrated using Vivaspin 500 centrifugal concentrators (Sartorius Stedim Biotech) by 

spinning at 13000rpm at 4°C for the required amount of time prior to loading into the 

column. Separation of the proteins present in the sample was monitored by measuring 

OD280 and eluted 0.5 ml fractions were collected. 

2.9.6 Calculation of protein concentration using extinction coefficient factor 

Concentration of separated EGF-like domains monomers and dimers was 

established by dividing the OD280 value of the fraction by the protein extionction coefficient 

factor. Extinction coefficient factors were calculated using Biology WorkBench 3.2 

software based on the protein sequence and are presented below: 

MBP-fusion protein Extinction coefficient factor 

EGF from HB-EGF 1.260 

EGF from TMEFF2 1.270 
HREGF from TMEFF2 1.349 

 

2.10 Generation of N-protein A TMEFF2 expression plasmids 

2.10.1 Amplification of TMEFF2 ectodomain fragments by PCR 

DNA sequences encoding fragments of TMEFF2 ectodomain were amplified using 

AP/V5 TMEFF2 pcDNA5/FRT plasmid as a template and following primers: 
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 Sequence 
Tm 

[°C] 

Primer 

1 
5'-ATAGGATCCGCTTTCCCTACCTCCTTAAGTGACTGC-3' 71.7 

Primer 

2 
5'-ATAGGATCCGGAGTCCATGAAGGCTCTGGAGAAACT-3‘ 71.7 

Primer 

3 
5'-ATAGGATCCAAGTCTGAAGATGGGCATTATGCAAGA-3‘ 68.3 

Primer 

4 

5'-

TATCTCGAGTTATTCTCTGGCACTTTCTTCTAATTTGTTAGC-3‘ 
68.5 

Primer 

5 
5'-ATACTCGAGTTAGACATACTGAAATCGTACAGGACC-3' 68.3 

 

 

 

 

 In order to clone amplified TMEFF2 fragments into the expression vector upstream 

of the IgG signal sequence-protein A fusion gene BamHI (marked in green) and XhoI 

(marked in blue) restriction sites were introduced in the primers.  

PCR reactions were performed in the presence of Herculase II DNA polymerase, 

1x Herculase II buffer, 5 mM dNTPs (Agilent), DMSO (New England BioLabs), nuclease-

free water (GIBCO), AP/V5-TMEFF2 pcDNA5/FRT plasmid template and the pair of 

primers: 

TMEFF2-ECD 
Primer 1 
Primer 5 

TMEFF2 2xFS 
Primer 1 
Primer 4 

TMEFF2 2ndFS+EGF 
Primer 2 
Primer 4 

TMEFF2 EGF 
Primer 3 
Primer 5 
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PCR amplification was carried out using 96-well thermal cycler from VWR with the 

following settings: 

• Initialization step: 98°C 2min 

• Denaturation: 98°C 30 sec 

• Annealing: 60°C 30 sec 

• Elongation step: 72°C 2 min 

• Final elongation: 72°C 4 min 

• Store: 4°C 

Products of each PCR reaction were purified using QIAquick PCR Purification Kit 

(QIAgen) according to manufacturer’s instruction. 

2.10.2 Restriction digest 

Purified PCR products were cleaved overnight at 37°C with BamHI and XhoI in the 

presence of NEBuffer 2. pcDNA/FRT plasmid containing IgG signal sequence-protein A 

fusion gene, generated previously by Dr Vera Knäuper, was cleaved with the same 

enzymes for 1 hour at 37°C.    

2.10.3 Ligation and plasmid amplification 

BamHI and XhoI-cleaved inserts and vector were separated using 1% agarose gel 

and purified with Qiaquick Gel Extraction Kit (QIAgen). The appropriate amount of inserts 

and vector were then mixed and ligated for 1 hour at room temperature in the presence of 

1 µl T4 DNA ligase and 5 µl of 2x T4 ligation buffer (Promega). The ligation mixture was 

used to transform NovaBlue GigaSingles E. coli as described is paragraph 2.8.5. 

  

20 cycles 
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2.11 Generation of TMEFF2-ECD-Fc pcDNA5/FRT vector 

2.11.1 Restriction digest 

TMEFF2-ECD-Fc pcDNA5/FRT expression vector was generated using TMEFF2-

ECD pcDNA4 and Fc-pcDNA5/FRT vectors, constructed previously by Dr Vera Knäuper. 

Both vectors were digested with XhoI and HindIII (Promega) for 1 hour at 37°C, in the 

presence of NEBuffer 2 (New England Biolabs). DNA fragment corresponding to 

TMEFF2-ECD as well as Fc-pcDNA5/FRT were separated using 1% agarose gel and 

extracted using QIAquick Gel Extraction Kit (QIAgen) according to manufacturer’s 

instruction. 

2.11.2 Ligation and plasmid amplification 

1 µl of XhoI and HindIII-cleaved Fc-pcDNA5/FRT was mixed with 3 µl TMEFF2-ECD 

insert, 5 µl 2x T4 ligation buffer and 1 µl of T4 DNA ligase (Promega). The ligation mixture 

was then incubated for 1 hour at room temperature and used to transform NovaBlue 

GigaSingles competent E. coli. Single colonies were then analyzed for the presence of the 

TMEFF2-ECD-Fc insert. The plasmid was amplified as described previously in section 

2.8.5. 

2.12 Generation of CHO cell lines stably expressing Fc- and N-protein A fusion 

TMEFF2 fragments 

Cell lines stably expressing Fc and N-protein A TMEFF2 fusion proteins were 

generated using the Flp-In System (Invitrogen), which is described in detail in Appendix 

III. 1x105 CHO Flp-In cells were plated per well on a 6-well plate and grown overnight. 

Next day conditioned medium was replaced with 2 ml of Ham’s F12 containing 10% FBS. 

To transfect one well of cells 1.8 µg pOG44 plasmid was mixed with 0.2 µg of TMEFF2 

expression vector in serum free OptiMEM medium. 6 µl of FuGENE 6 Transfection 

Reagent (Roche) were diluted in OptiMEM and added to the DNA solution. The FuGENE-

DNA mixture was incubated for 30 minutes in room temperature to allow the 

FuGENE:DNA complex to form. The transfection mixture as then added to the cells in a 

drop-wise manner. 24 hours post transfection conditioned medium was replaced with 

Ham’s F12 supplemented with 10% FBS and 500 µg/ml hygromycin B. The selection 

medium was then replaced daily until the colonies of stably transfected cells were large 

enough to be transferred into a T25 tissue culture flask. The cells were subsequently 

grown in the present of 500 µg/ml hygromycin B and expanded to generate enough cells 

to perform the experiments and to produce stock aliquots for freezing. 
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2.13 Collection of conditioned medium 

3x106 of stably transfected CHO cells were seeded in TripleFlasks 500cm2 (Thermo 

Scientific Nunc) and grown in 200 ml of CHO-S-SFM II medium supplemented with 0.1 

mM non-essential amino acids (GIBCO), nucleosides (26 µM adenosine, 25 µM 

guanosine, 27 µM uridine and 28 µM cytidine, Sigma-Aldrich) and 1% ultra low IgG FBS 

(Invitrogen) until confluent. Conditioned medium containing TMEFF2-ECD-Fc or N-protein 

A TMEFF2 fragments was collected, centrifuged for 5 min at 1500g to remove cell debris 

and  transferred to a new tube. 1M Tris-HCl pH 7.4 was added to the medium to a final 

concentration of 5 mM Tris in order to prevent pH change during freezing. The medium 

was stored at -80°C. 

2.14 Purification of N-protein A TMEFF2 fragments 

2.14.1 Packing and equilibration of IgG Sepharose column 

3 ml of IgG Sepharose 6 Fast Flow (GE Healthcare) were packed into a column, 

connected to an ÄKTAprime system (Amersham Pharmacia Biotech Inc.) and washed 

with 5 bed volumes of TST buffer (50 mM Tris-HCl pH 7.6, 150 mM NaCl, 0.05% Tween 

20) to remove ethanol present in the storage solution. IgG Sepharose was then 

equilibrated with 3 bed volumes of the following solutions: 

• 0.5 M acetic acid pH 3.4 (pH adjusted with 0.5 M ammonium acetate) 

• TST 

• 0.5 M acetic acid pH 3.4 

• TST 

 

2.14.2 Binding and elution of protein A fusion protein 

500 ml of the conditioned medium containing N-protein A tagged TMEFF2-ECD 

was thawed overnight at 4°C and the pH was adjusted to 7.0 with 100 mM HCl. The 

medium was filtered through 0.22 µm nitrocellulose filter membrane (Millipore) prior to 

applying to IgG Sepharose column at 4°C with the flow rate of 1 ml/min. The column was 

then connected to ÄKTApurifier system (Amersham Pharmacia Biotech Inc.) and washed 

with 10 bed volumes of TST buffer and 2 bed volumes of 5 mM ammonium acetate pH 

5.0. Protein A fusion protein was eluted with 0.1 M glycine-HCl pH 2.7 and 0.5 ml of eluted 

fractions were collected into tubes containing 80 µl of 1M Tris-HCl pH 9.0 to neutralise the 

pH. 
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2.14.3 Re-equilibration and storage of IgG Sepharose 

IgG Sepharose column was washed with TST buffer until the pH of the eluate was 

around 7.0 followed by washing with 5 bed volumes of 20% ethanol in TST. The column 

material was then stored at 4°C. 

2.15 Purification of Fc-TMEFF2 ectodomain 

 

2.15.1 First step purification: affinity chromatography using protein G Sepharose 

2.5 litres of thawed conditioned medium was dialysed overnight against 40 L of 20 

mM sodium phosphate pH 7.0 and filtered through 0.45 µm nitrocellulose filter membrane 

(Millipore). The medium was then applied into a 1 ml Protein G Sepharose column (GE 

Healthcare) at 1 ml/min using ÄKTAprime system (Amersham Pharmacia Biotech Inc.). 

The column was washed with 20 mM sodium phosphate pH 7.0 until the OD280 of the 

eluate reached zero. The column was then connected to ÄKTApurifier system (Amersham 

Pharmacia Biotech Inc.) and the TMEFF2-ECD-Fc was eluted with 0.1 M glycine-HCl pH 

2.7 with the flow rate of 0.5 ml/min. The change of the pH and OD280 were monitored 

during elution. Fractions were collected into tubes containing 1M Tris-HCl pH 9.0 to 

immediately neutralise the pH of eluted protein solution. Fractions containing the highest 

amount of protein were analyzed by SDS-PAGE and Coomassie Blue R-250 staining, 

silver staining or Western blotting according to previously described protocols. 

2.15.2 Second step purification: HIS-Select HF Nickel Affinity Gel 

Combined fractions containing TMEFF2-ECD-Fc purified using protein G Sepharose 

were mixed with 4M NaCl to a final NaCl concentration of 300 mM. 200 µl of HIS-Select 

HF Nickel Affinity Gel (Sigma-Aldrich) was washed 3 times with 1 ml of His-Select 

equilibration and wash buffer (50 mM Tris-HCl pH 8.0, 300 mM NaCl, 10 mM imidazole) 

and incubated with TMEFF2-ECD-Fc overnight at 4°C on a rotating wheel. Next day the 

medium was removed from the Nickel Affinity Gel by 5 minutes centrifugation at 1500g. 

The Nickel Affinity Gel was washed 5 times with 1 ml of wash and equilibration buffer. The 

elution of TMEFF2-ECD-Fc was performed 5 times with 200 µl of the elution buffer (50 

mM Tris-HCl pH 8.0, 300 mM NaCl, 250 mM imidazole). The presence of TMEFF2-ECD-

Fc in eluted fractions was analyzed by Western blotting and labelling with anti-TMEFF2-

ECD antibody according to previously described protocol. The fractions containing 

TMEFF2-ECD-Fc were dialysed overnight at 4°C against 20 mM sodium phosphate buffer 

pH 7.4 to remove imidazole before being used in further experiments. 
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2.16 Analysis of ERK1/2 phosphorylation 

2.16.1 Cell stimulation and sample analysis 

HEK293 (3x105/well) or PNT2-C2 (1x105/well) cells were plated onto 24 well plate in 

medium containing 10% FBS. The next day medium was removed and 400 µl of serum 

free medium was added to the cells. PNT2-C2 cells were serum starved in the presence 

of 25 µM GM6001 inhibitor (Enzo) to reduce activation of endogenous ErbB ligands. 

Following serum starvation cells were treated for 5 or 15 minutes with 300 µl serum free 

medium containing recombinant MBP-fusion proteins. Medium with addition of buffer 

solvent or 10% FBS was used as negative and positive control, respectively. After 

treatment cells were lysed with 35 µl of RIPA buffer supplemented with protease inhibitor 

cocktail (Sigma-Aldrich, 10 µl/ 1 ml of RIPA buffer), phosSTOP phosphatase inhibitor 

cocktail (Roche, 25x solution prepared by dissolving 1 phosSTOP tablet in 1 ml of H20), 

1.5 mM Na3VO4 (Sigma-Aldrich) and 5 mM NaF. Cell lysates were then analyzed for 

pERK1/2 and total ERK1/2 by Western blotting as described in paragraph 2.5.  

2.16.2 Quantification of the pERK1/2 to total ERK1/2 ratio using ImageJ 

Intensities of the bands corresponding to pERK1/2 and total ERK1/2 were quantified 

using ImageJ software. Gel pictures were opened in the ImageJ and the pERK1/2 and 

total ERK1/2 bands were marked using the Rectangular selection tool. The Plot lanes 

option was used to draw profile plots of all bands which represented the relative density of 

the contents of the rectangle for each lane. The peaks were enclosed using the Straight 

lane tool by drawing a line across the base of the peak. The size of each peak was then 

quantified using the Wand tool and obtained values were copied into a Microsoft Office 

Excel spreadsheet. The pERK1/2 to total ERK1/2 ratio was calculated for each sample by 

dividing the size of the pERK1/2 peak by the size of the total ERK1/2 peak. In order to be 

able to compare pERK1/2 to total ERK1/2 values between experiments the pERK1/2 to 

totalERK1/2 value obtained for the positive control was set to 1 and used to calculate the 

relative pERK1/2 to totalERK1/2 ratios. The data was plotted as histograms using 

GraphPad Prism software. 
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2.17 Cell proliferation assay 

Proliferation of cells grown in the presence of recombinant TMEFF2 fragments 

was assessed using Cell Proliferation Kit II (XTT) from Roche. In this assay cells are 

grown in 96-wells plates in the presence or absence of the tested molecule for the 

required amount of time  followed by incubation with the XTT reagent to establish the 

number of viable cell in each well. The yellow XTT tetrazolium salt is reduced by succinate 

dehydrogenase system of the mitochondrial respiratory chain to form an orange formazan 

dye, as presented in Figure 2.1. Only living cells, possessing an intact mitochondrial and 

cellular membranes do have active dehydrogenase and are able to metabolize XTT to 

formazan. The amount of the soluble formazan salt can be quantified by measuring OD450 

allowing to directly compare the number of viable cells between experimental conditions 

(Scudiero et al. 1988; Jost et al. 1992). 

 

 

Figure 2.1 Reduction of XTT tetrazolium salt to formazan by dehydrogenases of the 

mitochondrial respiratory chain (from www.roche-applied-science.com). 

 

 

2.17.1 Proliferation of CHO cells the presence of N-protein A TMEFF2 medium 

CHO cells were plated into 96-well plates at a density of 600 cells per well in 

Ham’s F12 medium containing 0.5% FBS. Next day medium was replaced with 100 µl of 

conditioned medium from CHO Flp-In parental cells or stable CHO cell lines expressing N-

protein A TMEFF2 fragments. 24, 48 and 72 hours later the number of viable cells in each 

well was measured using the Cell Proliferation Kit II (XTT) according to manufacturer’s 

instructions (Roche). Briefly, 50 µl of the XTT solution (XTT labeling reagent: electron 

coupling reagent 50:1) was added per well and the OD450 (absorbance of the soluble 

formazan salt) was measured after 4 hours incubation at 37°C. The obtained 

measurements were then corrected by the values of OD620. The assay was performed 

using FLUOstar Optima Microplate Reader (BMG Labtech). 
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2.17.2 PNT2-C2 proliferation in the presence of TMEFF2-ECD-Fc 

1000 of PNT2-C2 cells were seeded into 96-well plate in RPMI 1640 supplemented 

with 0.5% FBS. Following overnight growth conditioned medium was replaced with RPMI 

1640 containing 0.5% FBS and different concentrations of TMEFF2-ECD-Fc. 72 or 96 

hours later the number of valiable cells was measured in each well by Cell Proliferation Kit 

II (XTT) as described in section 2.17.1. 

2.18 Preparation of nuclear and cytoplasmic extract 

HEK293 cells were plated into poly-L-lysine coated 24-well plates at the density of 

1x105/well and transfected the next day with AP/V5 TMEFF2 or AP/V5 HB-EGF 

expression plasmids as described in section 2.3. In some experiments 48 hours post-

transfection conditioned medium was replaced with serum free DMEM containing 10 

ng/ml leptomycin B (Sigma-Aldrich) or carrier control and incubated for 2 hours at 37°C. At 

this point 100 ng/ml PMA was added to some wells. After 1 hour treatment medium was 

taken off the cells and 50 µl of cold Buffer C (10 mM HEPES pH 7.9, 10 mM KCl, 0.1mM 

EDTA, 1 mM DTT, 8 mM β-glycophosphate, 300 µM Na3VO4) supplemented with 

protease inhibitor cocktail (Sigma-Aldrich, 10 µl per 1ml of Buffer C) was added to each 

well. Following 15 minutes incubation on ice cell lysates were collected into eppendorf 

tubes, supplemented with 0.2% NP-40 (Fluka) and incubated on ice for further 20 

minutes. Cell extract was then centrifuged for 1 min at 13000 rpm and the supernatant 

containing cytoplasmic extract was collected into a new eppendorf tube. Pellet containing 

cell nuclei was then washed once with 50 µl of Buffer C and resuspend in 60 µl of cold 

Buffer N (20 mM HEPES pH 7.9, 10% glycerol, 0.4M NaCl, 1mM EDTA, 1mM EGTA, 1 

mM DTT, 8 mM β-glycophosphate, 300 µM Na3VO4) supplemented with protease inhibitor 

cocktail (Sigma-Aldrich, 10 µl per 1ml of Buffer N). After 30 minutes incubation at 4°C on a 

rotating wheel the extract was centrifuged for 1 minute at 13000 rpm to obtain supernatant 

containing nuclear proteins. 

2.19 Statistical analysis 

Statistical analysis was assessed by one-way ANOVA and the differences of the 

means between samples were determined using Tukey test. P-values below 0.05 were 

considered significant. The number of independent experimental repeats is indicated in 

each figure caption. 
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3.1  Introduction. 

3.1.1 Expression of TMEFF2 in prostate cancer. 

As described in the Introduction, TMEFF2 is expressed almost exclusively in two 

organs – brain and prostate (Liang et al. 2000, Horie et al. 2000). Elevated expression of 

TMEFF2 was detected in 74% of primary prostate cancer and 42% of metastatic lesions 

from lymph nodes and bone (Afar et al. 2004). Immunolocalization of TMEFF2 in biopsies 

obtained from prostate cancer patients revealed that TMEFF2 localizes in the malignant 

compartment of the tumour rather than within the surrounding benign tissue (Glynne-

Jones et al. 2001). However, it is not known if TMEFF2 is expressed by all types of cells 

that are present in the tumor or whether it is restricted to some specialized cell subsets. 

These data suggest that TMEFF2 expression correlates with a more invasive phenotype 

of prostate cancer. However, analysis of TMEFF2 levels in prostate cancer cell lines 

revealed that this protein is present only in the androgen-sensitive cell line LNCaP and the 

expression of TMEFF2 is lost in more metastatic, androgen-independent DU-145 and PC3 

cell lines (Gery et al. 2002). These observations suggest that TMEFF2 is expressed by 

prostate cancer cells in the initial stages of the disease when the growth is androgen-

dependent and TMEFF2 expression decreases when the disease progresses to a more 

invasive, androgen-independent phenotype.  

It is now known that TMEFF2 is shed from the cell surface by ADAM10 and 

ADAM17 resulting in the release of TMEFF2-ECD (Ali & Knäuper 2007) but the biological 

significance of TMEFF2 shedding is incompletely understood. Increased proteolysis 

resulting from dysregulated expression of proteolytic enzymes is one of the hallmarks of 

cancer cells (Lee et al. 2004; Netzel-Arnett et al. 2003; Mochizuki & Okada 2007). For that 

reason it was hypothesized that proteolysis might be involved in the regulation of TMEFF2 

biological function and the analysis of TMEFF2 processing by proteases over-expressed 

in prostate cancer might help to understand the role of TMEFF2 in the development of 

cancer disease. 

3.1.2 Dysregulated expression of potential TMEFF2 sheddases in prostate cancer. 

To investigate the hypothesis that the function of TMEFF2 in the development of 

prostate cancer is regulated by processing mediated by different proteases, several 

proteolytic enzymes implicated in prostate cancer were considered as potential novel 

TMEFF2 sheddases.  

The most interesting protease involved in the progression of prostate cancer is 

type II transmembrane serine protease hepsin. Hepsin is one of the highly over-expressed 

genes in prostate cancer, whereas its expression in normal prostate tissue and in benign 

prostate hyperplasia is minimal (J Luo et al. 2001). Hepsin mRNA was found to be 

elevated in 90% of prostate tumours with levels often increased by more than 10 fold 
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(Dhanasekaran et al. 2001). Interestingly, in situ hybridization showed that hepsin is 

expressed specifically by carcinoma cells themselves rather than by prostate stroma 

(Magee et al. 2001). Hepsin was also found in the prostate cancer cell line LNCaP 

(Srikantan et al. 2002). Expression of hepsin in prostate cancer significantly correlated 

with the poor clinical outcome of the disease. For that reason it was proposed by several 

research groups that expression of hepsin alone or in combination with other markers, for 

example UDP-N-Acetyl-alpha-D-galactosamine transferase (GalNAc-T3) will  allow the 

diagnosis of prostate cancer by molecular profiling (Stephan et al. 2004; Landers et al. 

2005; Kelly et al. 2008). It was described that patients with increased PSA levels following 

radical prostatectomy are likely to develop distant metastases and die due to prostate 

cancer. This medical condition is known as PSA failure (Pound et al. 1999). Analysis of 

hepsin levels in patients that developed PSA failure showed that high levels of PSA 

following radical prostatectomy were associated with loss or very weak hepsin expression 

(Dhanasekaran et al. 2001). 

The other membrane serine protease that is significantly over-expressed in 

prostate cancer is matriptase. This member of the TTSP family was found in LNCaP, DU-

145, CWR22Rν1 and PC-3 prostate cancer cell lines (Riddick et al. 2005; Saleem et al. 

2006). As described in the Introduction, matriptase activity is tightly regulated by its 

inhibitor HAI-1 and the matriptase-HAI-1 ratio is often shifted towards matriptase in late 

stage tumour. This imbalance, resulting in increased matriptase activity was proposed to 

be a good prognostic marker for prostate cancer (Lin, Anders, Johnson & Dickson 1999; 

Saleem et al. 2006) 

The expression of matriptase and hepsin is generally thought to increase with the 

progression of prostate cancer and indicate poor clinical outcome. In contrast, the inverse 

correlation was found for the GPI-anchored serine protease prostasin. Prostasin is 

present at high levels in normal prostate epithelial cells and in androgen-sensitive prostate 

cancer cell line LNCaP but its expression is lost in invasive DU-145 and PC3 cancer cell 

lines due to gene promoter hypermethylation (Chen, Skinner, et al. 2001; Chen et al. 

2004). Decrease of prostasin was detected also in biopsies from patients with hormone-

refractory prostate cancer (Takahashi et al. 2003).  

The data described above indicated that the expression of membrane serine 

proteases significantly changes during the progression of prostate cancer. As TMEFF2 

and serine proteases are likely to be expressed by the same type of cells in the tumour it 

was hypothesized that TMEFF2 is a novel substrate for serine protease processing. 
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3.1.3 Prostate cancer stem cells. 

In recent years, most of the cancer research studies are based on the fact, that 

tumours are not simply a mass of identical cancer cells but rather they are composed of 

many cell types with different clonogenic and invasive potential. One of the facts arising 

from the discovery of tumour heterogeneity is the presence of a very specific population of 

cells within the tumour that can be described as cancer stem cells. This subpopulation is 

defined by high clonogenic and invasive potential, capacity to self-renew in vivo and 

initiate secondary tumour growth, as well as the ability to differentiate to reconstitute 

tumour heterogeneity (Heppner 1984; Hamburger & Salmon 1977; Maitland & Collins 

2005). A growing body of evidence suggests that cancer stem cells are responsible for 

chemotherapy resistance as they express high levels of specific ATP-binding cassette 

(ABC) drug transporters. It has been hypothesized that these resistant cells may be the 

founder population that causes disease relapse and metastasis (Dean et al. 2005). To 

date the subpopulation of cancer cells with stem cell characteristics have been found in 

acute myeloid leukemia (Bonnet & Dick 1997), breast (Al-Hajj et al. 2003), brain (Singh et 

al. 2003), lung (C. F. B. Kim et al. 2005), pancreas (Li et al. 2007), skin (Fang et al. 2005) 

and prostate cancer (Collins et al. 2001). 

Prostate cancer stem cells have been isolated for the first time from prostate 

cancer tissue obtained from patients undergoing radical prostatectomy and characterized 

by high expression of α2β1 integrin together with the presence of CD44 and CD133 

antigens (CD44+/ α2β1
hi/CD133+). Integrin α2β1 mediates adhesion of prostate cancer cells 

to bone marrow cells and thus probably contributes to the propensity of the prostate 

cancer to metastasize to bone. Prostate cancer stem cells represent only around 0.01% of 

tumor cells and display high proliferation rate in vitro, self-renewal and invasiveness. They 

are also able to differentiate into androgen receptor positive cells similar to prostate 

cancer cells in situ (Collins et al. 2005). Due to these properties CD44+/ α2β1
hi/CD133+ 

stem cells are a very promising target for new prostate cancer therapy directed to 

eliminate the origin of the tumour resulting in a long-lasting therapeutic effect. 

3.2 Aims. 

Experiments described in this chapter were performed in order to examine the 

expression of TMEFF2 in prostate cancer cell lines using commercially available anti-

TMEFF2-ECD antibody. The expression of TMEFF2 was analyzed also in clinical 

samples, containing lysed prostate cancer stem cells CD44+/ α2β1
hi/CD133+. The same 

cell lines and patient samples were then examined for the expression of membrane-

anchored serine proteases, implicated in prostate cancer progression: matriptase, hepsin 

and prostasin. 
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3.3 Results. 

3.3.1 Expression of TMEFF2 in prostate cancer stem cells and cell lines. 

The introduction part of this chapter indicated that in recent years more attention is 

paid to the fact that tumours are composed of different types of cells. Among the cells that 

form the tumour the subpopulation of cancer stem cells seems to be the most interesting 

as it is a promising target for novel anti-cancer therapies. Due to the collaboration with 

Professor Norman Maitland and Dr Annie Collins from the YCR Cancer Research Unit, 

University of York we have obtained lysates of CD44+/ α2β1
hi/CD133+ prostate cancer 

stem cells isolated from 11 patients diagnosed with prostate cancer or benign prostate 

hyperplasia (BPH). The available details about each patient are summarized in Table 3.1.  

 

Table 3.1 List of CD44+/α2β1
hi/CD133+ prostate cancer stem cells clinical samples.  

Sample ID Gleason score Age Additional information 

P1 3+3   

P2 7   

P3   no grade but cancer diagnosis 

P4 BPH   

P5 5+5  anti-androgen treatment 

P6 7 64 stage T2, PSA 6.1 ng/ml 

P7 7 70 stage T2, PSA 6.5 ng/ml 

P8 6  stage T2a, previously on hormone therapy 

P9 5+4 61 receiving hormone therapy 

P10 BPH 85  

P11 6 58 stage T3a, PSA 9.5 ng/ml 

 

The prostate cancer stem cells were isolated fairly recently (Collins et al. 2001) 

and the data regarding the characterization of this subpopulation are still incomplete. For 

that reason the expression of TMEFF2 was examined in this cell subpopulation by 

Western blotting. Equal volumes of the obtained lysates were separated in 11% resolving 

gel, blotted and labeled using commercially available anti-TMEFF2 polyclonal antibody, 

that recognize the extracellular part of this protein. Due to the very limited amount of 

available material, the loading control labeling of this Western blot could not be performed, 

making this analysis qualitative but not quantitative. The Western blot analysis presented 

in Figure 3.1 showed that several bands were detected in each sample. Based on the 

data published previously by Glynne-Jones and colleagues it was concluded that the ~54 

kDa band detected in some samples corresponded to the TMEFF2 core protein (Glynne-
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Jones et al. 2001). Two bands with the apparent molecular sizes of ~75 kDa and 

~100kDa, detected in samples P6, P7 and P10 potentially correspond to glycosylated 

variants of TMEFF2 (Glynne-Jones et al. 2001). Additionally, in all analyzed samples a 

~28 kDa band was recognized by anti-TMEFF2-ECD antibody. This band was not 

described in the literature before as at this stage of the analysis it was hypothesized that it 

corresponds to some unknown product of TMEFF2 processing, containing at least a part 

of TMEFF2 extracellular fragment as it was detected by anti-TMEFF2-ECD antibody. 
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Figure 3.1 Expression of TMEFF2 in CD44+/α2β1
hi/CD133+ prostate cancer stem cells. 

Equal volumes of the lysates obtained from prostate cancer cells isolated from 11 patients 

(P1-P11) were separated in 11% resolving gel, blotted and labeled with anti-TMEFF2-

ECD polyclonal antibody. In some of the samples a ~54 kDa band corresponding to 

TMEFF2 core protein or ~75-100 kDa bands corresponding to glycosylated TMEFF2 

variants were detected. A ~28 kDa band present in all samples is proposed to be a novel 

TMEFF2 fragment, not described in the literature to date. 
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Expression of TMEFF2 was also examined in different cell lines. Normal prostatic 

epithelial cells PNT2-C2, androgen dependent prostate cancer cell line isolated from 

lymph node metastases LNCaP, as well as androgen-independent DU145 and PC3 

prostate cancer cell lines derived from brain (DU145) and bone (PC3) metastases are 

commonly used as in vitro models in prostate cancer studies. HEK293 cells and HEK293 

cell line stably expressing HA/V5 TMEFF2 were included in this analysis as negative and 

positive controls, respectively. 50 µg of total cell lysates were separated as previously in 

11% resolving gel, blotted and labeled using polyclonal anti-TMEFF2-ECD antibody. As 

presented in Figure 3.2 A, the highest amount of TMEFF2 was detected in LNCaP cells 

that expressed ~75 kDa and ~100 kDa glycosylated forms of TMEFF2 whereas no bands 

corresponding to TMEFF2 were detected in the lysates from HEK293 cells. In the lysate 

from DU145 cells weak bands corresponding to glycosylated TMEFF2 were detected and 

in the PC3 cells lysate the glycosylated TMEFF2 as well TMEFF2 core protein were 

detected. Figure 3.2 B showed anti-TMEFF2-ECD labeling of the lysate from HA/V5 

HEK293 cells, indicating the main form of TMEFF2 in these cells is HA/V5 TMEFF2 core 

protein. The unknown ~28 kDa band was also present in some of the samples, including 

the lysate from PNT2-C2 and HA/V5 TMEFF2 HEK293 cells. 

Detection of TMEFF2 expression in androgen-independent prostate cancer cell 

lines DU15 and PC3 is in disagreement with previously published data (Gery et al. 2002). 

This discrepancy could be explained by the use of a different method to analyze TMEFF2 

expression. Gery and co-workers analyzed TMEFF2 expression by isolation of total RNA 

and performing northern blot analysis using a radiolabeled TMEFF2 probe. If the used 

probe was not complementary to the whole TMEFF2 sequence (information not included 

in the paper), some TMEFF2 variants might not be detected using this technique. 
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Figure 3.2 Expression of TMEFF2 in different cell lines. 

50 µg of lysates from PNT2-C2, LNCaP, DU145, PC3 and HEK293 cell lines (A) as well 

as HEK293 cells stably expressing HA/V5 TMEFF2 (B) were separated in 11% resolving 

gel, blotted and labeled with anti-TMEFF2-ECD polyclonal antibody to examine TMEFF2 

expression. The highest expression of TMEFF2 was detected in LNCaP cell (~75 kDa and 

~100 kDa glycosylated forms) and weak bands corresponding to TMEFF2 were also 

observed in DU145 and PC3 cells. In the lysate from PNT2-C cells only a ~28 kDa band 

potentially corresponding to TMEFF2 degradation fragment was found, whereas no 

TMEFF2 was detected in HEK293 cells. Analysis of HA/V5 TMEFF2 HEK293 lysate 

indicated that the main form of TMEFF2 present in these cells is HA/V5 TMEFF2 core 

protein. 

. 
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3.3.2 Expression of serine proteases in prostate cancer cells. 

To investigate if TMEFF2 could be a substrate not only for ADAMs but also for 

membrane-bound serine proteases the expression of matriptase, prostasin and hepsin 

was tested in prostate cancer clinical samples and cell lines which were previously 

examined for TMEFF2 expression. 

Lysates from CD44+/α2β1
hi/CD133+ prostate cancer stem cells were loaded in equal 

volumes into a 11% resolving gel, separated and blotted followed by labeling with 

monoclonal anti-matriptase antibody M32 or monoclonal anti-prostasin antibodies (Figure 

3.3). Anti-matriptase antibody M32 recognizes the third LDLR domain of matriptase and 

detected a band at ~70 kDa corresponding to the latent matriptase zymogen (Wu et al. 

2010) in samples P6-P9 and P11 (Figure 3.3 A). Labeling with anti-prostasin antibody 

revealed the presence of ~40 kDa prostasin (Yu et al. 1994) in the same patient samples 

(Figure 3.3 B). The expression of hepsin was also analyzed in the prostate cancer stem 

cells samples, however due to the very limited amount of the lysates left for this analysis 

as well as the detection limit of the anti-hepsin antibody, hepsin could not be detected on 

the blot (data not shown). 

The expression of matriptase, prostasin and hepsin was then analyzed in different cell 

lines. 50 µg of cell lysates were separated in 11% resolving gel, blotted and labeled with 

anti-matriptase M32, anti-prostasin or anti-hepsin antibodies. The Western blot presented 

in Figure 3.4 A showes that matriptase is expressed by all prostate cancer cell lines, but 

not by HEK293 cells. On the other hand, prostasin was present only in LNCaP cells but 

not in HEK293, PNT2-C2, DU145 and PC3 cells (Figure 3.4 B). Examination of hepsin 

expression presented in Figure 3.4 C showed the ~51 kDa band corresponding to mature 

form of hepsin (Tsuji et al. 1991) in the lysates from HEK293, LNCaP and PC3 cells. 
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Figure 3.3 Expression of matriptase and prostasin in of CD44+/α2β1
hi/CD133+ prostate 

cancer stem cells. 

Equal volumes of the lysates from prostate cancer stem cells were separated in 11% 

resolving gel, blotted and labeled using monoclonal M32 anti-matriptase (A) or 

monoclonal anti-prostasin (B) antibodies. The ~70 kDa band corresponding to matriptase 

(A) and a ~40 kDa prostasin band (B) were detected in samples P6-P9 and P11. Arrows 

indicate specific bands corresponding to matriptase or prostasin. 
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Figure 3.4 Expression of membrane serine proteases in cell lines. 

50 µg of total cell lysates obtained from HEK293, PNt2-C2, LNCaP, DU145 and PC3 cell 

lines were analyzed by separation in 11% resolving gel, blotting and labeling with 

monoclonal M32 anti-matriptase (A), monoclonal anti-prostasin (B) and polyclonal anti-

hepsin (C) antibodies. This analysis revelaed that matriptase is expressed by all tested 

cell lines except of HEK293 cells (A), prostasin is present only in LNCaP cells (B) and 

hepsin is found in HEK293, LNCaP and PC3 cell lines (C). Arrows indicate specific bands 

corresponding to serine proteases. 
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3.4 Chapter summary. 

To address the hypothesis that the biological role of TMEFF2 in prostate cancer 

depends on its processing by different proteases, the expression of TMEFF2 and serine 

proteases was examined in prostate cancer clinical samples and cell lines, broadly used 

as in vitro models in prostate cancer studies. The summary of obtained data is presented 

in Table 3.2 below. 

 

Table 3.2 Summary of TMEFF2 and serine protease expression in prostate cancer cell 

lines and clinical samples; na – not analyzed. 

 TMEFF2 Matriptase Hepsin Prostasin 

Cell lines: 

HEK293 - - + - 

PNT2-C2 - + - - 

LNCaP + + +/- + 

DU145 - + - - 

PC3 + + +/- - 

Patient samples: 

P1 - - na - 

P2 + - na - 

P3 - - na - 

P4 - - na - 

P5 +/- - na - 

P6 + + na + 

P7 + + na + 

P8 - + na + 

P9 + + na + 

P10 + - na - 

P11 + + na + 
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The expression of TMEFF2 was analyzed by Western blotting and labeling with 

commercially available polyclonal anti-TMEFF2 antibody, recognizing the extracellular 

part of TMEFF2 (TMEFF2-ECD). The expression of TMEFF2 was analyzed in the lysates 

from CD44+/α2β1
hi/CD133+ cells isolated from 11 prostate cancer patients (Table 3.1), 

corresponding to the subpopulation of prostate cancer stem cells (Collins et al. 2001). 

These lysates were obtained due to the collaboration with Professor Norman Maitland and 

Dr Annie Collins from the University of York, UK. Prostate cancer stem cells are 

potentially very interesting target for future prostate cancer therapies as they display high 

proliferation rate, self-renewal and are able to differentiate into androgen receptor positive 

cells similar to prostate cancer cells in situ (Collins et al. 2005). The expression of 

TMEFF2 was never examined in this subpopulation before and for that reason the lysates 

were tested for TMEFF2 expression by Western blotting. As presented in Figure 3.1, the 

analysis using anti-TMEFF2-ECD antibody revealed the presence of multiple bands in all 

tested samples. According to Glynne-Jones and colleagues, the ~54 kDa band present for 

example in samples P2, P10 and P11 was identified as TMEFF2 core protein and the ~75 

kDa and ~100 kDa bands corresponded to glycosylated variants of TMEFF2 (Glynne-

Jones et al. 2001).  Additionally, in all analyzed samples a ~28 kDa band was recognized 

by anti-TMEFF2-ECD antibody that was not described in the literature before. At this 

stage of the study in was hypothesized that this band corresponded to a novel product of 

TMEFF2 processing that contains some part of TMEFF2-ECD. 

Due to the small number of available samples no conclusion could be made about the 

correlation of TMEFF2 expression and the stage of prostate cancer. Moreover, the 

detection of TMEFF2 in some samples could not be possible due to prolonged staorage of 

prostate cancer cell lysates and degradation of lysate components. However, TMEFF2 

was found in cells isolated from both benign prostatic hyperplasia (sample P10) and 

prostate cancer with high Gleason score (samples P2, P6, P7). This analysis showed that 

TMEFF2 is present in some lysates from prostate cancer stem cells, raising a question 

about the functional difference between CD44+/α2β1
hi/CD133+/TMEFF2+ and 

CD44+/α2β1
hi/CD133+/TMEFF2- prostate cancer stem cells that should be investigated in 

the future experiments. 

TMEFF2 expression was also analyzed in different cell lines like normal prostate 

epithelial cells PNT2-C2, prostate cancer cell lines LNCaP, DU145 and PC3 as well as 

HEK293 and HEK293 transfected with HA/V5 TMEFF2 as negative and positive controls, 

respectively (Figure 3.2). The highest expression of TMEFF2 was found in LNCaP cells 

(~75 kDa and ~100 kDa bands corresponding to glycosylated TMEFF2 variants) but low 

levels of glycosylated TMEFF2 and the core protein were found also in DU145 and PC3 

cells. This result is in disagreement with the findings published by Gery and co-workers, 

indicating that DU145 and PC3 cells do not express TMEFF2 (Gery et al. 2002). This 
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discrepancy could be explained by the different method used for TMEFF2 detection as 

Gery et al. analyzed TMEFF2 expression by Northern blotting. 

The lysates from prostate cancer stem cells and cell lines were then analyzed for the 

expression of serine proteases implicated in prostate cancer progression – matriptase, 

prostasin and hepsin. Western blot analysis shown in Figure 3.3 revealed that matriptase 

and prostasin are expressed in some of the prostate cancer clinical samples. The 

expression of hepsin was also analyzed in these samples but due to the small amount of 

lysates available for this analysis as well as the detection limit of the anti-hepsin antibody, 

no hepsin could be detected in the samples (data not shown).  The presence of 

matriptase, prostasin and hepsin was then assessed in the lysates from various cell lines. 

As shown in Figure 3.4 A), matriptase was present in all tested cell lines except of 

HEK293 cells, with the highest expression in LNCaP. On the other hand, prostasin was 

detected only in LNCaP cell line (Figure 3.4 B). Expression of hepsin was found in 

HEK293, LNCaP and PC3 cells (Figure 3.4 C).  

Due to the very limited amount of prostate cancer clinical samples the labeling of the 

blots for the loading control protein could not be performed. For that reason presented 

analysis is qualitative but not quantitative and more precise examination of TMEFF2 

expression levels in prostate cancer stem cells, for example by real-time PCR should be 

performed in the future. However, presented results indicated that TMEFF2 and serine 

proteases are expressed by the same prostate cancer cells (for example in samples P6, 

P7, P9 and P11) as well as cell lines (LNCaP) and thus TMEFF2 could be a novel 

substrate for this membrane-attached enzymes.  
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4.1 Introduction. 

Shedding of membrane proteins is a very important posttranscriptional 

modification that regulates their function. Precursors of many growth factors, pro-

inflammatory cytokines and adhesion molecules are activated through ectodomain 

shedding. It is also important to remember that during shedding not only the soluble 

ectodomain is generated but also the membrane-retained stub that in many cases has its 

own biological role in the cell. Major mediators of ectodomain shedding are 

metalloproteases from the ADAM family but many transmembrane proteins are cleaved 

also by membrane-anchored serine proteases. 

4.1.1 ADAM-mediated ectodomain shedding. 

Shedding of protein ectodomain by ADAMs occurs constitutively by activated 

forms of these enzymes that are present on the cell surface or it can be induced by 

different stimuli. The most effective activators of ADAM-dependent shedding are phorbol 

esters which activate members of the protein kinase C (PKC) family (Brose and 

Rosenmund 2002). In research, the most commonly used phorbol ester is phorbol 12-

myristate 13-acetate (PMA). Its PKC activating potential results from the structural 

similarity to the naturally occurring PKC activator – diacylglycerol (DAG). Shedding of 

many ADAM substrates is regulated by specific PKC izoenzymes. For example, PKCε is 

required for TNFα shedding (Wheeler et al. 2003), PKCδ is involved in shedding of pro-

HB-EGF (Izumi et al. 1998) whereas PKCδ and PKCη regulate shedding of IL-6 receptor 

ectodomain (Thabard et al. 2001). Several studies indicate that ectodomain shedding is 

also positively regulated by protein tyrosine kinases (PTKs). Moreover, treatment with 

pervanadate, a potent inhibitor of protein tyrosine phosphatases enhance shedding of 

several membrane proteins, including L-selectin and syndecan-1 (Subramanian et al. 

1997; Phong et al. 2003). It is not known how PKC and PTK kinases regulate ectodomain 

shedding but the current data suggest that these kinases do not enhance shedding by 

phosphorylating the substrate. For example, the deletion the cytoplasmic domains of IL-

6R and TNFα receptor II does not reduce shedding of their ectodomains, despite the fact 

that the cytoplasmic domains of these receptors are phosphorylated upon PMA 

stimulation (Müllberg et al. 1994; Crowe et al. 1993). Furthermore, PMA and other 

activators of pro-HB-EGF shedding cause phosphorylation of Ser residue within pro-HB-

EGF cytoplasmic domain but the mutation of this Ser residue do not impair pro-HB-EGF 

shedding (Wang et al. 2006). These results suggest that PTKs and PKCs enhance 

ectodomain shedding by phosphorylation of cytoplasmic proteins other than the substrate. 

However, the cytoplasmic domain of the substrate can affect ectodomain shedding 

through binding of intracellular modifiers. For example, interaction of a calcium-binding 

protein calmudulin with cytoplasmic domain of L-selectin down-regulates shedding (Kahn 

et al. 1998) whereas binding of L-selectin cytoplasmic tail to proteins from the  
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Ezrin/Radixin/Moesin (ERM) family is required for ectodomain shedding (Ivetic et al. 

2004). 

Alternatively, metalloproteases were also shown to undergo activation following 

PMA treatment through generation of reactive oxygen species (ROS). ADAM proforms are 

kept inactive by the cysteine switch that can be disrupted by ROS-mediated oxidation of 

the electrophilic thiol groups and allow activation of the ADAM catalytic domains (Meada 

et al. 1998, Fu et al. 2003, Ilbert et al. 2006). ROS are known to activate ADAM17 (Zhang 

et al. 2000, Zhang et al. 2000, Siegel et al. 2006) and ADAM9 (Sung et al 2006) and the 

ROS-dependent mechanism of ADAM-activation is involved in HB-EGF shedding (Kim et 

al. 2005).  

In addition to phorbol esters and ROS, ADAM-dependent shedding of membrane 

proteins can be facilitated by UV radiation and hypertonic osmotic pressure as shown for 

HB-EGF, TGFα, and neuregulins (Takenobu et al. 2003; Montero et al. 2002). ADAM-

mediated cleavage can also be induced by cytokines, like IL-1β and TNFα which induce 

shedding of TMEFF2 (Lin et al. 2003) and IL-8 that stimulates release of pro-HB-EGF in 

gastric cancer cells (Tanida et al. 2004). In addition to growth factors and cytokines 

ADAM-mediated shedding can be stimulated also by GPCR agonists. GPCR stimulation 

by lysophosphatidic acid, endothelin, thrombin, bombesin or carbachol was shown to 

induce HB-EGF shedding and subsequent transactivation of EGFR (Prenzel et al. 1999). 

Ectodomain shedding mediated by some ADAMs can be also controlled by the 

regulation of their cell surface location. For example, ADAM12 is activated by the furin-

peptidase during maturation within the trans-Golgi network and is stored intracellulary until 

translocation to the cell surface as a constitutively active protease. Transport of the 

ADAM12-containing vesicles to the cell surface can be induced with PMA through 

activation of a PKCε (Sundberg et al. 2004). On the other hand, Doedens and Black 

showed that following activation ADAM17 rapidly disappears from the cell surface by 

endocytosis which represents another potential control mechanism for ADAM-mediated 

ectodomain shedding (Doedens & Black 2000). 

ADAMs usually cleave membrane proteins that are present on the surface of the 

same cell (cis orientation). However, as shown by Janes and co-workers for ADAM10 and 

ephrin, ADAM-mediated shedding of substrate expressed by the adjacent cell (trans 

orientation) is also possible (Janes et al. 2005).  

4.1.2 Cleavage of transmembrane proteins by serine proteases. 

In addition to metalloproteases, transmembrane proteins can also be released by 

membrane-anchored serine proteases. Similarly to ADAM-mediated cleavage, this 

process occurs constitutively or upon treatment with different shedding inducers. The 
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mechanisms of serine protease activation are often dependent on the cell type by which 

the enzyme is expressed. For example, matriptase is activated in breast cancer cells by 

the blood-derived phospholipid sphingosine-1-phosphate (S1P) (Bernaud et al. 2005) but 

in androgen-sensitive prostate cancer cells matriptase undergoes activation in response 

to androgens (Kiyomiya et al. 2006). 

Most of the membrane serine proteases are transported to the plasma membrane as 

inactive pro-forms and require endoproteolytic cleavage to become fully active.  This 

activation can be mediated by the enzyme itself as shown for matriptase, matriptase-2 

and hepsin (Takeuchi et al. 2000; Oberst, Williams, et al. 2003; Velasco et al. 2002; Qiu et 

al. 2007). Some serine proteases require cleavage by additional enzymes. For example, a 

GPI-anchored prostasin can be activated by matriptase and hepsin and this serine 

protease catalytic cascade was found to be involved in the shedding of EGF receptor 

(Chen et al. 2008, 2010; Netzel-Arnett et al. 2006). 

4.1.3 TMEFF2 as a potential substrate for serine proteases. 

TMEFF2 undergoes ectodomain shedding mediated by ADAM10 and ADAM17 (Ali & 

Knäuper 2007). There is also a strong possibility that TMEFF2 can be cleaved by the 

serine proteases matriptase, matriptase-2, hepsin and prostasin, as they are expressed 

by the same cells. Moreover, it was shown by Ge and co-workers that TMEFF2 

homologue, TMEFF1 interacts through its EGF-like domain with matriptase forming a 

complex on the cell surface. GST pull down assays showed binding of  TMEFF1 to a 

fragment containing two CUB domains of matriptase (GST-CUB1-CUB2) whereas the 

fragment containing the first CUB domain alone (GST-CUB1)  was not sufficient to interact 

with TMEFF1. This suggests that the interaction between TMEFF1 and matriptase 

requires the second CUB domain (CUB2) or both CUB domains (Ge et al. 2006). 

However, it is not known if this interaction results in TMEFF1 cleavage. Two CUB 

domains that can potentially interact with TMEFF2 are also present in the stem region of 

matriptase-2 (Velasco et al. 2002). TMEFF2 can also be a substrate for hepsin as most of 

the proteins cleaved by matriptase are also processed by hepsin, for example pro-uPA 

(Lee et al. 2000; Moran et al. 2006), pro-MSP (Bhatt et al. 2005; Ganesan et al. 2011), 

laminin-332 (Tripathi et al. 2008; Tripathi et al. 2011) and prostasin (Chen et al. 2008; M. 

Chen et al. 2010) . 
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4.2 Aims: 

Experiments described in Chapter 4 were performed in order to: 

� characterize the cellular model to study TMEFF2 ectodomain shedding and 

generation of C-terminal cleavage products; 

� optimise shedding assay conditions; 

� analyze TMEFF2 shedding by serine proteases implicated in prostate cancer: 

matriptase, matriptase-2, hepsin and prostasin; 

� assess TMEFF2 shedding by ADAMs over-expressed in prostate cancer cells; 

� analyze TMEFF2 release upon stimulation with its binding partner PDGF-AA. 
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4.3 Results. 

4.3.1 Characterization of the cellular model to study TMEFF2 shedding. 

 Due to the restricted expression of TMEFF2 there is a very limited number of 

cellular models to study the biology of this protein. As reported by Gery and co-workers 

(Gery et al. 2002) and confirmed in Chapter 3, one of the few cell lines that endogenously 

express TMEFF2 and can be used to study shedding of this protein is the androgen-

sensitive prostate cancer cell line LNCaP. Shedding of TMEFF2 ectodomain can be 

monitored in these cells by Western blotting of cell conditioned medium and labelling with 

a commercially available anti-TMEFF2 polyclonal antibody that recognises the 

extracellular part of this protein. However, this approach can be challenging due to the 

small amounts of TMEFF2-ECD in the conditioned medium and the limited sensitivity of 

Western blot analysis. The detection of the intracellular TMEFF2 cleavage products in 

LNCaP cell lysates would be also difficult due to the lack of an antibody recognizing the 

TMEFF2 cytoplasmic domain. Another limitation of the study of TMEFF2 shedding in 

LNCaP cells is the fact that this cell line is prone to undergo apoptosis upon treatment 

with phorbol esters such as PMA (Tanaka et al. 2003), which is the most commonly used 

inductor of PKC-dependent shedding (Brose & Rosenmund 2002). For these reasons 

shedding of TMEFF2 was examined in HEK293 cells stably transfected with TMEFF2 

tagged on the N-terminus with alkaline phosphatase (AP) and on the C-terminus with a V5 

epitope tag. The AP-tag enables the sensitive detection of TMEFF2-ECD release from the 

cell surface into the conditioned medium. The small V5 epitope at the carboxy-terminus 

allows the investigation of TMEFF2 C-terminal cleavage products, without interfering with 

TMEFF2 trafficking inside the cell.   

 ADAM-mediated shedding of TMEFF2 ectodomain occurs within the sequence 

adjacent to the transmembrane domain, as described by Ali and Knäuper (Ali & Knäuper 

2007). In order to investigate if TMEFF2 cleavage can be mediated by membrane serine 

proteases and if it occurs within the same position as ADAM-dependent processing, 

HEK293 cells stably expressing AP/V5 ∆303-320TMEFF2 mutant were also used in 

shedding experiments. ∆303-320 TMEFF2 mutant lacks 17 amino acids in the membrane-

proximal region and is resistant to ADAM-mediated cleavage (Ali & Knäuper 2007). 

Schematic pictures of AP/V5 TMEFF2 and AP/V5 ∆303-320 TMEFF2 are presented in 

Figure 4.1. HEK293 cells lines expressing AP/V5 TMEFF2 and AP/V5 ∆303-320 TMEFF2 

were generated previously by Dr Vera Knäuper using Flp-In System from Invitrogen (see 

Appendix III).  
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Figure 4.1 Schematic diagrams of AP/V5 TMEFF2 and AP/V5 ∆303-320TMEFF2 mutant; 

AP- alkaline phosphatase, FS  - follistatin-like module, EGF – EGF-like domain 

 

Generation of the stable cell lines may result in significant differences in the 

expression levels of recombinant proteins, even when the same Flp-In host cell line and 

the same type of expression vector were used. To compare shedding of AP/V5 TMEFF2 

and AP/V5 ∆303-320 TMEFF2 it is very important to be sure that the levels of these proteins 

in stable HEK293 cell lines are similar. Significantly lower expression of one of these 

proteins may influence the outcome of the experiment and make the interpretation of the 

data difficult. For that reason the same amounts (10 µg) of lysates from AP/V5 TMEFF2 

and AP/V5 ∆303-320 TMEFF2 HEK293 cells were analyzed by Western blotting and 

labelling with anti-V5 antibody to compare the total levels of AP/V5 TMEFF2 and AP/V5  

∆303-320 TMEFF2 (Figure 4.2). Labelling with anti-GAPDH antibody served as a loading 

control. This analysis detected similar amounts of 135-133 kDa proteins in lysates from 

stable HEK293 cell lines, corresponding to AP/V5 TMEFF2 and AP/V5 ∆303-320 TMEFF2. 

The molecular masses of AP/V5 TMEFF2 and AP/V5 ∆303-320 TMEFF2 calculated from the 

protein sequence are 65.6 kDa and 63.5 kDa, respectively and are much smaller than the 

apparent sizes on the Western blot but are in agreement with previously published data 

(Ali & Knäuper 2007). The discrepancy between calculated and detected sizes of these 

proteins is thought to be due to the heavy glycosylation of TMEFF2. As mentioned 

previously, the lack of 17 amino acids within the sequence of AP/V5 ∆303-320 TMEFF2 

result in 2.1 kDa difference in calculated molecular mass compared to AP/V5 TMEFF2. 

This small difference in size causes a slight increase of the electrophoretic mobility of 

AP/V5 ∆303-320 TMEFF2 as shown in Figure 4.2, where samples were separated using a 

8% resolving gel. 
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Interpretation of the shedding experiments would be impossible if the deletion of 

the 17 amino acid sequence from the membrane proximal region of ∆303-320TMEFF2 would 

impair its plasma membrane location. To investigate if TMEFF2 and ∆303-320TMEFF2 are 

both present on the cell surface, HA/V5 TMEFF2 and HA/V5 ∆303-320TMEFF2 HEK293 

cells were grown on coverslips, fixed, permeabilised and labelled with mouse-anti-V5 and 

anti-mouse AlexaFluor®596 antibodies. To visualise cell nuclei, the coverslips were 

mounted using DAPI-containing solution. As presented in Figure 4.3, confocal microscope 

analysis of labelled cells revealed the presence of HA/V5 TMEFF2 and HA/V5 ∆303-

320TMEFF2 on the plasma membrane. Anti-V5 labelling of TMEFF2 intracellular domain 

was also found in the perinuclear region and within the cytoplasmic structures that 

probably correspond to the endoplasmic reticulum (ER). This analysis indicated a similar 

expression pattern for both HA/V5 TMEFF2 and HA/V5 ∆303-320TMEFF2 in HEK293 cells 

which allowed to use these cell lines to investigate shedding by membrane proteases. 
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Figure 4.2 Expression of TMEFF2 and ∆303-320TMEFF2 in stably transfected HEK293 

cells.   

10 µg of total cell lysates from AP/V5 TMEFF2 and AP/V5 ∆303-320TMEFF2 HEK293 were 

analyzed by SDS-PAGE in 8% resolving gel and Western blotting. Membrane was 

labelled with anti-V5 antibody. Anti-GAPDH labelling was used as a loading control. 

Arrows indicate 135-133 kDa bands corresponding to glycosylated AP/V5 TMEFF2 and 

AP/V5 ∆303-320TMEFF2. 
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Figure 4.3 Immunolocalisation of HA/V5 TMEFF2 and HA/V5 ∆303-320TMEFF2 in stably 

transfected HEK293 cells.   

HA/V5 TMEFF2 (upper panel) and HA/V5 ∆303-320TMEFF2 (bottom panel) HEK293 cells 

were grown on poly-L-lysine coated coverslips, fixed, permeabilised and labelled with 

mouse anti-V5 primary and donkey anti-mouse AlexaFluor®596 secondary antibody (red 

pseudocolor). Cell nuclei were visualised using DAPI (blue pseudocolor). Cellular 

localization of TMEFF2 was analyzed by confocal microscope. Positive staining for HA/V5 

TMEFF2 and HA/V5 ∆303-320TMEFF2 detected on the cell membrane (CM), in the 

perinuclear region (PN) and in the cytoplasmic structures (cyto) is indicated with arrows. 
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As indicated previously, the lack of 17 amino acids within the membrane proximal 

region of ∆303-320 TMEFF2 mutant makes this protein resistant to ADAM-dependent 

cleavage (Ali & Knäuper 2007), reducing constitutive as well as induced release of the 

AP/V5 ∆303-320 TMEFF2 ectodomain. To compare shedding of AP/V5 TMEFF2 and AP/V5 

∆303-320 TMEFF2 from HEK293 cells in the basal conditions both cells lines were grown in 

24-well plates until confluent and incubated for 3 hours in 250 µl of serum free OptiMEM. 

The levels of AP-tagged ectodomain were assessed in the collected medium using the 

alkaline phosphatase activity assay (AP assay), as described in Materials and methods. In 

the medium from AP/V5 TMEFF2 expressing cells high AP activity was detected, 

indicating constitutive shedding of AP/V5 TMEFF2 from HEK293 cells by endogenously 

expressed metalloproteases. Analysis of the conditioned medium from AP/V5 ∆303-320 

TMEFF2 HEK293 cells showed minimal AP activity, confirming that the basal shedding of 

AP/V5 ∆303-320 TMEFF2 is strongly reduced (Figure 4.4). 

 The release of AP/V5 TMEFF2 and AP/V5 ∆303-320 TMEFF2 from HEK293 cells 

upon ADAM activation was also compared. In this experiment, stable cell lines were 

grown in 24-well plates until confluent and treated for 1 hour with different concentrations 

of PMA in serum free OptiMEM. Cells treated with medium containing DMSO served as a 

control (Figure 4.5). The AP activity in the collected medium samples was measured as 

described previously. The shedding of AP/V5 TMEFF2 or AP/V5 ∆303-320 TMEFF2 from 

control cells was set to 1 and used as a reference point to determine the fold increase 

shedding of all samples. The results obtained showed that treatment of AP/V5 TMEFF2 

HEK293 cells with PMA increased shedding by about 1.8 fold in comparison to cells 

treated with DMSO. Interestingly, the shedding did not increase further when the cells 

were treated with higher concentrations of PMA (Figure 4.5 A), indicating that 100 ng/ml 

PMA caused complete shedding of cell surface AP/V5 TMEFF2. Incubation of AP/V5 ∆303-

320 TMEFF2 HEK293 cells in medium containing PMA did not induce ectodomain 

shedding, even following treatment with high concentrations (up to 500 ng/ml) of PMA 

(Figure 4.5 B). These results confirmed, that AP/V5 TMEFF2 shedding is induced by 

PMA, whereas AP/V5 ∆303-320 TMEFF2 is resistant to PMA-induced shedding. 
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Figure 4.4 Comparison of the constitutive AP/V5 TMEFF2 and AP/V5 ∆303-320TMEFF2 

shedding from HEK293 cells. 

HEK293 cells stably expressing AP/V5 TMEFF2 and AP/V5 ∆303-320TMEFF2 were grown 

until confluent and incubated for 3 hours in serum free OptiMEM. After incubation, serum 

free medium was collected, clarified by centrifugation and assayed for AP activity as 

described in Materials and methods.  The graph presents the linear regression analysis of 

the mean values from one experiment with four replicates. 
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Figure 4.5 Comparison of PMA-induced shedding of AP/V5 TMEFF2 and AP/V5 ∆303-

320TMEFF2 from HEK293 cells.  

HEK293 cells stably expressing AP/V5 TMEFF2 (A) and AP/V5 ∆303-320TMEFF2 (B) were 

incubated for 1 hour in serum free OptiMEM with different concentrations of PMA or 

DMSO as a control. The amount of released AP-tagged ectodomain of AP/V5 TMEFF2 

and AP/V5 ∆303-320TMEFF2 was measured using the AP assay. The release of AP/V5 

TMEFF2 or AP/V5 ∆303-320TMEFF2 from control cells was set to 1 and used as a 

reference point to determine the fold increase shedding of PMA-treated samples.  

Release of AP/V5 TMEFF2 was induced by PMA (A) but AP/V5 ∆303-320TMEFF2  was 

resistant to PMA-induced shedding (B). Histograms show mean shedding values from 

three independent experiments ±SEM, *p<0.05. 
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Shedding of AP/V5 TMEFF2 and AP/V5 ∆303-320 TMEFF2 from the cells incubated 

with or without PMA was also analyzed by Western blotting. Labelling with anti-V5 

antibody visualised C-terminal cleavage products of these proteins. According to the 

literature, AP/V5 TMEFF2 cleavage by ADAM10 and ADAM17 results in generation of ~19 

kDa and ~10 kDa C-terminal fragments, corresponding to the ADAM-generated stump 

and the γ-secretase product, respectively (Ali & Knäuper 2007). To obtain the best 

separation of these small fragments lysates were analyzed using a 12.5% resolving gel. 

Figure 4.6 A presents analysis of the lysates from AP/V5 TMEFF2 HEK293 cells treated 

with increasing concentrations of PMA for 1 hour. In all samples a ~135 kDa band 

corresponding to the full length AP/V5 TMEFF2 was detected as well as a 17 kDa 

fragment corresponding to the ADAM-generated stump. This fragment was found also in 

the lysate from DMSO-treated control cells, indicating that AP/V5 TMEFF2 shedding 

occurs also in the absence of PMA treatment, which is in agreement with the data 

presented in Figure 4.4. No accumulation of the 17 kDa fragment was observed in cells 

treated with PMA, indicating that the AP assay is more sensitive method to analyze AP/V5 

TMEFF2 shedding and gives more accurate information about the ratio of shed AP/V5 

TMEFF2 than Western blot analysis of cell lysates. The lack of the ~10kDa  γ-secretase 

product  in analyzed samples can be explained by further processing or degradation of 

this small fragment. In the samples from AP/V5 ∆303-320TMEFF2 HEK293 (Figure 4.6 B) 

only the full length AP/V5 ∆303-320TMEFF2 was detected, even in the lysates from cells 

treated with high PMA dose. These data confirm again that AP/V5 ∆303-320TMEFF2 mutant 

is resistant to ADAM-dependent processing. 
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Figure 4.6 PMA-induced cleavage of AP/V5 TMEFF2 and AP/V5 ∆303-320TMEFF2 in 

HEK293 cells.  

50 µg of total cell lysates from AP/V5-TMEFF2 (A) and AP/V5 ∆303-320TMEFF2 (B) 

HEK293 cells treated for 1 hour with different concentrations of PMA were analyzed by 

Western blotting and labelled with anti-V5 antibody. Anti-GAPDH antibody was used as a 

loading control. In the lysates from cells expressing AP/V5 TMEFF2 in addition to full 

length protein a 17 kDa V5-tagged C-terminal cleavage product was detected, whereas in 

lysates from AP/V5 ∆303-320TMEFF2 HEK293 cells only the full length AP/V5 ∆303-

320TMEFF2 was present. Data are representative of three independent experiments.  
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4.3.2 Optimisation of TMEFF2 shedding assay. 

As described at the beginning of this chapter, AP/V5 TMEFF2 HEK293 cells are a 

useful tool to study shedding of this protein due to the possibility of a simple and sensitive 

detection of AP-tagged ectodomain in the conditioned medium. Moreover, HEK293 cells 

are relatively easy to transiently transfect and the release of AP/V5 TMEFF2 can be 

monitored in the cells over-expressing both the substrate (AP/V5 TMEFF2) and the 

protease. Shedding of some proteins, especially those that are constitutively released 

from the membrane at high ratios, is easier to monitor in cells transiently co-transfected 

with the substrate and the potential sheddase. This experimental setup enables the 

reduction of background shedding as the cleavage occurs only from the cells expressing 

both proteins - the substrate and the enzyme.  

To optimize the conditions to monitor shedding of AP/V5 TMEFF2 by serine 

proteases HEK293 cells were transiently transfected with AP/V5 TMEFF2 and matriptase 

in a 1:1 DNA ratio. Control cells were co-transfected with AP/V5 TMEFF2 and matriptase 

S-A mutant in order to establish the level of endogenous AP/V5 TMEFF2 shedding. 

Substitution of the Ser residue from the His-Asp-Ser catalytic triad of matriptase with Ala 

leads to inactivation of this enzyme. 48 hours post-transfection cells were incubated for 1 

hour in 250 µl of serum free OptiMEM and the AP activity in the conditioned medium was 

analyzed as previously. Results presented in Figure 4.7 showed that very low AP activity 

was detected in the medium from cells co-transfected with AP/V5 TMEFF2 and matriptase 

or AP/V5 TMEFF2 and matriptase S-A. The data presented previously (Figure 4.4) proved 

that AP/V5 TMEFF2 is released from AP/V5 TMEFF2 HEK293 cells without any 

stimulation. For that reason the minimal AP activity in conditioned medium from co-

transfected cells can be explained by a very low co-transfection efficiency. It indicates that 

co-transfection of HEK293 cells with AP/V5 TMEFF2 and the protease is not a good 

model to study shedding of this protein. 
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Figure 4.7 Optimisation of AP/V5 TMEFF2 shedding by matriptase in co-transfected 

HEK293 cells. 

To optimise the experimental setup to monitor AP/V5 TMEFF2 shedding by serine 

proteases HEK293 cells were transiently co-transfected with AP/V5 TMEFF2 and 

matriptase in a 1:1 DNA ratio. Control cells were co-transfected with AP/V5 TMEFF2 and 

inactive matriptase S-A mutant. 48 hours post-transfection cells were grown for 1 hour in 

serum free OptiMEM and the conditioned medium was analyzed by AP assay as 

described in Materials and methods. Very low AP activity was detected in both samples, 

indicating low co-transfection efficiency. Graph shows linear regression analysis of the 

data from one representative experiment. 
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Further shedding optimisation experiments investigated AP/V5 TMEFF2 shedding 

from HEK293 cells stably expressing AP/V5 TMEFF2 which were transiently transfected 

with matriptase or inactive matriptase S-A. 48 hours post transfection cells were incubated 

for 1 hour or 3 hours in serum free OptiMEM followed by the AP assay. Figure 4.8 shows 

that in both experiments matriptase increases shedding of AP/V5 TMEFF2 as higher AP 

activity was detected in the medium from matriptase-transfected cells than from control 

cells transfected with matriptase S-A. However, more accurate data were obtained when 

transfected cells were grown in OptiMEM for 3 hours. The prolonged incubation time 

allowed accumulation of the AP/V5 TMEFF2 ectodomain shed by matriptase and the 

difference between cells transfected with matriptase and matriptase S-A is more 

pronounced. For this reason further shedding experiments were carried out using HEK293 

cells stably expressing AP/V5 TMEFF2 or AP/V5 ∆303-320TMEFF2, transiently transfected 

with serine proteases or inactive S-A serine protease mutants and incubated with serum 

free OptiMEM for 3 hours prior to performing the AP assay. 
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Figure 4.8 Optimisation of AP/V5 TMEFF2 shedding by matriptase in stable AP/V5 

TMEFF2 HEK293 cell line transiently transfected with matriptase. 

To optimise the detection of AP/V5 TMEFF2 shedding by serine proteases HEK293 cells 

stably expressing AP/V5 TMEFF2 were transiently transfected with matriptase or inactive 

S-A mutant, as a control. 48 hours post-transfection cells were incubated for 1 hour (A) or 

3 hours (B) in serum free OptiMEM and the conditioned medium was analyzed by AP 

assay as described in Materials and methods. Both experiments showed increased AP/V5 

TMEFF2 release from the cells transfected with matriptase. The increase was more 

pronounced in B as the 3 hours incubation period allowed the accumulation of AP-tagged 

ectodomain shed by matriptase in the conditioned medium. Graphs show linear 

regression analysis of the data from one representative experiment. 
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4.3.3 Shedding of TMEFF2 by membrane serine proteases expressed in prostate cancer. 

 The optimised shedding assay protocol was used to investigate if TMEFF2 is a 

novel substrate for membrane-anchored serine proteases that are implicated in the 

progression of prostate cancer. An expression plasmid for matriptase-2 was kindly 

provided by Dr Gloria Velasco from the University of Oviedo, Spain. Plasmids encoding 

matriptase, hepsin, prostasin as well as inactive SA serine protease mutants were 

generously supplied by Professor Vincent Ellis, University of East Anglia, UK.  The 

expression of serine proteases in AP/V5 TMEFF2 HEK293 cells transiently transfected 

with the mentioned plasmids was confirmed by Western blotting and labelling with 

appropriate antibodies which were also provided by Professor Vincent Ellis (Figure 4.9). 

Matriptase was detected using rabbit polyclonal antibody recognizing the C-terminal part 

of this enzyme. This antibody should then detect all variants of matriptase: ~95 kDa full 

length protein, ~70 kDa processed matriptase and ~120 kDa complex of activate 

matriptase and its inhibitor HAI-1 (Oberst, Williams, et al. 2003). The detection of serine 

proteases was performed following separation of the samples in 12.5 % resolving gel, as 

the same Western blot membranes were then used to detect AP/V5 TMEFF2. For that 

reason the resolution between 120 kDa and 95 kDa forms of matriptase is not very clear. 

However, in cells transfected with matriptase and matriptase SA a dispersed ~95-130 kDa 

band containing one or both forms of this enzyme can be detected (Figure 4.9 A, lane 1 

and 3). The ~ 70 kDa activated, uncomplexed matriptase was not detected in the 

samples. The ~40 kDa band detected in the lysates from matriptase-transfected cells as 

well as ~40-70 kDa bands seen in the matriptase SA sample are thought to be products of 

matriptase degradation as they do not correspond in size to any variant of matriptase 

described in the literature to date. The polyclonal anti-matriptase antibody does not 

recognize matriptase-2, as no bands were detected in the lysate from cells transfected 

with this enzyme (Figure 4.9 A, lane 2). Expression of hepsin in the transfected cells was 

analyzed using a sheep polyclonal antibody that recognizes a ~45 kDa band 

corresponding to active hepsin (Figure 4.9 B, lane 1). As the hepsin SA mutant is tagged 

with V5 epitope, the apparent size of this protein on the Western blot is ~47 kDa (Figure 

4.9 B, lane 2). 

 The GPI-anchored serine protease prostasin was detected using a mouse 

monoclonal antibody that recognizes the prostasin zymogen (~40 kDa), activated 

prostasin (~38 kDa) and a prostasin complex with its inhibitor, protease nexin-1 (PN-1; 

~84 kDa), as presented in Figure 4.9 C.  
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Figure 4.9 Expression of serine proteases in transiently transfected HEK293 cells. 

50 µg of lysates from AP/V5 TMEFF2 HEK293 cells transiently transfected with serine 

proteases were analyzed by Western blotting and labelling with polyclonal anti-matriptase 

and anti-hepsin or monoclonal anti-prostasin antibodies. Full arrows show bands 

corresponding to serine proteases and dashed arrows indicate serine proteases 

degradation products and non specific bands.   
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 In order to examine if TMEFF2 is a novel substrate for serine proteases over-

expressed in prostate cancer, AP/V5 TMEFF2 HEK293 cells were transiently transfected 

with plasmids encoding matriptase, matriptase-2, hepsin and prostasin. To assess basal 

shedding of AP/V5 TMEFF2, control cells were transfected with inactive S-A serine 

protease mutants. 48 hours post transfection the cells were incubated for 3 hours in 

serum free OptiMEM followed by the analysis of AP activity in the collected conditioned 

medium. The AP activity in the medium from cells expressing inactive S-A serine protease 

was set to 1 and used as a reference point to determine the fold increase in shedding in 

response to over-expression of the appropriate active enzyme. Figure 4.10 A presents 

mean values from three independent experiments, showing that over-expression of 

matriptase, matriptase-2 and hepsin significantly increased shedding of AP/V5 TMEFF2 

from HEK293 cells by 2.4, 1.5 and 3.2 folds, respectively. In contrast, over-expression of 

prostasin did not influence the release of AP/V5 TMEFF2, suggesting that AP/V5 TMEFF2 

is not a substrate for prostasin.  

 Analogous experiments were performed using HEK293 cells stably expressing 

AP/V5 ∆303-320TMEFF2 mutant to investigate if cleavage mediated by serine proteases 

occurs with the membrane-proximal region. As shown in Figure 4.10 B, transfection with 

matriptase and hepsin increased shedding of AP/V5 ∆303-320TMEFF2, indicating that 

cleavage by these enzymes occurs in a different position than cleavage by ADAMs. 

Interestingly, transfection of AP/V5 ∆303-320TMEFF2 HEK293 with matriptase-2 did not 

increase AP activity in the analyzed conditioned medium. These results either suggest 

that the matriptase-2 cleavage site is located within 303-320 TMEFF2 region or that the 

matriptase-2 induces AP/V5 TMEFF2 shedding indirectly, for example through G-protein 

coupled receptor (GPCR)-dependent activation of ADAMs. One of the GPCRs that 

controls ADAMs activation, protease-activated receptor 2 (PAR-2) was shown before to 

be regulated by proteolytic processing by matriptase (Takeuchi et al. 2000). It is however 

not known if PAR-2 is activated by matriptase-2. 
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Figure 4.10 Shedding of AP/V5-TMEFF2 and AP/V5-∆303-320TMEFF2 by membrane-

anchored serine proteases. 

HEK293 cells stably expressing AP/V5-TMEFF2 (A) or-AP/V5-∆303-320TMEFF2 (B) were 

transiently transfected with matriptase, matriptase-2, hepsin and prostasin. As control, 

cells were transfected with inactive S-A mutants of serine proteases. Following 3 hours 

incubation in serum free OptiMEM AP activity was measured as described in Materials 

and methods. AP activity in the medium from cells transfected with inactive S-A serine 

proteases mutant was set to 1 (white bars) and used as a reference point to determine the 

shedding increase. Histograms show mean values ±SEM for three independent 

experiments, each with four repeats per condition. *p<0.05, **p<0.01, ns-not significant.  
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The lysates from shedding experiments were analyzed by Western blotting and 

anti-V5 labelling to detect C-terminal AP/V5 TMEFF2 (Figure 4.11 A) and AP/V5 ∆303-

320TMEFF2 (Figure 4.11 B) cleavage products. Due to the small sizes of predicted C-

terminal fragments samples were separated using 12.5 % resolving gels. As presented in 

Figure 4.11 A, in all lysates from AP/V5 TMEFF2-expressing cells a ~135 kDa full length 

AP/V5 TMEFF2 and ~17 kDa fragment generated by ADAMs were observed. In the lysate 

from matriptase-transfected cells two additional fragments with apparent molecular 

masses of ~22 kDa and ~27 kDa were seen, indicating that matriptase cleaves AP/V5 

TMEFF2 in two positions that are different from the ADAM cleavage site. Transfection with 

hepsin also generated a novel C-terminal AP/V5 TMEFF2 fragment with the apparent 

molecular mass of ~19 kDa. A ~10 kDa band detected in the hepsin-transfected cells 

corresponds in size to the γ-secretase product of AP/V5 TMEFF2 processing (Ali & 

Knäuper 2007) and suggest that the 19 kDa fragment produced by hepsin can be further 

cleaved by the γ-secretase complex. No additional bands were observed in the lysates 

from cells transfected with matriptase-2, supporting the hypothesis that matriptase-2 

cleaves AP/V5 TMEFF2 within the same region as ADAMs or enhances ADAM-

dependent AP/V5 TMEFF2 shedding. 

Analysis of the lysed AP/V5 ∆303-320TMEFF2 HEK293 cells transfected with serine 

proteases (Figure 4.11 B) revealed the presence of a ~133 kDa band corresponding to the 

full length AP/V5 ∆303-320TMEFF2 in all samples, whereas the amount of the ~17 kDa 

fragment was strongly reduced. In the lysate from matriptase-transfected cells a ~19 kDa 

cleavage product was observed. This fragments may correspond to the ~22 kDa band 

detected in the lysate from AP/V5 TMEFF2 cell transfected with matriptase, lacking the 17 

amino acids (deleted 303-320 sequence). The lack of the second cleavage product can be 

explained by the different conformation of the AP/V5 ∆303-320TMEFF2 ectodomain that 

makes the second matriptase cleavage site inaccessible for the enzyme. The molecular 

size of the C-terminal AP/V5 ∆303-320TMEFF2 fragment generated by hepsin is bigger than 

in AP/V5 TMEFF2 HEK293 (~22 kDa). This suggests that AP/V5 ∆303-320TMEFF2 has a 

different conformation that exposes a novel cleavage site that is recognized by hepsin. 

Analysis of the lysates from AP/V5 TMEFF2 and AP/V5 ∆303-320TMEFF2 HEK293 cells 

over-expressing serine proteases is in agreement with the shedding assay results, 

indicating that matriptase and hepsin cleave AP/V5 TMEFF2 in a different position than 

ADAMs. Matriptase-2 sheds AP/V5 TMEFF2 within the same sequence as ADAMs or 

increases AP/V5 TMEFF2 indirectly. Transfection with prostasin does not influence AP/V5 

TMEFF2 release.  
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Figure 4.11 Analysis of AP/V5-TMEFF2 and AP/V5-∆303-320TMEFF2 C-terminal fragments 

generated by membrane-anchored serine proteases. 

Lysates from AP/V5 TMEFF2 (A) or AP/V5 ∆303-320TMEFF2 (B) HEK293 cells transfected 

with matriptase, matriptase-2, hepsin, prostasin or inactive S-A mutants were analyzed by 

Western blotting using anti-V5 antibody. 50 µg of total cell lysate was loaded per lane. 

Labelling with anti-GAPDH antibody served as a loading control. Data are representative 

for three experiments.  

  



119 

 

4.3.4 Analysis of AP/V5 TMEFF2 shedding by matriptase-2. 

 Data presented in the previous paragraph showed increased release of TMEFF2-

ECD from AP/V5 TMEFF2 HEK293 cells upon transfection with matriptase-2 (Figure 4.10 

A) but no additional C-terminal TMEFF2 cleavage products were detected in cell lysates 

(Figure 4.11 A, lane 2). Moreover, transfection of AP/V5  ∆303-320TMEFF2-expressing cells 

with matriptase-2 had no effect on AP/V5 ∆303-320TMEFF2 release. One of the two 

possible hypotheses that can explain these results is that matriptase-2 cleaves AP/V5 

TMEFF2 in the same position as ADAMs. If this hypothesis is true, the C-terminal 

products generated by matriptase-2 and ADAMs have the same molecular size and 

cannot be distinguished by Western blotting. It is also possible, that matriptase-2 causes 

AP/V5 TMEFF2 shedding through an indirect mechanism, such as increasing activation of 

ADAMs. It was published recently, that some ADAM substrates are shed from the cell 

surface in response to agonists of G-protein coupled receptors, for example the 

proteinase-activated receptors (PARs) (Abdallah et al. 2010). PARs are a family of four 

transmembrane receptors that are activated upon enzymatic cleavage of their N-terminus 

by specific serine proteases resulting in the generation of a tethered ligand that activates 

the receptor  (Macfarlane et al. 2001). A member of the PAR family, PAR-2 was shown to 

be a substrate for matriptase (Takeuchi et al. 2000). Based on this information it was 

hypothesized that matriptase-2 may increase AP/V5 TMEFF2 shedding through 

proteolytic processing of PARs and activation of ADAMs. These two hypotheses can be 

tested by performing AP/V5 TMEFF2 shedding assay in cells transfected with matriptase-

2 in the presence or absence of metalloprotease inhibitors. If matriptase-2 cleaves AP/V5 

TMEFF2 directly the metalloprotease inhibitor will have no effect on AP/V5 TMEFF2 

release. In contrast, the shedding will be inhibited if matriptase-2 causes activation of 

ADAMs.  

AP/V5 TMEFF2 is shed from the cell surface mostly by ADAM10 and ADAM17 (Ali 

& Knäuper 2007) and for that reason GW280264X (ADAM10 and ADAM17 inhibitor) and 

GI254023X (ADAM10 inhibitor) were used to test matriptase-2-dependent AP/V5 TMEFF2 

shedding. AP/V5 TMEFF2-expressing cells were transiently transfected with matriptase, 

matriptase-2 and inactive matriptase S-A mutant and incubated for 3 hours in serum free 

OptiMEM containing 10 µM GW280264X and 10 µM GI254023X inhibitors or equal 

volume of DMSO as a solvent control. The AP activity in the collected medium was 

analyzed as described previously. The release of AP/V5 TMEFF2 from cells transfected 

with matriptase S-A and treated with DMSO was set to one and used to calculate the fold 

increase in shedding of other samples. As presented in Figure 4.12 A, treatment with 

GW280264X and GI245023X inhibitors significantly reduces shedding of AP/V5 TMEFF2 

by endogenously expressed ADAMs in cells transfected with inactive matriptase S-A. 

Shedding of AP/V5 TMEFF2 was also reduced in cells expressing matriptase-2 and 
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treated with the mentioned inhibitors. The release of AP/V5 TMEFF2 was slightly 

decreased in cells transfected with matriptase and treated with inhibitors, but the 

difference was not significant. The data obtained from the shedding assay were further 

analyzed by calculating the percentage of shedding inhibition, according to the following 

formula: 

 

As shown in Figure 4.12 B, inhibitor treatment of AP/V5 TMEFF2 cells transfected with 

matriptase S-A reduced shedding by ~28%. A very similar level of shedding inhibition 

(25%) was calculated in cells transfected with matriptase-2, whereas treatment of AP/V5 

TMEFF2 HEK293 cells expressing matriptase with GW280264X and GI245023X 

decreases shedding by only 12%. It indicates, that AP/V5 TMEFF2 release in cells over-

expressing matriptase-2 is dependent on ADAMs, as it is inhibited by GW280264X and 

GI245023X at the same level as in cells over-expressing inactive matriptase S-A. 

Shedding of AP/V5 TMEFF2 by matriptase is ADAM-independent as the inhibitors reduce 

it only by 12%, suggesting that expression of matriptase ‘overcome’ the inhibitory effect of 

GW280264X and GI254023X.  An analogous experiment was performed using 

AP/V5 ∆303-320TMEFF2-expressing cells. The results presented in Figure 4.13 show only 

slight reduction (4-10%) of AP/V5 ∆303-320TMEFF2 HEK293 upon treatment with 

GW280264X and GI245023X, as this TMEFF2 mutant is resistant to ADAM mediated 

shedding.  

 Cell lysates from the same experiments were analyzed by Western blotting and 

labelled with anti-V5 antibody to detect full length AP/V5 TMEFF2, AP/V5 ∆303-320TMEFF2 

and C-terminal cleavage fragments (Figure 4.14). According to the shedding assay data 

treatment with GW280264X and GI245023X decreased shedding of AP/V5 TMEFF2 and 

should reduce the amount of ~17 kDa AP/V5 TMEFF2 fragment generated by ADAMs but 

not 22 kDa and 27 kDa fragments produced by matriptase. However, no reduction of the 

bands corresponding to AP/V5 TMEFF2 C-terminus was observed on the Western blot, 

probably due to the low sensitivity of Western blot and further proteolytic processing of 

this fragment.  
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Figure 4.12 Shedding of AP/V5 TMEFF2 by matriptase and matriptase-2 in the presence 

of ADAM inhibitors. 

AP/V5 TMEFF2 cells were transiently transfected with matriptase, matriptase-2 or 

matriptase S-A and treated for 3 hours with selective ADAM10 and ADAM17 inhibitors (10 

µM GW280264X and 10 µM GI254023X) or DMSO as a control. (A) The AP activity of the 

medium from AP/V5 TMEFF2 cells transfected with inactive matriptase S-A and treated 

with DMSO was set to one (white bar) and used as a reference to calculate the fold 

increase in shedding of the remaining samples. Histogram shows mean values from three 

experiments ±SEM, ns-not significant, *p<0.05. (B) Shedding values were also used to 

calculate percentage of shedding inhibition based on the formula described in the text. 

Values displayed above bars correspond to mean percentage of shedding inhibition. 

Histogram shows data from three experiments ±SEM. 
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Figure 4.13 Shedding of AP/V5 ∆303-320TMEFF2 by matriptase and matriptase-2 in the 

presence of ADAM inhibitors. 

AP/V5 ∆303-320TMEFF2 cells transfected with matriptase, matriptase-2 or matriptase S-A 

were treated for 3 hours with 10 µM GW280264X and GI254023X (ADAM10 and ADAM17 

inhibitors) or DMSO as a control. (A) The AP activity of the medium from AP/V5 ∆303-

320TMEFF2 cells transfected with inactive matriptase S-A and treated with DMSO was set 

to one (white bar) and used as a reference to calculate the fold increase in shedding of 

the remaining samples. Histogram shows mean values from three experiments ±SEM, ns-

not significant, *p<0.05. (B) Shedding values were also used to calculate percentage of 

shedding inhibition based on the formula described in the text. Values displayed above 

bars correspond to mean percentage of shedding inhibition. Histogram shows data from 

three experiments ±SEM. 
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Figure 4.14 Analysis of AP/V5 TMEFF2 and AP/V5  ∆303-320TMEFF2  C-terminal cleavage 

products generated by matriptase and matriptase-2 in the presence of ADAM inhibitors. 

Lysates from AP/V5 TMEFF2 (A) or AP/V5 ∆303-320TMEFF2-expressing cells transfected 

with matriptase, matriptase-2 or matriptase S-A and treated for 3 hours with 10µM 

GW280264X and 10µM GI254023X inhibitors were analyzed by Western blotting and 

labelling with anti-V5 antibody. Anti-GAPDH labelling served as a loading control. Data 

are representative for three independent experiments. No difference in bands intensity 

was observed between samples treated with and without inhibitors.  
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4.3.5 Shedding of TMEFF2 in the presence of matriptase-activated prostasin. 

 Most of the trypsin-like serine proteases are synthesized as inactive zymogens 

and require endoproteolytic cleavage to become active. The GPI-anchored serine 

protease prostasin is produced as an inactive pro-form and can be activated by other 

members of the serine proteases family, for example matriptase and hepsin (M. Chen et 

al. 2010; Netzel-Arnett et al. 2006). To assess if the lack of AP/V5 TMEFF2 cleavage from 

HEK293 cells transfected with prostasin is caused by the lack of prostasin zymogen 

activation AP/V5 TMEFF2 cells were co-transfected with prostasin and matriptase using a 

1:1 DNA ratio.  

Activation of the prostasin zymogen leads to the formation of the active enzyme 

that can be distinguished from the zymogen by a small increase in electrophoretic mobility 

(Netzel-Arnett et al. 2006). The ~40 kDa zymogen is a major form of prostasin detected in 

the lysates from cells co-transfected with prostasin or prostasin S-A and inactive 

matriptase S-A (Figure 4.15, lanes 3 and 4). Expression of prostasin or prostasin S-A 

together with active matriptase results in zymogen activation and only a ~38 kDa band of 

the activated enzyme was detected in these cells (Figure 4.15, lanes 1 and 2). In the 

lysate from cells expressing matriptase S-A and prostasin S-A a band corresponding to 

the complex of prostasin and its inhibitor, protease nexin-1 (PN-1) was seen. This result 

suggests that HEK293 cells are able to activate prostasin as PN-1 forms SDS-stable 

complexes only with activated prostasin but not with prostasin zymogen (Chen et al. 

2006). This low level of prostasin activation may be mediated by endogenously expressed 

hepsin (see Chapter 3, Figure 3.4). 

Co-transfection of AP/V5 TMEFF2 cells with matriptase and prostasin did not 

increase the release of AP-TMEFF2-ECD when compared with AP-TMEFF2 shedding 

from cells expressing inactive matriptase S-A and prostasin (Figure 4.16). This experiment 

confirms that TMEFF2 is not a substrate for prostasin. 
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Figure 4.15 Activation of prostasin in HEK293 cells co-transfected with matriptase. 

AP/V5-TMEFF2 HEK293 cells were transiently co-transfected with matriptase and 

prostasin or inactive S-A controls. Cell lysates were analyzed by Western blotting and 

labelling with anti-prostasin antibody to detect the presence of prostasin zymogen, 

activated prostasin and a complex of prostasin with its inhibitor, protease nexin-1 (PN-1). 

Data are representative for two experiments. 
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Figure 4.16 AP/V5 TMEFF2 shedding from HEK293 cells co-transfected with matriptase 

and prostasin. 

AP/V5-TMEFF2 HEK293 cells were transiently co-transfected with matriptase and 

prostasin or inactive S-A controls. Release of AP-TMEFF2-ECD was monitored following 

3 hours incubation in serum free OptiMEM. AP/V5 TMEFF2 shedding from control cells 

co-transfected with matriptase S-A and prostasin S-A mutants was set to 1 (white bar) and 

used as a reference point to determine the fold increase in shedding of all samples; ns – 

not significant, n=3, ±SEM. 
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4.3.6 Shedding of TMEFF2 by ADAMs involved in prostate cancer progression. 

In addition to serine proteases also metalloproteases from the ADAM family are 

implicated in the progression of prostate cancer. The expression of ADAM9, ADAM12 or 

ADAM15 variants was found in prostate cancer cells and correlates with the disease 

progression, as described in Chapter 1. To investigate if these ADAMs are involved in 

TMEFF2 processing, AP/V5 TMEFF2-expressing cells were transiently transfected with 

plasmids encoding ADAM9, ADAM12 and ADAM15A, B and C variants. To assess the 

background shedding of AP/V5 TMEFF2 from HEK293 cells, mediated by endogenously 

expressed ADAMs, control cells were transfected with the inactive ADAM15B EA mutant. 

Expression vectors encoding ADAM9 and ADAM12 were obtained from Professor Carl 

Blobel, Hospital for Special Surgery, New York, US and the plasmids for FLAG-tagged 

ADAM15 variants were generously supplied by Dr Zaruhi Poghosyan, Cardiff University, 

UK. The construct endcoding ADAM12-V5 was generated by Dr Vera Knäuper.  

Expression of ADAMs in transiently transfected HEK293 cells was confirmed by 

analysis of the lysates in 8% resolving gel and Western blotting (Figure 4.17). Labelling of 

the Western blot with anti-ADAM9 antibody revealed low endogenous expression of 

ADAM9 in these cells (Figure 4.17 A, lane 1) that significantly increased upon transfection 

with ADAM9 expression vector (Figure 4.17 A, lane 2). Due to the lack of specific high 

affinity antibodies recognizing ADAM12, the vector encoding V5-tagged ADAM12 was 

used in transient transfection. Anti-V5 labelling showed the presence of the latent 

proenzyme (~120 kDa) as well as the mature form (~90 kDa) of ADAM12 in transfected 

cells (Figure 4.17 B). Expression of ADAM15B EA was confirmed by labelling with anti-

ADAM15 antibody (Figure 4.17 C) and FLAG-tagged active ADAM15A, B and C variants 

were detected using anti-FLAG antibody (Figure 4.17 D).  
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Figure 4.17 Expression of ADAM9,12 and 15 in transiently transfected HEK293 cells. 

Lysates from HEK293 cells transiently transfected with vectors encoding ADAM9 (A), 

ADAM12-V5 (B), ADAM15B EA (C) and FLAG-tagged ADAM15A, B and C variants (D) 

were analyzed by Western blotting and labelled with appropriate antibodies. 50 µg of total 

lysate was loaded per lane and samples were separated using 8% resolving gels.  Arrows 

indicate bands corresponding to specific ADAM labelling as described in the text. 
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 Shedding of AP/V5 TMEFF2 by ADAMs implicated in the progression of prostate 

cancer was investigated similarly to serine protease-mediated cleavage. AP/V5 TMEFF2 

cells were transfected with plasmids encoding ADAM9, ADAM12, ADAM15A, B, C or 

ADAM15B EA as inactive ADAM control and 48 hours post transfection cells were grown 

for 3 hours in serum free OptiMEM. The release of AP-tagged TMEFF2 ectodomain was 

measured in the collected medium by the AP assay. AP/V5 TMEFF2 shedding from cells 

transfected with ADAM9, 12, 15A, 15B and 15C was compared with the AP/V5 TMEFF2 

release from ADAM15B EA-transfected cells. Results presented in Figure 18 A indicate, 

that AP/V5 TMEFF2 is a novel substrate for ADAM9 and ADAM12 but it is not cleaved by 

ADAM15A, B and C variants. Transfection of AP/V5 ∆303-320TMEFF2 HEK293 cells with 

ADAM9 and ADAM12, as well as ADAM15A, B and C variants did not increase shedding, 

as this TMEFF2 mutant lacks the ADAM cleavage sequence (Figure 4.18 B). 

 Processing of AP/V5 TMEFF2 by ADAMs expressed in prostate cancer cells was 

also analyzed by Western blotting and labelling with anti-V5 antibody (Figure 4.19 A). In 

the lysate from AP/V5 TMEFF2 HEK293 cells transfected with ADAM9 and ADAM12 an 

accumulation of the 17 kDa fragment was detected. The amount of this ADAM-generated 

stump in the samples from ADAM15A, B and C-transfected cells was comparable with the 

control cells, expressing ADAM15B EA. This result is in agreement with the shedding 

assay data and confirms that AP/V5 TMEFF2 is cleaved by ADAM9 and ADAM12 but not 

ADAM15A, B and C.  

 The lysates from AP/V5 ∆303-320TMEFF2 HEK293 cells transfected with ADAMs 

were also tested by Western blotting for the presence of V5-tagged C-terminal cleavage 

products (Figure 4.19 B). As this TMEFF2 mutant lacks the ADAM cleavage sequence, 

only the full length AP/V5 ∆303-320TMEFF2 was detected on the blot.  
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Figure 4.18 Shedding of AP/V5 TMEFF2 and AP/V5 ∆303-320TMEFF2 by ADAMs. 

Cells expressing AP/V5 TMEFF2 (A) or AP/V5 ∆303-320TMEFF2 (B) were transfected with 

ADAM9, 12, 15A, 15B, 15C or inactive ADAM15B E-A as a control. The release of AP/V5 

TMEFF2 and AP/V5  ∆303-320TMEFF2 was measured following 3 hours incubation in 

serum free OptiMEM using the AP assay. The AP activity in the medium from ADAM15B 

EA-transfected cells (white bars) was set to 1 and used as a reference point to determine 

the fold increase in shedding of all samples. The shedding of AP/V5 TMEFF2 was 

elevated in ADAM9 and ADAM12-transfected cells but not in cells expressing ADAM15 

variants whereas AP/V5 ∆303-320TMEFF2 release was not increased in the presence of 

tested ADAMs. Histograms show mean values ±SEM for three independent experiments, 

each with four repeats per condition; **p<0.01.  
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Figure 4.19 AP/V5-TMEFF2 and AP/V5-∆303-320TMEFF2 C-terminal cleavage products 

generated by ADAMs. 

Lysates from AP/V5-TMEFF2 (A) or AP/V5-∆303-320TMEFF2 (B) cells transfected with 

ADAM 9, 12, 15A, 15B, 15C or inactive ADAM15B EA mutant were analyzed by Western 

blotting using anti-V5 antibody. 50 µg of total cell lysate was loaded per lane and samples 

were separated in 12.5% resolving gels. Labelling with anti-GAPDH antibody served as a 

loading control. Data are representative of three experiments.  
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4.3.7 Shedding of TMEFF2 in the presence of PDGF-AA. 

TMEFF2 was recently reported to be an important regulatory factor of the PDGF 

signaling pathway. The ectodomain of TMEFF2 binds PDGF-AA and this interaction 

prevents PDGF-AA from activating its receptor, PDGFRα (Lin et al. 2011). It was shown 

previously by Lin and co-workers that the shedding of TMEFF2 ectodomain can be 

regulated by cytokines, for example IL-1β and TNF-α and involves the activation of the 

NF-КB transcription factor (Lin et al. 2003). Based on these data it was hypothesized that 

PDGF-AA may also influence TMEFF2 shedding. To examine this hypothesis AP/V5 

TMEFF2 cells were transfected with human PDGFRα (hPDGFRα), as this receptor is not 

endogenously expressed by HEK293 cells. The expression of PDGFRα in transfected 

cells was confirmed by Western blotting and labelling with anti-PDGFRα antibody, which 

detected a ~110 kDa band corresponding to the human PDGFRα (Figure 4.20). In 

previous reports TMEFF2 shedding in response to cytokine treatment was detected 

following overnight stimulation (Lin et al. 2003). For that reason AP/V5 TMEFF2 cells 

transfected with hPDGFRα or empty vector were incubated overnight in serum free 

OptiMEM containing 10 ng/ml and 100 ng/ml of recombinant human PDGF-AA (rhPDGF-

AA) or solvent control and the AP activity in the medium was measured. Results 

presented in Figure 4.21 show that PDGF-AA had no effect on AP/V5 TMEFF2 release 

following overnight treatment of cells in the presence (Figure 4.21 A) or absence (Figure 

4.21 B) of hPDGFRα expression. 
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Figure 4.20 Expression of PDGFRα in transfected AP/V5 TMEFF2 HEK293 cells. 

20 µg of lysates from AP/V5 TMEFF2-expressing cells transfected with human PDGFRα 

or empty vector were analyzed by Western blotting following separation using a 10% 

resolving gel. Labelling of the membrane with polyclonal anti-PDGFRα antibody showed 

the presence of a ~110 kDa band corresponding to human PDGFRα (full arrow) in the 

lysate from  transfected cells and two non-specific bands (dashed arrows) in both 

samples. 
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Figure 4.21 Shedding of AP/V5 TMEFF2 following overnight treatment with PDGF-AA. 

AP/V5 TMEFF2 expressing cells were transiently transfected with hPDGFRα (A) or an 

empty vector (B) as a control. 36 hours post-transfection cells were treated overnight with 

10 ng/ml, 100 ng/ml of rhPDGFR-AA or solvent control in serum free OptiMEM and the AP 

activity was measured in the collected medium. The AP/V5 TMEFF2 shedding from cells 

treated with solvent was set to one (white bars) and used as a reference point to asses 

fold increase shedding of PDGF-AA-treated samples. 24 hours treatment with PDGF-AA 

did not influence AP/V5 TMEFF2 shedding regardless of PDGFRα expression; n=3, 

±SEM. 
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To further examine AP/V5 TMEFF2 shedding in response to PDGF-AA, AP/V5 

TMEFF2 cells transfected with hPDGFRα or empty plasmid were serum-starved overnight 

followed by 1 hour treatment with 10 ng/ml or 100 ng/ml of rhPDGF-AA. Similarly to the 

previous experiment, the treatment with rhPDGF-AA had no impact on AP/V5 TMEFF2 

shedding from PDGFRα-expressing cells (Figure 4.22 A). Surprisingly, 1 hour stimulation 

of AP/V5 TMEFF2 cells in the absence PDGFRα expression with rhPDGF-AA significantly 

reduced AP/V5 TMEFF2 release in a dose-dependent manner (Figure 4.22 B). As 

described by Lin and co-workers, the interaction between TMEFF2 and PDGF-AA occurs 

through the second follistatin domain of TMEFF2 and thus it is rather unlikely that PDGF-

AA binding to TMEFF2 impaired its shedding by masking the ADAM cleavage site. The 

most possible explanation of this effect is the internalisation of the AP/V5 TMEFF2-PDGF-

AA complex leading to decreased surface levels of AP/V5 TMEFF2 available for 

shedding. In the presence of PDGFRα, shedding of TMEFF2 was not impaired by PGDF-

AA indicating higher affinity of this growth factor to its receptor than to TMEFF2. However, 

the suggested internalization of the TMEFF2-PDGF-AA complex as well as its cellular fate 

require further investigation. 
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Figure 4.22 Shedding of AP/V5 TMEFF2 following 1 hour treatment with PDGF-AA. 

AP/V5 TMEFF2 expressing cells were transiently transfected with hPDGFRα (A) or an 

empty plasmid (B) as a control. Following overnight serum starvation cells were treated for 

1 hour with 10 ng/ml, 100 ng/ml of hPDGFR-AA or solvent control in serum free OptiMEM 

and the AP activity in the collected medium was measured. The AP/V5 TMEFF2 shedding 

from cells treated with solvent was set to one (white bars) and used as a reference point 

to asses fold increase shedding of PDGF-AA-treated samples. In the absence of PDGFRα 

1 hour treatment with PDGF-AA significantly reduced AP/V5 TMEFF2 shedding; n=3, 

±SEM, **<p0.01. 
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4.4 Chapter summary. 

The main experimental question of this study is to investigate if TMEFF2 is a 

substrate for proteases over-expressed by the prostate cancer cells and if the proteolytic 

processing influences TMEFF2 biological function in prostate cancer. It was shown 

previously by Ali and Knäuper that TMEFF2 undergo ectodomain shedding mediated by 

abundantly expressed ADAM10 and ADAM17 (Ali & Knäuper 2007). There is also some 

indication that TMEFF2 may be a substrate for serine proteases as its homologue 

TMEFF1 forms a complex with the type II transmembrane serine protease matriptase (Ge 

et al. 2006), it is however not clear if TMEFF1 is cleaved by matriptase.  

Investigating TMEFF2 shedding using prostate cancer cell lines that express 

TMEFF2 endogenously, for example LNCaP would be more difficult due to the low levels 

of TMEFF2 on the cell surface and TMEFF2-ECD in the conditioned medium, the lack of 

commercially available antibodies recognizing TMEFF2 C-terminal domain as well as the 

fact that LNCaP cells are prone to apoptosis following treatment with PMA, the most 

commonly used inducer of ADAM-mediated shedding (Tanaka et al. 2003). For these 

reasons the shedding of TMEFF2 was investigated using HEK293 cells stably transfected 

with human TMEFF2 tagged on the N-terminus with alkaline phosphatase (AP) and on the 

C-terminus with V5 epitope. The presence of the AP tag enabled easy and sensitive 

detection of the released TMEFF2 ectodomain in the conditioned medium and the small 

V5 tag allowed investigation of cytoplasmic products of TMEFF2 cleavage. It makes the 

AP/V5 TMEFF2 HEK293 cell line a useful model to monitor TMEFF2 processing by 

ADAMs and serine proteases. In order to establish if TMEFF2 shedding by serine 

proteases occurs within the same sequence as cleavage by ADAMs, HEK293 cells stably 

expressing AP/V5 ∆303-320TMEFF2 mutant were also used in the experiments. As 

described by Ali and Knäuper, ∆303-320TMEFF2 mutant is resistant to ADAM-mediated 

cleavage due to the deletion of the 17 amino acid sequence from the membrane proximal 

region (Ali & Knäuper 2007). Before performing the shedding study the total expression of 

AP/V5 TMEFF2 and AP/V5 ∆303-320TMEFF2 in both cell lines was compared by Western 

blotting (Figure 4.2) as significantly different expression levels would make the 

interpretation of the shedding data difficult. The cell membrane location of both 

recombinant proteins was confirmed by confocal microscopy (Figure 4.3), excluding the 

possibility that reduced shedding of AP/V5 ∆303-320TMEFF2 mutant results from the lack of 

the cell surface localization. The total expression levels as well as cellular location of 

AP/V5 TMEFF2 and AP/V5 ∆303-320TMEFF2 were very similar but the release of these two 

proteins from the cell surface was profoundly different. AP/V5 TMEFF2 was shed 

constitutively by endogenously expressed ADAMs and the shedding increased following 

PMA stimulation (Figure 4.4 and 4.5 A). As a result of shedding, a 17 kDa V5-tagged 

TMEFF2 C-terminal fragment was detected in lysates (Figure 4.6 A). AP/V5 ∆303-
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320TMEFF2 was not released from the cell surface, even upon treatment with high doses 

of PMA (Figures 4.4 and 4.5 B) and only the full length AP/V5 ∆303-320TMEFF2 was 

detected by Western blotting in cell lysates (Figure 4.6 B).  

Following the characterization of the basal and PMA-induced release of AP/V5 

TMEFF2 and AP/V5 ∆303-320TMEFF2 three experimental setups were tested to optimize 

the protocol allowing the sensitive detection of serine protease-mediated shedding 

(Figures 4.7 and 4.8). The most accurate results were obtained when HEK293 cells stably 

expressing AP/V5 TMEFF2 were transiently transfected with expression constructs for 

serine protease and incubated for 3 hours in serum free OptiMEM medium followed by AP 

activity assay of collected medium samples. This protocol was then used to investigate 

AP/V5 TMEFF2 and AP/V5 ∆303-320TMEFF2 shedding by serine proteases implicated in 

prostate cancer: matriptase, matriptase-2, hepsin and prostasin. The control cells were 

transfected with inactive S-A serine protease mutants and the release of AP/V5 TMEFF2 

or AP/V5 ∆303-320TMEFF2 from these cells served as a reference values to calculate fold 

increase shedding. Data summarized in Figure 4.10 showed that both AP/V5 TMEFF2 as 

well as AP/V5 ∆303-320TMEFF2 were cleaved by matriptase and hepsin, indicating that 

serine proteases and ADAMs cleave TMEFF2 in different positions. Analysis of the 

intracellular cleavage products by Western blotting supported the data obtained from the 

AP activity assay as novel C-terminal fragments were detected in lysates from AP/V5 

TMEFF2-expressing cells transfected with matriptase and hepsin (Figure 4.11). In addition 

to the ~17 kDa fragment generated by ADAM-mediated cleavage, ~22 kDa and ~27 kDa 

fragments were detected in the cells transfected with matriptase and ~19 kDa fragment 

was found in the lysate from cells transfected with hepsin. The apparent molecular sizes 

of these novel cleavage products as well as the fact, that serine protease cleave their 

substrate after Arg or Lys residues made possible to distinguish several cleavage sites 

which are potentially recognized by matriptase and hepsin. Analysis of the TMEFF2 3D 

structure, kindly modeled by Dr Konrad Beck using 3DPro software and presented in 

Figure 4.23 revealed the compact structure of the follistatin-like modules and the EGF-like 

domain. Most of the Arg and Lys residues present in the follistatin-like and EGF-like 

modules are not solvent exposed and it is therefore unlikely that they would be accessible 

to matriptase or hepsin for cleavage. On that basis it was hypothesized that TMEFF2 

shedding occurs within the linker sequences between the domains as they are situated on 

the surface of the molecule and are accessible for proteases. 
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Figure 4.23 Human TMEFF2 modelled using 3DPro software. 

TMEFF2 3D model generated by Dr Konrad Beck using 3DPro software. Each globule 

represents Cα position of residues. 

Based on the analysis of TMEFF2 3D structure as well as the molecular masses of 

matriptase and hepsin cleavage products it was proposed that matriptase cleaves 

TMEFF2 within the linker between follistatin-like domains (~27 kDa C-terminal product) 

and between the second follistatin module and the EGF-like domain (~22 kDa fragment). 

The hepsin cleavage site is more likely located between the second follistatin module and 

the EGF-like domain but closer to the C-terminus of TMEFF2, as the molecular size (~19 

kDa) is smaller than the matriptase-generated product. The proposed matriptase and 

hepsin cleavage sites are indicated by red arrows in the Figure 4.24.  
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Figure 4.24 Proposed matriptase (M) and hepsin (M) cleavage sites within the human 

TMEFF2 sequence. 

The Arg and Lys residues that may serve as matriptase (M) or hepsin (H) cleavage sites 

are indicated by red arrows in the human TMEFF2 protein sequence. The two follistatin 

domains are marked in green and the EGF-like domain is indicated in blue. 

 

The precise determination of the matriptase and hepsin cleavage sites could be 

investigated by N-terminal sequencing of the 19 kDa, 22 kDa and 27 kDa TMEFF2 

fragments  detected on the Western blot. The exact Arg and Lys residues that are 

recognized by matriptase and hepsin could be identified by performing shedding assays 

using cells expressing AP/V5 TMEFF2 mutants that contain R→A or K→A mutations 

within the proposed cleavage sites. Characterization of the N- and C-terminal TMEFF2 

fragments generated by matriptase and hepsin would be a very interesting subject of the 

future experiments, however the data presented in this chapter are convincing enough to 

demonstrate that TMEFF2 is differentially processed by ADAMs and serine proteases. 

This processing results in the release of soluble TMEFF2-ECD as well as smaller 

fragments, containing for example two follistatin-like modules or the seconds follistatin-like 

module and the EGF-like domain. All of these soluble TMEFF2 fragments might have 

different biological activities that may significantly influence the behavior of prostate 

cancer cells. 

The described shedding experiments investigated also the influence of matriptase-

2 on TMEFF2-ECD release. Although matriptase-2 over-expression increased AP/V5 

TMEFF2 release, no increase in shedding was observed when cells expressing AP/V5 

∆303-320TMEFF2 were transfected with matriptase-2 (Figure 4.10 B). These data together 

with the absence of novel TMEFF2 C-terminal cleavage products in the lysates of 

matriptase-2-transfected cells suggested that matriptase-2 cleaved TMEFF2 within the 

same region as ADAMs. The other hypothesis explaining the lack of AP/V5 ∆303-

320TMEFF2 shedding from the cells expressing matriptase-2 is that matriptase-2 increases 

activation of ADAMs. It was recently published that ADAM-mediated shedding can be 
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regulated by activation of protease-activated receptors (PARs) and one of these 

receptors, PAR-2 was shown to be proteolytically activated by matriptase (Abdallah et al. 

2010; Takeuchi et al. 2000). The results presented in this chapter indicated that the 

shedding of AP/V5 TMEFF2 in the cells expressing matriptase-2 may be regulated by a 

similar mechanism. To test the involvement of ADAMs in matriptase-2-dependent AP/V5 

TMEFF2 release, the shedding was analyzed in the presence of selective ADAM10 and 

ADAM17 inhibitors - GW280264X and GI254023X.  These experiments revealed that 

matriptase-2 increased AP/V5 TMEFF2 through activation of ADAMs, as treatment with 

ADAM inhibitors reduced the matriptase-2 effect. In contrast to matriptase-2, AP/V5 

TMEFF2 release by matriptase is ADAM-independent as the GW280264X and 

GI254023X had much smaller effect on shedding from matriptase-transfected cells (Figure 

4.12).  

The last serine protease that was taken into consideration as a novel TMEFF2 

sheddase was prostasin. Transfection of AP/V5 TMEFF2 and AP/V5 ∆303-320TMEFF2 

HEK293 cells with this enzyme did not increase shedding (Figure 4.10). Prostasin is 

synthesized as an inactive zymogen and requires proteolytic cleavage to become 

activated. As it does not possess autocatalytic activity, prostasin need to be cleaved by 

other enzyme, for example matriptase or hepsin (M. Chen et al. 2010; Netzel-Arnett et al. 

2006). To confirm that the lack of AP/V5 TMEFF2 shedding by prostasin does not result 

from insufficient prostasin activation, the release of AP/V5 TMEFF2 was monitored 

following co-transfection of prostasin with matriptase. This experiment confirmed that 

AP/V5 TMEFF2 is not processed by prostasin, even when activated prostasin is present in 

the cells (Figures 4.15 and 4.16). The lack of TMEFF2 processing by prostasin may be 

explained by the spatial separation of these two proteins on the cell surface. Prostasin is 

localized within lipid rafts (Verghese et al. 2006) whereas there is no indication that 

TMEFF2 is also present within these membrane compartments. 

In addition to matriptase, matriptase-2, hepsin and prostasin shedding of TMEFF2 

by ADAM9, ADAM12 and ADAM15A, B and C was also investigated. These ADAMs are 

expressed by the prostate cancer cells and their levels correlate with the progression of 

cancer disease (Sung et al. 2006; Peduto et al. 2006; Lucas & Day 2009). As shown in 

Figure 4.18 TMEFF2 shedding was elevated by ADAM9 and ADAM12 whereas tested 

ADAM15 splice variants (A, B and C) did not influence TMEFF2 release. Interestingly, 

ADAM9 and ADAM12 increased AP/V5 TMEFF2 release 1.2-1.5 times whereas shedding 

by matriptase and hepsin was elevated 2.5-3 times (Figure 4.10). These data suggest that 

serine proteases are more potent TMEFF2 sheddases than ADAMs. 

To further investigate shedding of TMEFF2 and the factors that influence this 

process the release of AP/V5 TMEFF2 in the presence of PGDF-AA was tested. PDGF-

AA is the only known binding partner of TMEFF2-ECD and it was proved that  PDGF-AA-
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TMEFF2 interaction prevents activation of PDGFRα (Lin et al. 2011). As it was shown 

before that TMEFF2 shedding is induced by cytokines (Lin et al. 2003), AP/V5 TMEFF2 

HEK293 cells were treated overnight with different concentrations of recombinant PDGF-

AA. This experiment did not show any change in AP/V5 TMEFF2 release, in the presence 

as well as absence of PDGFRα (Figure 4.21). Surprisingly, when AP/V5 TMEFF2 HEK293 

cells were treated with PDGF-AA for 1 hour, the shedding was significantly reduced in a 

dose-dependent manner. This effect was however observed only in the cells without 

PDGFRα (Figure 4.22). The most possible explanation of this effect is the internalisation 

of the AP/V5 TMEFF2-PDGF-AA complex and decreased surface level of AP/V5 TMEFF2 

available for shedding. It is also possible that PDGF-AA binding to TMEFF2 mask the 

ADAM cleavage site and prevent TMEFF2 ectodomain shedding, however both of these 

proposed scenarios require further investigation. 

To summarize, the data presented in this chapter characterize the AP/V5 TMEFF2 

and AP/V5 ∆303-320TMEFF2 HEK293 cell lines as useful model to study TMEFF2 

processing with good specificity and sensitivity. The optimized shedding assay protocol 

allowed to demonstrate for the first time that TMEFF2 is processed not only by 

metalloproteases from ADAM family but also by serine proteases – matriptase and 

hepsin. Moreover, TMEFF2 cleavage mediated by these enzymes generated novel 

extracellular and cytoplasmic TMEFF2 fragments that could potentially have different 

biological functions or activities. The characterization of activity of these fragments may 

help to understand the role of TMEFF2 in the development and progression of prostate 

cancer and will be investigated in the following chapters.   
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Chapter 5: 

Expression and purification of TMEFF2 

ectodomain fragments in E. coli 
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5.1 Introduction.  

The data presented in the previous chapter demonstrated that TMEFF2 is cleaved 

by proteases over-expressed in prostate cancer cells, specifically the type II 

transmembrane serine proteases matriptase and hepsin and the metalloproteases: 

ADAM9 and ADAM12. Moreover, serine proteases and ADAMs cleave TMEFF2 in 

different positions generating several soluble TMEFF2 fragments with potentially different 

biological functions. Deciphering the role of TMEFF2 cleavage products may help to 

understand the role of this transmembrane protein in the development of prostate cancer 

and explain how ADAMs and serine proteases regulate the biological activity of TMEFF2. 

The extracellular part of TMEFF2 is composed of two follistatin-like modules and an EGF-

like domain which are found in many transmembrane proteins. Thus it was hypothesized 

that the biological activity of TMEFF2 ectodomain fragments may be similar to other 

proteins containing these structural modules.  

5.1.1 The characterization of an EGF-like domain. 

 The EGF-like domain is an evolutionarily conserved structural motif, named after 

the epidermal growth factor (EGF) where it was first described. This protein domain was 

found singly or in tandem in many functionally diverse proteins including the epidermal 

growth factor (EGF) and neuregulin (NRG) family of growth factors, extracellular matrix 

proteins, cell adhesion molecules and plasma proteins. The characteristic structure of the 

EGF-like domain is defined by six cysteine residues spaced over a sequence of 30-40 

amino acids in a characteristic pattern XnCX7CX2-3GXCX10-13CXCX3YXGXRCX4LXn and 

forming three disulphide bonds (Carpenter & Cohen 1990). The main structure of the 

EGF-like domain consist of two β-sheets, usually referred to as major (N-terminal) and 

minor (C-terminal) β-sheets (Wouters et al. 2005). 

5.1.2 Signaling of EGF-like proteins through ErbB receptors.  

 The EGF-like domain is a characteristic structural motif present in several ligands 

activating the ErbB family of receptor tyrosine kinases. The ErbB family consist of four 

structurally related transmembrane receptors: EGFR (ErbB-1), ErbB-2, ErbB-3 and ErbB-

4, also known as HER1-4. The first member of the family, EGFR was identified in 1975 

(Carpenter et al. 1975) and since then the ErbB signaling pathway was studied intensively 

as the expression and signalling of these receptors as well as their ligands was found to 

be dysregulated in several pathological conditions, including cancer. The ErbB receptors 

are composed of a large extracellular ligand binding domain followed by a transmembrane 

domain, a small intracellular juxtamembrane domain preceding the kinase domain and the 

C-terminal tail containing docking sites for phosphotyrosine-binding effector molecules 

(Citri & Yarden 2006). The schematic structure of an ErbB receptor is presented in Figure 

5.1. 
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Figure 5.1 Schematic picture of an ErbB receptor. 

 

Binding of a ligand containing the EGF-like domain to the appropriate ErbB results 

in dimerization of the receptor with another member of the ErbB family and leads to the 

activation of the tyrosine kinase. This results in phosphorylation of the tyrosine residues 

present within the cytoplasmic domain of the receptor. The phosphotyrosine residues are 

recognized by several adaptor proteins containing Src sequence homology (SH2/SH3) 

domains. These molecules subsequently activate intracellular signalling pathways, 

including the mitogen-activated-protein kinase  (MAPK) pathway, phospholipase Cγ 

pathway and the phosphoinositide-3 kinase (PI3K) pathway (Figure 5.2) (Ratan et al. 

2003). 
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Figure 5.2. Signaling through ErbB receptors. Ligand binding to ErbB results in receptor 

dimerization and activation of the tyrosine kinase, causing phosphorylation of Tyr 

residues. Phosphotyrosine residues are recognize by several adaptor molecules that 

activate downstream signaling cascades, including the MAPK pathway, phospholipase Cγ 

pathway and PI3K pathway (Ratan et al. 2003). 

 

Although the ErbBs are classified to the receptor tyrosine kinase family, two of 

these receptors: ErbB-2 and ErbB-3 are not able to signal autonomously. ErbB-2 lacks the 

capacity to interact with growth factor ligands whereas the kinase activity of ErbB-3 is 

defective. Despite this lack of autonomy ErbB-2 and ErbB-3 form heterodimers with two 

other ErbBs and are capable of generating intracellular signals (Citri & Yarden 2006). 

The two autonomous ErbBs, EGFR and ErbB-4 share several recognition and 

signaling features as they are both activated by broad spectrum of EGF-like ligands and 

upon activation form homodimers as well as functional heterodimers (Citri & Yarden 

2006). Phosphorylated EGFR and ErbB-4 interact with a number of adaptor proteins such 

as growth-factor-receptor bound-2 (Grb2) and Src-homology-2-containing (Shc) which are 

responsible for the recruitment of Ras and activation of the MAPK signaling cascade. 

Another protein that directly binds EGFR and ErbB-4 is the signal-transducer and activator 

of transcription 5 (STAT5) (Schulze et al. 2005).  
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As the main focus of this study is ectodomain shedding, it is important to mention, 

that one of the ErbB-4 splice variants, the JM isoform undergoes ADAM-mediated 

ectodomain shedding (Rio et al. 2000) followed by subsequent processing by γ-secretase 

and translocation of the cytoplasmic domain to the nucleus (Ni et al. 2001), as described 

in details in Chapter 1. 

It was mentioned before that ErbB-2 (HER2/neu) does not interact with 

extracellular ligands but it binds to a much larger subset of adaptor molecules than other 

members of this receptor family. For that reason ErbB-2 is a preferred heterodimeric 

partner for the other three ErbBs. Furthermore, heterodimers containing ErbB-2 are 

characterized by a higher affinity and broader specifity to various ligands than other 

heterodimeric receptor complexes. Also, ErbB-2 containing heterodimers undergo 

endocytosis and are more frequently recycled to the cell surface (Citri & Yarden 2006).  

Another not autonomous receptor, ErbB-3 has defective kinase activity and needs 

to form heterodimers with the other three ErbBs to participate in signaling. Following 

heterodimerization the intracellular domain of ErbB-3 undergoes phosphorylation and 

recruits PI3K to six distinct sites and Shc to one site although there is no binding site for 

Grb2. This segregation enables ErbB-3 to evade ligand-induced degradation, while 

strongly activating PI3K (Citri & Yarden 2006). 

5.1.3 Non-signaling function of EGF-like domain. 

Although several proteins which contain an EGF-like domain interact with ErbB 

receptors and act as growth factors, the EGF-like domain may have other, non-signaling 

functions. For example, EGF-like domains were found in components of the blood 

coagulation system, including factors VII, IX, X and thrombomodulin and are responsible 

for  interactions between different components (Stenflo 1991). An EGF-like domain from 

neuregulin-1 (NRG-1) binds αvβ3 and α6β4 integrins through direct interactions between 

three Lys residues located on the N-terminus of neuregulin-1 EGF-like domain. The NRG-

1-integrin binding is required for NRG-1 signaling through ErbB-3 as NRG-1 mutants 

which lack one or three of these Lys residues display impaired ErbB-3 activation (Ieguchi 

et al. 2010). It was also shown that an EGF-like module is present in some adhesion 

molecules, for example selectins that are involved in leukocyte tethering and rolling on the 

endothelium. The function of the EGF-like domain in selectins may vary. As shown by 

Kansas and co-workers, an EGF-like domain in L-selectin does not participate in cellular 

adhesion whereas the EGF-like domain in P-selectin is important for ligand recognition 

and cell adhesion (Kansas et al. 1994). Finally, in many proteins EGF-like domains are 

combined with other domains in a mosaic fashion suggesting that these modules may 

play an important structural role as a spacer at the cellular level (Campbell & Bork 1993). 
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5.1.4 The atypical EGF-like domain from TMEFF2. 

Alignment of EGF-like domains from TMEFF2 and other proteins containing this 

structural unit, like betacellulin (BTC), heparin-binding epidermal growth factor (HB-EGF), 

amphiregulin (AR), tumour necrosis factor α (TNFα) and epidermal growth factor (EGF) 

revealed several structural similarities. As presented in Figure 5.3, all these EGF-like 

domains contain the conserved 6 Cys residues in characteristic spacing as well as Gly13 

and Gly37 that are essential for the backbone fold of the EGF-like structural unit.  

However, Arg39 that is involved in binding of EGF-like growth factors to ErbB receptors is 

replaced with His in TMEFF2 and TMEFF1 (Horie et al. 2000, Figure 5.3). This 

substitution may significantly affect TMEFF2 binding to ErbBs as the mutation of this Arg 

residue with Ala in the structure of EGF-like domain from EGF reduced the affinity to 

EGFR to less than 0.5% (D. a Engler et al. 1990). However, some reports suggest that the 

EGF-like domain from TMEFF2 has some signaling potential as it was able to activate 

ErbB-4 in gastric cancer cells (Uchida et al. 1999) and induce phosphorylation of ERK1/2 

through EGFR in HEK293 cells (Ali & Knäuper 2007). 

 

Figure 5.3 Alignment of EGF-like domains sequences from different human proteins: 

TMEFF2, TMEFF1, betacellulin (BTC), heparin-binding epidermal growth factor (HB-

EGF), amphiregulin (AR), tumour necrosis factor α (TNFα) and epidermal growth factor 

(EGF) (Horie et al. 2000). 

 

5.1.5 Characterization of the E. coli expression system chosen to produce TMEFF2 

fragments. 

To investigate the role of ADAM and serine protease processing in the regulation 

of TMEFF2 biological function, fragments corresponding to predicted N-terminal TMEFF2 

cleavage products were expressed in E. coli. The prokaryotic expression system was 

chosen due to its low cost, fast growth rate of E. coli and high amount of recombinant 

proteins that can be obtained from a relatively small culture. The structure of the TMEFF2 

ectodomain is stabilised by several disulphide bonds which makes this protein challenging 

to express in bacterial systems, since reductases present in the E. coli cytoplasm keep 

Cys residues in their reduced form. For that reason Origami B (DE3)pLysS and SHuffle T7 
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Express lysY E. coli strains were chosen to produce TMEFF2 fragments. The Origami 

B(DE3)pLysS strain has deletions in the genes for glutaredoxin reductase and thioredoxin 

reductase (∆gor ∆trxB) which allows disulphide bonds to form in the cytoplasm. 

Combination of these two deletions is normally lethal, but in this strain the lethality is 

suppressed by a mutation in the peroxiredoxin enzyme (ahpC). In addition to gor/trxB 

mutations, SHuffle T7 Express lysY strain expresses in the chromosome a version of the 

periplasmic disulphide bond isomerase DsbC that lacks its signal sequence, retaining it in 

the cytoplasm. This enzyme was shown to correct mis-oxidized disulphide bonds and 

promote proper folding of proteins with multiple disulphide bonds (Lobstein et al. 2012). 

Origami B (DE3)pLysS and SHuffle T7 Express lysY E. coli were transformed with 

MAL pRSET B vectors containing sequences encoding TMEFF2 fragments inserted  

downstream from the malE gene. The malE gene encodes a maltose binding protein 

(MBP), resulting in expression of N-terminally tagged MBP-TMEFF2 fusion proteins. 

Tagging proteins with MBP is a widely used method that gives high levels of expression, 

increased solubility and enhances proper folding of the targeted protein. Purification of 

MBP fusion proteins is carried out under physiological conditions and is based on the 

affinity of MBP to interact with amylose. Mild elution of MBP-tagged proteins from the 

column material can be achieved using maltose solution, which preserves the biological 

activity of the target protein and makes this system suitable for the purification of very 

unstable protein complexes (Kapust & Waugh 1999; Riggs 2000; Sun et al. 2011). 

Expression of the malE gene in MAL pRSET vector is under the control of a strong phage 

T7 promoter that is specifically recognised by T7 RNA polymerase. To induce the 

expression of the fusion protein it is necessary to deliver this polymerase to the cells. 

Origami B(DE3)pLysS or SHuffle T7 Express lysY E. coli strains are compatibile with the 

MAL pRSET B expression system as they both carry the T7 RNA polymerase gene under 

the control of the lac operon. In non-induced conditions expression of T7 polymerase is 

repressed in these strains by the lac repressor. Expression of the targeted protein is 

activated upon addition of the allolactose analogue isopropyl β-D-1-thiogalactopyranoside 

(IPTG) that binds and inactivates the lac repressor. The advantage of using IPTG to 

induce protein expression is that it is not metabolised by E. coli so its concentration is not 

variable during the experiment and the lac operon remains permanently activated 

(Hansen et al. 1998). However, there is always some basal expression level of T7 RNA 

polymerase which causes low background expression of the targeted gene in non-induced 

conditions. If the gene cloned downstream of the T7 promoter is toxic for the cells, basal 

expression of this gene may lead to reduced growth rates, cell death or plasmid instability. 

For that reason strains that are used to express recombinant proteins under the control of 

the T7 promoter produce also T7 lysozyme that binds T7 polymerase and inhibits 

transcription. The Origami B strain expresses T7 lysozyme from pLysS plasmid. This T7 

lysozyme, in addition to its T7 RNA polymerase binding activity, cleaves also a specific 
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bond in the peptidoglycan layer of the E. coli cell wall. This makes the E. coli strains 

carrying pLysS plasmid more prone to lysis by freeze-thaw cycles and supports extraction 

of the recombinant protein. SHuffle T7 Express lysY strain produces modified variant of 

T7 lysozyme that lacks amidase activity and do not influence the structure of E. coli cell 

wall. 

 

5.2 Aims. 

The main aim of the experiments summarized in this chapter was to establish 

expression and purification methods allowing obtaining TMEFF2 fragments corresponding 

to the predicted N-terminal cleavage products. Recombinant proteins were expressed in 

two E. coli strains Origami B(DE3)pLysS and SHuffle T7 Express lysY as maltose-binding 

protein (MBP) fusion proteins and purified using affinity chromatography and gel filtration.  

To investigate if the presence of His39 instead of Arg 39 within the structure of EGF-like 

domain affect TMEFF2 binding to ErbB receptors, a vector encoding H-REGF-like TMEFF2 

mutant was cloned and used to produce H-REGF-like TMEFF2 MBP-fusion protein. The 

potential of TMEFF2 EGF-like domain and H-REGF-like domain mutant to activate ErbB 

receptors was then compared in in vitro ERK1/2 phosphorylation assay. 
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5.3 Results. 

5.3.1 Generation of TMEFF2 HREGF-like domain mutant. 

The EGF-like domain present within the structure of TMEFF2 ectodomain contains 

six characteristically distributed Cys residues as well as Gly16 and Gly37 which are 

required for correct folding and determine the biological activity of the EGF-like module. 

However, in contrast to other EGF-like proteins the EGF-like domain from TMEFF2 

contains His39 instead of Arg39 and this substitution may significantly reduce TMEFF2 

affinity to EGFR (Horie et al. 2000). To investigate if the substitution of Arg39 with His39 

changes the potential of TMEFF2 EGF-like domain to activate ErbB receptors, an 

expression vector encoding H-REGF-like domain TMEFF2 mutant was generated. This 

TMEFF2 mutant contains a point mutation within the codon for His39 (CAC), changing this 

amino acid for Arg (CGC). The mutation within the TMEFF2 EGF-like domain was 

introduced using overlap extension polymerase chain reaction (PCR). This method 

enables the substitution of a single base pair within the DNA sequence, as well as the 

introduction of required restriction sites by performing three PCR reactions. A schematic 

diagram of the overlap extension PCR, designed to substitute His39 with Arg39 and to 

introduce HindIII and EcoRI restriction sites, flanking the TMEFF2 H-REGF-like domain 

sequence is shown in Figure 5.4.  

The first two PCR reactions (PCR1 and PCR2) were performed using the 2ndFS-

EGF TMEFF2 MAL pRSET B plasmid as the DNA template and a pair of primers – one 

carrying the designed point mutation (primers A and D in Figure 5.4) and one introducing 

required restriction site (primers B and C). Products of PCR1 and PCR2 contained the 

required mutation (both products) as well and HindIII (product of PCR1) or EcoRI (product 

of PCR2) restriction sites and were partially complementary. These products were then 

mixed in the appropriate ratio and used as a template in PCR3, where primers A and D 

were used to amplify the whole sequence of mutated TMEFF2 EGF-like domain. The final 

product of PCR3 corresponded to H-REGF-like domain from the TMEFF2 gene and was 

flanked with HindIII and EcoRI restriction sites at 5’ and 3’ end, respectively. This DNA 

fragment was then purified and cloned using HindIII and EcoRI into MAL pRSET B 

expression vector, sequenced (Figure 5.5) and used to express TMEFF2 H-REGF-like 

domain in E. coli. 

 



152 

 

 

 

 

Figure 5.4 Schematic diagram of the overlap extension polymerase chain reaction (PCR) 

designed to substitute His39 with Arg39 within the sequence of TMEFF2 EGF-like 

domain. 

The point mutation substituting His39 with Arg39 (CAC→CGC) within TMEFF2 EGF-like 

domain is indicated as a red dot and HindIII and EcoRI restriction sites are presented as 

green and blue boxes, respectively. 

 

  



153 

 

HREGF_TMEFF2   MKIKTGARILALSALTTMMFSASALAKIEEGKLVIWINGDKGYNGLAEVGKKFEKDTGIK 

                                                                    

wtEGF_TMEFf2   ------------------------------------------------------------ 

                                                                    

 

HREGF_TMEFF2   VTVEHPDKLEEKFPQVAATGDGPDIIFWAHDRFGGYAQSGLLAEITPDKAFQDKLYPFTW 

                                                                    

wtEGF_TMEFF2   ------------------------------------------------------------ 

                                                                    

 

HREGF_TMEFF2   DAVRYNGKLIAYPIAVEALSLIYNKDLLPNPPKTWEEIPALDKELKAKGKSALMFNLQEP 

                                                                    

wtEGF_TMEFf2   ------------------------------------------------------------ 

                                                                    

 

HR_EGF_TMEFF2  YFTWPLIAADGGYAFKYENGKYDIKDVGVDNAGAKAGLTFLVDLIKNKHMNADTDYSIAE 

                                                                    

wtEGF_TMEFf2   ------------------------------------------------------------ 

                                                                    

 

HR_EGF_TMEFF2  AAFNKGETAMTINGPWAWSNIDTSKVNYGVTVLPTFKGQPSKPFVGVLSAGINAASPNKE 

                                                                    

wtEGF_TMEFF2   ------------------------------------------------------------ 

                                                                    

 

HR_EGF_TMEFF2  LAKEFLENYLLTDEGLEAVNKDKPLGAVALKSYEEELAKDPRIAATMENAQKGEIMPNIP 

                                                                    

wtEGF_TMEFf2   ------------------------------------------------------------ 

                                                                    

 

HREGF_TMEFF2  QMSAFWYAVRTAVINAASGRQTVDEALKDAQTNSSSNNNNNNNNNNLGIEGRISEFGHYA 

                                                                    

wtEGF_TMEFF2  ------------------------------------------------------------ 

                                                                    

 

HREGF_TMEFF2  RTDYAENANKLEESAREHHIPCPEHYNGFCMHGKCEHSINMQEPSCRCDAGYTGQRCEKK 

                               ::::::::::::::::::::::::::::::::::::::.::   

wtEGF_TMEFF2  -----------------HHIPCPEHYNGFCMHGKCEHSINMQEPSCRCDAGYTGQHCE-- 

 

 

HREGF_TMEFF2  DYSVLYVVPGPVRFQYV 

                         

wtEGF_TMEFF2  ----------------- 

 

 

Figure 5.5 Alignment of the protein sequence of full length TMEFF2 and  HREGF-like 

domain from TMEFF2 mutant. 

Sequencing results of H-REGF TMEFF2 MAL pRSET B vector were translated and aligned 

with the wild type EGF-like domain from TMEFF2 (wtEGF_TMEFF2) protein sequence 

using Biology WorkBench 3.2 software. The EGF-like domain is marked in blue and the 

substituted amino acids ar indicated in red. 
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5.3.2 Expression of MBP-tagged TMEFF2 fragments in E. coli. 

The Origami B (DE3)pLysS and SHuffle T7 Express lysY strains were transformed 

with MAL pRSET B vectors encoding MBP-tagged TMEFF2 fragments: the ectodomain 

(TMEFF2-ECD), two follistatin modules (2xFS), the second follistatin module and EGF-like 

domain (2ndFS-EGF), the EGF-like domain alone (EGF) and the H-REGF-like domain 

TMEFF2 mutant. The MAL pRSET B vector encoding EGF-like domain from HB-EGF has 

also been used to transform bacteria in order to establish whether the chosen expression 

and purification protocol is appropriate to produce biologically active EGF-like proteins. 

MAL pRSET B plasmids used to express MBP-tagged TMEFF2 and HB-EGF fragments 

were generated by Dr Vera Knäuper based on the pMAL Protein Fusion & Purification 

System (New England BioLabs) and pRSET B vector (Invitrogen). Generation of H-REGF 

TMEFF2 MAL pRSET vector was described in the previous paragraph (5.3.1). The 

expression of recombinant proteins was induced with IPTG as described in Materials and 

Methods and small cultures grown without IPTG were kept as non-induced controls.  

Expression of the fusion protein by transformed bacteria upon IPTG treatment was 

analyzed by SDS-PAGE and Coomassie staining and presented in Figure 5.6. Addition of 

IPTG to SHuffle T7 Express lysY and Origami B (DE3)pLysS cells transformed with vector 

encoding MBP TMEFF2-ECD resulted in the accumulation of a 76 kDa TMEFF2-ECD 

MBP-fusion protein (Figure 5.6 A). Expression of a 65 kDa MBP-tagged 2ndFS+EGF 

TMEFF2 fragment was also induced in both strains upon IPTG treatment (Figure 5.6 B). 

Production of 2xFS TMEFF2 MBP-fusion protein was detected as accumulation of a 72 

kDa band only in extract from SHuffle T7 Express lysY strain but not in Origami B 

(DE3)pLysS E. coli (Figure 5.6 C), probably due to the toxicity of this protein for Origami B 

strain. Moreover, the level of MBP-2xFS TMEFF2 expression in SHuffle T7 was much 

lower than expression of ECD or 2ndFS-EGF MBP-fusion proteins which also suggests 

that the 2xFS TMEFF2 fragment may be toxic for E. coli strains. The expression of MBP- 

EGF-like domains from TMEFF2 and HB-EGF as well as TMEFF2 H-REGF-like domain 

mutant was compared in Origami B (DE3)pLysS and SHuffle T7 Express lysY strains 

using a similar induction protocol (Figure 5.7). As shown in a schematic diagram in Figure 

5.7 A, MBP-EGF TMEFF2  and MBP-EGF HB-EGF proteins contained an additional V5-

His tag that slightly decreased their electrophoretic mobility. The expression of all three 

EGF-like domains was induced by IPTG in Origami B (DE3)pLysS E. coli (Figure 5.7 B). 

In SHuffle T7 Express lysY strain IPTG treatment caused production of MBP-EGF 

TMEFF2 and MBP-EGF HB-EGF proteins whereas expression of MBP H-REGF TMEFF2 

mutant was not induced in this strain (Figure 5.7 C)..  
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Figure 5.6 Expression of MBP-tagged TMEFF2 ECD, FS-EGF and 2xFS fragments in 

SHuffle T7 Express lysY and Origami B (DE3)pLysS E.coli. 

SHuffle T7 Express lysY and Origami B (DE3)pLysS E.coli strains were transformed with 

plasmids encoding MBP-tagged TMEFF2 fragments  and grown at 37°C until OD600=0.4-

0.5. 1mM IPTG was added to the culture and bacteria were grown at 16°C overnight. The 

expression of recombinant proteins was analyzed using cell extracts from induced and 

non-induced cultures. Proteins were separated by SDS-PAGE using 11% resolving gel 

and stained with Coomassie Brilliant Blue R-250. TMEFF2 ECD (A) and 2ndFS+EGF (B)  

MBP-fusion proteins were detected in SHuffle T7 Express lysY as well as Origami B 

(DE3)pLysS E.coli induced with IPTG whereas a band corresponding to the 2xFS MBP 

fusion protein was detected only in extract from SHuffle T7 Express lysY strain (C). 

Schematic diagrams of expressed recombinant proteins are presented next to the gel 

pictures.  
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Figure 5.7 Expression of MBP-tagged EGF-like domains from HRTMEFF2, TMEFF2 and 

HB-EGF in Origami B (DE3)pLysS and  SHuffle T7 Express lysY E. coli. 

(A) Schematic diagrams of expressed EGF-like domains from TMEFF2 and HB-EGF and 
H-REGF-like domain from TMEFF2 mutant indicate the location of MBP as well as 

additional V5-His tag. The expression of mentioned EGF-like domains was compared in 

Origami B (DE3)pLysS (B) and SHuffle T7 Express lysY (C) E.coli strains. Transformed 

bacteria were grown at 37°C until OD600=0.4-0.5 and induced with 1mM IPTG. Following 

overnight growth at 16°C samples from induced and non-induced cultures were analyzed 

by SDS-PAGE using a 11% resolving gel and stained with Coomassie Brilliant Blue R-

250. Bands corresponding to MBP-tagged EGF-like domains from TMEFF2 and HB-EGF 

were observed in extracts from both SHuffle T7 Express lysY and Origami B (DE3)pLysS 

E. coli whereas MBP-fusion  H-REGF-like domain from TMEFF2 was expressed only by the 

Origami B (DE3)pLysS strain. 
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5.3.3 Purification of TMEFF2 MBP-fusion proteins: affinity chromatography on amylose 

resin. 

In order to purify MBP-tagged proteins the soluble extract from lysed bacteria was 

mixed with amylose-resin and incubated overnight to allow binding of MBP fusion proteins 

to amylose. After washing off non bound proteins, the MBP fusion proteins were eluted 

using 10 mM maltose solution. Due to the higher affinity of amylose to maltose than to 

MBP the proteins of interest were eluted as a consistent peak within the first 6-10 fractions 

as shown on Figure 5.8 for MBP-EGF-like domains.  

The specificity of this purification method was confirmed by analysis of 1 µg of 

eluted fusion protein by Western blotting and labelling with anti-TMEFF2-ECD, anti-V5 

and anti-MBP antibodies (Figure 5.9). Labelling with anti-TMEFF2-ECD polyclonal 

antibody enabled the detection of the EGF-like domains from TMEFF2 (wild type and 

mutated) but not EGF-like domain from HB-EGF (Figure 5.9, left blot). As indicated 

previously (Figure 5.7 A), the EGF-like domains from TMEFF2 and HB-EGF were tagged 

with a C-terminal V5-His tag in addition to the MBP protein and can be detected on 

Western blot using anti-V5 antibody, whereas the H-REGF-like TMEFF2 mutant lacks V5-

His tag (Figure 5.9, middle blot). All three recombinant MBP-fusion proteins were detected 

using anti-MBP antibody (Figure 5.9, right blot). The apparent sizes observed for the EGF-

like domains corresponded to calculated molecular masses of 54.8 kDa, 57.2 kDa and 

56.7 kDa for H-REGF TMEFF2, EGF TMEFF2 and EGF HB-EGF, respectively (see 

Appendix II).  

Additional bands of estimated molecular masses of 120 kDa were also seen when 

EGF-like domains from TMEFF2 and HB-EGF were analyzed using anti-V5 and anti-MBP 

antibody, suggesting that this recombinant proteins may form dimers that were not 

efficiently reduced during sample preparation (Figure 5.9, middle and right blots). 
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Figure 5.8 Elution of MBP-tagged EGF-like domains from the amylose resin column. 

Recombinant EGF-like domains tagged with MBP were eluted from the amylose resin 

column with 10 mM maltose solution. OD280 of collected fractions was measured to 

monitor the elution of the MBP-fusion protein. All three recombinant proteins were eluted 

between fractions 6-10. 
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Figure 5.9 Analysis of recombinant EGF-like domains from TMEFF2, HRTMEFF2 and HB-

EGF purified on amylose resin. 

1 µg of purified EGF-like domains from TMEFF2 and HB-EGF as well as mutated HREGF-

like domain from TMEFF2 were analyzed by Western blotting and labelled with anti-

TMEFF2-ECD, anti-V5 and anti-MBP antibodies.  
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5.3.4 Analysis of the folding of purified MBP-tagged EGF-like domains. 

To further analyze the purity and folding of recombinant EGF-like domains from 

TMEFF2 and HB-EGF as well the as H-REGF-like domain from the TMEFF2 mutant, the 

same amounts of all three proteins were analyzed by SDS-PAGE in the presence or 

absence of β-mercaptoethanol (Figure 5.10). The lack of β-mercaptoethanol in the sample 

loading buffer prevents the reduction of disulphide bonds and enables the detection of 

dimers or larger complexes formed by purified MBP fusion proteins. Analysis of EGF-like 

domains by SDS-PAGE and staining with Coomassie Brilliant Blue in the presence of β-

mercaptoethanol (Figure 5.10, A) confirmed high specificity of the amylose-resin 

purification method as no additional bands were detected in the three samples.  

Analysis of the same samples in the absence of β-mercaptoethanol (Figure 5.10, 

B) revealed that the purified recombinant proteins are heterogeneous. The EGF-like 

domain from HB-EGF was present in the sample mostly as monomer (60 kDa) but also as 

large polymers (molecular mass above 250 kDa). H-REGF-like and EGF-like domains from 

TMEFF2 formed monomers (55-60 kDa), dimers (120-130 kDa) and polymers (>250 kDa). 

Since the proteins purified on the amylose resin were not homogeneous a second 

purification step was required to separate monomers and multimers of these proteins in 

order to be able to characterize and compare their biological activity. 
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Figure 5.10 Analysis of the folding of MBP-tagged EGF-like domains from TMEFF2,  
H-RTMEFF2 and HB-EGF in reducing and non-reducing conditions. 

1 µg of recombinant EGF-like domains purified using amylose resin were analyzed by 

SDS-PAGE electrophoresis in 10% resolving gel in the presence (A) or absence (B) of β-

mercaptoethanol. Proteins were visualised by Coomassie Brilliant Blue R-250 staining. 

Bands detected in the presence of β-mercaptoethanol in the loading buffer corresponded 

to monomers of MBP EGF-like domains. Analysis of the same samples in the absence of 

β-mercaptoethanol revealed that the recombinant EGF-like domains formed monomers 

(55-60 kDa), dimers (120-130 kDa) and polymers (>250 kDa), indicating that an additional 

purification step is required to obtain homogeneous proteins. 
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5.3.5 Further purification of MBP-EGF-like domains: gel filtration. 

The analysis of MBP-tagged EGF-like domains by SDS-PAGE and Coomassie 

Brilliant Blue staining revealed that samples purified using amylose resin were not 

homogeneous and contained not only monomers of EGF-like domains but also dimers 

and polymers (Figure 5.10 B). In order to investigate the biological role of EGF-like and H-

REGF-like TMEFF2 domains and compare their activity with the EGF-like domain from 

HB-EGF, the separation of monomers from dimers was required. A purification method 

employed to obtain homogeneous monomers and dimers fractions was gel filtration. This 

chromatography method separates proteins according to their molecular mass and is 

often used as a second, ‘polishing’ purification step after amylose resin affinity 

chromatography. Gel filtration can be performed in native conditions and for that reason 

does not influence the activity of purified proteins. The difference in size between 

monomers, dimers and polymers of EGF-like domains (Table 5.1) is significant enough to 

efficiently separate them by gel filtration using a Superdex 200 10/300 GL column, as this 

column material is suitable for separating proteins with molecular masses between 10-600 

kDa (fractionation 1x104-1x106). 

 

Table 5.1 Calculated molecular masses of proteins separated by gel filtration. 

Protein Monomer Dimer 

MBP-EGF TMEFF2-V5-His 57.2 kDa 114.4 kDa 

MBP-H-REGF TMEFF2 54.8 kDa 109.2 kDa 

MBP-EGF HB-EGF-V5-His 56.7 kDa 113.4 kDa 

BSA 66.5 kDa 133.0 kDa 

 

To establish the expected elution volume for monomers and dimers of the MBP-

fusion EGF-like domains, a sample containing BSA standard was analyzed first as the 

molecular masses of BSA monomer and dimer are similar to MBP-tagged EGF-like 

domains (Table 5.1). The elution profile for BSA presented in Figure 5.11 A shows that 

BSA dimer is eluted at 12 ml and monomer at 14 ml. 

Separation of MBP-tagged EGF-like domains on Superdex 200 10/300 GL column 

confirmed heterogeneity of the samples. As presented in Figure 5.11 B, dimer and 

monomer of TMEFF2 EGF-like domain were separated at almost equal ratios. H-REGF-like 

domain from TMEFF2 formed mostly large polymers which were eluted early from the 

column (8-11 ml) but dimer and monomer were also detected and separated. 90% of 
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EGF-like domain from HB-EGF was present in the sample as a monomer, however small 

amounts of a dimer was also detected in eluted fractions. 

The elution profiles of EGF-like domains obtained by gel filtration agree with 

analysis of the protein folding by SDS-PAGE under non-reducing conditions (Figure 5.10 

B). This analysis showed that EGF and H-REGF-like domains from TMEFF2 form dimers 

whereas no dimer was detected in the sample containing the EGF-like domain from HB-

EGF. Large polymers detected in the three EGF-like domains samples by Coomassie 

staining were probably removed from the samples by centrifugation prior to loading into 

Superdex column and for that reason were not seen on the elution profiles. 

The gel filtration purification step enabled the efficient separation of monomers 

and dimers of recombinant EGF-like domains that were tested for their biological activity 

in in vitro experiments. The concentration of each monomer and dimer in collected 

fractions was calculated by dividing the OD280 of the fraction by the EGF-like domain 

extinction coefficient factor that was calculated based on the protein sequence, as 

described in detail in Materials and methods.  
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Figure 5.11 Purification of MBP-tagged EGF-like domains by gel filtration. 

Monomers, dimers and polymers of MBP-tagged EGF-like domains of HRTMEFF2, 

TMEFF2 and HB-EGF were separated by gel filtration on Superdex 200 10/300 GL 

column in native conditions (B). Elution profiles of recombinant proteins were compared 

with elution profile of a standard protein (BSA) with similar molecular weight (A). 
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5.3.6 Analysis of the biological activity of purified MBP-tagged EGF-like domains in 

ERK1/2 phosphorylation assay. 

  As described in the introduction to this chapter, several proteins containing EGF-

like domains are able to interact with receptors from the ErbB family, leading to their 

dimerization and phosphorylation of Tyr residues present within the cytoplasmic domains 

of ErbBs. These phosphotyrosine residues serve as docking sites for cytoplasmic proteins 

that undergo phosphorylation and activate downstream signaling cascades. One of the 

downstream signaling pathways activated in response to ErbB stimulation is the 

MAPK/ERK pathway. Thus, activation of ErbBs can be measured by assessing the level 

of phosphorylated ERK1 and ERK2 (pERK1/2) in total cell lysates following treatment with 

EGF-like protein and compared with the total levels of ERK1/2 to correct for loading 

differences. As TMEFF2 is expressed predominantly in the prostate, activation of ErbB 

receptors by EGF-like domain from TMEFF2 was tested in normal prostatic epithelial cell 

line PNT2-C2. Prior to treatment with recombinant MBP-tagged EGF-like domains, PNT2-

C2 cells were serum starved overnight in the presence of 25 µM metalloproteinase 

inhibitor GM6001 in order to reduce EGFR activation by endogenously released ligands. 

Positive control experiments were performed using PNT2-C2 cells treated for 5 and 15 

minutes with different concentrations of MBP-EGF-like domain from HB-EGF (Figure 

5.12). Total cell lysates, supplemented with protease and phosphatase inhibitors were 

then analyzed by Western blotting and labelled with anti-pERK1/2 antibody to detect the 

amount of phosphorylated ERK1/2. To establish the relative ratio of pERK1/2, membranes 

were stripped and re-probed for total ERK1/2. Cells treated with serum free medium 

containing control buffer or 10% FBS were used as negative and positive control, 

respectively. The intensity of bands corresponding to pERK1/2 and total ERK1/2 was 

quantified using ImageJ software (see paragraph 2.16.2 for details) and displayed as a 

histogram. MBP-EGF-like domain from HB-EGF significantly induces ERK1/2 

phosphorylation in PNT2-C2 cells at all tested concentrations (0.5-2.0 µg/ml) (Figure 

5.12). This result proves that biologically active EGF-like domains can be successfully 

expressed and purified from E. coli cultures and that PNT2-C2 cell line is a suitable model 

to study ErbB receptors activation. 

The potential to induce ERK1/2 phosphorylation in PNT2-C2 by the MBP-EGF-like 

domain from TMEFF2 was tested using the same assay. As shown in Figure 5.13 neither 

the monomer nor the dimer of MBP-EGF-like domain from TMEFF2 increased 

phosphorylation of ERK1/2 in PNT2-C2 cells when used at concentrations from 1µg/ml to 

5 µg/ml. However, the lack of ERK1/2 activation by MBP-EGF-like domain from TMEFF2 

was not caused by the lack of Arg in the position 39, as neither the monomer nor the 

dimer of the MBP- H-REGF-like TMEFF2 were able to induce ERK1/2 phosphorylation 

(Figure 5.14). 
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Figure 5.12 Phosphorylation of ERK1/2 in PNT2-C2 cells following treatment with MBP-

tagged EGF-like domain from HB-EGF. 

PNT2-C2 cell were serum starved overnight in the presence of 25 µM GM6001 followed 

by 5 and 15 minutes treatment with different concentrations of MBP-tagged EGF-like 

domain from HB-EGF. Serum free medium containing control buffer or 10% FBS was 

used as negative (0 µg/ml) and positive (+ve) control, respectively. Equal amounts of cell 

lysates were analyzed by Western blotting and labelling with anti-pERK1/2 and anti-

ERK1/2 antibodies (A). The density of each band was quantified by ImageJ software and 

presented as a relative pERK/ERK ratio (B). The histogram shows mean values from 

three independent experiments ±SEM. *p<0.05 in comparison to negative control. 
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Figure 5.13 The TMEFF2 EGF-like domain did not induce ERK1/2 phosphorylation in 

PNT2-C2 cells. 

PNT2-C2 cells were serum starved overnight in the presence of GM6001 and treated for 5 

and 15 minutes with the monomer (A, B) or dimer (C, D) of MBP-tagged EGF-like domain 

from TMEFF2. Medium containing control buffer or 10% FBS was used as a negative (0 

µg/ml) or positive (+ve) control, respectively. Total cell lysates were analyzed by Western 

blotting for pERK1/2 and total ERK1/2 (A, C). The density of bands was analyzed by 

ImageJ and presented as a relative pERK/ERK ratio (B, D). The histograms show mean 

values from three experiments ±SEM.            
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Figure 5.14 Substitution of His39 with Arg within the EGF-like domain from TMEFF2 did 

not increase pERK1/2 phosphorylation in PNT2-C2 cells. 

Serum-starved PNT2-C2 cells were treated for 5 and 15 minutes with monomer (A, B) or 

dimer (C, D) of the MBP-tagged TMEFF2 H-REGF-like domain mutant. Medium containing 

control buffer or 10% FBS was used as negative (0 µg/ml) and positive (+ve) control, 

respectively. The ratio of pERK1/2 to total ERK1/2 was analyzed in total cell lysates by 

Western blotting (A, C) and ImageJ quantification (B, D). The histograms present mean 

values from three experiments ±SEM.  
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As the EGF-like domain from TMEFF2 did not activate ErbB signaling in PNT2-C2 

cells, it was hypothesized that it may act as ErbB receptors antagonist and prevent their 

activation by other EGF-like proteins. To test this hypothesis, PNT2-C2 cells were serum 

starved overnight in the presence of GM6001 and 2 µg/ml of MBP EGF-like domain from 

TMEFF2 or buffer control. Next day, the cells were treated with 1 µg/ml of EGF-like 

domain HB-EGF or a mix of EGF-like domains from TMEFF2 (2 µg/ml) and HB-EGF (1 

µg/ml) for 5 and 15 minutes and the levels of pERK1/2 and total ERK1/2 in cell lysates 

were assessed as described previously. As shown in Figure 5.15, the presence of EGF-

like domain from TMEFF2 did not impair ErbB activation by the EGF-like domain from HB-

EGF. This result suggests that TMEFF2 EGF-like domain is not involved in ErbB signaling 

as it did not activate nor antagonise ERK1/2 phosphorylation in PNT2-C2 cells. 
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Figure 5.15 Phosphorylation of ERK1/2 in PNT2-C2 cells upon treatment with EGF-like 

domains from TMEFF2 and HB-EGF. 

PNT2-C2 cells were grown overnight in serum free medium containing 25 µM GM6001 

and 2 µg/ml of the MBP-tagged EGF-like domain from TMEFF2 (monomer). 

Phosphorylation of ERK1/2 was analyzed by Western blotting of the cell lysates following 

5 and 15 minutes treatment with 1 µg/ml of HB-EGF EGF-like domain alone or together 

with 2 µg/ml TMEFF2 EGF-like domain. Density of the bands was quantified using ImageJ 

software; n=4 ± SEM; ns-not significant. 
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5.3.7 Purification on amylose resin and analysis of the folding of MBP-tagged TMEFF2-

ECD, 2xFS and 2ndFS+EGF fragments. 

In addition to the EGF-like domains larger TMEFF2 fragments: ECD, 2xFS and 

2ndFS+EGF were expressed in SHuffle T7 Express lysY E. coli as MBP-fusion proteins 

and purified using amylose resin. The purity and folding of these fusion proteins were 

analyzed by SDS-PAGE in 11% resolving gel and stained with Coomassie Brilliant Blue in 

the presence or absence of β-mercaptoethanol (Figure 5.16). As calculated from the 

protein sequence the molecular sizes of MBP-fusion proteins are 76.4 kDa (ECD), 71.7 

kDa (2xFS) and 65 kDa (2nd FS+EGF) (see Appendix II). Large amounts of all three 

proteins were successfully purified from bacterial extracts as single bands with expected 

molecular masses were detected by SDS-PAGE electrophoresis in reducing conditions 

(Figure 5.16 A). Analysis of ECD, 2xFS and 2nd FS+EGF TMEFF2 fragments in the 

absence of β-mercaptoethanol in the sample loading buffer revealed that most of these 

proteins formed large polymers with apparent molecular masses above 250 kDa (Figure 

5.16 B). In samples containing 2xFS and 2nd FS+EGF MBP-fusion proteins weak bands 

corresponding to protein monomers were observed, as indicated by arrows on Figure 5.16 

B. No monomer of the TMEFF2-ECD was detected in non-reducing conditions. These 

data indicated that larger TMEFF2 fragments (ECD, 2xFS, 2ndFS+EGF) fold incorrectly 

when expressed in E. coli and due to the small amount of monomers cannot be used to 

investigate the biological activity of TMEFF2 cleavage products. 
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Figure 5.16 Analysis of the folding of MBP-tagged ECD, 2xFS and 2ndFS-EGF TMEFF2 

fragments in reducing (A) and non-reducing (B) conditions.. 

MBP-tagged TMEFF2-ECD, 2ndFS-EGF and 2xFS fragments were purified using amylose 

resin, separated by SDS-PAGE and stained with Coomassie Brilliant Blue R-250 in the 

presence (A) or absence (B) of β-mercaptoethanol. Large amounts of the TMEFF2-ECD, 

2ndFS-EGF and 2xFS fragments were successfully purified from bacterial extracts using 

amylose resin but most of the proteins formed large multimers (apparent molecular mass 

>250 kDa). Small amount of monomers can be observed only in samples containing 2xFS 

and 2ndFS+EGF MBP-fusion proteins, as indicated by arrows. 
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5.4 Chapter summary. 

The aim of the experiments described in Chapter 5 was to express and purify 

recombinant proteins corresponding to N-terminal TMEFF2 cleavage products generated 

by ADAMs, matriptase and hepsin in order investigate their biological activity. The 

expression of the recombinant TMEFF2 fragments was performed in E. coli as this 

expression system generates high amounts of recombinant proteins from a low cost 

bacterial culture. The disadvantage of the prokaryotic expression system is the reducing 

environment of the E. coli cytoplasm that hinder proper folding of the proteins containing 

disulphide bonds. As the structure of TMEFF2 is stabilized by several disulphide bonds, 

TMEFF2 fragments were expressed in modified E. coli strains containing deletions in the 

genes for glutaredoxin reductase and thioredoxin reductase (∆gor/∆trxB), Origami B 

(DE3)pLysS and SHuffle T7 Express lysY. In addition to ∆gor/∆trxB mutations, SHuffle T7 

expresses also the periplasmic disulphide bond isomerase DsbC that helps to correct mis-

oxidized bonds and promote proper folding of proteins with multiple disulphide bonds 

(Lobstein et al. 2012). The chosen E. coli strains were transformed with MAL pRSET B 

expression vectors containing sequences for TMEFF2 fragments inserted downstream of 

the gene for maltose-binding protein (MBP), resulting in the expression of N-terminally 

tagged MBP-fusion proteins. The MBP tag increases the solubility of recombinant protein, 

enhances proper folding and enables efficient purification due to the affinity of MBP to 

amylose. The elution of MBP-fusion proteins from the amylose resin is performed in mild, 

physiological conditions and helps to preserve their biological activity (Kapust & Waugh 

1999; Riggs 2000; Sun et al. 2011).  

The described expression and purification system was optimised in order to 

produce MBP-tagged EGF-like domain from TMEFF2. As indicated in the introduction to 

this chapter TMEFF2 contains atypical EGF-like domain that shares several structural 

similarities with other EGF-like proteins (characteristically located Cys and Gly residues) 

but is also significantly different due to the presence of His39 instead of conserved Arg39 

(Figure 5.3). It was proposed that this substitution may reduce binding of TMEFF2 EGF-

like domain to ErbB receptors (Horie et al. 2000), however some data suggest that 

TMEFF2 is able to activate ErbB-4 and EGFR (Uchida et al. 1999; Ali & Knäuper 2007). 

To investigate  the influence of His39 on the activity of TMEFF2 EGF-like domain, a H-

REGF-like TMEFF2 mutant was generated using overlap extension PCR method (Figure 

5.4) and expressed in E. coli similarly to the wild-type TMEFF2 EGF-like domain. In order 

to examine if the E. coli expression system is suitable for production of biologically active 

EGF-like domains, MBP-tagged EGF-like domain from HB-EGF was expressed alongside 

EGF-like and H-REGF-like domains of TMEFF2. Analysis of the three EGF-like domains 

expression in lysates of transformed Origami B and SHuffle T7 E. coli revealed that all 

three recombinant proteins were expressed by the Origami B strain, whereas the SHuffle 
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T7 strain expressed the EGF-like domains from TMEFF2 and HB-EGF but did not express 

TMEFF2 H-REGF-like domain mutant (Figure 5.7). For that reason the Origami B strain 

was chosen for the large scale expression of all three EGF-like domains. Purification of 

the MBP-tagged EGF-like domains using affinity of MBP to amylose enabled to remove 

most of the unwanted proteins from the bacterial extract, as confirmed by Western blot 

analysis (Figure 5.9 B) and Coomassie Brilliant Blue R-250 staining (Figure 5.10 A). 

However, analysis of the folding of purified MBP-tagged EGF-like domains by SDS-PAGE 

in non-reducing conditions and Coomassie Brilliant Blue R-250 staining revealed that the 

samples containing EGF-like domains were not homogeneous (Figure 5.10 B). Enhanced 

disulphide bond formation in the cytoplasm of Origami B E. coli caused generation of the 

dimers and larger polymers of the MBP-tagged EGF-like domains. To directly compare 

the biological activity of the EGF-like domains in vitro, the heterogeneous samples 

required further purification, in order to obtain homogeneous monomers or dimers of the 

recombinant EGF-like domains. The purification method applied to achieve this goal was 

gel filtration using Superdex 200 10/300 GL column, as it is suitable to separate proteins 

with molecular masses between 10-600 kDa and can be performed in non-reducing 

conditions, allowing to preserve the protein structure. The monomers and dimers of the 

MBP-tagged EGF-like domains are very similar in molecular size to monomers and dimers 

of BSA (Table 5.1). For that reason BSA solution was separated on a gel filtration column 

prior to EGF-like domains samples in order to establish the expected elution volume of the 

MBP-EGF-like domains monomers and dimers (Figure 5.11 A). The collected fractions, 

containing homogeneous monomers or dimers of the EGF-like domains from HB-EGF, 

TMEFF2 and H-REGF-TMEFF mutant were suitable to analyze their physiological activity 

in in vitro assays. 

As mentioned previously, the biological role of several proteins containing EGF-

like domains is displayed through activation of the ErbB receptors that can be measured 

by assessing the relative levels of the phosphorylated downstream kinases ERK1 and 

ERK2 (Ratan et al. 2003). To examine if the EGF-like domain from TMEFF2 is able to 

activate ErbBs and induce ERK1/2 phosphorylation in prostate cells, the normal prostate 

epithelial cell line PNT2-C2 was treated with various concentrations of the recombinant 

TMEFF2 EGF-like domain for 5 or 15 minutes followed by analysis of the pERK1/2 and 

total ERK1/2 in the cell lysates. In order to reduce ErbBs activation by endogenously 

released ligands, PNT2-C2 cells were serum starved overnight in the presence of 

metalloproteinase inhibitor GM6001 prior to MBP-EGF-like domain treatment. This 

experiment demonstrated that stimulation of the prostate epithelial cells with 1-5 µg/ml of 

MBP-tagged TMEFF2 EGF-like domain monomer or dimer did not induce ERK1/2 

phosphorylation (Figure 5.13). However, the lack of ErbB activation by the MBP-tagged 

EGF-like domain from TMEFF2 may result from the chosen protein expression method. 

The biological activity of some mammalian growth factors strongly depends on their 
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glycosylation and their expression in prokaryotic cells result in obtaining inactive proteins, 

as glycosylation does not occur in bacteria (Baneyx & Mujacic 2004). To exclude these 

possibility that the large MBP-tag prevents interaction of EGF-like domain with ErbBs,  the 

MBP- EGF-like domain from HB-EGF was purified according to the same protocol was 

tested in the described in vitro ERK1/2 phosphorylation assay. As shown in Figure 5.12, 5 

and 15 minutes treatment of PNT2-C2 cells with 0.5-2 µg/ml of the MBP-EGF-like domain 

from HB-EGF significantly increased the relative amount of pERK1/2. This result 

demonstrated, that the chosen expression and purification system is suitable to produce 

biologically active EGF-like domains. It was also hypothesized that EGF-like domain from 

TMEFF2 does not activate ErbB receptors due to the substitution of Arg39 with His39 

(Horie et al. 2000). To test this hypothesis, prostate epithelial cells were treated with the 

MBP-tagged TMEFF2 H-REGF-like domain, however no increase in pERK1/2 

phosphorylation was detected following 5 or 15 minutes treatment with 1-5 µg/ml of this 

mutant (Figure 5.14). As neither the EGF-like domain from TMEFF2 nor the H-REGF 

TMEFF2 mutant induced ERK1/2 phosphorylation it was hypothesized that TMEFF2 may 

be ErbBs antagonist and prevents their activation by EGF-like ligands. To test this 

hypothesis PNT2-C2 cells were pre-incubated with MBP-tagged TMEFF2 EGF-like 

domain following by treatment with MBP-EGF-like domain from HB-EGF. However, the 

pre-treatment with TMEFF2 EGF-like domain did not affect ERK1/2 phosphorylation in 

response to EGF-like domain from HB-EGF (Figure 5.15).  

Based on the described results it was concluded that the EGF-like domain of 

TMEFF2 is not implicated in signaling and more likely plays another role in the prostate 

cancer environment. One of the possible functions of the EGF-like domain within the 

TMEFF2 structure is serving as a binding site for TMEFF2 interaction partners. This 

prediction is supported by the results published by Ge et al., showing that the EGF-like 

domain from TMEFF1 is involved in binding of matriptase (Ge et al. 2006).  

In addition to the EGF-like domains, the described MBP-fusion proteins expression 

and purification protocol was applied to generate larger TMEFF2 fragemnts: ECD, 2xFS 

and 2ndFS+EGF. The three recombinant proteins were expressed in SHuffle T7 strain, as 

the transformation of the Origami B E. coli with 2xFS MAL pRSET B vector resulted in 

growth arrest and lack of recombinant protein expression, possibly due to the toxicity of 

2xFS fragment (Figure 5.6). The MBP-tagged ECD, 2xFS and 2ndFS+EGF were efficiently 

purified from the bacterial extracts using amylose resin and analyzed for their folding by 

SDS-PAGE in the non-reducing conditions. The analysis showed that most of these 

proteins folded incorrectly when expressed in E. coli and are present in purified samples 

as large polymers, with the apparent molecular masses above 250 kDa. The separation of 

the ECD, 2xFS and 2ndFS+EGF monomers by gel filtration was not possible as only trace 

amounts of 2xFS and 2ndFS+EGF were detected in the samples (Figure 5.16 B).  Based 
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on this observation it was concluded that the E. coli expression system is not suitable for 

production of larger TMEFF2 fragments and the expression of these proteins should be 

performed in mammalian cells in order to ensure proper folding and glycosylation of the 

TMEFF2-ECD, 2xFS and 2ndFS+EGF fragments. 
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Chapter 6:  

Expression and purification of  

TMEFF2 ectodomain fragments  

using mammalian cells 
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6.1 Introduction. 

The extracellular part of TMEFF2 is composed of two follistatin-like (FS) modules 

and a single EGF-like domain, leading to the hypothesis that the biological function of 

soluble TMEFF2 cleavage products depends on these structural motifs. The data 

described in Chapter 5 demonstrated that the TMEFF2 EGF-like domain is not involved in 

ErbB signaling as it failed to induce phosphorylation of downstream ERK1/2 kinases. On 

the other hand the EGF-like domain could be a structural motif, involved in the interaction 

of TMEFF2 with other molecules, for example membrane proteases responsible for 

TMEFF2 ectodomain cleavage. The biological function of soluble FS containing TMEFF2 

fragments was not investigated in Chapter 5 due to incorrect folding. To circumvent 

problems with misfolding and lack of glycosylation associated with a prokaryotic 

expression system, soluble FS containing fragments of TMEFF2 (ECD, 2xFS and 

2ndFS+EGF) were expressed in mammalian cells. Chinese hamster ovary (CHO) cells are 

the most widely used mammalian cells for expression and large-scale production of 

recombinant proteins. CHO cells provide glycosylation that ensure proper post-

transcriptional modification of produced recombinant protein (Sheeley et al. 1997; Werner 

1998). To enable easy and efficient purification recombinant TMEFF2 fragments were 

tagged either with a C-terminal Fc-tag or N-terminal protein A tag. In order to exclude the 

possibility that the location of the tag influences the function of TMEFF2-ECD, the activity 

of C-terminally tagged TMEFF2-ECD-Fc and N-terminally tagged protein A-TMEFF2-ECD 

was compared using in vitro ERK1/2 phosphorylation and XTT proliferation assays 

6.1.1 Expression of TMEFF2-ECD as a C-terminal Fc-fusion protein in CHO cells. 

The first recombinant TMEFF2 fragment to be expressed in CHO cells was 

TMEFF2-ECD tagged on the C-terminus with the Fc-fragment of human IgG1. The Fc-

tagged proteins are secreted as disulphide-linked dimers (Figure 6.1) and could be 

purified from cell conditioned medium using the affinity of the Fc fragment to protein G. 

Similar purification method, based on the affinity chromatography, is commonly used to 

purify antibodies. Protein G, originally isolated from the cell wall of different streptococcal 

strains (Björck & Kronvall 1984), is an immunoglobulin-binding protein recognizing the 

constant region of IgG, called the Fc  part as well as the Fab fragment that is responsible 

for antigen recognition. The Fc-IgG fragment interacts with the C-terminal domains of 

protein G whereas N-terminal domains of protein G are able to bind albumin (Akerström et 

al. 1987). However, because serum albumin is the major contaminant during antibody 

purification, the albumin-binding domain was removed from the recombinant forms of 

protein G, used for antibody or Fc-tagged protein purification. Elution of Fc-tagged 

proteins from the protein G Sepharose is performed with low pH and the eluted samples 

are mixed immediately with Tris-HCl pH 9.0 to neutralize the pH and preserve the activity 

of the purified protein. 
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Figure 6.1 Schematic diagram of TMEFF2-ECD-Fc protein. 

 

6.1.2 Expression of TMEFF2-ECD, 2xFS and 2ndFS+EGF fragments as N-terminal protein 

A fusion proteins. 

An alternative system to produce recombinant TMEFF2 fragments was generation 

of stable CHO cell lines secreting TMEFF2-ECD, 2xFS and 2ndFS+EGF tagged N-

terminally with protein A (Figure 6.2). Similarly to protein G, protein A is a commonly used 

fusion partner due to its strong and specific affinity to immunoglobulins (Ig). Originally 

found in the cell wall of a gram-positive bacterium Staphylococcus aureus, protein A 

contains five highly homologous domains: A, B, C, D and E. Each of these domains is 

able to bind the Fc and the Fab fragment of IgG. Disruption of protein A-IgG interactions in 

order to elute protein A-tagged recombinant proteins from IgG Sepharose is achieved at 

low pH, such as 0.1 M glycine-HCl pH 2.7. Eluted fractions are then immediately mixed 

with 1 M Tris-HCl pH 9.0 to prevent destruction of the protein structure caused by the low 

pH. In addition to its high affinity for IgG allowing efficient purification, protein A has also 

several other properties which make it a suitable fusion partner. For example high stability 

against proteolysis in various hosts and lack of Cys residues that could interfere with the 

disulphide bond formation within the fused targeted protein (Nilsson et al. 1997; Graille et 

al. 2000).  Although protein A is used mostly to tag proteins expressed in E coli, several 

reports show that protein A fusions can be successfully expressed in mammalian cell, for 

example Chinese hamster ovary (CHO) cell line (Bierhuizen & Fukuda 1992; Zhang & 

Esko 1994; Maeda et al. 1996). 
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Figure 6.2 Schematic diagram of N-protein A TMEFF2 fusion proteins. 

  

6.2 Aims. 

Experiments summarized in Chapter 6 were performed in order to: 

• generate stable CHO cell line secreting TMEFF2-ECD tagged on the C-terminus 

with Fc-tag 

• optimize methods to purify TMEFF2-ECD-Fc 

• analyze ERK1/2 phosphorylation in PNT2-C2 and HEK293 cells in response to 

TMEFF2-ECD-Fc treatment 

• clone expression vectors encoding TMEFF2-ECD, 2xFS, 2ndFS+EGF and EGF-

like domain tagged on the N-terminus with protein A 

• generate CHO cell lines stably expressing N-protein A TMEFF2 fusion proteins 

• purify N-protein A fusion TMEFF2 fragments from CHO conditioned medium 

• analyze the influence of protein A-tagged TMEFF2 fragments on cell proliferation. 
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6.3 Results 

6.3.1 Expression of Fc-tagged TMEFF2-ECD in CHO cells. 

A stable CHO cell line expressing soluble TMEFF2-ECD tagged on the C-terminus 

with an Fc-tag was generated using the Flp-In System from Invitrogen (see Appendix III). 

The TMEFF2-ECD-Fc pcDNA5/FRT vector was cloned as described in Materials and 

Methods and sequenced (MWG Operon, Germany) before being used to stably transfect 

CHO Flp-In host cells. The amino acid sequence of TMEFF2-ECD-Fc is included in 

Appendix V. In addition to the Fc-tag, recombinant TMEFF2-ECD contained also a C-

terminal 6xHis-tag which was used in additional purification steps (see below). For 

simplicity, the TMEFF2-ECD tagged with the Fc and His tags will be called TMEFF2-ECD-

Fc. 

 The secretion of TMEFF2-ECD-Fc by stably transfected CHO cells was 

analyzed by Western blotting using 0.2 ml samples of conditioned medium containing 

10% FBS, collected over a 5 day culture period (Figure 6.3). This analysis revealed the 

accumulation of a ~75 kDa band in cell culture medium that was specifically labeled with 

polyclonal anti-TMEFF2-ECD antibody. The molecular mass of the TMEFF2-ECD-Fc 

calculated using Biology WorkBench 3.2 software from the amino acid sequence is 61.7 

kDa. The ~13.3 kDa difference between the calculated and apparent size of TMEFF2-

ECD-Fc was thought to result from glycosylation of TMEFF2-ECD-Fc by CHO cells, as the 

extracellular part of TMEFF2 contains two N-linked glycosylation sites in its amino acid 

sequence and is known to be glycosylated (Uchida et al. 1999). Moreover, the detected 

band corresponded in size to recombinant TMEFF2-ECD-Fc previously described in the 

literature (Lin et al. 2011), confirming that generated stable CHO cell line released 

TMEFF2-ECD-Fc. 

In addition to the ~75 kDa TMEFF2-ECD-Fc protein, two faint bands were also 

detected in this analysis (Figure 6.3). The >130 kDa band corresponded to the dimer of 

TMEFF2-ECD-Fc which was not efficiently reduced during Western blot sample 

preparation. The ~50 kDa band was likely a product of TMEFF2-ECD-Fc proteolytic 

processing, as it was shown in this thesis that TMEFF2 is a substrate for at least two 

groups of proteases, ADAMs and TTSPs (see Chapter 4). 
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Figure 6.3 Western blot analysis of the TMEFF2-ECD-Fc release in conditioned medium 

of stably transfected CHO cells. 

CHO cells stably expressing TMEFF2-ECD-Fc were grown in serum-containing medium 

for 5 days. 0.2 ml medium samples were collected every day, centrifuged to remove cell 

debris and analyzed by SDS-PAGE and Western blotting in reducing conditions. Labeling 

of the PVDF membrane with polyclonal anti-TMEFF2-ECD antibody revealed the 

accumulation of a ~75 kDa band corresponding to glycosylated TMEFF2-ECD-Fc 

monomer in the conditioned medium. The >130 kDa band detected in samples from Day 4 

and Day 5 corresponded more likely to TMEFF2-ECD-Fc dimer and the ~50 kDa protein 

was thought to be a product of TMEFF2-ECD-Fc proteolytic processing. 
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6.3.2 Purification of TMEFF2-ECD-Fc from CHO conditioned medium using protein G 

Sepharose. 

CHO cells expressing TMEFF2-ECD-Fc were cultured in medium supplemented 

with 1% low IgG FBS to minimize contamination of eluted TMEFF2-ECD-Fc with medium-

derived IgG. In order to purify sufficient amounts of TMEFF2-ECD-Fc to test its biological 

activity in vitro, 2.5 litres of TMEFF2-ECD-Fc CHO conditioned medium was collected and 

centrifuged to remove cell debris. The medium was dialyzed overnight against 40 litres of 

column binding buffer (20 mM sodium phosphate pH 7.0) and filtered through 0.45 µm 

membrane to remove impurities that could block the protein G Sepharose column. 

TMEFF2-ECD-Fc containing medium was applied to previously equilibrated protein G 

Sepharose column and proteins which did not bind to the column material were removed 

by washing. TMEFF2-ECD-Fc was eluted with 0.1 M glycine-HCl pH 2.7 and the elution 

was monitored by measuring the pH and OD280 using the ÄKTApurifier system. As 

presented in Figure 6.4, the recombinant protein eluted as a sharp peak as soon as the 

pH of the buffer in the column began to decrease.  
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Figure 6.4 Elution profile of TMEFF2-ECD-Fc from protein G Sepharose 

Conditioned medium from TMEFF2-ECD-Fc expressing CHO cells was applied onto 

protein G Sepharose column. Non-bound proteins were removed from the column 

material by washing and the TMEFF2-ECD-Fc was eluted using 0.1 M glycine-HCl pH 2.7. 

The decrease of pH as well as the elution of TMEFF2-ECD-Fc (OD280) was monitored 

using ÄKTApurifier system. 
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The eluted samples were then analyzed by SDS-PAGE and Coomassie Brilliant 

Blue staining. As shown in Figure 6.5 A, two bands with apparent molecular masses of 

~27 kDa and ~55 kDa were detected in all eluted samples. These bands corresponded to 

light and heavy chain of bovine IgG which were co-purified with TMEFF2-ECD-Fc due to 

their affinity to protein G Sepharose. The presence of the bovine IgG in eluted fractions 

indicated that a second purification step is required to purify TMEFF2-ECD-Fc for further 

experiments. 

 Western blot analysis of the same samples using anti-TMEFF2-ECD antibody 

showed the presence of two immunoreactive bands in the starting material as well as in 

fractions 2-8 (Figure 6.5 B). The ~75 kDa band was identified as the monomer of 

TMEFF2-ECD-Fc as it corresponded in size to the TMEFF2-ECD-Fc detected by Western 

blotting in Figure 6.3. The ~50 kDa protein in Figure 6.5 B was likely the product of 

TMEFF2-ECD-Fc proteolytic cleavage, also previously observed in Figure 6.3. However, 

the amount of the TMEFF2-ECD-Fc fragment in relation to the full length TMEFF2-ECD-

Fc was much higher than observed previously. The increase of the TMEFF2-ECD-Fc 

cleavage product could be explained by the different culture conditions. Medium samples 

analyzed in Figure 6.3 were collected from cells grown in the presence of 10% FBS. In 

addition to several growth factors and hormones, bovine serum contains also protease 

inhibitors, such as alpha-1-antitrypsin (AAT), alpha-2-macroglobulin (α-2-M) and 

antithrombin (Gettins 2002; Armstrong & Quigley 1999). The presence of these inhibitors 

likely prevented proteolytic processing of TMEFF2-ECD-Fc. Conditioned medium 

collected for large-scale purification of TMEFF2-ECD-Fc contained only 1% low IgG FBS 

in order to reduce the contamination of recombinant protein with serum IgG. At the same 

time the amount of protease inhibitors in conditioned medium was reduced by 10 fold, 

resulting in increased amount of the ~50 kDa TMEFF2-ECD-Fc cleavage product.  
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Figure 6.5 Analysis of TMEFF2-ECD-Fc fractions eluted from protein G Sepharose. 

10 µl of CHO conditioned medium (START), flow-through medium (NON-BOUND) and 

fractions eluted from protein G Sepharose column (1-8) were separated using 11% 

resolving gels and stained with Coomassie Brilliant Blue (A) or blotted and labeled with 

polyclonal anti-TMEFF2-ECD antibody (B). Coomassie staining revealed the presence of 

bovine IgG contamination in the eluted fractions, indicating that a second purification step 

is required to obtain pure TMEFF2-ECD-Fc. Western blot analysis visualized a ~75 kDa 

band corresponding to TMEFF2-ECD-Fc monomer and ~50 kDa band corresponding to 

proteolytically cleaved TMEFF2-ECD-Fc dimer. Increased amount of ~50 kDa TMEFF2-

ECD-Fc fragment resulted from reduced amount of serum in conditioned medium, leading 

to decreased serum protease inhibitors concentration.  
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6.3.3 Purification of the TMEFF2-ECD-Fc using HIS-Select HF Nickel Affinity Gel. 

Purification of the TMEFF2-ECD-Fc using protein G Sepharose removed most 

medium proteins, however bovine IgG was co-purified with TMEFF2-ECD-Fc due to its 

affinity to protein G. In order to be able to use TMEFF2-ECD-Fc in in vitro experiment, the 

IgG impurities needed to be removed using an additional purification step. The TMEFF2-

ECD-Fc construct contained also a C-terminal 6xHis-tag that allowed separation of 

TMEFF2-ECD-Fc from the IgG using the affinity of the fusion protein to nickel ions. 

Following washing, the 6xHis-tagged TMEFF2-ECD-Fc bound to the immobilized nickel 

was eluted using buffer containing imidazole that competes with the 6xHis-tagged protein 

for nickel binding. 

Fractions 2-8 eluted from the protein G Sepharose were combined as they 

contained the highest amount of TMEFF2-ECD-Fc. Due to the small sample volume 

TMEFF2-ECD-Fc purification was performed in an Eppendorf tube using HIS-Select HF 

Nickel Affinity Gel. Before mixing with the affinity gel, NaCl solution was added to the 

TMEFF2-ECD-Fc sample to the final concentration of 300 mM NaCl in order to prevent 

non-specific binding to the affinity gel. The sample was mixed with the equilibrated affinity 

gel and incubated overnight on a rotating wheel at 4°C to allow the 6xHis-tagged 

TMEFF2-ECD-Fc to bind. The next day, the affinity gel was gently centrifuged (1 minute, 

1000g) and washed with buffer containing 10 mM imidazole in order to elute non-

specifically bound proteins. The TMEFF2-ECD-Fc was eluted by mixing the affinity gel 5 

times with 200 µl of elution buffer, containing 250 mM imidazole. 10 µl of each eluted 

fraction, as well as the starting sample, the non-bound protein and washing solutions were 

analyzed by SDS-PAGE using 11 % resolving gel, followed by Western blotting (Figure 

6.6) or silver staining (Figure 6.7).  

Western blotting and anti-TMEFF2-ECD labeling demonstrated that the first eluted 

fraction (E1) contained a ~75 kDa band corresponding to TMEFF2-ECD-Fc monomer 

(Figure 6.6). A large amount of TMEFF2-ECD-Fc was also detected in the non-bound 

sample, indicating that the affinity gel was over-loaded and more  HIS-Select gel needs to 

be used in future purifications of the TMEFF2-ECD-Fc. Sample E1 contained also a 

previously observed ~50 kDa proteolytically cleaved TMEFF2-ECD-Fc, whereas no 

TMEFF2-ECD-Fc was detected in fractions E2-E5 and in the sample collected after 

washing of the gel with buffer containing 10 mM imidazole (Figure 6.6, sample WASH), 

indicating strong and specific binding of TMEFF2-ECD-Fc to the Nickel affinity gel.  
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Figure 6.6 Analysis of TMEFF2-ECD-Fc purification on HIS-Select HF Nickel Affinity Gel 

by Western blotting. 

10 µl of TMEFF2-ECD-Fc sample purified using protein G Sepharose (START), non-

bound fraction and solution collected following washing of Nickel Affinity Gel as well as 

first five eluted fractions were analyzed by SDS-PAGE in reducing conditions. The  ~75 

kDa band corresponding to TMEFF-ECD-Fc monomer and the ~50 kDa band 

corresponding to cleaved TMEFF2-ECD-Fc were detected in the first eluted fraction (E1). 

These two bands were also seen in the non-bound fraction, indicating over-load of the 

HIS-Select Affinity Gel. 
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6.3.4 Analysis of TMEFF2-ECD-Fc purity using SDS-PAGE and silver staining. 

To determine the purity of eluted TMEFF2-ECD-Fc as well as to investigate the 

origin of the ~50 kDa band recognized by anti-TMEFF2-ECD antibody the same samples 

were then analyzed by SDS-PAGE in reducing conditions followed by silver staining 

(Figure 6.7). In the starting sample, non-bound and wash fractions three major bands 

were detected: a ~27 kDa band corresponding to bovine IgG light chain (Figure 6.7 *), a 

~55 kDa band corresponding to bovine IgG heavy chain (Figure 6.7 **) and a ~160 kDa 

protein corresponding to the whole IgG molecule (Figure 6.7 ***). None of these bands 

was found in eluted fractions E1-E5, indicating that the secondary purification removed 

the IgG contamination from the sample. In sample E1 four bands were detected by silver 

staining: a ~75 kDa TMEFF2-ECD-Fc monomer and a ~50 kDa protein recognized 

previously with the anti-TMEFF2-ECD antibody as well as two smaller proteins with 

apparent molecular sizes of ~38 kDa and ~33 kDa. In order to identify these two proteins 

all of the remaining E1 fraction was separated in 11% resolving gel in reducing conditions, 

stained with Coomassie Brilliant Blue and sent for mass spectroscopy analysis to Dr Ian 

A. Brewis, Central Biotechnology Services, Cardiff University School of Medicine. Due to 

the limited amount of protein available for this analysis only the ~38 kDa band was 

sequenced, revealing that it corresponded to human IgG with 96% confidence. As the only 

source of human IgG in the sample was the recombinant TMEFF2-ECD-Fc it was 

concluded that the ~38 kDa band and possibly also the ~33 kDa band were fragments of 

degraded TMEFF2-ECD-Fc. These fragments did not contain the TMEFF2-ECD 

sequence as they were not recognized by anti-TMEFF2-ECD antibody. Based on this 

information it was concluded that the ~50 kDa protein visualized with the anti-TMEFF2-

ECD antibody was a TMEFF2-ECD-Fc cleavage product containing TMEFF2-ECD 

sequence. 
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Figure 6.7 Analysis of TMEFF2-ECD-Fc purification on HIS-Select HF Nickel Affinity Gel 

by SDS-PAGE and silver staining. 

10 µl of TMEFF2-ECD-Fc sample purified using protein G Sepharose (START), 

non-bound fraction and solution collected following washing of Nickel Affinity Gel as well 

as first five eluted fractions were analyzed by SDS-PAGE in reducing conditions using 

11% resolving gel followed silver staining. This analysis indicated that second purification 

step removed bovine IgG from the sample (* IgG light chain, ** IgG heavy chain, *** whole 

IgG). ~75 kDa band corresponding to Fc-TMEFF-ECD was detected in the first eluted 

fraction (E1), together with ~50 kDa, ~38 kDa and ~33 kDa fragments, most probably 

generated by proteolytic processing of TMEFF2-ECD-Fc 
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As all of the purified TMEFF2-ECD-Fc (eluted fraction E1) was used for mass 

spectrometry analysis, a new batch of TMEFF2-ECD-Fc was purified using protein G 

Sepharose and HIS-Select HF Nickel Affinity Gel. The eluted fractions obtained during the 

second purification step (E1-E3) were then analyzed by SDS-PAGE using 10% resolving 

gel followed by staining with silver or Western blotting and labeling with anti-TMEFF2-

ECD antibody. Samples were analyzed in the absence (Figure 6.8 A) or presence (Figure 

6.8 B) of β-mercaptoethanol in order to establish whether the purified protein was purified 

as an intact, disulphide-linked TMEFF2-ECD-Fc dimer.  

In the absence of β-mercaptoethanol a minor fraction of a >130 kDa full length 

TMEFF2-ECD-Fc dimer was detected in fractions E1-E3 by silver staining (Figure 6.8 A, 

left) and Western blotting (Figure 6.8 A, right). Additionally, two bands with apparent 

molecular masses of ~80 kDa and 90 kDa were detected on the gel and on the 

membrane. These bands are probably partially cleaved TMEFF2-ECD-Fc species, where 

the TMEFF2-ECD part was processed by proteases expressed by the host CHO cell line. 

A ~33 kDa band visualized by silver staining in fraction E1 was probably a degradation 

fragment of TMEFF2-ECD-Fc that did not contain the TMEFF2-ECD sequence as it was 

not recognized by anti-TMEFF2-ECD antibody. In the presence of β-mercaptoethanol in 

the sample loading buffer a faint ~80 kDa band corresponding to TMEFF2-ECD-Fc 

monomer was detected in sample E1 by Western blotting (Figure 6.8 B, right). The major 

component of fractions E1-E3 was the ~50 kDa TMEFF2 cleavage product. Staining with 

silver revealed the presence of the previously observed ~38 and ~33 kDa TMEFF2-ECD-

Fc degradation fragments in samples E1-E3 (Figure 6.8 B, left).  

The data obtained from this analysis indicated that the two-step purification of 

TMEFF2-ECD-Fc allowed removal of all impurities and obtain pure TMEFF2-ECD-Fc. 

However, the reduced amount of serum in conditioned medium of stably transfected CHO 

cells leads to increased protease activity and proteolytic processing of TMEFF2-ECD-Fc 

during purification. As a result, purified recombinant protein was a mixture of the full length 

TMEFF2-ECD-Fc dimer (>130 kDa) and at least two partially cleaved TMEFF2-ECD-Fc 

species (~80 kDa and ~90 kDa). Figure 6.9 shows a schematic picture of possible 

TMEFF2-ECD-Fc fragments generated by the cleavage of TMEFF2-ECD. In order to 

avoid TMEFF2-ECD-Fc processing during purification protease inhibitor cocktail should be 

added to the collected conditioned medium in future experiments. 
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Figure 6.8 Analysis of the TMEFF2-ECD-Fc in fractions eluted from HIS-Select HF Nickel 

Affinity Gel. 

10 µl of fractions E1, E2 and E3, eluted from HIS-Select HF-Nickel Affinity Gel were 

analyzed by SDS-PAGE in 10% resolving gel followed by silver staining or Western 

blotting and labeling with anti-TMEFF2-ECD antibody in the absence (A) or presence (B) 

of β-mercaptoethanol. In the absence of β-mercaptoethanol a >130 kDa band 

corresponding to TMEFF2-ECD-Fc dimer was detected in samples E1-E2 together with 

two partially cleaved dimers of TMEFF2-ECD-Fc (~80 kDa and ~90 kDa).  When β-

mercaptoethanol was present in the sample loading buffer, a minor fraction of ~80 kDa 

TMEFF2-ECD-Fc monomer was detected by Western blotting in sample E1. The major 

component of fractions E1-E2 was ~50 kDa TMEFF2-ECD-Fc cleavage product. Silver 

staining revealed that the samples contained also additional degradation fragments with 

apparent molecular masses of ~38 kDa and ~33 kDa. 
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Figure 6.9 Potential TMEFF2-ECD-Fc fragments generated by proteolytic processing 

which could be detected in non-reducing (A) and reducing (B) conditions; FS – follistatin-

like domain, EGF-EGF-like domain. 
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6.3.5 Analysis of ERK1/2 phosphorylation in PNT2-C2 and HEK293 cells in response to 

TMEFF2-ECD-Fc treatment. 

The results presented in Chapter 5, where the ability of the MBP-tagged EGF-like 

domain from TMEFF2 to induce pERK1/2 phosphorylation was tested suggested that 

TMEFF2 is not a ligand for receptors from the ErbB family. However, expression of 

proteins in bacteria sometimes reduces their biological activity due to the lack of 

glycosylation and folding. As described by Glynne-Jones and co-workers, TMEFF2 is a 

glycoprotein and the glycosylation comprises approximately 21% of the TMEFF2 

molecular weight as the removal of glycosylation by Peptide-N(4)-(N-acetyl-beta-D-

glucosaminyl)asparagine amidase F (PNGaseF) reduced the molecular weight of 

TMEFF2 from 71 kDa to 56 kDa (Glynne-Jones et al. 2001). In order to examine if 

glycosylated fragments of the TMEFF2 ectodomain are able to activate ErbBs, purified 

TMEFF2-ECD-Fc, containing different TMEFF2-ECD-Fc species, were tested in ERK1/2 

phosphorylation assays using the normal prostatic epithelial cell line PNT2-C2 (Figure 

6.10) or human embryonic kidney cells HEK293 (Figure 6.11). 

The experiment presented in Figure 6.10 was performed as previously described 

for PNT2-C2 treatment with MBP-tagged EGF-like domains. Briefly, PNT2-C2 cells were 

grown overnight in serum free medium with 25 µM GM6001 metalloprotease inhibitor in 

order to reduce ERK1/2 phosphorylation induced by endogenously shed ErbB ligands. 

After serum-starvation the cells were treated for 5 or 15 minutes with serum free medium 

containing different concentrations of TMEFF2-ECD-Fc (0 – 5.0 µg/ml) or medium 

supplemented with 10% FBS as a positive (+ve) control. The obtained result showed that 

TMEFF2-ECD-Fc did not activate ErbB receptors as no downstream phosphorylation of 

ERK1/2 was observed following 5 or 15 minutes treatment.  
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Figure 6.10 TMEFF2-ECD-Fc did not induce ERK1/2 phosphorylation in PNT2-C2 

prostate epithelial cells. 

PNT2-C2 cells were serum starved overnight in the presence of 25 µM GM6001 and 

treated for 5 or 15 minutes with different concentrations of TMEFF2-ECD-Fc. The medium 

containing 10% FBS was used as positive (+ve) control. Total cell lysates were analyzed 

by Western blotting for pERK1/2 and total ERK1/2 (A). The density of bands was analyzed 

using ImageJ software and presented as a relative pERK/ERK ratio (B). The Western blot 

is representative for three independent experiments and the histogram shows mean 

values from three experiments ±SEM. 
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Phosphorylation of ERK1/2 upon TMEFF2-ECD-Fc stimulation was also studied in 

HEK293 cells. HEK293 cells were chosen for this investigation because it was published 

previously that they responded to recombinant TMEFF2-ECD treatment by ERK1/2 

phosphorylation (Ali & Knäuper 2007). This analysis was carried out similarly to PNT2-C2 

stimulation; however experiments were performed in the absence of GM6001 as the level 

of constitutively activated ERK1/2 in HEK293 is very low. As presented in Figure 6.11, no 

ERK1/2 phosphorylation was induced following TMEFF2-ECD-Fc treatment of HEK293 

cells. The discrepancy between the obtained result and previously published data, that 

TMEFF2-ECD induce ERK1/2 phosphorylation in HEK293 cells is probably caused by the 

different expression and purification methods used to obtain TMEFF2-ECD  (Ali & 

Knäuper 2007). In the mentioned paper TMEFF2-ECD was expressed in mammalian cells 

as V5-tagged recombinant protein and purified in a single step process by affinity 

chromatography using anti-V5 agarose. Due to the shorter purification process it is 

possible that not all impurities were removed from the TMEFF2-ECD and the 

phosphorylation of ERK1/2 were induced by additional proteins present in the sample. 

The two-step purification method described in this study allowed to obtain pure, 

homogenous TMEFF2-ECD-Fc as no additional components were observed during SDS-

PAGE and silver staining analysis (Figure  6.8 A). Another possibility, explaining ErbB 

activation by V5-tagged TMEFF2-ECD but not TMEFF2-ECD-Fc is that the large Fc-tag 

on the C-terminus hinders the interaction of TMEFF2-ECD-Fc with the receptor. In order 

to examine the influence of the tag location on TMEFF2-ECD biological activity, a 

recombinant TMEFF2-ECD tagged on the N-terminus was produced. 
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Figure 6.11 TMEFF2-ECD-Fc treatment of HEK293 cells did not induce ERK1/2 

phosphorylation. 

HEK293 cells were grown overnight in serum free medium followed by 5 or 15 minutes 

treatment with different concentrations of TMEFF2-ECD-Fc to induce ERK1/2 

phosphorylation. The medium with 10% FBS was used as positive (+ve) control. Cell 

lysates were analyzed by Western blotting for pERK1/2 and total ERK1/2 (A). The density 

of bands was analyzed using ImageJ and presented as a relative pERK/ERK ratio (B). 

The Western blot is representative for three independent experiments and the histogram 

shows mean values from three experiments ±SEM. 
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6.3.6 Proliferation of PNT2-C2 cells in the presence of TMEFF2-ECD-Fc. 

The biological activity of TMEFF2-ECD-Fc was also examined using a proliferation 

assay to investigate its influence on the growth of prostate epithelial cells. PNT2-C2 

epithelial cells were grown in 96-wells plates in serum free RPMI containing 0.1-5.0 µg/ml 

of TMEFF2-ECD-Fc or 20 mM sodium phosphate pH 7.4 as a solvent control. On day 3 

and day 4 the number of viable cells in each well was measured using Cell Proliferation 

Kit II (XTT) as described previously. Preliminary results from one experiment with eight 

repeats per condition are shown in Figure 6.12 and suggest that PNT2-C2 cells grew 

faster than control cells following stimulation with 0.1 and 1.0 µg/ml of TMEFF2-ECD-Fc in 

the medium. This result is in agreement with previously published data that described 

TMEFF2-ECD as a growth-promoting factor. Chen and co-workers showed that the 

conditioned medium from HEK293 cells expressing soluble TMEFF2-ECD had growth 

promoting activity on HEK293 as well as benign human prostatic RWPE1 cell line (Chen 

et al. 2011). The recombinant TMEFF2-ECD was also reported to increase proliferation of 

HEK293 cells (Ali & Knäuper 2007) and act as a survival factor for primary cultured 

neurons (Horie et al. 2000). It will be the matter of future investigation which receptors and 

signaling pathways are activated by TMEFF2-ECD and stimulate cell proliferation.  
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Figure 6.12 Proliferation of PNT2-C2 cells in the presence of TMEFF2-ECD-Fc. 

PNT2-C2 cells were grown in 96-well plates in the presence of serum free medium 

containing different concentrations of TMEFF2-ECD-Fc or 20 mM sodium phosphate pH 

7.4 as a control. The number of viable cells is each well was measured after 3 and 4 days 

of culture using Cell Proliferation Kit II (XTT) as described in Materials and methods. 

Graph shows mean values from one experiment with eight repeats per condition. 
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6.3.7 Expression of TMEFF2 fragments as N-terminal protein A fusion. 

In addition to the TMEFF2-ECD-Fc, recombinant TMEFF2 fragments 

corresponding to predicted cleavage products generated by matriptase, hepsin and 

ADAMs were expressed in CHO cells as N-terminal protein A fusion proteins. Expression 

of TMEFF2-ECD with protein A on the N-terminus was performed in order to investigate 

the influence of the tag on TMEFF2-ECD biological activity as the function of N-protein A 

TMEFF2-ECD could be compared with TMEFF2-ECD tagged on the C-terminus with Fc. 

To express proteins corresponding to TMEFF2 cleavage products fused with 

protein A, primers were designed to amplify sequences encoding TMEFF2-ECD, 2xFS, 

FS+EGF and EGF-like domain. Restriction sites were introduced in the primers and 

BamHI and XhoI-cleaved PCR products were then cloned into pcDNA5/FRT vector 

containing an IgG signal sequence followed by the protein A gene, as described in 

Materials and methods. The generated expression plasmids were sequenced and used to 

stably transfect CHO Flp-In cells according to Flp-In protocol (Appendix III). Following 

selection using cell culture medium containing 500 µg/ml of hygromycin B, stable cell lines 

were tested for the expression of recombinant proteins. Due to the presence of the signal 

sequence from human IgG upstream of the protein A gene, the protein A-tagged TMEFF2 

fragments were secreted and were detected in the conditioned medium by Western 

blotting using anti-TMEFF2-ECD polyclonal antibody. The molecular sizes of the 

recombinant proteins were calculated from the amino acid sequence and are presented in 

Table 6.1 below: 

 

Table 6.1 N-protein A TMEFF2 fusion proteins 

Fusion protein Calculated molecular mass 

protein A – TMEFF2-ECD 52.9 kDa 

protein A – 2xFS 46.0 kDa 

protein A –FS+EGF 41.5 kDa 

protein A – EGF 31.7 kDa 
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Figure 6.13 presents the analysis of 40 µl of conditioned medium from the parental 

CHO Flp-In cells or stably transfected CHO cell lines, supplemented with 10% FBS. 

Medium samples were analyzed by SDS-PAGE in non-reducing conditions, Western 

blotting and labeling with anti-TMEFF2-ECD polyclonal antibody. The apparent sizes of N-

protein A-TMEFF2-ECD, 2xFS and FS+EGF fragments are much larger than calculated 

from the amino acid sequence, suggesting that these proteins form glycosylated dimers. 

The size of protein the A-EGF-like domain corresponded to the calculated molecular mass 

of the protein monomer. Conditioned medium from parental CHO cells was not stained for 

TMEFF2-ECD, indicating specific binding of the antibody. 
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Figure 6.13 Analysis of N-protein A fusion TMEFF2 fragments in CHO conditioned 

medium under non-reducing conditions. 

40 µl of conditioned medium from parental CHO Flp-In cells or stable cell lines expressing 

protein A-tagged ECD, 2xFS, FS+EGF and EGF-like TMEFF2 fragments were analyzed 

by separation in 11% resolving gel followed by Western blotting and labeling with anti-

TMEFF2-ECD polyclonal antibody. The bands corresponding to protein A-tagged 

TMEFF2 fragments were detected in the samples from stable cell lines whereas no bands 

were seen in the medium from parental CHO Flp-In cells. 
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6.3.8 Purification of N-protein A TMEFF2 fragments from CHO conditioned medium. 

The purification of N-protein A TMEFF2 fragments was established for TMEFF2-

ECD. CHO cells stably expressing N-protein A TMEFF2-ECD were cultured in conditioned 

medium supplemented with 1% low IgG FBS. Following 3 days of culture, medium was 

collected as described in Materials and methods and filtered through 0.22 µm 

nitrocellulose membrane to remove cell debris. The medium was then applied onto 

previously equilibrated IgG Sepharose column at 4°C using the ÄKTAprime system with a 

flow rate of 1 ml/min. The IgG Sepharose was washed with TST buffer to remove non-

bound proteins and 5 mM ammonium acetate pH 5.0 to wash away the IgG that may leak 

from the column material. Following washing, 0.1 M glycine-HCl  pH 2.7 was applied to 

elute N-protein A TMEFF2-ECD which was monitored by measuring OD280 in eluted 

fractions. As shown in Figure 6.14, a broad, dispersed peak corresponding to eluted 

protein was observed upon applying the low pH elution buffer. To avoid the possibility that 

the eluted protein will be inactivated by the low pH, 0.5 ml of eluted fractions were 

collected into tubes containing 80 µl of 1M Tris-HCl pH 9.0.  

10 µl of the 11 fractions with the highest OD280 were separated by SDS-PAGE in 

reducing conditions using 11% resolving gel, blotted and labeled with anti-TMEFF2-ECD 

antibody (Figure 6.15). This analysis showed a band corresponding to the glycosylated 

monomer of N-protein A TMEFF2-ECD in fractions 2-6. However, analysis of the same 

samples by SDS-PAGE and silver staining showed the presence of two other bands in 

addition to N-protein A TMEFF2-ECD (Figure 6.16). The apparent sizes of these proteins 

(50 kDa and 25 kDa) corresponded to heavy and light chain of IgG that likely leaked from 

the IgG Sepharose. Theoretically, N-protein A TMEFF2-ECD can be separated from IgG 

by ion-exchange chromatography using the differences of the isoelectric points between 

these two proteins. However, the quantity of the IgG impurities is much higher than the 

amount of target protein. For that reason the concentration of purified protein A TMEFF2-

ECD will be too low to use this fusion protein in further experiments. 
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Figure 6.14 Elution of N-protein A TMEFF2-ECD from IgG Sepharose. 

Conditioned medium from N-protein A TMEFF2-ECD expressing CHO cells was applied 

overnight into IgG Sepharose column and the fusion protein was eluted with 0.1 M 

glycine-HCl pH 2.7. Elution of the N-protein A TMEFF2-ECD was monitored by measuring 

the OD280 of the eluate. 
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Figure 6.15 Analysis of N-protein A TMEFF2-ECD in eluted fractions by Western blotting. 

The presence of N-protein A TMEFF2-ECD in 11 fractions eluted from IgG Sepharose 

was analyzed by Western blotting and labeling with anti-TMEFF2-ECD antibody. 10 µl of 

each fraction was loaded per lane. The monomer of N-protein A TMEFF2-ECD was 

detected in fractions 2-6. 
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Figure 6.16 Analysis of N-protein A TMEFF2-ECD in eluted fractions by silver staining. 

The purity of N-protein A TMEFF2-ECD was analyzed in11 fractions with the highest 

OD280 value that were eluted from IgG Sepharose. The samples were separated using 

11% resolving gel and stained with silver. Except for N-protein A TMEFF2-ECD (fractions 

2-5) two additional bands, corresponding to heavy and light chain of IgG were detected in 

all fractions. 
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6.3.9 Proliferation of CHO cells in the presence of N-protein A CHO fragments. 

 The data described in the previous section indicated that protein A-tagged 

TMEFF2 fragments were difficult to purify from the conditioned medium of stably 

transfected CHO cells due to the co-purification of IgG. Low expression level of protein A 

TMEFF2-ECD made the second purification step unrewarding as the ratio of the impurities 

exceeded the amount of the protein of interest by approximately 50 fold. For that reason 

the conditioned media from stable cell lines expressing N-protein A TMEFF2 fusion 

proteins were used to study the possible effect of TMEFF2 cleavage products on cell 

proliferation.  

To obtain the conditioned medium 2x106 of CHO Flp-In or stably transfected CHO 

cells expressing N-protein A TMEFF2-ECD, 2xFS, FS+EGF or EGF-like domain were 

seeded into 6-wells plates and grown in serum free medium for 48 hours. The collected 

medium was centrifuged to remove cell debris and added directly to CHO cells growing in 

96-wells plates (Day 0). The number of viable cells in each well of the plate was assessed 

on Day 1, 2 and 3 using Cell Proliferation Kit II (XTT). The results from one experiment 

with eight repeats per condition are presented in Figure 6.17. The preliminary data 

indicate that the presence of TMEFF2-ECD and 2xFS fragments in conditioned medium 

decreased the proliferation rate of CHO cells, whereas the presence of EGF-like domain 

or FS+EGF TMEFF2 fragments did not influence cell proliferation. This result can be 

explained by the findings published by Lin and co-workers (Lin et al. 2011), showing that 

the presence of the first FS domain (or both FS domains) is required for interaction 

between TMEFF2 and PDGF-AA growth factor.  
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Figure 6.17 Proliferation of CHO cells in the presence of N-protein A TMEFF2 conditioned 

media. 

CHO cells were grown in 96-well plates in the presence of serum free conditioned media 

from stable cell lines expressing N-protein A TMEFF2-ECD, 2xFS, FS+EGF and EGF-like 

domains or non transfected CHO cells as a control. Cell proliferation was monitored over 

3 day period using Cell Proliferation Kit II (XTT) as described in Materials and methods. 

The presence of TMEFF2-ECD and 2xFS fragments decreased cell proliferation. Graph 

shows results from one preliminary experiment with eight repeats per condition. 
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6.4 Chapter summary. 

The data presented in Chapter 5 described expression and purification protocol of 

MBP-tagged TMEFF2 EGF-like domain and HREGF-like domain mutant in E. coli. 

However, due to the presence of several disulphide bonds within the FS domain, the 

TMEFF2-ECD, 2xFS and FS-EGF fragments were expressed but misfolded using a 

prokaryotic system. In this chapter mammalian expression was tested in order to obtain 

recombinant TMEFF2 fragments that can be used to investigate the influence of TMEFF2 

cleavage products on prostate cancer cells in vitro. 

The first method used to obtain recombinant TMEFF2 cleavage products was 

generation of stable CHO cell line releasing TMEFF2-ECD tagged at the C-terminus with 

the Fc fragment of human IgG1. Purification of TMEFF2-ECD-Fc from the conditioned 

medium was performed using the affinity of the Fc-tag to protein G Sepharose. The Fc-

tagged recombinant protein was eluted from the column material using low pH buffer and 

collected fractions were immediately mixed with 1 M Tris-HCl pH 9.0 to neutralize the pH 

and prevent destruction of protein’s biological activity. The elution profile presented in 

Figure 6.4 indicated that the protein of interest was eluted from the column material as 

soon as the pH of the buffer inside the column decreased. Western blot analysis of 

collected fractions confirmed the presence of TMEFF2-ECD-Fc in eluted samples (Figure 

6.5 B, fractions 2-8), however in addition to the ~75 kDa band corresponding to the 

TMEFF2-ECD-Fc monomer an additional ~50 kDa protein was detected. As this band was 

recognized by anti-TMEFF2-ECD antibody it was hypothesized that the ~50 kDa protein 

corresponded to partially cleaved TMEFF2-ECD-Fc. The cleavage of TMEFF2-ECD-Fc 

resulted from the culture conditions of CHO cells stably expressing TMEFF2-ECD-Fc. 

Prior to medium collection the cells were grown in conditioned medium containing 1% low 

IgG FBS instead of standard 10% FBS. In addition to grow factors serum contains also 

several protease inhibitors, such as alpha-1-antitrypsin (AAT), alpha-2-macroglobulin (α-2-

M) and antithrombin (Gettins 2002; Armstrong & Quigley 1999).  For that reason reduced 

amount of serum in the medium resulted in higher activity of proteases expressed by CHO 

cells and increased processing of TMEFF2-ECD-Fc that is known to be prone for 

proteolysis (Ali and Knäuper 2007, Chapter 4). In order to prevent TMEFF2-ECD-Fc 

during future purification, the conditioned medium should be supplemented with PMSF, 

EDTA and/or protease inhibitor cocktail immediately after collection from the cells. 

The analysis of eluted fractions containing TMEFF2-ECD-Fc by SDS-PAGE and 

silver staining revealed that the purified protein was contaminated with bovine IgG (Figure 

6.5 A), despite culturing the TMEFF2-ECD-Fc CHO cells in the presence of 1% low IgG 

FBS. To remove the IgG contamination from TMEFF2-ECD-Fc a second purification step 

was required.  
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The TMEFF2-ECD-Fc pcDNA5/FRT vector used to stably transfect CHO cells 

contained also a sequence encoding His tag, located downstream of the TMEFF2-ECD-

Fc gene. The presence of the His tag allowed further purification of TMEFF2-ECD-Fc 

using HIS-Select HF Nickel Affinity Gel. Incubation of the sample containing TMEFF2-

ECD-Fc and bovine IgG mixture resulted in binding of the TMEFF2-ECD-Fc to the HIS-

Select affinity gel, whereas the bovine IgG remained in solution. To disrupt the interaction 

between TMEFF2-ECD-Fc and the affinity gel, the targeted protein was eluted using 

imidazole-containing buffer (Figure 6.6 and 6.7). The purity and folding of purified 

TMEFF2-ECD-Fc was then examined by SDS-PAGE and silver staining or Western 

blotting in the presence or absence of β-mercaptoethanol (Figure 6.8). In the absence of 

β-mercaptoethanol TMEFF2-ECD-Fc was present in the sample as a >130 kDa full length 

dimer as well as two partially cleaved dimers with apparent molecular masses of ~80 kDa 

and 90 kDa. Analysis of the same samples in the presence of β-mercaptoethanol in 

sample loading buffer revealed that the TMEFF2-ECD-Fc dimer species disintegrate into 

~80 kDa full length TMEFF2-ECD-Fc monomer and cleaved ~50 kDa TMEFF2-ECD-Fc 

fragment. Silver staining revealed the presence of additional proteins in purified fractions 

which were not detected with anti-TMEFF2-ECD antibody. This proteins with apparent 

molecular masses of ~38 and ~33 kDa are more likely TMEFF2-ECD-Fc fragments which 

contain only the Fc-tag sequence, as confirmed for the ~38 kDa band by mass spec 

analysis. The schematic diagram of possible TMEFF2-ECD-Fc species which might be 

detected by Western blotting or silver staining in reducing and non-reducing conditions is 

presented in Figure 6.9.  

Western blot and silver staining analysis showed that the IgG impurities were 

removed from the sample during the second purification procedure, however the 

recombinant TMEFF2-ECD-Fc was partially processed by proteases expressed by the 

CHO cells. Due to the time limitations the purification of TMEFF2-ECD-Fc in the presence 

of protease inhibitors in the collected medium could not be performed and the purified 

mixture of TMEFF2-ECD-Fc full length and cleaved dimers was used to investigate the 

biological activity of TMEFF2 cleavage products in vitro. In order to examine if the 

TMEFF2-ECD-Fc or its fragments are able to activate ErbB receptors, the ERK1/2 

phosphorylation assays was performed using PNT2-C2 (Figure 6.10) and HEK293 cells 

(Figure 6.11). However, neither PNT2-C2 nor HEK293 cells responded to TMEFF2-ECD-

Fc treatment in ERK1/2 phosphorylation. This result is in disagreement with the findings 

published previously by Ali and Knäuper, showing that HEK293 cells phosphorylate 

ERK1/2 following treatment with recombinant TMEFF2-ECD (Ali & Knäuper 2007). The 

reason behind this conflicting data is probably the use of different methods to express and 

purify TMEFF2-ECD. The mentioned study was performed using V5-tagged TMEFF2-

ECD expressed in CHO cells and purified in a single step process using anti-V5 agarose. 

The lack of the second, “polishing” purification step might possibly leave some impurities 
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in the TMEFF2-ECD sample that induced ERK1/2 phosphorylation in HEK293 cells. The 

two step purification of TMEFF2-ECD-Fc described in this chapter allowed to obtain a 

sample containing pure, homogenous TMEFF2-ECD-Fc, as confirmed by the SDS-PAGE 

analysis and silver staining presented in Figure 6.8. The other explanation of the lack of 

ERK1/2 phosphorylation in response to TMEFF2-ECD-Fc treatment is the interference of 

the C-terminal Fc-tag with TMEFF2-ECD interaction with ErbB receptors. It is also 

possible that due to the proteolytic cleavage of TMEFF2-ECD-Fc the concentration of the 

ErbB-activating form of TMEFF2-ECD-Fc was too low to be able to detect receptor 

activation. For these reasons the in vitro experiments described in this chapter are 

considered as preliminary and should be repeated with TMEFF2-ECD-Fc that was purified 

in the presence of protease inhibitors. 

The mixture of TMEFF2-ECD-Fc dimer species that was obtained was also used 

to investigate the proliferation of PNT2-C2 cells in the presence of soluble TMEFF2 

fragments. Figure 6.12 shows the data obtained from one preliminary experiment where 

PNT2-C2 cells were grown in the presence of different concentrations of TMEFF2-ECD-

Fc and the change in cell number was measured using Cell Proliferation Kit II (XTT). This 

result is in agreement with published data, showing that conditioned medium from 

TMEFF2-ECD expressing cells or recombinant TMEFF2-ECD has growth-promoting 

activity on HEK293 cells as well as benign human prostatic RWPE1 cell line (Ali & 

Knäuper 2007; Chen et al. 2011). However, the data from the ERK1/2 phosphorylation 

assays suggested that the proliferation-stimulating activity of TMEFF2-ECD is not 

mediated through ErbB receptors and activation of the MAPK/ERK signaling pathway. The 

receptor responding to TMEFF2 as well as the activated signaling pathway leading to 

increased proliferation need to be established in future studies. 

An alternative system chosen to generate fragments corresponding to N-terminal 

TMEFF2 cleavage products was generation of stable CHO cell lines expressing TMEFF2-

ECD, 2xFS, FS+EGF and EGF-like domain tagged on the N-terminus with a protein A tag. 

The presence of the protein A tag on the N-terminus of TMEFF2 fragments allowed 

comparison of the influence of the tag location on soluble TMEFF2 activity. Due to the 

presence of the signal sequence from the human IgG1 TMEFF2 fragments were released 

and were purified from the conditioned medium using the affinity of protein A tag for IgG 

Sepharose. The purification protocol for protein A fusion proteins was established first for 

the N-protein A TMEFF2-ECD. The medium from stably transfected CHO cells was 

applied onto IgG Sepharose column and, following washing, the N-protein A TMEFF2-

ECD was eluted using low pH buffer. The analysis of the elution profile shown in Figure 

6.14 indicated that some protein was eluted from the column material as a broad, 

dispersed peak. The analysis of the eluted fractions by Western blotting and anti-

TMEFF2-ECD labelling confirmed that the N-protein A TMEFF2-ECD was present in 
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fractions 2-6 (Figure 6.15). However, the analysis of the purity of obtained recombinant 

protein by SDS-PAGE and silver staining revealed the presence of two additional bands in 

all eluted fractions (Figure 6.16). The size of these proteins (~25 kDa and ~50 kDa) 

indicated that N-protein A TMEFF2-ECD was contaminated with IgG leaking from the 

column material or was co-purified from the conditioned medium due to the bovine IgG-

protein A interactions. N-protein A TMEFF2-ECD could be further purified using ion 

exchange chromatography that protein separation based on the difference between their 

isoelectric points. In practice, however, the second purification step would dilute the 

targeted protein and the final concentration of N-protein A TMEFF2-ECD would be too low 

to perform next experiments. For that reason it was concluded that the expression of 

TMEFF2 as N-protein A fusion in CHO cells is not the optimal method to produce 

recombinant TMEFF2 fragments. 

As the N-protein A TMEFF2 fragments were difficult to purify from the CHO 

medium, the complete conditioned media from stably transfected cells were used to 

investigate if the presence of TMEFF2-ECD, 2xFS, FS+EGF or EGF-like domain has any 

influence on cell proliferation. In these experiments the growth of cells was monitored 

using Cell Proliferation Kit II (XTT). Due to the time limitations only a pilot experiment was 

performed and Figure 6.15 presents the proliferation results with eight repeats per 

condition. This preliminary data showed decreased proliferation of CHO cells grown in the 

conditioned medium from TMEFF2-ECD and 2xFS expressing cells whereas the presence 

of FS-EGF and EGF-like domain in the medium did not influence CHO cell proliferation. 

This interesting observation could be explained based on the findings published by Lin 

and co-workers (Lin et al. 2011), showing that the first FS domain or both FS domains of 

TMEFF2 are able to bind and inactivate PDGF-AA. It could be then hypothesized that 

TMEFF2-ECD and 2xFS fragments bound and neutralized some growth factors required 

for the proliferation of CHO cells, most likely PDGF-AA. The other growth factors which 

could be potentially neutralized by soluble TMEFF2 are members of the transforming 

growth factor β (TGF-β) superfamily. The high sequence identity between FS domains of 

TMEFF2 and agrin suggest that TMEFF2 may interact with bone morphogenic factors 

(BMPs) and TGF-β1. Moreover, binding of the growth factors from the TGF-β family 

seems to be a common feature of many follistatin-like proteins. Fstl1 protein antagonize 

BMP-4 signaling during lung development (Geng et al. 2011) and recently discovered 

WFIKKN1 and WFIKKN2 proteins bind multiple TGF-β growth factors, including BMPs, 

TGF-β1 and growth differentiation factors (GDFs) (Kondás et al. 2008; Szláma et al. 

2010). 

The data described in Chapters 5 and 6 did not answer the question what is the 

biological role of TMEFF2 cleavage products but indicated some important activities of the 

soluble TMEFF2 fragments that should be investigated in the future. The tested soluble 
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TMEFF2 fragments did not induce ERK1/2 phosphorylation nor antagonize ErbB signaling 

pathway. It does however influence cell proliferation and the effect of TMEFF2-ECD 

seems to be cell type specific. CHO cells cultured in the presence of TMEFF2-ECD and 

2xFS fragments grown slower than the control cells, possibly due to binding and 

neutralization of some growth factors by these fragments. Based on the literature data 

describing the role of other proteins containing FS domain it is hypothesized that the 

inhibitory effect of TMEFF2-ECD and 2xFS on CHO cells depends on their ability to bind 

members of the PDGF and/or TGF-β families. In contrast to the CHO cells, PNT2-C2 

normal prostate epithelial cells grown faster in medium supplemented with 0.1-1.0 µg/ml 

of TMEFF2-ECD-Fc. As the TMEFF2-ECD-Fc does not activate ErbBs it will be interesting 

to investigate which receptors and signaling pathways are responsible for this growth-

promoting effect of TMEFF2. 

 

 

  



215 

 

 

 

 

 

 

Chapter 7:  

The fate of TMEFF2 cytoplasmic domain 

following ectodomain shedding 
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7.1 Introduction. 

 The data presented in Chapter 4 showed that TMEFF2 is processed by at least 

two groups of proteases that are expressed by prostate cancer cells – ADAMs and type II 

transmembrane serine proteases. TMEFF2 cleavage by these enzymes may play a 

critical role in the biological activity of TMEFF2 and deciphering the meaning of TMEFF2 

processing may help to better understand the mechanism of prostate cancer progression. 

The experiments described in Chapters 5 and 6 were performed in order to investigate the 

biological function of extracellular products of TMEFF2 shedding. However, it should be 

emphasized that the proteolytic processing of TMEFF2 generates cytoplasmic fragment(s) 

that may have important biological functions inside prostate cancer cells. 

7.1.1 The cytoplasmic domain of TMEFF2. 

 The evidence published by Ali and Knäuper indicated that the transmembrane 

fragment of TMEFF2 generated by ADAMs is further processed by the γ-secretase 

complex, resulting in the release of a small intracellular fragment (TMEFF2-ICD). Analysis 

of the TMEFF2-expressing cells treated with the γ-secretase inhibitor DAPT revealed the 

accumulation of TMEFF2 fragment corresponding to the membrane stump in the lysate 

(Ali & Knäuper 2007). Until very recently, there were no data regarding the fate of 

TMEFF2-ICD or interacting partners for the TMEFF2 cytoplasmic domain. However, in 

2011 Chen and co-workers identified the first and currently the only known binding partner 

for the TMEFF2 cytoplasmic domain. MALDI-TOF/MS analysis of TMEFF2 complexes 

from stably transfected cells revealed that the cytoplasmic tail of TMEFF2 binds sarcosine 

dehydrogenase (SARDH) (Chen et al. 2011), an enzyme present mostly in the 

mitochondria but also in the cytoplasm that catalyses the conversion of sarcosine to 

glycine (Porter et al. 1985). TMEFF2-SARDH complexes were co-precipitated from 

LNCaP lysates and 22RV1 prostate cancer cells that express TMEFF2 endogenously. 

The biological significance of TMEFF2-SARDH interaction is not clear. However, 

decreased levels of sarcosine in the cytoplasm of TMEFF2 over-expressing cells 

suggested that interaction with TMEFF2 increased the catalytic activity of SARDH (Chen 

et al. 2011).  

7.1.2 Atypical intracellular fate of pro-HB-EGF cytoplasmic domain. 

 Intracellular domains of several proteins that undergo ectodomain shedding are 

further processed by the γ-secretase complex. Liberated cytoplasmic domains of these 

proteins can translocate within the cell and might be involved in regulation of several 

processes, including activation of cytoplasmic kinases (Georgakopoulos et al. 2006), 

apoptosis (Vidal et al. 2005; Naresh et al. 2006) or gene transcription (Schroeter et al. 

1998; Ni et al. 2001; Maetzel et al. 2009). However, not all proteins that undergo 

ectodomain shedding are further cleaved by γ-secretase but their intracellular domains 
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may still play an important role inside the cell. A very interesting example of this type of 

protein is the precursor of heparin-binding epidermal growth factor (pro-HB-EGF). Pro-HB-

EGF is released from the cell surface by ectodomain shedding mediated by ADAM9, 10, 

12 and 17 (Izumi et al. 1998; Asakura et al. 2002; Lemjabbar & Basbaum 2002; 

Sunnarborg et al. 2002; Yan et al. 2002). Immunolocalization experiments showed that 

following ADAM-mediated shedding the C-terminal part of pro-HB-EGF (HB-EGF-C) 

localized in the nucleus. However, the trafficking of the HB-EGF-C in cells expressing 

dominant-negative presenilin-1 mutant was not impaired, suggesting that the catalytic 

activity of the γ-secretase complex is not required for pro-HB-EGF translocation (Nanba et 

al. 2003). Further study showed that following ectodomain shedding HB-EGF-C is 

endocytosed and translocates to the nuclear envelope via retrograde transmembrane 

trafficking. Endocytic vesicles containing HB-EGF-C merge with the Golgi apparatus from 

which HB-EGF-C is targeted to the ER. From the ER HB-EGF-C diffuses or is actively 

transported to the inner nuclear membrane where it can interact with additional 

transcription factors (Hieda et al. 2008). A schematic diagram explaining HB-EGF-C 

trafficking inside the cell is presented in Figure 7.1. In the nucleus HB-EGF-C was shown 

to interact with two transcription repressors: B-cell lymphoma 6 protein (Bcl6) and 

promyelocytic leukemia zinc finger (PLZF) (Kinugasa et al. 2007; Nanba et al. 2003). Bcl6 

is a mammalian transcriptional factor repressing the expression of cyclin D2 gene (Shaffer 

et al. 2000). Interaction of Bcl6 with HB-EGF-C reversed cyclin D2 repression by 

interfering with Bcl6 binding to the cyclin D2 gene promoter (Kinugasa et al. 2007).  
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Figure 7.1 A model of HB-EGF-C trafficking to the inner nuclear membrane. 

Pro-HB-EGF is expressed on the cell surface where it undergoes shedding mediated by 

ADAMs, releasing soluble HB-EGF (1). Membrane-anchored HB-EGF C-terminus (HB-

EGF-C) is endocytosed (2) and possibly follows a retrograde transport pathway to the 

Golgi apparatus through recycling endosomes (3). From the Golgi apparatus HB-EGF-C is 

targeted to the ER (4) from where it diffuses or is actively transported to the inner nuclear 

membrane (5) and regulates transcription of cyclin genes (modified from M. Hieda et al. 

2008). 

 

PLZF, the other nuclear binding partner of HB-EGF-C, is a negative regulator of 

the cell cycle that repress the transcription of cyclin A and delays the entry or progression 

of cells into S-phase (Shaknovich et al. 1998; Yeyati et al. 1999). Binding of HB-EGF-C 

causes nuclear export of PLZF and reversal of cyclin A suppression (Nanba et al. 2003). 

Monitoring of the cell surface expression of pro-HB-EGF and nuclear accumulation of HB-

EGF-C during cell cycle revealed that processing and translocation of HB-EGF correlates 

with cell cycle phases. Shedding of pro-HB-EGF occurs mostly during G1-phase whereas 

HB-EGF-C accumulates in the nucleus in the beginning of S-phase causing nuclear 

export of PLZF in the late S-phase (Toki et al. 2005). 

The role of HB-EGF-C in regulation of cyclin gene expression is even more 

interesting since the soluble HB-EGF is also involved in the modulation of the cell cycle. 

Binding of HB-EGF to ErbB receptors regulates the expression of cyclin D via the 
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Ras/MAPK signaling cascade and promotes progression into the G1 phase of the cell 

cycle (Hackel et al. 1999). Therefore, pro-HB-EGF has two functional domains affecting 

mitogenic signaling, and the co-ordination of the dual mitogenic signals generated by the 

proteolytic processing may be important for cell cycle progression, as considered by 

Nanba and Higashiyama (Nanba & Higashiyama 2004).  

7.2 Aims. 

Chapter 7 describes preliminary data deciphering the role of TMEFF2 cytoplasmic 

fragments generated following ectodomain shedding. The experiments include: 

• characterization of TMEFF2 cellular localization in HEK293 cells 

transfected with EGFP-TMEFF2 or TMEFF2-YFP and CHO cells 

expressing HA-TMEFF2-V5 

• comparison of cellular localization of TMEFF2 and HB-EGF in stably 

transfected CHO cells 

• analysis of TMEFF2 processing and cellular localization in the presence or 

absence of the γ-secretase inhibitor DAPT 

• analysis of TMEFF2 C-terminal fragments in nuclear and cytoplasmic 

fractions from TMEFF2-expressing cells 

• analysis of TMEFF2 C-terminal fragments generated by matriptase and 

hepsin-mediated cleavage in the presence or absence of γ-secretase and 

proteasome inhibitors. 
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7.3 Results 

7.3.1 Localization of EGFP-TMEFF2 and TMEFF2-YFP in transfected HEK293 cells 

 One of the methods commonly used to examine intracellular localization of 

proteins is transfection of cells with expression construct encoding the protein of interest 

tagged with a fluorescent protein. This method allows trafficking of the studied protein in 

fixed, as well as live cells, to be monitored as it does not require additional labelling with 

antibodies. Cellular localization of TMEFF2 was examined in HEK293 cells transiently 

transfected with two constructs: TMEFF2 tagged on the N-terminus with enhanced green 

fluorescent protein (EGFP) and TMEFF2 tagged on the C-terminus with yellow fluorescent 

protein (YFP). 48 hours post-transfection the expression pattern of fluorescent TMEFF2 

fusion proteins was analyzed and compared using the confocal microscope. As shown in 

Figure 7.2, EGFP-TMEFF2 expression was found mostly on the cell surface as well as 

membrane structures inside the cell, most likely corresponding to the ER. The green 

fluorescence signal detects only the full length EGFP-TMEFF2 or the EGFP-TMEFF2 

cleavage products. Thus, cell surface fluorescence corresponds to the transmembrane 

EGFP-TMEFF2, whereas intracellular staining shows newly synthesized EGFP-TMEFF2. 

Additionally, at this stage of the investigation it is also possible that the full length EGFP-

TMEFF2 or its N-terminal cleavage products are endocytosed and the green fluorescent 

staining in the cytoplasm corresponds to internalised protein. Figure 7.3 presents confocal 

microscope analysis of TMEFF2-YFP expression in HEK293 cells. Similarly to EGFP-

TMEFF2, high TMEFF2-YFP fluorescent signal was detected on the cell surface. 

TMEFF2-YFP was also found in membrane structures within the cytoplasm as well as in 

the perinuclear area. HEK293 cells transiently transfected with TMEFF2-YFP were then 

used to monitor translocation of TMEFF2 cytoplasmic domain following PMA-mediated 

ectodomain shedding but due to the high amount of TMEFF2-YFP in the cytoplasm and 

the very bright fluorescent signal from YFP a change in TMEFF2 cytoplasmic domain 

localization could not be observed (data not shown). Therefore, further experiments were 

performed using CHO cells stably expressing TMEFF2 tagged on the C-terminus with V5 

epitope which was visualized by labelling with mouse anti-V5 and anti-mouse 

AlexaFluor®594 antibodies. V5-tagged TMEFF2 was also preferred in this analysis as the 

literature data indicate that tagging short cytoplasmic domains with large fluorescent 

proteins may affect their trafficking and biological function (Nanba et al 2003).  
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Figure 7.2 Localization of EGFP-TMEFF2 in transiently transfected HEK293 cells. 

HEK293 cells were seeded on poly-L-lysine-coated cover slips in 6-well plates and 

transiently transfected with expression vector encoding TMEFF2 tagged on the 

extracellular domain (N-terminus) with enhanced green fluorescent protein (EGFP). 48 

hours post-transfection HEK293 cells were fixed and cellular localization of EGFP-

TMEFF2 was analyzed using confocal microscope. EGFP-TMEFF2 signal was detected 

mostly on the cell surface as well as in some membrane structures within the cytoplasm. 

Cell nuclei were visualised with DAPI (blue pseudocolor). 
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Figure 7.3 Localization of TMEFF2-YFP in transiently transfected HEK293 cells. 

HEK293 cells were grown on poly-L-lysine-coated cover slips in 6-well plates and 

transiently transfected with expression construct encoding TMEFF2 tagged on the 

cytoplasmic domain (C-terminus) with yellow fluorescent protein (YFP). 48 hours post-

transfection the cells were fixed and cellular localization of TMEFF2-YFP was monitored 

using the confocal microscope. TMEFF2-YFP was found on the cell surface as well as in 

some membrane structures within the cytoplasm and in the perinuclear region. Cell nuclei 

were visualised using DAPI (blue pseudocolor). 
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7.3.2 Comparison of HA/V5 TMEFF2 and AP/V5 HB-EGF expression pattern in stably 

transfected CHO cells. 

 The TMEFF2 expression pattern was characterized previously in HEK293 cells 

stably expressing HA/V5 TMEFF2 (Chapter 4, Figure 4.3). This analysis showed TMEFF2 

localization on the cell surface, in the perinuclear region and within cytoplasmic structures, 

most likely corresponding to the ER. In this chapter TMEFF2 cellular localization was 

analyzed in stably transfected CHO cells, as it allowed comparison of TMEFF2 expression 

pattern with HB-EGF using a AP/V5 HB-EGF CHO cell line previously generated by Dr 

Vera Knäuper. The localization of TMEFF2 and HB-EGF cytoplasmic domains was 

analyzed in the presence or absence of PMA. HA/V5 TMEFF2 and AP/V5 HB-EGF CHO 

cells were grown in 6-well plates on poly-L-lysine-coated cover slips, serum starved for 1 

hour and treated for 60 minutes with 100 ng/ml of PMA. Control cells were treated with 

DMSO solvent control. Cytoplasmic domains of HA/V5 TMEFF2 and AP/V5 HB-EGF were 

visualised using mouse monoclonal anti-V5 primary antibody and anti-mouse-

AlexaFluor®594 secondary antibody. As shown in Figure 7.4 A, HA/V5 TMEFF2 in control 

cells was present on the cell surface as well as in the cytoplasm. Treatment with PMA 

increased cytoplasmic labelling of HA/V5 TMEFF2, suggesting translocation of V5-tagged 

TMEFF2 cytoplasmic fragment from the cell membrane into the cytoplasm. Anti-V5 

labelling corresponding to HA/V5 TMEFF2 cytoplasmic domain did not localize in any 

vesicles or other structures, suggesting that intracellular part of TMEFF2 is rather not 

endocytosed following ectodomain shedding. However, this suggestion should be further 

verified by performing immunocolocalization of TMEFF2 and intracellular vesicles. 

 AP/V5 HB-EGF in control cells was found mostly in the cells membrane (Figure 

7.4 B, left picture). PMA-induced ectodomain shedding significantly decreased cell surface 

labeling of AP/V5 HB-EGF and increased the cytoplasmic signal intensity (Figure 7.4 B, 

right picture). In the cytoplasm HB-EGF was detected within several vesicle structures that 

tended to gather close to the nucleus and are thought to be components of the 

endosome/Golgi/ER retrograde transport pathway that translocates HB-EGF-C to the 

inner nuclear membrane(Hieda et al. 2008).  

 Comparing the expression pattern of TMEFF2 and HB-EGF in stably transfected 

CHO cells it was concluded that both proteins were present on the cell surface and 

translocated to the cytoplasm upon PMA-mediated shedding. However, the pattern of 

TMEFF2 and HB-EGF labelling in the cytoplasm is different, indicating distinct intracellular 

trafficking of these proteins. PMA-treatment of AP/V5 HB-EGF CHO cells caused 

endocytosis of V5-tagged HB-EGF-C and accumulation of V5-positive endocytotic 

vesicles around the nucleus, which is in agreement with the literature data (Hieda et al. 

2008). V5-tagged cytoplasmic domain of HA/V5 TMEFF2 was not detected in endocytotic 

structures.  
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Figure 7.4. Localization of HA/V5 TMEFF2 or AP/V5 HB-EGF in CHO cells following PMA 

treatment. 

CHO cells stably expressing HA/V5 TMEFF2 (A) or AP/V5 HB-EGF (B) were serum-

starved for 1 hour and treated for 60 minutes with 100 ng/ml of PMA to induce ectodomain 

shedding. Control cells were treated with DMSO solvent control. Fixed and permeabilised 

cells were labelled with mouse anti-V5 primary and anti-mouse AlexaFluor®594 

secondary antibody (red pseudocolour). Cell nuclei were visualised with DAPI (blue 

pseudocolour). In control cells HA/V5 TMEFF2 was present on the cell surface and in the 

cytoplasm. PMA treatment increased TMEFF2 staining in the cytoplasm, suggesting 

translocation of V5-tagged TMEFF2 cytoplasmic domain from cell membrane to the 

cytoplasm (A). AP/V5 HB-EGF in control cells was detected mostly on the cell surface. 

Treatment with PMA decreased membrane expression of AP/V5 HB-EGF and caused 

localization of V5-tagged cytoplasmic domain of HB-EGF in endosomes (B, white arrows). 
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7.3.3 Processing of TMEFF2 by the γ-secretase complex. 

 The data published by Ali and Knäuper showed that the shedding of AP/V5 

TMEFF2 ectodomain leads to the generation of a ~17 kDa membrane-retained stub and a 

~11 kDa free cytoplasmic fragment (TMEFF2-ICD) (Ali & Knäuper 2007). Analysis of 

AP/V5 TMEFF2 C-terminal cleavage products presented in Chapter 4 showed the 

presence of the ~17 kDa TMEFF2 fragment generated by metalloproteinases, whereas 

the ~ 10 kDa TMEFF2-ICD, produced by the γ-secretase, was detected only occasionally 

(Chapter 4, Figure 4.11). In order to confirm that the γ-secretase complex is involved in 

the processing of TMEFF2, HA/V5 TMEFF2 HEK293 cells were grown overnight in the 

presence of 5 µM γ-secretase inhibitor DAPT followed by 1 hour treatment with 100 ng/ml 

PMA to induce ectodomain shedding. Control cells were treated with DMSO solvent. 

Equal amounts of total cell lysates were analyzed by Western blotting using anti-V5 

monoclonal antibody. As shown in Figure 7.5, the lysate from control cells lacked C-

terminal AP/V5 TMEFF2 cleavage products (lane 1). PMA-treatment caused the 

accumulation of a ~17 kDa fragment corresponding to the transmembrane stub, 

generated by metalloproteinases (lane 2). Overnight treatment with DAPT also increased 

the amount of ~17 kDa TMEFF2 C-terminal fragment in the lysate (lane 3), whereas the 

greatest accumulation of a ~17 kDa TMEFF2 cleavage product was detected in the lysate 

from cells treated with DAPT and PMA (lane 4). Despite the fact that the ~11 kDa 

TMEFF2-ICD was not detected in this experiment it was concluded that the γ-secretase 

complex is involved in TMEFF2 processing as the presence of γ-secretase inhibitor DAPT 

led to the accumulation of ~17 kDa γ-secretase substrate. DAPT treatment prevented 

further processing of the TMEFF2 membrane stub generated by constitutively active 

metalloproteinases (lane 3) as well as PMA-activated enzymes (lane 4). The lack of ~11 

kDa γ-secretase product in cell lysates was explained by rapid further processing or 

degradation of this C-terminal TMEFF2 fragment. 

  

  



226 

 

 

Figure 7.5 Analysis of HA/V5 TMEFF2 C-terminal processing in HEK293 cells following 

PMA treatment in the presence of γ-secretase inhibitor DAPT. 

HA-V5 TMEFF2 HEK293 cells were grown overnight in the presence of 5 µM γ-secretase 

inhibitor DAPT followed by 1 hour treatment with 100 ng/ml PMA. 50 µg of total cell 

lysates were analyzed by Western blotting and labeling with anti-V5 antibody to detect C-

terminal TMEFF2 cleavage products. Anti-GAPDH labeling served as a loading control. 

The amount of a ~17 kDa HA/V5 TMEFF2 fragment corresponding to the 

metalloproteinase product increased in the presence of DAPT, indicating that TMEFF2 is 

processed by the γ-secretase following ectodomain shedding. 
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 Cellular trafficking of TMEFF2 C-terminal fragments was then monitored using 

HA/V5 TMEFF2 CHO cells grown overnight in the presence of metalloproteinase inhibitor 

GM6001, γ-secretase inhibitor DAPT or DMSO solvent control followed by 1 hour 

treatment with 100 ng/ml PMA (Figure 7.6). Localization of C-terminal HA/V5 TMEFF2 

domain was visualized using mouse anti-V5 and anti-mouse AlexaFluor®594 antibodies 

and analyzed by confocal microscope. As observed previously, treatment with PMA 

increased the presence of C-terminal TMEFF2 fragment(s) in the cytoplasm (Figure 7.6, 

B). Pre-treatment with GM6001 inhibited HA/V5 TMEFF2 shedding by metalloproteinases 

and increased TMEFF2 labeling on the cell surface (Figure 7.6, C). A similar effect was 

observed when cells were grown overnight in the presence of DAPT (Figure 7.6, D). 

DAPT-treatment prevented γ-secretase processing of TMEFF2 membrane stub and 

translocation of TMEFF2-ICD from the cell membrane into the cytoplasm, retaining anti-

V5 labeling on the cell surface.  

Western blot analysis and immunolocalization experiments presented in Figures 

7.5 and 7.6 gave indirect evidence that following ectodomain shedding TMEFF2 is 

processed γ-secretase, liberating free TMEFF2-ICD. 
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Figure 7.6 Cellular localization of HA/V5 TMEFF2 cytoplasmic domain in CHO cells in the 

presence of metalloproteinase or γ-secretase inhibitors. 

HA/V5 TMEFF2 CHO cells were grown overnight in the presence of 25 µM GM6001 

(metalloproteinase inhibitor), 5 µM DAPT (γ-secretase inhibitor) or DMSO (solvent control) 

followed by 1 hour treatment with 100 ng/ml PMA. The cells were fixed, permeabilised and 

labeled using mouse anti-V5 primary and anti-mouse AlexaFluor®594 secondary antibody 

(red pseudocolour). Cell nuclei were visualised with DAPI (blue pseudocolour). PMA 

treatment increased TMEFF2 labelling in the cytoplasm, whereas the presence of 

GM6001 or DAPT retained TMEFF2 signal on the cell surface. 
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7.3.4 Investigation of TMEFF2-ICD translocation to the nucleus. 

Cytoplasmic domains of proteins undergoing RIPping follow several intracellular 

pathways, including translocation to the nucleus and regulation of gene expression. 

Analysis of TMEFF2 localization in CHO cells shown in previous figures did not indicate 

that TMEFF2-ICD translocates to the nucleus, even after TMEFF2 processing was 

induced with PMA. However, the immunolocalization experiment alone is not convincing 

enough to conclude that TMEFF2-ICD does not localize in the nucleus. For that reason 

translocation of TMEFF2-ICD to the nucleus was investigated further by separation of 

cytoplasmic and nuclear extracts from  HA/V5 TMEFF2 HEK293 cells and analyzing them 

for the presence of V5-tagged TMEFF2-ICD. 

7.3.4.1 Optimisation of the cytoplasmic and nuclear extraction protocol using HB-EGF-V5-

expressing CHO cells. 

The cytoplasmic and nuclear extraction method is based on two-step lysis protocol 

that allows separation of cytoplasmic and nuclear proteins. The cells are first mixed with a 

mild lysis buffer that disrupts plasma membranes but preserves nuclear envelopes. The 

cytoplasmic extract is then separated from the cell nuclei by centrifugation and gentle 

washing followed by disruption of cell nuclei with lysis buffer containing 10% glycerol. The 

cytoplasmic and nuclear extraction protocol used in this thesis was optimised first using 

HEK293 cells transfected with AP/V5 HB-EGF. It is known from the literature that the C-

terminus of HB-EGF (HB-EGF-C) is endocytosed following ectodomain shedding and 

transported via endosome/ER/Golgi retrograde pathway to the inner nuclear membrane 

(Nanba et al. 2003; Hieda et al. 2008). Based on these data it was expected that HB-EGF-

C will be found in nuclear extracts from transfected HEK293 cells. To induce HB-EGF 

shedding and generation of HB-EGF-C the cells were treated for 1 hour with 100 ng/ml 

PMA prior to preparing cytoplasmic and nuclear extracts. Equal amounts of cytoplasmic 

and nuclear proteins were then analyzed by Western blotting and labelling with anti-V5 

antibody. To determine the efficiency of the extraction protocol, the Western blot 

membrane was stripped and re-probed with anti-β-tubulin antibody. The presence of β-

tubulin in the nuclear fraction would indicate that the extraction protocol requires further 

optimisation in order to obtain pure nuclear extract, devoid of cytoplasmic proteins. As 

shown in Figure 7.7, a ~12 kDa protein corresponding in size to V5-tagged HB-EGF-C 

was detected in the cytoplasmic fraction of AP/V5 HB-EGF HEK293 cells, whereas HB-

EGF fragments were not seen in the nuclear fraction. PMA treatment significantly 

increased the amount of V5-HB-EGF-C in the cytoplasmic extract and caused 

accumulation of the same protein in nuclear fraction. β-tubulin was found only in 

cytoplasmic fractions, indicating that the applied extraction protocol allows efficient 

separation of cytoplasmic and nuclear proteins.   
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Figure 7.7 Analysis of the AP/V5 HB-EGF C-terminus in the cytoplasmic and nuclear 

extracts from transfected HEK293 cells. 

HEK293 cells transiently transfected with AP/V5 HB-EGF were treated for 1 hour with 100 

ng/ml PMA to induce ectodomain shedding. Control cells were grown in medium 

containing DMSO solvent. 30 µg of cytoplasmic (C) and nuclear (N) extracts from control 

and PMA-treated cells were analyzed by Western blotting and anti-V5 labelling. Stripped 

membrane was probed with anti- β-tubulin antibody to detect possible contamination of 

the nuclear fraction with cytoplasmic proteins. In control cells V5-tagged HB-EGF-C was 

detected cytoplasmic but not nuclear fraction. PMA treatment increased the amount of V5-

HB-EGF-C in the cytoplasmic extract and caused accumulation of V5-tagged HB-EGF-C 

in the nuclear fraction. 
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7.3.4.2 Analysis of AP/V5 TMEFF2 cytoplasmic domain in nuclear and cytoplasmic 

extracts. 

 The optimised cytoplasmic and nuclear extraction protocol was used to analyze 

the presence of TMEFF2 C-terminal fragments in cytoplasmic and nuclear fractions. 

Similarly to AP/V5 HB-EGF-expressing cells, AP/V5 TMEFF2 HEK293 cells were treated 

for 1 hour with 100 ng/ml of PMA or DMSO as solvent control. Some of the cells were 

grown for 2 hours in the presence of10 ng/ml leptomycin B (LMB) prior to PMA treatment. 

LMB is a specific nuclear export inhibitor that covalently modifies exportin-1, an 

evolutionarily conserved receptor for the nuclear export signal of proteins (Kudo et al., 

1999). As presented in Figure 7.8, treatment with PMA increased the amount of a ~ 17 

kDaTMEFF2 fragment, corresponding to the metalloproteinase cleavage products in 

cytoplasmic extracts. C-terminal TMEFF2 fragments were not detected in nuclear extracts 

from control as well as PMA-treated cells. Pre-treatment with LMB did not cause 

accumulation of TMEFF2 fragments in the nuclear fraction and distribution of fragments 

was unaltered. 

 Based on the data obtained from immunolocalization experiments as well as 

analysis of TMEFF2 C-terminal fragments in cytoplasmic and nuclear extracts it was 

concluded that TMEFF2-ICD does not localize in the nucleus and thus is not directly 

involved in regulating gene expression. Moreover, the difficulty in TMEFF2-ICD detection 

suggest that this TMEFF2 fragment is very short lived and undergoes further cleavage or 

degradation immediately following γ-secretase processing. 
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Figure 7.8 Analysis of the AP/V5 TMEFF2 C-terminal fragments in the cytoplasmic and 

nuclear fractions from transfectedHEK293 cells. 

AP/V5 TMEFF2 HEK293 cells were grown for 2 hours in the presence of 10 ng/ml nuclear 

export inhibitor leptomycin B followed by 1 hour treatment with 100 ng/ml PMA. 50 µg of 

the cytoplasmic and nuclear extracts were analyzed by Western blotting and anti-V5 

labelling. Stripped membranes were re-probed for β-tubulin in order to exclude possible 

contamination of the nuclear fraction with cytoplasmic proteins. PMA-treatment increased 

the amount of ~17 kDa TMEFF2 fragment generated by metalloproteinases in the 

cytoplasmic extracts.  C-terminal TMEFF2 cleavage products were not detected in the 

nuclear extracts from control and PMA-treated cells, even following pre-incubation with 

LMB. 

  



233 

 

7.3.5 The fate of TMEFF2 C-terminal fragments generated by matriptase and hepsin. 

 The results presented in Chapter 4 indicated that TMEFF2 is processed not only 

by ADAMs and γ-secretase but also by type II transmembrane serine proteases – 

matriptase and hepsin. Moreover, the cleavage mediated by serine proteases occurs in 

different positions than ADAM-dependent processing, resulting in the generation of novel 

TMEFF2 fragments. The fate of the N-terminal TMEFF2 fragments released by matriptase 

and hepsin was analyzed in Chapters 5 and 6 whereas the fate of cytoplasmic fragments 

generated by serine proteases is investigated here. 

In order to investigate if matriptase and hepsin-generated transmembrane 

TMEFF2 fragments are processed further by γ-secretase, HEK293 cells transiently 

transfected with AP/V5 TMEFF2 and matriptase, matriptase S-A, hepsin or hepsin S-A 

were treated overnight with 5 µM DAPT. Control cells were grown in the presence of 

DMSO solvent control. Equal amounts of total cell lysates were then analyzed by Western 

blotting and labelling with anti-V5 antibody. To compare differences in sample loading the 

Western blot membrane was stripped and re-probed for GAPDH. In all analyzed lysates a 

~17 kDa protein corresponding to metalloproteinase-generated TMEFF2 fragment was 

detected (Figure 7.9). Cells transfected with inactive serine protease mutants treated with 

DAPT accumulated the ~17 kDa TMEFF2 cleavage product, confirming again that the γ-

secretase complex is involved in processing of the ~17 kDa TMEFF2 transmembrane 

stub. As shown in Chapter 4, matriptase-mediated cleavage of TMEFF2 generates two 

fragments with apparent molecular masses of ~22 kDa and ~27 kDa whereas hepsin 

produce ~19 kDa C-terminal TMEFF2 stub (Chapter 4, Figure 4.11). DAPT treatment did 

not increase the amount of matriptase and hepsin-generated products (Figure 7.9), 

indicating that C-terminal fragments of TMEFF2 produced by matriptase and hepsin are 

not further cleaved by γ-secretase. In the lysate from hepsin-expressing cells a very faint 

~11 kDa band corresponding in size to the γ-secretase product was visualised in the 

absence of DAPT. This band was undetectable in hepsin-transfected cells treated with 

DAPT, suggesting that the hepsin product is a novel substrate for the γ-secretase 

complex. 
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Figure 7.9 Analysis of TMEFF2 cytoplasmic fragments generated by serine proteases in 

the presence or absence of γ-secretase inhibitor DAPT. 

AP/V5 TMEFF2 HEK293 cells transiently transfected with matriptase, hepsin or inactive 

S-A protease mutants were grown overnight in the presence of 5 µM DAPT or DMSO as a 

solvent control. 50 µg of cell lysates were then analyzed by Western blotting and anti-V5 

labelling to detect C-terminal TMEFF2 cleavage products. Anti-GAPDH labelling served 

as a loading control. DAPT treatment caused accumulation of a ~17 kDa 

metalloproteinase product but did not increase the amount of matriptase (~22 kDa, ~27 

kDa) and hepsin (~19 kDa)-generated fragments. In the lysate from hepsin-transfected 

cells a faint ~11 kDa band corresponding to the γ-secretase product was detected. This 

band was not found following treatment with DAPT. 
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To investigate the possibility that TMEFF2 C-terminal fragments generated by 

matriptase and hepsin as well as the TMEFF2-ICD released by the γ-secretase complex 

undergo proteasomal degradation, transfected cells were treated with the proteasome 

inhibitor epoxomicin. Epoxomicin, originally isolated from Actinomycetes strains, 

inactivates the proteasome by binding to its catalytic subunit but does not affect non-

proteasomal proteases (Meng et al. 1999). AP/V5 TMEFF2 expressing cells, transfected 

with matriptase, hepsin or inactive S-A mutants were incubated for 4 hours with 5 µM 

epoxomicin. Prolonged exposure to higher doses of this inhibitor induces cell apoptosis 

and were therefore avoided (Meng et al. 1999). Analysis of the cell lysates by Western 

blotting and anti-V5 labeling is presented in Figure 7.10. Epoxomicin treatment caused 

accumulation of the ~17 kDa fragment generated by ADAMs as well as ~22 kDa 

matriptase product and ~19 kDa hepsin-generated fragment, suggesting that all these 

proteins are degraded in the proteasome. Interestingly, the ~11 kDa band corresponding 

to the γ-secretase product of TMEFF2 processing was also accumulated in response to 

epoxomicin treatment. This observation indicates that following RIPping TMEFF2-ICD 

undergoes proteasomal degradation and explains previous difficulties in the detection of 

TMEFF2-ICD by Western blotting. 
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Figure 7.10 Analysis of TMEFF2 cytoplasmic fragments generated by serine proteases in 

the presence of proteasome inhibitor epoxomicin. 

AP/V5 TMEFF2 HEK293 cells transiently transfected with matriptase, hepsin or inactive 

S-A protease mutants were treated for 4 hours with 5 µM proteasome inhibitor epoxomicin 

or DMSO as a solvent control. Cytoplasmic TMEFF2 fragments were then analyzed by 

Western blotting using anti-V5 antibody. 50 µg of total cell lysates were loaded per lane. 

Anti-GAPDH labelling served as a loading control. Epoxomicin treatment caused 

accumulation of a ~17 kDa metalloproteinase product, as well as hepsin-generated band 

and ~22 kDa matriptase products and  ~11 kDa fragment generated by γ-secretase (grey 

arrow).  
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7.4 Chapter summary. 

The experiments described in Chapter 7 focused on deciphering the cellular 

localization and fate of TMEFF2 C-terminal fragments following shedding of the 

ectodomain by ADAMs and serine proteases. Cytoplasmic domains of several proteins 

undergoing ectodomain shedding posses important biological functions, which are 

frequently independent  and distinct from the biological activity of the ectodomain. Most of 

the transmembrane stumps generated during ectodomain shedding are further processed 

by the γ-secretase complex. Liberated cytoplasmic domains of these proteins translocate 

within the cell and are involved in activation of cytoplasmic kinases (Georgakopoulos et al. 

2006), apoptosis (Vidal et al. 2005; Naresh et al. 2006) or gene transcription (Schroeter et 

al. 1998; Ni et al. 2001; Maetzel et al. 2009). To date, the knowledge about the fate of 

TMEFF2 cytoplasmic domain is very limited. Ali and Knäuper showed, that the 

membrane-retained stub of TMEFF2, generated by ADAMs, is a substrate for the γ-

secretase (Ali & Knäuper 2007), however the cellular localization as well as the biological 

role of this fragment were not further investigated. In 2011 Chen and co-workers 

described that the cytoplasmic fragment of TMEFF2 interacts with sarcosine 

dehydrogenase (SARDH) and regulates cytoplasmic sarcosine levels by enhancing 

SARDH enzymatic activity (Chen et al. 2011). How γ-secretase processing of TMEFF2 

influences TMEFF2-SARDH interactions and SARDH catalytic activity is not known. There 

are also no data about the fate of TMEFF2 C-terminal fragments generated by matriptase 

and hepsin, including their processing by the γ-secretase complex. 

The cellular localization of TMEFF2 cytoplasmic domain was analyzed in two ways 

– by labeling of TMEFF2 C-terminus with fluorescently tagged antibody or using EGFP-

TMEFF2 and TMEFF2-YFP protein expression constructs. HEK293 cells were transiently 

transfected with expression constructs encoding TMEFF2 tagged on the N-terminus with 

enhanced green fluorescent protein (EGFP-TMEFF2, Figure 7.2) and TMEFF2 tagged on 

the C-terminus with yellow fluorescent protein (TMEFF2-YFP, Figure 7.3). This analysis 

confirmed previous observations using antibody labelling. EGFP-TMEFF2 and TMEFF2-

YFP localised mostly on the cell surface, membrane structures within the cytoplasm and 

in the perinuclear area. TMEFF2-YFP HEK293 cells were then used to monitor 

translocation of TMEFF2 C-terminus from the cell surface following PMA-mediated 

shedding. However, due to the high amount of TMEFF2-YFP in the cytoplasm and very 

bright fluorescent signal from YFP the change of TMEFF2 C-terminus localization could 

not be observed. For that reason further experiments were performed using CHO cells 

stably expressing HA/V5 TMEFF2. The advantage of this method is also the small size of 

the V5 tag that should not affect the trafficking and biological function of TMEFF2 C-

terminus whereas the presence of large YFP tag could interfere with the cellular 

localization of TMEFF2 cytoplasmic domain. 
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The expression pattern of HA/V5 TMEFF2 in CHO cells was compared with the 

cellular localization of AP/V5 HB-EGF over-expressed in the same cell type, in the 

presence or absence of PMA. As shown in Figure 7.4, both proteins were present on the 

cell surface and translocated to the cytoplasm upon PMA-mediated shedding induction. 

However, the pattern of TMEFF2 and HB-EGF intracellular labelling is different, indicating 

distinct trafficking of these proteins. PMA-treatment of AP/V5 HB-EGF CHO cells caused 

endocytosis of V5-tagged HB-EGF-C and accumulation of V5-positive endocytotic 

vesicles around the nucleus, which is in agreement with the literature data (Hieda et al. 

2008). V5-tagged cytoplasmic domain of HA/V5 TMEFF2 did not localize in endocytotic 

structures. 

According to the literature data AP/V5 TMEFF2 ectodomain shedding generates a 

~17 kDa membrane-retained stub that is further processed by the γ-secretase complex. 

This secondary cleavage releases a ~11 kDa AP/V5 TMEFF2 intracellular domain 

(TMEFF2-ICD) (Ali & Knäuper 2007). However, the ~11 kDa fragment was difficult to 

detect in previously described experiments (Chapter 4) and the involvement of the γ-

secretase complex in TMEFF2 processing required further confirmation. Western blot 

analysis of AP/V5 TMEFF2 C-terminal cleavage products in the cells treated with γ-

secretase inhibitor DAPT (Figure 7.5) confirmed further processing of TMEFF2 by the γ-

secretase complex. A similar conclusion was made from the immunolabeling experiments, 

where the cellular localization of AP/V5 TMEFF2 cytoplasmic domain was compared 

between PMA, PMA+DAPT and PMA+GM6001-treated cells (Figure 7.6). The lack of 

TMEFF2 fragment corresponding to the γ-secretase product (TMEFF2-ICD) using 

Western blot analysis suggests that TMEFF2-ICD undergoes further processing or rapid 

degradation. 

One of the possible intracellular functions of TMEFF2 cytoplasmic domain is 

translocation to the nucleus and regulation of targeted genes. Analysis of TMEFF2 cellular 

localization by immunolabeling and confocal microscopy shown in Figures 7.4 and 7.6, as 

well as in Chapter 4 Figure 4.3 did not indicate any nuclear signal, suggesting that 

TMEFF2 is not present in the nucleus. However, the confocal analysis alone is not 

convincing enough to conclude that the cytoplasmic domain of TMEFF2 does not localize 

in the nucleus. For that reason localization of TMEFF2 fragments in the nucleus was 

examined by cell fractionation. The protocol used in this investigation was first optimized 

using cells expressing HB-EGF as HB-EGF-C translocates to the nuclear envelope (Hieda 

et al. 2008) and could be detected by Western blotting in the nuclear extract from PMA-

treated cells (Figure 7.7). Analysis of the cytoplasmic and nuclear fraction from AP/V5 

TMEFF2 expressing cells revealed the presence of the ADAM-generated membrane stub 

in the cytoplasm but not in the nucleus (Figure 7.8). The TMEFF2-ICD was not detected 

either in the cytoplasm nor in the nuclear fraction, even when the cells were pre-treated 
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with a nuclear export inhibitor leptomycin B (LMB). Based on confocal analysis of 

TMEFF2-ICD localization as well as the cell fractionation data it could be concluded that 

TMEFF2-ICD does not translocate to the nucleus. 

The fate of TMEFF2 C-terminal fragments generated by matriptase and hepsin 

was investigated. To analyze if these membrane-tethered proteins are recognized by the 

γ-secretase complex and further processed, AP/V5 TMEFF2 HEK293 cells expressing 

matriptase, hepsin or inactive S-A serine protease mutants were grown in the presence of 

DAPT inhibitor. As presented in Figure 7.9, DAPT treatment increased the amount of the 

~17 kDa product of ADAM cleavage. However, the ~25 kDa and ~19 kDa matriptase, as 

well as the ~18 kDa hepsin cleavage products did not accumulate, indicating that they are 

not processed by γ-secretase. An analogous experiment was performed in the presence 

of the proteasome inhibitor epoxomicin in order to establish if TMEFF2 C-terminus is 

degraded following ADAM or serine protease shedding (Figure 7.10). Epoxomicin 

treatment resulted in the accumulation of ~17 kDa fragment generated by ADAMs, ~19 

kDa matriptase product, ~18 kDa hepsin-generated fragment, suggesting that all these 

proteins undergo proteasomal degradation. The ~11 kDa TMEFF2 fragment cleaved by γ-

secretase was also accumulated in epoxomicin-treated cells, suggesting that TMEFF2-

ICD undergoes proteasomal degradation and explaining the inability to detect TMEFF2-

ICD in previous Western blots.  

The data described in this chapter indicate that the C-terminal products of 

TMEFF2 cleavage by ADAM, serine proteases and γ-secretase complex are most likely 

degraded by the proteasome. This findings should be further investigated in additional 

immunolocalization experiments or biochemical analysis using other inhibitors of protein 

degradation, for example lactacystin (Tomoda & Omura 2000). If these experiments would 

confirm that TMEFF2 C-terminal fragments undergo degradation it could be concluded 

that the main biological function of TMEFF2 involves its extracellular part and the C-

terminal fragment does not play any additional role inside the cell. However, it could be 

also hypothesized that the degradation process itself has some biological meaning, for 

example by disrupting TMEFF2 interactions with its binding partners.  

To date the only known binding partner of TMEFF2 C-terminus is SARDH (Chen 

et al. 2011), an enzyme catalyzing dehydrogenation of sarcosine to glycine (Porter et al. 

1985). Interaction between TMEFF2 and SARDH was described in cells transfected with 

TMEFF2 as well as in prostate cancer cell lines that express TMEFF2 endogenously but 

the biological significance of TMEFF2-SARDH binding is not clear. Chen and co-workers 

reported that co-expression of TMEFF2 and SARDH significantly reduced the level of 

sarcosine in the cytoplasm (Chen et al. 2011) which would suggest that the interaction 

with TMEFF2 increased the activity of SARDH and enhanced the conversion of sarcosine 

into glycine. The involvement of TMEFF2 in the regulation of sarcosine levels in prostate 



240 

 

cancer cells is very interesting information as sarcosine is currently considered to be a 

novel, promising marker for the diagnosis of prostate cancer progression. In 2009 

Sreekumar and co-workers published a large study in which they aimed to characterize 

the “metabolomic profile” of prostate cancer, identifying metabolites that can be detected 

in urine, blood or tissue biopsies from prostate cancer patients which would help to 

diagnose prostate cancer. They analyzed 1126 metabolites across 262 clinical samples 

related to prostate cancer using a combination of high throughput liquid and gas 

chromatography-based mass spectrometry and identified sarcosine as one of six 

differential metabolites. High levels of sarcosine were detected in 79% of metastatic 

samples, 42% samples from organ-localized prostate cancer and none of the samples 

from healthy individuals.  Interestingly, the sarcosine levels can be assessed non-

invasively in the urine. Their findings were also supported by in vitro studies, showing that 

sarcosine levels were higher in invasive prostate cancer cell lines comparing to benign 

prostate hyperplasia. Moreover, knockdown of the glycine-N-methyl transferase (GNMT), 

an enzyme that generates sarcosine from glycine, attenuated prostate cancer invasion 

(Sreekumar et al. 2009). The potential of sarcosine to be a novel marker for prostate 

cancer diagnosis was then disputed by Jentzmik and colleagues (Jentzmik et al. 2011) but 

other reports provide additional evidence that sarcosine is involved in the regulation of 

prostate cancer growth (Dahl et al. 2011). This could potentially help to diagnose prostate 

cancer patients with total serum PSA levels below 4 ng/ml (Lucarelli et al. 2012).  

In the study by Chen et al. describing TMEFF2-SARDH interaction it was 

suggested that TMEFF2 binding to SARDH enhanced its enzymatic activity and 

decreased cytoplasmic sarcosine levels. Assuming that high levels of sarcosine are 

connected with more aggressive phenotype of prostate cancer it would suggest that 

TMEFF2 expression inhibits invasiveness of prostate cancer cells. Hypothetically, 

shedding of TMEFF2 by ADAMs or serine proteases followed by the degradation of 

TMEFF2 cytoplasmic domain would disrupt the interaction with SARDH, increase the 

accumulation of sarcosine in the cytoplasm, supporting the invasive phenotype of prostate 

cancer cell. However, the biological consequences of TMEFF2-SARDH binding as well as 

the role of ectodomain shedding and γ-secretase processing in regulating this interaction 

need to be considered in the future. 
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Chapter 8:  

Final discussion  

and future experiments 
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8.1 TMEFF2 – potential target for novel prostate cancer therapies 

Prostate cancer is the 2nd most common cancer worldwide for males, and the 5th 

most common cancer overall, with more than 670,000 new cases diagnosed every year. 

Thanks to the improved diagnostic procedures allowing to detect prostate cancer at early 

stages about 70% of patients diagnosed with prostate cancer survive more than 10 years. 

However, the lack of efficient treatment of hormone-insensitive, metastatic prostate cancer 

makes this disease the sixth most common cause of death from cancer in men worldwide 

(Cancer Research UK, May 2013). To design more effective anti-cancer therapies the 

mechanisms responsible for prostate cancer development, especially the transition from 

hormone-sensitive, organ-defined disease to hormone-refractory, metastatic prostate 

cancer need to be better understood. For that reason every newly identified protein 

expressed by prostate cancer cells is carefully investigated in order to better understand 

the mechanisms responsible for the development of an aggressive prostate cancer 

phenotype. One of these novel proteins potentially involved in the development and 

progression of prostate cancer and thus being a promising target for new anti-prostate 

cancer therapy is TMEFF2.  

The role of TMEFF2 in the development and progression of prostate cancer is 

controversial. Several published data indicate that TMEFF2 has cancer-promoting activity 

(Glynne-Jones et al. 2001; Ali & Knäuper 2007), while others suggest that TMEFF2 

inhibits progression of cancer (Liang et al. 2000; Gery et al. 2002; Gery & Koeffler 2003; 

Elahi et al. 2008). As a transmembrane protein TMEFF2 is exposed for proteolytic 

processing by membrane-anchored proteases, including members of a disintegrin and 

metalloprotease (ADAM) family (Ali & Knäuper 2007). Based on these reports, it was 

hypothesized that the opposing findings describing the role of TMEFF2 in prostate cancer 

biology result from proteolytic processing of TMEFF2 by different membrane-anchored 

proteases which are co-expressed with TMEFF2 in prostate cancer cells.  

8.2 Expression of TMEFF2 and serine proteases in prostate cancer 

In order to support the previously stated hypothesis the expression of TMEFF2 

and several membrane serine proteases associated with prostate cancer was examined in 

prostate cancer cell lines and clinical samples. The results described in Chapter 3 showed 

that TMEFF2 is co-expressed with matriptase, hepsin and prostasin in prostate cancer-

derived cell lines LNCaP and PC3 (Figures 3.2 and 3.4) as well as in lysates from cells 

isolated from prostate cancer patients (Figures 3.1 and 3.3). Co-expression of TMEFF2 

and serine proteases in the same cells supported the hypothesis that the biological activity 

of TMEFF2 in prostate cancer could be differentially regulated by proteases. Prostate 

cancer cell lysates analyzed for TMEFF2 and serine protease expression corresponded to 

the CD44+/α2β1
hi/CD133+ subpopulation of prostate cancer cells, described in the literature 
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as prostate cancer stem cells (Collins et al. 2001; Collins et al. 2005). Interestingly, 

TMEFF2 was detected in some but not all lysates from prostate cancer stem cells, raising 

a question about the functional difference between CD44+/α2β1
hi/CD133+/TMEFF2+ and 

CD44+/α2β1
hi/CD133+/TMEFF2- cells that could be investigated in future experiments. The 

differences in motility, invasiveness and proliferation rates between TMEFF2-positive and 

TMEFF2-negative CD44+/α2β1
hi/CD133+ prostate cancer cells could be analyzed in vitro 

using CD44+/α2β1
hi/CD133+/TMEFF2+ and CD44+/α2β1

hi/CD133+/TMEFF2- subpopulation 

separated by immunolabeling and cell sorting. The behaviour of TMEFF2-negative and 

TMEFF2-positive prostate cancer cells could also be investigated in vivo, by implanting 

the cells into nude mice and monitoring the development of the tumour within the prostate.  

8.3 Proteases involved in TMEFF2 processing 

Proteolytic processing of TMEFF2 by enzymes expressed in normal prostate and 

prostate cancer cells, including membrane-anchored serine proteases (matriptase, 

matriptase-2, hepsin, prostasin) and ADAMs (ADAM 9, 12, 15A, 15B, 15C) was then 

analyzed in vitro using HEK293 cells over-expressing AP/V5 TMEFF2. In order to 

compare whether ADAMs and serine proteases cleave TMEFF2 within the same 

sequence analogous shedding experiments were performed using HEK293 cells 

expressing AP/V5 ∆303-320TMEFF2 mutant that is resistant to ADAM-mediated cleavage 

(Ali & Knäuper 2007). The results presented in Chapter 4 showed that co-expression of 

AP/V5 TMEFF2 with matriptase and hepsin significantly increased the release of AP-

tagged TMEFF2 extracellular domain from the cell surface (Figure 4.10 A). This indicates 

that membrane-anchored serine proteases are involved in TMEFF2 processing. 

Interestingly, the release of AP/V5 ∆303-320TMEFF2 mutant was also elevated in 

matriptase and hepsin-expressing cells (Figure 4.10 B), suggesting that serine proteases 

and ADAMs cleave TMEFF2 in different positions.  This finding was supported by the 

Western blot analysis of AP/V5 TMEFF2 C-terminal cleavage products. In the lysates from 

matriptase or hepsin-expressing cells novel TMEFF2 cytoplasmic fragments were 

detected in addition to the ~17 kDa ADAM-generated product (Figure 4.11). The 

molecular mass of C-terminal TMEFF2 fragments detected by Western blotting, as well as 

the fact that serine protease cleave their substrates after Arg or Lys allowed to propose 

several cleavage sites which could be accessible to matriptase and hepsin. Comparison 

of the suggested cleavage sites with TMEFF2 3D structural model (Figure 4.23) allowed 

the conclusion that the cleavage by matriptase occurs most probably within the sequence 

linking follistatin-like domains and additionally between the second follistatin module and 

the EGF-like domain. In contrast, hepsin likely cleaves TMEFF2 between the second 

follistatin module and the EGF-like domain but closer to the C-terminus of TMEFF2 than 

matriptase (Figure 4.24 and Figure 8.1 below).  
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Figure 8.1 Schematic diagram of matriptase, hepsin and ADAM cleavage sites within 

TMEFF2 structure; FS1 - follistatin-like domain 1, FS2 – follistatin-like domain 2, EGF – 

EGF-like domain. 

 

The precise determination of the matriptase and hepsin cleavage sites could be 

investigated by N-terminal sequencing of the 19 kDa, 22 kDa and 27 kDa TMEFF2 

fragments detected by Western blotting. The Arg and Lys residues that are recognized by 

matriptase and hepsin could be identified by performing shedding assays using cells 

expressing AP/V5 TMEFF2 mutants containing R→A or K→A mutations within the 

proposed cleavage sites. However, the data presented in Chapter 4 are convincing 

enough to conclude that TMEFF2 is differentially processed by ADAMs and serine 

proteases. This processing results in the release of the full length TMEFF2-ECD, as well 

as fragments containing two follistatin-like modules or the second follistatin-like module 

and the EGF-like domain. All of these soluble TMEFF2 fragments have potentially 

different biological activities than the membrane-anchored TMEFF2 and may significantly 

influence the behaviour of prostate cancer cells. Generation of different soluble TMEFF2 

fragments might be responsible for some biological changes described previously for 

prostate cancer cells over-expressing matriptase or hepsin, such as loss of viability and 

adhesion of hepsin-positive prostate cancer cells (Srikantan et al. 2002) or increased 

growth, proliferation and invasion of matriptase-positive prostate cancers cells (Saleem et 

al. 2006; Bergum & List 2010; Sanders et al. 2006). 

AP/V5 TMEFF2 shedding by matriptase-2 and prostasin was also analyzed. 

Whereas the presence of prostasin did not influence AP/V5 TMEFF2 release, co-

expression of matriptase-2 increased AP/V5 TMEFF2 shedding (Figure 4.10 A, Figure 

4.16). However, further experiments showed that matriptase-2 increased TMEFF2 release 

indirectly, more likely through activation of ADAMs as the release of AP/V5 TMEFF2 from 

matriptase-2 expressing cells was impaired in the presence of metalloproteinase inhibitors 

(Figure 4.12) and the shedding of AP/V5 ∆303-320TMEFF2 mutant was not increased by 
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matriptase-2 (Figure 4.10 B). It was recently published that ADAM-mediated shedding can 

be regulated by activation of protease-activated receptors (PARs) and one of these 

receptors, PAR-2 was shown to be activated by matriptase (Abdallah et al. 2010; 

Takeuchi et al. 2000). The results presented in Chapter 4 suggest that AP/V5 TMEFF2 

shedding from matriptase-2-expressing cells may be regulated by a similar mechanism. 

This hypothesis requires further verification, for example by performing shedding 

experiments in the presence of G protein-coupled receptor inhibitors, such as pertussis 

toxin. This exotoxin produced by Bordetella pertussis covalently modifies the α-subunit of 

Gi proteins and prevents the G-proteins from interacting with G protein-coupled receptors 

on the cell membrane (Burns 1988). The mechanism of TMEFF2 shedding in the 

presence of matriptase-2 could be also investigated using more specific, synthetic 

agonists and antagonists of PAR-2 (Lohman et al. 2012; Suen et al. 2012). 

Shedding of TMEFF2 was also investigated by over-expression of ADAMs 

implicated in prostate cancer progression, including ADAM 9, ADAM 12 and three splice 

variants of ADAM 15: ADAM15A, ADAM15B and ADAM15C. Whereas expression of 

ADAM 9 and 12 in AP/V5 TMEFF2 HEK293 increased TMEFF2 shedding, none of the 

tested ADAM15 variants influenced AP/V5 TMEFF2 release (Figure 4.18). Interestingly, 

the level of AP/V5 TMEFF2 shedding was higher in cells expressing matriptase or hepsin 

when compared with ADAM-transfected cells, suggesting that serine proteases are more 

efficient TMEFF2 sheddases than ADAMs.  

In addition to the proteases investigated in this thesis as potential TMEFF2 

sheddases, there are other transmembrane enzymes expressed by prostate cancer cells 

which should be considered as TMEFF2 regulators. One of these proteases is TMPRSS2, 

a TTSP family member encoded by the Tmprss2 gene (Lin, Ferguson, White, Wang, et al. 

1999). It is believed, that Tmprss2 gene contributes to prostate cancer progression in two 

distinct ways. First, it was shown by several groups that the 5’ untranslated region of the 

Tmprss2 gene, containing androgen-responsive elements, is frequently fused to coding 

sequences of transcription factors of the ETS family, making their expression androgen-

inducible (Soller et al. 2006). Second, Tmprss2 gene expression was found to be 

significantly upregulated in androgen-dependent prostate cancer compared to normal 

prostate epithelium or benign prostatic hyperplasia (Lin, Ferguson, White, Wang, et al. 

1999; Vaarala et al. 2001). Another TTSP that might be involved in TMEFF2 processing is 

matriptase-3. This recently discovered member of the matriptase subfamily is 

characterized by high sequence homology with matriptase and significant expression in 

brain, skin, reproductive and oropharyngeal tissues (Szabo et al. 2005). Among proteases 

expressed by prostate cancer cells that should be investigated as potential TMEFF2 

sheddases is also ADAM8, a catalytically active ADAM associated with unfavourable 

prognosis of prostate cancer (Fritzsche et al. 2006). 
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8.4 Investigating the biological activity of soluble TMEFF2 fragments 

The next step was to investigate the physiological significance of TMEFF2 

processing by serine proteases and ADAMs and to describe the biological role of soluble 

TMEFF2 fragments generated by these enzymes. For that reason recombinant TMEFF2 

fragments corresponding to predicted cleavage products were expressed in E. coli 

(Chapter 5) and then in mammalian cells (Chapter 6). The E. coli expression system 

allowed to efficiently produce and purify recombinant EGF-like domain from TMEFF2, H-

REGF-like domain TMEFF2 mutant and EGF-like domain from HB-EGF which served as a 

positive control in ERK1/2 phosphorylation experiments (Figure 5.10). Several proteins 

containing EGF-like domains display their biological activity through ErbB receptors. 

Activation of ErbBs can be measured by assessing the relative levels of the 

phosphorylated downstream kinases ERK1 and ERK2 (Ratan et al. 2003). To investigate 

whether the EGF-like domain from TMEFF2 acts as a ligand for ErbBs, purified 

recombinant EGF-like domains were tested in vitro in an ERK1/2 phosphorylation assay, 

using the normal prostate epithelial cell line PNT2-C2. Whereas PNT2-C2 cells responded 

to the EGF-like domain from HB-EGF treatment with ERK1/2 phosphorylation (Figure 

5.12), none of the TMEFF2 EGF-like fragments (neither the EGF-like domain, nor the H-

REGF-like domain mutant) induced phosphorylation of ERK1/2 (Figure 5.13, Figure 5.14). 

The lack of ERK1/2 phosphorylation in response to TMEFF2 EGF-like domain treatment 

suggested that TMEFF2 does not act through ErbB receptors. This finding is in agreement 

with some of the published data, indicating that TMEFF2 interacts with none of the ErbB 

receptors (Lin et al. 2011). However, there are some reports showing weak activation of 

ErbB-4 and EGFR by soluble TMEFF2-ECD (Uchida et al. 1999; Ali & Knäuper 2007). 

The lack of ErbBs activation by the TMEFF2 EGF-like domain reported in this thesis might 

be caused by the chosen expression system that impairs the function of TMEFF2 EGF-

like domain. Expression of mammalian proteins in prokaryotic cells results in the lack of 

glycosylation that may significantly affect biological function of TMEFF2 EGF-like domain. 

As shown by Glynne-Jones et al. the glycosylation represents about 40% of the total 

TMEFF2 molecular mass (Glynne-Jones et al. 2001) so it was hypothesized that the 

glycosylation plays important role in determining TMEFF2 biological activity. Activation of 

ERK1/2 in cells treated with an EGF-like domain from HB-EGF, also produced in E. coli 

may depend only on the amino-acid sequence and do not require glycosylation.  

Larger TMEFF2 fragments, including TMEFF2-ECD, 2xFS and 2ndFS+EGF were 

also expressed in E. coli but did not fold properly, forming large, dysfunctional polymers 

(Figure 5.15). As mentioned in the Introduction, the structure of TMEFF2 is stabilized by 

several disulphide bonds, making the production of recombinant TMEFF2 fragments in 

prokaryotic cells very challenging, although E. coli strains enhancing disulphide bonds 

formation were used. In order to ensure proper folding and glycosylation of TMEFF2 
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fragments corresponding to matriptase, hepsin and ADAM-cleavage products, the 

proteins were expressed in mammalian cells. 

Expression of recombinant TMEFF2 fragments in mammalian cells involved 

generation of a stable CHO cell line expressing TMEFF2-ECD tagged on the C-terminus 

with Fc fragment from human IgG1 (Figure 6.1) and four CHO cell lines stably expressing 

TMEFF2-ECD, 2xFS, 2ndFS+EGF and EGF-like domain tagged on the N-terminus with 

protein A (Figure 6.2). Production of two different TMEFF2-ECD variants, with tags 

located on the opposing ends of the proteins was performed in order to compare whether 

the tag location influences the protein activity.  

TMEFF2-ECD-Fc was efficiently purified from the CHO conditioned medium using 

a two step purification process. However, due to proteolytic processing, the obtained 

protein was a mixture of at least three different TMEFF2-ECD-Fc species (Figure 6.8, 

Figure 6.9). In order to avoid TMEFF2-ECD-Fc proteolysis during future purifications, 

PMSF, EDTA and/or protease inhibitor cocktail should be present in the collected CHO 

conditioned medium. The purified TMEFF2-ECD-Fc species were then used to test its 

activity in vitro. First, the potential of the TMEFF2-ECD-Fc to induce ERK1/2 

phosphorylation was examined using HEK293 and PNT2-C2 cell lines. HEK293 cells were 

chosen for this investigation because it was published previously that they phosphorylate 

ERK1/2 in response to recombinant TMEFF2-ECD treatment (Ali & Knäuper 2007). 

Activation of ErbB signaling by TMEFF2-ECD was also demonstrated using MKN28 

gastric cells (Uchida et al. 1999). However, treatment of HEK293 and PNT2-C2 cell lines 

with 0.1 - 5.0 µg/ml of recombinant TMEFF2-ECD-Fc did not induce ERK1/2 

phosphorylation (Figure 6.10, Figure 6.11). The disagreement between the obtained result 

and the published data might result from the different expression and purification methods 

used to obtain TMEFF2-ECD. In the published study HEK293 cells were treated with 

TMEFF2-ECD expressed in mammalian cells as V5-tagged recombinant protein and 

purified in a single step process by affinity chromatography using anti-V5 agarose (Ali & 

Knäuper 2007). Due to the shorter purification process it is possible that not all impurities 

were removed from the TMEFF2-ECD and the phosphorylation of ERK1/2 were induced 

by additional proteins present in the sample. The two-step purification method described 

in Chapter 6 obtained only TMEFF2-ECD-Fc species as no additional components were 

observed using silver stained SDS-PAGE gel (Figure 6.8). Another possibility, explaining 

ErbB activation by V5-tagged TMEFF2-ECD but not TMEFF2-ECD-Fc is that the large Fc-

tag on the C-terminus hinders the interaction of TMEFF2-ECD-Fc with the receptor. 

However, in the study describing TMEFF2-ECD interaction with PDGF-AA the presence of 

the Fc-tag did not impair binding of TMEFF2-ECD to PDGF-AA (Lin et al. 2011). To 

summarize, the published data together with the results described in this thesis strongly 

suggest that TMEFF2 does not signal through ErbB receptors and ERK1/2 kinases, 
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despite the presence of the EGF-like domain within TMEFF2-ECD structure. The lack of 

ErbB activation by TMEFF2 EGF-like domain could explained by its atypical amino acid 

structure. In contrast to ErbB ligands, EGF-like domain from TMEFF2 contains His39 

instead of Arg39 (Horie et al. 2000) and this  amino acid substitution was shown to 

dramatically reduce the affinity of the EGF-like domains to ErbBs (D. A. Engler et al. 

1990). The inability to activate ErbBs by the TMEFF2 EGF-like domain suggests that this 

part of TMEFF2 has some non-signaling functions in prostate cancer environment. One of 

the possible functions of the TMEFF2 EGF-like domain within the TMEFF2 structure is 

serving as a binding site for TMEFF2 interaction partners. This prediction is supported by 

the fact that the EGF-like domain from TMEFF1 is involved in TMEFF1 interaction with 

matriptase (Ge et al. 2006). 

In addition to the ERK1/2 phosphorylation assay, the biological activity of purified 

TMEFF2-ECD-Fc was examined using proliferation assays and prostate epithelial cells. 

The preliminary results obtained from measuring the number of viable PNT2-C2 cells 

cultured in the presence of 0.1-5.0 µg/ml of TMEFF2-ECD-Fc indicated, that PNT2-C2 

cells grew faster than control cells when  0.1 and 1.0 µg/ml of TMEFF2-ECD-Fc was 

added to the medium (Figure 6.12). This result is in agreement with previously published 

data describing TMEFF2-ECD as a growth-promoting factor. Chen and co-workers 

showed that the conditioned medium from HEK293 cells expressing soluble TMEFF2-

ECD had growth promoting activity on HEK293 as well as benign human prostatic 

RWPE1 cell line (Chen et al. 2011). The recombinant TMEFF2-ECD was also reported to 

increase proliferation of HEK293 cells (Ali & Knäuper 2007) and act as a survival factor for 

primary cultured neurons (Horie et al. 2000). 

In addition to the TMEFF2-ECD-Fc, the mammalian expression system was used 

to produce recombinant TMEFF2 fragments tagged on the N-terminus with protein A. 

Unfortunately, due to the low expression levels, co-purification of serum-derived IgG and 

limited time the N-protein A TMEFF2-ECD could not be purified to homogeneity. 

Additionally, the purification of Fc-TMFF2-ECD indicated that the expression of TMEFF2 

fragments in CHO cells resulted in proteolytic cleavage of recombinant protein as 

evidenced by the presence of different molecular mass fragments in the conditioned 

medium. For that reason the conditioned media from stable cell lines expressing N-protein 

A fusion proteins were used in a preliminary experiment to investigate the possible 

influence of TMEFF2 cleavage products on cell proliferation. The results indicated that the 

presence of TMEFF2-ECD and 2xFS fragments in conditioned medium decreased the 

proliferation of CHO cells, whereas the addition of EGF-like domain or FS+EGF TMEFF2 

fragments did not influence cell proliferation (Figure 6.17). Decreased proliferation rates of 

CHO cells grown in the presence of TMEFF2-ECD and 2xFS fragments could be 

explained based on the finding published by Lin and co-workers (Lin et al. 2011), showing 
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that the presence of the first FS domain (or both FS domains) is required for interaction 

between TMEFF2 and PDGF-AA growth factor. Thus, it is possible that the TMEFF2-ECD 

and 2xFS fragments present in the culture medium bind and neutralize some growth 

factors that are required for CHO proliferation. Binding of these growth factors is more 

likely mediated through the FS domains of TMEFF2. 

8.5 Potential biological functions of soluble TMEFF2 fragments 

The presence of the two FS domains within TMEFF2 structure allows the 

classification of TMEFF2 to the family of follistatin-related proteins. This family consists of 

follistatin, follistatin-like 1 (Fstl1) protein, TMEFF1, SPARC (secreted protein, acidic and 

rich in cysteine, also known as osteonectin or BM-40), agrin and large multidomain 

proteins WFIKKN1 and WFIKKN2 (Phillips & de Kretser 1998; Liepinsh et al. 2006; 

Kondás et al. 2008). Members of the follistatin-related protein family contain one up to 

nine FS modules. The FS domain has structural homology to EGF as the positioning of 

the backbone structure as well as the cysteine residues is partially maintained until the 

fourth cysteine unit. There are also important structural similarities between FS module 

and the Kazal family of enzyme inhibitors but none of the known follistatin-like proteins 

was found to possess an inhibitory activity  (Phillips & de Kretser 1998). Comparison of 

the TMEFF2 FS domains sequences with the other follistatin-like proteins revealed 

significant structural similarities between TMEFF2 and agrin. The FS domains of TMEFF2 

and agrin share 38.4% sequence identity and a region containing two putative 

glycosaminoglycan attachment sites is seen in both proteins  (Horie et al. 2000). Agrin is a 

large proteoglycan expressed as two isoforms resulting from differential transcription. Both 

agrin isoforms are composed of the N-terminal part with nine FS and two laminin EGF-like 

domains, the middle region with a SEA (sea urchin sperm protein, enterokinase, and 

agrin) module and the C-terminal part containing four EGF and three laminin globular 

domains (Godfrey et al. 1984; Patthy & Nikolics 1993; Bork & Patthy 1995). The laminin 

globular domains are known to activate signaling pathways that regulate synaptic 

differentiation (Bezakova & Ruegg 2003). Until recently little was known about the function 

of the N-terminal part of agrin that contains the FS modules. In 2010 Bányai and co-

workers used a surface plasmon resonance spectroscopy and a luciferase reporter assay 

to show that the N-terminal fragment of agrin binds to bone morphogenic factor-4 (BMP-

4), BMP-6 and TGF-β1 with relatively high affinity, modulating their activity. Interaction 

with agrin inhibits the activity of BMP-4 and BMP-6 but enhances the activity of TGF-β1 

(Bányai et al. 2010).  

BMPs and TGF- β1 are classified to the TGF-β superfamily of growth factors. 

Members of this superfamily bind to type I and type II receptors that form heterotetrameric 

complexes and activate downstream signaling. In humans and other mammals five type I 

receptors and seven type II receptors for TGF-β proteins were described to date 
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(Moustakas & Heldin 2009). All these receptors contain a cytoplasmic serine/threonine 

kinase domain. Ligand binding links the constitutively active type II receptor to the 

dormant type I receptor, leading to the phosphorylation of the juxtamembrane part of the 

type I receptor by the type II receptor kinases. TGF-β1 interacts specifically with TβR-II 

type II receptor which associates with and activate TβR-I  type I receptor. Type I receptor 

kinases transmit the signal by phosphorylating receptor-regulated Smad proteins (R-

Smads) which in the “canonical” signaling pathway are Smad2 and Smad3. 

Phosphorylated R-Smads associate with common-mediator Smad (Co-Smad) – Smad4 

and the R-Smad/Co-Smad complexes move into the nucleus where they regulate the 

expression of targeted genes, in the co-operation with other transcription factors, co-

activators and co-repressors (Miyazono 2000; Miyazono et al. 2001; Miyazawa et al. 

2002; Moustakas & Heldin 2009; Heldin & Moustakas 2012). BMPs bind type II (BMPRII, 

ActRIIA, ActRIIB) and type I (ALK3, ALK6) receptors and also signal through Smad 

proteins. However, in contrast with TGF-β1, BMPs activate the “noncanonical” signaling 

pathway, where the activation of the type I receptors by type II receptors leads to 

phosphorylation of Smad1, Smad5 and Smad8 (R-Smads) which then associate with 

Smad4 (Co-Smad). R-Smad/Co-Smad complexes translocate to the nucleus and regulate 

transcription of BMP-dependent genes. The BMP pathway can be antagonized by Smad6 

and Smad7 (Moustakas & Heldin 2009). Schematic diagrams of “canonical” and 

“noncanonical” signaling pathways activated by TGF-β superfamily members are shown in 

Figure 8.2 
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Figure 8.2. Schematic diagram of TGF-β1 (A) and BMPs (B) signaling. 

Members of the TGF-β superfamily of growth factors transmits their biological signal into 

the cell through interaction with type II (R-II) and type I (R-I) serine/threonine kinase 

receptors. Upon ligand binding constitutively active type II receptors recruit and 

phosphorylate type I receptors. Type I receptors then activate receptor-regulated Smad 

proteins (R-Smads, indicated in red). In TGF-β1 signaling pathway (“canonical”, A) type I 

receptors activate Smad 2/3, whereas in BMP pathway (“noncanonical”, B) – Smad 1/5/7. 

R-Smads then associate with a common-mediator Smad (Co-Smad, indicated in green) – 

Smad4. The R-Smad/Co-Smad complexes move into the nucleus and regulate the 

expression of targeted genes. Smad signaling can be antagonized an inhibitory Smads (I-

Smad, indicated in blue) – Smad7 and/or Smad7. 
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Due to the high structural homology of FS domains from TMEFF2 and agrin it 

could be hypothesized that the extracellular part of TMEFF2 interacts with growth factors 

from the TGF-β superfamily and modulates their function. Moreover, interaction with TGF-

β1 or BMPs seems to be a common feature of proteins containing FS modules. Follistatin-

like 1 (Fstl1) protein contains single FS module that interacts with BMP-4 as well as its 

type II receptor in the lung. The antagonistic effect of Fstl1 on BMP-4 signaling is 

important during lung development  (Geng et al. 2011). WFIKKN1 and WFIKKN2 interact 

through their FS domains with BMP-2, BMP-4 and TGF-β1 as well as other members of 

the TGF-β superfamily – growth and differentiation factor 8 (GDF8) and GDF11. 

Interestingly, a luciferase reporter assay showed that the interaction with WFIKKN1 and 

WFIKKN2 inhibits biological activity of GDF8 and GDF11 but not BMP-2, BMP-4 and 

TGF-β1 (Kondás et al. 2008; Szláma et al. 2010). In order to investigate whether the 

extracellular part of full length, transmembrane TMEFF2 is able to bind and regulate the 

activity of TGF-β superfamily members, a future analysis should focus on phosphorylation 

of type I receptors and R-Smads upon stimulation with TGF-β1, BMPs or GDFs, in the 

cells with or without TMEFF2 expression. In addition, a luciferase reporter assay should 

be performed to investigate the expression of TGF-β1, BMPs or GDFs-dependent genes 

in the presence or absence of TMEFF2. The role of soluble TMEFF2 fragments generated 

by ADAMs or serine proteases could be analyzed in analogous phosphorylation assays, 

performed using cells co-expressing TMEFF2 and the sheddase. 

The biological role of TMEFF2 might be similar to the function of its homologue, 

TMEFF1. These two proteins share 35.8% identity at the amino acid level, as well as 

some important structure similarities  including the domain structure of the extracellular 

part, the presence of His39 within the EGF-like domain (Horie et al. 2000). TMEFF1 has 

been implicated in modulating another signaling cascade involving members of the TGF-β 

superfamily, the activin/Nodal pathway, regulating the left-right axis formation during early 

vertebrate development (Schier & Shen 2000). In this pathway binding of the ligand 

induces formation of a complex between the constitutively active type II receptor and the 

type I receptor ALK (activin receptor-like kinase) 4 and 7. As a result, the type I receptor is 

activated by phosphorylation. The activated ALK phosphorylates Smad2 and Smad3, 

which forms a heterotrimeric complex with Smad4, translocates to the nucleus to regulate 

gene expression, in conjunction with other transcription factors. Activin and Nodal use the 

same type II and type I receptors. However, Nodal also requires a membrane associated 

coreceptor Cripto (Massagué 1998). Although Cripto members are not required for activin 

signaling, overexpression of Cripto does influence activin activity by repressing the signal 

pathway (Gray et al. 2003). The schematic diagram of activin/Nodal signaling is presented 

in Figure 8.3. 
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As shown by Harms and Chang, TMEFF1 is an important regulator of Nodal 

signaling as it binds Cripto and prevents its interaction with Nodal. TMEFF1 does not 

interact with either Nodal or ALK4 (Harms & Chang 2003). It has not been investigated to 

date if TMEFF2 is also able to regulate Nodal/activin signalling through binding of Cripto. 

Thus, future investigations should focus on co-immunoprecipitation of TMEFF2 with 

Cripto, Nodal, ALK4 or ALK7 and analysis of downstream signaling molecules such as 

phosphorylated Smad2 and Smad3. The direct influence of TMEFF2 on Nodal-regulated 

gene expression could be analyzed using luciferase reporter assay. 

 

 

 

8.3 Schematic diagram of the activin/Nodal signaling (from http://www.cisreg.ca/tfe/) 

Nodal interacts with activin receptors (ActRIIB,ALK4) and co-receptor protein Cripto. The 

activated receptor phosphorylates Smad2 or Smad3 and allows its association with 

Smad4. The Smad2/3/4 complex translocates to the nucleus where it binds to 

FoxH1transcription factor and regulates a spectrum of target gene expression. Activin 

triggers the same signaling without requirement of Cripto coreceptor. 
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Finally, TMEFF2 might be also involved in regulation of platelet-derived growth 

factors (PDGFs), similarly to other follistatin-related proteins. As shown by Raines and co-

workers, SPARC is able to specifically interact with PDGF-B chain which prevents binding 

of PDGF-AB and BB to their cell surface receptors. This mechanism is thought to regulate 

the activity of specific PDGF isoforms in vascular injury, because the expression of both 

SPARC and PDGF-B chain is minimal in normal tissue and increases upon injury (Raines 

et al. 1992). The data published by Raines did not show if the FS domain is involved in the 

SPARC-PDGF-B chain binding. It could be hypothesized that the FS domains participates 

in SPARC-PDGF-B interaction as it was demonstrated recently that the FS domain of 

TMEFF2 binds PDGF-AA (Lin et al. 2011).  

To summarize, analysis of the biological function of proteins structurally related to 

TMEFF2 allows the prediction that the extracellular part of TMEFF2 as well as soluble 

TMEFF2 fragments containing FS modules might be involved in the regulation of several 

signaling cascades, including TGF-β, PDGF and Nodal/activin signaling. It will be a matter 

of future investigation to determine which of these signaling pathways are regulated by 

TMEFF2 in prostate cancer cells and how this regulation influences the development and 

progression of prostate cancer. 

 

8.6 Shedding of TMEFF2 in the presence of PDGF-AA 

It was shown recently that the extracellular part of TMEFF2 interacts with a 

multifunctional cytokine PDGF-AA and prevents binding of PDGF-AA to its receptor, 

PDGFRα (Lin et al. 2011). In order to investigate if the interaction with PDGF-AA 

influences TMEFF2 shedding, the release of AP/V5 TMEFF2 in the presence of PGDF-AA 

was analyzed. Overnight treatment of AP/V5 TMEFF2 HEK293 cells with different 

concentrations of recombinant PDGF-AA did not influence AP/V5 TMEFF2 release, 

whether PDGFRα was expressed in the cells or not (Figure 4.21). Surprisingly, when 

AP/V5 TMEFF2 HEK293 cells were treated with PDGF-AA for 1 hour, the shedding was 

significantly reduced in a dose-dependent manner. This effect was however observed only 

in cells lacking PDGFRα expression (Figure 4.22), suggesting that the affinity of PDGF-AA 

is higher for the receptor than for TMEFF2. It could be speculated that decreased 

TMEFF2 release from PDGF-AA-treated cells results from the internalisation of the AP/V5 

TMEFF2-PDGF-AA complex and down-regulation of cell surface AP/V5 TMEFF2 

available for shedding. It is also possible that PDGF-AA binding to TMEFF2 masks the 

ADAM cleavage site and prevents TMEFF2 ectodomain shedding. The two possible 

scenarios could be investigated in the future, for example by immunolabeling of TMEFF2 

and PDGF-AA followed by confocal microscopy analysis of their co-localization in the cell. 

This analysis should be complemented with PDGF-AA binding assays described by Lin 
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and co-workers (Lin et al. 2011) using immobilised ∆303-320TMEFF2 mutant and soluble 

PDGF-AA. The lack of PDGF-AA- ∆303-320TMEFF2 interaction would suggest that PDGF-

AA binds to TMEFF2 within the sequence recognized by ADAMs, preventing TMEFF2 

ectodomain shedding. 

 

8.7 The fate of TMEFF2 cytoplasmic domain following ectodomain cleavage 

The main part of this thesis describes the expression, purification and investigation 

of the biological function of extracellular TMEFF2 fragments that are released from the cell 

surface by ADAMs and serine proteases. However, the proteolytic processing of TMEFF2 

generates also cytoplasmic fragment(s) that may play important biological functions inside 

cancer cells. To date, the knowledge about the fate of TMEFF2 cytoplasmic domain is 

very limited. It is known from the literature data that the membrane-retained stub of 

TMEFF2, generated by ADAMs is a substrate for the γ-secretase complex (Ali & Knäuper 

2007). The cellular localization as well as the biological role of TMEFF2 cytoplasmic 

domain was not further investigated. The results presented in Chapter 7 focus on 

investigating the fate of TMEFF2 C-terminal fragments, generated by matriptase and 

hepsin. First, the intracellular expression pattern of TMEFF2 was compared with the 

expression of HB-EGF using immunolabeling and confocal microscopy. This analysis 

revealed that the trafficking of TMEFF2 and HB-EGF cytoplasmic domains differs 

significantly (Figure 7.4). In the absence of PMA both proteins were present on the cell 

surface and translocated to the cytoplasm upon PMA-mediated shedding induction. 

However, PMA-treatment of AP/V5 HB-EGF-expressing cells caused endocytosis of V5-

tagged HB-EGF-C and accumulation of V5-positive endocytotic vesicles around the 

nucleus, which confirms previously published data (Hieda et al. 2008). V5-tagged 

cytoplasmic domain of HA/V5 TMEFF2 translocates from the cell membrane into the 

cytoplasm but did not localize in endocytotic structures. Comparison of HB-EGF and 

TMEFF2 trafficking indicated that the cytoplasmic domain of TMEFF2 does not 

translocate to the nuclear membrane via endocytotic vesicles pathway.  

Trafficking of HB-EGF-ICD to the nuclear membrane is a very unique mechanism 

of protein translocation to the nucleus. More common trafficking pathway for cytoplasmic 

domains regulating gene expression is translocation from the cytoplasm into the nucleus 

through nuclear pores. Cytoplasmic domains of Notch receptor, EpCAM and ErbB-4, 

following γ-secretase processing, translocate to the nucleus through the pores (Artavanis-

Tsakonas et al. 1995; Maetzel et al. 2009; Ni et al. 2001). To investigate the possibility, 

that the intracellular part of TMEFF2 is transported into the nucleus via nuclear pores, the 

localization of TMEFF2 fragments in the nucleus was examined by cell fractionation.  

Analysis of the cytoplasmic and nuclear fraction from AP/V5 TMEFF2 expressing cells 
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revealed the presence of the ADAM-generated membrane stub in the cytoplasmic but not 

in the nuclear fraction (Figure 7.8). The TMEFF2-ICD was detected neither in the 

cytoplasm nor in the nuclear fraction, even when the cells were pre-treated with a nuclear 

export inhibitor leptomycin B (LMB), suggesting the degradation of TMEFF2-ICD following 

γ-secretase processing. Based on confocal analysis of TMEFF2-ICD localization as well 

as the cell fractionation data it was concluded that TMEFF2-ICD does not translocate to 

the nucleus. 

The fate of TMEFF2 cytoplasmic fragments generated by ADAMs, matriptase and 

hepsin was then analyzed in cells treated with the γ-secretase inhibitor DAPT. This 

analysis confirmed that the γ-secretase complex is involved in TMEFF2 processing 

following ADAM-mediated shedding (Figure 7.5) and showed that the C-terminal products 

of matriptase and hepsin cleavage are not further processed by the γ-secretase (Figure 

7.9). Analysis of the cells treated with proteasome inhibitor epoxomicin showed that the C-

terminal products of TMEFF2 cleavage by ADAM, serine proteases and γ-secretase 

complex are most likely degraded. Pre-treatment with epoxomicin significantly increased 

amounts of these fragments in cell lysates (Figure 7.10). Degradation of the cytoplasmic 

domain following γ-secretase processing is a mechanism of removing unnecessary 

fragments of transmembrane proteins where the biological function of transmembrane 

protein depends entirely on its ectodomain. An example of such protein is the IL-6 

receptor (IL-6R). The membrane-attached as well as soluble ectodomain of IL-6R plays 

important roles in IL-6 signaling, whereas the cytoplasmic domain undergo lysosomal 

degradation following ectodomain release (Chalaris et al. 2010). 

The data regarding the fate of TMEFF2 cytoplasmic fragments require further 

verification during biochemical analysis in the presence of other inhibitors of protein 

degradation, such as lactacystin (Tomoda & Omura 2000), or immunocolocalization of 

TMEFF2 C-terminus and proteasomal or lysosomal markers. Confirmation of the results 

described in this thesis would indicate that the biological function of TMEFF2 depends on 

its ectodomain. However, it might be speculated that the degradation of TMEFF2 C-

terminal fragments has some biological meaning, for example by disrupting TMEFF2 

interactions with its intracellular binding partners. To date the only known binding partner 

of TMEFF2 C-terminus is SARDH (Chen et al. 2011), an enzyme catalyzing 

dehydrogenation of sarcosine to glycine (Porter et al. 1985). The interaction of TMEFF2 

with SARDH reduces cytoplasmic sarcosine levels, probably by enhancing the enzymatic 

activity of SARDH (Chen et al. 2011). Elevated sarcosine levels in the cytoplasm correlate 

with aggressive phenotype of prostate cancer, indicating that sarcosine might be a novel 

marker of prostate cancer progression (Sreekumar et al. 2009; Dahl et al. 2011). The 

correlation between TMEFF2 expression and decreased sarcosine levels in prostate 

cancer cells suggests that the full-length TMEFF2 inhibits invasiveness of prostate cancer 
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cells. Hypothetically, shedding of TMEFF2 by ADAMs or serine proteases followed by the 

degradation of TMEFF2 cytoplasmic domain would disrupt the TMEFF2-SARDH 

interaction, increase the accumulation of sarcosine in the cytoplasm, supporting the 

invasive phenotype of prostate cancer cell. For that reason the investigation of the 

biological consequences of TMEFF2-SARDH binding as well as the role of proteolysis in 

regulating this interaction will be an interesting part of the future investigation of TMEFF2 

biological function in prostate cancer. 

To summarize, the data presented in this thesis showed for the first time that 

TMEFF2, a transmembrane protein expressed in normal prostate and prostate cancer 

cells is proteolytically processed by at least two groups of cell surface enzymes: type II 

transmembrane serine proteases (matriptase and hepsin) and ADAMs (ADAM9, 

ADAM12). This processing results in the generation of several soluble TMEFF2 fragments 

that have potentially different function in prostate cancer environment. The biological role 

of these fragments is more likely dependent on the presence of the follistatin-like domain. 

Future experiments will focus on deciphering the signaling pathways regulated by soluble 

TMEFF2 cleavage products in prostate cancer cells as well as determination if the 

differential processing by ADAMs and TTSPs might be a general regulatory mechanism, 

involved in modulating the function of other transmembrane proteins. 
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Appendix I: Buffers and solutions 

AP buffer 

100 mM Tris-HCl pH 9.5 

100 mM NaCl 

20 mM MgCl2 

 

Buffer C 

10 mM HEPES pH 7.9 

10 mM KCl 

0.1 mM EDTA 

Add freshly: 1 mM DTT (Sigma-Aldrich), 8 mM β-glycerophosphate (Sigma-Aldrich), 300 µM 
sodium ortovanadate (Sigma-Aldrich), protease inhibitor cocktail (Sigma-Aldrich, 10 µl per 1 ml 
of buffer) 

 

Buffer N 

20 mM HEPES pH 7.9 

10% glycerol (v/v) 

0.4 M NaCl 

1 mM EDTA 

1 mM EGTA 

Add freshly: 1 mM DTT (Sigma-Aldrich), 8 mM β-glycerophosphate (Sigma-Aldrich), 300 µM 
sodium ortovanadate (Sigma-Aldrich), protease inhibitor cocktail (Sigma-Aldrich, 10 µl per  
1 ml of buffer) 

 

Column buffer 

20 mM Tris-HCl pH 7.4 

200 mM NaCl 

1 mM EDTA (Melford) 

 

Coomassie Brilliant Blue R-250 staining solution 

3 % Coomassie Brilliant Blue R-250 

10 % acetic acid 

45% methanol 
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Coomassie distain solution 

10% acetic acid 

50% methanol 

 

His-select elution buffer 

50 mM Tris-HCl pH 8.0 

300 mM NaCl 

250 mM imidazole (Sigma-Aldrich) 

 

His-Select equilibration and wash buffer  

50 mM Tris-HCl pH 8.0 

300 mM NaCl 

10 mM imidazole (Sigma-Aldrich) 

 

Luria-Bertani broth (LB broth, 1 liter) 

10g trypton 

5g yeast extract 

10g NaCl 

 

Phosphate buffered saline (PBS) 

10 PBS tablets (OXOID)/1L H2O 

 

Reducing sample buffer (2x) 

3.5 ml dH2O 

1.25 ml 0.5M Tris-HCl pH 6.8 

2.5 ml glycerol 

2 ml 10% SDS 

0.2 ml 0.5% bromophenol blue 

0.5 ml 2-mercaptoethanol (Sigma-Aldrich) 
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Rich broth (1liter) 

10g tryptone 

5g yeast extract 

5g NaCl 

2g glucose (Acros Organics) 

 

RIPA lysis buffer 

20 mM sodium phosphate pH 7.4 

150 mM NaCl 

1% v/v Triton-X-100 

 

SDS-PAGE Running buffer 

25 mM Tris 

190 mM glycine 

0.1% SDS 

 

TEA buffer 

40 mM Tris acetate 

1 mM EDTA 

 

Tris buffered saline (TBS) 

50 mM Tris pH 8.0 

150 mM NaCl 

 

TBS/Tween 20 (TBST) 

TBS + 0.01%  Tween-20 (v/v, Sigma) 

 

TST 

50 mM Tris-HCl pH 7.6 

150 mM NaCl 

0.05% Tween 20 
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Western blot stripping buffer: 

62.5 mM Tris-HCl pH 6.8  

2% SDS 

100 mM β-mercaptoethanol 

 

Western blot transfer buffer 

25 mM Tris 

190 mM glycine 

20% methanol 

 

1% agarose gel 

1g agarose 

99 ml TEA buffer 

10 µl ethidium bromide (Sigma-Aldrich) 

 

1.5% agar plates 

7.5 g agar 

500 ml LB broth 

 

4% stacking gel 

3.2 ml ddH20 

0.5 ml 40% acrylamide/bis-acrylamide solution, 19:1 (Geneflow) 

1.25 ml 1 M Tris-HCl pH 6.8 

100 µl 10% ammonium persulfate (Sigma-Aldrich) 

10 µl TEMED (Sigma-Aldrich) 

 

10% resolving gel 

4.9 ml dH2O 

2.5 ml 40% acrylamide/bis-acrylamide solution, 19:1 (Geneflow) 

2.5 ml 1.5 M Tris-HCl pH 8.8 

100 µl 10% ammonium persulfate (Sigma-Aldrich) 

10 µl TEMED 



294 

 

11% resolving gel 

4.5 ml dH2O 

3.0 ml 40% acrylamide/bis-acrylamide solution, 19:1 (Geneflow) 

2.5 ml 1.5 M Tris-HCl pH 8.8 

100 µl 10% ammonium persulfate (Sigma-Aldrich) 

10 µl TEMED 

 

12.5% resolving gel 

4.2 ml dH2O 

3.2 ml 40% acrylamide/bis-acrylamide solution, 19:1 (Geneflow) 

2.5 ml 1.5 M Tris-HCl pH 6.8 

100 µl 10% ammonium persulfate (Sigma-Aldrich) 

10 µl TEMED 
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Appendix II : Sequence of MBP-tagged fusion proteins 

 

• MBP TMEFF2-ECD,  Mw=76,4 kDa 

MKIKTGARILALSALTTMMFSASALAKIEEGKLVIWINGDKGYNGLAEVGKKFEKDTGI
KVTVEHPDKLEEKFPQVAATGDGPDIIFWAHDRFGGYAQSGLLAEITPDKAFQDKLY
PFTWDAVRYNGKLIAYPIAVEALSLIYNKDLLPNPPKTWEEIPALDKELKAKGKSALMF
NLQEPYFTWPLIAADGGYAFKYENGKYDIKDVGVDNAGAKAGLTFLVDLIKNKHMNA
DTDYSIAEAAFNKGETAMTINGPWAWSNIDTSKVNYGVTVLPTFKGQPSKPFVGVLS
AGINAASPNKELAKEFLENYLLTDEGLEAVNKDKPLGAVALKSYEEELAKDPRIAATM
ENAQKGEIMPNIPQMSAFWYAVRTAVINAASGRQTVDEALKDAQTNSSSNNNNNNN
NNNLGIEGRISEFAAFPTSLSDQTPTGWNCSGYDDRENDLFLCDTNTCKFDGECLRI
GDTVTCVCQFKCNNDYVPVCGSNGESYQNECYLRQAACKQQSEILVVSEGSCATD
AGSGSGDGVHEGSGETSQKETSTCDICQFGAECDEDAEDVWCVCNIDCSQTNFNP
LCASDGKSYDNACQIKEASCQKQEKIEVMSLGRCQDNTTTTTKSEDGHYARTDYAE
NANKLEESAREHHIPCPEHYNGFCMHGKCEHSINMQEPSCRCDAGYTGQHCEKKD
YSVLYVVPGPVRFQYV 

 

• MBP 2xFS TMEFF2 V5-6xHis,   Mw= 71.7 kDa 

MKIKTGARILALSALTTMMFSASALAKIEEGKLVIWINGDKGYNGLAEVGKKFEKDTGI
KVTVEHPDKLEEKFPQVAATGDGPDIIFWAHDRFGGYAQSGLLAEITPDKAFQDKLY
PFTWDAVRYNGKLIAYPIAVEALSLIYNKDLLPNPPKTWEEIPALDKELKAKGKSALMF
NLQEPYFTWPLIAADGGYAFKYENGKYDIKDVGVDNAGAKAGLTFLVDLIKNKHMNA
DTDYSIAEAAFNKGETAMTINGPWAWSNIDTSKVNYGVTVLPTFKGQPSKPFVGVLS
AGINAASPNKELAKEFLENYLLTDEGLEAVNKDKPLGAVALKSYEEELAKDPRIAATM
ENAQKGEIMPNIPQMSAFWYAVRTAVINAASGRQTVDEALKDAQTNSSSNNNNNNN
NNNLGIEGRISEFAAFPTSLSDQTPTGWNCSGYDDRENDLFLCDTNTCKFDGECLRI
GDTVTCVCQFKCNNDYVPVCGSNGESYQNECYLRQAACKQQSEILVVSEGSCATD
AGSGSGDGVHEGSGETSQKETSTCDICQFGAECDEDAEDVWCVCNIDCSQTNFNP
LCASDGKSYDNACQIKEASCQKQEKIEVMSLGRCQDNTTTTTKSEDGHYARTDYAE
LESRGPFEGKPIPNPLLGLDSTRTGHHHHHH 

 

• MBP 2ndFS+EGF TMEFF2,  Mw=65 kDa 

MKIKTGARILALSALTTMMFSASALAKIEEGKLVIWINGDKGYNGLAEVGKKFEKDTGI
KVTVEHPDKLEEKFPQVAATGDGPDIIFWAHDRFGGYAQSGLLAEITPDKAFQDKLY
PFTWDAVRYNGKLIAYPIAVEALSLIYNKDLLPNPPKTWEEIPALDKELKAKGKSALMF
NLQEPYFTWPLIAADGGYAFKYENGKYDIKDVGVDNAGAKAGLTFLVDLIKNKHMNA
DTDYSIAEAAFNKGETAMTINGPWAWSNIDTSKVNYGVTVLPTFKGQPSKPFVGVLS
AGINAASPNKELAKEFLENYLLTDEGLEAVNKDKPLGAVALKSYEEELAKDPRIAATM
ENAQKGEIMPNIPQMSAFWYAVRTAVINAASGRQTVDEALKDAQTNSSSNNNNNNN
NNNLGIEGRISEFGVHEGSGETSQKETSTCDICQFGAECDEDAEDVWCVCNIDCSQT
NFNPLCASDGKSYDNACQIKEASCQKQEKIEVMSLGRCQDNTTTTTKSEDGHYART
DYAENANKLEESAREHHIPCPEHYNGFCMHGKCEHSINMQEPSCRCDAGYTGQHC
EKKDYSVLYVVPGPVRFQYV 
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• MBP EGF TMEFF2 V5-His, Mw=57.23 kDa 

MKIKTGARILALSALTTMMFSASALAKIEEGKLVIWINGDKGYNGLAEVGKKFEKDTGI
KVTVEHPDKLEEKFPQVAATGDGPDIIFWAHDRFGGYAQSGLLAEITPDKAFQDKLY
PFTWDAVRYNGKLIAYPIAVEALSLIYNKDLLPNPPKTWEEIPALDKELKAKGKSALMF
NLQEPYFTWPLIAADGGYAFKYENGKYDIKDVGVDNAGAKAGLTFLVDLIKNKHMNA
DTDYSIAEAAFNKGETAMTINGPWAWSNIDTSKVNYGVTVLPTFKGQPSKPFVGVLS
AGINAASPNKELAKEFLENYLLTDEGLEAVNKDKPLGAVALKSYEEELAKDPRIAATM
ENAQKGEIMPNIPQMSAFWYAVRTAVINAASGRQTVDEALKDAQTNSSSNNNNNNN
NNNLGIEGRISEFGSGHYARTDYAENANKLEESAREHHIPCPEHYNGFCMHGKCEH
SINMQEPSCRCDAGYTGQHCEKKDYSVLYVLESRGPFEGKPIPNPLLGLDSTRTGH
HHHHH 

 

• MBP H-REGF TMEFF2, Mw=54.8 kDa 

MKIKTGARILALSALTTMMFSASALAKIEEGKLVIWINGDKGYNGLAEVGKKFEKDTGI
KVTVEHPDKLEEKFPQVAATGDGPDIIFWAHDRFGGYAQSGLLAEITPDKAFQDKLY
PFTWDAVRYNGKLIAYPIAVEALSLIYNKDLLPNPPKTWEEIPALDKELKAKGKSALMF
NLQEPYFTWPLIAADGGYAFKYENGKYDIKDVGVDNAGAKAGLTFLVDLIKNKHMNA
DTDYSIAEAAFNKGETAMTINGPWAWSNIDTSKVNYGVTVLPTFKGQPSKPFVGVLS
AGINAASPNKELAKEFLENYLLTDEGLEAVNKDKPLGAVALKSYEEELAKDPRIAATM
ENAQKGEIMPNIPQMSAFWYAVRTAVINAASGRQTVDEALKDAQTNSSSNNNNNNN
NNNLGIEGRISEFGHYARTDYAENANKLEESAREHHIPCPEHYNGFCMHGKCEHSIN
MQEPSCRCDAGYTGQRCEKKDYSVLYVVPGPVRFQYV 

 

• MBP EGF HB-EGF V5-His, Mw=56.7 kDa 

MKIKTGARILALSALTTMMFSASALAKIEEGKLVIWINGDKGYNGLAEVGKKFEKDTGI
KVTVEHPDKLEEKFPQVAATGDGPDIIFWAHDRFGGYAQSGLLAEITPDKAFQDKLY
PFTWDAVRYNGKLIAYPIAVEALSLIYNKDLLPNPPKTWEEIPALDKELKAKGKSALMF
NLQEPYFTWPLIAADGGYAFKYENGKYDIKDVGVDNAGAKAGLTFLVDLIKNKHMNA
DTDYSIAEAAFNKGETAMTINGPWAWSNIDTSKVNYGVTVLPTFKGQPSKPFVGVLS
AGINAASPNKELAKEFLENYLLTDEGLEAVNKDKPLGAVALKSYEEELAKDPRIAATM
ENAQKGEIMPNIPQMSAFWYAVRTAVINAASGRQTVDEALKDAQTNSSSNNNNNNN
NNNLGIEGRISEFGSKGLGKKRDPCLRKYKDFCIHGECKYVKELRAPSCICHPGYHG
ERCHGLSLPVENRLYTYDHTTILALESRGPFEGKPIPNPLLGLDSTRTGHHHHHH 
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Appendix III: Flp-In System (Invitrogen) 

The Flp-In System allows stable expression of the gene of interest in mammalian 

cells by taking advantage of a Saccharomyces cerevisiae-derived DNA recombination 

system. It involves introduction of a Flp Recombination Target (FRT) site into the genome 

of the mammalian cell line of choice followed by the incorporation of an expression vector 

into the genome via Flp recombinase-mediated DNA recombination at the FRT site. 

Generation of a mammalian cell line stably expressing gene of interest requires 

transfection with three different vectors in two steps. In the first step pFRT/lacZeo target 

site vector is used to generate a Flp-In host cell line. The vector contains a lacZ-Zeocin 

fusion gene whose expression is controlled by the SV40 early promoter and a FRT site 

just downstream of the ATG initiation codon of the lacZ-Zeocin fusion gene. Cells 

transfected with the pFRT/lacZeo plasmid are selected for Zeocin resistance and the 

resulting Flp-In host cell line contains an integrated FRT site and expresses the lacZ-

Zeocin fusion gene. Second step requires co-transfection of the Flp-In host cell line with 

pOG44 plasmid which constitutively expresses the Flp recombinase under the control of 

the human CMV promoter and pcDNA5/FRT vector containing cloned gene of interest. 

The pcDNA5/FRT vector contains also the hygromycin resistance gene that lacks a 

promoter and the ATG initiation codon with a FRT site embedded in the 5’ coding region. 

Upon co-transfection the Flp recombinase expressed from the pOG44 mediates a 

homologous recombination between the FRT sites in the genome on Flp-In host cell line 

and the pcDNA5/FRT plasmid. It results in the integration of the pcDNA5/FRT construct 

into the genome. Insertion of pcDNA5/FRT at the FRT site brings the SV40 promoter and 

the ATG initiation codon from pFRT/lacZeo into proximity and frame with the hygromycin 

resistance gene, and inactivates the lacZ-Zeocin fusion gene. Thus, stable Flp-In 

expression cell lines can be selected for hygromycin resistance, Zeocin sensitivity, lack of 

β-galactosidase activity, and expression of the recombinant protein of interest (see 

diagram below). 
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Flp-In System (Invitrogen) 

 

 

(from www.invitrogen.com) 
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Appendix IV: N-protein A TMEFF2 fragments protein sequence 

• IgG-protein A-ECD, Mw= 52.9 kDa 

PPWLPSTAASVLEFGLGISTMETDTLLLWVLLLWVPGSTGDYPYDVPDYAGAQPALPVEL
KTAALAQHDEAVDNKFNKEQQNAFYEILHLPNLNEEQRNAFIQSLKDDPSQSANLLAEAK
KLNDAQAPKVDNKFNKEQQNAFYEILHLPNLNEEQRNAFIQLSKDDPSQSANLLAEAKKL
NGAQAPKVDANSAGKSTTGSAFPTSLSDCQTPTGWNCSGYDDRENDLFLCDTNTCKFD
GECLRIGDTVTCVCQFKCNNDYVPVCGSNGESYQNECYLRQAACKQQSEILVVSEGSC
ATDAGSGSGDGVHEGSGETSQKETSTCDICQFGAECDEDAEDVWCVCNIDCSQTNFNP
LCASDGKSYDNACQIKEASCQKQEKIEVMSLGRCQDNTTTTTKSEDGHYARTDYAENAN
KLEESAREHHIPCPEHYNGFCMHGKCEHSINMQEPSCRCDAGYTGQHCEKKDYSVLYV
VPGPVRFQYV 

• IgG-protein A-2xFS, Mw = 46.0 kDa 

PPWLPSTAASVLEFGLGISTMETDTLLLWVLLLWVPGSTGDYPYDVPDYAGAQPALPVEL
KTAALAQHDEAVDNKFNKEQQNAFYEILHLPNLNEEQRNAFIQSLKDDPSQSANLLAEAK
KLNDAQAPKVDNKFNKEQQNAFYEILHLPNLNEEQRNAFIQLSKDDPSQSANLLAEAKKL
NGAQAPKVDANSAGKSTTGSAFPTSLSDCQTPTGWNCSGYDDRENDLFLCDTNTCKFD
GECLRIGDTVTCVCQFKCNNDYVPVCGSNGESYQNECYLRQAACKQQSEILVVSEGSC
ATDAGSGSGDGVHEGSGETSQKETSTCDICQFGAECDEDAEDVWCVCNIDCSQTNFNP
LCASDGKSYDNACQIKEASCQKQEKIEVMSLGRCQDNTTTTTKSEDGHYARTDYAENAN
KLEESARE 

• IgG-protein A-FS-EGF, Mw = 41.5 kDa 

PPWLPSTAASVLEFGLGISTMETDTLLLWVLLLWVPGSTGDYPYDVPDYAGAQPALPVEL
KTAALAQHDEAVDNKFNKEQQNAFYEILHLPNLNEEQRNAFIQSLKDDPSQSANLLAEAK
KLNDAQAPKVDNKFNKEQQNAFYEILHLPNLNEEQRNAFIQLSKDDPSQSANLLAEAKKL
NGAQAPKVDANSAGKSTTGSGVHEGSGETSQKETSTCDICQFGAECDEDAEDVWCVC
NIDCSQTNFNPLCASDGKSYDNACQIKEASCQKQEKIEVMSLGRCQDNTTTTTKSEDGH
YARTDYAENANKLEESAREHHIPCPEHYNGFCMHGKCEHSINMQEPSCRCDAGYTGQH
CEKKDYSVLYVVPGPVRFQYV 

• IgG-protein A-EGF, Mw = 31.7 kDa 

PPWLPSTAASVLEFGLGISTMETDTLLLWVLLLWVPGSTGDYPYDVPDYAGAQPALPVEL
KTAALAQHDEAVDNKFNKEQQNAFYEILHLPNLNEEQRNAFIQSLKDDPSQSANLLAEAK
KLNDAQAPKVDNKFNKEQQNAFYEILHLPNLNEEQRNAFIQLSKDDPSQSANLLAEAKKL
NGAQAPKVDANSAGKSTTGSKSEDGHYARTDYAENANKLEESAREHHIPCPEHYNGFC
MHGKCEHSINMQEPSCRCDAGYTGQHCEKKDYSVLYVVPGPVRFQYV 
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Appendix V: TMEFF2-ECD-Fc protein sequence 

MVLWESPRQCSSWTLCEGFCWLLLLPVMLLIVARPVKLAAFPTSLSDCQTPTGWNCSG
YDDRENDLFLCDTNTCKFDGECLRIGDTVTCVCQFKCNNDYVPVCGSNGESYQNECYL
RQAACKQQSEILVVSEGSCATDAGSGSGDGVHEGSGETSQKETSTCDICQFGAECDED
AEDVWCVCNIDCSQTNFNPLCASDGKSYDNACQIKEASCQKQEKIEVMSLGRCQDNTTT
TTKSEDGHYARTDYAENANKLEESAREHHIPCPEHYNGFCMHGKCEHSINMQEPSCRC
DAGYTGQHCEDYKDDDDKGIDEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMI
SRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQ
DWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVK
GFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVM
HEALHNHYTQKSLFLSPGKTGVHHHHHH   
 

 

 

 

 

 


