

ORCA - Online Research @ Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional repository:https://orca.cardiff.ac.uk/id/eprint/52920/

This is the author's version of a work that was submitted to / accepted for publication.

Citation for final published version:

Krüger, F., Clare, E. L., Greif, S., Siemers, B. M., Symondson, William Oliver Christian and Sommer, R. S. 2014. An integrative approach to detect subtle trophic niche differentiation in the sympatric trawling bat species Myotis dasycneme and Myotis daubentonii. Molecular Ecology 23 (15), pp. 3657-3671. 10.1111/mec.12512

Publishers page: http://dx.doi.org/10.1111/mec.12512

Please note:

Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher's version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders.

MOLECULAR ECOLOGY

An integrative approach to detect subtle trophic niche differentiation in the sympatric trawling bat species Myotis dasycneme and Myotis daubentonii

Journal:	Molecular Ecology	
Manuscript ID:	MEC-13-0478.R1	
Manuscript Type:	Original Article	
Date Submitted by the Author:	n/a	
Complete List of Authors:	Krüger, Frauke; Buero Echolot, ; University of Kiel, Institute for Natural Resource Conservation, Landscape Ecology Clare, Elizabeth; School of Biological and Chemical Sciences Queen Mary University of London, Greif, Stefan; Max Planck Institute for Ornithology, Sensory Ecology Siemers, Bjoern; Max Planck Institute for Ornithology, Sensory Ecology Symondson, William; Cardiff University, Cardiff School of Biosciences; Sommer, Robert; University of Kiel, Institute for Natural Resource Conservation, Landscape Ecology	
Keywords:	Diet Analysis, Bats, Functional morphology, Mammals, Adaptation	

SCHOLARONE™ Manuscripts

- 1 An integrative approach to detect subtle trophic niche differentiation in the
- 2 sympatric trawling bat species Myotis dasycneme and Myotis daubentonii
- 3 F Krüger^{1*}, E L Clare², S Greif³, BM Siemers³, WOC Symondson⁴, RS Sommer¹,
- ¹University of Kiel, Ecology Centre, Landscape Ecology, Kiel, Germany
- 5 ²School of Biological and Chemical Sciences, Queen Mary University of London, London,
- 6 United Kingdom
- ³Max Planck Institute for Ornithology, Sensory Ecology, Seewiesen, Germany
- 8 ⁴Cardiff University, Cardiff School of Biosciences, Cardiff, Wales, United Kingdom
- 9 University of Kiel, Ecology Centre, Landscape Ecology, Kiel, Germany

- 11 Corresponding author:
- Frauke Krüger, Olshausenstr. 75, 24118 Kiel, fkrueger@ecology.uni-kiel.de

13

- 14 **Key words**: Bats, Diet Analysis, Functional morphology, Adaptation,
- Running title: Trophic ecology of European trawling *Myotis*

16

Abstract

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

Bats are well known for species richness and ecological diversity thus they provide a good opportunity to study relationships and interaction between species. To assess interactions we consider distinct traits which are likely to be triggered by niche shape and evolutionary processes. We present data on the trophic niche differentiation between two sympatric European trawling bat species, Myotis dasycneme and M. daubentonii, incorporating a wide spectrum of methodological approaches. We measure morphological traits involved in foraging and prey handling performance including bite force, weight lifting capacity and wing morphology. We then measure resulting prey consumption using both morphological and molecular diet analysis. These species closely resemble each other in morphological traits however, subtle but significant differences were apparent in bite force and lift capacity which are related to differences in basic body and head size. Both morphological and molecular diet analyses show strong niche overlap. We detected subtle differences in less frequent prey items, as well as differences in the exploitation of terrestrial and aquatic-based prey groups. M. dasycneme feeds more on aquatic prey, like Chironomidae and their pupal stages, or the aquatic moth Acentria ephemerella. M. daubentonii feeds more on terrestrial prey, like Brachycera, or Coleoptera. This suggests that these bats use different micro-habitats within the habitat where they co-occur.

Introduction

Understanding species interactions is a fundamental research area in ecology	
(Rickleffs & Schluter 1993) and these interactions (e.g., predation, competition) are	
frequently sited as causal factors in adaptive speciation (Dieckmann et al. 2004). This theory	у
implies that each species is adapted to a specific ecological niche, separated from other	
species by reproductive isolation and eco-morphological traits (Hutchinson 1957; Mayr 198	36;
Schluter 2001; Holt 2009) which permit co-existence. Ecological interactions and selective	
processes contribute to the evolution of new phenotypes and the maintenance of	
morphological diversity (Dieckmann & Doebeli 1999; Ryan et al. 2007).	
In many vertebrates species radiation and diversification of ecological niches is	
accompanied by corresponding diversification of morphological characters and adaptations	
Case studies, e.g. Darwin's finches, have shown that morphological traits can be formed	
through natural selection interacting with trophic resources (Grant 1985; Schluter et al. 198	5;
Grant & Grant, 2006). Often these morphological traits are directly related to the performan	ıce
of a species during resource exploitation and the ability to sustain that performance in a	
changing environment (Lack 1974; Schluter et al. 1985; Herrel et al. 2005). High diversity	in
such adaptations and variable resource exploitation in time and space may facilitate the	
coexistence of even highly similar species (Coyne & Orr 2004).	
Bats (Chiroptera) exploit a great diversity of trophic niches with a variety of	
morphological and behavioural adaptations, but up to 70% are primarily insectivorous	
(Simmons 2005). Due to high species richness and diversity in trophic adaptations, bat	
communities and guilds have been the focus of numerous studies dealing with species	
interaction and community structure (Findley & Black 1983; Dumont 1997; Schnitzler &	
Kalko 2001; Aguirre et al. 2002; Kalko et al. 2007; Clare et al. 2009; Bohmann et la. 2011;	
Razgour, et al. 2011, Emrich et al. accepted).	

To understand the interactions between species and to measure their ecological niche
one can observe competitive interactions directly, but for cryptic and elusive species like bats,
indirect measures are necessary including analysis of both morphological traits and
behavioural mechanisms of resource exploitation. Echolocation call structure has been shown
to separate ecological niches of bat species (Schnitzler & Kalko 2001; Schnitzler et al. 2003;
Siemers & Schnitzler 2004). Similarly, wing morphology and corresponding flight habits and
foraging behaviour are highly diverse and contribute to niche segregation (Norberg & Rayner
1987). Bite force also influences resource partitioning on the base of food hardness and prey
handling (Freeman 1981; Dumont 1999, Aguirre et al. 2003; Santana et al. 2010). Often a
complex of interacting parameters, including subtle traits such as temporal partitioning of
resources (e.g. Emrich et al. accepted), must be considered to accurately measure the
mechanisms of partitioning. These parameters partly define ecological niches (habitat,
foraging, etc) and shape bat communities.
One method of assessing whether these characters effectively result in niche
partitioning and specialization is to measure the effect on food resource exploitation and
partitioning and specialization is to measure the effect on food resource exploitation and examine post foraging resource divisions. For example, through analysis of eco-
examine post foraging resource divisions. For example, through analysis of eco-
examine post foraging resource divisions. For example, through analysis of ecomorphological characters in conjunction with dietary analysis and modelling of niche
examine post foraging resource divisions. For example, through analysis of ecomorphological characters in conjunction with dietary analysis and modelling of niche differentiation between potentially competing species (Emrich et al. accepted). Traditionally,
examine post foraging resource divisions. For example, through analysis of ecomorphological characters in conjunction with dietary analysis and modelling of niche differentiation between potentially competing species (Emrich et al. accepted). Traditionally, dietary studies have employed morphological identification of prey remains in faecal samples
examine post foraging resource divisions. For example, through analysis of ecomorphological characters in conjunction with dietary analysis and modelling of niche differentiation between potentially competing species (Emrich et al. accepted). Traditionally, dietary studies have employed morphological identification of prey remains in faecal samples or stomach content (Whitaker 1972; Kunz & Whitaker 1983; Whitaker <i>et al.</i> 2009), or culled
examine post foraging resource divisions. For example, through analysis of ecomorphological characters in conjunction with dietary analysis and modelling of niche differentiation between potentially competing species (Emrich et al. accepted). Traditionally, dietary studies have employed morphological identification of prey remains in faecal samples or stomach content (Whitaker 1972; Kunz & Whitaker 1983; Whitaker <i>et al.</i> 2009), or culled prey remains (Bell 1982; Jones 1990; Lacki & Ladeur 2001) to assess prey occurrences and
examine post foraging resource divisions. For example, through analysis of ecomorphological characters in conjunction with dietary analysis and modelling of niche differentiation between potentially competing species (Emrich et al. accepted). Traditionally, dietary studies have employed morphological identification of prey remains in faecal samples or stomach content (Whitaker 1972; Kunz & Whitaker 1983; Whitaker <i>et al.</i> 2009), or culled prey remains (Bell 1982; Jones 1990; Lacki & Ladeur 2001) to assess prey occurrences and dietary biomass. While effective, these methods are normally limited to ordinal or family
examine post foraging resource divisions. For example, through analysis of ecomorphological characters in conjunction with dietary analysis and modelling of niche differentiation between potentially competing species (Emrich et al. accepted). Traditionally, dietary studies have employed morphological identification of prey remains in faecal samples or stomach content (Whitaker 1972; Kunz & Whitaker 1983; Whitaker <i>et al.</i> 2009), or culled prey remains (Bell 1982; Jones 1990; Lacki & Ladeur 2001) to assess prey occurrences and dietary biomass. While effective, these methods are normally limited to ordinal or family level identification of prey and may overlook more subtle niche differentiation. More

89	unknowns (Hebert et al. 2003a, b) and rapid analyses particularly using high-throughput
90	sequencing platforms, such as electronic-current based Ion Torrent (Pourmand et al. 2006;
91	Rothenburg et al. 2011; Pompanon et al. 2012). These methods have been used to great effect
92	in insectivorous bats with both traditional sanger sequencing (Clare et al. 2009, 2011, Zeale et
93	al. 2011) and high throughput next generation sequencing (Bohman et al. 2011, Razgour et al.
94	2011, Clare et al. a/b accepted, Emrich et al. accepted, Krüger et al. accepted).
95	Two species of trawling Myotis, Myotis dasycneme and Myotis daubentonii, share
96	behavioural and morphological traits such as large feet, foraging close to the water surface,
97	and scooping prey from the surface with their feet or tail membrane. During foraging both
98	species use short, downward-frequency-modulated echolocation signals, of 1.7–3.0 ms length
99	and a sweep range of 38.9-54.5 kHz (Jones & Rayner 1988; Kalko & Schnitzler 1989; Britton
100	et al. 1997; Siemers et al. 2001). A previous study based only on morphological diet analysis
101	showed high overlap in prey groups, with little difference among the less frequent prey items
102	(Krüger et al. 2012). In contrast, these species show dissimilarities in roosting behaviour and
103	migration behaviour. M. dasycneme prefers synanthropic roosting, using attics and cavity
104	walls as maternity roosts while M. daubentonii is frequently found in hollow trees and
105	artificial roosts in forests. In addition, it is believed that they do not share a recent
106	phylogenetic history thus resource competition may not have been a primary factor in their
107	radiation. M. dasycneme probably diverged more than 10 MYA from a group of Myotis,
108	which includes M. daubentonii. This leaves M. dasycneme more closely related to M.
109	mystacinus. Yet, the phylogenetic position of M. dasycneme is debated (Stadelmann et al.
110	2004, 2007).
111	Razgour et al. (2011) assessed resource use between cryptic, closely related long-eared
112	bats (Plecotus auritus and P. austriacus) occurring in sympatry while Bohman et al. (2011)
113	considered resource use between two morphologically different species which share roosts
114	and foraging grounds (Chaerephon pumilus and Mops condylurus). Here we consider the

intermediate case, two sympatric species of the same guild which do not share a sister-species
relationship. While resource partitioning in general may be important in diversification and
coexistence, morphological convergence and the limits of bats' perceptual abilities may limit
prey partitioning. In this scenario, morphology and echolocation may lead to habitat selection
and thus dietary convergence, particularly in insects are not limiting and thus competition
unlikely. Here, we test the hypothesis that morphological and behavioural convergence
corresponds with resource overlap when there is no reasonable expectation of past radiation
via competitive interactions (e.g. allopatric origin, reproductive isolation).

We use morphological traits, including wing morphology, bite force and a novel aspect, the physio-morphological ability to lift objects from the surface of the water (and thus important for trawling bats), along with molecular and morphological dietary analysis, to assess mechanisms of co-existence between these two predators. We hypothesise that the dietary niche of the two bat species will overlap to a large extent, as both species should perceive similar sized prey and use similar hunting modes in the same habitats. Their physiomorphological abilities, though similar (same guild), may vary reflecting more recent competitive interactions in secondary sympatry. We expect that both species share major prey types and do not show significant eco-morphological differences.

Methods

The study uses a combined approach including data collected from molecular and morphological analysis of diet from faecal pellets, measurements of wing morphology, bite force and laboratory experiments on hunting performance.

Study site and guano collection

We collected faecal samples between May and August 2009 from bats mist-netted along their commuting routes between roosts and foraging habitat over the Schwentine River in Schleswig-Holstein, Germany (54,195°N; 10,308°E). The distances between the sampling sites varied from 2.94 km to 14.61 km. Thus given the proximity and similarity of the landscape at each site, we consider them to be "sympatric" (able to commute freely between sites) and that any observed difference in diet between the species is unlikely to be explained through access to different species of insects via habitat selection. We kept bats in clean soft cotton bags for approximately half an hour after capture for collection of faecal samples. Permission and ethical approval was provided by the State Agency for Agriculture, Environment and Rural Areas, Schleswig-Holstein, Germany (LANU 314/5327.74.1.6).

Functional morphology

Wing morphology — We photographed wings and measured wing parameters of 30 bats with the program AxioVision 4.7.10 (Carl Zeiss Microscopy GmbH, Jena) along with collection of traditional morphological data, like body mass and forearm length (Norberg & Rayner 1987).

Weight lifting — To estimate weight lifting in foraging performance we took six male *M. daubentonii* and three male *M. dasycneme* into captivity for laboratory experiments. We

157	collected data in the laboratory facilities at the Max-Planck Institute for Ornithology,
158	Seewiesen, Germany. We housed these animals in air-conditioned rooms (20°C / 80%
159	humidity) with ad libitum water and food supply (mealworm larvae, Tenebrio molitor,
160	vitamins and minerals in addition). Animals were habituated to a 12 h shift in their
161	photoperiod. Permission and ethical approval was provided by the State Agency for
162	Agriculture, Environment and Rural Areas (LLUR), Schleswig-Holstein, Germany (LLUR
163	515/5327.74.1.6).
164	We trained bats to take mealworms from the water surface of an artificial pond (3 \times 4
165	m), built in a 4×9 meter flight room. For measurements of maximal weight lifting
166	performance we connected a dummy mealworm with a piezo electric force transducer (type
167	5015A, KISTLER, Inc.) via a nylon thread and a custom made deviating mechanism. The
168	dummy was connected permanently with the nylon thread so that maximum lift force could be
169	obtained. After each catching attempt (successful or unsuccessful) a real mealworm was
170	provided on the water surface.
171	Bite force — All bats caught in the field were identified, sexed, weighed, and
172	measured. We only choose adult bats for bite force assessment. Measurements included
173	forearm length (the standard proxy for bat body size) and upper tooth row length (distance
174	from the canine to the 3 rd molar, CM³), used as a proxy for head size. We measured maximum
175	bite force in 20 bats each of M. dasycneme and M. daubentonii, by letting the bats bite onto a
176	custom-made lever which connected to a piezo electric force transducer (KISTLER, Type
177	9217A) (Aguirre et al. 2002). The distance of the bite plates was adjusted to accommodate a
178	standardized gape angle of approximately 25°(Dumont and Herrel 2003). A series of six bite
179	sessions was conducted, some sessions consisting of multiple bites. The maximum bite force
180	obtained across all bite sessions was used for further analysis. Bite forces were corrected for
181	the effect of the lever and transducer system. We released bats directly after measurements at

the site of capture.

Molecular diet analysis

We extracted DNA from each pellet (n <i>M. dasycneme</i> = 34; n <i>M. daubentonii</i> = 36)
using the QIAamp DNA Stool Mini Kit (Qiagen, UK) following standard protocol with
adjustments suggested by Zeale et al. (2011). We stored extracted DNA at -80°C prior to PCR
analyses. We amplified insect DNA from faecal pellets using insect general COI primers ZBJ-
ArtF1c and ZBJ-ArtR2c modified as described by Clare et al. accepted. The original primers
were described by Zeale et al. (2011), and have been tested by many recent studies (e.g.
Bomann et al. 2011, Razgour et al. 2011, Clare et al. a/b accepted, Emrich et al. accepted).
The target region is a 157 bp amplicon located at the 5' end of the 658 bp COI barcode region
(Hebert et al. 2004). Prior to experimental use we confirmed the efficiency of the primers on
additional common local arthropod genera (i.e. Diptera, Aranea, Lepidoptera, Coleoptera,
data not shown) by amplification following Zeale et al. (2011). We did not use unique MID
recognition methods (e.g. Clare et al. a accepted), rather, all independently amplified samples
were pooled within predator species (following Emrich et al. accepted) for DNA sequencing
via the Ion Torrent sequencing platform (Life Technology) at the University of Bristol
Genomics facility (School of Biological Sciences, Bristol, UK). To remove primers and
adaptors post sequencing, collapse to unique haplotypes and for further sequencing
processing, we used the Galaxy V platform (https://main.g2.bx.psu.edu/root ; Giardine et al.
2005; Blankenberg et al. 2007; Blankenberg et al. 2010; Goecks et al. 2010). We removed
haplotypes represented by <2 haplotypes and clustered the sequences into molecular
operational taxonomic units (MOTU) using the program jMOTU (Jones et al. 2011). We
tested grouping thresholds from 1-10 bp and selected a 4bp threshold for this data set (see
Razgour et al. 2011). We extracted representative sequences for each MOTU for comparison
with a known reference library.

Molecular Ecology

207	We compared sequences against known reference sequences within the Barcode of
208	Life Data Systems (Ratnasingham & Hebert 2007; Clare et al. 2009). If sequences matched
209	completely to a reference sequence without matching any other arthropod, we regarded the
210	sequence as belonging to the same species. However, the short amplicon length also
211	constrains some species identifications. Following Clare et al. a.b accepted we used a
212	modified version of the criteria in Razgour et al. (2011) as follows:
213	
214	1a. True species match (>99 % similarity)
215	1b. True species match (>98% similarity)
216	2. Match (>98%) to more than one species, only one of which belongs to local assemblage
217	3. Match (>98%) to several species or genera – genus or family level assignment made
218	and considered provisional.
219	
220	Morphological diet analysis
221	For morphological faecal analysis, we dried guano samples ($n = 206$) at room
222	temperature and stored them at -20°C to avoid coprophagous insects. Before analysis, pellets
223	were soaked for 48 h in 70% Ethanol and dissected under a binocular microscope ($\times40-60$).
224	Characteristic fragments were separated and mounted in Euparal for further examination. We
225	identified prey groups by fragments to class, order, family, or genus level (where feasible), by
226	comparison of fragments with whole collected insects and arthropod identification keys
227	(McAney et al. 1991, Krüger et al. 2012).
228	For each individual bat, we calculated the occurrence of each prey group as the
229	relative proportion of all sampled individual bats (N) ('percentage occurrence', total > 100
230	%). We further determined the relative proportion for each prey group of the total of

consumed prey groups (Nc) ('percentage frequency', total = 100) (McAney et al. 1991;

232 Vaughaun 1997; Krüger et al. 2012).

233

234

231

Data analysis

235 We assessed differences in functional-morphological traits (e.g., wing morphology, 236 bite force and lifting performance) using R (R Development Core Team 2009, Version 237 2.15.1). To estimate niche differences between M. dasycneme and M. daubentonii based on 238 the molecular dietary data we calculated Hamming distance and Bray-Curtis index for 239 similarity. The Hamming distance gives the number of positions at which the corresponding 240 symbols of two strings of the same length are different (Hamming 1950). It is calculated on 241 the entire pool of available prey. A smaller value for Hamming distances indicates more 242 similar dietary choices and includes shared prey and shared avoidance of prey in the similarity 243 score. The Bray-Curtis index (Equation 1) (Bray & Curtis 1957) is used to quantify the 244 dissimilarity in the dietary composition of the study species, where C_{ij} is the sum of the lesser 245 value for only those species in common between both samples. S_i and S_i are the total number 246 of species counted in both samples. The Bray–Curtis dissimilarity is 0, if the two samples 247 share all species and 1, if the two samples do not share any species (Bloom 1981).

248

$$BC_{ij} = \frac{2C_{ij}}{S_i + S_j}$$
 (Equation 1)

250

251
$$D = 1 - \sum_{i=1}^{s} \frac{n_i (n_i - 1)}{n (n - 1)}$$
 (Equation 2)

252

$$O_{jk} = \frac{\sum p_{ij}p_{ik}}{\left(\sum p_{ij}^2 \sum p_{ik}^2\right)^{1/2}}$$
 (Equation 3)

To assess dietary niche breadth based on the morphological diet data, we used the			
Simpson's index for diversity and heterogeneity (Equation 2), where n_i is the relative			
proportion of a prey item i (with $i = 1n$) of a total of n prey items. Thus, D is 0, if all eaten			
prey belongs to one prey group. The higher the diversity, the closer D gets to 1. To estimate			
the degree of similarity in prey exploitation based on the presence-absence data, we calculated			
Pianka's index of niche overlap (Equation 3), where p_i is the frequency of occurrence of prey			
item i in the diet of species j and k (Pianka 1973). The Pianka's index reaches 1, if diets of j			
and k overlap to a 100%. To test the effect of species or sex on the variance in the dietary data			
we conducted a permutation analysis of variance (ADONIS, Anderson 2001). Additionally,			
we performed non-metric multidimensional scale ordination (NMDS) with Jaccard distance to			
visualise differences between the two species (Clark & Warwick, 2001). We tested			
differences in single prey groups, also including the prey habitat, between species with			
generalised linear models (GLM) and Tukey post-hoc tests.			
We estimated species richness and diversity using morphological dietary data with the			
vegan library (Oksanen et al. 2011). We conducted multivariate methods, NMDS, Adonis and			
GLM, using the vegan R library (Oksanen et al. 2011) and the MASS R library (Venables &			
Ripley 2002).			

Results

Functional morphology

We measured wing parameters from 30 bats using digital photos of live animals
(Table 1). The two species differed significantly in their basic body measures: body mass (χ^2
= 21.08, df = 1, p < 0.001) and forearm length (χ^2 = 18.73, df = 1, p < 0.001). Within species
we found differences, with females being larger in M. daubentonii and males being larger in
M. dasycneme. The species differed in wingtip shape index (I) ($t = 2.0739$, $df = 27$, $p < 0.05$),
but not in wing loading ($t = 1.3785$, $df = 27$, $p = 0.179$). Yet, these parameters show high
variability within and between species when taking the sex into account: Male M. dasycneme
showed higher I than male M. daubentonii, vice versa for female bats (Tab 1). We measured
weightlifting performance in seven male M. daubentonii and three male M. dasycneme, each
represented by 10 individual measurements, under the same settings and conditions. The two
species differed significantly in maximal weight lifting performance ($t = -7.08$, $df = 8$, $p < -0.08$)
0.001). We found <i>M. dasycneme</i> individuals to perform less well than <i>M. daubentonii</i> . The
Pearson correlation shows that wing loading and weightlifting performance are negatively
correlated (cor = -0.83 , p< 0.01 , Fig. 1), though this is not significant in <i>M. daubentonii</i> , when
tested separately.
The values for maximal bite force differed significantly between species ($t = 8.68$, $df =$
37, p < 0.001). We found M . dasycneme to have higher maximal bite force congruent with a
longer upper tooth row length (CM ³) (Bite force = 31 N; CM ³ = 6.12 mm, sd = 0.21) than M .
daubentonii (Bite force = 19 N ; CM ³ = 5.2mm , sd = 0.23). In addition, we correlated the
maximal bite force with mean forearm length (FA), which is a proxy for body size, and mean
upper tooth row length (CM³), which indicates head size. Both size parameters correlated
positively with maximal bite force when tested in all species (Fig. 2) though if tested

- separately, only *M. dasycneme* shows positive correlation between tooth row length (CM³) and maximal bite force (rho = 0.51, p < 0.05).
- 299
- 300

Molecular diet analysis

We identified a total of 176 MOTUs, of which 125 could be assigned to insect taxa. For 51 MOTUs we found no matches in the BOLD Systems. We rejected 3 MOTUs, either because they were too short or because they matched unrelated taxa (e.g. Fungus). We found 135 MOTUs in samples from *Myotis daubentonii*, whereas 77 MOTUs were assigned to samples from *Myotis dasycneme*.

We found high values for Bray-Curtis index (BC) between *M. dasycneme* and *M. daubentonii* (Table 3). However, there are gender specific differences. Females show lowest similarity between species. Similarly, there is a high Hamming Distance between *M. daubentonii* females and *M. dasycneme* females (Table 3). We found lower distances within *M. dasycneme*, between males of both species and between *M. daubentonii* males and *M. dasycneme* females. Overall dietary divergence as measured by Hamming Distance between *M. dasycneme* and *M. daubentonii* was higher than similar comparisons within species (Table 3).

Within the identified prey species (n = 51), some specific prey habitat interactions are apparent. The Lepidoptera we found in the samples from *M. dasycneme* encompasses three species, which either have aquatic life stages (*Acentria ephemerella*) or develop in close proximity to aquatic ecosystems (*Nonagria typhae, Leucania obsoleta*). Other species like *Epinotia demarniana* or *Mompha epilobiella* are known from riverine habitats with larvae feeding on riverine plant species (e.g., *Alnus glutinosa, Epilobium sp.*). The prey species in the order of Hemiptera clearly indicate aquatic habitats, as all found species show sub-aquatic life cycles, with occasional flight events (e.g., *Sigara striata*). Beetles, assigned to truly terrestrial species (*Copris sp.* and Carabidae), were only consumed by *M. daubentonii*.

Morpho	logical	diet	analysis

Overall, we analysed 206 samples of M . $dasycneme$ ($n = 84$) and M . $daubentonii$ ($n = 84$)
122). In the diet of M. dasycneme we identified 12 prey groups and for M. daubentonii 17
prey groups. Within identified Diptera, we could identify the sub-order Nematocera with the
families of Tipulidae and Chironomidae and the genus Glyptotendipes, and the sub-order
Brachycera. Within the Hemiptera, we were able to identify the families Corxidae, Gerridae
and Aphidoidea. The two predators showed high dietary overlap and similar niche breadth.
The ADONIS analysis indicated significant differences in the diet of the two species
(ADONIS: $F = 2.53$, $P < 0.05$). The NMDS ordination resulted in a two-dimensional solution
with a final stress of 0.132. Samples of M. dasycneme and M. daubentonii are evenly spread
out in the diagram and overlap strongly (Fig. 3).
The Simpson's index showed no statistically significant differences between species in
diet breadth or the diversity of prey taxa (M. dasycneme: 0.75; M. daubentonii: 0.82; χ^2 =
diet breadth or the diversity of prey taxa (M. dasycneme: 0.75; M. daubentonii: 0.82; χ^2 = 90.3281, df = 1, p < 0.001). Additionally, Pianka's index for niche overlap indicated an
90.3281, $df = 1$, $p < 0.001$). Additionally, Pianka's index for niche overlap indicated an
90.3281, df = 1, p < 0.001). Additionally, Pianka's index for niche overlap indicated an overlap of nearly 100% (Table 5). Comparing the single prey groups between the species'
90.3281, df = 1, p < 0.001). Additionally, Pianka's index for niche overlap indicated an overlap of nearly 100% (Table 5). Comparing the single prey groups between the species' diets, only chironomids differed significantly between the two bat species (Table 5).
90.3281, df = 1, p < 0.001). Additionally, Pianka's index for niche overlap indicated an overlap of nearly 100% (Table 5). Comparing the single prey groups between the species' diets, only chironomids differed significantly between the two bat species (Table 5). Unknown Diptera and Brachycera also occurred, but not significantly more often in the diet of
90.3281, df = 1, p < 0.001). Additionally, Pianka's index for niche overlap indicated an overlap of nearly 100% (Table 5). Comparing the single prey groups between the species' diets, only chironomids differed significantly between the two bat species (Table 5). Unknown Diptera and Brachycera also occurred, but not significantly more often in the diet of <i>M. daubentonii</i> . Similar observations concern chironomid pupae in the diet of <i>M. dasycneme</i>

[16]

Discussion

We test whether morphological and habitat convergence correlates with dietary overlap and we assess the potential for micro-niche differentiation in morphological and behavioural characteristics. Our analysis suggests that these two bat species overlap largely in both in morphological features and diet but may demonstrate minor differentiation based on behaviour and micro-habitat selection. We provide a multi-factor analysis of the trophic interactions between two morphologically similar species that lack a recent phylogenetic divergence.

Functional morphology

Flight modes and behaviour vary among flying animals. Bats show great diversity in wing morphology and flight patterns (Findley 1972; Norberg & Rayner 1987), triggered by adaptive processes in response to resource availability e.g., prey exploitation and habitat utilization. In bats, wing morphology has been used to identify and characterise structures of communities, guilds and assemblages (Findley 1972; Norberg & Rayner 1987; Britton et al. 1997). Our results support the classification of M. dasycneme and M. daubentonii as trawling Myotis, of the Leuconoe guild (Findley 1972; Baagoe 1987; Norberg & Rayner 1987). Myotis dasycneme and M. daubentonii both show adaptations like lower wing loading, compared to fast flying species like Nyctalus noctula, which allow relatively slow flight above water surfaces. Both bat species show high similarity in wing morphology, which, together with high similarity in echolocation (Siemers et al. 2001), implies that both bat species perceive and exploit the same prey when they are in the same habitat. We found wingtip shape (I) to be highly variable within the species (female-male difference). Still the higher wingtip shape index (I) in M. daubentonii might indicate better maneuverability. M. daubentonii is known, to utilizes heterogeneous foraging habitats, like riverine forests, river banks and lake shores,

but also occurs and hunts within forests and cluttered backgrounds (Taake 1992, Dietz et al.
2010, Nissen et al. 2013). For M. dasycneme, less is known about habitat preferences though
they are thought to hunt primarily over and along large water bodies (e.g. lakes, canals, rivers)
(Limpens 2001), but other, more structured habitats like reeds and forest edges are also used
(pers. observation).

The variance in wing parameters found within species may be explained by adaptive radiation following competition. Many insectivorous bat species exhibit sexual segregation regarding habitat differences. Different morphological adaptations would facilitate different habitat utilization. For example, male and female particoloured bats (*Vespertilio murinus*) use different foraging habitats (Safi et al. 2007), as do barbastell bats (*Barbastellus barbastella*) (Hill *et al.* 2011). Within *M. daubentonii* females and males may utilize different habitats and even regions (Dietz *et al.* 2009). In *M. dasycneme* it has been observed that female and male individuals inhabit different regions with different habitat interior in the Netherlands (A-J. Haarsma, pers. comm.).

The ability to carry higher load is correlated with behaviour. The ghost bat, *Macrodermas gigas* (0.12 kg), can carry up to 60 g (= 50% of its own weight), which allows it to sustain a diet of small mammals (Kulzer *et al.* 1984). The vampire bat *Desmodus rotundus* can take up 100% of its own weight in blood, also a necessary adaptation, which allows this species to maintain a nutritionally low blood diet (Wimsatt 1969). Fruit bats regularly carry heavy fruits and seeds, like avocado or mangoes (Marshall 1983; Richards 1990). *Myotis capaccinii*, also a trawling *Myotis* and facultative piscivore, is able to carry 0.5g fish (Aihartza *et al.* 2008). In all, lift capacity may be a fundamental character in niche specialization in bats thus the subtle differences measured here are intriguing. However, these measurements should be treated cautiously. Although these same flight room parameters have been successfully used previously with these species (Siemers *et al.* 2001), the difference we found in weightlifting performance might be partially explained by the aerodynamic

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

constraints pond bats had to face in the flight room. Due to kinetic laws, M. dasycneme would likely reach a higher weightlifting capacity with higher flight speed (F = m * a). Indeed, higher speeds have been observed in the wild (Baagøe 1987) and are apparent in the square root of their wing loading, which is proportional to flight speed (Norberg & Rayner 1987). Despite these potentially subtle differences, Myotis dasycneme and M. daubentonii can be regarded as similar in morphological terms, hence the same guild and sub-genus. The results for bite force show some differences between the species. Although both are insectivorous and feed mainly on soft bodied prey (e.g. Diptera, Lepidoptera), M. dasycneme had a higher bite force than M. daubentonii. These differences result from the overall size differences between the species, particularly head- and jaw length, head width and resulting jaw muscle size (Herrel et al. 2001; Aguirre et al. 2002; Herrel et al. 2005) which are larger in M. dasycneme. Both species lie well within the variation range in bite force and size measurements for their family Vespertilionidae (Greif et al. unpublished). This morphological distinction cannot be fully explained by the prey. On the one hand the bats show subtle differences in consumed prey size. Moths of larger wingspan (>20mm), like Apamea monoglypha, Nonagria typhae or Laspeyra flexula, appear only in guano samples of M. dasycneme. A bigger mouth may lead to a more efficient handling of bigger prey items (Herrel et al. 2005). On the other hand, both bats prey on beetles, as well as other hard bodied prey like water boatman (Corxidiae). Although the molecular diet data only show beetles (Carabidae) to occur in the diet of M. daubentonii, the morphological results show no

One limitation of our morphological and behavioural data was a limited sample size.

The conservation situation for both species limited the number of individuals that we may take into captivity. To compensate we have performed a repeated measures design and

discussed cautiously as meaningful trait within niche differentiation of M. dasycneme and M.

difference in beetle consumption between the two species. Hence, bite force needs to be

daubentonii. The major prey items (Diptera, Lepidotpera) are all soft-bodied prey.

analysis but the conclusions drawn must be considered preliminary in light of the small sample.

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

425

426

Dietary Analysis

As predicted, the dietary niches overlap to a high degree between species, which mirrors the morphological and behavioural similarities. In particular, both M. dasycneme and M. daubentonii feed to a large extent on Diptera and Trichoptera. Although, the niche breadth differed between the species, the morphological dietary data overlapped nearly 100%. M. daubentonii seems to exploit a larger variety of prey compared to M. dasycneme, which seems to rely on chironomids to a larger extent. The comparison of prey regarding their major habitats, shows that M. dasycneme overall depends more on the aquatic prey fauna and less on the terrestrial, contrasting slightly with M. daubentonii. The molecular data indicates that females may be particularly different between species. Females have higher energy demands and nutrition requirements during pregnancy and lactation. This is due to a reduction in time spent torpid and to promote growth and development of the foetus (Swift & Racey 1983; Wilde et al. 1995, 1999). To compensate for this increase in total energy demand, female bats need to increase food consumption (Anthony & Kunz 1977; Kurta et al. 1989; Kunz et al. 1995; Racey & Entwistle 2000; Encarnacao & Dietz 2006). Often they are found to forage in areas with higher insect abundance compared to males (Dietz et al. 2006). In our data the higher energy demand of females may translate into the broader niche breadth compared to males, because generalistic feeding behaviour may provide their optimal foraging strategy (Stephen & Krebs 1986). In this context, the higher dietary distance between females of the different species appears reasonable. If females choose to forage in patches with high food supply within aquatic habitats, they are more likely to meet and compete for food resources.

Consequently, the greater distance between females may be a result of a mechanism to avoid such competition.

The molecular results show high resolution in prey identification and exceed the number of identified prey found through morphological analysis. Molecular analysis is particularly powerful for the identification of small morphologically cryptic prey such as chironomid species. With the morphological tools we could only identify one genus (*Glyptotendipes*, Chironomidae) within this prey group. But the molecular approach revealed and estimated 11 species, though this is still small compared to the actual number of chironomid species which can be expected in the central Europe (e.g. ~ 700 species are found in Germany). The highly diverse group of Chironomidae harbour many cryptic species and are morphological hard to distinguish (Cranston 1995) leading to a significant taxonomic ambiguity in both morphological and molecular reference collections. A lack of species sequences in the barcode archives certainly constrains output in molecular data.

While molecular analysis is becoming common within dietary studies because of its significant taxonomic resolution, there are key advantages of traditional morphological analysis. For example, we were able to distinguish different life stages of prey groups, like the pupal form of Chironomidae. This can provide very valuable information on the hunting mode of the focal species, in this case true trawling behaviour, when the bat scoops the not yet fully emerged Chironomid together with the pupal case directly from the water surface. It can also indicate foraging areas, like the pelagic areas of lakes, where Chironomidae undergo mass emergences. There are clearly advantages of pairing molecular and morphological data for measuring niche differentiation.

The abundance of prey species in the foraging habitats is high. For example, many of the Lepidoptera species are highly numerous and abundant during their adult stage (*Idea biselata, Acentria ephemerella, Mompha epilobiella*). Also Diptera (Nematocera, like Chironomidae), Trichoptera and especially Ephemeroptera are known to be numerous and

abundant in water habitats (Ward 1992; Racey et al. 1998; Warren et al. 2000). Hence, our
results reflect the diet of generalist predators in this particular habitat. Both, the
morphological and the molecular data, suggest the bats share major prey groups like Diptera,
Trichoptera and Lepidoptera.

The phylogenetic position of *M. dasycneme* within the old world *Myotis* bats is still disputed (Ruedi & Mayer 2001; Stadelmann *et al.* 2007; Jiang *et al.* 2010). But regardless of this ambiguity, all agree that *Myotis dasycneme* and *M. daubentonii* do not to share a recent phylogenetic history and likely evolved in allopatry and thus without competition. It is thought that *M. dasycneme* is genetically situated more close to *M. mystacinus*, where as *M. daubentonii* belongs to a group of *M. nathalinae* and *M. bechsteinii*. The geographical origins are unknown (Stadelmann *et al.* 2007). Additionally early studies have shown that morphological similarities rarely reflect close phylogenetic relationships, which is illustrated by the close phylogenetic relation of the ecologically and morphological different *M. daubentonii* and *M. bechsteinii* (Ruedi & Mayer 2001).

Resource partitioning and mechanisms of species coexistence

Our data confirm that these species show high morphological and behavioural convergence which leads directly to high trophic overlap. But we also distinguish subtle but significant differences in bite force and lift force which corresponds to small differences in predator body size and explains subtle differences in prey exploitation.

Partitioning of resources and micro-resource differentiation is leading hypothesis to explain the coexistence of species and radiations. Emrich et al. (accepted) explored the resource use by an ensemble of Jamaican bats and found that a variety of behavioural and morphological characters contribute to patterns of resource use including things as subtle as temporal partitioning of hunting grounds. The hypothesis that resources must be partitioned rests on the assumption that some aspect of the resources is limited and thus limiting leading

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

to competition. We have found little evidence of partitioning of insect resources here and, in fact, there is very little evidence to suggest that insects are a limited resource in general. Thus competition for this resource may be minimal among sympatric bats. The alternative hypothesis is that habitat selection is based on morphological and perceptual abilities and thus similar habitat selection by bats with similar echolocation should result in a high degree of dietary overlap. This is largely what we have observed here.

In our analysis, we noted subtle differences in the dietary profile of these bats. While these are real, it is particularly interesting to consider whether these differences are biologically meaningful. First, it is important to note that while morphological data is limited in its ability to recognize subtle differences, molecular data, which identified prey at the species level, is likely biased towards the detection of resource partitioning. This method will tend to overrepresented rare items and underestimate the importance of common items (Clare et al. a/b accepted). As such, it is almost certain that two dietary analyses will contain species that are different (as we have seen here). To differentiate these random differences from biologically meaningful partitioning, we must consider whether the bats can differentiate at this level. While low duty-cycle bats very likely perceive insects by size, shape, speed and acoustic reflectivity, it is unlikely that they differentiate subtle morphological differences between species. As such, we must treat minor species-level differences conservatively. Of particular interested in our analysis are aspects which suggest a significant behavioral difference, for example, we observed that M. dasycneme was almost twice as likely to consume Chironomid pupae and more likely to consume prey with aquatic habitats. This suggest a difference in hunting style which may be a far more significant form of microresource partitioning that any particular species-level difference in diet. As such, strict differences should be considered in light of their relevance to behaviour. The power of these analyses will be seen when these high-resolution dietary analyses are used to test specific behavioural hypotheses and to guide perceptual test of bats' echolocation ability.

	lusia	

By selective adaptation of morphological and sensory features, evolution permits a
species to improve its capacity to use certain food resources in distinct ways and thus shapes
communities of foraging bats. Both bat species show high overlap in their functional
morphology and also in their diets. Yet, we cannot overlook the dietary differences found
between the two species suggest behavioural differences in hunting style. Our study strongly
advocates that the integration of different methodologies is crucial to address characteristics
of ecological niches and species interactions.

Acknowledgments

Thanks go to Florian Gloza-Rausch, Matthias Göttsche, Inka Harms, Henning Nissen, and Antje Seebens for help in the field. We thank Victoria San Andrés Aura and David Brown for advice on molecular methods. We thank Renate Heckel and Leonie Baier for their great help with animal maintenance. We are grateful to Erich Koch for his creativity and great help with experiment set ups. Many thanks to Klemen Koselj, Sara Troxel and Sandor Zsebök for help in the flight room.

References

- Aguirre LF, Herrel A, van Damme R, Matthysen E (2002) Ecomorphological analysis of trophic niche partitioning in a tropical savannah bat communitiy. *Proceedings of the Royal Society of London B*, **269**, 1271-1278.
- Aguirre LF, Herrel A, van Damme R, Matthysen E (2003) The implications of food hardness for diet in bats. *Functional Ecology*, **17**, 201-212.

550	Aihartza J, Almenar D, Salsamendi E, Goiti U, Garin I (2008) Fishing behaviour in the long-
551	fingered bat Myotis capaccinii (Bonaparte, 1837): an experimental approach. Acta
552	Chiropterologica, 10, 287-301.
553	Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance.
554	Australian Ecology 26 : 32-46.
555	Arlettaz R, Perrin N, Hausser J (1997) Trophic resource partitioning and competition between
556	the two sibling bat species Myotis myotis and Myotis blythii. Journal of Animal
557	Ecology, 66, 897-911.
558	Baagøe HJ (1987) The Scandinavian bat fauna: adaptive wing morphology and free flight in
559	the field. In: The recent advances in the study of bats (eds. Fenton MB Racey P Rayner
560	JMV), pp. 57-74. Cambridge University Press, Cambridge.
561	Bell GP (1983) Behavioral and Ecological Aspects of gleaning by a desert insectivorous bat,
562	Antrozous pallidus (Chiroptera: Vespertilionidae). Behavioural Ecology and
563	Sociobiology, 10 , 217-223.
564	Blankenberg D, Taylor J, Schenck I, He J, Zhang Y, Ghent M, Veeraraghavan N, Albert I,
565	Miller W, Makova KD, Hardison RC, Nekrutenko A (2007) A framework for
566	collaborative analysis of ENCODE data: Making large-scale analyses biologist-
567	friendly. Genome Research, 17, 960-964.
568	Blankenberg D, Gordon A, Von Kuster G, Coraor N, Taylor J, Nekrutenko A, The Galaxy
569	Team (2010) Manipulation of FASTQ data with Galaxy. Bioinformatics Application
570	Note, 26, 1783-1785.
571	Bloom SA (1982) Similarity indices in community studies: Potential pitfalls. Marine Ecology
572	– Progress Series, 5 , 125-128.
573	Bohmann K, Monadjem A, Lehmkuhl Noer C, Rasmussen M, Zeale MRK, Clare EL, Jones
574	G, Willerslev E, Gilbert MTP (2011) Molecular Diet Analysis of Two African Free-
575	Tailed Bats (Molossidae) Using High Throughput Sequencing. <i>PLOS one</i> , 6 , 1-11.

576	Bray JR, Curtis J.T., 1957. An ordination of the upland forest community of southern
577	Wisconsin. Ecological Monographs, 27, 325 – 349.
578	Britton ARC, Jones G, Rayner JMV (1997) Flight performance, echolocation and foraging
579	behaviour in pond bats, Myotis dasycneme. Journal of Zoology, 241, 503-522.
580	Clare EL, Fraser EE, Braid HE, Fenton MB, Hebert PD (2009) Species on the menu of a
581	generalist predator, the eastern red bat (Lasiurus borealis): using a molecular approach
582	to detect arthropod prey. Molecular Ecology, 18, 2532–2542.
583	Clare, E.L., Barber, B.R., Sweeney, B.W., Hebert, P.D.N., Fenton, M.B., 2011. Eating local:
584	influences of habitat on the diet of little brown bats (Myotis lucifugus). Molecular
585	Ecology 20 : 1772-1780.
586	Clarke KR, Warwick RM (2001) Change in marine communities: an approach to statistical
587	analysis and interpretation, 2nd ed. PRIMER-E, Plymouth.
588	Cranston PS (1995) Introduction. In: The Chironomidae: the ecology and biology of non-
589	biting midges. (eds Armitage PD Cranston PS Pinder LCV), pp. 1-5. Chapman and
590	Hall, London.
591	Coyne JA, Orr HA (2004) Speciation. Sinauer Associates, Sunderland, Massachusetts.
592	Davidson-Watts I, Jones G (2006) Differences in foraging behaviour between Pipistrellus
593	pipistrellus (Schreber, 1774) and Pipistrellus pygmaeus (Leach, 1825). Journal of
594	Zoology, 268 , 55–62.
595	Dieckmann U, Doebeli M (1999) The origin of species by sympatric speciation. Letters to
596	Nature, 400 , 354-357.
597	Dieckman U, Metz JAJ, Doebeli M, Tautz D (2004) Introduction. In: Adaptive Speciation
598	(eds. Dieckman U, Metz JAJ, Doebeli M, Tautz D), pp. 1-16. University Press,
599	Cambridge
600	Dietz M, Encarnação JA, Kalko EKV (2006) Small scale distribution patterns of female and
601	male Daubenton's bats (Myotis daubentonii). Acta Chiropterologica, 8, 403-415.

602	Dumont ER (1997) Cranial snape in fruit, nectar, and exudat feeders: Implication for
603	interpreting the fossil record. American Journal of Physical Anthropology, 102, 187-
604	202.
605	Dumont ER (1999) The effect of food hardness on feeding behaviour in frugivorous bats
606	(Phyllostomidae): an experimental study. Journal of Zoology, London, 248, 219-229.
607	Encarnação J A, Dietz M (2006) Estimation of food intake and ingested energy in
608	Daubenton's bats (Myotis daubentonii) during pregnancy and spermatogenesis.
609	European Journal of Wildlife Research, 52 , 221-227.
610	Fauth JE, Bernard J, Camara M, Resetarits Jr WJ, Van Buskirk J, McCollum SA (1996)
611	Simplifying the jargon of community ecology: a conceptual approach. The American
612	Naturalist, 147 , 282–286.
613	Findley JS (1972) Phenetic relationships among bats of the genus Myotis. Systematic
614	Zoology, 31 – 52.
615	Findley JS, Black H (1983) Morphological and dietary structuring of a Zambian insectivorous
616	bat community. Ecology, 64, 625–630.
617	Freeman PW (1981) Correspondence of food habits and morphology in insectivorous bats.
618	Journal of Mammalogy, 62 , 166-173.
619	Giannini NP, Kalko EKV (2004) Trophic structure in a large assemblage of phyllostomid bats
620	in Panama. OIKOS, 105, 209-220.
621	Giardine B, Riemer C, Ross CH et al. (2005) Galaxy: A platform for interactive large-scale
622	genome analysis. Genome Research, 15, 1451-1455.
623	Goecks J, Nekrutenko A, Taylor J, The Galax Team (2010) Galaxy: a comprehensive
624	approach for supporting accessible, reproducible, and transparent computational
625	research in the life sciences. Genome Biology, doi:10.1186.
626	Grant BR (1985) Selection on bill characters in a population of Darwin's finches: Geospiza
627	conirostris on Isla Genovesa, Galápagos. Evolution 39, 523-532.

628	Grant PR, Grant BR (2006) Evolution of character displacement in Darwin's finches. Science,
629	313 , 224.
630	Hamming RW (1950) Error detecting and error correcting codes. The Bell System Technical
631	Journal, 29 , 147–160.
632	Hebert PDN, Cywinska A, Ball SL, de Waard J (2003a) Biological identification thriogh
633	DNA barcodes. Proceeding of the Royal Society London B Biological Sciences, 270,
634	313-321.
635	Hebert PDN, Ratnasingham S, de Waard J (2003b) Barcoding animal life: cytochrome c
636	oxidase subunit 1 divergences among closely related species. Proceeding of the Royal
637	Society London B Biological Sciences, 270, S596-S599.
638	Hebert PDN, Stoeckle MY, Zemlak TS, Francis CM (2004) Identification of birds through
639	DNA barcodes. PLoS Biology, 2, e312.
640	Herrel A, de Grauw E, Lemosa-Espinal JA (2001) Head shape and bite performance in
641	xenosaurid lizards. Journal of Experimental Zoology, 290, 101-107.
642	Herrel A, Podos J, Huber SK, Hendry AP (2005) Bite performance and morphology in a
643	population of Darwin's finches: implications for the evolution of beak shape.
644	Functional Ecology, 19, 43-48.
645	Holt RD (2009) Bringing the Hutchinsonian niche into the 21st century. Proceedings of
646	National Academy of Sciences, USA, 106, 19659 – 19665.
647	Hutchinson GE (1957) Concluding Remarks. Cold Spring Harbor Symposia on Quantitative
648	Biology. 22 , 415-42
649	Jiang T, Sun K, Chou C, Zhang Z, Feng J (2010) First record of <i>Myotis flavus</i> (Chiroptera:
650	Vespertilionidae) from mainland China and a reassessment of its taxonomic status.
651	Zootaxa, 2414 , 41-51.
652	Jones G (1990) Prey Selection by the Greater Horseshoe Bat (Rhinolophus ferrumequinum):
653	Optimal Foraging by Echolocation? Animal Ecology, 59, 587-602

654	Jones G, Rayner JMV (1988) Foraging behavior and echolocation of wild horseshoe bats
655	Rhinolophus ferrumequinum and R. hipposideros (Chiroptera, Rhinolophidae).
656	Behavioural Ecology and Sociobiology, 25, 183-191.
657	Kalko EKV, Schnitzler H-U (1989) The echolocation and hunting behavior of Daubenton's
658	bat, Myotis daubentonii. Behavioural Ecology and Sociobiology, 24, 225-238.
659	Kalko EKV, Herre EA, Handley Jr CO (2007) Relation of fig fruit characteristics to fruit-
660	eating bats in the New and Old World tropics. Journal of Biogeography, 23, 565-576.
661	King RA, Read DS, Traugott M, Symondson WOC (2008) Molecular analysis of predation: a
662	review of best practice for DNA-based approaches. <i>Molecular Ecology</i> , 17 , 947 – 963.
663	Krüger F, Harms I, Fictner A, Wolz I, Sommer RS (2012) High trophic niche overlap between
664	the two European trawling Myotis, Myotis dasycneme and Myotis daubentonii. Acta
665	Chiropterologica, 14, 347-356.
666	Kulzer E, Nelson JE, McKean JL, Moehres FP (1984) Prey-catching behaviour and
667	echolocation in the Australian ghost bat, Macroderma gigas (Microchiroptera:
668	Megadermatidae). Australian Mammalogy, 7, 37-50.
669	Kunz TH, Whitaker Jr JO (1983) An evaluation of fecal analysis for determining food habits
670	of insectivorous bats. Canadian Journal of Zoology, 61, 1317-1321.
671	Lack D (1974). Darwin's Finches. Cambridge University Press, Cambridge.
672	Lacki MJ, Ladeur KM (2001) Seasonal use of lepidopteran prey by Rafinesque's big-eared
673	bats (Corynorhinus rafinesquii). The American Midland Naturalist, 145, 213-217.
674	Marshall AG (1983) Bats, flowers and fruit: evolutionary relationship in the Old World.
675	Biological Journal of the Linnaean Society, 83, 351-369.
676	Norberg UM, Rayner JMV (1987) Ecological morphology and flight in bats (Mammalia;
677	Chiroptera): wing adaptations, flight performance, foraging strategy and echolocation.
678	Philosophical Transaction of the Royal Society B Biological Sciences, 316, 335-427.

679	Oksanen JR, Kindt R, Legendre P, O'Hara B, Simpson GL, Solymos P, Stevens MHH,
680	Wagner H (2010) Vegan: community ecology package. Available from http://cran.r-
681	project.org/ and http://vegan.r-forge.r-project.org.
682	Pianka ER (1974): Niche overlap and diffuse competition. Proceedings of the National
683	Academy of Sciences, USA, 71, 2141-2145.
684	Pompanon F, Deagle BE, Symondson WOC, Brown DS, Jarman SD, Taberlet P (2012) Who
685	is eating what: diet assessment using next generation sequencing. Molecular Ecology,
686	21 , 1931-1950.
687	Pourmand N, Karhanek M, Persson HHJ, Webb CD et al. (2006) Direct electrical detection of
688	DNA synthesis. Proceedings of the National Academy of Sciences, USA, 103, 6466-
689	6470.
690	Racey PR, Swift SM, Rydell J, Brodie L (1998) Bats and insects over two Scottish rivers with
691	contrasting nitrate status. Animal Conservation 1, 195–202
692	Ratnasingham S, Hebert PDN (2007) BOLD: The Barcode of Life Data system. Molecular
693	Ecology Notes, 7, 355-364.
694	Razgour O, Clare EL, Zeale MRK, Hammer J, Baerholm Schnell I, Rasmussen M, Gilbert,
695	TP, Jones G (2011) High-throughput sequencing offers insight into mechanisms of
696	resources partitioning in cryptic bat species. <i>Ecology and Evolution</i> , 1 , 556 – 570.
697	Richards GC (1990) The spectacled flying-fox, <i>Pteropus conspicillatus</i> (Chiroptera:
698	Pteropodidae), in North Queensland – 2. Diet, seed dispersal and feeding ecology.
699	Australian Mammalogy, 13, 25-31.
700	Ricklefs RE, Schluter D (1993) Species diversity in ecological communities: historical and
701	geographical perspectives. University of Chicago Press, Chicago.
702	Rothenburg JM, Hinz W, Rearick TMD., Schultz J. et al. (2011) An integrated semiconductor
703	device enabling non-optical genome sequencing. <i>Nature</i> 475 , 348–352.

704	Ruedi M & Mayer F (2001) Molecular Systematics of Bats of the Genus Myotis
705	(Vespertilionidae) Suggests Deterministic Ecomorphological Convergences.
706	Molecular phylogenetics and evolution, 21, 436-448.
707	Schluter D (2001) Ecology and the origin of species. TRENDS in Ecology & Evolution,
708	16 ,372-380.
709	Santana SE, Dumont ER, Davi JL (2010) Mechanics of bite force production and ist
710	relationship to diet in bats. Journal of Functional Ecology, 24, 776-784.
711	Schluter D, Price TD, Grant PR (1985) Ecological Character Displacement in Darwin's
712	Finches. Science, 227, 1056-1059.
713	Schnitzler, H-U, Kalko, EKV (2001) Echolocation by insect-eating bats. <i>BioSciences</i> , 51 ,
714	557-569.
715	Schnitzler H-U, Moss CF, Denzinger A (2003) From spatial orientation to food acquisition in
716	echolocating bats. Trends in Ecology & Evolution, 18, 386-3 94.
717	Siemers BM, Stilz P, Schnitzler H-U (2001) The acoustic advantage of hunting at low heights
718	above water: behavioral experiments on the European 'trawling' bats Myotis
719	capaccinii, M. dasycneme and M. daubentonii. The Journal of Experimental Biology,
720	204 , 3843-3854.
721	Siemers BM, Schnitzler, H-U (2004) Echolocation signals reflect niche differentiation in five
722	sympatric congeneric bat species. <i>Nature</i> , 429 , 657–661.
723	Siemers BM, SM Swift (2006). Differences in sensory ecology contribute to resource
724	partitioning in the bats Myotis bechsteinii and Myotis nattereri. Behavioral Ecology
725	and Sociobiology, 59 , 373–380.
726	Shiel CB, McAney CM, Sullivan C, Fairley JS (1997) Identification of arthropod fragments in
727	bat droppings. Occasional Publication 17, The Mammal Society, London.

728	Simmons NB (2005) Order Chiroptera. In: Mammal species of the World: a taxonomic and
729	geographic reference (eds Wilson DE Reeder DM), pp. 312-529. 3rd ed. Smithsonian
730	Institution Press, Washington D.C.
731	Simpson EH (1949) Measurement of Diversity. Nature, 163, 688.
732	Stadelmann B, Jacobs DS, Schoemann C, Ruedi M (2004) Phylogeny of African Myotis bats
733	inferred from cytochrome b sequences. Acta Chiropterologica, 6, 177-192.
734	Stadelmann B, Lin LK, Kunz TH, Ruedi M (2007). Molecular phylogeny of New World
735	Myotis Chiroptera, Vespertilionidae) inferred from mitochondrial and nuclear DNA
736	genes. Molecular phylogenetics and evolution, 43, 32-48
737	Symondson WOC (2002) Molecular identification of prey in predator diets. Molecular
738	<i>Ecology</i> , 11 , 627 – 641.
739	Taake KH (1992) Strategien der Ressourcennutzung an Waldgewässern jagender
740	Fledermäuse. Myotis, 30, 7-73.
741	Wimsatt WA (1969) Transient behavior, nocturnal activity patterns, and feeding efficiency of
742	vampire bats (Desmodus rotundus) under natural conditions. Journal of Mammalogy,
743	50 , 233-244.
744	Whitaker JO (1972) Food habits of bats from Indiana. Canadian Journal of Zoology, 50, 877-
745	883.
746	Whitaker JO, McCracken GF, Siemers BM (2009) Food habitat analysis of insectivorous bats
747	In: Ecological and behavioural methods for the study of bats (eds Kunz TH ParsonsS),
748	pp. 567-592. 2nd ed. The John Hopkins University Press, Baltimore.
749	Ward JV (1992) Aquatic Insect Ecology, Vol. 1. Biology and Habitat. Wiley, New York.
750	Warren RD, Waters DA, Altringham JD, Bullock DJ (2000) The distribution of Daubenton's
751	bats (Myotis daubentonii) and pipistrelle bats (Pipistrellus pipistrellus)
752	(Vespertilionidae) in relation to small-scale variation in riverine habitat. Biological
753	Conservation, 92 , 85-91.

754	Zeale MRK, Butlin RK, Barker GLA, Lees DC, Jones G (2011) Taxon-speficic PCR for DNA
755	barcoding arthropod prey in bat faeces. <i>Molecular Ecology Resources</i> , 11, 236 – 244.
756	

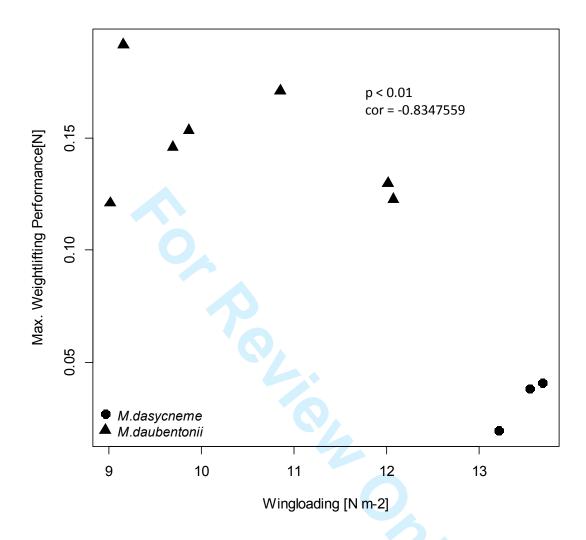


Fig. 1 Plot of maximal weightlifting performance (N) against wing loading [Nm⁻²] in *M. dasycneme* and *M. daubentonii*. Each point represents the max value of ten measurements under the same conditions and settings. Additionally the Pearson correlation of maximal measured weightlifting performance and wing loading shows a strong negative correlation.

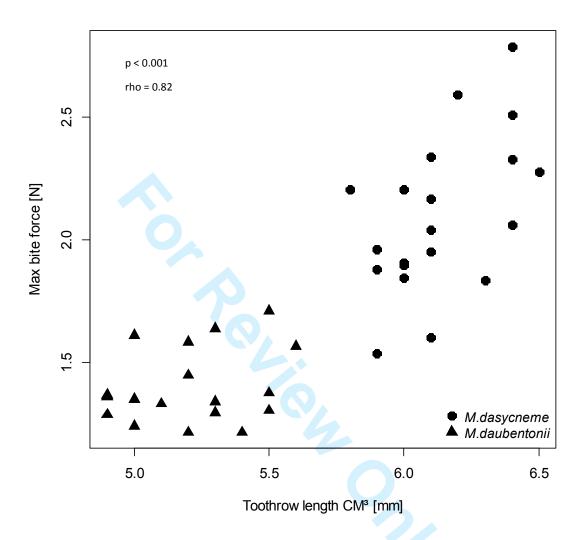


Fig. 2 Plot of the maximal measured bite force against the upper toothrow length (CM³) from *M. dasycneme* (circles) and *M. daubentonii* (triangles). Additionally the result of Spearman rank correlation of these two parameters is given, indicating a significant positive correlation.

758

759

760

761

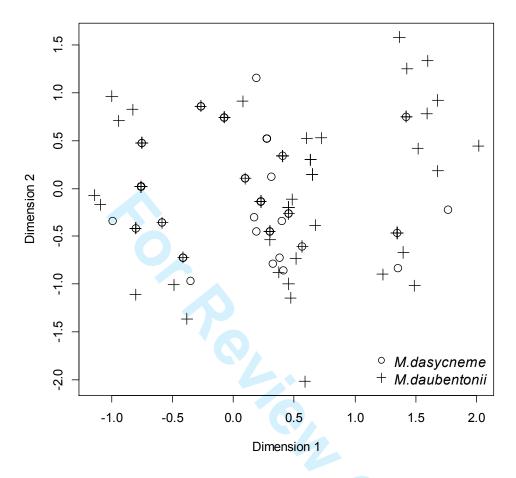


Fig. 3 Plot of a non-metric two-dimensional ordination scale (NMDS) based on the presence-absence prey data derived from the morphological diet analysis on M. dasycneme (circle) and M. daubentonii (corss) (n= 206, stress = 0.132).

763

764

765

766

Table 1 Values of body mass and forearm length taken from live bats and wing morphology measurements, taken from pictures, for M. dasycneme and M. daubentonii (mean \pm SD).

	Myotis dasycneme		Myotis do	ubentonii
Variable	Male	Female	Male	Female
	n = 10	n = 4	n = 11	n = 5
Body mass	17.51 ± 0.6	16.95 ± 0.3	10.125 ± 0.6	12.12 ± 1.3
Forearm length	4.687 ± 0.036	4.6725 ± 0.008	3.754 ± 0.03	4.095 ± 0.23
Wing loading	13.793 ± 0.739	11.86 ± 0.35	11.839 ± 0.68	13.08 ± 1.28
Wingtip shape index	1.746 ± 0.152	1.273 ± 0.141	1.135 ± 0.073	1.923 ± 0.412

Table 23 Taxa, identified in the diet of *Myoti dasycneme* (Mdas) and *M. daubentonii* (Mdau), which were assigned to MOTU utilising the BOLD search system (V.3). The confidence levels (Conf) signify (1a) perfect match to one genus or species (>99%), (1b) match to one genus or species (>98%), (2) match to more than one species, of which only one was a local species, (3) match >98% to several species of different genera or to reference sequences only identified to family level. In the species columns (Mdas/Mdau) 1 stands for presence and 0 for absence of prey.

786

787

788

789

Order	Family	Species	Conf	Mdas	Mdau
Diptera	Anthomyiidae	Delia florilega	1b	0	0
	Chaoboridae	unknown	3	1	1
	Chironomidae	Chironomus sp.	3	1	1
		Conchapelopia melanops	1b	0	1
		Cryptochironomus supplicans	1b	1	1
		Cryptochironomus sp.	1b	0	1
		Dicrotendipes tritomus	1b	1	1
		Microtendipes brevitarsis	1a	1	1
		Paracladopelma winnelli	1q	0	1
		Paratanytarsus tenuis	1b	0	1
		Procladius nigriventris	1a	0	1
		Procladius signatus	1b	0	1
		Procladius sp.	3	1	1
		Tanytarsus brundini	1a	0	1
		Tanytarsus mendax	1a	0	1
		Xenochironomus xenolabis	1a	0	1
		unknown	1b	0	1
	Chloropidae	Aedes sp.	3	1	0
	Culicidae	Anopheles sp.	1b	1	1
		Hilara quadrifasciata	1b	0	0
	Empididae	Atophpthalmus inustus	3	1	0
	Limoniidae	Euphylidorea sp.	1a	1	0
		Helius flavus	1b	0	1
		Limnophila pictipennis	1a	1	1
		Limonia nubeculosa	1b	1	1
		Molophilus sp.	1a	0	1
		Pseudolimnophila lucorum	3	0	1
		unknown	3	1	1
	Pedicidae	unknown	3	1	1
	Psychodidae	Simulium sp.	1b	0	1

	Simuliidae	Rachispoda lutosa	3	0	1
	Sphaeroceridae	unknown	3	0	1
	Stratiomyidae	unknown	3	1	0
	Syrphidae	Nephrotoma scalaris	1b	0	1
	Tachinidae	Tipula scripta	1a	0	1
	Tipulidae	Tipula sp.	3	0	1
Lepidoptera	Coleophoridae	Coelophora kuehnella	1a	0	0
	Crambidae	Acentria ephemerella	1a	1	1
		Herpetogramma sp.	2	1	0
		Scoparia sp.	3	1	1
	Elachistidae	Agonopterix sp.	3	1	1
		Semioscopis sp.	2	0	1
	Erebidae	Laspeyria flexula	1a	1	0
	Geometridae	Hydriomena impluviata	1a	0	1
		Idaea biselata	1b	0	0
	Momphidae	Mompha epilobiella	1a	0	1
	Noctuidae	Apamea monoglypha	1a	1	0
		Elaphria sp.	2	1	0
		Hoplondrina blanda	1a	0	1
		Leucania sp.	3	1	0
		Noctua sp.	3	1	1
		Nonagria typhae	1a	1	0
	Pterophoridae	Geina sp.	2	1	1
	Tortricidae	Acleris forsskaleana	1a	1	0
		Epinotia demarniana	1a	1	1
		Epinotia sp.	3	0	1
Ephemeroptera	Baetidae	Baetis fuscatus	1a	1	0
	Caenidae	Caenis horaris	1b	1	1
		Caenis sp.	3	1	1
	Ephemerellidae	unknown	3	1	1
	Heptageniidae	Eurylophella sp.	2	1	0
		Heptagenia dalecarlica	2	1	1
Trichoptera	Goeridae	Goera pilosa	1a	0	0
	Leptoceridae	Athripsodes albifrons	1a	0	1
		Athripsodes cinereus	3	1	1
	Limnephilidae	Ceraclea sp.	1b	1	1

		Limnephilus stigma	1b	0	1
	Molannidae	Molanna albicans	1a	1	1
		Molanna angustata	1b	0	1
	Phryganeidae	Agrypnia varia	1a	1	1
Neuroptera	Chrysopidae	Nineta sp.	3	0	1
	Hemerobiidae	Hemerobius pini	1a	0	1
		Hemerobius sp.	3	0	1
Hemiptera	Corixidae	Callicorixa praeusta	1a	0	1
		Paracorixa concinna	1a	0	1
		Sigara falleni	1a	1	0
		Sigara striata	1a	1	0
Coleoptera	Carabidae	unknown	3	0	1
	Scarabaeidae	Copris sp.	2	0	1
Plecoptera	Perlodidae	Clioperla sp.	1a	1	1

792

793

794

Table 34 Bray-Curtis Index and Hamming Distance values calculated on the molecular presence-absence diet data of

795 Myotis dasycneme (Mdas) and M. daubentonii (Mdau) and the associated sexes (F = female; M = male).

	Hamming Distance					
		Mdas_F	Mdas_M	Mdau_F	Mdau_M	Mdas_total
	Mdas_F		65	118	61	
	Mdas_M	0.80		121	46	
ex	Mdau_F	0.78	0.85		115	
Bray-Curtis Index	Mdau_M	0.81	0.82	0.85		
/-Curt	Mdau total					117
Bray	ividud_total					0.703

796

797

Table 45 Simpsons diveristy and Species richness (=number of prey) calculated from the morphological dietary data.

male 0.79	Myotis da female 0.77	male
0.79	0.77	
		0.69
	0.7	75
14	10	90
16		2
0.	.97	

Table $\underline{56}$: Prey occurrence in the morphologically analysed diet of *M. dasycneme* and *M. daubentonii*. We tested data with generalized liner model (GLM) and Tukey post-hoc test. Bold p values indicate significant differences and values in italics almost significant cases (p < 0.1).

Prey occurrence							
Prey	<i>M. dasycneme</i> (<i>n</i> = 84)	M. daubentonii $(n = 122)$	z	p			
Diptera	1.2%	8.2%	1.647	0.099			
Nematocera	17.9%	26.2%	0.264	0.792			
Chironomidae	95.2%	82.0%	-2.628	0.008			
Chironomid Pupae	17.9%	11.5%	-1.709	0.088			
Tipulidae	9.5%	10.7%	0.264	0.792			
Brachycera	4.8%	11.5%	1.772	0.076			
Corixidae	6.0%	5.7%	1.647	0.948			
Gerridae	0.0%	0.8%	0.003	0.997			
Trichoptera	46.4%	50.8%	0.619	0.536			
Lepidoptera	14.3%	12.3%	-0.416	0.678			
Ephemeroptera	0.0%	1.6%	0.005	0.996			
Neuroptera	1.2%	4.1%	1.146	0.252			
Coleoptera	1.2%	4.9%	1.337	0.181			
Hymenoptera	0.0%	3.3%	0.009	0.993			
Aphidoidea	2.4%	4.1%	0.661	0.509			
Aranea	0.0%	0.8%	0.003	0.997			