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Abstract 

We herein report the application of the phosphorodiamidate phosphate prodrug approach 

to a series of thirteen nucleoside analogues with antiviral or anticancer activity. Twenty-

five symmetrical phosphorodiamidates were synthesised, bearing esterified L-Alanine 

(and in one case D-Alanine) in the prodrug moiety, each as single stereoisomer. The 

presence of an achiral phosphorus represents a potential advantage over the 
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phosphoramidate ProTide approach, where diastereoisomeric mixtures are routinely 

obtained, and different biological profiles may be expected from the diasteroisomers. 

Optimization of the synthetic pathway allowed us to identify two general methods 

depending on the particular nucleoside analogues. All the compounds were biologically 

evaluated in antiviral and anticancer assays and several showed improvement of activity 

compared to their parent nucleosides, as in the case of ddA, d4T, abacavir and acyclovir 

against HIV-1 and/or HIV-2. The biological results were supported by metabolism 

studies with carboxypeptidase Y monitored by 
31

P-NMR to investigate their 

bioactivation. This work further validates the phosphorodiamidate approach as a 

monophosphate prodrug motif with broad application in the antiviral and anticancer 

fields. 
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1. Introduction 

Nucleoside analogues (NAs) play a pivotal role in antiviral and anticancer therapy.
1,2

 

They are structurally related to the natural nucleosides bearing modifications at the base 

and/or at the sugar moieties, which, in most of the cases, confer selectivity versus the 

desired targets.
2
 NAs are prodrugs and they need to be converted into their active species, 

which usually consists of their 5’-triphosphate form.
3
 Their bioactivation pathway often 

involves three consecutive phosphorylation steps starting from the parent nucleoside, 

which is converted to its mono-, di- and finally triphosphate form. Some NAs, such as 

abacavir or famciclovir for instance, require also additional bioactivation steps in order to 

display their biological activity.
4,5

 The first step of phosphorylation is usually considered 

to be the rate-limiting step in the bioactivation of NAs, with few exceptions, such as 

zidovudine for which the second phosphorylation may be rate limiting.
6
 After long-term 

treatment with NAs the activity of the nucleoside kinases involved in the first step of 

bioactivation may be decreased, therefore leading to drug resistance onset.
7
 Several 

monophosphate prodrug strategies are currently under investigations to overcome these 

issues,
8
 including the phosphoramidate ProTide approach developed in our group.

9,10,11
 

More recently the phosphorodiamidate technology applied to 6-O-alkyl-2’-C-

methylguanosine was reported by us as a new promising approach for the delivery of 

monophosphates inside the cell. Several stability studies on the 6-O-alkyl-2’-C-

methylguanosine diamidates have shown a good stability profile under different 

conditions such as acid (pH = 2) and mild basic buffer (pH = 8.5-11), and in human 
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serum.
12

 This novel prodrug approach has been validated both in vitro and in vivo and 

some compounds are already under consideration for clinical studies.
12

 Similarly, several 

acyclic nucleoside phosphonate diamidate prodrugs showed a better biological profile 

compared to the parent compounds.
13

 In this approach two amino acid esters are 

introduced on the monophosphate moiety in order to mask the negative charges. As also 

in the case of the phosphoramidate diester approach of Wagner and colleagues,
14

 the 

phosphorus in the symmetrical diamidate prodrug is achiral, thus avoiding the presence 

of diastereoisomeric mixtures as in the case of the phosphoramidate ProTide derivatives. 

In fact, it has been reported how two diastereoisomers may interact differently with the 

enzymes involved in the bioactivation pathway, thus leading to different biological 

profiles.
15

 Moreover, the diamidate motif bears non-toxic and natural promoieties and 

obviate the need for a phenyl or naphthyl moiety. The putative bioactivation pathway of 

diamidate prodrugs, depicted in Scheme 1, is similar to the one reported for ProTides. 

The first step (a) may be mediated by an esterase or a carboxypeptidase-type enzyme, 

which is responsible for the cleavage of one of the two esters. This mechanism has been 

already described and supported by enzymatic experiments using 
31

P-NMR.
12

 The second 

step (b) involves an intramolecular attack of the carboxylate anion to the phosphorus with 

elimination of the second amino acid and formation of a five-membered ring (mixed 

anhydride intermediate). Spontaneous hydrolysis (c) of the cycle then leads to the 

formation of an intermediate bearing two negative charges. Finally, for the last step (d), a 

phosphoramidase-type enzyme cleaves the P-N bond to form the NA monophosphate. 
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Scheme 1: Putative bioactivation pathway of diamidate prodrugs: a) enzyme-mediated 

ester hydrolysis; b) spontaneous intracellular displacement; c) spontaneous hydrolysis; d) 

enzyme-mediated P-N bond cleavage.  

 

We were keen to probe the scope of this new diamidate prodrug motif across several 

therapeutic arenas and for a broad range of NAs. In this context, we herein applied the 

diamidate approach to NAs with either antiviral or anticancer activity, and the novel 

prodrug compounds were evaluated for their biological activities. The NAs considered 

for this study are: 6-O-ethyl-2’-deoxy-2’--fluoro-2’--C-methylguanosine (1), stavudine 

(d4T, 2), 2’,3’-dideoxyadenosine (ddA, 3), zidovudine (AZT, 4), lamivudine (3TC, 5), N-

acetyl-lamivudine (N-acetyl-3TC, 6), 4’-azidouridine (4’-AzU, 7), 4’-azidocytidine (4’-

AzC, 8), ribavirin (RBV, 9), acyclovir (ACV, 10), abacavir (ABC, 11), the bicyclic 

nucleoside analogue 12 (BCNA, also known as Cf1743) and acadesine (AICA, 13) 

(Figure 1). 
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Figure 1: NAs considered for this study. 

 

Different synthetic conditions were necessary depending on solubility and reactivity 

issues of the parent nucleosides, and a total of twenty-five diamidates were synthesised. 
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Based on the previous work published on ProTides and diamidates, we selected L-alanine 

(L-Ala) as the amino acid of choice with benzyl and 2,2-dimethylpropyl as preferred ester 

moieties. For some derivatives, methyl and cyclohexyl esters were considered and, in one 

case, D-alanine (D-Ala) was used as the amino acid moiety. 

 

2. Results and Discussion 

2.1 Chemistry. 

At first, we applied our previously reported successful methodology for the synthesis of 

anti-HCV 6-O-alkyl-2’-C-methylguanosine 5’-phosphorodiamidates
12

 to 6-O-ethyl-2’-

deoxy-2’--fluoro-2’--C-methylguanosine 1, d4T 2, ddA 3, AZT 4, and 3TC 5. This 

procedure, called method A in this paper, is represented in Scheme 2. 

 

Scheme 2. Synthetic method A to phosphorodiamidates 14-21. Reagents and conditions: 

(a) anhydrous Et3N (1.0-1.2 mol/eq), anhydrous THF, room temperature, 30 min; then 

POCl3 (1.0-1.2 mol/eq), -78 
o
C, 30 min; (b) amino acid ester p-TSA salt (3.0-5.0 mol/eq) 

in anhydrous CH2Cl2, room temperature; then anhydrous Et3N (5.0-10.0 mol/eq), -78 
o
C, 

then room temperature, 16-20 h. 

 

In this strategy, the unprotected nucleoside dissolved in THF was treated with 

phosphorus oxychloride (1 equivalent) in the presence of triethylamine (1 equivalent) to 

generate a phosphorodichloridate intermediate (
31

P NMR signal at ~7-8 ppm), which was 
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not isolated. Then, an excess of the appropriate amino acid ester as p-toluene sulfonate 

(p-TSA) salt (usually 5 equivalents) and triethylamine (5-10 equivalents) were added, 

leading after stirring at room temperature for 18-20 h to the desired phosphorodiamidates 

14-21 (
31

P NMR signals at P ~ 11-14 ppm). 

Interestingly, in the case of 3TC (5) both 5’-OH and 4-NH2 functional groups reacted 

yielding the tetradiamidate derivative 22, and the N-4-diamidate derivative 23. 

 

Scheme 3. Synthesis of 3TC phosphorodiamidates 22 and 23 with method A. Reagents 

and conditions: (a) anhydrous Et3N (1.1 eq), POCl3 (1.1 eq), anhydrous THF, -78 °C to 

rt, 5 h; (b) L-alanine benzyl ester p-TSA salt (5 eq), anhydrous Et3N (10 eq), anhydrous 

CH2Cl2, -78 °C to rt, 20 h. 

 

However, when applied to the other NAs reported in this work, this method was not 

successful, probably due to a lack of solubility in the organic solvent used. Based on 

these findings, a modification of a synthetic approach reported by Yoshikawa et al. for 

the synthesis of monophosphate species was used.
16

 This same method was previously 

reported for the synthesis of some phosphorodiamidates.
17
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This second strategy, named method B, was used for the synthesis of diamidates of 3TC 

(5), N-acetyl 3TC (6), 4’-AzU (7), 4’-AzC (8), RBV (9), ACV (10), ABC (11), Cf1743 

(12), and AICA (13) (Scheme 4). 

 

Scheme 4. Synthetic method B to phosphorodiamidates 24-40. Reagents and conditions: 

(a) POCl3 (1.0 mol/eq), trimethylphosphate or triethylphosphate, -5 
o
C, 4-5 h, or 5 

o
C, 16 

h; (b) amino acid ester p-TSA or HCl salt (5.0 mol/eq), anhydrous CH2Cl2, anhydrous 

Et3N (10.0 mol/eq) or anhydrous DIPEA (5.0-10.0 mol/eq), -78 
o
C, 30 min, then room 

temperature, 16-45 h. 

 

The reaction was carried out using either trimethylphosphate or triethylphosphate and 

POCl3 to afford the corresponding intermediate dichlorophosphates following its 

formation by 
31

P-NMR (P = ~7). The addition of an excess of the appropriate amino acid 

ester salts in the presence of DIPEA or TEA yielded the desired phosphorodiamidates 24-

40. 

2.2 Biological results 

The arylphosphoramidate ProTide technology as a monophosphate prodrug approach has 

proven to be a powerful tool in terms of enhancing the biological activity, by-passing 

certain mechanisms of resistance, as well as extending the biological profile of several 

NAs. Moreover, the increased lipophilicity of these prodrugs may also lead to a better 

delivery inside the cells by passive diffusion, thus favouring a greater uptake of the drug. 
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For instance, it has been reported how the application of the ProTide approach greatly 

enhanced the antiviral activity of the anti- hepatitis C virus (HCV) agent 2-amino-6-

methoxy-9-(2-C-methyl--D-ribofuranosyl) purine,
11

 overcame the mechanisms of 

resistance for 5-fluoro-2’-deoxyuridine
18

 and extended the biological profile of BVdU 

and ACV from antiherpetic to anticancer and anti- human immunodeficiency virus (HIV) 

agents, respectively.
19, 20

 In a similar context, the phosphorodiamidates reported here 

were tested versus different cancer cell lines as well as versus a range of viruses with the 

aim to investigate the full potential of this phosphate prodrug moiety. To probe the 

delivery of the monophosphate inside the cells, thus by-passing the first step of 

phosphorylation, thymidine kinase-deficient (TK
-
) mutant cancer cells and herpes virus 

strains were also used.  

 

2.2.1 Anticancer activity 

Table 3 reports the anticancer activity for d4T (2), ddA (3), 3TC (5), N-acetyl-3TC (6), 

ABC (11), AICA (13) and their respective phosphorodiamidates versus mouse 

lymphocytic leukemia cells (L1210), human T-lymphocyte cells (CEM), human cervical 

carcinoma cells (HeLa), for which TK
- 
mutant strains were also included (L1210-TK

-
, 

CEM-TK
-
, and HeLa-TK

-
), colorectal adenocarcinoma cells (Caco-2) and human colon 

carcinoma cells (Colo-320). As expected, d4T itself did not show any antiproliferative 

activity versus all the human cancer cell lines considered in this study. In the case of 

murine L1210, d4T showed cytostatic activity at 9 M, while it was found ineffective 

(≥250 M) versus L1210/TK
-
, which confirms its expected dependence on TK for 

phosphorylation for eventual biological activity. To the contrary, its phosphorodiamidates 
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16-18 showed antiproliferative activity versus all the cancer cell lines in a range between 

8.9-47 M for L1210, 73-96 M for CEM, 96-116 M for HeLa, 30-133 M for Colo-

320, while being poorly effective versus Caco-2 cell (135-241 M). More importantly, all 

the compounds showed retention of activity against all the TK
-
 strains in a range between 

7.4-25 M versus L1210-TK
-
, 37-54 M vs CEM-TK

-
, and 29-53 M vs HeLa/TK

-
 

strains. These results are strongly suggestive for the successful delivery of d4T 

monophosphate inside the cells, thus heading to their independence from TK activation. 

As an alternative hypothesis, it could have been assumed that the similar antiproliferative 

activity observed for the d4T prodrugs against the L1210 TK
-
 cells versus wild-type 

L1210 cells could have been due to a direct effect of the prodrug or prodrug moieties 

such as the released benzyl part of the molecule. However, this is highly unlikely because 

in such a case, these prodrugs would have expected to display similar toxicities for the 

different prodrug molecules (i.e. 16, 22, 24, 25) and this had not been the case. 

A similar trend was observed for 3TC (5) and its phosphorodiamidate 25; in fact while 

the parent nucleoside was found inactive versus all the cancer cell lines (> 250 M) 

compound 25 showed a certain antiproliferative activity in a range between 38-116 M, 

against all tested tumor cell lines including the TK
-
 mutant strains. As expected, the 

phosphorotetramidate 22 and the N-phosphorodiamidate 23 did not show any activity of 

particular interest.  

In the case of ddA (3) and ABC (11) and their prodrugs, while the parent nucleosides did 

not show any potent antiproliferative activity (> 250 M vs L1210, CEM, and HeLa for 

ddA, > 250 M vs L1210 and CEM, and 170 M vs HeLa for ABC), their prodrugs 

showed a great enhancement of the activity showing IC50 values in between 35-76 M 
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for the ddA derivative 19, and in the range of 19-54 M for ABC phosphate prodrugs 34 

and 35. Neither AICA (13) nor its prodrugs 38, 39 and 40 showed any activity, which 

may indicate a poor conversion of these prodrugs into the free monophosphate as it will 

be discussed.     

 

2.2.2 Antiviral activity 

One of the advantages of the monophosphate prodrug approach is the by-pass of the first 

phosphorylation step mediated by human and/or viral kinase enzymes. The 

monophosphate prodrugs here reported were tested for their antiviral activity versus 

different viruses. 

2.2.2.1 Anti-HIV activity 

d4T (2), ddA (3), AZT (4), 3TC (5), ACV (10), and ABC (11), and their respective 

phosphorodiamidates were tested against HIV-1 and HIV-2 in CEM or MT4 cells (Table 

4). Compounds 16-18 showed a boost of their activity of ~2-4 fold vs HIV-1 and ~2-6 

fold vs HIV-2 compared to their parent derivative d4T.  

In the case of ddA a markedly greater boost in activity (72x vs HIV-1 and 57x vs HIV-2) 

was observed for its prodrug 19. AZT derivatives 20 and 21 were equipotent to the 

parent, while 3TC derivatives were significantly less effective, with the exception of N-

phosphorodiamidate 23, which was surprisingly only two fold less active. In the case of 

ABC, compounds 34 and 35 showed an increased potency (15-41 fold) compared to the 

parent nucleoside. 

In the case of ACV, a great improvement of its biological profile was observed. In fact, 

while ACV is not able to inhibit HIV-1 (EC50 >250 M), both phosphorodiamidates 32 
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and 33 showed an inhibitory activity in the low micromolar range (2-4 M), thus leading 

to a >60 fold boost in activity. 

The positive results obtained may be due to a combination of both successful delivery of 

the monophosphate form of the parent nucleosides inside the cells as well as to an 

enhanced cellular uptake due to an increased lipophilicity. However, these positive 

features of the monophosphate prodrugs also led, in some cases, to a slightly increased 

cytotoxicity compared to the parent compounds. In the case of 3TC phosphoramidate 25, 

the poor anti-HIV activity may be due to a poor metabolic bioactivation of the phosphate 

prodrug moieties with the subsequent poor release of the free monophosphate form. In 

fact, the uptake and metabolic activation of the prodrugs is a multistep process for which 

it is currently not clear which enzymes are contributing to the eventual activity of the 

prodrugs. Not only the different type of enzymes involved in the drug conversion 

pathways have yet to be clarified but also their differential specificities related to the 

nature of the nucleoside and the prodrug part and their activity levels in the different cell 

systems are not exactly known. Without any doubt, such subtle differences are playing a 

role in the eventual biological activity and properties of these compounds. 

 

2.2.2.2 Anti-HCV activity 

The phosphorodiamidate phosphate prodrug applied to 6-O-alkyl-2’-C-methylguanosine 

showed outstanding results versus HCV both in vitro and in vivo.
12

 Driven by these 

encouraging results, a series of diamidates of compounds of interests versus HCV were 

prepared, including 6-O-ethyl-2’-deoxy-2’--fluoro-2’--C-methylguanosine (1), 4’-AzU 

(7), 4’-AzC (8), RBV (9), and ACV (10) (Table 5). Unfortunately, the majority of the 
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compounds showed a poor biological profile, with the exception of compounds 14 and 15 

derived from compound 1. In fact, both compounds showed an inhibitory activity against 

HCV in the sub-micromolar range showing a great boost of activity compared to the 

parent guanosine nucleoside (EC90 = 69.2 µM).
25

 Notably, the L-alanine derivative 14 

gave a 4 fold improved activity compared to 15, which bears the non-natural amino acid 

D-alanine. Based on previous study, this finding may be the result of a lower conversion 

of the D-alanine based phosphate prodrug to the monophosphate, as a consequence of its 

lower affinity with the enzymes involved in the bioactivation pathway.  

 

2.2.2.3 Anti-HSV-1 and 2 activity 

AICA (13), ACV (10), Cf1743 (12) and their diamidates were then evaluated against 

human herpes simplex virus (HSV) type 1 and 2 and feline herpesvirus as reported in 

Table 6. 

AICA (13), Cf1743 (12), and their respective phosphorodiamidate prodrugs 36, 38-40 

were devoided of activity against human and feline herpes viruses (EC50 > 100 µM) 

(Table 6). In the case of ACV, while the parent itself showed a submicromolar activity 

versus HSV-1 and 2, prodrugs 32 and 33 showed a loss (80-200 fold) of antiviral activity. 

However, when tested against HSV-1 TK
-
, while ACV was 100 fold less effective (EC50 

= 23 µM), its diamidates retained their activity and were found to be equipotent to the 

parent compound thus indicating their TK independence. Indeed, since ACV obligatorily 

needs to be converted (activated) to its monophosphate derivative by HSV-1-encoded 

TK, it has markedly lowered antiviral activity against a HSV-1 TK
- 
strain whereas its 

prodrugs have not. It has been ascertained that the prodrugs have no direct activity 
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against purified herpetic DNA polymerase, excluding the possibility that the prodrugs 

might have activity as such against HSV-1 replication. 

 

2.2.2.4 Other antiviral activity  

Some of the phosphorodiamidate prodrugs were also examined for their inhibitory 

activity against a variety of other viruses, including vaccinia virus, vesicular stomatitis 

virus, influenza virus A (H1N1 and H3N2) and B, feline corona virus (FIPV), 

parainfluenza-3 virus, reovirus-1, Sindbis virus, Coxsackie virus B4, Punta Toro virus, 

respiratory syncytial virus and Coxsackie virus. None of them showed inhibitory activity 

nor cytotoxicity at 100 µM. 

 

2.3 Enzymatic studies 

As depicted in Scheme 1, the putative bioactivation pathway for the phosphorodiamidate 

phosphate moiety involves two enzymatic steps, mediated by an esterase or 

carboxypeptidase type enzyme (first step) and a phosphoramidase type enzyme (last 

step). We have reported the investigation of the first step of the bioactivation pathway for 

both ProTide
26

 and diamidate
12

 by incubating the desired compound with 

carboypeptidase Y enzyme in d6-acetone and Trizma buffer (pH = 7.6) and following the 

progress of the process through 
31

P-NMR. All the prodrugs tested, proved to be 

chemically robust in d6-acetone and Trizma buffer (pH = 7.6) environment and in 

absence of carboxypeptidase Y. Fig. 2 and 3 report the first enzymatic cleavage for an 

ACV prodrug 32 (active compound) and for an AICA prodrug 40 (inactive compound) 

respectively. Compound 32 (P = 13.66) showed a fast metabolism to the first 
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intermediate lacking one ester moiety. The cleavage of only one ester was supported by 

the presence of two peaks at the 
31

P-NMR (P = 14.30 and 14.42), thus indicating the 

chirality at the phosphorus. After 30 minutes from the addition of the enzyme a new peak 

(P = 7.16) appeared, which corresponds to the metabolite lacking one amino acid and 

one ester, in agreement with our previously published results.
11, 26

 Notably, compound 32 

was fully converted in 7.5 h into its metabolite indicating that the first step in the 

bioactivation pathway proceeds well for ACV derivative. To the contrary, a poor 

metabolism was observed for compound 40. In fact, under the same condition used for 

compound 32, only a partial conversion into the desired metabolite (P = 6.71) was 

observed and after 24 h the starting material (P = 14.20) was still the predominant 

species. 

From the two examples reported here, we can correlate the biological activity found for 

32 and 40 and their bioactivation efficiency, thus supporting the need of an ester cleavage 

in the bioactivation pathway for this class of compounds. However intracellular 

activation of these prodrugs still needs to be confirmed.  
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32 

 

Figure 2: carboxypeptidase-mediated cleavage of compound 32, monitored by 
31

P-NMR.  
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Figure 3: carboxypeptidase-mediated cleavage of compound 40, monitored by 
31

P-NMR. 

 

3. Conclusion 

In conclusion, we report the synthesis and biological evaluation of twenty-five 

phosphorodiamidate prodrugs of known NAs. The key advantage of this nucleoside 

monophosphate prodrug approach is to overcome the chirality at the phosphorus center 

present in other monophosphate prodrug approaches, thus allowing the formation of 

single stereoisomers instead of diastereoisomeric mixtures. A broad anticancer and 

antiviral evaluation has been performed. Many of the compounds showed a good 

improvement and/or extension of their biological profile. A great improvement of activity 

was observed in the case of ddA, ABC and ACV phosphorodiamidates against HIV-1 and 

2, while d4T prodrugs showed a good inhibitory activity versus different cancer cell 

 

 

40 
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lines. To the contrary, AICA derivatives showed neither anticancer nor antiviral activity. 

A metabolic assays using carboxypeptidase Y was performed to support the importance 

of bioactivation of these compounds to exert their activity. In fact, when the compounds 

were slowly activated in our assays either a low or no activity was observed in the 

testing, whereas a rapid bioactivation resulted in an improved biological profile. The 

phosphorodiamidate approach we report shows considerable promise across the 

biological spectrum where NAs are active and we believe significantly augment the field 

of nucleotide prodrugs for use in drug discovery. 
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Table 3. Inhibitory effects on the proliferation of tumor cell lines in cell culture. IC50 = 50% inhibitory 

concentration. 

Compd Nucleoside AA R 
IC50 (µM) 

L1210 L1210/TK
-
 CEM CEM/TK

-
 HeLa HeLa/TK

-
 Caco-2 Colo-320 

2 d4T - - 8.9±3.2
c
 ≥ 250 ≥250 > 250 >250 >250 >250 159 ± 36 

16 d4T L-Ala Bn  8.9±0.4
c
 7.4 ± 4.6 92 ± 0 46 ± 21 116 ± 54 29 ± 7 241 ± 13 133 ±18 

17 d4T L-Ala cHex 29±5 25 ± 3 73 ± 9 54 ± 17 96 ± 0 36 ± 9 135 ± 7 56 ± 24 

18 d4T L-Ala CH2tBu 47±4 23 ± 6 96 ± 3 37 ± 2 110 ± 35 53 ± 23 174 ± 72 30 ± 16 

3 ddA - - >250 - >250 - >250 - - - 

19 ddA L-Ala CH2tBu 76±3 - 36±4 - 35±5 - - - 

5 3TC - - >250 >250 >250 >250 >250 >250 >250 >250 

6 N-acetyl-

3TC 

- - >250     >250 >250 >250 242 ± 11    >250 >250 ≥250 

22
a
 3TC L-Ala Bn >250 >250 >250 155 ± 38 ≥250    > 250 >250 >250 

23
b
 3TC  L-Ala Bn ≥250 150 ± 18 214 ± 50 139 ± 67 ≥250 256 ± 21   >250 >250 

24 N-acetyl-

3TC 

L-Ala Bn 121±6 - 120 ± 2 - 155 ± 61 - ≥250 >250 

25 3TC  L-Ala Bn 86 ± 23 57 ± 6 116 ± 9 106 ± 18 93 ± 16 38 ± 7 87 ± 44   85 ± 50 

11 ABC - - >250 - >250 - 170±1 - - - 

34 ABC L-Ala Bn 54±2 - 19±0 - 23±6 - - - 

35 ABC L-Ala CH2tBu 48±5 - 27±2 - 36±17 - - - 

13 AICA - - ≥250 - 210±56 - 165±18 ≥250 - - 

38 AICA L-Ala Bn >250 - >250 - >250 >250 - - 

39 AICA L-Ala Me ≥250 - >250 - >250 >250 - - 

40 AICA L-Ala CH2tBu >250 - >250 - >250 >250 - - 
a
 Phosphorotetraamidate, 

b 
N-Phosphorodiamidate. 

c
No dose response 

Data represent the mean  SD of at least 2 to 3 independent experiments. 
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Table 4: Anti HIV-1 and HIV-2 activity (EC50) in human T-lymphocyte CEM cells. 

 

Compd Nucleoside AA R 
EC50 (µM) CC50 (µM) 

HIV-1 HIV-2 

2 d4T - - 0.39±0.29 0.58±0.33 ≥250 

16 d4T L-Ala Bn 0.14±0.028 0.096±0.063 92±0 

17 d4T L-Ala cHex 0.15±0.16 0.38±0.42 73±9 

18 d4T L-Ala CH2tBu 0.090±0.084 0.14±0.042 96±3 

3 ddA - - 7.2±2.5 2.8±1.8 >250 

19 ddA L-Ala CH2tBu 0.10±0.069 0.049±0.028 35±5.0 

4 AZT - - 0.012±0.006 0.067±0.018 >250 

20 AZT L-Ala Bn 0.0092±0.00035 0.030±0.0092 30±4 

21 AZT L-Ala CH2tBu 0.0083±0.00014 0.013±0.0042 75±40 

5 3TC - - 0.099±0.086 0.18±0.13 >250 

22
a
 3TC L-Ala Bn 16±5.3 58±44 >250 

23
b
 3TC L-Ala Bn 0.28±0.17 0.40±0.33 214±60 

25 3TC L-Ala Bn >50 >50 116±9 

11 ABC - - 23±5.0 18±8.9 >250 

34 ABC L-Ala Bn 0.56±0.23 1.1±0.82 19±0 

35 ABC L-Ala CH2tBu 1.5±0.47 1.2±0.66 27±2 

10 ACV - - >250
c
 - >250

c
 

32 ACV L-Ala Bn 2.01±1.16
c
 - 34.93±1.45

c
 

33 ACV L-Ala CH2tBu 4.07±1.06
c
 - 82.76±4.54

c
 

a
 Phosphorotetraamidate, 

b 
N-Phosphorodiamidate, 

c
MT-4 cell. 

Data represent the mean  SD of at least 2 to 3 independent experiments. 

 

 

Table 5. HCV replicon assays (type 1b) in Huh 7 cells. 

 
Compd Nucleoside AA R EC50 (µM) CC50 (µM) 

14 1 L-Ala CH2tBu 0.05 73 

15 1 D-Ala CH2tBu 0.23 >100 

7 4’-AzU - - >100
ref. 21

 >100
 ref. 21

 

26 4’-AzU L-Ala Bn >40 >100 

27 4’-AzU L-Ala CH2tBu 22±7 >100 

8 4’-AzC - - 7.13
 ref. 22

 >100
 ref. 22

 

28 4’-AzC L-Ala Bn >40 >100 

29 4’-AzC L-Ala CH2tBu >40 72 

9 RBV - - 87
 ref. 23

 >100
 ref. 23

 

30 RBV L-Ala Bn >100 >100 

31 RBV L-Ala CH2tBu >100 >100 

10 ACV - - 30
 ref. 24

 >30
 ref. 24

 

32 ACV L-Ala Bn >100 - 

33 ACV L-Ala  CH2tBu >100 - 
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Table 6. Antiviral activity of test compounds against herpes simplex virus type 1 and 

2 and feline herpes virus and cytotoxicity (MCC) in HEL and CrFK cell cultures 

 

Compd Nucleoside AA R 
MCC 

(µM) 

EC50 (µM) HEL cell 

Herpes 

simplex 

virus 

1(KOS) 

Herpes 

simplex 

virus 2 

(G) 

Herpes 

simplex 

virus 1 TK
-

(KOS)ACV
r
 

Feline 

herpes 

virus 

13 AICA - - >100 >100 >100 >100 >100 

38 AICA L-Ala Bn >100 >100 >100 >100 >100 

39 AICA L-Ala Me >100 >100 >100 >100 >100 

40 AICA L-Ala CH2tBu >100 >100 >100 >100 >100 

10 ACV - - >100 0.230.20 0.20 235 >100 

32 ACV L-Ala Bn >100 1814 1619 2522 >100 

33 ACV L-Ala CH2tBu >100 3318 408 200 >100 

12 Cf1743 - - ≥20 >20 >20 >20 >100 

36 Cf1743 L-Ala Bn >100 >100 >100 >100 >100 
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4. Experimental Protocols 

4.1 Chemistry 

All anhydrous solvents were purchased from Sigma-Aldrich and amino acid esters from 

Novabiochem. All reagents commercially available were used without further 

purification. Thin Layer Chromatography (TLC): precoated aluminum backed plates (60 

F254, 0.2 mm thickness, Merck) were visualized under both short and long wave UV light 

(254 and 366 nm). Flash column chromatography was carried out using silica gel 

supplied by Fisher (60A, 35-70 μm). Analytical High Performance Liquid 

Chromatography (HPLC) analysis was performed using either a ThermoScientific or a 

Varian Prostar system. 
1
H NMR (500 MHz), 

13
C NMR (125 MHz), 

31
P NMR (202 MHz) 

and 
19

F NMR (470 MHz) spectra were recorded on a Bruker Avance 500 MHz 

spectrometer at 25 ºC. Chemical shifts (δ) are quoted in parts per million (ppm) relative 

to internal MeOD (δ 3.34 
1
H NMR, δ 49.86 

13
C NMR) and CDCl3 (δ 7.26 

1
H NMR, δ 

77.36 
13

C NMR) or external 85% H3PO4 (δ 0.00 
31

P NMR). Coupling constants (J) are 

given in Hertz. The following abbreviations are used in the assignment of NMR signals: s 

(singlet), d (doublet), t (triplet), q (quartet), qn (quintet), m (multiplet), bs (broad singlet), 

dd (doublet of doublet), dt (doublet of triplet). Low resolution mass spectrometry was 

performed on a Bruker Daltonics microTof-LC system, as a service by the School of 

Chemistry at Cardiff University.  

 

4.1.1 Standard procedure A: synthesis of phosphorodiamidates. 

To a stirring solution/suspension of the desired nucleoside (1.00 mol/eq) in anhydrous 

THF, anhydrous Et3N (1.00-1.20 mol/eq) was added under an argon atmosphere. After 
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stirring at room temperature for 30 min, POCl3 (1.00-1.20 mol/eq) was added dropwise at 

-78 
o
C. The reaction mixture was stirred at -78 

o
C for 30 min and then allowed to warm 

to room temperature. Anhydrous CH2Cl2 and the appropriate amino acid ester salt (3.00-

5.00 mol/eq) were added, followed dropwise addition of anhydrous Et3N (5.00-10.00 

mol/eq) at -78 
o
C. The reaction mixture was then stirred at room temperature. After this 

period, H2O was added and the aqueous phase was extracted with CH2Cl2. The organic 

phase was washed with brine, dried over anhydrous Na2SO4 or MgSO4, filtered and 

evaporated to dryness. The residue was purified by silica gel column chromatography 

using different eluent systems. 

 

4.1.2 Standard procedure B: synthesis of phosphorodiamidates. 

To a stirring solution of the desired nucleoside (1.00 mol/eq) in trimethylphosphate or 

triethylphosphate, POCl3 (1.00 mol/eq) was added dropwise at -5 
o
C under an argon 

atmosphere. The reaction mixture was stirred at -5 
o
C for 4-5 h, or at 5 

o
C for 16 h. 

Anhydrous CH2Cl2 and the appropriate amino acid ester salt (5.0 mol/eq) were added, 

followed by dropwise addition of anhydrous Et3N (10.0 mol/eq) at 0 
o
C, or anhydrous 

DIPEA (10.0 mol/eq) at -78 
o
C. The reaction mixture was stirred at -78 

o
C for 30 min and 

then at room temperature for 16-45 h. After this period, H2O was added and the aqueous 

phase was extracted with CH2Cl2. The organic phase was washed with brine, dried over 

anhydrous Na2SO4 or MgSO4, filtered and evaporated to dryness. The residue was 

purified by silica gel column chromatography using different eluent systems. 
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4.1.3 Synthesis of 4-Acetylamino-1-[(2’R,5’S)-2’-(hydroxymethyl)-1,3-oxathiolan-5’-

yl]-1,2-dihydropyrimidin-2-one (6).  

Anhydrous DMF (20 mL) was added to (5) (5.0 g, 21.81 mmol) and the mixture was 

stirred under nitrogen atmosphere for 5 min at room temperature. Acetic anhydride (2.26 

mL, 23.99 mmol) was added dropwise, and the mixture was stirred at room temperature 

overnight. Then, the solvent was removed under reduced pressure, and the residue was 

azeotroped with toluene. The crude solid was washed with diethyl ether (3 x 20 mL) to 

give the desired compound (6) as a white solid (82%, 4.84 g). 
1
H NMR (500 MHz, 

MeOD) δH 8.59 (d, J = 7.5 Hz, 1H, H-6), 7.43 (d, J = 7.5 Hz, 1H, H-5), 6.33 (dd, J = 5.3, 

3.0 Hz, 1H, H-1’), 5.36 (t, J = 3.6 Hz, 1H, H-4’), 4.05 (dd, J = 12.6, 3.4 Hz, 1H, H-5’), 

3.95 (dd, J = 12.6, 3.9 Hz, 1H, H-5’), 3.65 (dd, J = 12.4, 5.4 Hz, 1H, H-2’), 3.27 (dd, J = 

12.4, 3.0 Hz, 1H, H-2’), 2.20 (s, 3H, COCH3). 

 

4.1.4 Synthesis of  (2R,3R,4R,5R)-5-(2-amino-6-ethoxy-9H-purin-9-yl)-4-fluoro-2-

(hydroxymethyl)-4-methyltetrahydrofuran-3-ol-5’-O-bis-(2,2-dimethylpropoxy-L-

alaninyl)-phosphate(14). 

Prepared according to standard procedure A, using (1) (0.15 g, 0.46 mmol) in anhydrous 

THF (3 mL), anhydrous Et3N (0.06 mL, 0.46 mmol), and POCl3 (0.04 mL, 0.46 mmol). 

Anhydrous CH2Cl2  (3 mL) and tosylate salt of 2,2-dimethylpropoxy-L-alanine (0.76 g, 

2.29 mmol) were added, followed by dropwise addition of anhydrous Et3N (0.64 mL, 

4.58 mmol). The reaction mixture was stirred at room temperature for 20 h. After work-

up, the crude residue was purified by silica gel column chromatography eluting with a 

gradient of MeOH (0% to 3%) in CHCl3 to give the product (14) as an off white solid 
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(9%, 0.03 g). 
1
H NMR (500 MHz, MeOD) δH 7.97 (s, 1H, H-8), 6.17 (d, JH-F = 19.0 Hz, 

1H, H-1’), 4.57-4.53 (m, 3H, OCH2CH3 and H-3’), 4.44-4.36 (m, 2H, H-5’), 4.23-4.19 

(m, 1H, H-4’), 3.99-3.95 (m, 2H, 2x CHCH3), 3.84, 3.82, 3.72, 3.66 (2AB, JAB = 10.5 Hz, 

4H, 2x OCH2C(CH3)3), 1.45 (t, J = 7.3 Hz, 3H, OCH2CH3), 1.39 (d, J = 7.1 Hz, 3H, 

CHCH3), 1.35 (d, J = 7.1 Hz, 3H, CHCH3), 1.23 (d, JH-F = 20.0 Hz, 3H, CCH3), 0.94 (s, 

9H, OCH2C(CH3)3), 0.92 (s, 9H, OCH2C(CH3)3). 
13

C NMR (125 MHz, MeOD) C 

175.65, 175.60 (2d, JC-P = 6.3 Hz, CO), 162.46 (C-6), 161.99 (C-2), 154.45 (C-4), 139.42 

(C-8), 115.71 (C-5), 102.01 (d, JC-F = 180.0 Hz, C-2’), 90.83 (d, JC-F = 39.0 Hz, C-1’), 

81.92 (d, JC-P = 7.5 Hz, C-4’), 75.38, 75.36 (OCH2C(CH3)3), 74.04 (d, JC-F = 18.0 Hz, C-

3’), 66.15 (d, JC-P = 3.8 Hz, C-5’), 63.58 (OCH2CH3), 51.11 (CHCH3), 32.32, 32.28 

(OCH2C(CH3)3), 26.80, 26.77 (OCH2C(CH3)3), 21.11, 20.98 (CHCH3), 16.89 (d, JC-F = 

25.0 Hz, 2’CCH3), 14.88 (OCH2CH3). 
31

P NMR (202 MHz, MeOD) P 13.98. 
19

F NMR 

(470 MHz, MeOD) F -162.26. MS (ES+) m/z: 712.31 (M + Na
+
, 100%). Reverse-phase 

HPLC, eluting with H2O/CH3CN from 90/10 to 0/100 in 30 min, flow= 1mL/min, = 254 

nm, tR= 20.63 min. 

 

4.1.5 Synthesis of (2R,3R,4R,5R)-5-(2-amino-6-ethoxy-9H-purin-9-yl)-4-fluoro-2-

(hydroxymethyl)-4-methyltetrahydrofuran-3-ol-5’-O-bis-(2,2-dimethylpropoxy-D-

alaninyl)-phosphate (15).  

Prepared according to standard procedure A, using (1) (0.15 g, 0.46 mmol) in anhydrous 

THF (2.4 mL), anhydrous Et3N (0.08 mL, 0.55 mmol), and POCl3 (0.05 mL, 0.55 mmol). 

Anhydrous CH2Cl2 (3.5 mL) and tosylate salt of 2,2-dimethylpropoxy-D-alanine (0.76 g, 

2.30 mmol) were added, followed by dropwise addition of anhydrous Et3N (0.64 mL, 
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4.60 mmol). The reaction mixture was stirred at room temperature overnight. After work-

up, the crude residue was purified by silica gel column chromatography eluting with 

CHCl3/MeOH (97.5/2.5) to give the product (15) as an off white solid (7%, 0.02 g). 
1
H 

NMR (500 MHz, CDCl3) H 7.76 (s, 1H, H-8), 6.04 (d, 1H, JH-F = 18.7 Hz, H-1’), 5.31 

(bs, 1H, NH), 4.90 (bs, 1H, NH), 4.82-4.72 (m, 1H, H-3’), 4.65-4.61 (m, 1H, H-5’), 4.56 

(q, 1H, J = 6.6 Hz, OCH2CH3), 4.35-4.31 (m, 1H, H-5’), 4.19-4.18 (m, 1H, H-4’), 4.07-

3.98 (m, 2H, 2x CHCH3), 3.90, 3.88 (AB, 2H, JAB = 10.4 Hz, OCH2C(CH3)3), 3.73,  3.71 

(AB, 2H, JAB = 10.4 Hz, OCH2C(CH3)3), 1.47 (t, 3H, J = 7.1 Hz, OCH2CH3), 1.43 (t, 6H, 

J = 6.5 Hz, 2x CHCH3), 1.27 (d, 3H, JH-F = 22.7 Hz, 2’CCH3), 0.94 (s, 9H, 

OCH2C(CH3)3),  0.92 (s, 9H, OCH2C(CH3)3).
13

C NMR (125 MHz, CDCl3) C 175.15 (d, 

JC-P = 6.5 Hz, CO), 174.28 (d, JC-P = 6.8 Hz, CO), 161.32  (C-6), 159.59 (C-2), 153.20 (C-

4), 137.37 (C-8), 115.71 (C-5), 101.92, 100.48 (d, JC-F = 180.0 Hz, C-2’), 89.23 (d, JC-F = 

40.3 Hz, C-1’), 79.97 (d, JC-P = 7.6 Hz, C-4’), 74.82, 74.55 (OCH2C(CH3)3), 71.93 (C-

3’), 63.03 (OCH2CH3), 62.71, 62.57 (2d, JC-P = 17.6 Hz, C-5’), 49.78, 49.43 (CHCH3), 

31.36, 31.23 (OCH2C(CH3)3), 26.33, 26.25, 26.14 (OCH2C(CH3)3), 21.37 (d, JC-P = 6.1 

Hz, CHCH3), 21.02 (d, JC-P = 8.1 Hz, CHCH3), 16.59 (d, JC-F = 25.2 Hz, 2’CCH3), 14.47 

(OCH2CH3). 
31

P NMR (202 MHz, CDCl3) P 13.86. 
19

F NMR (470 MHz, CDCl3) F -

162.43. MS (ES) m/z: 690.34 (M + H
+
, 100%). Reverse-phase HPLC, eluting with 

H2O/CH3CN from 90/10 to 10/90 in 30 min, flow= 1mL/min, λ= 275 nm, tR= 20.24 min. 

 

4.1.6 Synthesis of d4T-5′-O-bis(benzoxy-L-alaninyl)-phosphate (16).  

Prepared according to standard procedure A, using (2) (0.50 g, 2.23 mmol) in anhydrous 

THF (5 mL), anhydrous Et3N (0.31 mL, 2.23 mmol) POCl3 (0.21 mL, 2.23 mmol). 
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Anhydrous CH2Cl2 (5 mL) and tosylate salt of benzoxy-L-alanine (2.35 g, 6.69 mmol) 

were added, followed by dropwise addition of anhydrous Et3N (3.10 mL, 22.30 mmol). 

The reaction mixture was stirred at room temperature overnight. After work-up, the crude 

residue was purified by silica gel column chromatography eluting with a gradient of 

MeOH (2% to 5%) in CH2Cl2 to yield product (16) as a white solid (11% 0.10 g). 
1
H 

NMR (500 MHz, MeOD) δH 7.40-7.30 (m, 11H, OCH2Ph, H-5), 6.96-6.94 (m, 1H, H-1’) 

6.34-6.32 (m, 1H, H-3’), 5.90-5.93 (m, 1H, H-2’), 5.17-5.10 (m, 4H, 2x OCH2Ph), 4.91 

(bs, 1H, H-4’), 4.11-4.09 (m, 2H, H-5’), 3.97-3.89 (m, 2H, 2x CHCH3), 1.88 (s, 3H, 

CH3), 1.35 (d, J = 7.0 Hz, 3H, CHCH3), 1.33 (d, J = 7.0 Hz, 3H, CHCH3). 
13

C NMR (125 

MHz, MeOD) δC 175.37 (d, JC-P = 5.0 Hz, CO), 175.22 (d, JC-P = 5.0 Hz, CO), 166.42 (C-

4), 152.82 (C-2), 137.96 (C-6), 137.35 (ipso OCH2Ph), 137.33 (ipso OCH2Ph), 134.99 

(C-3’), 129.67, 129.41 (OCH2Ph), 127.83 (C-2’), 112.17 (C-5), 91.20 (C-1’), 86.48 (d, 

JC-P = 8.7 Hz, C-4’), 67.97 (OCH2Ph), 66.44 (d, JC-P = 8.7 Hz, C-5’), 51.17 (d, JC-P = 1.9 

Hz, CHCH3), 50.99 (d, JC-P = 1.9 Hz, CHCH3), 20.84 (d, JC-P = 5.5 Hz, CHCH3), 20.66 

(d, JC-P = 5.5 Hz, CHCH3), 12.73 (5-CH3). 
31

P NMR (202 MHz, MeOD) δP 13.63. MS 

(ES+) m/z: 649.20 (M + Na
+
, 100%). Reverse-phase HPLC, eluting with H2O/CH3CN 

from 90/10 to 0/100 in 30 min; flow= 1 mL/min, λ= 280 nm, tR= 18.61 min. 

 

4.1.7 Synthesis of d4T-5′-O-bis-(cyclohexoxy-L-alaninyl)-phosphate (17).  

Prepared according to standard procedure A, using (2) (0.53 g, 2.36 mmol) in anhydrous 

THF (5 mL), anhydrous Et3N (0.33 mL, 2.36 mmol), and POCl3 (0.22 mL, 2.36 mmol). 

Anhydrous CH2Cl2 (5 mL) and tosylate salt of cyclohexoxy-L-alanine (4.06 g, 11.82 

mmol) were added, followed by dropwise addition of anhydrous Et3N (3.30 mL, 23.63 
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mmol). The reaction mixture was stirred at room temperature for 16 h. After work-up, the 

crude residue was purified by silica gel column chromatography eluting with a gradient 

of MeOH (2% to 5%) in CH2Cl2 to afford the product (17) as a solid (46%, 0.66 g). 
1
H 

NMR (500 MHz, MeOD) δH 7.44 (s, 1H, H-6), 6.99 (m, 1H, H-1’), 6.45 (dd, J = 6.0, 1.2 

Hz, 1H, H-3’), 5.99 (dd, J = 6.0, 1.2 Hz, 1H, H-2’), 5.02 (bs, 1H, H-4’), 4.78-4.74 (m, 

2H, 2x OCH-cHx), 4.21-4.14 (m, 2H, H-5’), 3.90-3.84 (m, 2H, 2x CHCH3), 1.92 (s, 3H, 

CH3), 1.90-1.80 (m, 4H, cHx), 1.80-1.70 (m, 4H, cHx), 1.63-1.55 (m, 2H, cHx), 1.54-

1.29 (m, 10H, cHx), 1.36 (d, J = 7.0 Hz, 3H, CHCH3), 1.32 (d, J = 7.0 Hz, 3H, CHCH3). 

13
C NMR (125 MHz, MeOD) δC 175.05 (d, JC-P = 5.0 Hz, CO), 174.89 (d, JC-P = 5.0 Hz, 

CO), 166.37 (C-4), 152.81 (C-2), 137.97 (C-6), 134.98 (C-3’), 127.95 (C-2’), 112.14 (C-

5), 91.21 (C-1’), 86.57 (d, JC-P = 8.8 Hz, C-4’), 74.88, 74.86 (2x OCHcHx), 67.44 (d, JC-P 

= 5.0 Hz, C-5’), 51.22 (d, JC-P = 1.1 Hz, CHCH3), 50.99 (d, JC-P = 1.1 Hz, CHCH3), 

32.57, 32.56, 32.50, 32.48 (CH2-cHx), 26.48, 24.75, 24.72, 24.68 (CH2-cHx), 21.15 (d, 

JC-P = 5.0 Hz, CHCH3), 20.95 (d, JC-P = 5.0 Hz, CHCH3), 12.73 (5-CH3).
31

P NMR (202 

MHz, MeOD) δP 12.58. MS (ES+) m/z: 633.25 (M+Na
+
, 100%). Reverse-phase HPLC, 

eluting with H2O/CH3CN from 90/10 to 0/100 in 30 min, flow= 1 mL/min, λ= 254 nm, 

tR= 18.48 min. 

 

4.1.8 Synthesis of d4T-5’-O-bis-(2,2-dimethylpropoxy-L-alaninyl)-phosphate (18).  

Prepared according to standard procedure A, using (2) (0.50 g, 2.23 mmol) in anhydrous 

THF (5 mL), anhydrous Et3N (0.31 mL, 2.23 mmol), and POCl3 (0.21 mL, 2.23 mmol). 

Anhydrous CH2Cl2 (5 mL) and tosylate salt of 2,2-dimethylpropoxy-L-alanine (2.22 g, 

6.69 mmol) were added, followed by dropwise addition of anhydrous Et3N (1.52 mL, 
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11.15 mmol). The reaction mixture was stirred at room temperature for 16 h. After work-

up, the crude residue was purified by silica gel column chromatography eluting with a 

gradient of MeOH (2% to 5%) in CH2Cl2 to afford the product (18) as a white solid 

(12%, 0.15 g). 
1
H NMR (500 MHz, MeOD) δH 7.44 (s, 1H, H-6), 7.01-6.90 (m, 1H, H-

1’), 6.46-6.40 (m, 1H, H-3’), 6.00-5.90 (m, 1H, H-2’), 5.03 (bs, 1H, H-4’), 4.21-4.14 (m, 

2H, H-5’), 3.98-3.92 (m, 2H, 2x CHCH3), 3.91, 3.89, 3.78, 3.76 (2AB, JAB = 10.0 Hz, 4H, 

2x OCH2C(CH3)3), 1.92 (s, 3H, CH3), 1.40 (d, J = 7.0 Hz, 6H, 2x CHCH3), 0.97 (s, 9H, 

OCH2C(CH3)3), 0.97 (s, 9H, OCH2C(CH3)3).
13

C NMR (125 MHz, MeOD) δC 175.64 (d, 

JC-P = 5.0 Hz, CO), 175.47 (d, JC-P = 5.0 Hz, CO), 166.41 (C-4), 152.85 (C-2), 137.97 (C-

6), 134.98 (C-3’), 127.93 (C-2’), 112.14 (C-5), 91.22 (C-1’), 86.57 (d, JC-P = 8.7 Hz, C-

4’), 75.45 (OCH2C(CH3)3), 67.54 (d, JC-P = 5.0 Hz, C-5’), 51.19 (d, JC-P = 1.1 Hz, 

CHCH3), 50.82 (d, JC-P = 1.1 Hz, CHCH3), 32.36 (OCH2C(CH3)3), 26.87, 26.60 

(OCH2C(CH3)3), 21.19 (d, JC-P = 5.0 Hz, CHCH3), 21.01 (d, JC-P = 5.0 Hz, CHCH3), 

12.71 (5-CH3).
 31

P NMR (202 MHz, MeOD) δP 13.73. MS (ES+) m/z: 609.27 (M+Na
+
, 

100%). Reverse-phase HPLC, eluting with H2O/CH3CN from 90/10 to 0/100 in 30 min, 

flow = 1 mL/min, λ= 254 nm, tR= 17.80 min. 

 

4.1.9 Synthesis of ddA-5′-O-bis-(2,2-dimethylpropoxy-L-alaninyl)-phosphate (19).  

Prepared according to standard procedure A, using (3) (0.10 g, 0.42 mmol) in anhydrous 

THF (2 mL), anhydrous Et3N (0.06 mL, 0.42 mmol), and POCl3 (0.39 mL, 0.42 mmol). 

Anhydrous CH2Cl2 (3 mL) and tosylate salt of 2,2-dimethylpropoxy (0.70 g, 2.10 mmol) 

were added, followed by dropwise addition of anhydrous Et3N (0.29 mL, 2.10 mmol). 

The reaction mixture was stirred at room temperature for 18 h. After work-up, the crude 
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residue was purified by silica gel column chromatography eluting with a gradient of 

MeOH (2% to 5%) in CH2Cl2 to give the product (19) as a white solid (9%, 0.02 g). 
1
H 

NMR (500 MHz; MeOD) δH 8.55 (bs, 1H, H-8), 8.39 (bs, 1H, H-2), 6.38 (dd, J = 6.5, 3.3 

Hz, 1H, H-1’), 4.44-4.39 (m, 1H, H-4’), 4.23-4.19 (m, 1H, H-5’), 4.14-4.10 (m, 1H, H-

5’), 3.94-3.87 (m, 2H, 2x CHCH3), 3.84, 3.72 (2AB, JAB = 10.4 Hz, 4H, OCH2C(CH3)3), 

2.67-2.55 (m, 2H, H-2’), 2.21 (m, 2H, H-3’), 1.35 (d, J = 7.1 Hz, 6H, 2x CHCH3), 0.93 

(s, 18H, 2x OCH2C(CH3)3); 
31

P NMR (202 MHz; MeOD) δP 13.98. Reverse-phase 

HPLC, eluting with H2O/MeOH from 90/10 to 0/100 in 30 min, flow= 1 mL/min, λ= 254 

nm, tR= 25.91 min. 

 

4.1.10  Synthesis of 3′-azido-3′-deoxythymidine-5′-O-bis(benzoxy-L-alaninyl)-phosphate 

(20). 

Prepared according to standard procedure A, using (4) (0.20 g, 0.75 mmol) in anhydrous 

THF (5 mL), anhydrous Et3N (0.10 mL, 0.75 mmol), and POCl3 (0.07 mL, 0.75 mmol). 

Anhydrous CH2Cl2 (10 mL) and tosylate salt of benzoxy-L-alaninyl (1.31 g, 3.74 mmol) 

were added, followed by dropwise addition of anhydrous Et3N (1.04 mL, 7.48 mmol). 

The reaction mixture was stirred at room temperature for 20 h. After work-up, the crude 

residue was purified by silica gel column chromatography eluting with a gradient of 

MeOH (0% to 3%) in CHCl3 to give the product (20) as an off white solid (20%, 0.10 g). 

1
H NMR (500 MHz, MeOD) H 7.51 (s, 1H, H-6), 6.16 (t, J = 6.5 Hz, 1H, H-1’), 5.17-

5.10 (m, 4H, 2x OCH2Ph), 4.38-4.35 (m, 1H, H-3’), 4.19-4.10 (m, 2H, H-5’), 4.02-3.95 

(m, 3H, H-4’, 2x CHCH3), 2.36 (m, 2H, H-2’), 1.89 (s, 3H, 5-CH3), 1.39 (d, 3H, J = 7.0 

Hz, CHCH3), 1.36 (d, 3H, J = 7.0 Hz, CHCH3). 
13

C (125 MHz, MeOD) C 175.42 (d, JC-P 



 32 

= 3.8 Hz, CO), 175.35 (d, JC-P = 6.3 Hz, CO), 166.25 (C-4), 152.22 (C-2), 137.69 (C-6), 

137.29, 137.27 (ipso OCH2Ph), 129.96, 129.68, 129.66, 129.44, 129.42, 129.38, 129.35, 

129.12 (OCH2Ph), 112.16 (C-5), 86.24 (C-1’), 83.85 (d, JC-P = 8.8 Hz, C-4’), 68.03, 

68.00 (OCH2Ph), 66.04 (d, JC-P = 5.0 Hz, C-5’), 61.85 (C-3’), 51.21, 51.16 (CHCH3), 

37.68 (C-2’), 20.85, 20.73 (2d, JC-P = 6.3 Hz, CHCH3), 12.71 (5-CH3). 
31

P NMR (202 

MHz, MeOD) P 13.69. MS (ES+) m/z: 692.22 (M + Na
+
, 100%). Reverse-phase HPLC, 

eluting with H2O/CH3CN from 90/10 to 0/100 in 30 min, flow= 1mL/min, = 254 nm, 

tR= 20.83 min. 

 

4.1.11 Synthesis of 3′-azido-3′-deoxythymidine-5′-O-bis(2,2-dimethylpropoxy)-phosphate 

(21).  

Prepared according to standard procedure A, using (4) (0.20 g, 0.75 mmol) in anhydrous 

THF (5 mL), anhydrous Et3N (0.10 mL, 0.75 mmol), and POCl3 (0.07 mL, 0.75 mmol). 

Anhydrous CH2Cl2 (10 mL) and tosylate salt of 2,2-dimethylpropoxy-L-alaninyl (1.24 g, 

3.74 mmol) were added, followed by dropwise addition of anhydrous Et3N (1.04 mL, 

7.48 mmol). The reaction mixture was stirred at room temperature for 20 h. After work-

up, the crude residue was purified by silica gel column chromatography eluting with a 

gradient (0% to 3%) of MeOH in CHCl3 to give the product (21) as an off white solid 

(25%, 0.10 g). 
1
H NMR (500 MHz, MeOD) H 7.57 (s, 1H, H-6), 6.21 (t, J = 7.0 Hz, 1H, 

H-1’), 4.48-4.45 (m, 1H, H-3’), 4.24-4.21 (m, 2H, H-5’), 4.08-4.06 (m, 1H, H-4’), 4.03-

3.96 (m, 2H, 2x CHCH3), 3.91, 3.90, 3.79, 3.77 (2AB, 4H, JAB= 10.5 Hz, 2x 

OCH2C(CH3)3), 2.48-2.44 (m, 2H, H-2’), 1.94 (s, 3H, 5-CH3), 1.45 (d, J = 7.0 Hz, 3H, 2x 

CHCH3), 1.44 (d, J = 7.0 Hz, 6H, 2x CHCH3). 
13

C NMR (125 MHz, MeOD) C 175.66 
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(d, JC-P = 3.8 Hz, CO), 175.62 (d, JC-P = 6.3 Hz, CO), 166.25 (C-4), 152.25 (C-2), 137.79 

(C-6), 112.15 (C-5), 86.27 (C-1’), 83.90 (d, JC-P = 7.5 Hz, C-4’), 75.47, 75.44 

(OCH2C(CH3)3), 66.09 (d, JC-P = 5.0 Hz, C-5’), 61.90 (C-3’), 51.21, 51.12 (CHCH3), 

37.69 (C-2’), 30.78 (OCH2C(CH3)3), 26.85, 26.70 (OCH2C(CH3)3), 21.16 (d, JC-P = 5.0 

Hz, CHCH3), 21.04 (d, JC-P = 6.3 Hz, CHCH3), 12.70 (5-CH3). 
31

P NMR (202 MHz, 

MeOD) P 13.79. MS (ES+) m/z: 652.59 (M + Na
+
, 100%). Reverse-phase HPLC, eluting 

with H2O/CH3CN from 90/10 to 0/100 in 30 min, flow= 1mL/min, = 254 nm, tR= 19.93 

min. 

 

4.1.12 Synthesis of 3TC(-)-5′-O-bis(benzoxy-L-alaninyl)-N-bis(benzoxy-L-alaninyl)-

diphosphate (22) and 3TC(-)-N-bis(benzoxy-L-alaninyl)-phosphate (23)  

Prepared according to standard procedure A, using (5) (2.29 g, 10.00 mmol) in anhydrous 

THF (25 mL), anhydrous Et3N (1.39 mL, 10.00 mmol), and POCl3 (0.93 mL, 10.00 

mmol). Anhydrous CH2Cl2 (25 mL) and tosylate salt of L-alanine benzyl ester (17.57 g, 

50.00 mmol) were added, followed by dropwise addition of anhydrous Et3N (14.0 mL, 

100.00 mmol). The reaction mixture was stirred at room temperature for 20 h. After 

work-up, the crude residue was purified by silica gel column chromatography eluting 

with a gradient of MeOH (1% to 10%) in CH2Cl2, followed by a second purification 

eluting with CH2Cl2/MeOH 95/5 to give compound (22) as an off-white solid (3%, 0.18 

g). 
1
H NMR (500 MHz; MeOD) δH 8.13 (d J = 7.6 Hz, 1H, H-6), 7.39-7.28 (m, 20H, 4 x 

OCH2Ph), 6.29-6.22 (m, 2H, H-5, H-1’), 5.31-5.29 (m, 1H, H-4’), 5.19-5.11 (m, 6H, 3 x 

CH2OPh), 5.08 (s, 2H, CH2OPh), 4.28-4.22 (m, 2H, H-5’), 4.10-4.08 (m, 2H, 2x 

CHCH3), 4.04-3.81 (m, 2H, 2x CHCH3), 3.48 (dd, J = 12.6, 4.4 Hz, 1H, H-2’), 3.01 (dd, 



 34 

J = 12.6, 4.4 Hz, 1H, H-2’), 1.38-1.41 (m, 12H, 4 x CHCH3). 
13

C NMR (125 MHz; 

MeOD) δC 175.49, 175.12 (CO), 163.75 (C-4), 156.36 (C-2), 143.72 (C-6), 137.36, 

137.34, 137.32, 137.30 (ipso OCH2Ph), 129.66, 129.65, 129.62, 129.42, 129.38, 129.36, 

129.26, 129.05 (OCH2Ph), 98.06 (C-1’), 89.15 (C-5), 85.53 (d, JC-P = 8.7 Hz, C-4’), 

68.01, 67.97, 67.96, 67.77 (OCH2Ph), 66.94 (d, JC-P = 5.0 Hz, C-5’), 51.25, 51.13, 51.00, 

50.94 (CHCH3), 38.40 (C-2’), 20.83, 20.79, 20.76, 20.70 (CHCH3). 
31

P NMR (202 MHz, 

MeOD) δP 13.56, 7.39. MS (ES+) m/z: 1056.31 (M+Na
+
, 100%). Reverse-phase HPLC, 

eluting with H2O/CH3CN from 90/10 to 0/100 in 30 min, flow= 1mL/min, = 254 nm, 

tR= 16.34 min. 

Further elution with CH2Cl2/MeOH 95/5 afforded (23) off-white solid (2%, 0.09 g). 

1
H NMR (500 MHz; MeOD) δH 8.29 (d, J = 7.3 Hz, 1H, H-6), 7.39-7.29 (m, 10H, 2x 

OCH2Ph), 6.29 (dd, J = 5.3, 3.1 Hz, 1H, H-1’), 6.20 (d, J = 7.3 Hz, 1H, H-5), 5.32-5.30 

(m, 1H, H-4’), 5.17 (s, 2H, CH2OPh), 5.08 (s, 2H, CH2OPh), 4.08 (m, 2H, 2x CHCH3), 

4.05 (dd, J = 12.2, 4.2 Hz, 1H, H-5’), 3.92 (dd, J = 12.3, 4.2 Hz, 1H, H-5’), 3.59 (dd, J = 

12.6, 4.3 Hz, 1H, H-2’), 3.12 (dd, J = 12.6, 4.3 Hz, 1H, H-2’), 1.42-1.38 (m, 6H, 2x 

CHCH3). 
13

C NMR (125 MHz; MeOD) δC 175.23 (d, JC-P = 6.2 Hz, CO), 166.79 (C-4), 

157.76 (C-2), 144.15 (C-6), 137.34 (ipso CH2OPh), 129.60, 129.34, 129.32, 129.25, 

129.07 (CH2OPh), 97.26 (C-5), 89.15 (C-4’), 89.04 (C-1’), 67.96, 67.77 (CH2OPh), 

63.59 (C-5’), 51.01, 50.91 (CHCH3), 39.08 (C-2’), 20.69 (d, JC-P = 6.2 Hz, CHCH3). 
31

P 

NMR (202 MHz, MeOD) δP 7.40. MS (ES+) m/z: 654.18 (M+Na
+
, 100%). Reverse-phase 

HPLC, eluting with H2O/CH3CN from 90/10 to 0/100 in 30 min, flow= 1mL/min, = 254 

nm, tR= 14.34 min. 
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4.1.13 Synthesis of N-acetyl-3TC-5′-O-bis(benzoxy-L-alaninyl)-phosphate (24).  

Prepared according to standard procedure B, using (6) (0.50 g, 1.84 mmol) in 

trimethylphosphate (5 mL), and POCl3 (0.18 mL, 1.84 mmol), the reaction mixture was 

stirred at 0 °C for 5 h. Anhydrous CH2Cl2 (5 mL) and tosylate salt of benzoxy-L-alanine 

(3.24 g, 9.22 mmol) were added, followed by dropwise addition of anhydrous DIPEA 

(3.21 mL, 18.43 mmol). The reaction mixture was stirred at room temperature for 16 h. 

After work-up, the crude residue was purified by silica gel column chromatography 

eluting with a gradient of MeOH (2% to 5%) in CH2Cl2 to give the product (24) as a 

white solid (1%, 0.01 g). 
1
H NMR (500 MHz, MeOD) δH 8.26 (d, J = 7.5 Hz, 1H, H-6), 

7.46 (d, J = 7.6 Hz, 1H, H-5), 7.35-7.33 (m, 10H, OCH2Ph), 6.27 (dd, J = 5.3, 3.8 Hz, 

1H, H-1’), 5.36-5.35 (m, 1H, H-4’), 5.17-5.11 (m, 4H, 2x CH2OPh), 4.33-4.25 (m, 2H, 

H-5’), 4.03-3.98 (m, 2H, 2x CHCH3), 3.59 (dd, J = 12.4, 4.6 Hz, 1H, H-2’), 3.17 (dd, J = 

12.4, 4.6 Hz, 1H, H-2’), 2.19 (s, 3H, COCH3), 1.41 (dd, J = 7.2, 0.8 Hz, 3H, CHCH3), 

1.38 (dd, J = 7.2, 0.6 Hz, 3H, CHCH3). 
31

P NMR (202 MHz, MeOD) δP 13.75. MS (ES+) 

m/z: 674.20 (M+H
+
, 100%). 

 

4.1.14 Synthesis of 3TC-5′-O-bis(benzoxy-L-alaninyl)-phosphate (25).  

Prepared according to standard procedure B, using (5) (0.42 g, 1.84 mmol) in 

triethylphosphate (5 mL), and POCl3 (0.18 mL, 1.84 mmol), the reaction mixture was 

stirred at 5 
o
C for 16 h. Anhydrous CH2Cl2 (5 mL) and tosylate salt of benzoxy-L-alanine 

(3.24 g, 9.20 mmol) were added, followed by dropwise addition of anhydrous DIPEA 

(3.21 mL, 18.43 mmol). The reaction mixture was stirred at room temperature for 16 h. 

After work-up, the crude residue was purified by silica gel column chromatography 
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eluting with a gradient of MeOH (2% to 7%) in CH2Cl2 to give the product (25) as an off 

white solid (6%, 0.07 g). 
1
H NMR (500 MHz, MeOD) δH 7.72 (d, J = 7.6 Hz, 1H, H-6), 

7.41-7.31 (m, 10H, OCH2Ph), 6.41 (dd, J = 5.6, 2.9 Hz, 1H, H-1’), 5.85 (d, J = 6.3 Hz, 

1H, H-5), 5.18-5.13 (m, 4H, 2x OCH2Ph), 5.06-5.09 (m, 1H, H-4’), 4.09-3.92 (m, 3H, H-

5’, CHCH3), 2.72-2.60 (m, 2H, H-2’), 1.41-1.33 (m, 6H, 2x CHCH3). 
13

C NMR (125 

MHz, MeOD) δC 175.31 (d, JC-P = 6.2 Hz, CO), 167.59 (C-4), 157.15 (C-2), 142.08 (C-6), 

137.32 (ipso OCH2Ph), 129.64, 129.54, 129.36, 129.30, 129.24 (OCH2Ph), 96.52 (C-1’), 

98.80 (d, JC-P = 7.7 Hz, C-4’), 96.32 (C-5), 67.95, 67.88 (OCH2Ph), 58.40 (d, JC-P = 5.0 

Hz, C-5’), 54.84 (CHCH3), 30.13 (C-2’), 20.83 (d, JC-P = 6.2 Hz, CHCH3).
31

P NMR (202 

MHz, MeOD) δP 11.24. MS (ES+) m/z: 654.17 (M+Na
+
, 100%). Reverse-phase HPLC, 

eluting with H2O/CH3CN from 90/10 to 0/100 in 30 min, flow= 1 mL/min, λ= 254 nm, 

tR= 14.64 min. 

 

4.1.15 Synthesis of 4′-azidouridine-5′-O-bis(benzoxy-L-alaninyl)-phosphate (26). 

Prepared according to standard procedure B, using (7) (0.25 g, 0.88 mmol) in 

triethylphosphate (1 mL), and POCl3 (0.08 mL, 0.88 mmol), the reaction mixture was 

stirred at 5 
o
C for 16 h. Anhydrous CH2Cl2 (5 mL) and tosylate salt of benzoxy-L-alanine 

(1.54 g, 4.38 mmol) were added, followed by dropwise addition of anhydrous Et3N (1.22 

mL, 8.77 mmol). The reaction mixture was stirred at room temperature for 20 h. After 

work-up, the crude residue was purified by silica gel column chromatography eluting 

with a gradient of MeOH (0% to 3%) in CHCl3 to give the product (26) as an off white 

solid (20%, 0.10 g). 
1
H NMR (500 MHz, MeOD) H 7.51 (d, J = 8.0 Hz, 1H, H-5), 7.38-

7.30 (m, 10 H, 2x OCH2Ph), 6.14 (d, J = 4.0 Hz, 1H, H-1’), 5.80 (d, J = 8.0 Hz, 1H, H-
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5), 5.18-5.09 (m, 4H, 2x OCH2Ph), 4.44-4.38 (m, 2H, H-3’, H-2’), 4.10-4.02 (m, 2H, H-

5’), 4.02-3.95 (m, 2H, 2x CHCH3), 1.39 (d, 3H, J = 7.0 Hz, CHCH3), 1.36 (d, 3H, J = 7.0 

Hz, CHCH3). 
13

C NMR (125 MHz, MeOD) C 175.40 (d, JC-P = 3.8 Hz, CO), 175.36 (d, 

JC-P = 6.3 Hz, CO), 165.89 (C-4), 152.27 (C-2), 142.89 (C-6), 137.27, 137.25 (ipso 

OCH2Ph), 129.67, 129.65, 129.40, 129.37, 129.33, 129.12 (OCH2Ph), 103.83 (C-5), 

98.94 (d, JC-P = 8.8 Hz, C-4’), 92.58 (C-1’), 73.76, 73.58 (C-3’, C-2’), 68.07, 68.04 

(OCH2Ph), 67.60 (d, JC-P = 3.8 Hz, C-5’), 51.16, 51.12 (CHCH3), 20.85 (d, JC-P = 6.3 Hz, 

CHCH3), 20.65 (d, JC-P = 6.3 Hz, CHCH3). 
31

P NMR (202 MHz, MeOD) P 13.57. MS 

(ES+) m/z: 710.18 (M+Na
+
, 100%). Reverse-phase HPLC, eluting with H2O/CH3CN 

from 90/10 to 0/100 in 30 min, flow= 1mL/min, = 254 nm, tR= 15.97 min. 

 

4.1.16 Synthesis of 4′-azidouridine-5′-O-bis(2,2-dimethylpropoxy-L-alaninyl)-phosphate 

(27).  

Prepared according to standard procedure B, using (7) (0.25 g, 0.88 mmol) in 

triethylphosphate (1 mL), and POCl3 (0.08 mL, 0.88 mmol), the reaction mixture was 

stirred at 5 
o
C for 16 h. Anhydrous CH2Cl2 (5 mL) and tosylate salt of 2,2-

dimethylpropoxy-L-alanine (1.45 g, 4.38 mmol) were added, followed by dropwise 

addition of anhydrous Et3N (1.22 mL, 8.77 mmol). The reaction mixture was stirred at 

room temperature for 20 h. After work-up, the crude residue was purified by silica gel 

column chromatography eluting with a gradient of MeOH (0% to 5%) in CHCl3 to give 

the product (27) as an off white solid (17%, 0.10 g). 
1
H NMR (500 MHz, MeOD) H 7.55 

(d, J = 8.0 Hz, 1H, H-5), 6.15 (d, J = 3.5 Hz, 1H, H-1’), 5.83 (d, J = 8.0 Hz, 1H, H-5), 

4.45-4.41 (m, 2H, H-3’, H-2’), 4.13-4.06 (m, 2H, H-5’), 4.03-3.96 (m, 2H, 2x CHCH3), 
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3.91, 3.79 (AB, 4H, JAB = 10.5 Hz, 2x OCH2C(CH3)3), 1.44, (d, J = 7.0 Hz, 3H, CHCH3), 

1.43 (d,  J = 7.0 Hz, 3H, CHCH3), 0.98 (s, 18H, 2x OCH2C(CH3)3). 
13

C NMR (125 MHz, 

MeOD) C 175.65 (d, JC-P = 5.0 Hz, CO), 175.61 (d, JC-P = 6.3 Hz, CO), 165.89 (C-4), 

152.29 (C-2), 142.97 (C-6), 103.85 (C-5), 98.93 (d, JC-P = 10.0 Hz, C-4’), 92.56 (C-1’), 

75.53, 75.49 (OCH2C(CH3)3), 73.78, 73.63 (C-3’, C-2’), 67.70 (d, JC-P = 3.8 Hz, C-5’), 

51.16, 51.09 (CHCH3), 32.37, 32.36 (OCH2C(CH3)3), 26.84 (OCH2C(CH3)3), 21.17 (d, 

JC-P = 5.0 Hz, CHCH3), 20.98 (d, JC-P = 7.5 Hz, CHCH3). 
31

P NMR (202 MHz, MeOD) P 

13.57. MS (ES+) m/z: 670.25 (M+Na
+
, 100%). Reverse-phase HPLC, eluting with 

H2O/CH3CN from 90/10 to 0/100 in 30 min, flow= 1mL/min, = 254 nm, tR= 17.55 min. 

 

4.1.17  Synthesis of 4’-azidocytidine-5’-O-bis(benzoxy-L-alaninyl)-phosphate (28).  

Prepared according to standard procedure B, using (8) (0.25 g, 0.75 mmol) in 

trimethylphosphate (1 mL), and POCl3 (0.07 mL, 0.75 mmol), the reaction mixture was 

stirred at 5 
o
C for 16 h. Anhydrous CH2Cl2 (5 mL) and tosylate salt of benzoxy-L-alanine 

(1.32 g, 3.75 mmol) were added, followed by dropwise addition of anhydrous Et3N (1.04 

mL, 7.50 mmol). The reaction mixture was stirred at room temperature for 20 h. After 

work-up, the crude residue was purified by silica gel column chromatography eluting 

with a gradient of MeOH (0% to 5%) in CHCl3 to give the product (28) as an off white 

solid (16%, 0.08 g). 
1
H NMR (500 MHz, MeOD) H 7.60 (d, J = 7.5 Hz, 1H, H-5), 7.27-

7.19 (m, 10H, 2x OCH2Ph), 6.00 (d, 1H, J = 4.5 Hz, H-1’), 5.85 (d, 1H, J = 7.5 Hz, H-5), 

5.07-4.99 (m, 4H, 2x OCH2Ph), 4.28 (d, J = 6.0 Hz, 1H, H-3’), 4.25 (dd, J = 6.0, 4.0 Hz, 

1H, H-2’), 4.00-3.93 (m, 2H, H-5’), 3.90-3.84 (m, 2H, 2x CHCH3), 1.26 (d, J = 7.0 Hz, 

3H, CHCH3), 1.24 (d, J = 7.0 Hz, 3H, CHCH3).
13

C NMR (125 MHz, MeOD) C 175.83 
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(d, JC-P = 5.0 Hz, CO), 175.37 (d, JC-P = 6.3 Hz, CO), 167.71 (C-4), 158.22 (C-2), 143.38 

(C-6), 137.24, 137.22 (ipso OCH2Ph), 129.71, 129.68, 129.45, 129.40, 129.37, 129.12 

(OCH2Ph), 97.98 (d, JC-P = 9.0 Hz, C-4’), 96.98 (C-5), 93.84 (C-1’), 74.52 (C-2’), 73.33 

(C-3’), 67.61 (d, JC-P = 5.0 Hz, C-5’), 51.16, 51.12 (CHCH3), 20.84 (d, JC-P = 5.0 Hz, 

CHCH3), 20.73 (d, JC-P = 5.0 Hz, CHCH3). 
31

P NMR (202 MHz, MeOD) P 13.53. MS 

(ES+) m/z: 709.20 (M+Na
+
, 100%). Reverse-phase HPLC, eluting with H2O/CH3CN 

from 90/10 to 0/100 in 30 min, flow= 1mL/min, = 254 nm, tR= 15.11 min. 

 

4.1.18 Synthesis of 4′-azidocytidine-5′-O-bis(2,2-dimethylpropoxy-L-alaninyl)-phosphate 

(29).  

Prepared according to standard procedure B, using (8) (0.25 g, 0.75 mmol) in 

trimethylphosphate (1 mL), and POCl3 (0.07 mL, 0.75 mmol), the reaction mixture was 

stirred at 5 
o
C for 16 h. Anhydrous CH2Cl2 (5 mL) and tosylate salt of 2,2-

dimethylpropoxy-L-alanine (1.24 g, 3.75 mmol) were added, followed by dropwise 

addition of anhydrous Et3N (1.04 mL, 7.50 mmol). The reaction mixture was stirred at 

room temperature for 20 h. After work-up, the crude residue was purified by silica gel 

column chromatography eluting with a gradient of MeOH (0% to 5%) in CHCl3 to give 

the product (29) as an off white solid (21%, 0.10 g). 
1
H NMR (500 MHz, MeOD): H 

7.76 (d, 1H, J = 7.5 Hz, H-5), 6.15 (d, 1H, J = 4.0 Hz, H-1’), 6.00 (d, 1H, J = 7.5 Hz, H-

5), 4.41 (d, 1H, J = 6.0 Hz, H-3’), 4.36 (dd, 1H, J = 6.0, 4.5 Hz, H-2’), 4.16-4.08 (m, 2H, 

H-5’), 4.05-3.96 (m, 2H, 2x CHCH3), 3.91, 3.90, 3.79, 3.78 (2AB, 4H, JAB = 10.5 Hz, 2x 

OCH2C(CH3)3), 1.44 (d, 6H, J = 7.0 Hz, 2x CHCH3), 0.98 (s, 18H, 2x OCH2C(CH3)3). 

13
C NMR (125 MHz, MeOD) C 176.74 (d, JC-P = 3.8 Hz, CO), 175.63 (d, JC-P = 5.0 Hz, 
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CO), 167.72 (C-4), 158.18 (C-2), 143.38 (C-6), 98.90 (d, JC-P = 9.0 Hz, C-4’), 96.98 (C-

5), 93.96 (C-1’), 75.47, 75.46 (OCH2C(CH3)3), 74.39 (C-2’), 73.32 (C-3’), 67.69 (d, JC-P 

= 5.0 Hz, C-5’), 51.16, 51.12 (CHCH3), 32.34, 32.33 (OCH2C(CH3)3), 26.79 

(OCH2C(CH3)3), 21.07 (d, JC-P = 5.0 Hz, CHCH3), 20.94 (d, JC-P = 7.5 Hz, CHCH3). 
31

P 

NMR (202 MHz, MeOD) P 13.59. MS (ES+) m/z: 669.27 (M+Na
+
, 100%). Reverse-

phase HPLC, eluting with H2O/CH3CN from 90/10 to 0/100 in 30 min, flow= 1mL/min, 

= 254, tR= 16.59. 

 

4.1.19 Synthesis of ribavirin-5′-O-bis(benzoxy-L-alaninyl)-phoshate (30).  

Prepared according to standard procedure B, using (9) (0.30 g, 1.23 mmol) in 

trimethylphosphate (5 mL), and POCl3 (0.11 mL, 1.23 mmol), the reaction mixture was 

stirred at -5 
o
C for 4 h. Anhydrous CH2Cl2 (5 mL), and a suspension of tosylate salt of 

benzoxy-L-alanine (2.16 g, 6.15 mmol) in anhydrous CH2Cl2 (5 mL) were added, 

followed by dropwise addition of anhydrous DIPEA (2.16 mL, 12.30 mmol). The 

reaction mixture was stirred at room temperature for 20 h. After work-up, the crude 

residue was purified by silica gel column chromatography eluting with a gradient of 

MeOH (4% to 10%) in CH2Cl2 to give the product (30) as an off white solid (25%, 0.20 

g). 
1
H NMR (500 MHz, MeOD) H 8.69 (s, 1H, H-5), 7.36-7.31 (m, 10H, 2x OCH2Ph), 

5.95-5.94 (m, 1H, H-1’), 5.17-5.08 (m, 4H, 2x OCH2Ph), 4.55-4.54 (m, 1H, H-2’), 4.45-

4.43 (m, 1H, H-3’), 4.22-4.07 (m, 3H, H-4’, H-5’), 3.98-3.91 (m, 2H, 2x CHCH3), 1.34 

(d, J = 7.2 Hz, 3H, CHCH3), 1.29 (d, J = 7.0 Hz, 3H, CHCH3). 
13

C NMR (125 MHz, 

MeOD) C 175.40, 175.36 (CO), 163.24 (CONH2), 158.71 (C-3), 146.88 (C-5), 137.33, 

137.35 (ipso OCH2Ph), 129.59, 129.35, 129.32, 129.31 (OCH2Ph), 93.67 (C-1’), 84.93 

(d, JC–P = 7.7 Hz, C-4’), 76.50 (C-2’), 71.83 (C-3’), 67.94, 67.91 (OCH2Ph), 66.36 (d, JC–
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P = 5.1 Hz, C-5’), 51.09, 51.08 (CHCH3), 20.74 (d, JC–P = 6.1 Hz, CHCH3), 20.59 (d, JC–P 

= 6.4 Hz, CHCH3). 
31

P NMR (202 MHz, MeOD) P 13.75. MS (ES+) m/z: 669.20 

(M+Na
+
, 100%). Reverse-phase HPLC, eluting with H2O/MeOH from 90/100 to 0/100 in 

30 min, flow= 1 mL/min, λ= 254 nm, tR= 13.88 min. 

 

4.1.20 Synthesis of ribavirin-5′-O-bis(2,2-dimethylpropoxy-L-alaninyl)-phoshate (31).  

Prepared according to standard procedure B, using (9) (0.30 g, 1.23 mmol) in 

trimethylphosphate (5 mL), and POCl3 (0.11 mL, 1.23 mmol), the reaction mixture was 

stirred at -5 
o
C for 4 h. Anhydrous CH2Cl2 (5 mL) and a suspension of tosylate salt of 

2,2-dimethylpropoxy-L-alanine (2.04 g, 6.15 mmol) in anhydrous CH2Cl2 (5 mL) were 

added, followed by dropwise addition of anhydrous DIPEA (2.16 mL, 12.30 mmol). The 

reaction mixture was stirred at room temperature for 20 h. After work-up, the crude 

residue was purified by silica gel column chromatography eluting with a gradient (4% to 

10%) of MeOH in CH2Cl2 to give the product (31) as an off white solid (21%, 0.16 g). 
1
H 

NMR (500 MHz, MeOD) H 8.73 (s, 1H, H-5), 5.97 (m, 1H, H-1’), 4.56-4.55 (m, 1H, H-

2’), 4.48-4.46 (m, 1H, H-3’), 4.28-4.13 (m, 3H, H-4’, H-5’), 4.00-3.92 (m, 2H, 2x 

CHCH3), 3.89-3.75 (m, 4H, 2x OCH2C(CH3)3), 1.40-1.37 (6H, m, 2x CHCH3), 0.96 (s, 

9H, 2x OCH2C(CH3)3), 0.95 (s, 9H, 2x OCH2C(CH3)3).
13

C NMR (125 MHz, MeOD) C 

174.30 (d, JC–P = 4.1 Hz, CO), 174.20 (d, JC–P = 3.2 Hz, CO), 161.80 (CONH2), 157.30 

(C-3), 145.47 (C-5), 92.29 (C-1’), 83.53 (d, JC–P = 7.4 Hz, C-4’), 74.81 (C-2’), 73.99, 

73.96 (OCH2C(CH3)3), 70.47 (C-3’), 65.11 (d, JC–P = 5.3 Hz, C-5’), 49.68 (CHCH3), 

30.91, 30.90 (OCH2C(CH3)3), 23.38 (OCH2C(CH3)3), 19.66 (d, JC–P = 5.6 Hz, CHCH3), 

19.54 (d, JC–P = 5.9 Hz, CHCH3). 
31

P NMR (202 MHz, MeOD) P 13.84. MS (ES+) m/z: 
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607.28 (M+H
+
, 100%). Reverse-phase HPLC, eluting with H2O/MeOH from 90/100 to 

0/100 in 30 min, flow= 1 mL/min, λ= 254 nm, tR= 21.27 min. 

 

4.1.21 Synthesis of acyclovir-5′-O-bis[(benzoxy-L-alaninyl)]-phosphate (32). 

Prepared according to standard procedure B, using (10) (0.30 g, 1.33 mmol) in 

trimethylphosphate (5 mL), and POCl3 (0.12 mL, 1.33 mmol), the reaction mixture was 

stirred at -5 
o
C for 4 h. Anhydrous CH2Cl2 (5 mL) and a suspension of tosylate salt of 

benzoxy-L-alanine (2.34 g, 6.65 mmol) in anhydrous CH2Cl2 (5 mL) were added, 

followed by dropwise addition of anhydrous DIPEA (2.32 mL, 13.30 mmol). The 

reaction mixture was stirred at room temperature for 45 h. After work-up, the crude 

residue was purified by silica gel column chromatography eluting with gradient (2% to 

10%) of MeOH in CH2Cl2 to give a white solid, which was dissolved in CH2Cl2 and 

washed with 0.05 N HCl (1 x 5 mL), brine (1 x 5 mL), 5% NaHCO3 (1 x 5 mL), brine (1 

x 5 mL), dried over MgSO4, filtered and concentrated to give the product (32) as a white 

solid (26%, 0.22 g).  

1
H NMR (500 MHz, MeOD) H 7.81 (s, 1H, H-8), 7.34-7.26 (m, 10H, 2x OCH2Ph), 5.41 

(s, 2H, H-1’), 5.12-5.10 (m, 4H, 2x OCH2Ph), 4.02-3.93 (m, 4H, H-5’, 2x CHCH3), 3.64 

(t, J = 4.2 Hz, 2H, H-4’), 1.35 (d, J = 7.1 Hz, 3H, CHCH3), 1.32 (d, J = 7.1 Hz, 3H, 

CHCH3). 
13

C NMR (125 MHz, MeOD) C 174.13 (d, JC-P = 5.1 Hz, CO), 158.14 (C-6), 

154.34 (C-2), 151.90 (C-4), 138.35 (C-8), 135.87, 135.85 (ipso OCH2Ph), 128.57, 

128.24, 128.21, 127.99, 127.95, 127.92 (OCH2Ph), 116.26 (C-5), 72.36 (C-1’), 68.16 (d, 

JC-P = 7.3 Hz, C-4’), 66.60, 66.57 (OCH2Ph), 64.29 (d, JC-P = 5.3 Hz, C-5’), 49.76, 49.74 

(CHCH3), 19.50 (d, JC-P = 6.2 Hz, CHCH3), 19.40 (d, JC-P = 6.3 Hz, CHCH3). 
31

P NMR 
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(202 MHz, MeOD) P 13.53. MS (ES+) m/z: 650.20 (M+Na
+
, 100%). Reverse-phase 

HPLC, eluting with H2O/CH3CN from 100/0 to 0/100 in 30 min, flow= 1 mL/min, λ= 

254 nm, tR= 16.65 min. 

 

4.1.22 Synthesis of acyclovir-5′-O-bis[(2,2-dimethylpropoxy-L-alaninyl)]-phosphate 

(33).  

Prepared according to standard procedure B, using (10) (0.30 g, 1.33 mmol) in 

trimethylphosphate (5 mL), and POCl3 (0.12 mL, 1.33 mmol), the reaction mixture was 

stirred at -5 
o
C for 4 h. Anhydrous CH2Cl2 (5 mL) and a suspension of tosylate salt of 

2,2-dimethylpropoxy-L-alanine (2.20 g, 6.65 mmol) in anhydrous CH2Cl2 (7 mL) were 

added, followed by dropwise addition of anhydrous DIPEA (2.32 mL, 13.30 mmol). The 

reaction mixture was stirred at room temperature for 16 h. After work-up, the crude 

residue was purified by silica gel column chromatography eluting with a gradient (3% to 

10%) of MeOH in CH2Cl2. The product was dissolved in CH2Cl2 and washed with 0.05 N 

HCl (1 x 5 mL), brine (1 x 5 mL), 5% NaHCO3 (1 x 5 mL), brine (1 x 5 mL), dried over 

MgSO4, filtered and concentrated to give the product (33) as a white solid (22%, 0.17 g). 

1
H NMR (500 MHz, MeOD) H 7.92 (s, 1H, H-8), 5.52 (s, 2H, H-1’), 4.12-4.10 (m, 2H, 

H-5’), 3.98-3.95 (m, 2H, 2x CHCH3), 3.89-3.86 (m, 3H, H-4’, OCH2C(CH3)3), 3.79-3.76 

(m, 3H, H-4’, OCH2C(CH3)3), 1.42-1.39 (m, 6H, 2x CHCH3), 0.96 (s, 9H, 

OCH2C(CH3)3), 0.95 (s, 9H, OCH2C(CH3)3). 
13

C NMR (125 MHz, MeOD) C 174.77 (d, 

JC-P = 5.9 Hz, CO), 174.72 (d, JC-P = 5.2 Hz, CO), 159.49 (C-6), 155.76 (C-2), 153.54 (C-

4), 139.92 (C-8), 117.38 (C-5), 75.39 (d, JC-P = 5.7 Hz, C-4’), 73.81 (C-1’), 69.72 (d, JC-P 

= 7.0 Hz, OCH2C(CH3)3), 65.76 (d, JC-P = 4.6 Hz, C-5’), 49.95 (CHCH3), 32.37 
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(OCH2C(CH3)3), 26.86 (OCH2C(CH3)3), 21.14 (d, JC-P = 6.0 Hz, CHCH3), 21.06 (d, JC-P = 

6.1 Hz, CHCH3). 
31

P NMR (202 MHz, MeOD) P 13.69. MS (ES+) m/z: 610.26 (M+Na
+
, 

100%). Reverse-phase HPLC, eluting with H2O/CH3CN from 100/0 to 0/100 in 30 min, 

flow= 1 mL/min, λ= 254 nm, tR= 18.01 min. 

 

4.1.23 Synthesis of abacavir-5′-O-bis(benzoxy-L-alaninyl)-phosphate (34).  

Prepared according to standard procedure B, using (11) (0.20 g, 0.69 mmol) in 

trimethylphosphate (5 mL), and POCl3 (0.06 mL, 0.69 mmol), the reaction mixture was 

stirred at -5 
o
C for 5 h. Anhydrous CH2Cl2 (5 mL) and a suspension of tosylate salt of 

benzoxy-L-alanine (1.23 g, 3.49 mmol) in CH2Cl2 (5 mL) were added, followed by 

dropwise addition of anhydrous DIPEA (1.22 mL, 6.98 mmol). The reaction mixture was 

stirred at room temperature for 15 h. After work-up, the crude residue was purified by 

silica gel column chromatography eluting with CHCl3/MeOH (95/5) to afford the product 

(34) as a white foam (47%, 0.23 g). 
1
H NMR (500 MHz, MeOD) H 7.67 (s, 1H, H-8), 

7.32-7.26 (m, 10H, 2x OCH2Ph), 6.08 (dt, J = 5.7, 2.1 Hz, 1H, H-2’), 5.90 (dt, J = 5.6, 

2.2 Hz, 1H, H-3’), 5.49-5.46 (m, 1H, H-1’), 5.11-5.02 (m, 4H, 2x OCH2Ph), 3.96-3.86 

(m, 4H, H-5’, 2x CHCH3), 3.03-3.00 (m, 1H, H-4’), 2.90-2.87 (m, 1H, CH-cPr), 2.71 (dt, 

J = 13.9, 8.5 Hz, 1H, H-6’), 1.59 (dt, J = 13.8, 6.2 Hz, 1H, H-6’), 1.35-1.31 (m, 6H, 2x 

CHCH3), 0.84-0.80 (m, 2H, CH2-cPr), 0.58-0.55 (m, 2H, CH2-cPr).
 13

C NMR (125 MHz, 

MeOD): δC 175.50, 175.40 (CO), 161.90, 157.50 (C-6, C-2, C-4), 138.20 (C-2’), 137.37, 

137.30 (ipso OCH2Ph), 137.10 (C-8), 131.50 (C-3’), 129.62, 129.60, 129.38, 129.35, 

129.32 (OCH2Ph), 114.90 (C-5), 69.00 (d, JC-P = 5.4 Hz, C-5’), 67.80 (OCH2Ph), 60.50 

(C-1’), 51.10 (CHCH3), 47.10 (d, JC-P = 8.3 Hz, C-4’), 35.90 (C-6’), 24.30 (CH-cPr), 
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20.70 (d, JC-P = 6.0 Hz, CHCH3), 20.60 (d, JC-P = 5.9 Hz, CHCH3), 7.67 (CH2-cPr). 
31

P 

NMR (202 MHz, MeOD) δP 13.52. MS (ES+) m/z: 689.30 (M+H
+
, 100%). Reverse-

phase HPLC eluting with H2O/MeOH from 90/10 to 0/100 in 25 min, flow= 1 mL/min, 

λ= 254 nm tR= 22.15 min.  

 

4.1.24 Synthesis of abacavir-5′-O-bis-(2,2-dimethylpropoxy-L-alaninyl)-phosphate (35).  

Prepared according to standard procedure B, using (11) (0.20 g, 0.69 mmol) in 

trimethylphosphate (5 mL), and POCl3 (0.07 mL, 0.60 mmol), the reaction mixture was 

stirred at -5 
o
C for 5 h. Anhydrous CH2Cl2 (5 mL) and a suspension of tosylate salt of 

2,2-dimethylpropoxy-L-alanine (1.16 g, 3.49 mmol) in CH2Cl2 (5 mL) were added, 

followed by dropwise addition of anhydrous DIPEA (1.22 mL, 6.98 mmol). The reaction 

mixture was stirred at room temperature for 16 h. After work-up, the crude residue was 

purified by silica gel column chromatography eluting with CHCl3/MeOH (95:5) to afford 

the product (35) as a colorless oil (44%, 0.20 g). 
1
H NMR (500 MHz, MeOD) δH 7.70 (s, 

1H, H-8), 6.16 (dt, J = 5.5, 2.0 Hz, 1H, H-2’), 5.95 (dt, J = 5.5, 2.0 Hz, 1H, H-3’), 5.55-

5.51 (m, 1H, H-1’), 4.05-3.92 (m, 4H, H-5’, 2x CHCH3), 3.85, 3.84, 3.74, 3.70 (2AB, JAB 

= 10.5 Hz, 4H, 2x OCH2C(CH3)3), 3.15-3.12 (m, 1H, H-4’), 2.93-2.91 (m, 1H, CH-cPr), 

2.80 (dt, J = 13.8, 8.6 Hz, 1H, H-6’), 1.69 (dt, J = 13.5, 6.6 Hz, 1H, H-6’), 1.38-1.41 (m, 

6H, 2x CHCH3), 0.96 (s, 18H, 2x OCH2C(CH3)3), 0.86-0.82 (m, 2H, CH2-cPr), 0.62-0.59 

(m, 2H, CH2-cPr). 
13

C NMR (125 MHz, MeOD) δC 175.8 (d, JC-P = 5.0 Hz, CO), 175.7 

(d, JC-P = 4.8 Hz, CO), 161.9, 157.5 (C-2, C-6, C-4), 138.1 (C-2’), 137.1 (C-8), 131.7 (C-

3’), 114.9 (C-5), 75.38, 75.34 (OCH2C(CH3)3), 69.1 (d, JC-P = 5.5 Hz, C-5’), 60.5 (C-1’), 

51.1 (CHCH3), 47.2 (d, JC-P = 8.3 Hz, C-4’), 36.0 (C-6’), 32.35, 32.33 (OCH2C(CH3)3), 
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26.80, 26.79 (OCH2C(CH3)3), 24.3 (CH-cPr), 21.06 (d, JC-P = 6.1 Hz, CHCH3), 21.02 (d, 

JC-P = 5.8 Hz, CHCH3), 7.67, 7.64 (CH2-cPr).
 31

P NMR (202 MHz, MeOD) δP 13.65. MS 

(ES+) m/z: 649.36 (M+H
+
, 100%). Reverse-phase HPLC eluting with H2O/MeOH 90/10 

to 0/100 in 25 min, flow= 1 mL/min, λ= 254 nm , tR= 23.99 min.  

 

4.1.25 Synthesis of 3-(2′-Deoxy--D-ribofuranosyl)-6-(4-n-pentylphenyl)-2,3-

dihydrofuro-[2,3-d]pyrimidin-2-one-5′-O-bis-(benzoxy-L-alaninyl)-phosphate (36).  

Prepared according to standard procedure B, using (12) (0.26 g, 0.65 mmol) in 

trimethylphosphate (5 mL), and POCl3 (0.06 mL, 0.65 mmol), the reaction mixture was 

stirred at -5 
o
C for 4 h. Anhydrous CH2Cl2 (5 mL) and a suspension of tosylate salt of 

benzoxy-L-alanine (1.14 g, 3.25 mmol) in anhydrous CH2Cl2 (5 mL) were added, 

followed by dropwise addition of anhydrous DIPEA (1.13 mL, 6.50 mmol). The reaction 

mixture was stirred at room temperature for 20 h. After work-up, the crude residue was 

purified by silica gel column chromatography eluting with gradient of MeOH (2% to 

10%) in CH2Cl2 to give the product (36) as a yellow solid (19%, 0.10 g). 
1
H NMR (500 

MHz, MeOD) H 8.70 (s, 1H, H-4), 7.64 (d, J = 8.3 Hz, 2H, Ph), 7.36-7.21 (m, 12H, Ph, 

OCH2Ph), 7.08 (s, 1H, H-5), 6.30 (t, J = 6.0 Hz, 1H, H-1’), 5.17-5.07 (m, 4H, 2x 

OCH2Ph), 4.44-4.41 (m, 1H, H-3’), 4.31-4.28 (m, 1H, H-4’), 4.20-4.16 (m, 2H, 2x 

CHCH3), 4.05-3.95 (m, 2H, H-5’), 2.68-2.63 (m, 1H, H-2’), 2.60 (t, J = 7.8 Hz, 2H, -

CH2), 2.24-2.19 (m, 1H, H-2’), 1.61 (qn, J = 7.5 Hz, 2H, -CH2), 1.41 (d, J = 7.2 Hz, 3H, 

CHCH3), 1.37-1.28 (m, 7H, -CH2, -CH2, CHCH3), 0.90 (t, J = 6.9 Hz, 3H, CH2CH3). 

13
C NMR (125 MHz, MeOD) C 175.45 (d, JC-P = 5.6 Hz, CO), 175.39 (d, JC-P = 4.5 Hz, 

CO), 172.91 (C-7a), 157.08 (C-2), 156.65 (C-6), 146.19 (para-C), 138.63 (C-4), 137.43, 
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137.21, 137.19, 130.16, 129.95, 129.63, 129.57, 129.37, 129.33, 129.30, 129.26, 129.20, 

129.10, 128.28, 128.02, 127.33, 125.94 (OCH2Ph, Ph), 110.17 (C-4a), 99.45 (C-5), 90.00 

(C-1’), 87.60 (d, JC-P = 8.2 Hz, C-4’), 71.30 (C-3’), 67.97, 67.92 (OCH2Ph), 65.64 (d, JC–P 

= 4.8 Hz, C-5’), 51.18 (CHCH3), 42.63 (C-2’), 36.77, 32.62, 32.14, 23.61 ((CH2)4), 20.92 

(d, JC–P = 5.7 Hz, CHCH3), 20.82 (d, JC–P = 6.4 Hz, CHCH3), 14.48 (CH3). 
31

P NMR (202 

MHz, MeOD) P 14.03. MS (ES+) m/z: 823.29 (M+Na
+
, 100%). Reverse-phase HPLC, 

eluting with H2O/CH3CN from 100/0 to 0/100 in 30 min, flow= 1 mL/min, λ= 254 nm, 

tR= 26.51 min. 

 

4.1.26 Synthesis of 3-(2′-Deoxy--D-ribofuranosyl)-6-(4-n-pentylphenyl)-2,3-

dihydrofuro-[2,3-d]pyrimidin-2-one-5′-O-bis-(2,2-dimethylpropoxy-L-alaninyl)-

phosphate (37).  

Prepared according to standard procedure B, using (12) (0.30 g, 0.75 mmol) in 

trimethylphosphate (4 mL), and POCl3 (0.07 mL, 0.75 mmol), the reaction mixture was 

stirred at -5 
o
C for 4 h. Anhydrous CH2Cl2 (6 mL) and a suspension of tosylate salt of 

2,2-dimethylpropoxy-L-alanine (1.25 g, 3.75 mmol) in anhydrous CH2Cl2 (6 mL) were 

added, followed by dropwise addition of anhydrous DIPEA (1.31 mL, 7.50 mmol). The 

reaction mixture was stirred at room temperature for 16 h. After work-up, the crude 

residue was purified by silica gel column chromatography eluting with gradient of MeOH 

(3% to 5%) in CH2Cl2 to give a pale yellow solid. The product was dissolved in CH2Cl2 

and washed with 0.05 N HCl (2x 5 mL), brine (1 x 5 mL), 5% NaHCO3 (2x 5 mL), brine 

(1 x 5 mL), dried over MgSO4, filtered and concentrated to give the product (37) as a pale 

yellow solid (10%, 0.06 g). 
1
H NMR (500 MHz, MeOD) H 8.79 (s, 1H, H-4), 7.72 (d, 
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2H, J = 8.3 Hz, Ph), 7.28 (d, 2H, J = 8.3 Hz, Ph), 7.19 (s, 1H, H-5), 6.35 (t, J = 6.0 Hz, 

1H, H-1’), 4.50-4.48 (m, 1H, H-3’), 4.38-4.34 (m, 1H, H-4’), 4.29-4.23 (m, 2H, H-5’), 

4.05-3.94 (m, 2H, 2x CHCH3), 3.91-3.85 (m, 4H, 2x OCH2C(CH3)3), 2.70-2.64 (m, 3H, 

H-2’, -CH2), 2.32-2.26 (m, 1H, H-2’), 1.65 (qn, J = 7.5 Hz, 2H, -CH2), 1.46 (d, J = 7.2 

Hz, 3H, CHCH3), 1.41 (d, J = 7.2 Hz, 3H, CHCH3), 1.38-1.31 (m, 4H, -CH2, -CH2), 

0.87 (t, J = 6.9 Hz, 3H, CH3).
 13

C NMR (125 MHz, MeOD): C 175.72 (d, JC-P = 6.4 Hz, 

CO), 175.58 (d, JC-P = 4.9 Hz, CO), 173.02 (C-7a), 157.20 (C-2), 156.73 (C-6), 146.29 

(para-C), 138.72 (C-4), 130.17, 127.39, 125.96 (Ph), 110.28 (C-4a), 99.51 (C-5), 89.94 

(C-1’), 87.24 (d, JC-P = 8.2 Hz, C-4’), 75.51, 75.40 (OCH2C(CH3)3), 71.16 (C-3’), 65.67 

(d, JC–P = 4.8 Hz, C-5’), 51.16 (CHCH3), 51.08 (d, JC-P = 2.0 Hz, CHCH3), 42.61 (C-2’), 

36.77, 32.57, 32.34, 32.30, 32.15, 23.59 (OCH2C(CH3)3, (CH2)4), 26.82, 26.77 

(OCH2C(CH3)3), 21.22 (d, JC–P = 5.5 Hz, CHCH3), 21.13 (d, JC–P = 6.3 Hz, CHCH3), 

14.45 (CH3). 
31

P NMR (202 MHz, MeOD) P 14.18. MS (ES+) m/z: 783.35 (M+Na
+
, 

100%). Reverse-phase HPLC, eluting with H2O/CH3CN from 100/0 to 0/100 in 30 min, 

flow= 1 mL/min, λ= 254 nm, tR= 29.08 min. 

 

4.1.27 Synthesis of acadesine-5′-O-bis(benzoxy-L-alaninyl)-phosphate (38).  

Prepared according to standard procedure B, using (13) (0.30 g, 1.16 mmol) in 

trimethylphosphate (4 mL), and POCl3 (0.11 mL, 1.16 mmol), the reaction mixture was 

stirred at -5 
o
C for 5 h. Anhydrous CH2Cl2 (5 mL) and tosylate salt of benzoxy-L-alanine 

(2.04 g, 5.80 mmol) were added, followed by dropwise addition of DIPEA (2.00 mL, 

11.61 mmol). The reaction mixture was stirred at room temperature for 16 h. After work-

up, the crude residue was purified by silica gel column chromatography eluting with a 
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gradient of MeOH (2% to 5%) in CH2Cl2 to afford the product (38) as a colorless oil (2%, 

0.02 g). 
1
H NMR (500 MHz, MeOD) δH 7.40-7.31 (m, 11H, OCH2Ph and H-5), 5.56 (d, J 

= 6.0 Hz, 1H, H-1’), 5.18-5.10 (m, 4H, 2x OCH2Ph), 4.41 (dd, J = 6.0, 6.1 Hz, 1H, H-2’), 

4.23 (dd, J = 5.0, 3.5 Hz, 1H, H-3’), 4.16-4.09 (m, 3H, H-4’, H-5’), 3.97-3.89 (m, 2H, 2x 

CHCH3), 1.40-1.31 (m, 6H, 2x CHCH3). 
13

C NMR (125 MHz, MeOD) δC 175.46 (d,
 
JC-P 

= 5.0 Hz, CO), 175.40 (d, JC-P = 5.1 Hz, CO), 169.25 (CONH2), 145.44 (C-2), 130.21 (C-

5), 137.29 (ipso OCH2Ph), 129.63, 129.62, 129.39, 129.36, 129.32, 129.24 (OCH2Ph), 

113.82 (C-3), 89.54 (C-1’), 85.00 (d,
 
JC-P = 7.1 Hz, C-4’), 74.71 (C-2’), 71.42 (C-3’), 

68.01 (OCH2Ph), 66.27 (d, JC-P = 5.0 Hz, C-5’), 51.17 (CHCH3), 20.75 (d, JC-P = 6.2 Hz, 

CHCH3), 20.58 (d, JC-P = 7.2 Hz, CHCH3). 
31

P NMR (202 MHz, MeOD) δP 13.73. MS 

(ES+) m/z: 683.21 (M+Na
+
, 100%). Reverse-phase HPLC, eluting with H2O/CH3CN 

from 90/10 to 70/30 in 10 min; 70/30 to 40/60 in 20 min; 40/60 to 0/100 in 5 min; flow= 

1 mL/min, λ= 265 nm, tR= 18.72 min. 

 

4.1.28 Synthesis of acadesine-5′-O-bis(methoxy-L-alaninyl)-phosphate (39).  

Prepared according to standard procedure B, using (13) (0.20 g, 0.77 mmol) in 

trimethylphosphate (3.5 mL), and POCl3 (0.18 mL, 1.77 mmol), the reaction mixture was 

stirred at -5 
o
C for 5 h. Anhydrous CH2Cl2 (5 mL) and chloridate salt of methoxy-L-

alanine (0.54 g, 3.87 mmol) were added, followed by dropwise addition of anhydrous 

DIPEA (1.30 mL, 7.74 mmol). The reaction mixture was stirred at room temperature for 

16 h. After work-up, the crude residue was purified by silica gel column chromatography 

eluting with a gradient of MeOH (2% to 20%) in CH2Cl2 to afford the product (39) as a 

colorless oil (3%, 0.01 g). 
1
H NMR (500 MHz, MeOD) δH 7.41 (s, 1H, H-5), 5.56 (d, 1H, 
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J = 6.0 Hz, H-1’), 4.45 (dd, J = 6.2, 6.0 Hz, 1H, H-2’), 4.26 (dd, 1H, J = 5.5, 3.0 Hz, H-

3’), 4.21-4.19 (m, 3H, H-4’, H-5’), 3.88-3.84 (m, 2H, 2x CHCH3), 3.73 (s, 3H, OCH3), 

3.72 (s, 3H, OCH3), 1.39-1.34 (m, 6H, 2x CHCH3). 
13

C NMR (125 MHz, MeOD) δC 

176.16 (d, JC-P = 4.6 Hz, CO), 176.09 (d, JC-P = 5.5 Hz, CO), 169.29 (CONH2), 145.46 

(C-2), 130.19 (C-5), 113.78 (C-3), 89.57 (C-1’), 85.07 (d,
 
JC-P = 7.5 Hz, C-4’), 74.68 (C-

2’), 71.53 (C-3’), 66.22 (d, JC-P = 4.6 Hz, C-5’), 52.80 (OCH3), 51.00 (d, JC-P = 1.7 Hz, 

CHCH3), 51.99 (d, JC-P = 1.7 Hz, CHCH3), 20.83 (d, JC-P = 6.4 Hz, CHCH3), 20.65 (d, JC-

P = 6.4 Hz, CHCH3). 
31

P NMR (202 MHz, MeOD) δP 13.88. MS (ES+) m/z: 531.15 

(M+Na
+
, 100%). Reverse-phase HPLC, eluting with H2O/CH3CN from 100/0 to 80/20 in 

10 min; 80/20 to 70/30 in 10 min; 70/30 to 0/100 in 10 min; flow=1 mL/min, λ= 265 nm, 

tR= 10.43 min. 

 

4.1.29 Synthesis of acadesine-5′-O-bis(2,2-dimethylpentoxy-L-alaninyl)-phosphate (40). 

Prepared according to standard procedure B, using (13) (0.30 g, 1.16 mmol) in 

trimethylphosphate (4 mL), and POCl3 (0.11 mL, 1.16 mmol), the reaction mixture was 

stirred at -5 
o
C for 5 h. Anhydrous CH2Cl2 (5 mL) and tosylate salt of 2,2-

dimethylpropoxy-L-alanine (1.92 g, 5.80 mmol) were added, followed by dropwise 

addition of anhydrous DIPEA (2.00 mL, 11.61 mmol). The reaction mixture was stirred 

at room temperature for 16 h. After work-up, the crude residue was purified by silica gel 

column chromatography eluting with a gradient of MeOH (2% to 10%) in CH2Cl2 to give 

the product (40) as a colorless oil (1%, 0.01 g). 
1
H NMR (500 MHz, MeOD) δH 7.41 (s, 

1H, H-5), 5.56 (d, J = 6.0 Hz, 1H, H-1’), 4.42 (dd, J = 5.6, 5.5 Hz, 1H, H-2’), 4.25 (dd, J 

= 5.5, 3.0 Hz, 1H, H-3’), 4.22-4.17 (m, 3H, H-4’, H-5’), 4.00-3.94 (m, 2H, 2x CHCH3), 
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3.90, 3.78 (2AB, JAB = 11.0 Hz, 4H, 2x OCH2(CH3)3), 1.42 (d, J = 7.0 Hz, 3H, CHCH3), 

1.40 (d, J = 7.0 Hz, 3H, CHCH3), 0.97 (s, 9H, OCH2C(CH3)3), 0.96 (s, 9 H, 

OCH2C(CH3)3).
13

C NMR (125 MHz, MeOD) δC 175.70 (d, JC-P = 2.6 Hz, CO), 175.67 (d,
 

JC-P = 2.6 Hz, CO), 169.25 (CONH2), 145.44 (C-2), 130.21 (C-5), 113.82 (C-3), 89.58 

(C-1’), 85.02 (d, JC-P = 7.5 Hz, C-4’), 75.46 (OCH2(CH3)3), 75.42 (OCH2(CH3)3), 74.68 

(C-2’), 71.48 (C-3’), 66.22 (d, JC-P = 4.5 Hz, C-5’), 51.00 (d, JC-P = 1.9 Hz, CHCH3), 

32.35 (OCH2C(CH3)3), 26.79 (OCH2C(CH3)3), 21.07 (d, JC-P = 6.4 Hz, CHCH3), 20.93 

(d, JC-P = 6.4 Hz, CHCH3). 
31

P NMR (202 MHz, MeOD) δP 13.94. MS (ES+) m/z: 643.29 

(M+Na
+
, 100%). Reverse-phase HPLC, eluting with H2O/CH3CN from 100/0 to 80/20 in 

10 min; 80/20 to 50/50 in 20 min; 50/50 to 0/100 in 5 min; flow= 1 mL/min, λ= 265 nm, 

tR= 27.32 min. 

 

4.2 Cytostatic activity assays.  

The tumour cells were seeded in 96-well microtiter plates and exposed to different 

concentrations of the test compounds. After 2 days (L1210, L1210/TK
-
) and 3 days 

(CEM, CEM/TK
-
, HeLa, HeLa TK

-
, Caco-2, Colo-320), cell number was determined 

using a Particle counter (Coulter Z-1, Analis, Ghent, Belgium). The IC50 represents the 

compound concentration required to inhibit tumour cell proliferation by 50%. 

 

4.3 Antiviral assays.  

The antiviral assays [except anti-human immunodeficiency virus (HIV) assays] were 

based on inhibition of virus-induced cytopathicity in HEL [herpes simplex virus type 1 

(HSV-1), HSV-2 (G), vaccinia virus and vesicular stomatitis virus], Vero (parainfluenza-
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3, reovirus-1, Sindbis, Coxsackie B4, and Punta Toro virus), HeLa (vesicular stomatitis 

virus, Coxsackie virus B4, and respiratory syncytial virus), CrFK (feline herpes virus), 

feline coronavirus (FIPV) and MDCK (influenza virus A (H1N1, H3N2) and B) cell 

cultures. Confluent cell cultures in microtiter 96-well plates were inoculated with 100 cell 

culture inhibitory dose-50 (CCID50) of virus (1 CCID50 being the virus dose to infect 50% 

of the cell cultures). After a 1 h virus adsorption period, residual virus was removed, and 

the cell cultures were incubated in the presence of varying concentrations (200, 40, 8, … 

μM) of the test compounds. Viral cytopathicity was recorded as soon as it reached 

completion in the control virus-infected cell cultures that were not treated with the test 

compounds. The methodology of the anti-HIV assays was as follows: human CEM ( 3 × 

10
5
 cells/cm

3
) cells were infected with 100 CCID50 of HIV-1(IIIB) or HIV-2(ROD)/mL 

and seeded in 200 μL wells of a microtiter plate containing appropriate dilutions of the 

test compounds. After 4 days of incubation at 37°C, HIV-induced CEM giant cell 

formation was examined microscopically. MT-4 cells (1_104 cells per mL) were 

suspended in fresh culture medium and infected with 10 _L (0.7 ng of p24) of X4LAI.04 

viral stock per mL of cell suspension. Infected cell suspensions were then transferred to 

microplate wells, mixed with 1 mL of medium containing the test compound at an 

appropriate dilution and further incubated at 37 ºC. After 3 days, p24 production was 

measured in the MT-4 cell culture supernatants. The results are given as the mean ± 

standard error of the mean of the concentration required to suppress viral replication by 

50% (median effective concentration [EC50]). The value of EC50 was calculated by 

fitting the data points to a sigmoidal dose-response curve, with Prism software, (version 

4.0; GraphPad). 
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Viability assays. Viability assays were performed in the MT-4 cell cultures with the 

Nucleocounter automated cell counting system (ChemoMetec). Total number of cells and 

number of dead cells in the cultures untreated and treated with ACV ProTides were 

enumerated using a propidium iodide-based assay according to the manufacturers' 

protocol. Data were collected and analyzed using Nucleoview software (Chemometec, 

Denmark). 

 

4.4 Enzymatic assays.  

Compound 32 (5.0 mg) or 40 (4.8 mg) were dissolved in d6-acetone (0.15 mL) and 

Trizma buffer (pH = 7.6) (0.30 mL) and a 
31

P-NMR was recorded (blank). Then a 

solution of carboxypeptidase Y (0.1 mg) in Trizma buffer (0.15 mL) was added and a 

31
P-NMR esperiment was performed recording the experiment every 5 min, for 24 h at 

room temperature. 
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