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ABSTRACT 

In recent years, Eco-City, which is designed with consideration for 

environmental impact and is inhabited by people dedicated to minimisation of 

required inputs of energy, air pollution and water pollution, has emerged as a way 

to address sustainability issues by adapting it to their local needs and context. The 

sustainability of urban water resources, water recycling and more efficient use of 

water resources will be the key features of the Eco-City. The current study takes 

Sino-Singapore Tianjin Eco-City as an example to investigate the sustainable use 

of water resources which focus on non-traditional water usage and ecological water 

requirements assessment.  

Firstly, the potential non-traditional water supply was evaluated based on the 

data acquired from the gauging station and the Eco-City planning data. It was 

found that rainwater has a great potential for domestic use in the Eco-City from 

June to September. Differing from other water consumption, ecological demand of 

the river lake system in the Eco-City was analysed by minimum ecological water 

requirements determination. An improved wetted perimeter method was used in 

order to determine the minimum ecological water requirements in the river system. 

It was found that the current monthly flow rates, with the exception of January to 

March, are fairly satisfactory.  

Secondly, an idealised river-lake system was assessed by hydraulics laboratory 

experimentation and 2D numerical modelling. The experimental and numerical 

investigations described in this study were undertaken to improve understanding of 

the hydrodynamic and flushing processes within such a river lake system. A water 

diversion scheme was implemented in order to study lake recharge by river water 

during dry periods and under augmented flows. Fluorescent tracer experiments and 

related computer simulations were conducted to assess the performance of different 

parts of the system before and after implementing the diversion scheme. The 

results showed that such measures improved flushing, as seen from the perspective 

of reducing the mean detention time. However, due to poor cross-sectional velocity 

distribution, recharge alone had little impact on the overall mixing level in the lake 

waters. The effect of inserting flow deflectors near the lake inlet combined with 

flow augmentation was then assessed and was found to positively affect the 

distribution of solutes, by mitigating the occurrence of dead zones.  

Finally, an eco-hydraulic model was used to determine the levels of fish 

habitat suitability in the fluvial and lacustrine regions of a new Eco-City. This 

model has been developed by combining a depth integrated hydrodynamic and 

water quality model with a Habitat Suitability Index model. Carps were selected as 

the target species as they represent the major fish population in the study area. 

Hydrologic data recorded during 2001-2010 were analysed to determine the base 

flow, average flow and high flow rates, which were used to represent the 

discharges in the river for the three stages of the carp life cycle: overwintering, 

spawning and growth, respectively. Numerical model simulations were undertaken 

to determine the levels of habitat suitability for carps to live at these three life 

stages. The model results indicated that under the current flow regime the habitat 

suitability level in the lacustrine region is too low for carps at the growth and 

overwintering stages. DO depletion, overriding the role of velocity and depth, was 

attributed to the poorly suited habitat conditions in the lacustrine region. To 
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improve the suitability conditions in the lacustrine region, a DO enhancement 

scheme was used. Model results showed that the scheme has significantly 

enhanced the water quality in the lacustrine region. Due to the high flow 

requirement for carps to spawn in the fluvial region, further numerical model 

simulations were undertaken to investigate the effect of flow augmentation on the 

carp spawning habitat suitability.   
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CHAPTER 1   INTRODUCTION 

1.1 Research Background  

The world’s population is growing at a rapid pace, and a significant percentage 

of the population is now moving from the countryside into cities. It is anticipated 

that in the next few decades there will be an unprecedented scale of urban growth 

in the developing world. By 2030, nearly 60% of the global population is projected 

to be urban with the developing world (Prasad, 2009). The major challenges for 

cities facing rapid population growth are the shortage of natural resource supply 

and the disposal of a growing volume of waste. Cities are affected by 

overcrowding, environmental degradation and inadequate housing infrastructure 

and services. In order to mitigate the problems of the urbanisation, city planners 

are becoming increasingly conscious of the need to consider environmental and 

sustainability issues when planning any development. Many countries tend to place 

an emphasis on the economic and social dimensions of sustainability, whilst 

allowing a more manageable and incremental approach to environmental 

sustainability. Making existing cities and new urban development more 

ecologically friendly and liveable is an urgent priority in the global push for 

sustainability. Urban sustainability can only be ensured by human understanding of 

the complex interactions between environmental, ecological, economic, political, 

and social factors, and with careful planning and management based on ecological 

principles. A particularly interesting and key strategy used by many cities is that of 

sustainable urban development, which is a mode of urban development in which 
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resource use is aimed at meeting human needs while ensuring the sustainability of 

natural systems and the environment. In 1987, the United Nations released the 

Brundtland Report, which included the most widely recognised definitions of 

sustainable development: "Sustainable development is development that meets the 

needs of the present without compromising the ability of future generations to meet 

their own needs" (World Commission on Environment and Development, 1987).  

The United Nations World Summit Outcome Document (2005) referred to the 

"interdependent and mutually reinforcing pillars" of sustainable development as 

economic development, social development, and environmental protection. Based 

on the triple bottom line, numerous sustainability standards and certification 

systems have been established.  

In recent years, Eco-City has emerged as a way to address sustainability issues 

by adapting it to their local needs and context. An Eco-City represents a type of 

city construction which takes into consideration ecological requirements combined 

with social and economic conditions. In other words, a city produces its own 

energy, food and water in a way which does not have detrimental effects on the 

world in forms such as waste, water pollution or damage to the air. Eco-Cities 

demonstrate that urban growth and development can be a sustainable process and 

that the concept of sustainable development can be applied to an urban setting. 

There are many cities in the world which are working on developing themselves as 

Eco-Cities, such as St. David in the UK, Calgary in Canada, Sino-Singapore 

Tianjin Eco-City in China and Manimekala Hightec Eco-City in India. Each 

individual Eco-City development has also set its own requirements to ensure that 

the city is environmentally sustainable, with these criteria ranging from zero-waste 

and zero-carbon emissions to simple urban revitalisation.  
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Concerning the sustainability of urban water resources, water recycling and 

more efficient use of water resources will be one of the key features in Eco-Cities, 

which means the use of non-traditional water has been seen to play an ever more 

important role in satisfying the increasing water requirement. Due to urbanisation 

and industrialisation, the runoff and waste water is increasing, which not only 

results in the deterioration of the ecological environmental and pollutes water 

sources, but also brings about a contradiction between water supply and demand to 

aggravate. Here we can take China as an example; indeed, among the country’s 

661 cities, approximately 420 are facing the pressures of water resource shortage, 

wastewater treatment and aquatic environmental management (CCICED 2005). 

Some northern cities are forced to restrict water supply. Water shortage is further 

magnified by pollution, over-tapping of aquifers and wasteful use.  

With this in mind, there are increasing opportunities to use water in a non-

traditional manner, such as rainwater, desalinated water and recycled wastewater. 

This would lead to a reduction in the demand for potable water and the associated 

energy needed for treatment. It would also help mitigate climate change impacts of 

increased storm rainfall intensity on flooding. In many places, non-traditional 

water has already been utilised for various purposes such as washing, water 

cooling, toilet flushing, waterway restoration and the creation of recreational 

waterfront.  

1.2 Key Objectives 

A large number of studies on non-traditional water usage have been conducted 

over the past few years. With this said however, there is a lack of knowledge 

regarding how sustainable non-traditional water allocation should be attained and 

to what extent the non-traditional water should be utilised for various purposes 
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such as typical domestic use, water cooling, ecological water requirements and the 

creation of recreational waterfronts. In this thesis the framework of a system 

analysis dealing with the above issues is described, with a focus on the assessment 

of non-traditional water usage and ecological water requirements. Ecological water 

requirements are a significant part of non-traditional water use which it is needed 

to provide the decision maker and the users with a concrete and clear answer 

regarding how an ecosystem can make use of non-traditional water resources in a 

way which is economically viable and environmentally non-degrading. 

Therefore, the key objectives of this study are as follows: 

 Determine the availability of non-traditional water supply and the potential 

water use in the Tianjin Eco-City; 

 Estimate the minimum ecological water requirements to maintain the 

environmental water quality standard in the Eco-City; 

 Develop an eco-hydraulic model to determine the fish habitat suitability in the 

river lake system in the Eco-City;  

To achieve these objectives, the potential non-traditional water supply was 

first evaluated based on hydrological and hydraulic data acquired from gauging 

stations and the data in Eco-City planning Office, such as the planned population, 

monthly sewage and industrial effluent volumes etc. Secondly, detailed studies on 

a physical scale laboratory model and numerical modelling analysis were carried 

out to investigate the flow distribution and habitat suitability conditions in the 

river- lake system in the Eco-City.  

1.3 Dissertation Organization  

This dissertation is organised as follows: Chapter 2 presents a literature review 

of past studies related to the research on non-traditional water resources and 
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ecological water requirement assessments. Chapter 3 presents the methods used to 

determine the non-traditional water supply and the potential water use in the Eco-

City, particularly for ecological water requirements; Chapter 4 presents an 

idealised river-lake system assessed by hydraulics laboratory experimentation. A 

water diversion scheme was implemented to simulate lake flushing by river water. 

Chapter 5 presents the experimental results and numerical solutions for the flow 

augmentation and lake flushing improvement. Chapter 6 presents the assessment of 

habitat suitability for fish in the fluvial and lacustrine region in the Eco-City. 

Finally, Chapter 7 of this thesis provides a summary of the work presented and a 

discussion of limitations and   followed by suggestions for future research.    
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CHAPTER 2   LITERATURE REVIEW 

This chapter presents a review of existing studies on the Eco-City 

development and the relevant non-traditional water usage, ecological water 

requirements, and current methods for calculating the ecological water 

requirements. Most content in this section focusses on the theoretical research.  

2.1 Eco-City  

2.1.1 Eco-City Development 

The urbanisation and increasing awareness of the ecological characteristics of 

cities has led urban planning and landscape scholars to find a new way of building 

and developing cities which appreciate and integrate a site’s ecological and 

environmental conditions. Richard Register, one of the early advocates for linking 

ecological principles to the redesign of cities first coined the term "Eco-City" in his 

1987 book, Eco-City Berkeley: building cities for a healthy future (Richard 

Register, 1987). The first Eco-City concept focussed primarily on urban 

metabolism, i.e. circles of energy, water, wastes, as well as the protection of the 

environment in an urban context. Over the past few decades, many Eco-City 

concepts can be found in planning theories. However, throughout the 1980s and 

1990s, there was no commonly accepted definition of “Eco-City”. The term ‘Eco-

City’ remained mainly a concept, a collection of ideas and propositions about 

sustainable urban planning, transportation, housing, public participation and social 

justice, with practical examples relatively few and far between (Roseland, 1997).  
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In recent years, the definition of Eco-City is becoming clearer and in some 

countries a campaign for Eco-City development is being spontaneously initiated. 

Kline (2000) suggests that, ‘‘an Eco-City encompasses four basic community 

characteristics, which are ecological integrity, economic security, quality of life 

and empowerment with responsibility’’. Similarly, Roseland (2001) indicates that a 

collection of apparently disconnected ideas about urban planning, transportation, 

health, housing, energy, economic development, natural habitats, public 

participation, and social justice all comprise a single framework, the eco city. An 

Eco-City is a city designed with consideration for environmental impact, and is 

inhabited by people dedicated to minimisation of required inputs of energy, water 

and waste output of heat, air pollution and water pollution. During the past decade, 

there has been renewed effort to apply the Eco-City concept to projects at the 

district and city scale. Many Eco-City projects are getting started in Europe, Asia, 

Africa, and South America. Eco-Town, a similar concept to that of Eco-City, is a 

government-sponsored programme which aims to have new towns built in England 

in the hopes of achieving sustainable development. In 2007, the department for 

Communities and Local Government (CLG) announced a competition to build up 

to 10 Eco-Towns across the UK (BBC, 2007). The city of Waitakere, the Western 

part of the greater Auckland urban region, was New Zealand's first Eco-City, 

working from the Greenprint, a guiding document which the City Council 

developed in the early 1990s. The Eco-City idea has evolved, mostly in the United 

States and Western Europe. Gothenburg and especially Älvstaden in particular are 

good examples of Eco-Cities in Sweden (Boslet, 2010). They have low 

environmental impact，contain passive houses, use a good recycling system for 

waste, etc. China, as a nation of 1.3 billion is urbanizing at a dizzying pace, 
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powered by economic growth that is lifting millions out of rural poverty, is 

working with investment and technology to build Eco-Cities which aim to address 

several urban issues such as energy efficiency, water and waste management, 

economic vibrancy and social harmony. Figure 2-1 shows the main Eco-City 

projects in China, among which Tianjin Sino-Singapore Eco-City and Caofeidian 

Eco-City are now under construction, and the Dongtan Eco-City project has also 

just started recently.  

 

Figure 2-1 Eco-City construction in China (Ma, 2009) 

With all of this said however, achieving greater sustainability in Eco-Cities 

requires an in-depth understanding of how or to what extent sustainable 

development can be applied to an Eco-City context. There are no existing indicator 

systems to measure how sustainability can be applied to Eco-Cities. It is therefore 

useful to identify several relevant Eco-City dimensions relating to: energy and 

climate; water quality, availability, and wastewater treatment; air quality; waste 

production and treatment; transportation; economic development and economic 

health; land use and urban form; and demographics and social health (Zhou & 

Williams, 2013). In terms of planning the concepts which underpin planning theory 
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and practice are indistinct by nature and can often lead to disappointing outcomes 

for planning initiatives. There is a need to develop a concrete framework for Eco-

City planning so as to help achieve operational sustainable cities which incorporate 

all aspects of environmental, social, and economic health through efforts to 

conserve natural resources, reduce and recycle waste streams. 

2.1.2 Sustainable Urban Water Management (SUWM) 

With Eco-City development, sustainable management of water resources is an 

increasingly pressing concern. How to make the water safe for use and see that it is 

reused and returned to nature has been a key feature of sustainable urban water 

management over the past few years. Dating back to 1999, the Swedish Foundation 

for Strategic Environmental Research (MISTRA, 1999) initiated a 6-year research 

program entitled “Sustainable Urban Water Management” with the aim of 

improving and raising knowledge with regard to sustainable water management. 

This is now an accepted concept in water resources management, incorporating 

integrated water management and total water cycle management. It is also 

considered highly desirable and a much needed trajectory for urban water 

management (Ashley et al., 2007).  

 More efficient and sustainable use of water resources will be one of the key 

features in the Eco-City. Here we can take Tianjin Eco-City as an example; the 

Administrative Committee developed a set of Integrated Water Management 

Guidelines (IWMG) for the Eco-City which bring together all facets of the water 

cycle covering water supply, sewage management, water treatment and storm 

water management. It is a process which promotes the coordinated development 

and management of water, land and related resources in order to maximise 

economic and social welfare. Water bodies in the Eco-City will be linked together 
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for greater water circulation to enhance the ecology and to provide an attractive 

environment for waterfront development and water-based recreational activities. A 

wastewater pond will be rehabilitated and transformed into a clean and beautiful 

lake (Singapore Government, 2008).  

2.2 Non -Traditional Water Resources 

Traditional water resources generally include surface and ground water. 

Resources other than “good quality surface or ground water” are termed “non-

traditional water resources”. Examples of such resources include rainwater, 

reclaimed domestic and industrial water, and desalinated seawater. Several driving 

forces can be identified in the worldwide practices of non-traditional water use 

such as water shortage caused by very low amounts of rainfall in combination with 

high evaporation, large freshwater demand from the population, or certain 

environmental and economic considerations. There are major opportunities to use 

non-traditional water. Using non-traditional water leads to a reduction in the 

demand for potable water and the associated energy needed for treatment. It can 

also help mitigate climate change impacts of increased storm rainfall intensity on 

flooding. Non-traditional water can be utilised by means of scientific and effective 

regulation and management of the existing reservoirs, construction of rainwater 

collection projects and a multi-channelled investment system for exploitation of 

non-traditional water resources.  

The last decades has seen a number of studies carried out to understand the 

principles of non-traditional water for non-potable use, especially for agriculture 

production. For example, basic investigations, field surveys and experimental tests 

on the effects of municipal wastewater irrigation have been carried out in Sicily 

(Indelicato et al., 1988). In Turkey, several studies were conducted in order to 
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obtain certain applicable parameters regarding the use of non-traditional water 

including wastewater and saline water in agriculture during more than 20 years 

(Kanber, 2003). The Gulf States were working together and developing non-

traditional alternative water sources to bridge the gap between supply and demand 

(Alsharhan, 2001). In Egypt, where there are many important projects for the reuse 

of wastewaters, certain general technical guidelines have been provided concerning 

kinds of treatment and the quality of the effluents (Abdel-Ghaffar et al., 1985). In 

France the reuse of wastewater has been practised for more than a century and has 

covered almost all the territory, generally in areas spanning a few hectares (Soulie 

et al., 1991). In Tokyo, Japan, the reuse of treated wastewater has been highly 

promoted. A typical use of the reclaimed water is for toilet flushing, with 

approximately 97×10
4
m

3
/year (Odeh & Jayyousi, 2003). According to the German 

market leader for prefabricated concrete tanks, Mall-Beton GmbH (1999a), during 

the last 10 years they have installed more than 100,000 decentralised rainwater 

storage tanks for service water purposes in Germany, providing a total storage 

capacity of more than 600,000 m
3
. Seawater represents another theoretically 

unlimited water resource, particularly for coastal areas, and at present there are 

approximately 4,000 desalination plants in 120 countries worldwide with a 

combined capacity of over 5750 M m
3
/year (Mielke, 1999). In arid and semi-arid 

regions, as in most of the Mediterranean countries, the use of non-traditional water 

resources has been seen to play an increasingly important role in satisfying the 

escalating water requirements.  

As the main non-traditional water resources, rainwater, reclaimed domestic 

and industrial water, and desalinated seawater will be discussed in detail in Section 

2.2.1, Section 2.2.2, and Section 2.2.3 respectively.  
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2.2.1 Rainwater 

The most cost-effective and longest serving form of non-traditional water is 

harvested rainwater, which is actually nothing new as it has been in widespread use 

for many years. The rapid expansion of the city has led to the sealing off of large 

surface areas, and increasing the speed and volume of storm water run-off. 

Therefore, the collection and management of rainwater can contribute to water 

conservation while reducing the risks of flooding after heavy rainstorms. In 2003, 

the Scottish executive issued a national flooding framework to implement of 

Sustainable Drainage Systems and rainwater harvesting and reuse (CIRIA, 2007). 

There is also increasing support from governments and councils when it comes to 

the rainwater harvesting system. In 1996, urban ecologist innovators, Ole & Maitri 

Ersson (1996) built Portland's first permitted rainwater harvesting system to 

significantly supplement their residential water needs. The system is designed to 

harvest and purify rainwater for all of their water-related needs except during long 

dry summers when they are able to switch back to city water. The Queensland 

Water Commission (2010) has proposed the reuse of rainwater from household 

roofs to supply typical domestic use, such as, toilet flushing, laundry and outdoor 

uses as a means to reduce the demand for potable water.  

The components used in a rainwater harvesting system may vary from one 

system to another, although generally speaking every rainwater catchment system 

consists of three main components: (1) a catchment surface for collecting rainwater; 

(2) a storage reservoir or storing rainwater; and (3) a delivery system for 

transporting water from the catchment to the storage reservoir. For example, a 

typical rainwater harvesting system is shown in Figure 2-2. 
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Figure 2-2 Typical rainwater harvesting system 

(Quality Domains Ltd, 2010)  

2.2.2 Reclaimed Domestic and Industrial Wastewater 

Reclaimed domestic and industrial wastewater is emerging as an established 

water management practice in several water-stressed countries. Over the past 

decades reclaimed wastewater has been increasingly used for landscape irrigation 

in urban areas and for groundwater recharge. Domestic sewage is the largest source 

of reusable water resource, followed by industrial effluents. Indeed, industry 

should be encouraged to invest in better water efficiency, more recycling and 

management. Water use normalised indices can be developed for each industry in 

order to allocate only as much water as is necessary to achieve their production 

targets. Beneficial use of reclaimed wastewater has been practised in California 

since the 1890s, when raw sewage was applied on 'sewer farms' (EPA, 1977). The 

International Water Management Institute (IWMI, 2008) released a report at the 

World Water Week and highlighted the need to develop practical measures when 
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utilising wastewater while avoiding potential environmental and health risks. 

Treated municipal wastewater is widely available in communities throughout the 

United States in sufficient volumes and is reliable enough to supply power plant 

cooling water. Reclaimed wastewaters are already being used in more than 50 U.S. 

power plants and are subject to Federal and state regulations in order to protect worker 

and public health.  

2.2.3 Desalinated Seawater 

Independent of rainfall, droughts, and other natural phenomena related to 

irregular water supplies, desalination enables the seawater to be explored, with the 

aim of producing high volumes of high quality non-potable water and even potable 

water. Approximately 75 million people worldwide obtain their potable water from 

desalination plants, and that number is due to increase with the continuous growth 

in demand for water. According to the International Desalination Association, in 

2009, 4000 desalination plants operated worldwide, producing 59.9 million cubic 

metres per day, a year-on-year increase of 12.3% (Henthorne, 2009). The 

production was 68 million m
3 

in 2010, and is expected to reach 120 million m
3
 by 

2020.   

Most of the modern interest in desalination of seawater is focussed on 

developing cost-effective ways of providing fresh water for human use. Factors 

which determine the costs for desalination include capacity and type of facility, 

location, and concentrate disposal. However, improved technology has cut the cost 

of desalination in half over the past decades. Major desalination technologies are 

based on evaporation methods, Electro Dialysis (ED), and Reverse Osmosis (RO), 

the latter of which is responsible for 43.5% of the global desalination capacity 

(Crittenden et al., 2005; Al-Subaie, 2007). 
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2.2.4 Potential Usage of Non-traditional Water Resources 

In recent years, scientists, engineers and environmentalists have combined 

their skills in the development of a comprehensive non-traditional water use 

scheme for the sustainable exploitation of this valuable water resource. The scheme 

deals with all aspects of wastewater management with the objective of maximising 

utilisation of the water resources. Figure 2-3 shows a schematic description of the 

non-traditional water use procedure.  

Rainwater Wastewater Seawater

Non-traditional water harvesting

Purification

Non-traditional water usage and allocation system

Typical 

domestic use

Agricultural 

and industrial 

use

Recreational 
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Ecological 

water 
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Figure 2-3 Schematic description of the non-traditional water use procedure 

As shown in Figure 2-3, non-traditional water mainly focuses on the following 

non-potable applications:  

• Typical Domestic use: e. g. toilet flushing, washing clothes, watering garden 

•Agricultural and industrial use: e. g. irrigation, water cooling, diluting, 

incorporating water into a product; 

•Recreational water use: e. g. Filling ornamental ponds, water features and 

fountains; 

•Ecological water use: e. g. River and lake recharge to meet ecological water 
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requirements.   

It is important to first consider what standards of water quality are required for 

different types of non-traditional water usage. Different uses raise different 

concerns and therefore different standards are considered. Thus, based on variables 

which characterise the quality of water, water quality criteria have been developed 

by scientists on a specific water use. Many water quality criteria set a maximum 

level for the concentration of a substance in a particular medium (i.e. biota) which 

will not be harmful when the specific medium is used continuously for a single, 

specific purpose. For some other water quality variables, such as dissolved oxygen, 

water quality criteria are set at the minimum acceptable concentration to ensure the 

maintenance of biological functions. The European water Framework Directive 

(WFD, 2000) was established to improve and protect the surface water quality of 

the European countries. The Framework Directive sets standards for the quality of 

the surface water, for example, what the oxygen level in the water should be, and 

what types of fish should be found in the water. Table 2-1 roughly lists the water 

quality criteria by intended use.  

2.2.5 Summary of Non-traditional Water Usage 

A review of the literature indicates that there are major opportunities to use 

non-traditional water as an additional water resource. While a number of 

alternative non-traditional water sources and new technologies are theoretically 

available, the use of non-traditional water has a multidisciplinary nature as it can 

inter-link with the environment, health, industry, agriculture, and water resource 

policy. In this regard, significant challenges still remain in the area of technological, 

information transfer and social and environmental considerations.   
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Table 2-1 Water quality criteria for different uses (UNEP, 2008) 

Designated use Class of 

water 

Criteria  

Drinking water A •Total Coliforms Organism MPN/100ml shall 

be 50 or less 

•pH between 6.5 and 8.5 

•Dissolved Oxygen 6mg/l or more 

•Biochemical Oxygen Demand 5 days 20°C 

2mg/l or less 

Domestic use C •PH between 6.0 to 9.0 

•Turbidity 5 NTU or less 

•Disinfection < 4.0 mg/L  

•Biochemical Oxygen Demand 5 days 20°C 

 10 mg/L or less 

Agricultural  

and industrial 

use 

E •pH between 6.0 to 8.5 

•Electrical Conductivity at 25°C micro 

mhos/cm Max.2250 

•Sodium absorption Ratio Max. 26 

•Boron Max. 2mg/l 

Recreational 

use 

B •Total Coliforms Organism MPN/100ml shall 

be 500 or less pH between 6.5 and 8.5 

Dissolved Oxygen 5mg/l or more 

•Biochemical Oxygen Demand 5 days 20°C 

3mg/l or less 

Ecological use D •pH between 6.5 to 8.5 Dissolved Oxygen 

4mg/l or more 

•Free Ammonia (as N) 1.2 mg/l or less 

 

2.3 Ecological Water Requirements (ERWs) 

Among the main non-traditional water usages, most emphasis is placed on 

ecological water use, due to seasonal and annual variation. To protect the 

ecological functioning of water resources, some water must be left in rivers and 

lakes, and this is known as the ecological reserve, occasionally called Ecological 

Water Requirements (EWRs). EWRs describe water regimes needed to sustain the 

ecological values of water dependent ecosystems at a low level of risk 

(ARMCANZ / ANZECC, 1996). Other definitions and terms regarding 

environmental flows do exist in the literature (Acreman, 2004), including 
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minimum ecological flow, optimal ecological flow and instream flow requirements. 

The impacts of river regulation and land use change on the ecological flow of 

Scottish rivers ecosystems were discussed by Gilvear et al (2002). However, to 

date, EWRs are the only regimes which truly encompass the holistic nature of the 

concept. EWRs serve to represent water allocation for ecosystems. As ecosystems, 

in turn, provide services to people, providing for environmental flows is not 

exclusively a matter of sustaining ecosystems, but is also a matter of supporting 

humankind/livelihoods, particularly in developing countries. Water dependent 

ecosystems need particular flow regimes which determine both the physical 

structure of the stream and the species which are found. These flow regimes 

include the timing, frequency, duration, volume and quality of water they receive. 

Fish and other stream life within these systems have adapted to the particular water 

regime. If the flow regimes were changed, this could affect habitat availability, 

food supplies, chemistry and nutrient processing. This can in turn lead to a loss of 

biodiversity, a decline in the ecological condition and a decline in river water 

quality. For a lake or reservoir the flow regime is considered here as the depth and 

time variations in depth of the water body. For rivers the flow regime is considered 

here as discharge and time variations in discharge. Changes in discharge alter flow 

depths and velocities, which alter the nature and extent of aquatic habitats in rivers, 

as well as physical and chemical processes. It is recognised that both water 

quantity and quality must be protected in order to contribute to the conservation 

and restoration of water-dependent ecosystems.  

2.3.1 EWRs Research 

Ever since the mid-70s, the recommended ecological flow for a given river has 

been defined (Tennant, 1976). Indeed, early EWRs studies were focussed on the 
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concept of the minimum flow requirements based on the idea that the river 

ecosystem will be conserved as long as the flow is kept at or above a minimum 

level. For example, Tennant (1976) developed a method using data taken from 

hundreds of sites on rivers in the mid-western states of the USA to specify 

minimum flows to protect a healthy river environment. Gradually, it became 

apparent that all the elements of a flow regime, including floods, medium and low 

flows are important to the ecosystem (Junk et al., 1989). Any alteration of the 

regime will lead to ecological changes. The ecological flow will have to be very 

close to the natural flow regime in order to maintain a pristine natural river 

ecosystem.  

The importance of ecological flows was highlighted in the early 1990s when 

many freshwater ecosystems had been degraded to the point that they could no 

longer support biodiversity. The Australian Capital Territory (ACT) government in 

Australia even published Environmental Flow Guidelines specifying the flows 

required to maintain aquatic ecosystems in 1999 (ACT, 1999). Since then water 

allocation and licensing in the ACT has been based on the Guidelines, ensuring 

that sufficient water is allocated for the environmental needs of aquatic ecosystems 

in the ACT. The volume of water and the timing of flows specified in the 1999 

Guidelines were determined to protect the health and viability of the river systems. 

Indeed, many methods have been developed and used to estimate EWRs 

internationally. These methods differ significantly in terms of the data 

requirements. For example, some methods require only hydrological data, while 

others require hydraulic and biological information.  

With the advancement of computing power, the use of numerical models for 

conducting EWRs has become widespread for rivers, lakes, estuaries and coastal 
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waters. For example, one-dimensional (1D) flow models are often used to analyse 

a river reach by breaking it into discrete cells, with each being assigned a single 

depth and velocity value. The HEC-RAS software is an example of the type of 

models capable of modelling a network of channels, a dendritic system or a single 

river reach and several simulation features have been added to the new version 4.1 

program since it was released (USACE, 2010). However, the inability of the 1D 

model to describe two-dimensional (2D) flow processes favours the use of 2D 

hydrodynamic models as predictive tools in ecological flow studies for lakes and 

reservoirs. 2D numerical modelling is a very effective method through which to 

study the ecosystem habitat requirements. The most promising aspect of 2D 

models in ecological flow studies is their potential to accurately and explicitly 

quantify spatial variations and combinations of flow patterns important to stream 

habitat (Bovee, 1996). 

Recent developments in the fields of EWRs have provided an opportunity to 

link ‘biological’ and ‘physical’ processes of aquatic habitat. Linking physical 

habitat conditions in rivers to their ecological characteristic is now a fundamental 

requirement in river management and river restoration (Bockelmann et al., 2004; 

Clifford et al., 2010). Many researchers have combined hydrodynamic and 

ecological models. For example, Nagaya et al. (2008) used a horizontal 2D 

numerical model to predict the EWRs of ayu (Plecoglossus altivelis) with the 

preference curves of the flow depth and velocity. Yi et al. (2010) developed a 

mathematical model to predict the minimum in-stream flow and suitable daily 

discharge during the reproduction season for the carp species in the Yangtze River, 

in which the habitat suitability curves were coupled with the mathematical model.  
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Overall, a major trend in EWRs assessment has been a shift from narrow 

studies which concentrate on one single method to a holistic approach. The 

categorisation and details of the EWRs assessment methods will be discussed in 

2.3.2.  

2.3.2 EWRs Assessment Methods  

2.3.2.1 Hydrologic-based methods  

Hydrologic-based methods are the methods which rely primary on historical 

flow records. They are the earliest and most widespread EWRs assessment 

methods and are generally used as preliminary estimates. The most frequently used 

methods include the Tennant Method (Tennant, 1976; Hughes & Hannart, 2003) 

and Flow Duration Curve Method (FDC) (Arthington et al., 1992a). A major 

assumption of Hydrologic-based methods is that the most frequent conditions over 

a period of record are suitable for all life history stages without any examination of 

short-duration perturbations and species responses.  As illustrated by Table 2-2, the 

general flows for different habitat quality are specified by the Tennant method: 10% 

of the average discharge is the minimum flow needed to sustain short-term survival 

habitat; 30% maintains a good quality habitat for aquatic life, whilst optimum 

habitat occurs at 60%-100%. The FDC method was developed by constructing the 

modified flow based upon set cut levels in each month. Arthington et al. (1992a) 

suggested that the 50% flow for each month represented the ideal, whereas the 20% 

flow should be regarded as the lowest flow permissible in drought years. The 

improved aspect of the FDC method is that incorporation of monthly flows allows 

for the maintenance of the natural temporal pattern of intra-annual variation. 

Furthermore, additional volumes could be added to monthly allocations to achieve 

specific ecological purposes or to accommodate for downstream abstraction or 
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diversion.  

Hydrologic-based methods are essentially desktop methods which use 

historical flow records, to evaluate suitable flows, often for fish habitats. Their 

major benefit was considered to be limited to the early reconnaissance phase of the 

allocation process and had only moderate data requirements.  

Table 2-2 Flow requirements for different habitat quality by Tennant 

Methods  

Flow 

category 

Flow in proportion of average 

discharge 
Habitat quality level 

Optimum 60-100 optimum 

Good 30 good 

Minimum 10 Survival 

Poor <10 Severe degradation 

 

2.3.2.2 Hydraulic-based methods 

Hydraulic-based methods are designed to assess the relationship between 

various conditions of physical habitat structure and discharge. Over the past few 

years the Wetted-Perimeter and R2Cross methods have represented two commonly 

applied hydraulic methods, especially in Australia (Anderson & Morison 1989; 

Davies & Humphries 1995). Hydraulic-based methods require site-specific 

physical and hydraulic data at a riffle section, such as channel geometry, average 

velocity, and mean depth over a range of discharges. An advantage of Wetted-

Perimeter methods is that they are based upon field observations and do not require 

data from a stream gauging station, thus meaning that the EWRs obtained by these 

methods can be applied in hydrologically disturbed drainage basins and at gauged 

or ungauged sites. 
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The wetted perimeter method has been used to define minimum flows for fish 

rearing in the US and Australia since the 1970s (Collings, 1974; Richardson, 1986). 

This method is based on a plot of the relationship between wetted perimeter and 

discharge. One procedure is to derive the relationship from channel cross-section 

surveys at several discharge levels. The cross-sections are often located only at 

riffle sites, or at sites where fish passage is likely to be limited. The wetted 

perimeter increases rapidly with increasing discharge, from a base level of zero 

flow before reaching an inflection point where there is a break in the shape of the 

curve (usually a logarithmic or power function). Following this, increases in wetted 

perimeter occur much more slowly until the bankfull stage is reached. This 

inflection point is taken to represent the minimum discharge. Alves (1994) defined 

the breakpoint as corresponding to a threshold discharge below which habitat 

quality becomes significantly degraded for a river in Portugal. The important break 

in the shape of the curve can be systematically defined by the point where the slope 

equals 1 or where the curvature is maximised (Gippel & Stewardson, 1998). Once 

data is collected in the field, according to hydraulic formulas (Table 2-3), the 

anticipated stream conditions at various flow rates, such as velocity, depth, and 

percent of wetted perimeter can be obtained. The wetted perimeter–discharge 

relationships and slope of wetted perimeter relationship will be determined. 

Generally speaking, there are three types of channels: “U” channel, triangular 

channel and trapezoidal channel.  Figure 2-4 illustrates the inflection point 

determination for these three types of channels using hypothetical data.  

Hydraulic data from past EWR studies were used to estimate the hydraulic 

parameters. A hydraulic sub-model was designed to produce a realistic 

representation of the hydraulic conditions using hydraulic parameters from readily 
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available information for any part of South Africa (Desal, 2012). These estimated 

hydraulic parameters were used to develop hydraulic estimation relationships and 

these relationships were developed based on a combination of regression and rule-

based procedures. 

(a) “U” type cross section  

 

 

 (b) “trapezoid” type cross section  
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 (c) “V” type cross section  
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Figure 2-4 Inflection point determination process for three types of channels 

(a) “U” type, (b) “trapezoid” type, (c) “V” type using hypothetical data  

 

Table 2-3 Hydraulic Formulas used in Wetted-Perimeter methods  

Parameters Formulas 
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J
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R
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Discharge VAQ   

2.3.2.3 Habitat simulation modelling methods 

Rather than putting arbitrary limits on what is considered ‘good’ or ‘optimum’ 

maintenance of habitat based on proportions of the average discharge, habitat 

modelling methods seek to define the relationship between the discharge and the 

amount of habitat which is provided. Indeed, a habitat simulation model can be 

used to simulate a relationship between stream flow and physical habitat for an 

aquatic species (Marsili-Libelli, 2013). The habitat simulation model is generally 
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categorised into two types: microhabitat model and mesohabitat model. The 

Physical Habitat Simulation System (PHABSIM) is a microhabitat model, which 

requires detailed hydraulic and morphological surveys, and knowledge of habitat 

preferences for the species of interest. Developed by the US Fish and Wildlife 

Service, it has been used throughout the USA since the 1970s (Milhous et al., 1984) 

and is currently in use worldwide. The hydraulic and habitat simulations of a 

stream reach using defined hydraulic parameters and habitat suitability criteria are 

the two basic components of PHABSIM. It requires the collection of field data on 

stream cross-sections and fish habitat features, hydraulic simulation to evaluate 

habitat variables at different flows, and species suitability criteria to calculate 

stream characteristics with available habitat at alternate flows. The output of the 

habitat modelling in PHABSIM is an index, known as Weighted Usable Area 

(WUA), with the dimension of an area (Waddle, 2001). It represents an area 

weighted for the aquatic species preference. The function WUA versus the 

discharge can be considered as the transfer function which transforms the 

hydrologic information into biological information (Figure 2-5). In actual fact, the 

main result of the application of habitat simulation is not the definition of a value 

for stream flow, but rather an estimation of the response of the aquatic ecosystem 

to different flows.  
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Figure 2-5 Variation of WUA with discharge for various scenarios 

Based on PHABSIM, MesoHABSIM, which modifies the data acquisition 

technique and analytical approach of similar models by changing the scale of 

resolution from micro- to meso scales, was developed during a restoration study of 

the Quinebaug River (Parasiewicz, 2008). The greatest advantage of the 

MesoHABSIM method is its ability to quickly collect detailed information about 

physical conditions from long river sections. This allows a reduction in second 

stage error caused by extrapolation, when compared with hydraulic simulations 

using microhabitat approaches (Parasiewicz, 2007). 

2.3.2.4 Holistic methods 

Hughes & Louw (2010) pointed out that accurate hydrological and hydraulic 

data, together with a sound understanding of the ecosystem dynamics is referred to 

as the ‘holistic’ method. It should be emphasised that the holistic method is not a 

set of well-defined methods, but rather a framework capable of incorporating a 

range of methods. This method has provided an opportunity to combine data and 

knowledge from all the relevant disciplines so as to produce flow-related scenarios. 
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has become the most promising holistic method for EWRs consideration (King et 

al., 2003). It is a structured process for combining data and knowledge from a 

variety of different disciplines to produce flow-related scenarios for the 

consideration of water managers.  

As illustrated by Figure 2-6, the procedure consists of four modules: 

biophysical module, sociological module, scenario development and economic 

module. DRIFT has been used to assess the EWRs in a semi-arid region in South 

Africa where water-supply problems are pressing (King et al, 2003).  The trade-

offs are thoroughly considered by decision makers along with the macro-economic 

assessment. DRIFT provides a tool for holistic methods which links the natural and 

subsistence components of river ecosystems which are rarely considered in water-

resource developments, to potential human and ecosystem costs.   

Module 1- BIOPHYSICAL

· Describe the nature and 

functioning of the river

· Develop capacity of flow 

related changes

Module 2-SOCIOLOGICAL

· Describe river use and 

health profiles

· Develop capacity of social 

impact of river changes

Module 3- SCENARIO DEVELOPMENT

· Identify possible future scenarios

· Describe biophysical consequences of 

each

Module 4- ECONOMIC

· List compensation and 

mitigation costs.

DRIFT output to decision maker
 

Figure 2-6 Schematic description of DRIFT procedure 
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2.3.2.5 Summary of the EWRs assessment methods 

Each method has its advantages and disadvantages. Hydrologic-based methods 

are inexpensive and easy to implement. In contrast, hydraulics-based methods 

provide river-specific data (water depth, velocity and wetted perimeter) and are 

relatively simple to apply, although they fail to indicate the significance of changes 

in the physical conditions for the aquatic biota. Habitat simulation model methods 

and holistic methods involve high resolution characterisation of habitat availability 

for target organisms and are flexible when it comes to the assessment of different 

flow scenarios, although they are resource and time intensive (King et al., 2003). 

Overall, there is no straightforward way to select a method by which to determine 

EWRs and evaluate the validity of the results from a particular method. The choice 

of a method is mainly determined by the data available and the type of issues to be 

addressed. However, the holistic methods which incorporate a range of different 

methods mark an advance for EWRs consideration. The development of the EWRs 

will be towards a more holistic consideration of the interactions between landscape, 

hydrology, the riverine biota and even economics.  

2.4 Summary of Literature Review 

The review of past Eco-City work reveals that the Eco-City concept has been 

proliferating around the world, including USA, Europe, and Asia. To apply 

sustainability to Eco-Cities, theoretical research has been conducted in order to 

develop a better understanding of the city concept. It was also found that in terms 

of environmental sustainability, there has been a considerable amount of research 

conducted over the years related to the EWRs. Previous studies have exerted 

significant effort when it comes to the water quantity aspect of EWRs research. 

Although water quantity plays an important role in the diversity of freshwater 
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species, the influence of water quality on habitat availability should also be 

considered in EWRs. Overall, both water quantity and quality have to be protected 

in order to promote sustainable water use and to contribute to the conservation and 

restoration of water-dependent ecosystems.  

Water supply from non-traditional sources could be considered as an 

additional water resource to meet the ERWs in streams during low flow periods. 

Over the past decades non-traditional water has been increasingly used for 

landscape irrigation in urban areas. Ongoing research is being conducted to 

evaluate the expanded use of non-traditional water in many aspects. This can be 

from collecting and storing water run-off in cities and using it for secondary 

purposes to provide efficient flow augmentation of surrounding landscapes.   

Although much work on the assessment of ERWs has already been conducted, 

this study has identified that the water quality aspects of ERWs still require further 

research while improvements on the expanded use of non-traditional water 

resources are still possible. There is continuing research in all areas relating to 

sustainable water management in Eco-Cities and understanding both past and 

present research will enable the thesis objectives to be achieved. 
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CHAPTER 3   NON-TRADITIONAL WATER SUPPLY 

AND EWRs IN TIANJIN ECO-CITY 

As mentioned in Chapter 2, there are major opportunities to use non-traditional 

water in Eco-Cities. Exploring ways in which to reduce demand for surface water 

is essential to ensuring a sustainable future for the Eco-City. This Chapter takes 

Tianjin Sino-Singapore Eco-City, shortly to be Tianjin Eco-City, as an example to 

present the determination of non-traditional water supply and the evaluation of the 

EWRs in the Eco-City. Firstly, in order to estimate the potential non-traditional 

water supply in Tianjin Eco-City, 1) historical annual rainfall records from 1956 to 

2000 of the Eco-City area were obtained from the Fangchaozha gauging station 

and were analysed to determine the potential rainwater harvesting in the Eco-City; 

2) monthly industrial and domestic effluent data from Tianjin Eco-City 

Management Committee (TEMC, 2008) were used to estimate the reclaimed 

wastewater collection. Secondly, differing from regular volume of typical domestic 

and industrial water consumptions in the Eco-City, the minimum EWRs of the 

Eco-City river system should be estimated with a concrete and very clear answer 

regarding how to maintain basic ecological characteristics which are capable of 

providing environmental use and recreational services. In this study, an improved 

wetted perimeter method, multiple transect method, were used to estimate the 

minimum EWRs based on the available data for the 8 selected cross sections of the 

river system.  
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3.1 Introduction of Tianjin Eco-City 

3.1.1 Location of Tianjin Eco-City 

The Eco-City, which is located 40 km from Tianjin city centre and 150 km 

from Beijing city centre has a total land area of 34 km
2
. Prior to the development 

of the Eco-City, the site comprised mainly saltpans, barren land and polluted 

water-bodies, including a 2.6 km
2
 wastewater pond. The Singapore and Chinese 

government jointly started this Eco-City project in 2007. When fully completed in 

around 2020, it will have 350,000 residents. The start-up area is scheduled for 

completion by the end of 2013. Figure 3-1 shows the location and master planning 

diagrammatic sketch of Tianjin Eco-City. The main centre of the Eco-City is 

located along the lower reach of Jiyun River, Northern China. It has been planned 

for a variety of uses, including commercial, environmental and recreational. The 

study area in the Eco-City covers an old reach and a new reach of the Jiyun River 

as well as an artificial lake (latitude 39°06  ́N to 39°11  ́N, longitude 117°43  ́E 

to117°47  ́E , see Figure1). The old reach is a historical 1000-year-old river course 

with a total length of 10.7 km and an average water depth of 2.1 m. The artificial 

lake was once a wastewater pond with an average water depth of 2.0 m. The vision 

is to build "a thriving city which is socially harmonious, environmentally-friendly 

and resource-efficient - a model for sustainable development". Environmental 

sustainability will be the key feature of the Eco-City.  
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Figure 3-1 Location of the Eco-City and master planning diagrammatic sketch  

3.1.2 State of Municipal Water Supply and Consumption in Tianjin   

A survey on urban water supply and consumption is judged as a necessary 

starting point to achieving efficient water planning and management in the Eco-

City. The municipal water supply and consumption status in Tianjin was achieved 

by the Tianjin Water Authority (2010). The state of municipal water supply and 

consumption in Tianjin is presented in Figure 3-2. The surface water, which 

provides more than 80% of water for urban use is the main water resource, while 

recycled water constitutes only 4% of total water supply. Industrial demand and 

public use consumes over half of total municipal water use. Domestic demand is 

approximately 18%, with the environmental use representing the remaining 6% of 

the total supply. However, as the Eco-City is located in a water-deprived area with 

salty land, scarce vegetation, unfavourable natural conditions and fragile ecology, 
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surface water from rivers flowing through the region will not be able to meet the 

needs of the Eco-City. Indeed, careful future planning is needed so as to ensure 

reliable water supplies are available for everyone whilst protecting the natural 

environment in the Eco-City. To reduce its reliance on surface water sources, the 

Eco-City will draw a significant part of its water supply from other water resources. 

As shown in Figure 3-2, the recycled water supply is at an embryonic stage and 

therefore has a huge potential for water use in the Eco-City. The target is that at 

least 50% of water supply in the Eco-City will be from non-traditional water 

sources such as rainwater, recycled domestic and industrial wastewater, and 

desalinated water by 2020. Among all the water consumptions in the Eco-City, 

adequate water allocation to the fluvial and lacustrine ecosystem is particularly 

important with regard to maintaining ecological characteristics which are capable 

of providing environmental use and recreational services. The content of the 

following sections of Chapter 3 will cover non-traditional water supply and 

consumption estimation, with particular focus on the water requirements of the 

fluvial and lacustrine ecosystem in the Eco-City. 

  

Figure 3-2 municipal water supply and consumption in Tianjin in 2010 
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3.2.1 Estimation of Rainwater Harvesting  

The Eco-City is located in an area which has semi-humid continental monsoon 

climate, low rainfall in most parts of the area in winter and high rainfall and 

temperatures in summer. The long term series of historical annual rainfall records 

from 1956 to 2000 of Tianjin city and every district have been obtained from 

Fangchaozha Gauging Station. Missing annual data were estimated by considering 

data corresponding to neighbouring gauges. Annual rainfall of the Tianjin city and 

the Eco-City area were compiled and plotted in Figure 3-3a. It can be seen that the 

distribution of annual amounts of rainfall in the Eco-City area varies. The 

maximum rainfall was recorded in the year 1964 with values reaching 1170mm 

while the minimum rainfall, 318mm,  was recorded in the year 1968.  The average 

annual rainfall of 639 mm, was then obtained and presented in the figure with the 

dashed line. Besides the annual distribution of rainfall, the monthly amounts of 

rainfall within one year were analysed and are shown in Figure 3-3b. The most 

significant feature, as can be noted, is that the rainfall is unevenly distributed 

within one year, with 82.7% of rainfall amounts concentrated in the rainy season, 

which generally begins in June and lasts until September. The largest monthly 

rainfall amount of 224 mm was observed in July, followed by August and June 

with the rainfall measuring 170mm and 87mm respectively.  
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Figure 3-3 Annual (a) and average monthly (b) rainfall of the Eco-City area 

The rainwater harvesting from a catchment surface is estimated using the 

following equation (Environment Agency, 2010):  

          (3-1) 
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The equation of rainfall intensity for Tianjin is given as (Tianjin Water 

Authority, 2010): 

                      (3-2) 

where    - Return period, a 

             – Duration, minute 

Given the master plan of the Eco-City which measures 34.2km
2
, the volume of 

harvested rainwater in an average year could be determined based on Equation 3-1 

and Equation 3-2.   

According to the master plan of the Eco-City, the catchment area for roofs, 

lawns, downtown areas, drives and walks, and waters is 10.96 km
2
, 8.49 km

2
, 5.39 

km
2
, 2.64 km

2
, and 6.69 km

2
 respectively. Figure 3-4 illustrates the percentage of 

each type of catchment area. It can be seen that the area of roofs accounts for 32% 

of the entire Eco-City area, followed by lawns at 25%.  Impervious catchment 

surfaces such as roofs or non-porous pavement can lose 5% to 25% of the rain 

which falls on them due to evaporation and minor infiltration into the catchment 

surface itself (Tianjin Water Authority, 2010). The more porous or rough the 

catchment surface, the more likely it will be to retain or absorb rainwater. Herein, 

runoff coefficient, specifically the percentage of rainfall which appears as storm 

water runoff from a surface runoff, is used to reflect the ratio of rainfall to surface.  

Table 3-1 below shows some runoff coefficients  from GB50015-2009, for 

Water and Drainage Design Standard for Building in China, although these are just 

rough estimates since runoff rates are also affected by rainfall intensity and 

duration. Generally speaking, larger areas with permeable soils, flat slopes and 
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dense vegetation should have the lowest runoff coefficient values. Smaller areas 

with dense soils, moderate to steep slopes, and sparse vegetation should be 

assigned the highest runoff coefficient values.  

Table 3-1 Values of Runoff Coefficient ( ) for Rational Formula (GB50015, 

2009)  

Land use Runoff Coefficient ( ) 

Downtown areas  0.70 - 0.95 

Lawns with Sandy soil 0.10 - 0.15 

Lawns with Heavy soil 0.18 - 0.22 

Playgrounds 0.20 - 0.35 

Drives and walks 0.75 - 0.85 

Railroad yard areas 0.20 - 0.40 

Roofs  0.75 - 0.95 

 

Table 3-2 Average rainfall intensity in Tianjin Eco-City (mm) 

Month 1 2 3 4 5 6 7 8 9 10 11 12 

Rainfall 2.6 5.8 8.1 24.8 32 87.2 224.3 170.9 46.2 23.3 10.6 3.4 

 

Figure 3-4 Master plan of the Eco-City 

Based on the values of runoff coefficient for the rational formula shown in 

Table 3-1and rainfall intensity in Table 3-2, a realistic estimation of the volume of 
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use of Equation 3-1. Assuming that the loss of water which occurs on the 

catchment surface is at the high end of the range, then a runoff coefficient of 0.75 

for roofs, 0.10 for lawns, 0.70 for downtown areas and 0.75 for drives and walks, 

were used for the minimum rainwater harvesting, while the maximum rainwater 

harvesting was obtained by using the highest value of runoff coefficient in this 

study. The maximum and minimum monthly rainwater harvesting amounts are 

presented in Table 3-3, from which it can be seen that uneven temporal distribution 

of rainfall results in a significant difference in terms of monthly rainwater 

harvesting amounts. More than 80% of rainwater that can be harvested from June 

to September with the highest amounts reaching 4027×10
3
m

3
 in July.  

Once collected and stored, harvested rainwater can be used for non-potable 

domestic purposes. With regards to rainwater, typical domestic use is taken into 

account in the Eco-City. This includes toilet flushing, garden watering and clothes 

washing using a washing machine. In order to evaluate the extent to which the 

harvested rainwater should be utilised for domestic purposes, the monthly water 

consumption in the Eco-City is also estimated using the following equation: 

                            (3-3) 

where    – total water consumption, m
3
; 

   -number of people in residence, 35×10
4
 

    -water consumption per capital per day, L/d 

The estimated results are listed in Table 3-4 based on the statistical water 

consumption per capital per day by TEMC (2008). It can be seen from the table 

that the monthly water consumption in the Eco-City varies over a range of 

1008×10
3
m

3
 to 1638×10

3
m

3
 which occurs in June. Generally speaking, the water 
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consumption in summer is larger than that in winter. People use more water for 

cooling and recreational services due to the high temperature in summer. Figure 3-

5 compares monthly harvested rainwater and domestic water consumption. It was 

found that the total harvested rainwater from June to September is 8.66×10
6
m

3 

while the domestic water consumption is 4.66×10
6
m

3
. The figure demonstrates that 

rainwater has a great potential for domestic use in the Eco-City from June to 

September which not only mitigates the impacts of flooding during the rainy 

season but also reduces the need for general surface water resources.  

 

Figure 3-5 Comparison of harvested rainwater and water consumption in the 

Eco-City 

Table 3-3 Monthly rainwater harvesting in the Eco-City (10
3
m

3
) 

Month 1 2 3 4 5 6 7 8 9 10 11 12 

Minimum 38.5 85.9 120.1 367.6 474.3 1292 3325 2533 684.8 345.4 157.1 50.39 

Maximum 46.7 104.1 145.4 445.3 574.5 1566 4027 3068 829.5     418.3 190.3 61.04 

 
Table 3-4 Monthly domestic water consumption in the Eco-City (10

3
m

3
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Month 1 2 3 4 5 6 7 8 9 10 11 12 
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3.2.2 Estimation of Reclaimed Domestic and Industrial Water 

As mentioned in Chapter 2, wastewater reclamation and reuse is an essential 

component of water resource management plans in the Eco-City. The volume of 

the reclaimed wastewater can be estimated using the following equations 

(GB50015, 2009):   

            (3-4a) 

                             (3-4b) 

where     - reclaimed domestic wastewater volume; 

            - Population served; 

             -  Average water consumption, litres per person 

              - Domestic wastewater return factor (≈0.8) 

    -  Reclaimed industrial wastewater volume 

    -  Industrial water consumption 

    - Industrial wastewater return factor (≈0.9) 

 

Figure 3-6 Monthly Reclaimed water volume 
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Based on the data from the TEMC (2008), the monthly domestic and industrial 

effluents amounts are listed in Table 3-5. Return factor is generally used to reflect 

the reclaimed ratio of wastewater to reclaimed water. The values for    =0.8 and 

   =0.9 have been used in Tianjin Eco-City (GB50015, 2009). Reclaimed 

wastewater volume are then determined from the domestic and industrial water 

consumption and presented in Table 3-5 and Figure 3-6. Reclaimed wastewater is 

commonly used to maintain constructed wetlands, enhance natural wetlands, and 

sustain or augment stream flows. In this study, reclaimed wastewater is considered 

to augment stream flows during the low flow periods in the Eco-City.  

3.2.3 Estimation of Desalinated Seawater 

In Tianjin, a combination desalination and coal-fired power plant is designed 

to alleviate Tianjin's critical water shortage. The facility has the capacity to 

produce 200,000 m
3 

of potable water per day (Watts, 2011). Therefore, in the Eco-

City, which is located in the coastal area, seawater desalination offers a promising 

option to enable the exploration of seawater with a view to producing high quantity 

and quality non-potable water as regular water supply.  
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Table 3-5 Monthly Reclaimed water volume (10
3
m

3
) 

Category 
Month 

1 2 3 4 5 6 7 8 9 10 11 12 

Domestic  

Domestic effluents 806.4 862.4 918.4 974.4 1142 1310 1243 1176 1109 1042 974.4 907.2 

Return factor 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 

Reclaimed volume 645.1 689.9 734.7 779.5 913.9 1048 994.6 940.8 887 833.3 779.5 725.8 

Industrial  

industrial effluents 2722 2911 3100 3289 3856 4423 4196 3969 3742 3515 3289 3062 

Return factor 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 

Reclaimed volume 2449 2620 2790 2960 3470 3980 3776 3572 3368 3164 2960 2756 

Total 3095 3309 3524 3739 4384 5029 4771 4513 4255 3997 3739 3481 
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3.3 Determination of EWRs 

3.3.1 Minimum EWRs Determination 

The urban river-lake system is one of the most important components of the 

Tianjin Eco-City. Maintaining particular ecological characteristics which are able 

to provide environmental use and recreational services is of significant importance 

to citizens living in the Eco-City. As shown by Figure 3-1, the Eco-City is located 

along the Jiyun River in a coastal area, which is 5km from the Bohai bay. The 

study area includes an old reach and a new reach of the Jiyun River which is 

10510m, and an artificial lake. This section focusses on the issue of minimum 

EWRs. Indeed, a certain level of water must be left in the Jiyun River and the lake 

to protect the basic ecological function of water resources. The assessment of the 

minimum EWRs of the river system in the Eco-City is a precondition for the 

deployment of non-traditional water for river rehabilitation. The adequacy of the 

calculated minimum flow was then compared with the historical record flow 

collected from the gauging station. The ecological function could then be retrieved 

via non-traditional water augmentation.  

 

Figure 3-7 Location of the selected 8 cross sections in the Jiyun River  
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main methodologies used to estimate the EWRs. However, the choice of a method 

is mainly determined by the data available and the type of issues to be addressed. 

In this study, an improved wetted perimeter method, multiple transect method, was 

used based on the available data for the 8 selected cross sections. The relationship 

between wetted perimeter and discharge is often used as an expedient technique for 

determining the minimum flow allowable for environmental purposes, as pointed 

out in Chapter 2. The locations of the cross sections are shown in Figure 3-7. The 

multiple transect method is an attempt to rectify the problems associated with a 

reliance on a single transect. A series of transects were implemented within the 

Jiyun River and variables such as velocity, depth, and wetted perimeter were 

obtained. The wetted perimeter–discharge relationships and the maximum 

curvature (Kmax) were determined for each cross section (see Figure 3-8). A power 

function could be fitted to the wetted perimeter data. The correction coefficients R
2
 

were calculated and it was found all of the cross sections showed power 

relationships between discharge and water perimeter with the value of R
2
 being 

above 0.99. The discharges at the breakpoints corresponded to the minimum flow 

levels required to maintain the ecological function for the water dependent 

ecosystems. Below this discharge, riffle areas became exposed and unproductive, 

stream bank cover for fish diminished, the water quality decreased and fish 

overcrowding was possible.   
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Figure 3-8 Wetted Perimeter–Discharge relationships and the maximum 

curvature for 8 cross sections of Jiyun River （continued） 
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Figure 3-8 Wetted Perimeter–Discharge relationships and the maximum 

curvature for 8 cross sections of Jiyun River  
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Table 3-6 Minimum EWRs suggested by breakpoints of the wetted perimeter 

Cross 

sections 

Distance from upstream 

(m) 

Max 

curvature 

Minimum 

flow(m
3
/s) 

CS1 1000 0.018 9.37 

CS2 2180 0.012 14.60 

CS3 3000 0.014 13.00 

CS4 4000 0.011 18.69 

CS5 4500 0.012 14.56 

CS6 6200 0.013 10.46 

CS7 7400 0.009 16.56 

CS8 8400 0.013 12.00 

 

The minimum EWRs determined from the calculations are listed in Table 3-6. 

It was found that the wide range of cross-sectional shapes along the Jiyun River 

resulted in different breakpoints for individual transects and therefore occurred 

over a range of discharges. As shown in Figure 3-7, CS5, CS6 and CS8 are located 

in old reach while the left 5 transects are located in the new reach. The minimum 

flow was calculated for the old reach and new reach respectively. In order to meet 

the ecological functions for the whole river system, the minimum EWRs should be 

described by the cross sections of all the above EWRs:  

                         )            )            )) 

where         is the minimum EWRs for the river system;            ) is 

the minimum EWRs for cross section n. From Table 3-6, it can be concluded that 

the minimum EWRs for the old reach and the new reach are slightly different with 

a discharge of 14.56m
3
/s for the old reach while 18.69 m

3
/s for the new reach of 

Jiyun River.  
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3.3.2 Flow Augmentation to meet the Minimum EWRs by Reclaimed Water      

Once the minimum EWRs were determined, the balance between the 

minimum EWRs and the natural flow could be evaluated, following which the 

amount of augmented flow required for the ecological rehabilitation by reclaimed 

water was estimated. The flow conditions for old reach and new reach are provided 

in Table 3-7. In this table, the measured monthly flow is acquired from 

Fangchaozha hydrologic gauging station. The monthly ET flow was calculated by 

dividing the monthly evapotranspiration (TEMC, 2008) by time (see Figure 3-9). 

The total annual water percolation volume for the Jiyun River was 43.4×10
4
m

3 

(TEMC, 2008) and therefore the average monthly percolation flow was obtained 

and listed in Table 3-7. Herein, the final minimum EWRs are the calculated EWRs 

by multiple transects method added by the ET flow and percolation flow. Figure 3-

10 compares the monthly measured flow and the total minimum EWRs for the old 

and new reach of Jiyun River. It can be seen from the figure that the current flow 

conditions were satisfactory, with the exception of the flow in January to March. 

The total Min EWRs in January, February and March were 33.2 m
3
/s, 33.3m

3
/s, 

and 33.6m
3
/s respectively, while the measured flows from January to March 

ranged from 15.24 m
3
/s to 30.29 m

3
/s. The amount of reclaimed water needed, 

82.9×10
6
 m

3
, was determined by multiplying the time by the balance between the 

measured flow and the total minimum EWRs. As shown by the reclaimed water 

calculation in Section 3.2.2, although the potential reclaimed water collected in 

January could not meet the EWRs, the ecological function could be retrieved by 

flow augmentation from the volume stored in November and December.  
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Table 3-7 Monthly flow conditions for the old and new reach of Jiyun River 

(Unit: m
3
/s) 

Mont

h 
ET flow 

Percolation 

flow 

Measured 

Flow 

min EWRs-old 

reach 

min EWRs-new 

reach 

1 0.07 0.014 15.24 14.64 18.77 

2 0.10 0.014 22.51 14.67 18.80 

3 0.18 0.014 30.29 14.75 18.88 

4 0.29 0.014 35.67 14.87 19.00 

5 0.33 0.014 48.18 14.91 19.04 

6 0.32 0.014 60.70 14.90 19.03 

7 0.27 0.014 66.74 14.84 18.97 

8 0.24 0.014 60.70 14.82 18.95 

9 0.23 0.014 35.40 14.80 18.93 

10 0.17 0.014 37.43 14.75 18.88 

11 0.11 0.014 41.13 14.68 18.81 

12 0.07 0.014 30.95 14.64 18.77 

 

 

Figure 3-9 Monthly evapotranspiration of the Jiyun River (TEMC, 2008) 
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Figure 3-10 Comparisons of the monthly measured flow and the minimum 

EWRs      

3.3.3 Water Quality Requirements 

According to the China National Environmental Quality Standard for Surface 

Water, there are five classes of surface water quality standards (GB3838-2002). 

Grades III, IV, and V are suitable for ecological water use. The reclaimed water 

needed for the EWRs should meet these standards (see Table 3-8).  

Table 3-8 The major water quality standards for ecological water use (mg/l) 

Criteria 
Class of water 

Grade Ш Grade IV Grade V 

DO≥ 5 3 2 

BOD5≤ 4 6 10 

COD≤ 20 30 40 

CODMn≤ 6 10 15 

NH3-N≤ 1.0 1.5 2.0 

TP≤ 0.2 0.3 0.4 

TN≤ 1.0 1.5 2.0 

TC(MPN/100ml) ≤ 200 500 1000 
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3.4 Summary 

In order to explore ways in which to reduce demand for surface water 

resources, using the Tianjin Eco-City as a case study, the potential of non-

traditional water resources was studied in this chapter. An initial estimation was 

made regarding how much potential non-traditional water could be attained from 

the Eco-City.  

It was found that rainwater has a great potential for domestic use in the Eco-

City from June to September. Secondly, and differing from other water 

consumption, ecological demand of the river system in the Eco-City was 

emphasised and analysed by minimum EWRs determination. An improved wetted 

perimeter method was used in order to determine the minimum EWRs in the river 

system. The estimated results showed that current monthly flow conditions were 

satisfactory, with the exception of January to March. As a major non-traditional 

water resource, the reclaimed domestic and industrial water needed to fulfil the 

basic ecological function was determined. The reclaimed water allocated to the 

Jiyun River system should meet the key quality standards so as to maintain the 

river quality. In reference to this point the ecological water quality requirements 

will be discussed in Chapter 6.  
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CHAPTER 4   EXPERIMENTAL INVESTIGATION 

4.1 Introduction 

As illustrated by Figure 3-1 in Chapter 3, the artificial Lake, old reach and 

new reach of Jiyun River are the three water features which provide habitats to 

wildlife, allow for recreational activities for the residences, and add to the aesthetic 

value of the entire Eco-City. The quantity and quality of the water is of vital 

significance when it comes to maintaining these functions in the Eco-City. The 

minimum EWRs of the Jiyun River in the Eco-City were assessed in Chapter 2 and 

the non-traditional water resources, which have a great potential for environmental 

usage during low flow periods, were taken into account. However, with the overall 

goal of maintaining healthy ecosystems and fostering a more sustainable use of 

water resources, efforts should also be put into controlling and preventing water 

quality problems in the artificial lake which measures 1.47km
2
 in the Eco-City. 

Long residence times and low mixing of water in lakes has been known to result in 

severe water quality problems, such as overgrowth of phytoplankton. There would 

be a danger of oxygen depletion when water visibility is limited to less than 12 

inches, which is caused by overgrowth of phytoplankton (Allen et al, 2013). These 

dense blooms use large amounts of dissolved oxygen, which usually leads to 

population reductions of fish species and other animals.  

In this chapter, an idealised river-lake system was assessed by hydraulics 

laboratory experimentation. The river-lake system of this study was inspired by the 

Jiyun River and the artificial lake at the site of the Tianjin Eco-City 
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(www.tianjinecocity.gov.sg) (see Figure 3-7). A water diversion scheme was 

implemented to simulate lake flushing by river water in dry periods and under 

augmented flows. Connectivity with the Jiyun River through a controlled water 

diversion scheme can potentially enhance lake water quality, as an increased 

flushing rate will assist, for example, the washout of phytoplankton and nutrients. 

In this study, the hydraulic performance of the river- lake system could be analysed 

using hydraulic tracer studies. Fluorescent tracer experiments were conducted 

using rhodamine WT, a fluorescent dye which has a particularly low rate of decay, 

to assess the performance of different parts of the system before and after 

implementing the diversion scheme. Tracer experiments provide tracer passage 

curves from which characteristics of stream transient storage, and residence time 

distributions (RTDs), can be estimated. The use of tracers to infer hydrological 

processes has become increasingly common in catchment hydrological and 

hydraulic studies. A basic assumption of hydraulic tracer studies is that the chosen 

tracer is conservative and thus represents the water flow through a river, lake or 

other water body. For instance, Laenen & Bencala (2001) summarised a number of 

tracer experiments undertaken in streams to estimate key water quality parameters 

throughout the Willamette River basin, in the USA. Bernhard et al. (2010) took a 

similar approach to characterising solute transport of a small stream in Austria with 

transient storage, across a range of flow rates. The presence of preferential flow 

paths and dead zones can be identified through the introduction of a tracer at the 

inlet followed by spatial monitoring of tracer concentrations throughout the 

streams. The tracer is likely to be detected in preferential flow paths before it 

arrives in low-flow areas or dead zones within the streams. The tracer is also likely 

to remain in back-waters and low-flow zones for longer periods of time when 
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compared to preferential flow channels. Spatial tracer monitoring can be conducted 

along longitudinal, lateral and vertical profiles to gain an insight into the 

distribution of flow velocities, preferential flow paths and mixing characteristics as 

water moves through the system (Grismer et al., 2001).  

This experimental study was aimed at characterising an idealised river-lake 

system, and more specifically its ability to divert water. The study also aimed to 

assess the impacts of water diversion and flow augmentation on the mixing and 

flushing processes in the lake. Detailed descriptions of the experiment procedure 

and the general tracer data observed will be provided in this chapter. The chapter 

will conclude with a discussion of the experimental data processing and analysis.  

4.2 Experiment Setup  

4.2.1 Physical Model Design 

For the physical model, Froude Number similarity must be maintained. This is 

accomplished by letting pm FrFr   when scaling the flow dynamics. Because the 

properties of most turbulent flows do not change significantly with changes in 

Reynolds number Re, the similarity constraint on Re is often relaxed in hydraulic 

model studies of flows with free surfaces.  

The specific scales for the physical model are as follows.  

 

1
p

m

Fr

Fr
                (4-1) 

where mFr , pFr  are the Froude Numbers of the physical model and the prototype 

respectively.  

The schematised prototype and physical model are shown in Figure 4-1.  
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Figure 4-1 Schematic illustration of a) real and b) idealised version of the 

river-lake system 

A physical model was then designed and constructed in a 10 m long, 1.2 m 

wide flume of the Hyder Hydraulics Laboratory at Cardiff School of Engineering, 

UK (see Figure 4-2). Flow straighteners were placed at the inlet section to mitigate 

the occurrence of swirls and inflow asymmetry. An adjustable-height rectangular 

sharp-crested weir was used at the flume outlet section to control the water depth 

in the model. A closed hydraulic circuit was used, which included a reservoir, 

centrifugal pumps, return pipes and flow metres. The model was built out of 12 

mm thick PVC sheets. As shown in Figure 4-1b, Paths 1 and 3 corresponded to the 

two river reaches, while Path 2 was the simulated lake. The lengths and widths of 

the corresponding channels were determined based on the available flume space 

and by preliminary numerical model testing. The lengths of Paths 1 and 3 are 

776cm and 1626cm respectively. The length of the lake is 404cm and the width is 

64.8cm, which is ten times that of the lake inlet. This also involved different water 

depths and flow rates, targeted at meeting the design conditions mentioned above. 
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The serpentine configuration of Path 3 was generally associated with the 

meandering “old reach” of the Jiyun River, while Path 1 was relatively straight, as 

the corresponding “new reach” of the river. Figure 4-3 shows the top view of the 

physical model in the flume. The bed slope was set to 1/2500 and the bed surface is 

smooth glass. The feasibility and applicability of the distorted model has been 

discussed in the following section of this chapter.  

 

Figure 4-2 Flume used in the experiment 

 

Figure 4-3 Top view of the physical model built in the flume  
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4.2.2 Data Measurement Methods 

In this study, the designed experiments included the hydraulic parameters 

measurements and the tracer concentration measurements. The data collection 

equipment used in this study will be discussed in the following section.  

4.2.2.1 Flow Metre 

The total inflow rate to the river-lake system model was obtained from the 

Ultrasonic flow metre (Figure 4-4) which measures flow based on the difference in 

time it takes for an ultrasound wave to travel upstream versus downstream. The 

water in the flume is supplied by the motor-driven pump and its output frequency 

is determined by the SIMENS Micromaster 430. The outflow from the flume flows 

to the ground tank and then back to the head of the flume again.  

 

Figure 4-4 Ultrasonic flow metre 

4.2.2.2 Acoustic Doppler Velocimetre 

The velocity measurement was carried out by the Acoustic Doppler 

Velocimetre (ADV) (Figure 4-6a) which is designed to record instantaneous 

velocity components at a single-point with a relatively high frequency. The 

advantage of using this device relies on its ability to adequately measure the 

velocity components (x, y, and z) of flowing water. The ADV was positioned on a 
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movable truss in the direction of the X-axis arrow. The vertical movement was 

enabled by a sliding scale, thus making it possible for the probe to be placed at any 

depth with in the flow. As shown in Figure 4-5, the arm with the marking defines 

the x-direction. The Z-direction is towards the electronics of the vectrino. In XYZ 

coordinates, a positive velocity in the X-direction goes in the direction of the X-

axis arrow. Measurements are performed by measuring the velocity of particles in 

a remote sampling volume based upon the Doppler. The manufacturer’s 

specifications state that the measuring accuracy of the ADV is 1% of the average 

velocity. Velocity range 0.3m/s is set to cover the range of the velocities 

anticipated during the data collection. 

 

Figure 4-5 XYZ coordinates of the probe 

Correlation was monitored during data collection and gave a numeric value to 

the quality of the velocity data. Poor correlation can be due to many reasons, such 

as, the velocity range being too high or the probe not being submerged. The 

Correlation and Signal-to-Noise ratio (SNR) was used to measure the strength of 

the echo from the acoustic pulse. The velocity will show significant short time 

variability when the echo is not sufficiently powerful to allow proper calculation of 

the frequency shift. Ideally, the correlation should be above 70% and a level of 15% 

SNR must be maintained to give satisfactory velocity values. 

4.2.2.3 Point Gauge  

The measurement of steady state water depth was needed during this 
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experiment. This was done using a point gauge with an accuracy of 0.1mm. A 

small point was manually adjusted to slide up and down to touch the water surface, 

and a reading was taken of the vertical movement using a vernier which eliminates 

observation errors (Figure 4-6b).  

        

(a)                                                                              (b) 

Figure 4-6 Velocity and Water Depth measurement apparatus (a) ADV (b) 

Point Gauge 

4.2.2.4 Fluorometre 

The tracer concentration was measured by using the CYCLOPS-7 Submersible 

Fluorometre (Figure 4-7). From September of 2011 to April of 2012, a series of 

tracer experiments were conducted on the river-lake network model described 

above. Since the water in the flume was recirculated, the background 

concentrations at the inlet of the channel were measured during each experiment in 

order to take its concentration away from the measured value for data analysis.  
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Figure 4-7 CYCLOPS-7 Submersible Fluorometre  

Sensors connected to the DataBank require calibration and auto setup to 

function properly. Instrument reading for dyes is proportional to standard solution 

concentration (linear) from the lowest detectable level up to a certain concentration. 

Above this concentration, a multipoint calibration curve may be used to obtain 

concentration. Following this, at a certain concentration, the curve flattens out and 

eventually became nonlinear. Three fluorometres were used in the experiments, 

and the calibration results are shown in Figure 4-8. It can be easily seen from the 

graph that Rhodamine WT is linear to around 100ppb, thus meanings that the 

maximum measured concentration during the experiment should be around 100ppb. 

 
Figure 4-8 Fluorometers calibration 
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4.3 Tests 

Figure 4-1b illustrates the schematised view of the flume with designed 

channels. In order to obtain the uniform flow, straighteners were adopted at the 

inlet to maintain uniform flows entering the flume. The water flows through the 

straightener into the flume and an adjustable weir was set up at the end of the 

flume to control the water level in the flume. Point A is located at the centre of the 

upstream main channel, measuring 70cm distance from the beginning of the 

network. I1, I2, I3 represent the inlet of branch channel with 1, 2 and 3  denoted as 

path1, 2 and 3, with the discharge Q1, Q2, and Q3 respectively. The water depth 

could be controlled by the tailgate in the end of the model. In the river-lake 

network model, the Froude and Reynolds numbers have to satisfy certain 

conditions. In order to keep the flow turbulent, the Reynolds number should be 

larger than 2000, and to avoid influences of surface disturbances on the flow, the 

Froude number should be much smaller than 1. In this experiment, Flow in the 

upstream main channel was maintained subcritical, with the minimum Re number 

totalling 15400 and the Fr number 0.06.  

A series of tests with varying experimental parameters were conducted in this 

study. Tracer experiments were conducted using rhodamine WT, which involved 4 

injection points and 12 monitoring locations, comprising 6 distinct tests. The tracer 

solution was prepared in a volumetric flask by adding 4g of 20% rhodamine WT 

solution to 2 litres of water before mixing thoroughly so that the tracer was 

completely dissolved. The water flows (depth and velocity) were measured directly 

after the tracer solution injection. Before the tracer injection procedure, the model 

would be run for half an hour so that the water was thoroughly mixed and a 

homogeneous distribution of the tracer solution was ensured.  
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6 tests were planned and performed in the experiments. The following part 

presents the details of the general flow characteristics and tracer passage curves 

observed from the 6 tests.   

4.3.1 Test 1 

In Test 1, the discharge Q=5.50l/s was held constant and the tailgate was set 

up to keep the water depth at 25cm. This constant flow rate and depth produced a 

constant Froude number and average velocity. A single injection took place at 

position A. The hydraulic and injection conditions are listed in Table 4-1. 

Table 4-1 The hydraulic and injection conditions for Test 1 

 

As illustrated by Table 4-1, in Test 1, the tracer was injected at point A and 

monitored at O1, O2, and O3 simultaneously. Instantaneous injections, 20ml at a 

concentration of 400ppm were conducted during a steady flow regime via a 

syringe. The injection locations were 2 mm below the water surface. Tracer 

solutions were injected within 2s, which was much less than the travel time to the 

fluorometre, and as such the injections were assumed to be instantaneous. The 

injection velocity was considered to match to the ambient velocity. The recording 

fluorometres were positioned at O1, O2, and O3 separately following which the 

concentrations were measured at time intervals of 1s. Losses of mass of rhodamine 

during tracer experiments might occur due to photo-degradation and sorption. 

However, because of the short duration of the experiments, such effects would be 

very small and ignored in the present study. The model was run until the value on 

the databank was stable, following which the data could then be exported to the 

Test  Discharge(l/s) Injection point Injection mass Observation point 

1 5.50 A 8mg O1, O2, O3 
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computer. The tracer concentration raw data were compiled and plotted in Figure 

4-9. Three tracer passage curves corresponding to O1, O2, and O3 were derived 

from the raw data. Tracer concentration at O1 reached the peak value at 71s, 

followed by 256s at O2 and 469s at O3.  

The flow velocity was measured directly after the tracer solution injection. In 

this test, velocity at position A was measured first. The velocity was measured at 

13 points along the vertical profile with the near bed points more closely spaced. 

The lowest point was located at 2 mm above the channel bed; the highest point, 70 

mm below the water surface. The measured vertical distribution of water velocity 

at position A is shown in Figure 4-10. Generally speaking, velocity in the water 

column varies logarithmically with depth, with the mean velocity (depth-averaged) 

usually at 0.4 times the depth above the bed, maximum velocities at or just below 

the water surface, and near-bed velocities close to zero (Jowett, 2003). The 

measured velocity at 10cm for point A was 0.095 m/s whilst the calculated mean 

velocity was 0.091 m/s (5.50×1000/(0.25×0.24)) and the accuracy index was 4.4%. 

This meant that 10cm above the bed depth velocity can be represented as the depth 

averaged velocity in this study. Thus the velocity measurement in the following 

experiments generally measures the velocity at 10cm above the bed. Velocity 

measurements were recorded at 50 Hz for a sampling period of 120 s for each point. 

It was found that velocity became almost constant for sampling periods greater 

than 30s, and as such, a sampling time of 120s was considered to be representative 

for an appropriate determination of mean velocity. The time series of velocity at 

data points O1, O2, and O3 were measured and analysed to produce a normalised 

average velocity (Figure 4-11).  
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Figure 4-9 Time series of tracer concentration of Test 1 

 
Figure 4-10 Velocity profile over a discharge of 5.50l/s 

 
Figure 4-11 Time series of velocity at data point O1, O2, and O3 
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Table 4-2 The flow distribution results for Test 1 

 

The discharge of Paths 1, 2 and 3 were calculated by multiplying the area of 

each path’s cross section by the mean velocity. The result is listed in Table 4-2, 

from which it can be seen that more than 65% of total water was distributed to Path 

1, with Path 2 and Path 3 totalling 17% and 18%. To further investigate the flow 

characteristics of the three paths, Test 2, with three different injections, was carried 

out.  

4.3.2 Tests 2 and 3 

In Test 2, the upstream total discharge and water depth setup was identical to 

that of Test 1 but with three different injections. Test 3 was carried out under a 

higher discharge of 7.20l/s. The hydraulic and injection conditions are listed in 

Table 3. In Test 2, three injections (Test 2-1, 2-2, 2-3) which were injected from 

inlet I1, I2, I3 respectively and concentrations measured at O1, O2, and O3 

correspondingly, at time intervals of 1s, took place. Likewise, Test 3 was 

performed with a higher upstream discharge. Three runs were repeated for each 

injection to ensure the accuracy of the experiments. The injected tracer mass per 

experiment was 8 mg, apart from the test for Path1, where 0.8 mg was injected. 

Further details of the tracer experiments are listed in Table 4-3.  

 

Channe

l  

Channel 

width(cm) 

Discharge 

(l/s) 

Mean 

velocity(cm/s) 

Bed slope Froude 

Number 

Path 1 12 3.57 11.2 0.0004 0.16 

Path 2 65 0.94 5.80 0.0004 0.11 

Path 3 12 0.99 4.30 0.0004 0.06 
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Table 4-3 Injection conditions for Tests 2 and 3 
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Test Discharge 

(l/s) 

Injection 

point 

Injection mass Observation 

point 2-1 5.50 I1 0.8mg         O1 

2-2 5.50 I2  8mg         O2 

2-3 5.50 I3  8mg         O3 

3-1 7.20 I1 0.8mg         O1 

3-2 7.20 I2 8mg         O2 

3-3 7.20 I3 8mg         O3 
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Figure 4-12 Time series of tracer distribution in Tests 2 and 3 

The tracer passage curves for Test 2 and 3 are plotted in Figure 4-12 from the 

data obtained from the three fluorometers. For Path1, the curve shows typical 

shapes and trends, with the tracer plume increasingly spreading out to a peak value 

before then decreasing symmetrically. In contrast, for Path 2, its morphology was 

characterised by a relatively rapid increase in concentration values until they 

peaked; the subsequent decrease in concentration was slower and the tails of these 

curves remained for a considerable period of time. The asymmetrical shape of 

observed solute concentration profiles, characterised by steep leading edges and 

prolonged tails resulted from the transient storage which occurs in stagnant water 

zones in the lake (Nordin & Troutman, 1980).  

The long tail in tracer passage curve of Test 2-2 and Test 3-2 illustrates that 

there are certain regions which slow water exchange in the designed lake, such as 

dead zones. The existence of the dead zones increased the water residence times 

which could be deduced from tracer passage curves. In Tests 4-6, a water diversion 

scheme was implemented to increase water flushing in the lake area. 
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4.3.3 Tests 4-6 

Water diversion was achieved for Tests 4-6 through the use of a submerged 

weir placed at the inlet section of Path 1(see Figure 4-13). The weir crest was 

situated 0.17 m above the model bed, while the average water depth was H = 0.25 

m in the experiments. To investigate the effect of flow augmentation on Paths 2 

and 3, the total discharge in Test 5 and Test 6 was increased to 8.80l/s and 12.30l/s 

respectively from 5.50l/s in Test 4. Figures 4-14 shows the measured vertical 

distribution of water velocity at position A. Prior to each dye tracer experiment, the 

flow rate was set to a predetermined level. The tracer was injected from position A. 

Further details of the tracer experiments are listed in Table 4-4. For a given 

experiment, the values of the flow rate in Paths 1 and 3 were determined as Q = 

V/T, where V is the wetted volume of the path. The flow rate in Path 2 was 

obtained by subtracting the discharge values calculated for Paths 1 and 3 from the 

experimental discharge, Qt.  

Table 4-4 Details of the tracer experiments conducted in Tests 4-6   

Test  
Discharge 

Qt (l/s) 
Injection point Monitoring point(s) Mode of operation 

4 5.50 A O1, O2, O3 with water diversion 

5 8.80 A O1, O2, O3 with water diversion 

6 12.3 A O1, O2, O3 with water diversion 

 

Table 4-5 Discharge ratios (Q/Qt) in different parts of the river lake model for 

the tracer experiments 

Test Path 1 Path 2 Path 3 

1-2 0.65 0.17 0.18 

4 0.37 0.35 0.28 

5 0.38 0.34 0.28 

6 0.44 0.27 0.29 
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As shown in Table 4-5, prior to implementing the diversion mechanism, 65% 

of the total discharge went through Path 1, with Paths 2 and 3 receiving 17% and 

18% of the discharge respectively. The relative impact of the mechanism varied in 

Tests 4-6. In absolute terms, the flow rate in Path 2 increased from 0.94 l/s in tests 

1-2 to 2.0 l/s in Test 4, 3.0 l/s in Test 5 and 3.3 l/s in Test 6, which reflected 

scenarios of gradual flow augmentation in the lake. Therefore, a water diversion 

project is necessary in order to temporarily solve the low water mixing problems in 

the designed lake and is also useful when it comes to improving the efficiency of 

water resource distribution.  

 

Figure 4-13 Weir setup on Path 1 
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Figure 4-14 Velocity profile over a discharge of (a) 8.80l/s, (b) 12.30l/s 

4.4 Experimental data processing and analysis  

4.4.1 Residence Time Distribution Curves 

Normalised Residence Time Distribution Curves (RTDs) were calculated from 

the measured tracer concentration vs. time (C vs. t) results, which allowed for 

comparisons between different experimental conditions. The processing of tracer 

test results was undertaken following Levenspiel (1999) and Metcalf & Eddy 

(2003). The normalised concentration, E(), is defined such that: 

   1
0




 dE  (4-2) 

where d is the normalised time step, with the normalised time  obtained as  = t/ 

T , where T  is the mean residence time. Quantitative approaches for computing 

mean residence time from tracer data have been developed through previous 

experimental studies (Kirchner et al., 2000) whist many studies to date have been 

designed to compute mean residence time of stream water at a particular site. In 

this study,   ̅  was calculated based on the raw tracer data from the concentration-
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time RTD curves according to the approximated method of Levenspiel (1999) 

given by: 

 
ii

iii

tC

ttC
T








 (4-3) 

where the summation index “i” is the concentration sample number.
 iC  is the 

measured tracer concentration at time it . 

Mean residence time estimation is increasingly used as simple summary 

descriptor of the hydrodynamic processes involving storage and mixing of water 

within catchment systems. Aquatic scientists often estimate residence time and 

compare it to time scales of inputs or biogeochemical processes to calculate mass 

balances or understand the dynamics of populations and chemical properties. The 

theoretical residence time T is calculated simply by dividing the effective operating 

hydraulic volume (V) by the volumetric flow rate (Q). To describe the water 

mixing behaviour in the system, the effective volume ratio eV  is used as a measure 

of hydraulic efficiency based on the following equation (Metcalf & Eddy, 2003): 

 
T

T
Ve            (4-4) 

Correspondingly, the fraction of dead space volume    can be calculated to 

provide information about the magnitude of dead volume within the system 

through the equation (Metcalf & Eddy, 2003): 

 
T

T
Vd 1                  (4-5) 

4.4.2 Tracer Mass Accuracy Index 

Although tracer degradation should be avoided, some loss of tracer is 

inevitable. One of the most important tests of a tracer’s reliability is the tracer mass 

accuracy index and it should always be reported in the results of a tracer study. 
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Consequently, in this study, percentage errors in mass balance can be calculated 

for laboratory datasets since the true total mass in the experimental system was 

generally a known quantity. Therefore, in the published literature, the mass 

accuracy index is commonly used as the quantitative indicator of system error. The 

experimental mass accuracy index E in solute mass balance is evaluated as: 

 M

dt)C(t)Q-(M 
E         (4-6) 

where   is the injected tracer mass and Q is the discharge.    ) is the measured 

tracer concentration at time t. Kadlec & Wallace (2009) referred to an accuracy 

index of ±20% as an indicator of successful hydraulic tracer studies. An accuracy 

index below 0 could be related to imperfections in water flow measurements, 

although these are generally not addressed as problematic in hydraulic tracer 

studies.  

4.4.3 Experimental Data Analysis  

The RTD curves obtained in Test 2 were plotted in Figure 4-15a. It can be 

seen from these results that the RTD curves for Paths 1 and 3 were much closer to 

the theoretical plug flow (PF) curve than to the complete mixing (CM) curve, 

which indicated that there was little stagnant fluid and the overall short circuiting 

and mixing levels were generally low in these paths. This was generally expected 

for the river reaches. In the corresponding result for Path 2, however, the elongated 

tail of the RTD curve suggested the existence of dead zones in the lake, which is 

typical of flow patterns with a relatively high level of mixing. Some parameters 

determined from the experiments are listed in Table 4-6. For Path1 and Path 3, the 

hydraulic efficiency were both almost 1, thus indicating the well water mixing in 

the two paths. In contrast, for Path 2, the value of eV
 
is only 0.34, demonstrating 
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that a significant portion of the tracer had exited Path 2 before the theoretical 

residence time. This also indicated hydraulic short-circuiting and the existence of 

dead volume within Path 2. The quality of the tracer experiments was verified with 

the help of the accuracy index. As shown in Table 4-6, the mass accuracy index 

was computed for each test and the percentage values for Paths 1, 2 and 3 were 5%, 

14% and 6% respectively, thus meaning that the tracer curves obtained in this 

study were adequate for describing hydraulics and tracer transport in the 

experiment.  

 

 

Figure 4-15 Normalised RTD curves obtained for a) Tests 2 and 

corresponding results for the plug flow (PF) and complete mixing (CM) flow 

patterns; and b) Tests 2, 4, 5 and 6 and the corresponding mean detention 

times in the lake 
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The impact of water diversion and flow augmentation on the hydraulic 

performance of the lake was assessed by comparing the mean RTD curves and 

detention times obtained before and after diversion for 5.5 l/s, and due to 

increasing the experimental discharge to 8.8 l/s and 12.3 l/s after diversion. Thus, 

the obtained results are illustrated in Figure 4-15b. It can be noted from the results 

of Figure 4-15b that the normalised RTD curves for different discharges were 

practically coincidental, with relatively small discrepancies in the peak 

concentration levels. This suggested that the discharge variation did not have a 

significant impact on the overall mixing levels in the lake, as assessed in terms of 

the spread of the RTD curves. The key impact of flow augmentation was the 

reduction of the mean detention time, as the basin volume was kept constant 

through the downstream control of water depth in the system. Generally speaking, 

such an impact would have a positive influence on lake water quality, as far as 

flushing is concerned. However, relatively long detention times might still be 

observed in regions subjected to very low flow speeds and with little exchange 

with the prevailing currents.  

Table 4-6 Parameters of tracer passage curves from Test 2 

Parameters Path 1 Path 2 Path 3 

Q/Qt 0.65 0.17 0.18 

Tracer mass(mg) 0.8 8 8 

 ̅ (s) 72 254 391 

T (s) 70 784 385 

   ≈1 0.34 ≈1 

   0 0.66 0 

Accuracy index 6% 14% 5% 
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Figure 4-16 shows certain images from the experiments in the lake. These 

images distinctly indicate that there was an uneven flow pattern in the lake. Due to 

the increasing area of the traced water cloud and the limited observation angle, it 

was not possible to observe the complete lake once. As the preferential flow path 

from the inlet to the outlet sections is a straight line, the current thus generates a 

recirculation zone on the other side of the simulated lake, and other smaller dead 

zones. Low fresh water flushing in the recirculation and dead zones has resulted in 

water quality decline, thus reducing the ecological integrity and economic value of 

lacustrine ecosystems worldwide over the past few decades. Hypoxia is perceived 

as one of the most deleterious consequences of low fresh water flushing due to the 

fact that it can reduce or eliminate the ability of organisms dependent on aerobic 

respiration to use affected habitat (Levin et al., 2009).  
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Figure 4-16 Time series of tracer distribution over the discharge of 12.30l/s 

4.5 Summary 

In this chapter, an idealised river-lake system similar to that of the Eco-City 

site was assessed by means of hydraulics laboratory experiments before and after 

the implementation of water diversion and flow augmentation. The details of the 

experimental procedure and the general tracer data observed are presented. The 

results analysis shows that water diversion and flow augmentation improved 

flushing, as seen from the perspective of reducing the mean residence time. 

However, recharge alone had little impact on the overall mixing level in the lake 

waters due to poor cross-sectional flow distribution. The persistent low water 

mixing in the lake makes its ecosystem prone to the development of hypoxic 

conditions even at low levels of nutrient input. This could lead to localised water 
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quality problems in stagnant and circulating flow regions, despite the interventions. 

This could in turn impact, for instance, water supply and fisheries productivity.  

Therefore, in order to control and prevent lake water problems and keep the 

water quality at a certain level, additional measures to water diversion may need to 

be considered to achieve the goal of enhancing water quality in a recharged lake. A 

flow deflector near the lake inlet combined with flow augmentation could be 

assessed to mitigate the occurrence of dead zones. This aspect will be assessed in 

more detail based on numerical modelling predictions made for the lake model in 

Chapter 5.  
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CHAPTER 5   EXPERIMENTAL AND NUMERICAL 

MODELLING RESULTS  

5.1 Introduction 

With the objective of better understanding the hydraulic and water quality 

processes affecting the river-lake system, a 2D hydrodynamic and water quality 

model was used in this study. The use of numerical modelling for conducting flow 

characteristics and solute transport has become widespread for rivers, lakes, 

estuaries and coastal studies. In this chapter, experimental data are used to evaluate 

the performance of the numerical model in predicting solute transport and various 

flow features. A longitudinal dispersion coefficient is determined for input data to 

the numerical simulations. Measured and simulated results are then compared and 

discussed. In addition, lake flushing scenarios with flow deflectors will be carried 

out using the validated numerical model.  

5.2 2D Hydrodynamic and Water Quality Model 

A 2D hydrodynamic and water quality model, DIVAST (Depth Integrated 

Velocities and Solute Transport), developed by Falconer (1986) was used in this 

study. DIVAST is a 2D, depth integrated, hydrodynamic model, which has been 

developed for estuarine and coastal modeling. It is suitable for water bodies which 

are dominated by horizontal, unsteady flow and do not display significant vertical 

stratification. The model simulates two-dimensional distributions of currents, water 

surface elevations and various water quality parameters within the modelling 

domain as functions of time, taking into account the hydraulic characteristics 
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governed by the bed topography and boundary conditions. 

DIVAST has been developed in order to simulate the hydrodynamic, solute 

and sediment transport processes in rivers, estuaries and coastal waters. The 

hydrodynamic module solves the depth integrated Navier–Stokes equations. The 

solute module is used to simulate solute transport, including salinity, BOD, DO, 

the nitrogen and phosphorous cycles and algal growth. The model has been refined 

and validated in light of data from more than 30 years against many laboratory and 

field studies (Falconer et al., 2003;  Gao et al., 2011).  

5.2.1 Governing Equations for Hydrodynamic Processes 

The governing equations for the hydrodynamic processes include a continuity 

equation: 
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 (5-2-b)  

where η=water surface elevation above datum; mq =source discharge per unit 

horizontal area (m3/s/m2); qp, =discharges per unit width in the x and y directions 

respectively; p=UH, q=VH; VU , = depth averaged velocity components in the x, y 

directions: H=total water depth and hH  ; h=water depth between bed level 
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and datum; β=momentum correction factor for a non-uniform vertical velocity 

profile; f=coriolis parameter; a =air density ( 3/292.1 mkg ); ρ=density of fluid 

(=1000 3/ mkg ); W  Wy= ind velocity in the x and y directions respectively; 

C=chezy roughness coefficient; wC =air/fluid resistance coefficient (assumed to be 

3106.2   Falconer & Chen (1991)); ε=depth averaged turbulent eddy viscosity. 

5.2.2 Governing Equations for Solute Transport Processes 

The governing equation for solute transport processes can be written as: 
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where, S = depth averaged solute concentration (unit/volume)； xxD , xyD  , xyD , yyD  = 

depth averaged dispersion-diffusion coefficients in the x  and y  directions 

respectively (m2/s)；Φ𝑠  summarises all other sources and sinks of solute apart 

from advective and dispersive transport. Sources and sinks include discharge from 

outfalls and rivers as well as chemical and biological transformations. 

In DIVAST, all solutes, even algae, enter the model domain via the outfalls. 

An initial concentration of each pollutant in the cell containing the outfall is 

calculated by assuming that the discharged material is immediately and 

homogeneously distributed in that particular cell.  

5.3 Parameters and Coefficients Estimation 

The hydraulic processes tend to be of a more deterministic nature than water 

quality processes and variables, which often show significant variability. Similarly, 

hydraulic data tend to be more deterministic than some of the water quality data. 

For example, water depth recordings will exhibit less variability than bacterial 

counts. It is common practice to change the water quality parameters until the “best 
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fit by eye” or the minimum sum of squared deviations is obtained. A complete 

study requires a sequence of independently calibrated models dealing with 

hydrodynamics and transport of dissolved pollutants. A single parameter value is 

retained, which is then used for subsequent analysis and prediction. Some critical 

parameters in DIVAST were selected and are discussed in detail below.  

5.3.1 Eddy Viscosity Coefficient 

The turbulence model in DIVAST relates to Boussinesq’s approximation for 

the mean shear stress e in turbulent flow: 

 
dy

dv
e            (5-1)

 

where ε is the eddy viscosity, which is dependent on the turbulence characteristics 

of the flow and may be thousands of times larger than the molecular viscosity. If 

the turbulent shear stress is dominated by bottom friction, a relationship between 

the Chezy coefficient and the eddy viscosity exists. In DIVAST, the depth-

integrated eddy viscosity is calculated (Fischer, 1979) from: 

  22 VUg
C

H
Ce                (5-2) 

where Ce =eddy viscosity coefficient.  

In DIVAST, values of the depth averaged turbulent eddy viscosity, ε, can be 

estimated  using a logarithmic velocity profile, such as (Elder, 1959): 
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where *u  is the bed shear velocity defined as: 
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where b  is the bed shear stress 
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With this said however, Fischer (1973) found that field data is greater than that 

given by Elder (1959), and discovered the value from laboratory data to be: 

  22

* 15.015.0 VUg
C

H
Hu      (5-5) 

Fischer’s (1979) suggestion of Ce ≈ 0.15 was based upon laboratory data. 

Bates et al. (1998) reported the range [0.1, 2.0] m
2
/s for their large scale 2D river 

flood simulations.  

5.3.2 Semi-slip Boundary Condition Coefficient 

Generally speaking, boundary conditions for closed walls are either slip or no-

slip. Slip conditions assume a negligible wall shear, whereas no-slip conditions 

specify a zero velocity at the wall boundary. However, due to the finite grid size 

used in numerical models, particularly for small scale simulation, the use of a no-

slip boundary condition may result in the transmission of a much larger shear stress 

from the wall to the fluid, thus resulting in an under-prediction of the flow velocity. 

Previous work conducted by Li & Falconer (1995) had indicated that for a square 

harbour the semi-slip boundary condition gave accurate results.  

Thus, in this study, for a rectangular river lake system, a semi-slip boundary 

condition was included to cater for velocity gradient at closed boundary. Wall shear 

stress was given as:  

 
2

2

g
tw U

c


                 (5-6) 

where tU =undistributed velocity, assuming that the side wall shear stress can be 

represented by Newton's Law of viscosity, then the normal velocity gradient can be 

obtained to give ( Li & Falconer ,1995): 
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By using a backward difference representation at an upper boundary, and similarly 

a forward difference representation at a lower boundary, the virtual velocity at the 

wall to give the correct shear stress was given as: 

 )1(
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n
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g
UU tw




        (5-8) 

where n = grid size normal to the wall. For the subsequent model simulations; 

=eddy viscosity constant. In the DIVAST model, a coefficient for velocity gradient 

at closed boundary α was introduced which was given as: 
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5.3.3 Longitudinal Dispersion Coefficient  

Longitudinal dispersion coefficient is a critical quantity used to predict solute 

transport processes, such as the propagation of an accidental spill of a quantity of 

pollutant. It is also used to compute the downstream concentration of on output 

from a sewage treatment plant. The longitudinal dispersion coefficient is 

conventionally estimated using analytical formulations in conjunction with semi-

empirical estimates for certain parameters and a set of bulk flow stream data (Seo 

& Baek, 2004).  

The longitudinal dispersion coefficient can be estimated based on 

concentration measurements collected from laboratory tracer experiments since the 

empirical formulas are generally of limited accuracy. The equation to obtain 

longitudinal dispersion coefficients was given as (Fischer, 1979):  
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where the subscripts 1 and 2 refer to two cross sections, and  ̅ is the time of 

passage of the centroid of the cloud at the station. 
2 is the variance of the  time-

concentration curve measured at a fixed station. Therefore, the longitudinal 

dispersion coefficients adopted in the model could be calculated from the 

experimental data using Equation 5-10. 

5.4 Model Calibration 

Model calibration is an essential component of all numerical studies. The 

typical procedure for calibrating a hydrodynamic model involves systematic 

alteration of the model inputs until the outputs closely match the field or laboratory 

observations. In this study, the data obtained from Test 2 (see Chapter 4, Section 

4.3.2) were used. In this section, the experimental data was compared against 

model predictions and the results were used to calibrate the performance of the 

DIVAST model.  
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Figure 5-1 Computation domain and boundary conditions  

The numerical description of experimental setup involved a rectangular 

domain of 1000 cm × 120 cm, as shown in Figure 5-1. A calibration procedure was 

conducted to evaluate the hydrodynamic and water quality model accuracy in 

reproducing the time and space variability of velocity and concentration within the 

domain. Comparisons between the simulation results and the experimental data 
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were carried out. A selected set of model parameters as well as initial and boundary 

conditions were calibrated for the whole domain. The numerical solutions were 

obtained using a grid size of Δx = Δy = 1cm, with a time step of 0.02 s.  

Table 5-1 Calibrated values for certain main parameters 

 

In Table 5-1, the calibrated values for certain main parameters are listed. Most 

of the coefficients used in this study were default values which were derived from 

previous work concerning harbour application of DIVAST (Hakimzadeh & 

Falconer, 1997), with tests also being undertaken to study the sensitivity of the 

model results to the coefficients. For the hydrodynamic model a coefficient for a 

partial slip boundary condition of 0.9 was used. The theoretical value of eddy 

viscosity coefficient for a logarithmic velocity profile used was 0.07. However, this 

value has been found to be relatively small for practical open channel flow studies 

(Fisher, 1978) and a more realistic value is typically 0.15 (Hakimzadeh & Falconer, 

1997). An eddy viscosity coefficient of 0.15 was finally adopted in this study for 

both the lake and river areas by matching the measured velocity with the value 

computed with DIVAST. The bed roughness length was assumed to be 3 mm for all 

model simulations. The calibration process gave specific optimal values for 

Parameter  Unit Calibrated Harbour  

Roughness length mm/km 3.0 50 

Kinematic viscosity fluid mm
2
/s 1.31 1.31 

Minimum Reynolds number - 1000 1000 

Momentum correction factor - 1.016 1.016 

Eddy viscosity coefficient - 0.15        1.2 

Longitudinal dispersion coefficient m
2
/s 0.5        13 

Lateral turbulent diffusion coefficient m
2
/s 0.02 0.02 

Partial slip boundary condition coefficient - 0.9 0.95 
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longitudinal dispersion, as described in detail later. The initial and calibrated values 

for each parameter are reported in Table 5-1.  

The model was calibrated against water velocity and tracer concentration data. 

In order to test the ability of the numerical model to predicting the hydrodynamic 

parameters, comparisons were first made between the numerically predicted and 

the laboratory-measured velocities. The model accuracy was established by 

calculating the Relative Error (RE) and the Coefficient of determination (R
2
) 

between simulation results and experimental data time series for water velocity and 

tracer concentration.  Statistics for the calibration of water velocity are presented in 

Table 5-2. The RE were calculated and listed in the table, which demonstrated that 

the numerical model predictions agreed closely with the measured flow velocity 

for Paths 1 and 2, with the RE totalling 2.67% and 6.89% respectively. In contrast, 

the calibration result for Path 3, with the RE at 9.30%, was not as satisfactory as 

Paths 1 and 2.  

Table 5-2 Comparison of the predicted and observed velocity  

Position 
Predicted 

Velocity(cm/s) 

Observed 

Velocity(cm/s) 
Error (cm/s) 

Relative 

Error (RE) 

A 9.60 10.00 0.4 4.16% 

O1 11.2 10.90 -0.3 2.67% 

O2 5.80 6.20 0.4 6.89% 

O3 4.30 4.70 0.4 9.30% 
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Figure 5-2 Comparison of Observed and Predicted tracer curves with 

different longitudinal dispersion coefficient at (a) O1 (b) O2(c) O3 
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The numerical model was also calibrated using the tracer concentration data 

obtained from Test 2. Three values of the dispersion coefficient, namely 0.1, 0.5, 

and 1.0 m
2
·s

-1
 were used in different runs, as a critical parameter for predicting 

solute transport. The best model performance was achieved with a value of 0.5 

m
2
·s

-1
, with close agreement being obtained between measured and predicted 

results in this condition. Figure 5-2 shows the results of the tracer concentration 

comparisons at O1, O2 and O3, with the dashed line showing the measured 

velocities and the solid lines the model predictions. The coefficient of 

determination (R
2
) was calculated between simulation results and experimental 

data time series for the tracer concentration. It was found that the best model 

performance was achieved for the longitudinal dispersion coefficient =0.5 with 

R
2
=98%, 96% and 98% for O1, O2 and O3 respectively. The comparison of 

predicted and observed concentration data for O1, O2 and O3 is reported in Figure 

5-2. A sensitivity analysis performed with DIVAST using a Roughness Coefficient 

of 10mm and 1mm showed no degradation of the quality of the numerical fitting 

shown in Figure 5-2. The simulated results suggested that changes in dispersion 

coefficients should be taken into account in DIVAST. The accuracy of the model 

prediction can be considered as satisfactory. 
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Figure 5-3 Tracer passage curves for points (a) 3A (b) 3B (c) 3C with 

longitudinal dispersion coefficient variation in Path 3 
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Figure 5-2 (c) shows that the peak values of the tracer did not vary with the 

longitudinal dispersion coefficient as was the case with Figure 5-2 (a) and (b). A 

set of simulations were performed to investigate the effect of variation of 

longitudinal dispersion coefficient on the tracer transport in Path 3. The 

concentrations of three selected points, namely 3A (298cm, 116cm), 3B (298cm, 

103cm) and 3C (298cm, 90cm) in Path 3 (see Figure 5-1) are presented as a 

function of time in Figure 5-3.  It can be seen that the peak values varied with the 

longitudinal dispersion coefficient before reaching the first turning on Path 3 (see 

Figure5-3(a)). In contrast, Figure 5-3 (b) and (c) illustrates that the tracer 

dispersion might be strengthened by the turnings, therefore meaning that the tracer 

mixed thoroughly compared with Paths 1 and 2.  

A parametric study conducted using DIVAST illustrated that, for the test cases 

considered, variation of effective longitudinal dispersion coefficient has an 

important effect on tracer transport. During the calibration process, different 

longitudinal dispersion coefficients were assumed. The best fitting case was chosen 

by calculating the R
2 

at a range of 96% to 98%. Additional simulations showed that 

the sharp turnings in Path 3 had a strong effect on the tracer transport and flow 

velocity. The peak values of tracer passage curves did not vary with the 

longitudinal dispersion coefficients whilst the RE was nearly 10%. Thus, the model 

simulations of tracer passage curves for Path 3 are not included in the following 

sections.   

5.5 Numerical Modelling of River Lake System 

5.5.1 Model Validation 

The following section presents a series of validation checks for DIVAST 
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which demonstrate the accuracy of the model for solute transport in the river lake 

system, Test 3 was selected to validate the model’s predicted and measured flow 

velocity and dye concentrations.  Table 5-3 compares the predicted and measured 

flow velocity. It can be seen from the table that REs for Paths 1 and 2 were 2.26% 

and 1.21% respectively, thus demonstrating reasonable hydrodynamic agreement. 

Figure 5-4 presents the predicted and measured dye concentrations for Test 3. 

Reasonable agreement between the measured dye concentration data and 

simulation results was achieved with R
2
=98% for Path 1. The coefficient of 

determination of 86% was achieved for Path 2. It should be noted that the 

simulations were less effective when it came to describing the tail of tracer curves, 

as has been found previously (Massei et al., 2006). The validation results indicated 

that the calibrated DIVAST model was able to closely predict the flow field and the 

tracer transport in the river lake system, with the exception of Path 3. The model 

simulations of tracer passage curves for Path 3 are not included in the following 

sections. 

Table 5-3 Comparison of the predicted and observed velocities in Test3 

Position 
Predicted 

Velocity(cm/s) 

Observed 

Velocity(cm/s) 
Error (cm/s) 

Relative 

Error (ER) 

A 12.0 12.1 0.1 0.8% 

O1 13.3 13.0 -0.3 2.26% 

O2 8.20 8.10 -0.1 1.21% 

O3 5.50 6.00 0.5 9.10% 

 



 5 EXPERIMENTAL AND NUMERICAL MODELLING RESULTS 

- 94 - 

 

 

 

Figure 5-4 Comparisons of the predicted and measured concentrations for 

Test 3 at a) O1; b) O2 

5.5.2 Water Diversion Modelling 

Validation of DIVAST showed reasonable agreement with experimental and 

numerical solutions for tracer transport in the river lake system. Thus, an eddy 

viscosity coefficient constant value of 0.15, a longitudinal dispersion coefficient 

value of 0.5 m
2
·s

-1
 and partial slip boundary condition coefficient value of 0.9 were 

used for the numerical simulations. All other parameters were at the default values 
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set within the DIVAST model (see Table 5-1).  

Water diversion modelling was carried out using the validated numerical 

model to assess the impacts of water diversion on the water distribution in the river 

lake system and the flushing processes within the lake. A weir structure was 

introduced to divert water from Path 1 to Path 2 and 3, thus meaning that the 

numerical model was slightly modified and simulated with the effect of the weir 

placed near the inlet section of Path 1. Several runs were carried out to study flow 

path distributions by adjusting the height of the weir on Path 1 with the total 

discharge totalling 5.50l/s. The predicted tracer concentration curves for Paths 1 

and 2 over different weir heights were plotted as a function of time in Figure 5-5. 

For Path1, the higher the weir, the longer the residence time was. Conversely, the 

water residence time for Path 2 decreased as the weir height increased. The water 

residence time was reduced from 219s to 132s for Path 2. The simulation results 

suggested that the use of water diversion to enhance the water flushing in Path 2 

was an effective solution. For lakes with longer residence times, long-term average 

pollutant loadings become more important to overall lake water quality.  

The predicted results showed that the effect of water diversion was negligible 

when the weir height in Path 1 was below 10cm. The water diversion ratios over 

different weir heights (above 10cm) were calculated and listed in Table 5-4. It can 

be seen that, with the values of 20cm, the water diversion ratios, namely 35%, 32% 

and 33% for Paths 1, 2 and 3 respectively, could be obtained from the numerical 

model.  
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Figure 5-5 Predicted tracer passage curves over a range of weir height on 

point a) O1; b) O2. 

 

Table 5-4 Water diversion ratios over different weir heights 
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flushing in Path 2, during the dry periods, the low water flow would reduce the 

ecological function of the river lake system. As the tracer experiments presented, 

flow augmentation is of vital importance when it comes to meeting the flow 

requirements in the river lake system. To accomplish this goal, the corresponding 

numerical modelling was carried out in the river lake system under controlled flow 

rates. In this study, flow augmentation modelling was run over a range of flow 

rates, i.e. from 5.50 l/s to 12.3 l/s. A sketch of the flow field in the river lake 

system is shown in Figure 5-6, as depicted from the corresponding hydrodynamic 

model predictions.  
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Figure 5-6 A sketch of the flow field in the river lake system
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Two simulations with discharges of 8.80l/s and 12.30l/s were used to 

investigate the effect of flow augmentation on water mixing improvement of the 

river lake system. In the model, the location of the outfall was point A (70cm, 

12cm). Figure 5-7 shows the predicted tracer passage curves flow augmentation.  It 

can be seen that under the flow rate of 12.30l/s the water residence time for Paths 1 

and 2 was reduced to 43s and 89s respectively.  

 

 

Figure 5-7 Predicted tracer concentrations under flow augmentation at a) O1; 

b) O2      
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Flow augmentation from the upstream enhanced the water flushing in the river 

lake system, particularly for the lake. To evaluate the effect of flow augmentation 

on the hydraulic efficiency in Path 2, the mean residence time and theoretical 

residence time were calculated and analysed based on the predicted tracer curves 

(see Table 5-5). The residence time is an important parameter which measures the 

effectiveness of water flushing in removing a pollutant from the system, meaning 

that the pollutants will be prevented from exerting their adverse effects. A short 

residence time is beneficial to pollutant removal. Results shown in Table 5-5 

indicate that the flow rate has a significant effect on the residence time, which 

ranges from 180s over a discharge of 5.50l/s to 89s over a discharge of 12.30l/s for 

Path 2. However, the hydraulic efficiency,   , has only just increased from 0.42 to 

0.44. This numerical modelling result coincides with the experimental results 

analysis based on Figure 4-15b in Chapter 4. This suggested that the flow 

augmentation did not have a significant impact on the overall water mixing levels 

in the lake.  

Table 5-5 Parameters of tracer passage curves for Path 2 with flow 

augmentation      

Qt (l/s) 5.50 8.80 12.30 

Q2(l/s) 1.75 2.64 3.69 

 ̅(s) 180 120 89 

T (s) 427 277 202 

   0.42 0.43 0.44 

   0.58 0.57 0.56 

 

5.6 Numerical Modelling Results for Lake Area 

In order to thoroughly investigate the water mixing, numerical simulations in 

the lake area were undertaken to determine the flow pattern and transport of the 
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water within the lake during flow augmentation. Figure 5-8 shows flow field in the 

lake under the flow rate of 12.30l/s. In order to more effectively analyse the flow 

pattern in the lake, three cross sections (C, D and E) were selected where the mean 

velocities were measured in the physical model with the same hydraulic conditions. 

Each cross section consistes of 5 vertical profiles whilst 18 points were measured 

on each vertical, with the near bed points more closely spaced to each other. The 

lowest point was located at 2 mm above the channel bed; the highest point, 70 mm 

below the water surface. Results from numerical simulations were compared with 

the measured mean velocity results and plotted in Figure 5-9. It can be seen that 

the velocities computed in cross sections C, D and E were in close agreement with 

those measured.  

 
Figure 5-8 Flow field in the lake  

 

Figure 5-9 Predicted and measured cross-section profiles of the mean flow 

velocity 
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Numerical model simulated results of flow augmentation are displayed in 

graphical form by displaying concentration values as contours (see Figure 5-10). 

The tracer distributions at 15s, 30s, 60s, 100s, 160s, 320s, and 440s were presented. 

It can be seen that a preferential flow path was formed between the inlet and outlet 

sections, which occupied roughly 40% of the basin space. This region could be 

associated with the quickest flushing of solutes from the lake. Recirculating flow 

and dead zones were formed in the remaining space, where overall the flow speed 

as low and with little exchange of any solutes present therein with the preferential 

flow path. A sketch of flow and tracer distributions is presented in Figure 5-11 to 

make the numerical results easily understandable. According to the results 

discussed in Figure 4-15b in Chapter 4, the relative importance of these two main 

flow regions, in terms of the solute transport processes in the simulated lake, varied 

little between tests.   

Both the experimental and numerical modelling results indicates that recharge 

alone had little impact on the overall mixing level in the lake waters due to poor 

cross-sectional flow distribution. This could lead to localised water quality 

problems in stagnant and circulating flow regions, despite the interventions, and 

could impact, for instance, water supply and fisheries productivity. Therefore, 

additional measures to flow augmentation may need to be considered to achieve 

the goal of enhancing the overall water mixing in the lake.  

15s 
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Figure 5-10 Time series of simulated flushing flow over a discharge of 12.30l/s 
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Figure 5-11 Sketch of the flow distribution in the lake 

5.7 Lake Flushing Simulation with Flow Deflector 

Generally speaking, the flushing of a water body is achieved through transport 

mechanisms which promote water removal, such as tidal currents, river 

contributions and the density gradient induced circulation, meteorological events 

and the topographical configuration (Wang et al., 2004). In this study, due to poor 

cross-sectional flow distribution, alternative operations of flow structures could be 

obtained through the application of hypothetical scenarios to improve the water 

mixing processes affecting lake water quality. The hypothetical scenario simulation 

with flow deflectors; the aim of which is to deflect incoming flow to low water 

mixing zones, will be discussed in this section.  

5.7.1 Flow Deflector Design 

With the objective of deflecting incoming flow to low water mixing zones, two 

types of deflector were simulated near the lake inlet, as shown in Figure 5-12. 

Figure 5-12a shows a 38cm long deflector while the other type is combined with 6 

small deflectors (see Figure 5-12b). Simulations with these two types of flow 

deflector were performed using DIVAST. The simulated results at 10s are 

presented and compared in Figure 5-13. It can be seen that a low water mixing 

zone was formed in the back of the 38cm deflector while the flow shown in Figure 

5-13b was evenly distributed in the vicinity of the lake inlet. It was concluded that, 

compared with the predicted results for one flow deflector, 6 smaller deflectors 
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positively affected the distribution of flow, by mitigating the occurrence of dead 

zones.  

(a) 

 
(b) 

 
Figure 5-12 Flow deflector design 

(a) 

 
(b) 

 
Figure 5-13 Simulated flow distribution at 10s with (a) one deflector (b) 6 

small deflectors 

5.7.2 Simulation Results with Flow Deflectors  

Since the flow deflectors design could positively affect the distribution of 

flushing flow, simulations for the lake area with flow deflectors design were run. 

The simulation time for the model was 60mins. The numerical simulated results 

were displayed in graphical form by displaying the flow fileds as vectors (see 
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Figure 5-14) and concentration values as contours (see Figure 5-15). Flushing flow 

distributions at 15s, 30s, 100s, 160s and 240s are presented respectively. It is 

evident that water in the lake was more effectively mixed with the flow deflector 

design compared with the simulated result in Figure 5-10. 

 
Figure 5-14 Simulation flow filed with flow deflector 
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240s 

 

 

Figure 5-15 Time series of predicted flow distribution with flow deflectors 

The analysis of both numerical modelling and experiments for the lake area 

presents a need to improve the water flushing of low water exchange region in the 

lake. The flushing refers to the replacement of water in the lake with water from 

the connected river. However, flow augmentation tests and simulation results 

showed that recharge alone had little impact on the overall mixing level in the lake 

waters due to poor cross-sectional flow distribution. To achieve the goal of 

enhancing water flushing in a recharged lake, the flow deflectors combined with 

flow augmentation were found to positively affect the distribution of flushing flow, 

by mitigating the occurrence of dead zones. Overall, water mixing level in the lake 

was enhanced under the inflow diversion by the flow deflectors and therefore 

improved the overall water mixing in the lake.  

5.8 Summary 

In this chapter, a 2D hydrodynamic and water quality model, DIVAST, was 

applied to investigate in more detail the water flushing in the river-lake system. 

The model calibration and validation of the model DIVAST were initially 
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conducted against water velocity and tracer concentration data obtained from 

experiments. It was found that an eddy viscosity value of 0.15, longitudinal 

dispersion coefficient value of 0.5m
2
s

-1
 and partial slip boundary condition 

coefficient value of 0.9 gave the closest agreement between tracer passage 

predictions and measurements. The validated model was then used to perform 

water diversion modelling and flow augmentation modelling.  

As supported by numerical and experimental investigations, a better 

understanding of the hydraulic and water quality processes in the river-lake system 

model was developed. For instance, based on the experimentally determined RTD 

curves, it was found that overall flushing improved with increasing discharges, as 

indicated by the corresponding reduction of the mean detention time. Having said 

this, mixing levels varied little in the basin, thus potentially still causing localised 

and relatively long detention times and water quality issues. The numerical 

modelling result coincided with the experimental results analysis. Modelling 

results indicate that a preferential flow path was formed between the inlet and 

outlet sections whilst recirculating flow and dead zones were formed in the 

remaining space. Hydraulic efficiency in the lake varied little as the flow increased. 

Recharge alone had little impact on the overall mixing level in the lake waters due 

to poor cross-sectional flow distribution. Addressing this issue, the simulations 

with flow deflector near the lake inlet were carried out. It was concluded that flow 

deflectors combined with flow augmentation could positively affect the 

distribution of flushing flow, by mitigating the occurrence of dead zones. 
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CHAPTER 6   MODELLING HABITAT SUITABILITY 

FOR FISH IN THE FLUVIAL AND LACUSTRINE 

REGIONS  

6.1 Introduction 

Over the past few years, linking physical habitat conditions in rivers to their 

ecological characteristics has become a fundamental requirement in river 

management and river restoration. Due to excessive pollutant discharge and 

inappropriate regulation of water resources, the structure, function and health of 

many freshwater ecosystems have been degraded to the point that they can no 

longer support biodiversity (Wang et al, 2012). The use of combined numerical 

models is becoming a very effective tool with which to study the ecosystem habitat 

requirement. The most promising aspect of numerical 2D models in ecological 

flow studies is their potential to accurately and explicitly quantify spatial variations 

and combinations of flow patterns important to stream habitats (Bovee, 1996). 

Many researchers have combined hydrodynamic and ecological models to 

determine the relationship between stream flow and physical habitat suitability for 

an aquatic species. Habitat suitability curves have been used to characterise aquatic 

species’ habitat preference, availability and quality. For example, Nagaya et al. 

(2008) used a horizontal 2D numerical model to predict the environmental flow 

requirement of ayu (Plecoglossus altivelis) with the preference curves of the flow 

depth and velocity. Yi et al. (2010) developed a mathematical model to predict the 
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minimum in-stream flow and suitable daily discharge during the reproduction 

season for the carp species in the Yangtze River. In this study the habitat suitability 

curves were coupled with the mathematical model.  

The habitat suitability in a stream varies seasonally and annually according to 

the river discharge. Hughes & Louw (2010) pointed out that accurate hydrological 

and hydraulic data, together with a sound understanding of the ecosystem 

dynamics based on field surveys over extended periods of time would help to 

generate high confidence related to aquatic species’ habitat assessment. It is 

therefore important to study the habitat suitability in relation to the natural flow 

pattern and the species bioperiods. Many researchers have emphasised the 

necessity to account for flow and habitat variability in predicting the distribution 

and performance of different biota in streams (Poff et al., 1997; Arthington et al., 

2006). However, most existing methods do not account for the different bioperiods 

habitat requirements of the target species and the seasonal variability of the study 

area. Therefore, the main aims of this chapter are to link the hydrodynamic 

characteristics of the water system to the fish bioperiods and to determine the 

levels of habitat suitability in the Eco-City using an integrated eco-hydraulic model. 

This eco-hydraulic model combines a 2D hydrodynamic and water quality model 

(Falconer & Lin, 2005) with a HSI model. Habitat suitability curves, as a 

component of the HSI model, have been developed and used to determine which 

type of habitat is preferred by a single species. Both water quantity (depth, velocity) 

and quality (dissolved oxygen) parameters are considered. To reduce the poorly 

and moderately suitable areas, the influence of different interventions on the 

improvement of habitat suitability conditions, such as dissolved oxygen (DO) 

enhancement device and flow augmentation, have also been investigated.  
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6.2 Target species in the Jiyun River 

To create suitable physical habitats for fish in an urban river, target species 

which are predominant in the river should be reviewed, whilst their ecological 

characteristics should be carefully examined first (Lee et al., 2010). Grass carp 

(Ctenopharyngodon idella), silver carp (Hypophthalmichthys molitrix), bighead 

carp (Hypophthalmichthys nobilis) and black carp (Mylopharyngodon piceus) are 

known as the "Four Domesticated Fish" in China (see Figure 6-1). Indeed, these 

four fish species were selected as the target species as they represent the major fish 

population of the Jiyun River. These four fish species belong to the family 

Cyprinidae with similar life bioperiods and could be collectively labelled as carp. 

These fish are native to Central Asia, but have been introduced to many regions of 

the world including Europe, North America, the Middle East, Canada and Australia. 

The bioperiods of carp, during which the management of river flow and habitat 

conditions is of particular importance, are determined by evaluating the seasonal 

needs of the target species. The life pattern of carp could be divided into three 

stages: spawning stage (March-June), growth stage (July-November), and 

overwintering stage (December- February).  

Spawning activity is associated with high spring flows from March to June 

(Verigin et al., 1978). Carp produce eggs which are semi-buoyant and require 

current to keep them from sinking to the bottom. The sticky eggs are deposited 

onto submerged vegetation and hatch in less than a week. If carp spawn in a river 

of sufficient length with a current of 0.2 m·s
-1

 or faster, hatching of eggs could 

occur. The optimal velocity for spawning is from 0.4 to 0.8 m·s
-1

 and water 

temperature in the range of 18-30°C (Kolar et al., 2007). In reservoirs, rising water 

levels may provide access to terrestrial vegetation, which is a good substrate for 
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spawning. In lakes, peak spawning occurs during the 4 or 5 days when water levels 

fluctuate only slightly (<7 cm) or increase rapidly following a level period. 

 

Figure 6-1 Four domesticated fish in Jiyun River 

The growth stage for these fish is from July to November. The embryonic 

development of carp takes approximately 3 days at 20-23°C. Under natural 

conditions, hatched fry stick to the vegetation. After hatching, the fry remain in 

shallow (< 2 m), warm, fertile, sluggish waters for 2 to 8 weeks. Around three days 

after hatching the posterior part of the swim bladder develops, meaning that the 

larvae swim horizontally and start to consume external food with a maximum size 

of 150-180 µm. The young carp grow quickly in warm plankton rich water 

(McCrimmon, 1968). Dense vegetation is also required by fry and juveniles for 

cover. In stable streams, the water velocity in the plant-free area of a river appears 

to control the maximum vegetation abundance in the stream. Riis & Biggs (2003) 

calculated the percentage area of stream cross-sections occupied by vegetation 

along with the mean velocity in the plant-free area across the channel. Juveniles 

and adults were found in deeper waters feeding predominantly on aquatic plants, 

algae and small invertebrates near the bottom. In both riverine and lacustrine 
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habitats, carp prefer enriched, relatively shallow, warm, sluggish, and well-

vegetated waters with a mud or silt substrate. Adults spend summer and early 

autumn in shallow areas of dense vegetation.  

As temperature drops from December, the carp move into deeper waters 

(Jester & Moody, 1969). Winter is commonly regarded as a critical period for fish 

to survive in rivers. To survive in low temperature and with declining food 

resources, carp have adapted and evolved varying overwintering strategies, e.g. 

residency or migration to alternative habitats. Winter survival is mainly influenced 

by factors other than food abundance .Water depth and DO are considered to be the 

crucial parameters (Lukowicz & Gerstner, 1998). A weight loss (WL) of 5-10% is 

considered acceptable for successful overwintering.  

6.3 Methodology 

6.3.1 Habitat Suitability Index Model 

The Habitat Suitability Index (HSI) scoring system was originally developed 

by the US Fish and Wildlife Service, as a means of evaluating habitat quality and 

quantity, following which it was then used by Oldham et al. (2000) to evaluate the 

habitat suitability level of great crested newt. The HSI is a numerical index which 

varies between zero and one, thus indicating unsuitable to optimal habitat 

conditions. The overall HSI value is calculated as the geometric mean of the 

related suitability indices using the following equation: 

                   /n

nSISISIHSI
1

21        (6-1) 

where 1SI , 2SI , nSI  are the factors converted to Suitability Index scores, on a scale 

from 0.01 to 1 (0.01 is used as the lower end of the scale instead of 0). The HSI 
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scoring system shown in Table 6-1 was adopted herein to define the habitat 

suitability of carp on a categorical scale.  

Table 6-1 Categorisation of HSI scores 

HSI  Suitability 

< 0.5 = Poor 

0.5 – 0.8 = Potential 

> 0.8 = Ideal 

 

Previous studies of habitat distribution have found that different habitats had 

different optima. The HSI for fish incorporates several suitability indices, all of 

which are factors affecting the living conditions of fish, such as velocity, flow 

depth, pH, cover, water temperature, and DO. In this study, certain important 

indices were selected. These indices are known to affect carp’s habitat based on 

field data for the River Jiyun and information found in the scientific literature: 

velocity, depth and DO. As carp have different water requirements during their life 

stages, which should be taken into account when evaluating the water allocation 

needs to the river and lake, an HSI system was created based on the literature 

describing the habitat suitability for three life stages of carp (see Table 6-2). Local 

expert fish knowledge was also consulted in designing this system so as to account 

for differences between the site-specific situation and the general conditions found 

in the literature. The basic form for the expression of suitability is a habitat 

suitability curve, as shown in Figure 6-2.   
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Table 6-2 Suitability Indexes for the three life stages 

Stage Index Note  

Spawning 

(March-

June) 

Velocity 

 

The minimum velocity to support eggs is 0.2 m·s
-1

. 

The optimal velocity is 0.4-0.8 m·s
-1

 (Liu & He, 1992). 

Depth 

Preferred spawning areas are over aquatic or inundated 

terrestrial vegetation, at depths of 0.5-0.8 m (Edwards 

&Twomey, 1982). 

DO 

 

Percentage hatching increases with increasing DO 

content. At 3 mg·l
-1 

DO, 40% of the embryos hatched; 

at 6 mg·l
-1

, 65% hatched; and at 9 mg·l
-1

, 92% hatched 

(Kaur & Toor, 1978). 

Growth 

(July-

Nov) 

Velocity 

 

Carp occurred in pools (0.2-0.6 m·s
-1

) and in the main 

channel borders (0.6-1.2 m·s
-1

), but are most abundant 

in marshes and backwaters (<0.2 m·s
-1

) (Kallemeyn & 

Novotny, 1977). 

Depth 

 

The maximum depth for spawning is included because 

carp primarily frequent shallow waters. 

DO 
Optimal DO level for adults is assumed to be ≥ 6 mg·l

-

1
 (Edwards & Twomey, 1982) 

Over-

wintering 

(Dec-

Feb) 

Depth 

As the temperature drops, carp move into deeper 

waters. Hence, deep water areas are necessary to 

maintain carps in the winter, with a minimum depth of 

0.4m. 

DO 
Optimal DO level for this period is assumed to be ≥ 6 

mg·l
-1

 (Edwards & Twomey, 1982) 

As shown in Figure 6-2(a), the spawning suitability is represented by three 

indices: velocity, DO and depth. The minimum velocity required to support eggs is 

0.2 m·s
-1

, the optimal velocity is 0.4-0.8 m·s
-1

 and the suitability index then 

decreases with further velocity increase. If the velocity is too high then the fish 

population will reduce, caused by scouring eggs, altering fish habitat and washing 

adult fish away from their spawning habitat (Naghibi & Lence, 2012). The ranges 
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of velocity, DO and depth which are associated with carp growth are illustrated in 

Figure 6-2(b). Very little documentation exists on the actual overwintering habitat 

of carp, although from fish farming it is known that adults prefer to spend the 

winter in deeper water with optimum depth ranging from 1.0 to1.5 m (Lukowicz & 

Gerstner, 1998). DO is used as a major indicator of water quality and habitat 

condition because it affects survival and feeding. Herein, the water depth and DO 

are considered to be the crucial parameters for carp’s overwintering habitat, and 

the corresponding suitability curves for carp are shown in Figure 6-2(c).  

 

Figure 6-2 Suitability Index (SI) curves for three life stages of carp, (a) 

spawning; (b) growth; and (c) overwintering 
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6.3.2 Eco-hydraulic Model 

The eco-hydraulic model used in this study combined the 2D hydrodynamic 

and water quality model discussed in Chapter 5 with the HSI model. Habitat 

suitability curves, as a component of the HSI model, were developed and used to 

determine what type of habitat a single species prefers. The governing equations 

for the hydrodynamic and solute transport processes were discussed in Chapter 5 

(Equation 5-1 to 5-3). At the present time, the primary water quality problem that 

the Jiyun River faces is DO depression in the water column due to excessive 

pollutant discharge. Oxygen consumption materials, such as aerobic biological 

organisms and ammonia nitrogen from domestic wastewaters and industrial 

effluents, are the main sources of river pollution. In the current study, the oxygen 

dynamics was modelled using the following equation (Stefan & Fang, 1994):  

 
  RSSCCktP

C
SODBODDOS

DO  )(
dt

d
 (6-2) 

The photosynthesis P (t), as a function of time, can be approximated as a half sine 

wave during daylight hours and zero at night (Chapra & Di Toro, 1991):  

  tf                     0)(

ft0            )sin()( max









tP

f

t
PtP

           (6-3) 

where DOC = DO concentration; maxP = maximum photosynthesis rate (50 mg·l
-

1
·day

-1
) (Portielje & Lijklema 1995); f = the photo-period (12 h), and  = the 

diurnal period (24 h); k = reaeration rate constant; SC = saturated DO 

concentration. The sources for oxygen are photosynthesis rate )(tP and physical 

surface reaeration rate )( DOS CCk  . The oxygen saturation concentration has a 
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constant component, namely Henry’s constant for oxygen (see Chapra, 1997 for 

details), and a variable component, which is dependent on the pressure of oxygen 

in the atmosphere, the salinity and the temperature of the water. It decreases with 

increasing elevation above water level and with increasing temperature and salinity. 

Reaeration is referred to as the transfer of oxygen between the atmosphere and the 

oxygen unsaturated water.  It is proportional to the saturation deficit. The negative 

terms BODS ， SODS ，and R  in the oxygen model are the losses due to nitrification, 

which is proportional to biochemical oxygen demand (BOD), the sediment oxygen 

demand (SOD) and the plant respiration in the water respectively. Based on the 

water quality report for the Jiyun River in 2006, the initial BOD on the spawning, 

growth and overwintering stages was set to 67mg·l
-1

, 78 mg·l
-1

, and 60 mg·l
-1

 

respectively. The SOD is dependent on the water temperature and depth (Brown & 

Barnwell, 1987). As the aerobic degradation of organic material proceeds, DO is 

depleted, causing an oxygen deficit in the water.  

The calculation domain measures 10,510 m in length by 3,510 m in width and 

is shown in Figure 6-3. The upstream boundary condition was a measured flow 

rate, while the downstream boundary condition was given in the form of water 

elevation. The model was used to predict flow velocities and water depths under 

different flow rates. The size of the computational grid was uniform and it was 10 

m in both x and y directions. The time step was 2 s. The model simulation time 

was typically 50 hours for each scenario. The 2D hydrodynamic and water quality 

model was combined with the HSI model. Grid values of each of the indexes were 

combined with the suitability curve information and thus the overall HSI from the 

linked eco-hydraulic model was obtained for each scenario.  



 6 MODELING HABITAT SUITABILITY FOR FISH IN FLUVIAL AND LACUSTRINE REGIONS  

- 119 - 

 

 

Figure 6-3 Simulation domain and boundary conditions 

6.4 Results  

6.4.1 Hydrological Data Analysis 

The river discharge was found to have a major effect on the inter-annual 

variation in fish abundances (Carassou et al., 2011). Many water-related problems, 

including the shortage of water for ecosystems, occur during the annual dry season 

or, a prolonged period of drought. In this study efforts were made to incorporate 

the ecological water requirement with the natural flow pattern, which can be 

derived from existing hydrological data. Mao & Li (2009) investigated the 

recurrence characteristics of wet and dry years in the Jiyun River network, and 

found that the number of years with an average precipitation was greater than the 

numbers of wet and dry years.  

In this study, 10 years of hydrologic data (2001-2010) recorded at 

Fangchaozha gauging station was analysed and the year 2006 was found to be a 

typical year of average rainfall. Based on the daily averaged flow rates obtained 

from the gauging station, the annual hydrograph was computed. In addition to flow 

data, monthly rainfall data were also used, as shown in Figure 6-4. Both the daily 

discharge and monthly rainfall in Figure 6-4 showed significant variability within a 

year. In 2006, the annual average flow rate in the Jiyun River was 39.45 m
3
·s

-1
. 



 6 MODELING HABITAT SUITABILITY FOR FISH IN FLUVIAL AND LACUSTRINE REGIONS  

- 120 - 

 

The seasonality of precipitation and distribution of rainfall have a major influence 

on the river discharge, indicated by the high flow events during the months of June 

to August with the maximum flow rate of 107 m·s
-1

. The river’s flow rate during 

the winter is the lowest, with a minimum flow rate of 2 m
3
·s

-1
. The temporal 

variation of flow regime can be investigated further through the Flow Duration 

Curve (FDC) analysis, as illustrated in Figure 6-5, which is a cumulative frequency 

curve showing the percentage of time during which specified discharges were 

reached or exceeded for a given period. From the FDC, the natural flow rates were 

evaluated: the low flow (Q90=13.81m
3
·s

-1
, 90% exceedance), average flow 

(Q50=35.11m
3
·s

-1
, 50% exceedance) and high flow (Q10=71m

3
·s

-1
, 10% 

exceedance). In the current study they were used to represent the discharges for the 

three stages of the carp life cycle including overwintering, spawning, and growth. 

 

Figure 6-4 Variability of daily discharge and monthly rainfall at Fangchaozha 

hydrological station in year 2006 
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Figure 6-5 Flow duration curve for Jiyun River in 2006 

6.4.2 Modelling Results 

The HSI distribution at the spawning stage in the study area was determined 

by combining the suitability index values for the water depth, flow velocity and 

DO using Equation 1. For the growth and overwintering stages, the velocity was 

not included in calculating the HSI for the lacustrine region as evidence suggested 

that it was less important for species abundance in the lacustrine region (Reiser & 

White, 1983). Carps occur in rivers and estuaries but are most abundant in 

reservoirs, lakes, and farm ponds with slow moving water (≤0.2 m·s
-1

). Numerical 

model predicted values of each of the parameters were combined with the 

preference curves. The suitable areas were then estimated cell by cell to determine 

the HSI distributions for the whole reach. Figure 6-6 shows the predicted flow field 

using the integrated model whilst the HSI distributions obtained for the spawning, 

growth and overwintering stages are plotted in Figure 6-7.  

As Figure 6-7 shows, in a large part of the study area the HSI values were less 

than ideal for carp to settle in the spawning and overwintering stages while nearly 

half of the area met the ideal conditions for the growth stage. For the spawning 
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stage (Q = 35.11 m
3
·s

-1
), only 8.6% of the study area had the ideal condition in the 

current river state, whilst an additional 14.1% had the potential for fish habitat to 

develop while the remaining 77.3% was poorly suited. The upstream river reach 

and the lake inlet area were found to be generally more suitable for the carp life 

cycle while the downstream of the river and most of the lake were less than ideal, 

as the HSI value ranged from 0.2 to 0.6 (see Figure 6-7(a)). For the growth stage 

(Q = 71m
3
·s

-1
), 44.5% of the area met the ideal condition, whilst an additional 24.7% 

had the potential for carp habitat to develop and the remaining 30.8% was poorly 

suited. The predicted HSI value in the fluvial area was generally above 0.7, thus 

indicating an ideal condition in the Jiyun River from July to November (see Figure 

6-7(b)). As for the overwintering stage (Q = 13.81 m
3
·s

-1
), the area with ideal 

habitat conditions covered 24.4% of the total area, while 20.5% had the potential 

for development and 55.1% was poorly suited (see Figure 6-7(c)). 

 

Figure 6-6 Model predicted depth averaged flow field in the study area.  
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Figure 6-7 Predicted HSI under current flow conditions for the three life cycle 

stages of (a) Spawning stage Q=35.11 m
3
·s

-1
 (b) Growth stage Q=71 m

3
·s

-1
 (c) 

Overwintering stage Q=13.81 m
3
·s

-1 

6.5 Discussion  

6.5.1 Habitat Suitability in the Fluvial and Lacustrine Regions 

From the simulation results, it was noted that the lacustrine region would be 

poorly suited for carp to settle, with the spawning period being the most critical. In 

a) 

b) 

c) 
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order to determine the main reasons attributed to the low HSI values in the 

lacustrine region, a more detailed analysis on each individual suitability index was 

undertaken.  

At the spawning stage, as discussed in previous studies, the water velocity is 

the main factor for successful spawning since eggs need to be kept in suspension 

until hatching (Yi et al, 2010; Kolar, 2007). In this study, the predicted mean flow 

velocity in the lacustrine region was only approximately 0.05 m·s
-1

 while the carps 

will generally not spawn in waters with an average velocity below 0.2 m·s
-1

. The 

lacustrine region is thus unable to provide carp with adequate spawning conditions. 

Chinese carp are known to be mainly riverine species and migrate into river 

habitats for spawning. As carp prefer slow-moving and warm plankton rich water 

for growth, the young carp swim to the lacustrine region and grow up there from 

July to November. As a consequence, lake connected rivers have significant 

benefits for the carp life cycle. The U.S. Geological Survey study identified that 

the Maumee and other rivers flowing into Lake Erie have the right conditions to 

serve as spawning sites for Asian carp (Murphy & Jackson, 2013).  

For the growth and overwintering stages, the percentage of the predicted ideal 

water depth is approximately 70% while the HSI value of DO in the lake is 

generally below 0.5. The DO level, overriding the role of velocity and depth, 

appears to have a critical impact on the carp behaviour and the habitat suitability 

level in the lake at the growth and overwintering stages. The DO concentration in 

the river is more satisfactory because of the amount of photosynthesis and the fact 

that it is well-mixed. In the old and new reaches of Jiyun River, the DO level is 

more uniform with values largely ranging from 5 to 8 mg·l
-1

. However, the small 

flow velocity in the lake limits the potential for reaeration. Particularly in the 
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winter, the predicted DO concentration is very low with the concentration value 

generally less than 2 mg·l
-1

. Based on the habitat suitability analysis in the fluvial 

and lacustrine regions, it is noted that, 

(1) Carp spawning predominantly occurs in flowing fluvial regions. In the 

current study, the lake connected rivers would provide suitable spawning sites for 

carps. However, a combination of the low river discharge and high velocity 

requirement results in a poor suitability level for carps in the fluvial regions. The 

flow velocity could not be maintained due to the limited river discharge. The 

spring droughts in the study area caused by the lack of precipitation from March to 

June also affect the spawning of carps. Consequently, flow augmentation during 

the spawning season should be considered in order to improve the carp spawning 

conditions in the fluvial region. 

(2) For the growth and overwintering stages, the habitat suitability conditions 

in the lacustrine region are less than satisfactory for carps to settle and DO 

depletion is the main reason attributed to the low HSI in the lacustrine region, 

particularly during the overwintering stage. The main factor, and the one has the 

greatest impact on the aquatic ecosystem in the lake is the DO concentration 

(Stefan & Fang, 1994). During the winter, respiration is likely to occur at a greater 

rate than photosynthesis. Photosynthesis still occurs, but typically at a much lower 

rate than other stages. It is, therefore, imperative to look for a way to improve the 

DO concentration which can be utilised to maintain the healthy ecological water 

environment in the lacustrine region. 

6.5.2 Lacustrine Habitat Suitability Improvement 

It is recognised that a low DO concentration can be stressful to aquatic 

organisms in the lake. Bottom hypoxia occurs when the rates of DO consumption 
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exceed those of the DO supply (Lee & Lwiza, 2008) and lake managers are facing 

a challenge with regard to determining what to do to improve the DO level.  The 

numerical model results also indicate that a low DO level is the main reason for the 

poor habitat suitability conditions in the lake, and thus a DO enhancement 

approach was considered to improve the lacustrine carp suitability. The DO 

concentration improvement by artificial aeration has been increasingly used in fish 

farming and even in some recreational waters. Tyler (1946) was the first to report 

the use of an in stream aerator to enhance the DO level in the Flambeau river in 

Wisconsin. In 2001, an aeration system and a telemetry control system were used 

to increase the DO level in Cardiff Bay, UK (ARUP, 2001). Many other studies 

demonstrated that supplemental aeration is an economic and effective means to 

improve the stream water quality (Landman & Heuvel, 2003). Alp & Melching 

(2011) showed that during some periods the DO standards were not met in the 

Chicago Water System (CWS), which was mainly used for commercial and 

recreational navigation and urban discharge. The DUFLOW model was then used 

to evaluate the effectiveness of employing aeration devices to increase the DO 

level. The results showed that four introduced aerators with oxygen supply 

capacities ranging from 30 to 80g·s
-1 

would achieve 90% compliance with the 5 

mg·l
-1 

DO standard throughout the Chicago River.  

In the current study, 6 hypothetical aerators with an oxygen transfer rate of 20 

g·s
-1 

were set up in the lake to increase the DO level. Results from the model 

simulations are presented in Figure 6-8. From this figure it can be seen that the 

predicted HSI values were significantly improved after the oxygen enhancement. A 

comparison between the predicted HSI distributions before and after the oxygen 

enhancement is shown in Table 6-3. The ideally suited area for carps has increased 
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from 24.4% to 67.9% for the overwintering stage and from 44.5% to 77.5% for the 

growth stage, while the ideally suited area for carps to reproduce was only from 

4.5% to 5.5%.  

 

 

 

Figure 6-8 Predicted HSI after DO enhancement for the three life cycle stages 

of (a) Spawning, (b) Growth and (c) Overwintering 

 

a) 

b) 

c) 
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The DO concentration values at several locations before and after the oxygen 

enhancement are plotted in Figure 6-9, in which points A, B, C and L were located 

in the fluvial region while D, E, F, and G were located in the lacustrine region (see 

Figure 6-3). It can be seen that the DO concentrations in the fluvial region during 

the spawning and growth stages were less abundant than in overwintering. The 

ability of water to maintain oxygen in the dissolved state decreased with increasing 

temperature. Due to less surface reaeration and limited water inflow, low DO 

concentrations (<4 mg·l
-1

) were found in the lacustrine region (see Figure 6-9(a)). 

Figure 6-9(b) shows that the predicted DO concentration in the lacustrine 

region has been significantly improved by the supplementary aeration, with the DO 

concentration ranging from approximately 4 to 8 mg·l
-1

, which are satisfactory in 

the lacustrine region for carp to settle. The model results confirmed that using the 

aerators in the lacustrine region provided 95% and 91% ideally suitable areas for 

the growth and overwintering stages, respectively. The DO enhancement by 

aeration devices would be an effective means by which to bring the DO 

concentration to the target level and therefore improve the water quality in the 

lacustrine region at the growth and overwintering stages. However, as Figure 8(a) 

illustrates, the suitable area for carps to spawn in the lacustrine region was not 

improved even though the DO concentration was increased from approximately 2 

to 8 mg·l
-1

. As mentioned above, the main factor initiating spawning is the high 

flow while spawning activity for carp does not take place with a velocity under 0.2 

m·s
-1

. The connected old and new reaches of the Jiyun River could potentially 

provide suitable conditions for successful spawning.  
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Figure 6-9 DO concentration from upstream to downstream before (a) and 

after (b) oxygen enhancement 

Table 6-3 Predicted HSI distribution area before and after DO enhancement 

 Spawning  Growth  Overwintering 

 Before After  Before After  Before After 

Ideal 4.5% 5.5%  44.5% 77.5%  24.4% 67.9% 

Potential 10.2% 10.8%  24.7% 11.7%  20.5% 17.7% 

Poor 85.3% 83.7%  30.8% 10.8%  55.1% 14.4% 
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6.5.3 Fluvial spawning habitat suitability improvement   

At the spawning stage, the predicted flow velocity in the fluvial region was 

lower than that required to support successful spawning. To fulfil the spawning 

requirements during the spring drought, the effect of flow augmentation on the 

habitat conditions was investigated using the numerical model. The model was run 

for a variety of inflow discharges, ranging from 35 to 70 m
3
·s

-1
, to improve the 

habitat suitability level at the spawning stage. Since at the current condition more 

than 60% of water from the upstream main channel flows to the new reach, a weir 

was introduced to divert water from the new reach to the old one (see Figure 6-10). 

The modelling results indicate that, as the discharge increased to around 2 times 

that of the original discharge, the area of ideally suited habitats for carps to 

reproduce in the fluvial region increased to 78% (see Figures 6-7 and 6-10).  

 

Figure 6-10 Predicted HSI after flow augmentation for the spawning stage  

Although flow augmentation is an effective measure to improve the spawning 

condition, a continuous high flow for the spawning stage is not easily achieved. 

This is due to the fact that the Jiyun River is located in a low rainfall region and 

has relied on external water sources for many years. To overcome this constraint 

and to reduce its reliance on external water sources, additional water supplies from 

non-traditional sources, such as rainwater, desalinated water and recycled domestic 
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and industrial wastewater, were also considered. As a city designed to be 

ecologically friendly, non-traditional water would be taken into account for river 

flow augmentation in order to reduce the use of normal water resources. The 

potential non-traditional water supply in the Eco-City and the volume of the 

augmented flow was calculated and plotted as a function of monthly time in Figure 

11. The non-traditional water supply in the Eco-City was calculated based on the 

amount of domestic and industrial wastewater available in the Eco-City multiplied 

by the recovery factor (Tianjin Water Authority, 2012). As shown in Figure 11, the 

non-traditional water supply exceeded 4×10
6
 m

3
 of flow from March to June 

while approximately 2.5×10
6 

m
3
 of augmented flow is needed at the spawning 

stage. The analysis indicated that Tianjin Eco-City has sufficient non-traditional 

water to meet the high flow requirement at the carp spawning stage.  

 

Figure 6-11 Non-traditional water supply and Augmented flow demand in the 

Eco-City 

6.6 Conclusions  

In this paper, a 2D hydrodynamic and water quality model has been coupled 

with a HSI model to investigate the levels of fish habitat suitability in a combined 
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fluvial and lacustrine region in a new Eco-City. Both water quantity and quality 

parameters were considered in this model. Hydrological information was 

incorporated into the hydraulic data and the bioperiod needs of carps were 

evaluated using different suitability indexes. Model simulations were undertaken 

for three scenarios based on the flow rates for the three representative life stages of 

carps: spawning, growth and overwintering.  

The model results indicated that under the current flow regime the habitat 

suitability level in the lacustrine area was poorly suitable for carps both at the 

growth and overwintering stages. The depletion of DO concentration was the main 

reason for the low habitat suitability level in the lacustrine region. To improve the 

habitat suitability level in the lacustrine region, the DO enhancement by aeration 

devices was used. It was found that the habitat suitability conditions were 

significantly improved by setting up 6 hypothetical aerators, particularly for the 

overwintering stage with HSI values increasing from 24.4% to 67.9%. 

Supplemental aeration is an effective means by which to improve the habitat 

suitability levels during the growth and overwintering stages. Due to the high flow 

requirements for carps to spawn, the effect of flow augmentation on the fluvial 

spawning habitat conditions was also studied. The simulation results showed that 

sufficient flow velocity to support successful spawning was achieved by raising the 

discharge to 2 times that of the current flow in the study area. The Eco-City is 

located in a water-lacking region, thus meaning that the augmented flow may not 

be easily achievable from reservoir storage. The analysis indicated that Tianjin 

Eco-City has sufficient non-traditional water to meet the high flow requirement for 

carps to spawn in the fluvial. 
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CHAPTER 7   CONCLUSIONS AND 

RECOMMENDATIONS 

In this chapter, the main findings and conclusions of the study are summarised 

first, following which possible recommendations for further work are discussed.  

As outlined in Chapter 1, the main objectives of this thesis were to: 

 Determine the availability of non-traditional water resources and the potential 

water use in the Eco-City; 

 Estimate the minimum ecological water requirements in order to maintain the 

environmental water quality at a certain level in the Eco-City;  

 Develop an eco-hydraulic model to determine the fish habitat suitability in the 

river lake system in the Eco-City.  

Firstly, in order to determine the availability of non-traditional water resources 

and the potential water use in the Eco-City, historical annual rainfall records of the 

Eco-City area were analysed to determine the rainwater harvesting whilst monthly 

industrial and domestic effluent data were used to estimate the reclaimed 

wastewater collection. Secondly, to estimate the minimum EWRs of the Eco-City 

river lake system, an improved wetted perimeter method was used to estimate the 

minimum EWRs based on the available data for the 8 cross sections of the river 

system.  Finally, to determine the aquatic habitat suitability of the river lake system 

in the Eco-City, 1) an idealised river-lake system was assessed by using hydraulics 

laboratory experimentation and 2D numerical modelling. The analysis was based 

on residence time distribution curves, mean detention times and overall solute 
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distribution patterns obtained for the simulated lake; 2) an eco-hydraulic model has 

been developed by combing a 2D hydrodynamic and water quality model with a 

Habitat Suitability Index (HSI) model. This model was used to investigate the 

levels of fish habitat suitability in a combined fluvial and lacustrine region in a new 

Eco-City. Both water quantity and quality parameters were considered in this 

model. The hydrological information was incorporated into the hydraulic data and 

the bioperiods needs for the three life phases of the target carp species were also 

evaluated. Model simulations were undertaken for three scenarios based on the 

flow rates for the three representative life stages of carp, including: spawning, 

growth and overwintering.   

7.1 Conclusions 

Non-traditional Water Resource 

In Chapter 3, it was found that rainwater had a great potential for domestic use 

in the Eco-City from June to September. The total harvested rainwater from June to 

September was 8.66×10
6
m

3 
while the domestic water consumption was 

4.66×10
6
m

3
. Reclaimed domestic and industrial water was determined to be the 

major water resource to fulfill the basic ecological function of the Jiyun River from 

January to March, during which the flow rate is too low to meet the ecological 

water requirements. The results showed that the flow rate in the new reach was 

only around 15.24 m
3
/s in January. Overall, there were major opportunities to use 

non-traditional water to reduce demand for surface water in the Eco-City.  

Minimum EWRs 

The estimated results indicated that current monthly flow conditions are fairly 

satisfactory except for the flow from January to March. The total Minimum EWRs 

in January, February and March were 33.2 m
3
/s, 33.3m

3
/s, and 33.6m

3
/s 
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respectively. In contrast, the measured flows from January to March ranged from 

15.24 m
3
/s to 30.29 m

3
/s. An amount of 82.9×10

6
 m

3
 of the non-traditional water 

volume was needed to meet Minimum EWRs in Jiyun River. The reclaimed water 

calculation in Section 3.2.2 indicated that even though the total potential reclaimed 

water collected in January, February and March could not meet the EWRs, the 

ecological function could be retrieved by flow augmentation from the volume 

stored in November and December.   

River Lake System  

In Chapters 4 and 5, the results from hydraulics laboratory experimentation 

and 2D numerical modelling showed that recharge alone had little impact on the 

overall mixing level in the lake waters due to poor cross-sectional flow distribution. 

This could lead to localised water quality problems in stagnant and circulating flow 

regions. The effect of inserting a flow deflector near the lake inlet combined with 

flow augmentation was then assessed and was found to positively affect the 

distribution of solutes, by mitigating the occurrence of dead zones. It was 

concluded that additional measures to water diversion may need to be considered 

to achieve the goal of enhancing water quality in a recharged lake.  

Fish Habitat suitability  

In Chapter 6, it was concluded from the simulation result that under the 

current flow regime the habitat suitability level in the lacustrine area was poorly 

suited for carp at the growth and overwintering stages. The depletion of DO 

concentration was the main reason for the low habitat suitability level in the 

lacustrine region. Supplemental aeration was found to be an effective means by 

which to improve the habitat suitability levels during the growth and overwintering 

stages. The habitat suitability conditions were significantly improved by setting up 
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6 hypothetical aerators, particularly for the overwintering stage with HSI values 

increasing from 24.4% to 67.9%. Due to the high flow requirements for carp to 

spawn, the effect of flow augmentation on the fluvial spawning habitat conditions 

was also studied. The simulation results showed that sufficient flow velocity to 

support successful spawning was achieved by raising the discharge to 2 times that 

of the current flow in the study area. The analysis indicated that the non-traditional 

water supply exceeded 4×10
6
 m

3
 of flow from March to June while approximately 

2.5×10
6 

m
3
 of augmented flow was needed at the spawning stage. Indeed, it was 

concluded that Tianjin Eco-City has sufficient non-traditional water to meet the 

high flow requirement for carps to spawn in the fluvial.  

7.2 Recommendations  

The findings of this study have significant implications for the planning and 

management of an Eco-City. However, with the increase of non-traditional water 

use for different purposes, concerns over the environmental and health implications 

of this use have also increased. Further research is necessary in order to set up a 

universal strategy and use systemic indicators for the assessment, monitoring and 

evaluation of the sustainability of non-traditional water use.  

Future flow augmentation and water diversion will be required in the lake as 

low water mixing will significantly affect the ecology functions in the lake. In this 

sense, water management practitioners assisted by reliable predictive tools of flow 

and water quality processes can select the best intervention options. Further 

research is certainly needed for temporary structures which can be erected to store 

water for immediate or later diversion.  

It should be pointed out that the results obtained from this study are specific to 

Tianjin Eco-City, although the methods can also be applied to other fluvial or 
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lacustrine environments. The Non-traditional water use for sustainable 

development will be a key feature for other Eco-Cities. Although the combined 

model provides a useful tool to assess habitat suitability conditions in the fluvial 

and lacustrine region, only three important indices (water velocity, depth and DO) 

were considered in this study. Further studies are still needed to advance our 

understanding of the habitat suitability conditions in the fluvial and lacustrine 

regions by taking into account other relevant variables.  
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