Acoustic Casimir pressure for arbitrary media
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In this paper we derive a general expression for the acoustic Casimir pressure between two parallel
slabs made of arbitrary materials and whose acoustic reflection coefficients are not equal. The
formalism is based on the calculation of the local density of modes using a Green’s function
approach. The results for the Casimir acoustic pressure are generalized to a sphere/plate
configuration using the proximity theorem. @004 Acoustical Society of America.
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I. INTRODUCTION As in Refs. 6—8 we consider broadband acoustic noise
of constant spectral intensitl, in the frequency interval

Due to quantum vacuum fluctuations, two parallel neuy,, .1 and its spectral representation in the wave vector
tral plates will attract each other. This phenomenon is know%pace

as the Casimir forcé.Although a small force, it has been
measured accurately using torsion balances, atomic force mi- cl,

croscopes, and micromechanical oscillaforsAn acoustic 'k:mv @
analog to the Casimir effect was reported in 1996 by Larraza

and collaborator;® where two parallel plates, placed at a wherek?= (w/c)?=k2+ k§+ k2.

distance., were subjected to a broadband noise background. The total radiation pressure on a plate for perfect reflec-
The plates were observed both to attract and to repel eadbrs, using Eq(1), is

other, depending on the separation distance and the broad- )

band noise cutoff frequencies. Following Casimir’s method, _ lo J dk.dk.dk E &)

a theory for the acoustic Casimir force was developed as- 0 272 XEYERzpA

suming perfectly reflective plates with approximations that L )
turned out to be valid for the frequency range, material, and Bet.ween the plates, the total rad|at|or1 pressefeis
plate thickness that were used in the experiment. In this Worgeter.mlned by the allowed modes that satisfy the boundary
we derive a general expression for the acoustic Casimir pre§-Ondltlons at the plate surfac_es. If the plates are large
sure for materials with arbitrary impedances by calculatingenough’kX and ky take on continuous values. For perfect

the density of modes between the plates using the Greenrgflectors the normal component of the wave vector takes the

function formalism borrowed from the electromagnetic caseYaIueSkZ: nw/L, wheren is an integer. Thus, the calcula-

We also present an acoustic analog to the proximity theorerf{o" of the energy density is reduced to integration oker

to calculate the Casimir pressure between a sphere and2@dKy and summation oven. The Casimir pressure results
plate. from the differenceP;,— Py .

For arbitrary materials the mode summation is no longer
direct, since we are no longer allowed to specify Dirichlet
boundary conditions that restrict the allowed modes, and it
Il. THEORY becomes necessary to calculate the total density of modes
D(k,) and integrate over all wave vector space. To do this
we use a Green’s function approach.

The wave equation for the velocity potential can be writ-
as the eigenvalue equatiens>¢=k2¢, with eigenval-
Ol#eskﬁ. Let\, be an eigenvalue for the eigenfunctign. In
terms of the velocity potentiap, the particle velocity ,, the
fluid density p and with the definitions,=d,¢,, and p=

Consider two different parallel slabs labeled 1,2 of
thicknessd, ,, separated by a distande along thez axis.
The slabs are parallel to the-y plane and have an arbitrary ¢

. L : en
acoustic reflectivityr ; , [Fig. 1(a)].

For a perfect acoustic reflector, the radiation pressure

a wave of intensity and speed impinging on the slab is

; 9
given by —pdip, We can write the normal component of the wave
stress tensof as
2l
P=?00§(0), (1) P )
ani((&z¢n)2+kzd’n)- 4
where¢ is the angle of incidence. The total contribution to the stress tensor is obtained by
adding up all modes and integrating over all possible values
3E|ectronic mail: raul@fisica.unam.mx of kg .
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y tion G,. The total density of modes of the system is
L —Im(G,+G,)/7r. Writing the pressure and velocity in terms

of the scalar potential yields E@8). This is equivalent to
v r what happens in zero point Casimir effect where the density
of modes comes from adding the contribution of the electric
field plus that due to the magnetic fields, and both fields are
related through a constitutive equatidMaxwell's equa-
tions).

To construct the Green’s function for the velocity poten-
tial we can use the standard definition

X < z > z
z Gy2(z,2')= %, 9
whereW is the Wronskian and
R ¢<(Z):e—ikzz+rleikzz,
(10)

J b7 (2)= ka2 ) 4 p o ike(z= L),

are the solutions to the one-dimenional wave equation where
the superscript<€,>) represents the smaller and largerzof
andz’, respectively.

L Substitution of the potentia[€£q. (10)] into Egs.(9) and
(8) yields the local density of modes

v | =
r 2ik,L
1 1+rqrecz

u_) Dy Re[ 12

2=
2 2k,m  |1—rre?kdt

, (11)

FIG. 1. (a) Geometry and coordinate system for the two parallel plate con-where we have obviated the dependence of the reflectivities
figuration and(b) for the sphere-plane configuration. with wave vector. The density of states E#jl) was obtained
from the Green’s function for the Helmholtz equation with
0 eigenvalueskﬁ. However, we are interested in the density of
w= EJ dkﬁ; S(K2—Np) ((3,0) 2+ K23), (5)  states fork,. This is simply obtained fronD2=d(k}) D,
=2k,D,z2, or
where we have assumed an harmonic behavior of the poten- ‘

tial ¢ and the Dirac’s delta function is introduced since only 1 1+r1r ekt
the eigenmodes contribute ¥o. Now, using the identity Dy, = ;Re 1—rqr,e?kt | (12)
! 1 . The radiati due to the inside mod
-p i S(K2=N,), 6 e radiation pressure due to the inside modes can now
S VI W (kz=An) ©®  pe written as
with kz+2: Iim,ﬁo(k2+i n) we can write Eq(5) as l, k§
Pin:Ef dkxdkydeDkZF' (13)

1 1

WZ%J dkﬁ( —=)Im Y o ((9,80) 2+ K20D).

m m k"= Ag In the limit of perfect reflectors —1 the density of states
becomes Ky/m) 6(k,—nky) where kg=a/L. Thus, from

In this equation, we can identify the spectral representatiorq. (13) the pressure due to all the modes is

(or eigenfunction expansigmf the Green’s function and its

2
derivative! and we interpret the quantity Pin:;(:rczu f dk,dk,dk, 5(k,—nko) %' (14)
1 n
Die==—Im(G(z.2)+,9,6(2,2)), ® o
as the density of modes. Another way of understanding the k3| n?

3
result is as follows. The basic definition of denisty of modes ~ Pin= 207_:) f dkedk, > K+k (15
in terms of the Green’s funtion is obtained from EE) as nox
—Im G(z,2/w. The acoustic pressure obeys the wave equawhich is the same as that obtained by Larraza and
tion and with the appropriate boundary conditions, we carcollaborator€~2 Finally, the acoustic Casimir force per unit
obtain the Green's functiorG, and thus the density of areaf=P;,— P, takes the form
modes. From the acoustic stress tensor compdiant(4)], 5
besides the pressure field, there is a contribution from the . _ I R% j dk.dk.dk &(i))
velocity field. Let this field have an associated Green’s func- 272 XEWER KA e—-1) )

2 21,2\2"
y+Nnkg)

(16)
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FIG. 2. Acoustic Casimir force between two parallel plates for different FIG. 3. Acoustic Casimir force between a sphelRe=0.2 m) and a plane
values of the reflectivity assuming both plates are equal. The values of for reflectivity r=1 (dashed ling For comparison the force between two
are indicated. The intensity and bandwidth are the same as in the experparallel plates is also showsolid line).

ments of LarazdRef. 6).

ture of the gap width function at the point of closest

where é=(r,r, exp(ak,L)) 1. Notice that it is enough to approach
know the separation between the slabs and the reflectivitigsgr g sphere-plane system, the foFeg is obtained from the
to determine the acoustic Casimir force. Casimir free energy per unit area between two parallel plates

To illustrate the application of E416), in Fig. 2 we plot ¢ 55
the forceversusseparation for two identical slabs with con-
stant reflectivities =1, 0.8, 0.7. In all cases the force goes fsp=27RE, 7
from attractive to repulsive as the separation increases. ThghereR is the radius of the sphere. The proximity theorem is
magnitude of the force is not only related to the reflectivity valid providedL/R< 1, L being the closest distance between
but also to the finite bandwidth being used. If the bandwidththe surface, although the limit ¢f—0 can at be described
extends from zero to infinity, the acoustic Casimir pressureyy the proximity theorem. A current problémis that there
for a perfect reflector- 71 /4L is always attractive. If we are no bounds on how big/R has to be in order to obtain
integrate Eq.(16) over all frequencies the force is also al- the correct result. Experimentally this becomes difficult at
ways attractive and as the reflectivity decreases the forcghe submicron scale. The acoustic analog of the Casimir
does tod? in all cases. Without loss of generality we have force provides a simplgnot necessarily easjeway of solv-
assumed a constant value ofwithin the bandwidth under ing this problem, since as shown by Larragse scale of the
consideration. However, the formalism is valid even whenacoustic experiments allows a more precise control of the
the reflectivity shows a strong dependence with frequencyinvolved parameters. Furthermore, the proximity theorem is
The bandwidth and intensity used in these calculations argalid for any interaction. In the acoustic case, the free energy
the same as in LarafaEven if we consider a finite fre- per unit area for parallel plates is
guency bandwidth it is possible to obtain a purely attractive | K
fprce if we consider the force between a surface with reflec-  ¢o_ 3 @ J' dk.d kydek_f1 Re(In(1— rlrzezikZL)))_ (18)
tivity r;=1 and a pressure release surface ™

= — 1. In this limit the force is constant and always attractiveTpis expression fo€ is such that the forckEq. (16)] is given
sinceDkZHO, as can be seen from E@.2) and the external by f=—g&JL. Thus, the force between a sphere and a
pressure field pushes the plates together. plane is

RI K, .
f :—“’fdk dk,dk,— Re(In(1—rr,e?kL))). (19
lll. THE PROXIMITY THEOREM IN ACOUSTICS S 2w xdkydipaRelin(l=rar, ). (19

Practical measurements of the Casimir force due to zerd® Show the application of this approximation, in Fig. 3 we

point energy fluctuations are done between a large spherl?éave plotted the force between two parallel plates and the

and a plane due to the difficulty of keeping two plates par_force between a 20 cm sphere and a plate. We observe that

allel at the submicron scafe® The force between a large although the proximity theorem gives a correct behavior and
sphere and a plangsee Fig. )] is calculated using the overall order of magnitude for the force, the region in the
proximity theorent® or Derjaguin approximatio: which limit of L approaching zero is not well described.

states that

the force between two smooth surfaces as a function ol%/ CONCLUSIONS

the separation degree of freedom is proportional to the ~ We have derived a general expression for the acoustic
interaction potential per unit are& between two flat Casimir force between two parallel slabs with arbitrary

surfaces, the proportionality factor beingrzimes the  acoustic properties characterized by the reflection coeffi-
reciprocal of the square root of the Gasussian cuadra-cients of the material. We also extended our results to include
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