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In this paper we derive a general expression for the acoustic Casimir pressure between two parallel
slabs made of arbitrary materials and whose acoustic reflection coefficients are not equal. The
formalism is based on the calculation of the local density of modes using a Green’s function
approach. The results for the Casimir acoustic pressure are generalized to a sphere/plate
configuration using the proximity theorem. ©2004 Acoustical Society of America.
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I. INTRODUCTION

Due to quantum vacuum fluctuations, two parallel ne
tral plates will attract each other. This phenomenon is kno
as the Casimir force.1 Although a small force, it has bee
measured accurately using torsion balances, atomic force
croscopes, and micromechanical oscillators.2–5 An acoustic
analog to the Casimir effect was reported in 1996 by Larr
and collaborators,6–8 where two parallel plates, placed at
distanceL, were subjected to a broadband noise backgrou
The plates were observed both to attract and to repel e
other, depending on the separation distance and the br
band noise cutoff frequencies. Following Casimir’s metho1

a theory for the acoustic Casimir force was developed
suming perfectly reflective plates with approximations th
turned out to be valid for the frequency range, material, a
plate thickness that were used in the experiment. In this w
we derive a general expression for the acoustic Casimir p
sure for materials with arbitrary impedances by calculat
the density of modes between the plates using the Gre
function formalism borrowed from the electromagnetic ca
We also present an acoustic analog to the proximity theo
to calculate the Casimir pressure between a sphere a
plate.

II. THEORY

Consider two different parallel slabs labeledi 51,2 of
thicknessd1,2, separated by a distanceL along thez axis.
The slabs are parallel to thex–y plane and have an arbitrar
acoustic reflectivityr 1,2 @Fig. 1~a!#.

For a perfect acoustic reflector, the radiation pressur
a wave of intensityI and speedc impinging on the slab is
given by6,9

P5
2I

c
cos2~u!, ~1!

whereu is the angle of incidence.

a!Electronic mail: raul@fisica.unam.mx
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As in Refs. 6–8 we consider broadband acoustic no
of constant spectral intensityI v in the frequency interval
@v1 ,v2#, and its spectral representation in the wave vec
space

I k5
cIv

4pk2 , ~2!

wherek25(v/c)25kx
21ky

21kz
2 .

The total radiation pressure on a plate for perfect refl
tors, using Eq.~1!, is

P05
I v

2p2 E dkxdkydkz

kz
2

k4 . ~3!

Between the plates, the total radiation pressurePin is
determined by the allowed modes that satisfy the bound
conditions at the plate surfaces. If the plates are la
enough,kx and ky take on continuous values. For perfe
reflectors the normal component of the wave vector takes
valueskz5np/L, wheren is an integer. Thus, the calcula
tion of the energy density is reduced to integration overkx

andky and summation overn. The Casimir pressure result
from the differencePin2P0 .

For arbitrary materials the mode summation is no lon
direct, since we are no longer allowed to specify Dirich
boundary conditions that restrict the allowed modes, an
becomes necessary to calculate the total density of mo
D(kz) and integrate over all wave vector space. To do t
we use a Green’s function approach.

The wave equation for the velocity potential can be wr
ten as the eigenvalue equation2]z

2f5kz
2f, with eigenval-

ueskz
2 . Let ln be an eigenvalue for the eigenfunctionfn . In

terms of the velocity potentialf, the particle velocityvz , the
fluid density r and with the definitionsvz5]zfn and p5
2r] tfn we can write the normal component of the wa
stress tensor10 as

wn5
r

2
~~]zfn!21kz

2fn
2!. ~4!

The total contribution to the stress tensor is obtained
adding up all modes and integrating over all possible val
of kz

2 .
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w5
r

2 E dkz
2(

n
d~kz

22ln!~~]zfn!21kz
2fn

2!, ~5!

where we have assumed an harmonic behavior of the po
tial f and the Dirac’s delta function is introduced since on
the eigenmodes contribute tow. Now, using the identity

1

kz
122ln

5P
1

kz
22ln

2 ipd~kz
22ln!, ~6!

with kz
125 limh→0(k21 ih) we can write Eq.~5! as

w5
r

2 E dkz
2S 2

1

p D Im (
n

1

kz
122ln

~~]zfn!21kz
2fn

2!.

~7!

In this equation, we can identify the spectral representa
~or eigenfunction expansion! of the Green’s function and its
derivative,11 and we interpret the quantity

D k
z
252

1

p
Im~G~z,z!1]z]zG~z,z!!, ~8!

as the density of modes. Another way of understanding
result is as follows. The basic definition of denisty of mod
in terms of the Green’s funtion is obtained from Eq.~6! as
2Im G(z,z)/p. The acoustic pressure obeys the wave eq
tion and with the appropriate boundary conditions, we c
obtain the Green’s functionGp and thus the density o
modes. From the acoustic stress tensor component@Eq. ~4!#,
besides the pressure field, there is a contribution from
velocity field. Let this field have an associated Green’s fu

FIG. 1. ~a! Geometry and coordinate system for the two parallel plate c
figuration and~b! for the sphere-plane configuration.
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tion Gv . The total density of modes of the system
2Im(Gp1Gv)/p. Writing the pressure and velocity in term
of the scalar potential yields Eq.~8!. This is equivalent to
what happens in zero point Casimir effect where the den
of modes comes from adding the contribution of the elec
field plus that due to the magnetic fields, and both fields
related through a constitutive equation~Maxwell’s equa-
tions!.

To construct the Green’s function for the velocity pote
tial we can use the standard definition

Gk2~z,z8!5
f,~z,!f.~z.!

W
, ~9!

whereW is the Wronskian and

f,~z!5e2 ikzz1r 1eikzz,
~10!

f.~z!5eikz(z2L)1r 2e2 ikz(z2L),

are the solutions to the one-dimenional wave equation wh
the superscript (,,.) represents the smaller and larger ofz
andz8, respectively.

Substitution of the potentials@Eq. ~10!# into Eqs.~9! and
~8! yields the local density of modes

D k
z
25

1

2kzp
ReF11r 1r 2e2ikzL

12r 1r 2e2ikzLG , ~11!

where we have obviated the dependence of the reflectiv
with wave vector. The density of states Eq.~11! was obtained
from the Green’s function for the Helmholtz equation wi
eigenvalueskz

2 . However, we are interested in the density
states forkz . This is simply obtained fromD k

z
25d(kz

2)Dkz

52kzD k
z
2, or

Dkz
5

1

p
Re F11r 1r 2e2ikzL

12r 1r 2e2ikzLG . ~12!

The radiation pressure due to the inside modes can
be written as

Pin5
I v

4p E dkxdkydkzDkz

kz
2

k4 . ~13!

In the limit of perfect reflectorsr→1 the density of states
becomes (k0 /p) d(kz2nk0) where k05p/L. Thus, from
Eq. ~13! the pressure due to all the modes is

Pin5
k0I v

2p2 E dkxdkydkz(
n

d~kz2nk0!
kz

2

k4 , ~14!

or

Pin5
k0

3I v

2p E dkxdky(
n

n2

~kx
21ky

21n2k0
2!2 , ~15!

which is the same as that obtained by Larraza a
collaborators.6–8 Finally, the acoustic Casimir force per un
areaf 5Pin2Pout takes the form

f 5
I v

2p2 ReS E dkxdkydkz

kz
2

k4 S 1

j21D D , ~16!

-
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where j5(r 1r 2 exp(2ikzL))21. Notice that it is enough to
know the separation between the slabs and the reflectiv
to determine the acoustic Casimir force.

To illustrate the application of Eq.~16!, in Fig. 2 we plot
the forceversusseparation for two identical slabs with con
stant reflectivitiesr 51, 0.8, 0.7. In all cases the force go
from attractive to repulsive as the separation increases.
magnitude of the force is not only related to the reflectiv
but also to the finite bandwidth being used. If the bandwi
extends from zero to infinity, the acoustic Casimir press
for a perfect reflector2pI v/4L is always attractive. If we
integrate Eq.~16! over all frequencies the force is also a
ways attractive and as the reflectivity decreases the fo
does too12 in all cases. Without loss of generality we ha
assumed a constant value ofr within the bandwidth under
consideration. However, the formalism is valid even wh
the reflectivity shows a strong dependence with frequen
The bandwidth and intensity used in these calculations
the same as in Laraza.6 Even if we consider a finite fre
quency bandwidth it is possible to obtain a purely attract
force if we consider the force between a surface with refl
tivity r 151 and a pressure release surfacer 2

521. In this limit the force is constant and always attracti
sinceDkz

→0, as can be seen from Eq.~12! and the externa
pressure field pushes the plates together.

III. THE PROXIMITY THEOREM IN ACOUSTICS

Practical measurements of the Casimir force due to z
point energy fluctuations are done between a large sp
and a plane due to the difficulty of keeping two plates p
allel at the submicron scale.2–5 The force between a larg
sphere and a plane@see Fig. 1~b!# is calculated using the
proximity theorem13 or Derjaguin approximation,14 which
states that

the force between two smooth surfaces as a functio
the separation degree of freedom is proportional to t
interaction potential per unit areaE between two flat
surfaces, the proportionality factor being 2p times the
reciprocal of the square root of the Gasussian cuad

FIG. 2. Acoustic Casimir force between two parallel plates for differ
values of the reflectivityr assuming both plates are equal. The values or
are indicated. The intensity and bandwidth are the same as in the ex
ments of Laraza~Ref. 6!.
J. Acoust. Soc. Am., Vol. 116, No. 2, August 2004
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ture of the gap width function at the point of close
approach.

For a sphere-plane system, the forceFsp is obtained from the
Casimir free energy per unit area between two parallel pla
E as

f sp52pRE, ~17!

whereR is the radius of the sphere. The proximity theorem
valid providedL/R,1, L being the closest distance betwe
the surface, although the limit ofL→0 can at be described
by the proximity theorem. A current problem15 is that there
are no bounds on how bigL/R has to be in order to obtain
the correct result. Experimentally this becomes difficult
the submicron scale. The acoustic analog of the Cas
force provides a simpler~not necessarily easier! way of solv-
ing this problem, since as shown by Larraza6 the scale of the
acoustic experiments allows a more precise control of
involved parameters. Furthermore, the proximity theorem
valid for any interaction. In the acoustic case, the free ene
per unit area for parallel plates is

E5
I v

4p2 E dkxdkydkz

kz

k4 Re~ ln~12r 1r 2e2ikzL!!). ~18!

This expression forE is such that the force@Eq. ~16!# is given
by f 52]E/]L. Thus, the force between a sphere and
plane is

f ps5
RIv
2p E dkxdkydkz

kz

k4 Re~ ln~12r 1r 2e2ikzL!!). ~19!

To show the application of this approximation, in Fig. 3 w
have plotted the force between two parallel plates and
force between a 20 cm sphere and a plate. We observe
although the proximity theorem gives a correct behavior a
overall order of magnitude for the force, the region in t
limit of L approaching zero is not well described.

IV. CONCLUSIONS

We have derived a general expression for the acou
Casimir force between two parallel slabs with arbitra
acoustic properties characterized by the reflection coe
cients of the material. We also extended our results to incl

t

ri-

FIG. 3. Acoustic Casimir force between a sphere (R50.2 m) and a plane
for reflectivity r 51 ~dashed line!. For comparison the force between tw
parallel plates is also shown~solid line!.
719Bárcenas et al.: Acoustic Casimir pressure for arbitrary media
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the force between a sphere and a plane. The expressio
obtain for the Casimir force is convenient for calculatio
since it depends mainly on the reflection coefficients that
be obtained straightforwardly in theoretical computations
through experimental work. Our approach is analogous to
electromagnetic dielectric case, so this formalism is equ
lent to the Liftshitz formula.16,17 In the limit of a perfectly
reflective plate our results agree with those of Larraza.6 This
formalism can be extended to the case of highly porous
terials or viscous propagation media, although the calc
tions involved can be of increasing difficulty. It must b
pointed out that for the case when the material is deform
by the wave, this density of states approach is no lon
valid: the reflection coefficient is angular dependent, a
since the angle itself is time dependent the use of a s
density of states would be incorrect. Also, we have exclu
the possible effects of roughness.

The crucial difference between the system we cons
and the original treatment6 is the inclusion of the density o
states through the Green’s function method. The analyt
interpretation of the density function gives a deeper insi
into what really happens in a nonperfect reflector. For a p
fect reflector the density of modes consists of a series
Dirac’s deltas. As the reflectivity decreases from unity,
resonance bands increase in width, which is heuristic
equivalent to a spatial diffusion of the nodes that app
inside the resonant cavities.

Although the use of perfectly reflectiving plates is
good approximation in some experimental situations, thi
not the case for other bodies~such as rubber, as an extrem
example! hence our efforts to broaden the horizon of app
cation. As an example, we have considered the possibilit
using acoustic experiments to prove the validity of the pr
imity theorem. Additionally, this treatment could allow for
larger range of experimental versus theoretical compariso
this field where, as noted by Larrazaet al., the possibility of
direct technological application of the acoustic Casimir
fect is considerable.
720 J. Acoust. Soc. Am., Vol. 116, No. 2, August 2004
we

n
r
e
-

a-
a-

d
er
d
tic
d

r

al
t
r-
of
e
ly
r

is

-
of
-

in

-

ACKNOWLEDGMENT

Partial support provided by DGAPA-UNAM Project No
IN116002-2.

1H. B. G. Casimir, ‘‘On the attraction between two perfectly conducti
plates,’’ Proc. K. Ned. Akad. Wet.51, 793 ~1948!.

2S. K. Lamoreaux, ‘‘Demonstration of the Casimir force in the 0.6 to 6mm
range,’’ Phys. Rev. Lett.78, 5 ~1997!.

3U. Mohideen and A. Roy, ‘‘Precision measurement of the Casimir fo
from 0.1 to 0.9mm,’’ Phys. Rev. Lett.81, 4549~1998!.

4B. W. Harris, F. Chen, and U. Mohideen, ‘‘Precision measurement of
Casimir force using gold surfaces,’’ Phys. Rev. A62, 052109~2000!.

5H. B. Chan, V. A. Aksyuk, R. N. Kliman, D. J. Bishop, and F. Capass
‘‘Quantum mechanical actuation of microelectromechanical systems
the Casimir force,’’ Science291, 1942~2001!.

6A. Larraza, C. D. Holmes, R. T. Susbilla, and B. Denardo, ‘‘The for
between two parallel rigid plates due to the radiation pressure of bro
band noise: An acoustic Casimir effect,’’ J. Acoust. Soc. Am.103, 2267
~1998!.

7A. Larraza and B. Denardo, ‘‘An acoustic Casimir effect,’’ Phys. Lett.
248, 151 ~1998!.

8A. Larraza, ‘‘A demonstration apparatus for an acoustic analog to
Casimir effect,’’ Am. J. Phys.67, 1028~1999!.

9L. D. Landau and E. M. Lifshitz,Fluid Mechanics~Pergamon, New York,
1987!.

10C. P. Lee and T. G. Wang, ‘‘Acoustic radiation pressure,’’ J. Acoust. S
Am. 94, 1099–1109~1993!.

11A. Gonis, Theoretical Materials Science~Materials Research Society
Warrendale, PA 2000!.

12When the bandwidth extends from zero to infinity it is possible to evalu
the force by mapping the real frequency axisv to iv, making the integral
numerically stable. See, for example, Ref. 17.

13L. R. White, ‘‘On the Deryaguin approximation for the interaction
macrobodies,’’ J. Colloid Interface Sci.95, 286 ~1983!.

14J. Blocki, J. Randrup, W. J. Swiatecki, and C. F. Tsang, ‘‘Proxim
forces,’’ Ann. Phys.~N.Y.! 105, 427 ~1977!.

15C. Roman-Velazquez, C. Noguez, C. Villarreal, and R. Esquivel-Sirve
‘‘Spectral representation of the nonretarded dispersive force betwe
sphere and a substrate,’’ Phys. Rev. A~to be published!.

16W. L. Mochán, C. Villarreal, and R. Esquivel-Sirvent, ‘‘On Casimir force
for media with arbitrary dielectric properties,’’ Rev. Mex. Fis.48, 339
~2002!.

17R. Esquivel-Sirvent, C. Villarreal, and W. M. Mochan, ‘‘Exact surfac
impedance formulation of the Casimir force: Application to spatially d
persive metals,’’ Phys. Rev. A68, 052103~2000!.
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