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Abstract 

To investigate the energy consumption and emissions of Plug-in Hybrid Electric Vehicles 

(PHEVs) in China in 2020, we undertake a “Well-to-Wheel” lifecycle energy consumption and 

carbon emission analysis using the ‘Greenhouse Gases, Regulated Emissions and Energy Use 

in Transport’ model from the US Argonne National Laboratory. We find that PHEVs would 

reduce energy consumption by 37.5% and GHG emissions by 35% when compared to current 

gasoline vehicles under the predicted 2020 electricity generation mix. These savings would be 

higher under cleaner electricity generation mixes. These benefits are not substantially affected 

by changes in travel distances, battery ranges or charging frequencies. 

 

  



4 
 

1. Introduction 

 

As the car stock in China grows, so does the contribution of transport CO2 emissions, the 

dependence on imported petroleum, and urban air pollution. Indeed, since the late 1990s these 

issues have been “a focus of interest for many research institutions” (Wang et al., 2006, p.3). 

With a vehicle fleet forecast to increase by 10% per year until 2020 (Wang et al., 2006, p.35) 

the introduction of alternative fuel vehicles may help ease the scale of the problem. 

 

In this paper we explore the potential that Plug-in Hybrid Electric Vehicles (PHEVs) have to 

reduce gasoline consumption and CO2 emissions, and the role that battery range and charging 

frequency, daily distances driven and energy sources have within the realm of possible results. 

 

In contrast with Off-Grid Hybrid Electric Vehicles (OGHEVs), which convert the vehicle’s 

kinetic energy into battery-replenishing electric energy, or use the internal combustion engine 

to generate electricity by spinning an electrical generator to either recharge their batteries or to 

directly power the electric drive motor, Plug-in Hybrid Electric Vehicles (PHEVs) get the 

electricity from the grid and store it in an on-board battery. If the electricity is generated in a 

low-carbon way the potential for carbon emission savings is important, relative not just to 

conventional internal combustion engine (ICE) vehicles but also relative to OGHEVs. On top 

of that, PHEVs contain a dual power-train system capable of both electric drive or ICE drive 

alone and combined, unlike OGHEVs, which can only work on a combination of both. 

 

For the reasons outlined above PHEVs constitute an advantageous vehicle/fuel option. In China, 

these technical, environmental and financial advantages, combined with the clear infrastructure 

compatibility, have been recently identified by the government. Indeed, the State Council of 

China issued “The Energy Efficient and New Energy Vehicle Industry Development Master 

Plan 2012-2020” in April 2012. In that document the production of PHEVs is included in the 

key development strategy for the automobile industry in the near term, together with the 

production of Electric Vehicles (State Council of China, 2012). Within that framework there 

are a number of incentives in place. In 2010, for example, the central government introduced 

PHEV and EV purchase subsides in six pilot cities: Shanghai, Hangzhou, Changchun, Hefei, 

Shenzhen and Beijing (China Ministry of Finance, Ministry of Science and Technology, 

Ministry of Industry and Information Technology and National Development and Reform 
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Commission, 2010; China Ministry of Science and Technology, 2010a,b). The maximum 

subsidies are RMB 50,000 and RMB 60,000 for PHEVs and EVs respectively. Subsidies are 

linked to the capacity of on-board batteries, while the purchase of OGHEVs are subsidized by 

RMB 3,000 per vehicle.1  

 

In addition, a number of local governments have also introduced local subsidies for new energy 

vehicles (Ministry of Science and Technology, 2010). In some cities, such as Beijing and 

Shenzhen, the total subsidy (central and local combined) for a PHEV or EV is more than RMB 

110,000 per vehicle. 

 

The current PHEV prototypes, such as the Toyota Hymotion Prius with an A123 battery system, 

can provide competitive performance when compared with mid-size conventional ICE vehicles. 

Also, in contrast with other alternative fuel/vehicle systems, such as hydrogen Fuel Cell 

Vehicles (FCVs), PHEVs may have an infrastructure advantage, as they use the electricity 

supplied by the already existent electric power grid. Having said that, flexible fuel vehicles, 

which have a combustion engine designed to run on more than one fuel and are capable of 

running on higher percentage biofuels, can use the existing refueling infrastructure.  

 
1 Just to put subsidies in context, that for a BYD E6 would be about 1/3 of the vehicle price, assuming 

a price of roughly 37,000 RMB per vehicle, as shown on the manufacturer’s website (BYD, 2012). 
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PHEVs, however, may still constitute a good option. Production costs (and therefore the 

minimum price at which manufacturers will be willing to sell PHEVs) are not as large as those 

for pure Electric Vehicles (EVs) because of the reduced requirement for battery capacity (Weiss 

et al, 2000; EUCAR et. al, 2007). This would not be the case though if there were a 

breakthrough in battery technology which lowered pure EV production costs substantially 

relative to PHEV. However, this is unlikely in the time frame considered in the present study.2 

 

Nevertheless, PHEVs also face many challenges. Although the batteries required are not as 

costly as those required by pure EVs, the capacity still needs to be high and that means higher 

production costs than conventional ICE cars. The battery capacity is one of the main problems 

that hybrid and pure electric vehicles face, as the electric driving range depends on the battery. 

Also, as mentioned above, the reduction in carbon emissions depends on how the electricity is 

generated. Bradley and Frank (2009) review the potential environmental benefits of PHEVs 

for the US and conclude that improvements to the electricity grid can yield environmental 

benefits in the PHEV fleet. Finally, people’s travel behavior is an issue that is seldom 

mentioned but has an important role to play in carbon emission reduction, not just in the case 

of ICE vehicles but also in the case of PHEVs. By travel behavior in this study we are talking 

about refueling and battery charging frequency and daily distances driven, rather than mode, 

route or time of travel choice. 

 

This paper investigates PHEVs’ lifecycle energy consumption and carbon emissions for the 

case of 2020 China using the Greenhouse Gas, Regulated Emissions and Energy Use in 

Transport (GREET) Model.3 The development of the GREET model started in 1995 and was 

funded by the US Department of Energy’s Office of Transportation Technologies. GREET was 

originally released by the Argonne National Laboratory in 1996 and since then has been 

constantly updated. The model can be used to estimate fuel lifecycle energy use and emissions 

associated with conventional and alternative transport fuels and vehicles. It covers both the 

Well-to-Pump and Pump-to-Wheel stages. In the Well-to-Pump stage it models energy use and 

 
2 As a side note, some PHEVs are actually more expensive than pure EVs because of larger batteries. 

A Volt is more expensive than a Leaf, for example. 

3  The version used here is GREET 1.8c and is downloadable for free from 

http://www.transportation.anl.gov/modeling_simulation/GREET/ 



7 
 

emissions in the production, transport and storage of feedstock4 and production, transport, 

distribution and storage of fuel. In the Pump-to-Wheel stage it models vehicle operation energy 

use and emissions, and covers refuelling, fuel combustion/conversion, fuel evaporation and 

tire/brake wear (Wang, 2001). 

 

The answers to a questionnaire conducted in China are also used to make assumptions about 

travel behavior and energy consumption of PHEVs.   

 

This study shows that PHEVs have great potential to reduce GHG emissions. We show that the 

extent of these reductions is not very sensitive to daily distances driven or battery ranges (or 

indirectly, to charging frequency), when compared to how sensitive it is to the electricity 

generation mix. 

 

The results of this study offer clear guidance, at least to some extent, 5  to the Chinese 

government and auto manufacturers on what CO2 emissions reductions can be achieved in road 

transport in China in 2020 by using PHEVs under different electricity generation mixes and 

different battery ranges. If concerned about the environment, potential car buyers in China 

could also use our findings to inform their decisions. 

 

2. Methodology and Data 

 

The specific energy consumption and carbon emissions of PHEVs are determined by two 

factors: energy source and the electricity/petroleum consumption split. The parameter values 

input into GREET correspond to China, and were sourced from Chinese data bases, as 

described below. As is already standard practice, lifecycle was divided in two stages: Well-to-

 
4 Feedstock is defined as energy resources for fuel/electricity products. 

5 Our results are related to a small sample, which may not be necessarily representative of the Chinese 

population as a whole. Having said that, our 331 survey responses are extremely similar to the 1,163 

responses of a survey carried out by Deloitte Touche, which we use for comparison purposes in Section 

2.2.1. Both sets of findings are also in line with Wang et al. (2006, p.28). 
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Pump (WTP) and Pump-To-Wheel (PTW).   

 

2.1 Well-to-Pump Stage 

 

The energy recovery and refining data input onto GREET for WTP simulation were retrieved 

from the latest nationwide statistics and research reports. The exact source of each piece of 

information is further detailed below. 

 

Because this study focuses on the energy consumption and emissions of PHEVs, both 

electricity generation and gasoline production are reviewed. Other vehicle fuels such as diesel, 

natural gas based fuels, hydrogen and biomass-based fuels are not included, although they can 

also be used by the dual-power-train systems of PHEVs.  

 

2.1.1 Gasoline Pathway 

 

The two key questions when modeling the gasoline pathway are how the gasoline is produced 

(energy feedstock types) and how it is processed and transported. Since GREET in default 

mode uses data for the US case, all the data regarding gasoline production, process and 

transport were replaced with numbers corresponding to the Chinese case. In this section a brief 

overview of the assumptions is presented.  

 

2.1.1.1 Crude oil 

  

The oil recovery efficiency has improved for all the three major oil companies in China over 

the last 30 years (Zhang et al, 2007; China National Petroleum Corporation, 2011). However, 

given that many oil and gas fields in China are approaching their late-stage of extracting life, 

the efficiency improvement rate could decline gradually in the next few years (Zhang et al, 

2007; China National Petroleum Corporation, 2011). The recovery efficiency assumptions for 

2020 are therefore conservative. The crude oil recovery energy efficiency gap between China 

and the US in this study is assumed to remain at 5% or, in other words, the crude oil recovery 

energy efficiency, estimated as energy output (extracted oil) divided by energy input (residual 

oil, electricity, diesel and crude oil), in China in 2020 is assumed to be 93%, against 98% in 

the US (Zhang et al., 2007, p.37). All the efficiency parameters described here (and further 
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below) input on to GREET, as well as their sources, are summarized on Table A1 in the 

Appendix. 

 

2.1.1.2 Gasoline 

 

Since 1999, Chinese domestic gasoline production has met domestic demand. Therefore, this 

study only considers the refining efficiency of Chinese refineries. The two main oil companies, 

China National Petroleum Corporation (CNPC) and China Petroleum and Chemical 

Corporation (Sinopec), jointly supply 90% of the gasoline in China. Domestic fuel production 

energy efficiency is assumed to be 87% (Zhang et al., 2007) for 2020 for both CNPC and 

Sinopec, in contrast with 92% for the US6. Since 2020 is less than ten years away from the year 

when this paper was written (2011) the assumption of China being able to supply all of its 

gasoline demand in the future seems reasonable.7 Given the very rapid growth of China’s 

gasoline demand, this assumption would be questionable further into the future. If gasoline 

were to be imported, emissions could potentially go up, although this would depend on the fuel 

production efficiency of overseas refineries and transport modes and distances.  

 

2.1.1.3 Transport 

 

Apart from the energy efficiency of oil recovery and gasoline production, the transport of both 

crude oil and gasoline also plays an important role in the lifecycle. In China the distances that 

the fuel needs to be transported are large and this causes relatively high energy consumption 

and emissions during the energy transport process.  

 

Figure 1 summarizes the shares of oil sources for China, as well as the transport modes used 

and the average distances.  

 

 

  

 
6 GREET 1.8c.0 assumes a fuel production energy efficiency in the US for 2020 of 92%. 

7 On 25 May 2010 China Daily reported that China’s annual crude-oil refining capacity may rise by 

50% by 2015 (http://www.chinadaily.com.cn/bizchina/2010-05/25/content_9890521.htm). 
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Figure 1: Crude Oil Transport in China 

 

Source: designed with data from Zhang et al (2007) 

 

Currently, China’s imported crude oil accounts for more than 55% of national demand 

(ChinaIRN, 2011) and this figure could reach 60% to 80% by 2020 (Zhang et al., 2007, p. 36, 

Table 3.1). 

 

The imported crude oil is largely transported by tankers (90%), except for the crude oil from 

former USSR countries, which is usually delivered through pipelines and rail (China National 

Development and Reform Commission, 2006). There is also some oil imported from Southeast 

Asia and Russia, which is transported by railway. Taking into account transport routes and 

distances from the Middle East (38.5%), Asia-Pacific (17.4%), West Africa (19%), North 

Africa (1.9%), Southeast Africa (2.7%), Latin America (6.7%) and Europe (0.2%), the average 

transport distance by tankers can be assumed to be 11,000 km. 

 

Domestic and imported crude oil within China is transported by three modes: pipeline (61%), 

barge (7.8%) and railway (31%). According to the China National Development and Reform 

Commission (2006), the average distance that crude oil was transported in China in 2005 was 

390 km. The majority of barge-based crude oil transport in China takes place along the East 

China Sea and the Yangzi River, and the average transport distance is between 100 and 400 km 

(China Ministry of Communications and Transportation, 2005). The amount of oil transported 

by railway has increased relatively slowly compared to the increase in crude oil demand. The 

average transport distance by railway ranges from 860 km to 960 km. In 2020, it can be 
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assumed that 60% of trains will run on electricity and 40% will run on diesel (China National 

Development and Reform Commission, 2008). 

 

Since domestic gasoline meets and will continue to meet national demand in 2020, this analysis 

only considers the transport of gasoline within China. The main transport modes for fuel 

products currently are pipeline (15%), railway (50%), barge (25%) and highway (10%) (Jia, 

2003). These shares are assumed to be the same in 2020. A considerable amount of gasoline 

has to be transported long distances by railway, from the north-east and north-west to the 

eastern provinces. The average transport distance by train is around 800 to 1,000 km (China 

Logistics Association, 2005). 

 

Because the major Chinese oil refineries are located along the east coast and the Yangzi River, 

barge is also an important transport mode for fuel products. The China Ministry of 

Communications and Transportation (2005) and Jia (2003) estimate that 20% to 30% of oil 

products in China are transported by barge. Here an average of 25% is assumed, with an average 

distance of 1,200 km. Finally, gasoline and diesel from oil depots to service stations are 

transported by road and an average distance of 50 km is assumed. Although fuel transport via 

pipelines has increased in the period 2000 to 2010, its share among total transport remains minor. 

Assuming the share of pipeline transport continues to increase at 1.2% per year, this analysis 

assumes 30% of total fuel products will be transported by pipeline in China by 2020. Because 

pipelines currently are mainly applied for short distances, the average transport distance is 

assumed to be 160 km. However, with the progress of new “North-to-South” and “West-to-East” 

energy transport projects, the distance in 2020 is assumed to be 800 km (China National 

Development and Reform Commission, 2006).  
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2.1.2 Electricity Pathway 

 

At present, China’s national grid is operated by two state-owned companies: State Grid 

Corporation of China (SGCC) and China Southern Power Grid (CSPG). In both cases 

electricity is mainly generated in coal power stations. In fact 79% of all electricity in China is 

generated in coal power stations, as Table 1 shows. The new generation clean-coal technologies, 

such as Integrated Gas Combined Cycle, are currently only used to produce 1.25% of overall 

coal-based electricity. Following coal, hydropower ranks second, with a share of 17%. The 

shares of natural gas, residual oil and nuclear-based electricity generation are minor. Wind and 

biomass-based electricity generation are at their trial phase in some provinces only, including 

Inner Mongolia and Tibet (China National Statistics Bureau, 2006). 

 

Table 1 also shows the predicted electricity generation mix in China 2020. The figures are taken 

from Zhang et al. (2007, pp. 94-95). Given the China National Development and Reform 

Commission’s plans to implement a renewable energy program by 2020, the share of hydro, 

nuclear and wind power will increase, although coal will still remain the major resource in the 

medium term because China has a large amount of reserves (US Energy Information 

Administration, 2011). The electricity transmission loss is predicted to be around 7% by 2020, 

a slight improvement compared to the 2010 level of 7.1% (Zhang et al., 2007, pp. 94-95). 

 

Two other mixes are also shown on Table 1: a 2020 slightly cleaner than predicted electricity 

mix and an all nuclear mix. These two electricity generation mixes in China 2020 are 

hypothetical cases, used in the study for comparison purposes and sensitivity analysis.  

 

The 2009 electricity mix was used as a reference level. The 2020 electricity mix was used as 

the most probable one, with the reductions accruing under those assumptions to be taken as 

very likely to occur if PHEVs were to penetrate the market. The ‘all nuclear’ electricity mix 

was used to show that emissions reductions would be drastic if all electricity in China were 

produced at nuclear power stations. Having said that, as we discuss further down, nuclear 

electricity generation still causes some CO2 emissions and so these would not completely 

disappear. 
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Table 1: National Grid Electricity Generation Share in China 

 Coal Oil Natural 
Gas 

Hydropower Nuclear Solar, Wind 
& Biomass 

2009 mix1 79% 0.004% 1% 17% 2% 1% 
2020 predicted mix2 63% 1% 6.8% 19% 6.7% 3.5% 
2020 slightly cleaner mix3 40% 1% 10% 19% 20% 10% 
All nuclear4 0% 0% 0% 0% 100% 0% 

Sources: 1International Energy Agency (2010); 2Zhang et al. (2007, p.94) 

Note: The electricity generation mixes ‘2020 slightly cleaner’ and ‘All nuclear’ are unlikely and were used 

for sensitivity and comparison purposes only. 

 

2.2 Pump-to-Wheel Stage 

 

Two essential assumptions are needed for Pump-to-Wheel (PTW) simulation, which was also 

done with GREET: the selection of a reference plug-in vehicle for modeling and the share 

between electricity and gasoline consumption during vehicle operation. 

 

The reference plug-in vehicle for modeling in this study was the Toyota Hymotion Prius with 

an A123 battery. The default parameters in GREET to model the PTW stage were replaced with 

those corresponding to the Toyota Hymotion Prius. The share between electricity and gasoline 

consumption during vehicle operation were also input onto GREET, based on the results from 

a survey we conducted in China, and which we describe below. 

 

We chose the Toyota Hymotion Prius with an A123 battery because it was a promising 

prototype and the data we needed on fuel and electricity consumption was available at the time 

of writing this paper. We present the technical details on Table A2 in the Appendix. One 

drawback of this choice is that it essentially involves a conversion kit for a Prius (an OGHEV), 

and thus the costs, potential market, and consumer perceptions may be different.  

 

The share between electricity and gasoline use is determined by kilometers traveled per charge, 

which further relates to the vehicle’s electric operation range, and the required frequency of 

recharging. This in turn can be linked to driving behavior. A combination of a high-charging 

frequency rate and a low-driving distance per charge could offer nearly an all electric driving 

of PHEVs. This pattern would, for example, illustrate the driving behavior of workers 

commuting short distances by car and recharging the vehicle’s battery at home every night. 
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To address the share of electricity and gasoline consumption, the concept of “Utility Factor” 

(UF) has been introduced in recent PHEV fuel economy studies (Elgowainy et al., 2009) to 

represent the percentage of a PHEV’s electricity consumption over its entire energy 

consumption during vehicle operation. Normally, a daily charging basis is assumed and so a 

Daily Kilometers Traveled (DKT) becomes the key factor that needs to be identified. For this, 

daily travel behavior information is required. However, there is currently no such a nationwide 

level survey available for China. We therefore conducted a travel and attitudinal survey.  The 

details and findings from the survey are described below. 

 

2.2.1 The Survey 

 

The survey was conducted on the ‘Auto.Sohu’ website8 and the results reported in this paper 

correspond to responses posted in the period 24 February to 26 March 2010. Anyone visiting 

the website could see a link to the questionnaire. Participation was voluntary.  

 

The survey was designed to elicit, among other things, daily distance traveled, expected battery 

range and acceptable lowest vehicle maximum speed. An abridged version of the questionnaire 

is included in the Appendix. 

 

Three hundred and thirty one usable responses were collected and are used in this paper.  

 

Figure 2 summarizes the DKT as reported by our survey respondents and also, for the purpose 

of comparison and validation, as reported by the respondents of another survey carried out by 

Deloitte Touche Tohmatsu’s (DTTL) Global Manufacturing Industry group in April 2011.9 

Both groups of respondents reside mainly in urban and suburban areas in China. The three 

curves, which show the cumulative percentage of respondents and their typical DKT, follow 

 
8The ‘Auto.Sohu’ website is a Chinese website owned by a private company that specializes on car 

reviews, car information, car news, car surveys and car data: 

http://auto.sohu.com/20100224/n270407525.shtml 

9  www. 

deloitte.com/view/en_GX/global/press/314e7162b8a5f210VgnVCM1000001a56f00aRCRD.htm 
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remarkably similar trajectories, regardless of whether all modes of transport or just the car is 

included and regardless of whether the values correspond to our survey or the DTTL survey. 

The results from both surveys are also in line with figures reported by Wang et al. (2006, p.28). 

All trip purposes were included: commuting, shopping, recreation, and also work-related trips, 

as well as all other trips (such as attending medical appointments, etc.).  

 

Figure 2: Typical Daily Kilometers Travelled (DKT) per weekday by all modes and by car 

only 

 

Source: Responses to the survey conducted by the authors and responses to the survey conducted by 

DTTL 

Note: Total DKT refers to DKT by all modes, whereas Car DKT refers to DKT by car only 

 

The geographical distribution of the respondents in our sample is uneven. For example, 22% 

of the responses came from Beijing province, where only 1.09% of the Chinese population 

lives; and almost 17% of the responses came from Shanxi province, where only 2.85% of the 

population lives. Having said that, it is worth highlighting that the findings are not very 

different from those of the DTTL survey, which was also conducted online, between 28 January 

and 8 March 2011, and to which 1,163 Chinese drivers responded.  

 

Interestingly, as it can be seen on Figure 2, drivers from urban areas in China do not seem to 

travel longer distances than non-drivers. Eighty-four per cent of drivers in our sample travel 

80 km or less per day. When all modes of transport are included, 84% of respondents still report 
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they travel 80 km or less per day. When all modes of transport are included except the car, 84% 

of respondents travel 80 km or less per day. According to the DTTL survey, 79% of drivers in 

urban areas in China travel 80 km or less per day. It is slightly surprising and somewhat difficult 

to explain why drivers do not travel longer distances than non-drivers. Reasons for this may be 

linked to congestion in Chinese cities (note that virtually all respondents live in urban areas), 

or even with habits. Travel habits may be well-established and it may take some time before 

car owners start to exploit the advantages and freedom that a car brings. 

 

It should be born in mind that car ownership in China is still very low, with only 36% and 2.2% 

of households owning a car in Beijing and the whole of China, respectively (China National 

Statistics Bureau, 2009, Table 15-27: Private Car Ownership 2009), in contrast with the UK, 

where 76% of all households have regular access to at least one car (UK Department for 

Transport, 2009, Table 9.15, p.166). It should be noted, however, that car ownership in China 

is likely to double by 2020. The mean of the long-run income elasticity of demand for car 

ownership is 0.74 (Graham and Glaister, 2004, p.264). With this in mind, if income in China 

between 2010 and 2020 were to increase by 134.7%, as some forecasts predict (Rosen, 2012), 

car ownership would increase by 99.7%. 

 

3. Data Analysis 

 

If and when a consumer decides to buy a PHEV rather than a conventional ICE vehicle, he/she 

will typically consider a number of issues in addition to the cost of the vehicle itself and the 

cost of operating it,10 including battery capacity (i.e., for how long the car can be driven 

without re-charging the battery) and possible speeds.11 

 
10 Axsen and Kurani (2009) conducted an Internet-based survey of 2,373 new car-buying households 

in the US and found that fuel economy appears to be the most important characteristic for potential 

buyers of PHEVs in their sample. Similarly, 52% of our respondents thought that lower operating costs 

were an important advantage of HEVs and EVs. 

11 Thirty-eight per cent of our respondents stated that the minimum distance per charge they would find 

acceptable would be 200 km, and 33% stated that it would over 200 km. Thirty-one per cent of our 

respondents stated that the lowest vehicle maximum speed they would find acceptable would be 100 
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In this paper it is assumed that drivers recharge the vehicle battery once a day.12 As already 

explained above, if drivers had the necessary facilities to fully recharge the vehicle battery 

twice or three times a day, they would be able to drive longer distances on electricity. 

 

3.1 Utility Factor 
 

PHEVs can run on conventional oil-based fuels and electricity from the grid. Since their storage 

capacity is limited, PHEV batteries can only supply electricity to drive the vehicle for a limited 

number of kilometers. As a result, PHEVs operate in two modes: a charge-depleting mode, 

where the energy used by the car comes entirely or at least mainly from the battery, and a 

charge-sustaining mode, where the energy used by the car does not come from the battery 

(Bradley and Quinn, 2010, pp. 5399). 

 

The daily distance utility factor (UF) of a PHEV can be defined as the ratio of the number of 

kilometers driven under charge-depleting mode to the total number of kilometers driven: 

 

 

 

where d is the distance driven and RCD is the charge depleting range. As Bradley and Quinn 

(2010, p.5400) put it, the daily distance UF of a PHEV is equal to the ratio of the charge-

depleting range to the distance traveled: RCD/d if d < RCD, and 1 if d > RCD. 

 

Following Elgowainy et al. (2009), in order to identify the UF for various PHEV models (or 

battery energy storage capacities), the survey observations are categorized into 12 groups in 

 
km/h and 57% stated it would be 150 km/h. 

12 This assumption is common in the literature. Even the documents produced by the Society of 

Automotive Engineers (SAE) in the US assume that batteries are only recharged once a day (Bradley 

and Quinn, 2010). Axsen and Kurani (2010) evaluate different re-charging patterns and, not surprisingly, 

conclude that PHEV electricity use could be increased through policies supporting non-home 

recharging opportunities, although this increase would occur during daytime hours and would therefore 

potentially increase peak electricity demand. 

d
)R,dmin()(RUF CD

CDdistance =
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terms of DKT, as shown in Table 2. Only the responses from car drivers are taken into account 

for these calculations, as DKT by other modes would not be a good estimate of driver behavior. 

 

Table 2 can be read as follows. The first two columns indicate the limits of the range of DKT. 

For example, the first range corresponds to respondents who travel between 0 and 10 km per 

day. The ‘Frequency’ column is the number of respondents who gave that answer. The ‘Share’ 

column is the percentage of respondents with a DKT falling in that range. The rest of the 

columns give the daily distance UF for different RCD. Paraphrasing Bradley and Quinn (2010, 

p.5400), the daily distance UF is the fraction of km traveled by the sample fleet in charge 

depleting mode. 

 

For example, when the RCD is 10 km, drivers with DKT between 0 and 10 km will be able to 

drive all those km on charge depleting mode. As long as the RCD is higher than the DKT the 

PHEV will be able to drive on charge depleting mode alone. When the RCD is 50 km but the 

DKT is between 80 and 90, drivers will be able to drive the first 50 km on charge depleting 

mode but they will drive the remaining 30 to 40 km on conventional fuel. The PHEV Utility 

Factor on the last row indicates the proportion of total DKT by survey respondents that can be 

driven on electricity. If the RCD is 10 km only 32.28% of DKT by all respondents can be driven 

on charge depleting mode, whereas if the RCD is 70 km then 94.63% of DKT by all survey 

respondents can be done on charge depleting mode. 

 

Table 2 shows that the UF increases when RCD increases, provided DKT remains constant, and 

the UF decreases when DKT increases, provided RCD remains constant. In addition to that, it 

should be borne in mind that if drivers were able to fully recharge the vehicle battery more than 

once a day, all UF estimates on Table 2 would be higher, for every combination of DKT and 

RCD. 
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Table 2: Utility Factors (UF) for PHEV with different charge depleting ranges (RCD) 

DKT (km, 
min - max) Frequency Share 10 km 20 km 30 km 40 km 50 km 60 km 70 km 80 km 90 km 100 km 110 km 120 km 

0 10 12 5.15% 0.0515 0.0515 0.0515 0.0515 0.0515 0.0515 0.0515 0.0515 0.0515 0.0515 0.0515 0.0515 

10 20 33 14.16% 0.0944 0.1416 0.1416 0.1416 0.1416 0.1416 0.1416 0.1416 0.1416 0.1416 0.1416 0.1416 

20 30 32 13.73% 0.0549 0.1099 0.1373 0.1373 0.1373 0.1373 0.1373 0.1373 0.1373 0.1373 0.1373 0.1373 

30 40 17 7.30% 0.0208 0.0417 0.0625 0.0730 0.0730 0.0730 0.0730 0.0730 0.0730 0.0730 0.0730 0.0730 

40 50 59 25.32% 0.0563 0.1125 0.1688 0.2251 0.2532 0.2532 0.2532 0.2532 0.2532 0.2532 0.2532 0.2532 

50 60 20 8.58% 0.0156 0.0312 0.0468 0.0624 0.0780 0.0858 0.0858 0.0858 0.0858 0.0858 0.0858 0.0858 

60 70  2 0.86% 0.0013 0.0026 0.0040 0.0053 0.0066 0.0079 0.0086 0.0086 0.0086 0.0086 0.0086 0.0086 

70 80 21 9.01% 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 0.0035 0.0040 0.0043 0.0043 0.0043 0.0043 

80 90  1 0.43% 0.0136 0.0271 0.0407 0.0542 0.0678 0.0813 0.0949 0.1084 0.1220 0.1288 0.1288 0.1288 

90 100 30 12.88% 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

100 110  0 0.00% 0.0007 0.0015 0.0022 0.0030 0.0037 0.0045 0.0052 0.0060 0.0067 0.0075 0.0082 0.0086 

110 120  2 0.86% 0.0011 0.0021 0.0032 0.0043 0.0054 0.0064 0.0075 0.0086 0.0097 0.0107 0.0118 0.0129 

120 Max  4 1.72% 0.3228 0.5469 0.6963 0.8078 0.8808 0.9178 0.9463 0.9682 0.9838 0.9924 0.9943 0.9957 
PHEV Utility 

Factor 233 100% 0.3228 0.5469 0.6963 0.8078 0.8808 0.9178 0.9463 0.9682 0.9838 0.9924 0.9943 0.9957 

 

Source: Calculations by the authors using survey responses 
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Figure 3 shows the daily distance UF curve for various PHEVs with RCD of 10 km to 

120 km for average daily distances of 53.14 km, 79.71 km and 106.28 km, which are 

the average, 1.5 times and twice the average distance traveled by the drivers in the 

sample, respectively, on the assumption that they would not change their DKT as a 

result of driving a PHEV rather than a conventional ICE vehicle. As can be seen on the 

figure, the UF decreases when average distance traveled increases. In other words, the 

share of kilometers driven on battery declines the longer the distance driven. 

 

This is not trivial and may reflect a challenging obstacle to the mass penetration of 

PHEVs in China.  

 

Travel distances in China are likely to increase with increases in car ownership (already 

discussed above), reductions in lower vehicle operating costs, and increases in income. 

 

Lower vehicle operating costs cause a ‘rebound effect’, as is well-documented in the 

transport studies literature (Greening et al., 2000; Gorham, 2002, Portney et al., 2003; 

De Haan et al., 2007; Evans, 2008). In short, as costs decrease (be it fuel costs, time 

costs, etc.) quantity and/or length of trips increase. 

 

The mean of the long-run elasticity of demand for car-km with respect to income is 0.73 

(Graham and Glaister, 2004, pp. 263).13 Assuming this elasticity and the forecast real 

income growth used in Section 2 above (134.7%), car-km would increase by 98.4%. If 

this translated straight into average daily distance driven, the distance driven in 2020 

would be twice as high as that reported by respondents in 2010. The UF curve relevant 

to the present study can therefore be assumed to be the one corresponding to DKTx2. 

 
  

 
13 Graham and Glasiter (2004) review a number of studies conducted for different countries. 
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Figure 3: Daily Distance Utility Factor (UF) Curves for DKT, 1.5 DKT and 2 DKT 

 

Source: calculations produced by the authors 

 

A PHEV with a RCD of 60 km offers a UF of 0.92 for the 2010 DKT or 0.69 for the 

2020 DKT. In other words, 69% of all DKT by all survey respondents could be driven 

in charge depletion mode in 2020, provided they all drove PHEVs. It would be 

interesting to conduct a nationwide travel survey and be able to compare the Chinese 

UF with the one computed by Elgowainy et al. (2009, p.22) for the US, which they 

estimate at 64% for 2001, or the one computed by Vyas et al. (2009, p.56), also for the 

US, which they estimate at 74.9% for 2001 as well (as both studies use the 2001 US 

National House Travel Survey). 

 

As we show in Section 4, different UF (which are affected by travel distances, battery 

ranges and charging frequencies) do not have a substantial impact on absolute 

emissions or emissions reductions.  

0.0

0.2

0.4

0.6

0.8

1.0

10 20 30 40 50 60 70 80 90 100 110 120
PHEV RCD (km)

DKT

DKT×1.5

DKT×2.0



22 
 

4. Lifecycle Assessment Results 

 

Figure 4 summarizes the lifecycle energy consumption and emissions for PHEVs with 

RCD of 60 km relative to ICE vehicles, assuming the DKT in 2020 are twice as high as 

those in 2010 and the corresponding UF is 0.69, as shown on Figure 3 and highlighted 

above. GHG emissions are 34% lower and total energy consumption is 38% lower.14 

These results are not substantially different from those reported in Samaras and 

Meisterling (2008), who argue that PHEVs could reduce emissions in the US by 32%, 

compared to ICE vehicles.15 

 

 

 

 
14 For the fuel cycle of baseline ICEs, the electricity is consumed in both processes of crude 

oil recovery and gasoline production. For instance, in the crude oil recovery process, the 

electricity consumption is 3872Btu for every million Btu of petroleum, which accounts for 19% 

of total energy consumption in this process. As the electricity is largely generated from the 

combustion of coal, the crude oil recovery and fuel production involve coal consumption. 

Tables A3 and A4 provide absolute values of fuel cycle energy consumption and emissions of 

IVE vehicles and PHEVs, as well as changes of PHEV values relative to ICE values for the 

2020 predicted electricity mix and for the all nuclear mix, respectively. 

15 Duvall et al. (2007) estimate GHG reductions in the whole of the US for the year 2050 as a 

result of low, medium and high market penetration of PHEVs. Although they report results 

under a number of different assumptions, they report them in billion metric tons of CO2e rather 

than percentage changes. Also their analysis concerns marginal emission reductions rather than 

total emission reductions. The model they use is the National Electric System Simulation 

Integrated Evaluator (NESSIE), developed at the Electric Power Research Institute. The 

NESSIE models the US electricity sector from 2010 to 2050. For all those reasons comparisons 

with the Chinese case in the present study are not straightforward. 
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Figure 4: Lifecycle Energy Consumption in BTUs and GHG Emissions in CO2e for 

PHEVs with RCD of 60 km relative to 2009 ICE vehicles for the travel survey sample 

in China under the predicted 2020 electricity generation mix 

 

Source: estimates produced by the authors using GREET 1.8c, using parameters derived from 

the travel survey they conducted 

Note: The 2020 UF of 0.69 corresponds to twice the DKT from the 2010 survey, as explained 

in the text 

Note: The changes reported in this figure are from PHEVs relative to 2009 ICE vehicles (current 

gasoline vehicles) assuming the predicted 2020 electricity generation mix in China from Table 

1 

 

Assuming that grid electricity in China continues to be mainly generated in coal power 

stations, coal consumption increases. It can be seen from Figure 4 that for PHEVs to be 

truly ‘environmentally friendly’ and make significant improvements on energy 

consumption and GHG emissions, the electricity to power them needs to be generated 

using clean technologies. Even though energy consumption from coal (measured in 

BTUs) increases, energy from all fossil fuels (coal, oil and natural gas) decreases 

because energy consumption from oil and natural gas (measured in BTUs) decreases. 

Energy consumption from oil, unsurprisingly, declines. Energy consumption from gas 

also declines because the upstream process to produce gasoline involves a significant 

amount of natural gas and in the predicted 2020 electricity generation mix gas only 
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accounts for 6.8%. This would be different if China had a higher share of natural gas 

for electricity generation, as other countries do. 
 
 
Although GHG emissions and energy consumption would both be reduced, it is 

interesting to see what the changes would be if all electricity in China were produced 

in nuclear power stations, rather than by coal. Figure 5 shows the results of this exercise, 

which represents a hypothetical ‘maximum reduction’ in emissions. In any case, power 

plants are long lived investments, which also take time to be built, and ten years would 

not be a long enough period of time to substantially change the shares of electricity 

production from different sources. Furthermore, as the figure shows, emissions would 

not be completely eliminated. This is because nuclear power stations are associated 

with large amounts of indirect GHG emissions. These are caused during the facility 

construction and supply of materials, as well as during the operational processes, which 

include uranium mining, milling, conversion, fuel rod fabrication, transportation, 

facility operation and maintenance, and reprocessing, and activities that take place after 

the power station ceases to operate, such as decommissioning, nonradioactive waste 

disposal/recycling, and radioactive waste storage (Warner and Heath, 2012, p.S74). 

Having said that, there is consensus in the lifecycle analysis literature that ‘life cycle 

GHG emissions from nuclear power are only a fraction of traditional fossil sources’ 

(Warner and Heath, 2012, p.S90). 
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Figure 5: Lifecycle Energy Consumption in BTUs relative to 2009 ICE vehicles for 

the travel survey sample in China under the hypothetical assumption that all 

electricity in 2020 is generated in nuclear power stations 

 

Source: estimates produced by the authors using GREET 1.8c, using parameters derived from 

the travel survey they conducted 

Note: The 2020 UF of 0.69 corresponds to twice the DKT from the 2010 survey, as explained 

in the text 

Note: The changes reported in this figure are from PHEVs relative to 2009 ICE vehicles (current 

gasoline vehicles) assuming that all electricity in China in 2020 is generated in nuclear power 

stations 

 

As can be seen in Figure 5, if electricity were generated in a clean way the reduction in 

energy consumption and GHG emissions resulting from using PHEVs rather than ICE 

ones would be drastic. Although China could not convert to all nuclear by 2020 the 

exercise serves as a warning of the forgone benefits from feeding PHEVs electricity 

produced in coal power stations. 

 

Figure 6 shows absolute CO2e emissions in grams per km for ICE vehicles and PHEVs 

under the four different electricity generation mixes introduced in Table 1. ICE vehicles 

run on gasoline and emissions PTW do not vary with how the electricity is generated. 

Emissions WTP, however, are lower for cleaner electricity generation mixes, as the 
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upstream oil recovery, refinery and fuel transport consume electricity. The figure also 

shows that lifecycle PHEV emissions decline when electricity is generated using 

cleaner technologies. In an all nuclear mix emissions are much lower but they are not 

zero, for the reasons explained above, i.e., when electricity is generated from nuclear 

power, the upstream stage still involves fossil fuel consumption for uranium recovery, 

transport, and refinery for reactor use.  

 

Figure 6: Lifecycle GHG emissions (in grams of CO2e per km) for ICE vehicles and 

PHEVs with a UF of 0.69 under different electricity generation mixes in China 2020 

 

Source: estimates produced by the authors using GREET 1.8c 

Note: the electricity mixes correspond to those in Table 1 

Note: The ICE vehicle emissions on this figure correspond to 2020 ICE vehicles, with a higher 

fuel efficiency than 2009 (current) ICE vehicles 

 

Figure 7 shows lifecycle GHG emissions from PHEVs in grams of CO2e per km under 

the four electricity mixes depicted in Table 1 and three different utility factors (0.69, 

0.78 and 0.92). These utility factors correspond to a RCD of 60 km on the three curves 

on Figure 3 (with the DKT, 1.5 times the DKT and twice the DKT by our survey 

respondents). It should be noted that the results on Figure 7 can also be taken as 

representative of a range of battery ranges and even different charging frequencies as 

well. For example, with an RCD of 100 km and twice the DKT (which is the estimated 

DKT for 2020), the UF is 0.89, which falls in-between 0.78 and 0.92. If the PHEV 
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battery were charged twice a day, the UF would reach 1, which would be just over the 

0.92 depicted on the figure. 

 

Figure 7: Lifecycle GHG emissions (in grams of CO2e per km) for PHEVs with 

different utility factors under different electricity generation mixes in China 2020 

 

Source: estimates produced by the authors using GREET 1.8c 

Note: the electricity mixes correspond to those in Table 1 

 

Importantly, emissions decline according to how clean the electricity mix is. The 

reductions can be substantial, as shown on Figure 7. Interestingly, emissions can 

increase with the UF, as is the case for the 2009 mix and at the margin, the predicted 

2020 mix. The reason for this is that these electricity generation mixes are fairly dirty 

in terms of GHG emissions. A higher UF, which implies a higher percentage of km 

driven on charge depleting mode, entails higher electricity use. When the carbon 

intensity of the grid is high PHEVs using more electricity cause higher CO2 emissions 

than gasoline combustion. These findings are in line with those from Huo et al (2010), 
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who conclude that electric vehicles would generate more GHGs than ICE vehicles 

under the North and North East power grids, which are coal intensive. They also 

conclude that electric vehicles would cause lower GHG emissions than hybrid electric 

vehicles under the South power grid only. Similarly, Ou et al (2010) find that electric 

vehicles would save GHG emissions substantially only if state-of-art power generation 

technologies were used.  

 

Figure 7 also shows that emission reductions due to a higher UF (which might be the 

result of lower DKT, higher RCD, or even higher charging frequency) are not significant, 

when compared to those that can be achieved from cleaner electricity generation mixes. 

 

Table 3 summarizes absolute energy consumption and emissions for the most important 

combinations (it only excludes the 2009 electricity mix, as this has already been shown 

graphically and is used in the study for comparison purposes only). The numbers in 

parenthesis represent the changes relative to 2009 ICE vehicles under the relevant 

electricity generation mix. 
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Table 3: Lifecycle Energy Consumption (in BTUs per km) and GHG Emissions (in 

grams of CO2e per km) for ICE vehicles and PHEVs with a charge depleting range 

(RCD) of 60 km and different electricity mixes in China 2020 

Items PHEV 2020 mix PHEV slightly cleaner mix PHEV all nuclear 

Petroleum 1175 1159 1059 
 (-64.1%) (-64.5%) (-67.5%) 
Natural Gas 256 304 264 
 (-41.4%) (-32.1%) (-36.0%) 
Coal 834 533 19 
 (227.7%) (181.5%) (-76.3%) 
Fossil Fuels 2265 1995 1341 
 (-42.8%) (-48.9%) (-64.2%) 
Total Energy 2496 2290 1772 
 (-37.5%) (-42.0%) (-53.9%) 
GHGs 204 172 104 
 (-35.0%) (-44.0%) (-64.7%) 

Source: estimates produced by the authors using GREET 1.8c, with UF = 0.69 

Note: Numbers in parenthesis correspond to % changes relative to 2009 ICE vehicles (current 

gasoline vehicles) under the relevant electricity mix 

 

PHEVs under the predicted 2020 mix provide a 64.1% reduction in petroleum 

consumption and 41.4% reduction in natural gas consumption, when compared to 

current ICE vehicles under the same mix. Coal consumption increases by 227.7% due 

to the higher demand for electricity, 63% of which is generated in coal power stations 

under the 2020 electricity mix. Notwithstanding that, overall fossil fuel and energy 

consumption and GHG emissions decline. The story for PHEVs under a slightly cleaner 

electricity generation mix is similar. 

 

When all electricity is assumed to be generated in nuclear power stations the results are 

different. PHEVs under an all nuclear mix do not increase but rather, decrease, coal 

consumption. Consequently, fossil fuel and total energy consumption reductions as well 

as GHG emissions reductions are greater in absolute terms.  
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5. Conclusions 

 

In this paper we estimated the potential that PHEVs have for reducing energy 

consumption and GHG emissions relative to current gasoline vehicles in China 2020 

under different electricity generation mixes and utility factors (in turn covering different 

combinations of average distances driven per day and battery ranges as well as, 

implicitly, charging frequencies). 

 

The main findings are: (a) the way in which electricity is generated has a substantial 

impact on energy consumption and lifecycle GHG emissions; and (b) the utility factor 

(in turn determined by battery range, average daily distance driven and charging 

frequency) does not have much of an impact on energy consumption and lifecycle GHG 

emissions, in comparison with the impact that the electricity generation mix has. 

 

Unsurprisingly, we find that the cleaner the technology used to produce electricity, the 

lower the absolute energy consumption and GHG emissions from PHEVs are. We also 

find that in a coal intensive electricity generation mix, lifecycle GHG emissions from 

PHEVs increase slightly with the utility factor. The reason for this is that the higher the 

share of total distance driven on electricity, the higher the electricity consumption will 

be and, if this electricity comes from coal power stations, the higher the lifecycle GHG 

emissions will be. 

 

The reductions that can be achieved by PHEVs in China 2020 relative to current 

gasoline vehicles are therefore very sensitive to the electricity generation mix but not 

very sensitive to the utility factor, or in other words, to the average distance driven per 

day, the battery range, or the charging frequency. The reductions in energy consumption 

and GHG emissions are 37.5% and 35% under the predicted 2020 electricity generation 

mix, which assumes a share of coal of 63%, but increase to 53.9% and 64.7% 

respectively under an all nuclear electricity generation mix. 
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The conclusion from these findings, which can be generalised to other countries, is that 

increasing the battery range or charging frequency of PHEVs and/or decreasing daily 

distances traveled by car when the electricity generation mix is not clean will not 

enhance reductions in energy consumption or GHG emissions substantially, and could, 

when the share of coal is important, slightly increase both. Increasing the share of clean 

technologies used to generate electricity, on the other hand, will enhance reductions in 

energy consumption or GHG emissions that PHEVs can achieve relative to gasoline 

vehicles. 
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Appendix 

 

Abridged version of the online survey conducted on the Auto.Sohu website in 

China 

 

1. Would you consider Hybrid Electric Vehicles (HEVs) or Electric Vehicles (EVs) 

when choosing a car to buy? 

A. Yes 

B. No 

C. Not sure 

 

2. Compared with conventional gasoline vehicles, what do you think is the biggest 

strength of HEVs and EVs? 

A. Lower operation costs 

B. Environmentally friendly 

C. Other (please specify) 

 

3. What are your concerns about HEVs and EVs? (You may tick more than one choice) 

A. Expensive 

B. Lower performance, quality or reliability when compared to standard gasoline cars 

C. Repair and after-sales services insufficient 

D. Limited models for selection 

E. Other (Please specify) 

 

… 

 

5. Under what payback period would you be prepared to buy a HEV or EV? 

A. Less than 6 months 

B. 6 months to 1 year 
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C. 1 to 1.5 years 

D. 1.5 to 2 years 

E. 2 to 3 years 

F. 3 to 5 years 

G. More than 5 years 

 

… 

 

8. What would be your minimum acceptable distance per charge is? 

A. 100 km 

B. 150 km 

C. 200 km 

D. More than 200 km 

 

9. What is your acceptable lowest vehicle maximum speed? 

A. 100 km/h 

B. 150 km/h 

C. 200 km/h 

D. More than 200 km/h 

 

… 

 

11. Please specify your average travel distance per day in km. 

 

… 
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Table A1: Energy efficiency parameters input onto GREET 

 

Parameter Value Source 

Barges 10,119BTU/hphr 

(horsepower hour) 

GREET 

Lorries 

 

25,690 BTU/mile 

 

GREET 

Coal power plants 

(conversion efficiency of 

coal to electricity) 

 

29.8% Zhang et al. (2007) 

Natural gas power plants 

(conversion efficiency of 

natural gas to electricity) 

24.8% Zhang et al. (2007) 

Refineries 82.7% Zhang et al. (2007) 

Gasoline ICE vehicles 23.4 MPG 

 

GREET 

 

PHEVs Charge 

Sustaining mode 

32.8 MPG GREET 

PHEVs Charge Depleting 

mode (fuel)  

PHEVs Charge Depleting 

mode (electricity)  

 

601 BTU/km 

 

134 wh/km 

Prius Hymotion 
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Table A2: Parameters input on to GREET for the Toyota Hymotion Prius with 

an A123 battery with a charge depleting range (RCD) of 60km 

 

Simulation options 

Fuel consumption in charge depleting mode (BTU-fuel/km) 601 

Electricity consumption in charge depleting mode (Wh/km) 134 

Miles per gallon change in charge sustaining mode relative to 

ICE vehicles (%) 

140 

Operational charge sustaining range (km) 60 

Share of km travelled for charge depleting mode (%) 69 

Share of km travelled for charge sustaining mode (%) 31 

Electric charger efficiency (%) 85 

Toyota Hymotion Prius with an A123 battery 

Vehicle configuration Pre-transmission parallel 

Vehicle class Mid-size 

Vehicle test class 1661 kg 

Front area 2.2 m2 

Drag coefficient 0.29 

Transmission 5-speed manual 

Accessory load electrical 200 watt average 

Electric machine 75 kw peak at base speed of 3000 rpm 

Battery model SAFT-JCS VL41M 

Battery capacity 41 Ah at 3/c 

Battery operating voltage 194-288 V 

Battery continuous current 150A for 30 sec at 30°C 

Battery discharge power 65 kw for 30 sec at 50% state of charge* at 30°C 

*The state of charge is the percentage of available electricity capacity to the battery’s total 

storage capacity. It is the equivalent of a fuel gauge for the battery pack (0% = empty; 100% 

= full). Source: Rousseau et al. (2007)  
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Table A3: ICE vehicle and PHEV fuel cycle energy consumption and emissions (RCD=60km) 

under the predicted 2020 mix 

 

(Btu/km or g/km) 
ICE 

vehicle 

Relative 

Change 
PHEV 

Total Energy 3853.24 -37.90% 2392.87 
Fossil Fuels 3826.17 -41.42% 2241.54 

Coal 186.95 224.43% 606.51 
Natural Gas 734.39 -13.87% 632.52 
Petroleum 2904.83 -65.80% 993.46 

CO2 283.65 -34.74% 185.10 
CH4 0.39 -35.87% 0.25 
N2O 0.01 6.22% 0.01 

GHGs 295.92 -34.43% 194.04 

 

Source: estimates produced by the authors using GREET 1.8c, using parameters derived from the 

travel survey they conducted 
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Table A4: ICE vehicle and PHEV fuel cycle energy consumption and emissions (RCD=60km) 

under an all nuclear mix 

 

(Btu/km or g/km) 
ICE 

vehicle 

Relative 

Change 
PHEV 

Total Energy 3733.99 -53.87% 1722.63 
Fossil Fuels 3661.53 -64.21% 1310.43 

Coal 51.15 -76.34% 12.10 
Natural Gas 715.55 -35.99% 458.03 
Petroleum 2894.83 -67.49% 941.17 

CO2 267.90 -65.31% 92.94 
CH4 0.38 -62.09% 0.14 
N2O 0.01 -9.15% 0.01 

GHGs 279.97 -64.72% 98.78 

 

Source: estimates produced by the authors using GREET 1.8c, using parameters derived from the 

travel survey they conducted 

 


